

Reference
Manual

Burroughs

Priced Item 1163920
Printed in U.S.A.
February 1985

Burroughs cannot accept any financial or other responsibilities that may
be the result of your use of this information or software material,
including direct, indirect, special or consequential damages. There are
no warranties extended or granted by this document or software material.

You should be very careful to ensure that the use of this software
material and/or information complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
Field Communication Form (FCF) with the Class specified as "2" (System
Software), the Type specified as "1" (F.T.R.), and the Product specified
as the seven-digit form number of the manual (for example, 1163920) The
FCF should be sent to the following address:

Burroughs Corporation
Product Assurance and Support

3519 W. Warner Avenue
Santa Ana, CA 92704

TABLE OF CONTENTS

INTRODUCTION •••••••••• e ••

SUMMARY OF SECTIONS ••• e •••••••••••••••••••••••••••••••••••••

HELPFUL DOCUMENTS. e •••

GEMCOS MANUALS •• •••
RELATED MANUALS •••.••..•..•........•..••..•.••••..•••••.•

SECTION 1 • SYSTEM OVERVIEW ••••••••.•••••••••••••••••••••••••••
VERSIONS OF GEMCOS ••• •••• " ••• II> •••• ••••••••••••••••••••••••••

TRANSACTION CONTROL LANGUAGE ••••••••••••••••••••••••••••••••
NETWORK CONTROL AND ADMINISTRATION •.••••••••••••••••••••••••

NETWORK CONTROL COMMANDS •••••••••••••••••••••••••••••••••
Functions of Network Control Commands •••••••••••••••••
Control Stations ••••••••••••••••••••••••••••••••••••••

ERROR HANDLII\fG • ••••••••• ,, ••••••••••••••••••••••••••••••••
INTERFACE TO APPLICATION PROGRAMS •••••••••••••••••••••.•••••
MESSAGE FORMATTING AND ROUTING •.•••••••••.••.•••••••••••••••

MESSAGE FORMATTING • ••••••••••••••••••••••••••••••••••••••
MESSAGE ROUTING ••

ACCESS CONTROL (SECURITY) ••••••.•.•••••••••••.•••••••••.••••
AUD IT •••
RECOVERY • •••
TESTING, PATCHING, TIMING, AND DEBUGGING ••••••••••••••••••••
TCL COMPILER AND UTILITY PROGRAMS •••••••••••••••••••••••••••

SECTION 2. TRANSACTION CONTROL LANGUAGE •••••••••••••••••••••••
COMPILER AND STATEMENTS ••

TRANSACTION CONTROL LANGUAGE COMPILER (MCSTCL)
AND RELATED FILES • ••

TABLE INFORMATION CONTROL FILE (MCSTIC) ••••••••••••••••••
FUNCTIONS AND FORMATS FILE (MCSFORMATS) ••••••••••••••••••

SUMMARY OF STEPS TO EXECUTE THE TCL COMPILER ••••••••••••••••
CREATING THE TCL SOURCE IMAGE (MCSIN)
(CARD DECK OR CANDE FILE) ..•...••••.•••••••••••..••••.••••••

SYNTAX AND COMPONENTS OF THE SOURCE IMAGE ••••••••••••••••
RULES FOR THE SOURCE IMAGE ••.•••••••.••••••••••••••••••••
USING THE LIBRARY STATEMENT ••••••••••••••••••••••••••••••

EXECUTING THE TCL COMPILER (MCSTCL) •••••••••••••••••••••••••
LOADING GEMCOS SYSTEM FILES ••••••••••••••••••••••••••••••

Modifying MCSGO •••••••••••••••••••••••••••••••••••••••
Using Standard Error Messages •••••••••••••••••••••••••

EXECUTION USING A CARD DECK ••••••••••••••••••••••••••••••
EXECUTION USING A CANDE SOURCE FILE ••••••••••••••••••••••
CHECKING FOR SYNTAX ERRORS •••••••••••••••••••••••••••••••
SAMPLE TCL SOURCE IMAGE (DECK OR FILE) •••••••••••••••••••

CONTROL STATEMENT • ••
MCSTIC FILE NAME STATEMENT ••••••••••••••••••••••••••••••••••
FORMAT FILE NAME STATEMENT ••••••••••••••••••••••••••••••••••
GLOBAL SECTION ••

AUDIT FILE FAMILY ID STATEMENT •••••••••••••••••••••••••••
AUDIT FILE PACK ID STATEMENT •••••••••••••••••••••••••••••

iii

2
2
2
2
2

xi
xi

xii
xii
xii

1 - 1
1 - 2
1 - 2
1 - 3
1 - 4
1 - 4
1 - 5
1 - 5
1 - 5
1 - 6
1 - 6
1 - 6
1 - 7
1 - 7
1 - 7
1 - 7
1 - 7

2 -
2 -

2 - 1
2 - 2
2 - 2
2 - 2

2 - 3
2 - 3
2 - 4
2 - 4
2 - 5
2 - 5
2 - 6
2 - 6
2 - 7
2 - 7
2 - 7
2 - 8
2 - 9
- 14
- 15
- 16
- 18

- 19

AUDIT PAGE SIZE STATEMENT ••••••••••••••••••••••••••••••••
AUDIT RECORD SIZE STATEMENT ••••••••••••••••••••••••••••••
CHANGE REQUESTS STATEMENT ••••••••••••••••••••••••••••••••
CHECKPOINT INTERVAL STATEMENT ••••••••••••••••••••••••••••
COMPILE OPTIONS STATEMENT ••••••••••••••••••••••••••••••••
CONVERSATION LIMIT STATEMENT •••••••••••••••••••••••••••••
DATA DUMP STATEMENT • •••••••••••••••••••••••••••••••••••••
FORMAT AND FUNCTION STATEMENT LIST •••••••••••••••••••••••

Function Declaration •••.......••.........•••.••••••.•.
Format Declaration••..••.........•.•....••••.•..
Formatting Errors
Using Location Specifiers •••••••••••••••••••••••••••••

MAXIMUM TEXT SIZE STATEMENT ••••••••••••••••••••••••••••••
MESSAGE BROADCAST STATEMENT ••••••••••••••••••••••••••••••
MESSAGE RECALL STATEMENT •••••••••••••••••••••••••••••••••
MONITOR TRACE STATEMENT ••••••••••••••••••••••••••••••••••
MONITOR TRACE ON STATEMENT •••••••••••••••••••••••••••••••
MY NAME STATEIVIENT • •••••••••••••••••••••••••••••••••••••••
NAME-STACK ENTRIES STATEMENT •••••••••••••••••••••••••••••
NCC OK RESPONSE STATEMENT ••••••••••••••••••••••••••••••••
OBJECT CODE FILE NAME STATEMENT ••••••••••••••••••••••••••
PROGRAM BOJ EOJ STATEMENT ••••••••••••••••••••••••••••••••
QUEUE BUFFERS STATEMENT ••••••••••••••••••••••••••••••••••
QUEUE DEPTH STATEMENT ••••••••••••••••••••••••••••••••••••
QUEUE NAME STATEMENT •••••••••••••••••••••••••••••••••••••
RECALL PROGRAM STATEMENT •••••••••••••••••••••••••••••••••

Using MCSRECALL to Recall Audited Messages ••••••••••••
SIGNAL CHARACTER STATEMENT •••••••••••••••••••••••••••••••
SIMULATION STATEMENT •••••••••••••••••••••••••••••••••••••
SOURCE CODE FILE NAME STATEMENT ••••••••••••••••••••••••••
STATUS REPORTS STATEMENT •••••••••••••••••••••••••••••••••
SUBORDINATE MCS STATEMENT ••••••••••••••••••••••••••••••••
SYSTEM HALT STATEMENT ••••••••••••••••••••••••••••••••••••
VALUE-STACK BITS STATEMENT •••••••••••••••••••••••••••••••

DEFINITION SECTION • ..•..••••••••.••••.••••••••••••..••.••...
ACCESS CONTROL S'rATEMENT •••••••••••••••••••••••••••••••••
PROGRAM SECTION ••

AP300STATUS Statement •••••••••••••••••••••••••••••••••
ATTACH MESSAGE Statement ••••••••••••••••••••••••••••••
AUDIT ASSIGNMENT Statement ••••••••••••••••••••••••••••
AUDIT OUTPUT Statement ••••••••••••••••••••••••••••••••
AUDIT TRANSACTIONS Statement ••••••••••••••••••••••••••
COMMON SIZE Statement ••••• ••••••••••••••••••••••••••••
CONVERSATION SIZE Statement •••••••••••••••••••••••••••
DATA BASE NAME Statement ••••••••••••••••••••••••••••••
DETACH MESSAGE Statement ••••••••••••••••••••••••••••••
EXECUTE Statement •..••.....•...••.•...••••...•.••.•...
HOST Statement ••
INTERFACE Statement •••••••••••••••••••••••••••••••••••
MAXIMUM ASSIGNERS Statement •••••••••••••••••••••••••••
MAXIMUM COPIES Statement ••••••••••••••••••••••••••••••
OPEN MESSAGE Statement ••••••••••••••••••••••••••••••••

iv

2
2
2

2 20
2 21
2 22
2 23
2 24
2 25
2 26
2 27
2 29
2 31
2 41
2 48
2 53
2 54
2 55
2 56
2 57
2 58
2 59
2 60
2 61
2 62
2 63
2 64
2 65
2 66
2 66
2 70
2 71
2 72
2 73
2 74
2 76
2 77
2 78
2 79
2 81
2 88
2 89
2 90
2 91
2 92
2 93
2 94
2 95
2 96
2 97
2 98
2 99

115
11 6
117

PLM PROGRAM Statement •••••••••••••••••••••••••••••••••
PORT SIZE Statement•••••••••••••••••••••••••••••••••••
PROGRAM TITLE Statement •••••••••••••••••••••••••••••••
RECOVERY Stat em en t ••••••••••••••••••••••••••••••••••••
RESIDENCE Statement •••••••••••••••••••••••••••••••••••
RESTART PROGRAM Statement •••••••••••••••••••••••••••••
SUPPRESS GOOD DAY MESSAGE Statement •••••••••••••••••••
TRANCODE Statement •••••••••••••••.•••••••••••.••••••••
TRANSACTION CODE POSITION Statement •••••••••••••••••••

STATION SECTION • •••
CONTINUOUS LOG ON Statement •••••••••••••••••••••••••••
CONTROL STATION Statement •••••••••••••••••••••••••••••
CONVERSATIONAL Statement ••••••••••••••••••••••••••••••
HOST ACCESS KEY Statement •••••••••••••••••••••••••••••
MONITOR STATION Statement •••••••••••••••••••••••••••••
PORT STATION Statement ••••••••••••••••••••••••••••••••
SCREEN SIZE Statement •••••••••••••••••••••••••••••••••
SIGN ON Statement •••••••••••••••••••••••••••••••••••••
STATION HOST NAME Statement •••••••••••••••••••••••••••
STATION YOUR NAME Statement •••••••••••••••••••••••••••
SUPPRESS MESSAGES Statement •••••••••••••••••••••••••••
TRANCODE Statement ••••••••••••••••••••••••••••••••••••
TRANSACTION CODE POSITION Statement •••••••••••••••••••
TRANSACTION MODE Statement ••••••••••••••••••••••••••••
TYPE Statement •••••••••••••••••••••••••••••••••••••.••
VALID ACCESS KEYS Statement •••••••••••••••••••••••••••
VIRTUAL STATION Statement •••••••••••••••••••••••••••••

DEVICE SECTION •••••• •••••••••••••••••••••••••••••••••••••
INPUT FORMATS Statement •••••••••••••••••••••••••••••••
OUTPUT FORMATS Statement ••••••••••••••••••••••••••••••
STATION LIST Statement•••••••••••••••••••••••••••••··~

MESS CODE SECTION •.•••••••••.•.••.••..••...•••.•••....•.•
MESS Procedures •.•..•......••.••..•.....•.•
AUDIT • ••
CLOSE ACTION • •••
CLOSE FILES •••
ERROR HANDLER • ••
HANDLE RECALL •...••..••....•.••••..••••••.•.••.•.•••••
INITIATE RESTORE •.••.•••..•.••••...•...•.•••..•...•..•
MAINTENANCE • ••
MESSAGE FROM PROGRAM ••••••••••••••••••••••••••••••••••
MESSAGE FROM STATION ••••••••••••••••••••••••••••••••••
OPEN ACTION ••••••••••••••• ••••••••••••••••••••••••••••
RESTORE PROGRAM ••.•••...••.•.••.•.•.•••.••.••••.••••.•
SET SIZES•...••.•..•..•••..•..•....•.•......•..•.•
SET VALUES • •••

BEGINNING SYSTEM OPERATION ••••••••••••••••••••••••••••••••••
EXECUTING AN MCS••••....•...•••••.••••..••••••
EXECUTING A NETWORK CONTROLLER •••••••••••••••••••••••••••
CONSOLE OR CARD READER INPUT TO THE MCS ••••••••••••••••••

v

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

118
119
120
121
122
123
124
125
126
127
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
148
149
150
151
156
157
157
157
158
158
159
159
160
160
161
162
162
163
163
163
164
165

SECTION 3. USING NETWORK CONTROL COMJllIANDS •••••••••••••••••••••
USING THE HELP COMMAND •••••••••••••••••••••••••••••••••••

SECURITY CONTROL COJVIJ.VIANDS •••••••••••••••••••••••••••••••• ~··
DISABLE USER (DUS) •••••••••••••••••••••••••••••••••••••••
ENABLE USER (EUS) ...•.........•.••..••......••...•••.•...
SIGN OFF (BYE) •••
SIGN ON (SGN) ••
UPDATE ACCESS KEYS (UPD ACCESSKEY) •••••••••••••••••••••••

STATION ATTACHMENT COMMANDS •••••••••••••••••••••••••••••••••
ATTACH LSN (ATT) •••
DETACH FROM REMOTE FILE (DFR) ••••••••••••••••••••••••••••

PROGRAM CONTROL COMMANDS ••••••••••••••••••••••••••••••••••••
EXECUTE PROGRAM (EX) •••••••••••••••••••••••••••••••••••••
FREE STATION FOR EXECUTION (FRE) •••••••••••••••••••••••••
HALT APPLICATION PROGRAM (HAP) •••••••••••••••••••••••••••
PROGRAM PASS (PASS) ••••••••••••••••••••••••••••••••••••••

MCS CONTROL COMMANDS • •••••••••••••••••••••••••••••••••••••••
AUDIT OK (AOK) •••
HALT SYSTEM (HLT) ••

MESSAGE CONTROL COMMANDS ••••••••••••••••••••••••••••••••••••
BROADCAST (BRC) ••
POP QUEUE (PQ) •••

REPORT COMMANDS • •••••••••••••••••••••• e •••••••••••••••••••••

REPORT DATA DUMP (RDM) •••••••••••••••••••••••••••••••••••
REPORT FILE STATUS (RFS) •••••••••••••••••••••••••••••••••
REPORT PROGRAM COUNTERS (RPC) ••••••••••••••••••••••••••••
REPORT PROGRAM STATUS (RPS) ••••••••••••••••••••••••••••••
REPORT STATION COUNTERS (RSC) ••••••••••••••••••••••••••••
REPORT STATION STATUS (RSS) ••••••••••••••••••••••••••••••

CHANGE COMMANDS • ••
CHANGE MONITOR FLAG (CMF) ••••••••••••••••••••••••••••••••
CHANGE STATION ADDRESS (CSA) •••••••••••••••••••••••••••••
CHANGE STATION DIAGNOSTIC (CSD) ••••••••••••••••••••••••••
CHANGE STATION FREQUENCY (CSF) •••••••••••••••••••••••••••
CHANGE STATION MAXIMUM RETRY (CSM) •••••••••••••••••••••••
CHANGE STATION QUEUE (CSQ) •••••••••••••••••••••••••••••••
CHANGE STATION READY (CSR) •••••••••••••••••••••••••••••••
CHANGE STATION TRANSMISSION NUMBER (CST) •••••••••••••••••
FORMAT UPDATE (UPD) ••••••••••••••••••••••••••••••••••••••

AUDIT & RECOVERY COMMANDS •••••••••••••••••••••••••••••••••••
CLEAR DISABLED PROGRAM (CLE) •••••••••••••••••••••••••••••
RECOVER DATA BASE (REC) ••••••••••••••••••••••••••••••••••
REFRESH COMMAND (REF) ••••••••••••••••••••••••••••••••••••
RESET BUSY STATUS (RBS) ••••••••••••••••••••••••••••••••••

·.TIME • •••••••••••••••••••••••••
PORT STATION COMMANDS •••••••••••••••••••••••••••••••••••••••

DISABLE PORT STATION (DPS) •••••••••••••••••••••••••••••••
ENABLE PORT STATION (EPS) ••••••••••••••••••••••••••••••••
UPDATE STATION HOST NAME/STATION YOUR NAME •••••••••••••••

vi

3 1
3 2
3 3
3 3
3 4
3 4
3 5
3 6
3 7
3 7
3 8
3 9
3 9

3 10
3 11
3 12
3 13
3 13
3 14
3 15
3 15
3 16
3 18
3 18
3 19
3 20
3 21
3 22
3 23
3 24
3 24
3 25
3 26
3 27
3 28
3 29
3 30
3 31
3 32
3 33
3 33
3 34
3 35
3 36
3 37
3 38
3 38
3 39
3 40

SECTION 4. MESSAGE FORMATTING AND ROUTING •••••••••••••••••••••
FORMATTING AND APPLICATION PROGRAMS •••••••••••••••••••••••••

SCREEN WRAPAROUND • •••••••••••••••••••••••••••••••••••••••
GEMCOS EDITING PHRASES •••••••••••••••••••••••••••••••••••
OUTPUT FORMATTING EXAMPLE ••••••••••••••••••••••••••••••••
INPUT FORMATTING EXAMPLE •••••••••••••••••••••••••••••••••

MESSAGE ROUTING • ••
USING REMOTE FILES •••••••••••••••••••••••••••••••••••••••
USING COMMON-AREA HEADERS ••••••••••••••••••••••••••••••••
USING TRANSACTION-BASED ROUTING ••••••••••••••••••••••••••
SELECTING A METHOD OF MESSAGE ROUTING ••••••••••••••••••••
NON-STANDARD ROUTING •••••••••••••••••••••••••••••••••••••

Station To Station •..•••••••••••••••••••••••••••••••••
Routing From Programs •••••••••••••••••••••••••.•••••••

SECTION 5. USING PORT FILES • ••••••••••••••••••••••••••••••••••
USING STATIONS AS PORTS •••••••••••••••••••••••••••••••••••••
USING PORT PROGRAMS .•.•.•...•...•.....•......••..••.••..•..•
SUMMARY OF PORT FILE STATEMENTS IN THE TCL ••••••••••••••••••

SECTION 6. SELECTING OPTIONS FOR ACCESS CONTROL (SECURITY) ••••
ACCESS SECURITY ••••.••••••••••••..••••••••••..•••..•.•••••••
PROCESS SECURITY • •••
DEFINING ACCESS CONTROL IN THE TCL ••••••••••••••••••••••••••

SECTION 7. USING AUDIT AND RECOVERY OPTIONS •••••••••••••••••••
AUDITING • •••
CONTROLLED SHUTDOWN •••
SELECTING RECOVERY OPTIONS ••••••••••••••••••••••••••••••••••
NO RECOVERY • ••
RECOVERY UNDER SMCS ••.••.•••.••..•••.•••..•.•••••••...•••••.
RECOVERY OPTIONS AVAILABLE ••••••••••••••••••••••••••••••••••

QUEUE RESTORATION RECOVERY •••••••••••••••••••••••••••••••
NONSYNCHRONIZED AND SYNCHRONIZED DATA BASE RECOVERY ••••••

Opening a Remote File •••••••••••••••••••••••••••••••••
Transaction Processing •••••••••••••••••••••••...••••••
End-of-Job • •.•••••••••••••••••••••••.••.•••.•.•••••..•
Program Abort •..•.. •....••• " ...••..•..••.•..•......•.•
Recovery Processing •••••••••••••••••••••••••••••••••••
Recovery After System Failure •••••••••••••••••••••••••
Data Base Recovery (Nonsynchronized) ••••••••••••••••••
Synchronized Recovery ••••••••••••••••••.••••••••••••••

HOUSEKEEPING CONSIDERATIONS •••••••••••••••••••••••••••••••••
RESTART PROGRAM•...•..•...•...•.•••..••.••....•..•••.••
RECOVERY CYCLE ..••. -••..•••.•••.•.•••.•..•..••.•••••••..•.•.•
ARCHIVAL RECOVERY .•.•.•.••.••...•...•••••..•..•••••.........
RECOVERY CONTROL MESSAGES •••••••••••••••••••••••••••••••••••

SECTION 8. TESTING, PATCHING, TIMING, AND DEBUGGING •••••••••••
TESTING • ••

EXAMPLE SIMULATION CARD DECK •••••••••••••••••••••••••••••
PATCHING • •••

vii

4
4
4 2
4 2
4 4

4 12
4 19
4 20
4 20
4 21
4 21
4 25
4 25
4 25

5 1
5 1
5 1
5 2

6 1
6 1
6 1
6 2

7 1
7 1
7 2
7 2
7 3
7 4
7 5
7 6
7 7
7 8

7 10
7 11
7 11
7 11
7 12
7 12
7 13
7 16
7 17
7 18
7 19
7 22

8 1
8 1
8 3
8 4

TIMING • •••
DEBUGGING • ••

USING THE GEMCOS MONITOR TRACE •••••••••••••••••••••••••••
Changing the Monitor Flag •••••••••••••••••••••••••••••
Calling the Monitor Procedure •••••••••••••••••••••••••
Sample Monitor Trace ••••••••••••••••••••••••••••••••••

USING THE GEMCOS DATA DUMP •••••••••••••••••••••••••••••••

SECTION 9. USING THE STATION OPTIONS ••••••••••••••••••••••••••
AP300 • ••
MT600 • ••

PROCESSING INPUT FROM THE MTS ••••••••••••••••••••••••••••
PROCESSING OUTPUT TO THE MTS •••••••••••••••••••••••••••••
MTS MESSAGE TYPES • •••••••••••••••••••••••••••••••••••••••

ROUTEHEADERS (COMPUTER-TO-COMPUTER COMMUNICATION) •••••••••••
ROUTING • •••
PROTOCOL • ••
ACCESS CONTROL • ••
FORMATTING • ••
SUSPENSION ••• ••
RECOVERY • ••
ERROR HANDLING • ••
NDL CONSIDERATIONS •••••••••••••••••••••••••••••••••••••••

TRANSFERRING DISK FILES •••••••••••••••••••••••••••••••••••••
COPY COMMAND • ••
ABORT COIVIMAND • •••
WHAT COMMAND • ••
FILE TRANSFER EXAMPLE ••••••••••••••••••••••••••••••••••••

BNA STATION TRANSFER ••

SECTION 10. USING THE CONVERSATIONAL FEATURE ••••••••••••••••••
TCL SPECIFICATIONS ••

CONVERSATION LIMIT STATEMENT •• , ••••••••••••••••••••••••••
CONVERSATION SIZE STATEMENT ••••••••••••••••••••••••••••••
CONVERSATIONAL STATEMENT •••••••••••••••••••••••••••••••••

PROCEDURES FOR CONVERSATIONAL PROGRAMS ••••••••••••••••••••••
RECOVERY OF CONVERSATIONAL PROGRAMS •••••••••••••••••••••••••
SUMMARY • ••

APPENDIX A. SUMMARY OF NETWORK CONTROL COMMANDS •••••••••••••••

APPENDIX B. SUMMARY OF FILES ••••••••••••••••••••••••••••••••••

APPENDIX C. LIMITS OF TCL SIZE ••••••••••••••••••••••••••••••••

APPENDIX D. MCS ERROR HANDLING AND ERROR MESSAGES •••••••••••••
ERROR HANDLING BY THE MCS •••••••••••••••••••••••••••••••••••
FORMAT OF ERRORS • •••
ERROR MESSAGES •.••..•..••••..•..•...••.••..••..•••••.••.••.•

APPENDIX E. HARDWARE REQUIREMENTS •••••••••••••••••••••••••••••

viii

8 7
8 9
8 9

8 10
8 10
8 11
8 12

9
9 1
9 1
9 2
9 2
9 3
9 3
9 4
9 4
9 5
9 5
9 6
9 6
9 6
9 7

9 10
9 11
9 12
9 12
9 12
9 14

10 1
10 1
10 1
10 2
10 2
10 3
10 7
10 7

A -

B - 1

c -

D 1
D 1
D 2
D 2

E - 1 I

\

APPENDIX F. COBOL74 PROGRAMS AND B 1000 GEMCOS................ F -

APPENDIX G. SYNTAX DIAGRAM CONVENTIONS........................ G -

INDEX••••••• 111 • • • • "" _. 1'"1••11~"••••1 • • • • 1 1 1 1,., 4 1 •••a~•~· 0 1 •• 1 • • • • •

ix

INTRODUCTION

This document is a reference manual for users of the Burroughs B 1000
GEneralized MEssage COntrol System (GEMCOS).

SUMMARY OF SECTIONS

Section 1, the Overview, discusses general features of GEMCOS and gives
further information on these features.

Section 2 gives a detailed description
Language (TCL) using railroad diagrams.
the railroad diagrams, see Appendix
compiling the TCL and executing the MCS.

of the Transaction Control
(For instruction on how to use

G.) Section 2 also discusses

Section 3 presents the Network Control Commands.

Section 4 discunses how to format and route messages,
describes the interface between application programs
files.

while Section 5
and GEMCOS port

Security (access control) is discussed in Section 6. Section 7 gives
information on selecting recovery options.

Section 8 presents information on testing, patching, using the timimg
mechanism, and debugging GEMCOS.

Section 9 discusses how to use station options, including routeheaders.
It also discusses Burroughs Network Architecture (BNA) station transfer.
Section 10 gives information on how to use the conversational feature.

The Appendices summarize Network Control commands, files, hardware
requirements, error messages, and other reference data.

The style identification numbers for the GEMCOS product are: MCB700
(Basic Version), MCA700 (Advanced Version), MCT700 (Total Version).

xi

HELPFUL DOCUMENTS

The following manuals contain additional information about GEMCOS:

GEMCOS MANUALS

1. Formatting Guide, B 1000 Generalized Message Control System
(GEMCOS), form 1106531.

2. Capabilities Manual, B 1000 Generalized Message Control System
(GEMCOS), form 1164001.

3. User's Guide, B 1000 Generalized Message Control System
(GEMCOS) Format Generator, form 1164019.

RELATED MANUALS

1. B 1000 Systems Network Definition Language (NDL) Reference
Manual, form 1152014.

2. B 1000 Systems SDL/UPL Reference Manual, form 1137833.

3. B 1000 Systems COBOL Reference Manual, form 1057197.

4. B 1000 Systems Report Programming Language Reference Manual,
form 1057189.

5. Burroughs Network Architecture,
Reference Manual, form 1132171.

Architectural Description

6. Burroughs Network Architecture, Network Control Reference
Manual, form 113180.

7.

8.

B 1000 Burroughs Network Architecture
Operations Manual, form 1151874.

Installation and

Subordinate
1152279.

Message Control System (SMCS) Manual, form

xii

SECTION 1

SYSTEM OVERVIEW

The B 1000 Series Generalized Message Control System (GEMCOS) is a
system of programs and files which creates and supports a Message
Control System (MCS). An MCS manages the flow of messages between the
Network Controller (NC) and application programs that process messages
to and from remote terminals.

B 1000 GEMCOS is a software package which allows users to tailor their
MCS to meet the specific requirements of their installation. The GEMCOS
MCS is both flexible and efficient. It includes these major features:

The Transaction Control Language (TCL), which allows users to
write their own specifications for the MCS.

Network Control and Administration. GEMCOS provides orderly
communication between the hardware devices in the network and
adapts the message flow to changing conditions. It also
allows remote stations to execute programs, transfers files
between computers (through the routeheader capability),
supervises other MCSs, logs messages, gathers statistics, and
handles errors.

Interface with Application Programs. GEMCOS executes and
terminates application programs, allows multiple programs to
run in parallel, prevents two programs from updating a record
simultaneously, and attaches remote stations. It simplifies
the work of the application programmer by supplying hardware
codes and handling error conditions.

Access Control (Security). GEMCOS prevents unauthorized
access to programs and data bases.

Audit and Recovery. GEMCOS recovers messages, transactions
from application programs, and data bases. GEMCOS provides
orderly shutdown for the entire network and for network
recovery.

Testing and Debugging. GEMCOS provides off-line testing with
its MCSSIM program, patching with its MCSFIX program, and
debugging with the GEMCOS data dump and Monitor Trace.

GEMCOS comes in several versions, which are discussed in the following
subsections.

- 1

VERSIONS OF GEMCOS

GEMCOS is available in three versions in order to accommodate several
levels of operating complexity. These versions are the Basic version,
the Advanced version, and tne Total version. The major capabilities of
each of these versions follow:

1 • Basic version GEMCOS:

a. Transaction Control Language (TCL).
b. Network control.
c. Message routing.
d. Nonparticipating MCS.
e. Access control.
f. Message auditing.
g. Message recovery.

2. Advanced version GEMCOS:

a. All Basic version capabilities.
b. Message formatting.

3. Total version GEMCOS:

a. All Advanced version capabilities.
b. Data base and synchronized recovery.

This manual discusses the features of all versions of GEMCOS.

TRANSACTION CONTROL LANGUAGE

The Transaction Control Language (TCL) is used to select MCS options.
It sets up message formatting and routing, and security. The TCL is
also used to choose audit and recovery options for user programs and
data bases.

The TCL is free form in structure. Key words describe the network
environment and user requirements. When the TCL is compiled, customized
tables are generated. The MCS then interprets these tables. Because
the TCL for B 1000 GEMCOS is similar to the TCL for Large Systems
GEMCOS, migration to Burroughs Large Systems is simplified. Compiling
the TCL is discussed further in Section 2.

1 - 2

In addition, Mergeable External Source Statements (MESS) allow the user
to write special requirements which differ from standard GEMCOS logic.
These procedures are also discussed in Section 2.

NETWORK CONTROL AND ADMINISTRATION ---- -- -------

GEMCOS and the Network Controller work together to control the network.
GEMCOS configures the network, including types of terminals used. The
user can alter the hardware and software configuration as needed.
Figure 1-1 shows the system structure of B 1000 GEMCOS, with the
relationship between the Network Controller, the GEMCOS compiler
(MCSTIC), the Control station, the audit file, and application programs.

APPLICATION
PI<OGAAMS

MCST!C

GEM COS
MCS

AUDIT
FILE

NETWORK
CX>NTI<OLLE R

]'igure 1-1. System Structure

- 3

NE'IWORK

GEMCOS permits communication between computers through the routeheader
capability. It also permits communication with different devices such
as matrix printers and modular terminals. These capabilities are
discussed in Section 9.

In addition, GEMCOS can act as a supervisory MCS. For example, the
station operator can use the Command and Edit Language (CANDE), the
On-Line Data Entry System (ODESY), or the Subordinate Message Control
System (SMCS), and switch between them as needed. Without GEMCOS, the
subordinate MCS would have to be shut down and restarted to switch
stations. But with GEMCOS, station operators can use Network Control
Commands to switch from one subordinate MCS to another without
interrupting other operators. This topic is discussed further at the
end of Section 4.

Network restoration is also provided by GEMCOS. Network restoration
updates the Network Controller on network status. To perform this task,
GEMCOS uses the Table Information Control File, part of the TCL
compiler. The MCSTIC file is discussed further in Section 2.

Among its other functions, GEMCOS gathers statistics about stations,
programs, and the MCS. The user can obtain information about
peak-loads, network use, and response time. It further detects and
diagnoses errors and recovery from errors. It also retransmits output
as needed, and provides controlled system shutdown when this is
required.

NETWORK CONTROL COMMANDS

The following discusses the functions of Network Control Commands and
gives information on Control stations.

Functions of Network Control Commands

Network Control Commands (NCCs) perform several functions. They handle
security, attachment of stations, MCS control, program execution and
termination, message routing and retrieval, changing station status, and
reporting program status.

The user decides which Network Control Comands are needed and uses TCL
parameters to specify these commands. Therefore, the MCS does not need
to contain the logic to execute all of the Network Control Commands.

- 4

Control Stations

Operators enter Network Control Commands (NCCs) from Control stations.
Control stations are declared in the TCL. A few of the NCCs (such as
the sign-on and sign-off commands), can be entered from any station, but
most of the Network Control Commands can only be entered from a Control
station.

An operator can communicate with the MCS from a Control station. The
MCS tells these stations about exceptional conditions in the network.
In turn, the operator can ask the MCS about its status and dynamically
alter its features.

The supervisory console can also be used as a Control station. All of
the Network Control Commands can be entered from the supervisory
console.

ERROR HANDLING

The GEMCOS error handling subsystem provides the logic needed to handle
error conditions not directly related to applications tasks. GEMCOS
automatically takes action to keep the system running and communicates
the error condition to an operator. For additional information on error
conditions, see Appendix D.

INTERFACE TO APPLICATION PROGRAMS

GEMCOS provides many helpful features for applications programmers. It
allows an application program to have parallel processing of a wide
variety of transactions. GEMCOS controls the flow of multiple messages
and program execution. This improves response time for the application
user. Application programs can be written in high-level languages such
as COBOL and COBOL74.

The GEMCOS formatting capability means that application programmers do
not need to know hardware device codes. This makes the application
programs independent of the hardware devices. Message formatting and
routing are discussed in Section 4.

The programmer also does not need to write the logic to handle error
conditions. This logic is contained in the GEMCOS subsystem. Error
conditions are discussed further in Appendix D.

- 5

GEMCOS further provides several recovery options, so that the user can
choose those options which suit the needs of particular application
programs. Recovery is discussed in Section 7.

MESSAGE FORMATTING AND ROUTING

Another important feature of GEMCOS is its ability to perform message
formatting and routing.

MESSAGE FORMATTING

The application programmer does not need to know hardware-control and
device codes or the buffer capacity for terminals. These are described
in the TCL specifications for the MCS. GEMCOS formatting features
helpful to the programmer include:

Forms retrieval.

Enhancment of the readability of message-text for the user of
applications programs.

Modification of message format
interrupting application programs.

without compiling or

Screen wraparound.
buffer, the MCS
transmissions.

If a message is too long for a station's
breaks the message into two or more

Information on message formatting is presented in Section 4.

MESSAGE ROUTING

GEMCOS routes messages to and from stations and programs. It also
handles communication between programs, and between computers, using the
routeheader function. Message routing is discussed in Section 4. The
routeheader function is discussed in Section 9.

- 6

ACCESS CONTROL (SECURITY)

GEMCOS provides both access security and process security. Access
security prevents unauthorized persons from using the system. Process
security limits the functions authorized persons are allowed to perform.
A specific MCS may be generated as a GEMCOS subsystem. This MCS can
have the logic for access security alone, or for both access and process
security. Section 6 has further information on access control
(security).

AUDIT

GEMCOS keeps an audit trail of all messages sent to an application
program or to a data base. The audit trail is written to a disk file
called an audit file. See Section 7 for more information on audit
files.

RECOVERY

GEMCOS also provides several types of recovery. The types of recovery
range from checkpoint recovery to complex data base rollback and
synchronized recovery. The user can analyze application programs and
select the recovery options which meet the needs of those programs. In
addition, GEMCOS also has a procedure for controlled shutdown.
Additional information on recovery is available in Section 7.

TESTING, PATCHING, TIMING, AND DEBUGGING

Testing, patching, and timing are accomplished through auxiliary
programs. Debugging is done through a data dump and a logic flow
monitor. These are controlled by parameters set in the TCL. Each of
these features is discussed in detail in Section 8.

TCL COMPILER AND UTILITY PROGRAMS

Specific information on the TCL compiler is given at the beginning of
Section 2.

- 7

The GEMCOS system also contains four utility programs:

1. MCSRECALL is used for recalling audited messages and is
discussed in Section 2.

2. MCSFILXFER is used for transferring disk files between
computers. See Section 9 for more information.

3. MCSSIN is used for testing and is discussed in Section 8.

4. MCSFIX is used for patching.
8.

It is also discussed in Section

More information on the TCL compiler and on TCL statements is found in
Section 2. At the end of Section 2, information is given on how to
execute the MCS.

Each of the features of GEMCOS is discussed further in succeeding
sections.

1 - 8

SECTION 2

TRANSACTION CONTROL LANGUAGE
COMPILER AND STATEMENTS

The B 1000 Transaction Control Language (TCL) is a high-level,
descriptive language which enables the user to select required functions
and to describe on-line system relationships.

This section discusses the TCL compiler and the files related to it,
gives the steps in executing the TCL compil~r, presents TCL statements,
and explains how to execute the MCS.

TRANSACTION CONTROL LANGUAGE COMPILER (MCSTCL)
AND RELATED FILES

The TCL compiler is on the GEMCOS release tape in a file called MCSTCL.
When the compiler is executed, it produces a Message Control System
(MCS) composed of GEMCOS intrinsics and a data file consisting of
on-line relationships. (See Section 1 for additonal information on the
functions of an MCS.)

If the users need to change the MCS or the relationships with which it
operates, they can easily do this by recompiling.

To enable the user to check the system, MCSTCL produces an optional
hard-copy listing of the user's data communication system (MCSLST). It
also provides extensive data syntax checking to ensure that the MCS is
properly defined. MCSLST is discussed in more detail later in this
section.

The limits on the size of the TCL compiler are given in Appendix C.

The following files, the Table Information Control file and the
Functions and Formats file, are used with the TCL compiler (MCSTCL).

2 - 1

TABLE INFORMATION CONTROL FILE (MCSTIC)

The MCS uses the Table Informaton Control file (MCSTIC) to store some of
its important variables and parameters. By storing these parameters in
a disk file, they are preserved from one execution of the MCS to
another. They are also protected in case the MCS is terminated
unconventionally. When systems relationships change, the TCL compiler
rewrites the MCSTIC file.

In addition, the MCSTIC file is used in network restoration. The
purpose of network restoration is to update the Network Controller with
MCS data on network status. Network status consists of information on
the current physical status of a station, such as whether a station is
enabled or disabled. Network restoration occurs automatically through
the information stored in the MCSTIC file.

The MCSTIC file is also used with the Network Controller. Each time the
MCS is executed, it uses status data from the MCSTIC file to generate
commands for the Network Controller. The Network Controller uses these
files to update its tables in main memory. See the MCSTIC FILE NAME
statement in this section for additional information.

FUNCTIONS AND FORMATS FILE (MCSFORMATS)

In the advanced and total versions of GEMCOS, all functions and formats
created by the TCL compiler are stored in a separate disk file called
MCSFORMATS. See the FORMAT FILE NAME statement in this section for
additional information.

SUMMARY OF STEPS TO - "-EXECUTE THE TCL COMPILER

The first step in executing the TCL compiler is to analyze which
programs, stations, or features are needed in an MCS. To do this, read
through the TCL statements in this section and study any other sections
which might be helpful.

The next step is to create the TCL source image, using either cards or
the Commmand and Edit Language (CANDE) to create a disk file. The TCL
source image is called MCSIN, and consists of the Control Statement, the
Global Section, and the Definition Section of the TCL.

2 - 2

To write the source image refer to the Control statement, the syntax of
the source image (deck description), the Global Section, and the
Definition Section of the TCL. These are all explained in this section.

The third step is to load several files and programs from the B 1000
GEMCOS release tape. These files and programs are discussed in detail
later in this section. Also see Figures 2-1 through 2-3 following the
CONTROL statement. GEMCOS system files are summarized in Appendix B.

After creating the source image and loading GEMCOS system files, the
user is ready to execute the TCL compiler (MCSTCL) and then to use the
hard-copy listing to check any syntax errors.

After the TCL compiler has been executed, the user can execute the MCS
produced when the TCL is compiled. Instructions on executing the MCS
are given at the end of this section, following the TCL statements.

CREATING THE TCL SOURCE IMAGE (MCSIN)
(CARD DECK OR CANDE FILE)

To create either a card deck or a CANDE source file, the user first
needs to understand the following:

1. The syntax of the source image (deck description).
2. The Control Statement.
3. The Global and Definition Sections of the TCL.
4. The rules for writing the source image.
5. Optionally, how to use the Library statement.

Once the TCL source image (card deck or CANDE file) has been written,
the TCL compiler can be executed.

SYNTAX AND COMPONENTS OF THE SOURCE IMAGE

Users need to be familiar with the syntax of the source image, which is
given at the beginning of the the Control Statement. They should also
understand the other parts of the source image, the Control Statement,
and the Global and Definition Sections of the TCL.

Once users understand these components, they can use the following rules
to write the source image.

2 - 3

RULES FOR THE SOURCE IMAGE

The cards which compose the TCL source image (deck) are similar to those
of a User Programming Language (UPL) source deck:

1. Columns 73 through 80 are reserved for sequence numbers.

2. Comments may occur on any card following a "%".

3. Statements may begin in any column.

4. Any source image that contains the string "&PAGE" or "& PAGE"
starting in column 1 causes the listing to be advanced to
channel 1 before the printing continues.

5. A source image that contains "$NO LIST"
only errors to be listed. When a source
"$LIST" in column 1 is read, both source
are listed. "$LIST" is the default at the

in column 1 causes
image that contains
records and errors
start of MCSTCL.

6. The TCL compiler does not permit a continuation from card to
the next. If a string is begun on a card, it must end on that
card.

USING THE LIBRARY STATEMENT

Users can merge disk files (libraries) into the main TCL specification
with the LIBRARY OPTION STATEMENT. The syntax for this statement is:

$LIBRARY <file-ID>.

or:

$ LIBRARY <file-ID>.

Any source image that starts with $LIBRARY, or $LIBRARY followed by a
valid disk file name, causes MCSTCL to merge that file into the main TCL
specification deck. A LIBRARY statement can occur anywhere within the
TCL specifications, but not within a library. The dollar sign ($) must
be in column 1. <file ID> is a valid B 1000 file identifier. The
statement must terminate with a period.

Whenever the TCL compiler encounters a valid LIBRARY statement, and the
specified <file-ID> is on disk, the contents of this file is compiled at
the point of occurrence as if the contents actually were contained

2 - 4

within the main TCL deck.
statement is simply ignored.

If the <file ID> is not on disk, the

The listing produced by the TCL compiler reflects any files merged into
the main deck. The merged lines are marked with an "L" in column 1 of
the listing. Any number of LIBRARY statements can occur within a TCL
specifications deck. The following are two examples of these
statements.

$LIBRARY GEMCOS/FORMATS.

$LIBRARY GEMCOS/"NEW.FORMS".

EXECUTING THE TCL COMPILER (MCSTCL)

After the TCL source
executed. The first
programs and files.

image has been written, the TCL compiler
step in doing this is to load GEMCOS

LOADING GEMCOS SYSTEM FILES

can be
system

Load the following files and programs from the GEMCOS release tape:

1. The TCL compiler, MCSTCL.

2. The file GEMCOS/MCSGTS, which is the master source file.
GEMCOS/MCSGTS is input to GEMOCS/MCSGO.

3. The program GEMCOS/MCSGO, which uses GEMCOS/MCSGTS to build
user source code from the master source code.

4. The User Programming Language 2 (UPL2) compiler, which is only
used for GEMCOS compiles.

5. Optionally, the file MCSERROR, which contains standard GEMCOS
error messages that are modifiable, may also be loaded.

2 - 5

Modifying MCSGO

The user can place GEMCOS/MCSGTS on a different pack, and/or modify its
name. To change the external file name of MCSGTS, enter the following
statement:

Pl'l) IA
MODIFY GEMCOS/MCSGO FILE MCSGTS NAME <file name>;

The following gives information on using standard GEMCOS error messages.

Using Standard Error Messages

Users have the option of using standard
messages of their choice. To use standard
from the present procedures is required.
contained in the TCL compiler.

GEMCOS error messages or
output messages, no change
The standard messages are

Modifiable error messages are contained in a CANDE-compatible file which
is input to MCSTCL. This file is called GEMCOS/MCSERROR, and can be
modified with CANDE. It is a sequential file with the following
structure:

1. The first record in the file is the control record. The
current GEMCOS release level must appear in the first 5 bytes.
The remaining records contain the messages.

2. There can be 35 bytes maximum for each output message (in
columns 1 to 35).

Users need to be careful not to add or delete any records from the error
file. Records can only be changed. If GEMCOS/MCSERROR is not present
when MCSTCL is executed, the standard output messages are used.

2 - 6

EXECUTION USING A CARD DECK ----- --- - ----

Once the system programs and files are loaded, read in the TCL source
image (either a card deck or CANDE source file.) The card deck is
constructed as follows:

?EX MCSTCL
?DATA MCSIN

<Deck description>

?END

EXECUTION USING A CANDE SOURCE FILE

Alternatively, users can create and maintain a TCL source file with
CANDE instead of a card file. The TCL source file is named MCSIN
<user's CANDE file name>. The CANDE default file type should be used.
To execute the TCL compiler with a CANDE source file, enter the
following:

EX MCSTCL FILE MCSIN NAME <user's CANDE file name>
DSK DEF;

CHECKING FOR SYNTAX ERRORS

As soon as compilation begins, the compiler (MCSTCL) reads MCSIN (the
TCL source image) and then writes MCSLST to a line printer. MCSLST
lists the TCL source deck (or source file) and gives any syntax errors.
Another listing, called MCSERRLST, prints out any errors or warnings
separately.

Users can decide whether to print the entire listing, or just the syntax
errors. They do this by specifying "$LIST" or "$NO LIST" in column 1 of
a source record. If "$LIST" is specified, MCSLST is printed and both
the source record and errors are listed. If "$NO LIST" is specified,
only MCSERRLST prints, which gives any errors or warnings. The default
setting is $LIST.

2 - 7

The user can use MCSLST and MCSERRLST to check and correct any syntax
errors in the TCL source image.

SAMPLE TCL SOURCE IMAGE
(DECK OR FILE)

The following is a sample TCL source image used to create an MCS when
the TCL is compiled.

?EX MCSTCL
?DATA MCSIN

CONTROL = GENERATE, LIST, COMPILE.
GLOBAL:

MONITORTRACE = TRUE.
NCCOKRESPONSE "OK".
STATUSREPORTS = TRUE.

BEGIN
PROGRAM PAYROLL USER:

TITLE = PAYROLL.
TRANCODE = UPDATE(1 ,1).
TRANCODE = INQ(1,2).

PROGRAM INVENTORY USER:
TITLE = INVNT.
TRANCODE = RCV (2,1), SHIP (2,2).

PROGRAM GAME UTILITY:
TITLE = MAZE/GAME.
INTERFACE = NONPARTICIPATION.

STATION TD800A:
CONTROLSTATION = TRUE.
MONITORSTATION = TRUE.
STATION TDSOOB:
STATION TD800C:
STATION TD700A:
STATIC DECLARATIONS:

RECORD 01 MESS STRUCTURE
02 MESS ITEM 1 - -02 MESS ITEM 2

DECLARE ME
ENDSOURCECODE.
PROCEDURE SETVALUES:

PROCEDURE MESS SET VALUES;%
ME.MESS ITEM T := "AAA";%
ME.MESS-ITEM-2 := "BB";%
END MESS_SET-VALUES;%

ENDSOURCECODE.
END.

?END.

CHARACTER(5),
CHARACTER(3),
CHARACTER(2);
MESS_STRUCTURE;

2 - 8

For information on how to execute the MCS created when the TCL is
compiled, see the end of Section 2, following the individual TCL
statements. Presentation of the individual TCL statements begins with a
discussion of the Control statement.

The following
description).
image.

Syntax:

<source image>

----CONTROL---

CONTROL STATEMENT

diagram shows the syntax of the TCL source image (deck
The CONTROL statement forms the first part of this source

!<----------- , ----------:
I I
I I

--------/~--COMPILE------------- • ------------->(1)
I I
I I I ~~ I 1--/ 1 /--GENERATE---->1
I I
I I I ~~ I
1--/ 1 /--REGENERATE-->1
I I
I I I ~~ I
1--/ 1 /--REPORT------>1
I I
I I I ~~ I
1--/ 1 /--UPDATEFMT--->1

(1)---- <GLOBAL section> --- <DEFINITION section>-------------~------>!

Semantics:

The CONTROL statement defines the task(s) to be performed during a
run of MCSTCL. The control list defines the individual task or
combination of tasks.

REPORT causes a hard-copy record of the user's data communication
system description to be written to a line printer. The listing is
labeled MCSRPT. If REPORT is the only option in the control list,
the Global section and the Definition section are not required.
The MCSTIC file, however, must be available to MCSTCL.

GENERATE causes MCSTCL to create a disk file labeled MCSTMP and ZIP
MCSGO. MCSGO uses MCSTMP and MCSGTS to create MCSSRC, the user's
MCS source-code file. In addition, when GENERATE appears in the

2 - 9

CONTROL statement, a disk file labeled MCSTIC is written. MCSTIC
contains customized tables consisting of the user's data
communication system network relationships. The MCSTIC file must
be present when executing a B 1700 GEMCOS-generated MCS. When
GENERATE is in the control list, both the Global section and
Definition section must be present.

REGENERATE causes MCSTCL to create a new MCSTIC file from an old
one. This option should be used if a station, transaction,
program, or access key is to be added or changed. REGENERATE
neither writes MCSCRD nor ZIP-executes MCSGO, thus saving machine
time. When REGENERATE is in the control list, both the Global
section and the Definition section must be present. If MCSTCL
determines (while modifying an existing MCSTIC file) that the MCS
code file is no longer compatible, it produces a syntax error and
the regeneration does not occur. This happens when, for example,
AUDIT was not specified in the original GENERATE run, but appears
in the REGENERATE run.

NOTE

During a REGENERATE run, the station network control
information, which is used to bring stations back to
their last running state, is not copied from the old
MCSTIC file to the new one. Therefore, after a
regeneration, stations in the network have those
attributes specified in the NDL which do not reflect
the accumulated changes caused by GEMCOS Network
Control Commands. Moreover, the audit file number
is reset to zero; all existing audit files are no
longer valid.

COMPILE causes MCSTCL to instruct MCSGO to ZIP-execute the UPL
compiler to create MCSSRC/object from MCSSRC. If COMPILE appears
in the control list, GENERATE must also appear.

UPDATEFMT facilitates recompilation of the TCL Format section
without requiring generation or regeneration. The Format section
can be recompiled while the MCS is operating and without affecting
the MCSTIC file. Only previously compiled functions and formats
can be modified. The recompiled functions and formats are copied
into the format file, MCSFORMATS. Programs and stations have
access to the new copy of the format through the *UPD network
control command, entered from the control station or the SPO.

2 - 10

Examples:

CONTROL
CONTROL
CONTROL
CONTROL

REPORT.
REGENERATE, REPORT.
GENERATE, M-8f:P-, COMPILE.
UPDATEFMT. f?6 fpfi!T

Figures 2-1 through 2-3 illustrate which files are created and accessed
by the TCL compiler (MCSTCL) when the previously listed sample CONTROL
statements are present.

MCSTIC

MCSIN

MCS
FORMATS
(OPTIONAL)

MCSTCL

I I
I I
I I
I I
I I
I I
I I

J L

Figure 2-1. Files Created by TCL'
Compiler When CONTROL

2 - 11

MCSRPT

MCSERRLST
(ERROR-ONLY
LISTING)

REPORT

MCSIN

MCS
ERROR

I
I

_J

MCSTCL

I
I
I
L

MCSTIC

MCSCTS

MCSTMP

MCSLIST
MCSRPT
MCSERRLST

MCS
SAC/
OBJECT

UPL2

MCS
SAC

MCSGO

Figure 2-2. Files Created by TCL
Compiler When CONTROL
GENERA~E, REPORT, or COMPILE

2 - 12

MCSTIC

MCSIN

MCSERROR

,-

MCSTCL

I
I
I
I
I
I
I

_ _J

Figure 2-3. Files Created by TCL
Compiler When CONTROL
REGENERATE or REPORT

2 - 13

MCS
FORMATS

MCSTIC

MCSLST
MCSRPT
MCSERRLST

MCSTIC FILE NAME STATEMENT

Syntax:

<MCSTIC FILE NAME statement>

---MCSTICFILENAME--- ---- <file ID> ---- • ------------------------->!

Semantics:

The MCSTIC FILE NAME statement allows for the specification of the
MCSTIC file name. The MCSTIC FILE NAME statement, if present, must
appear after the CONTROL statement and before the Global section.
<File ID> is a B 1000 file identifier. By default, MCSTICFILENAME
is MCSTIC.

Examples:

MCSTICFILENAME
MCSTICFILENAME
MCSTICFILENAME

MYMCSTIC.
TEST/MYMCSTIC.
PACKB/TEST/MYMCSTIC.

2 - 14

FORMAT FILE NAME STATEMENT

Syntax:

<FORMAT FILE NAME statement>

---FORMATFILENAME--- ---- <file ID> ---- • ------------------------->!

Semantics:

The FORMAT FILE NAME statement is used to change the name of the
MCSFORMATS file. This statement only functions in the Advanced and
Total Versions of GEMCOS. It must immediately follow the MCSTIC
FILE NAME statement and precede the Global section. <File ID> is a
B 1000 file identifier. By default, FORMATFILENAME is
GEMCOS/MCSFORMATS.

Examples:

FORMATFILENAME
FORMATFILENAME
FORMATFILENAME

ALLFORMATS.
TEST/FORMATS.
GEMPAC/LIVE/FORMATS.

2 - 1 5

GLOBAL SECTION

See the following syntax diagram for an explanation of the Global
Section. Please refer to this diagram when reading the succeeding
statements, which are part of the Global section.

GO GLOBAL CHANGEREOUESTS ----= 7' TRUE

DATADUMP ~FALSE
MESSAGEBROADCAST

MESSAGERECALL ---'Ill
MONITORTRACE ----.i
MONITORTRACEON--~

PROGRAMBOJEOJ --~

SIMULATION-----

STATUSREPORTS ---'111
SUBORDINATEMCS---

SYSTEMHAL T----~

~.JI

COMPI LEOPTIONS ::: _.,.<string>----~

OBJECTCODEFI LENAME-p:::...,. <file-ID>

SOURCECODEF I LE NAME _J.

AUDITFILEPACKID f >=_,.<identifier>

MYNAME ------:~]
RECALLPROGRAM

AUDITPAGESIZE-----....+= ._,.<integer>--""

AUDITRECORDSIZE ---

CHECKPOI NTI NTERVAL

CONVERSATION LIMIT

MAXRUNNING-----.i

MAXTEXTSIZE ---__.~

NAMESTACKENTR I ES

OUEUEBUFFERS ___ _.,..

OUEUEDEPTH ----

VALUESTACKBITS ---

NCCOKRESPONSE ----t""~) ==~<character>

SIGNALCHARACTER)

QUEUENAME -----+:::_,.<remote file-ID>

<FORMAT AND FUNCTION statement>------._.

2 - 16

(

Semantics:

The Global section is composed of two types of GLOBAL statements:
CODE GENERATION statements and MISCELLANEOUS PARAMETER statements.
Any given GLOBAL statement may occur only once in the Global
section, except in the FORMAT and FUNCTION statements.

There are two types of CODE GENERATION statements. The first type
of CODE GENERATION statement causes optional MCS intrinsics to be
generated into the MCS source file. This type can take on a TRUE
or FALSE value.

These optional
following:

MCS intrinsics

1 • Change commands.
2. The data dump command.
3. Message broadcast.
4. Message recall.
5. Program control commands.
6. Monitor trace.
7. Status commands.
8. System shutdown.
9. Audit.
1 o. Output audit.
11. Queue restoration.

include code to support the

The second type of CODE GENERATION statement controls the names of
GEMCOS files, UPL2 compiler options, and object code memory size
requirements.

It is important to note that both types of CODE GENERATION
statements directly affect the MCS source and/or object code files.
Therefore, if a CODE GENERATION statement is modified, GENERATE and
COMPILE should appear in the CONTROL statement since new source and
object code files are required. Otherwise, MCSTCL detects an
object code file, MCSTIC file incompatibility error.

MISCELLANEOUS PARAMETER statements specify various attributes of a
running GEMCOS MCS, such as the signal character or Network Control
Command response. Except for the AUDIT PAGE SIZE statement and the
AUDIT RECORD SIZE statement, MISCELLANEOUS PARAMETER statements may
be safely changed in REGENERATE MCSTCL runs.

2 - 17

Example:

GLOBAL:
PROGRAMBOJEOJ = TRUE.
MONITORTRACE = FALSE.
COMPILEOPTIONS = "LIST SUMMARY".
QUEUEBUFFERS = 3.
DATADUMP = TRUE.

AUDIT FILE FAMILY ID STATEMENT

Syntax:

<AUDIT FILE FAMILY ID statement>

----AUDITFILEFAMILYID--- = --- <identifier>---- • ------------------->!

Semantics:

The AUDIT FILE FAMILY ID statement allows MCS audit files to
contain a user-specified family portion of the file name
(multi-file-ID). This option is particularly useful whenever more
than one GEMCOS MCS performing audit and recovery are run on the
same site. The length of the identifier must be 10 characters or
less. By default, the multi-file-ID portion of the audit file is
MCSAUDIT.

Examples:

AUDITFILEFAMILYID A.
AUDITFILEFAMILYID DEMOAUDIT.

2 - 18

AUDIT FILE PACK ID STATEMENT

Syntax:

<AUDIT FILE PACK ID statement>

-----AUDITFILEPACKID--- --- <identifier> --- • --------------------->!

Semantics:

The AUDIT FILE PACK ID statement allows MCS audit files to reside
on other than the system pack. It is recommended that audit files
reside on a user pack to increase throughput and decrease the time
spent in audit and recovery. The identifier must be 10 characters
or less in length. By default, audit files reside on the system
pack.

Examples:

AUDITFILEPACKID
AUDITFILEPACKID

MC SP ACK.
AUDITPACK.

2 - 19

AUDIT PAGE SIZE STATEMENT --------

Syntax:

<AUDIT PAGE SIZE STATEMENT>

----AUDITPAGESIZE----- --- <identifier> ---- • --------------------->!

Semantics:

The AUDIT PAGE SIZE statement controls the size of the audit files
by specifying the number of records in each page (that is, the
area). There are always 40 pages. By default, AUDITPAGESIZE
equals 1000.

Examples:

AUDITPAGESIZE
AUDITPAGESIZE

500.
2000.

2 - 20

AUDIT RECORD SIZE STATEMENT

Syntax:

<AUDIT RECORD SIZE statement>

-----AUDITRECORDSIZE--- --- <identifier> --- • --------------------->!

Semantics:

The AUDIT RECORD SIZE statement controls the size of the audit
record by specifying the number of bytes in each record.
Increments of 180 are the only allowable values. When a value
other than an increment of 180 is specified, a warning is issued
and the next highest increment of 180 is selected. By default,
AUDITRECORDSIZE equals 180.

Examples:

AUDITRECORDSIZE 180.
AUDITRECORDSIZE 540.

2 - 21

CHANGE REQUESTS STATEMENT

Syntax:

<CHANGE REQUESTS statement>

---CHANGEREQUESTS------ -----TRUE------ • -------------------------->!
I I
I I

1--FALSE->I

Semantics:

The CHANGE REQUESTS statement determines whether the GEMCOS MOS is
to contain the logic to support the following seven Network Control
Command change requests:

1. CHANGE STATION ADDRESS (CSA).
2. CHANGE STATION DIAGNOSTIC (CSD).
3. CHANGE STATION FREQUENCY (CSF).
4. CHANGE STATION MAXIMUM RETRY (CSM).
5. CHANGE STATION QUEUE (CSQ).
6. CHANGE STATION READY (CSR).
7. CHANGE STATION TRANSMISSION NUMBER (CST).

When MONITORTRACE equals TRUE, the CHANGE MONITOR FLAG (CMF)
command becomes the eighth change request, and CHANGEREQUEST code
will be generated automatically (for internal use). However, users
will not be able to access the seven Network Control Command change
requests unless they set CHANGEREQUESTS to TRUE in the TCL.

Example:

CHANGEREQUESTS TRUE.

2 - 22

CHECKPOINT INTERVAL STATEMENT

Syntax:

<CHECK POINT INTERVAL statement>

----CHECKPOINTINTERVAL----- --- <integer> --- • -------------------->:

Semantics:

The CHECKPOINT INTERVAL statement determines the length of time
between checkpoints taken by the MCS during auditing. Specifying
too small a number causes the MCS to do an excessive number of
I/Os, thereby reducing throughput. By default, CHECKPOINTINTERVAL
equals 60 (seconds).

Examples:

CHECKPOINTINTERVAL 30.
CHECKPOINTINTERVAL 90.

2 - 23

COMPILE OPTIONS STATEMENT

Syntax:

<COMPILE OPTIONS statement>

-----COMPILEOPTIONS---- --- <string> ------- • --------------------->:

Semantics:

The COMPILE OPTIONS statement allows for the specification of UPL
compiler control statements when COMPILE appears in the CONTROL
statement (refer to DOCUMENT/SDL2 on the 6.00 or later GEMCOS
release tape for a complete description of available options).
<String> must begin and end with a quote and must not exceed 65
characters. By default COMPILEOPTIONS is set to NO LIST SUMMARY.

Examples:

COMPILEOPTIONS
COMPILEOPTIONS

"LIST CODE".
= "LIST XREF".

2 - 24

CONVERSATION LIMIT STATEMENT

Syntax:

<CONVERSATION LIMIT statement>

---CONVERSATIONLIMIT---- --- <integer> --- • ----------------------->!

Semantics:

The CONVERSATION LIMIT statement allows the user to specify the
maximum number of stations that may converse concurrently. The
integer specified must not exceed the number of stations declared
in the TCL. The maximum limit allowed by GEMCOS is 64. When there
are no CONVERSATION SIZE statements declared for programs in the
TCL, the default value is zero, that is, no conversation capability
exists in the MCS. When conversational programs are present, the
default value is the number of stations declared in the TCL.

This statement establishes the number of reserved conversation
areas. The number of areas is reserved by powers of 2. When the
limit is declared, the nearest 2 to the nth power that is greater
than or equal to the limit is the number of areas reserved. Even
if the reserved area is larger than the limit, the maximum number
of concurrent conversations may not exceed the specified limit. If
the limit needs to be increased and the new limit exceeds the
number of reserved areas, a GENERATE and re-COMPILE would be
required.

Examples:

CONVERSATIONLIMIT 8.
CONVERSATIONLIMIT 5.

2 - 25

DATA DUMP STATEMENT

Syntax:

<DATA DUMP statement>

---DATADUMP---- ----TRUE------ • ----------------------------------->!
I I
I I

i--FALSE-->i

Semantics:

The DATA DUMP statement indicates whether the code to create a dump
of internal MCS variables is present. When DATADUMP equals TRUE,
the REPORT DATA DUMP (RDM) command is recognized. By default,
DATADUMP equals FALSE.

Example:

DATADUMP FALSE.

2 - 26

FORMAT AND FUNCTION STATEMENT LIST

Syntax:

The following diagram shows the syntax of the FUNCTION and FORMAT
statement.

<FUNCTION and FORMAT statement>

--)(1)
I I
I I

l :<--------------------------: l I I I I
I I I I

1----- <function declaration> ---->:

(1)--->i I I
I I

I l<-----------------------1 l
I I I I
I I I I

1----- <format declaration> ---->l

Semantics:

In addition to the functional capabilities of the Basic version of
B 1000 GEMCOS, the Advanced version includes a Message Formatting
module. The Message Formatting module can be used to support forms
requests, modify the text of messages, and/or ensure application
program device independence. Users of the Basic version will find
that an attempt to invoke the formatting capabilities of GEMCOS
results in a syntax error.

The Forms Request function provides station operators with the
ability to enter a message-ID (refer to Device section below) and
to receive in return a formatted screen with blank data fields.
Application programs may also invoke the Forms Request function,
causing formatted screens with blank data fields to be displayed at
stations in the network.

The text of messages entered at stations can be modified,
re-arranged and/or supplemented prior to being routed to the
appropriate application program. This process is referred to as
input formatting. The text of messages written by application
programs can be modified, re-arranged and/or placed into data
fields of formatted screens before being sent to stations; this is
referred to as output formatting.

2 - 27

When a network is comprised of two or more types of terminal
devices, the stations may be grouped into several device
classifications in the Device section. A set of formats is defined
for each device classification. When invoked, the formatting
module recognizes the device classification of the station
involved, and applies a format from the set associated with that
classification. As a result, messages sent or received by
application programs can have a standard record layout regardless
of the device type of the destination/source station. Moreover,
the application program does not need to be affected by the
different control characteristics of different devices.

There are two areas of the TCL which relate to formatting: the
Device section and the FORMAT AND FUNCTION statement list. The
Device section is used to identify which messages are to be
formatted and with which formats. The FORMAT AND FUNCTION
statement list is used to define formats and functions. A format
specifies how a screen is to be built and/or how the message text
is to be modified. A function defines a translate table which can
be referred to by a format.

The FORMAT AND FUNCTION statement
declaration list, which can be
declaration list.

list is composed
empty, followed

2 - 28

of a function
by a format

Function Declaration

Syntax:

The following diagram shows the syntax of the Function Declaration.

<Function Declaration>

l<--(3)
I
I

--FUNCTION--- <function identifier> -------------------------------->(1)
I

(1)-------- (
I
I

(4)--->l

I

J--[EXTERNAL-- : ---INTEGER----->(2)
I I
I I

l--ALPHA---->l
I I
I I

J--UNEDITED->l

(3)<---l

!<---------------- , ---------------------:
I I
I I

--- <external string> : <internal string> ---)

I
I
I
I
I
I

• -->l

(2)--- , ---INTERNAL--- -----INTEGER-------] -------------------->(4)
I I
I I

l--ALPHA----->J
I I
I I

l--UNEDITED-->l

Semantics:

The function declaration defines functions which can be used in a
translate item phrase of a format declaration. A function
identifier is required as the first argument of the translate item
phrase. The translate item phrase allows a format to translate a
string of length n into a string of length m where O<n<7 and O<m<7.
<String> is therefore limited to a maximum of six characters. Up
to 1023 functions may be declared.

2 - 29

A translate pair associates an external string with an internal
string. On input, an external string is translated into the
associated internal string. On output, an internal string is
translated into the associated external string. When an
application program deals with the text of a message, it must use
an internal string in a translate field. When an operator deals
with the text of a message at a station, an external string is
used.

Refer to "Format Declaration" for examples of functions used in
formats.

The justification and fill part is described in the following
example:

Example:

FUNCTION GENDER ("MALE":"1", "FEMALE":"2").
FUNCTION DIGITIN ("1":"0NE", "2":"TWO", "3":"THREE"),
DIGITOUT [EXTERNAL:ALPHA, INTERNAL:INTEGER]

("ONE": "1 ", "TWO": "2", "THREE": "3").

As the translate module searches for a match between the source
text to be translated and an internal string/external string, both
the source text and the internal string/external string are placed
into character strings of length six for comparison. The
justification and fill part enables the user to control the
placement of the source text and the internal string/external
string into these character strings. If the justification and fill
part is empty, it is assumed that both the external string and
internal string are unedited. By using the justification and fill
part, the user may make either of these strings UNEDITED, INTEGER,
or ALPHA.

An unedited string of less than six characters in length is
right-justified within a 6-character string with leading nulls
(4"00"). A null compared with any character is always considered a
true comparison by the translate function.

An integer string of less than six characters is right-justified
with leading zeroes. An alpha string of less than six characters
is left-justified with trailing blanks.

If, within a given function, the length of each internal string is
the same and the length of each external string is the same, it
makes little difference whether the strings are unedited, integer,
or alpha. However, if strings vary in length, using integer or
alpha strings can help to avoid confusion. For example, suppose a
function is declared as follows:

FUNCTION TEST ("11":"SOME", "1":"ME").

2 - 30

Upon input, if the translate function were to search for an
external string of 1, it would get a match with 11 because of a
NNNNN1. The source text after justification will compare as equal
to NNNN11, the external string after justification (where N is a
null). A similar phenomenon would occur on output if the translate
function was searching for an internal string of ME: NNNNME would
match NNSOME. This problem could be avoided by declaring the
function as follows:

FUNCTION TEST [EXTERNAL:INTEGER,INTERNAL:ALPHA]
("11 ":"SOME", "1 ":"ME").

With this declaration, if the source text to be translated on input
were "1", it would be converted to 000001. It would not match
000011, but would successfully match 1 justified as an integer.
Likewise, source text on output of ME would be converted to MEBBB
(where Bis a blank); it would not match SOMEBB, but would match ME
justified as an alpha string.

Format Declaration

Syntax:

The following diagram shows the syntax of the Format Declaration. The
syntax of the Local Declaration Part, the Editing Specification, Editing
String, and other components are shown after the format declaration.

<format declaration>

!<---------------------------- , ---------------------------(2)
I
I

--FORMAT--- <format identifier> ------------------------------------>(1)
I I

I [J l 1-- RESIDENT -->1

(2)<---l
I
I

(1)-- (--- <local declaration part> --- <editing spec> ---) --- • -->i

Semantics:

The format declaration is used to define how a screen is to be
built and/or how message text is to be modified. When formats are
declared in the format declaration, the Device section is used to

2 - 31

indicate which formats are to be applied to which messages. Up to
1023 formats may be declared.

The format part list allows several formats, separated by commas,
to be described in a single format declaration. Even though the
syntax allows several formats to be described in one format
declaration, it is good practice to define one format per format
declaration. When a syntax error is encountered in a format part,
the TCL scanner skips past any remaining format parts to the next
format declaration. Syntax errors in the skipped format parts are
not flagged until the format part in error is corrected. If one
format is defined per format declaration, more syntax errors can be
caught in each run of the TCL compiler.

Each format part associates
set of message formatting
referenced in a FORMATSIN
of the Device section.

a format identifier with a particular
instructions. The format identifier is
statement and/or a FORMATSOUT statement

The special action part, if present, indicates whether the format
is a resident format. A resident format is kept in an array in
memory instead of on disk. This facility is provided for small,
frequently used formats. It is intended to save the input/output
overhead that would otherwise be required to retrieve a format from
disk before using it. This option should be used with care since
its overuse could require significant amounts of memory.

The format description consists of an optional local declaration
part and the editing specifications enclosed within parentheses.
(Readers unfamiliar with GEMCOS formatting should refer to Section
4 of this manual or to the GEMCOS Formatting Guide.) The following
diagram shows the syntax of the local declaration part.

2 - 32

<local declaration part>

-------------------------- ' --------------------------------------->(1)
I
I

: l<--(3)
I I
I I

i---VARIABLE---- --/-1-/---V1------------------------------------>(2)
I I I
I I I

-- I I I --/ 1 /---V2-->1 1---@ --- <integer> -->1
I
I

--/~1-/~--V3-->i
I
I

--/-1-/---V4--> i
I
I

-- I 1--/ 1 /---V5-->1
I I
I I
I -- I 1--/ 1 /---V6-->1

(1)-->i
I

(3)<---------:
I
I
I
I
I

I
I

(2)---FOR--- <integer> ----- --->:

The editing specifications describe the order and length of the
fields of a message as well as the manipulation of the message
buffer pointers. The editing specifications are a list of editing
phrases. An editing phrase can be an editing string, a location
specifier, or an item phrase. The syntax of the editing
specifications follows.

<editing specifications>

:<-------------------- ' -----------------: I I
I I

------------ <editing string> -->:
I I
I I

l--- <editing string> ----------->l
I I
I I

l--- <item phase> --------------->i
I I
I I

l--- @ ------------- <integer> -->l
I I

I I
I
1-- + -->:
1
I
I ,-- -

I
I

-->i

2 - 33

An editing string is either a simple string or a skip field. The
simple string is used to place a literal field into a formatted
message. A simple string can be an EBCDIC string such as "XYZ" or
a hexadecimal string such as 4"0D" (carriage return). The simple
string is used extensively when building forms for screen devices.
It can be used to create the descriptive text of the protected
areas as well as the necessary control characters. A simple string
causes the pointer into the formatted message buffer to be updated
to the right by the length of the string. The pointer into the
source message buffer is unaffected by a simple string editing
phrase. The following diagram shows the syntax of the editing
string.

<editing string>

--------- x
I
I

:-- x
I
I
I
I
I

<integer> -->:
I
I

<EBCDIC unit string> ----) ------>i
1-- <hex unit string> ---->I I

I
I

1---------------- <string> ------------------------->:
1 I I
I I I
I I 8) I I 1-- -- I
I

I
I
I

I
I I

I 1------ 4 ------- <hexadecimal string> ------------->I

The following diagrams show the syntax of a hex unit string and a
hexidecimal string.

2 - 34

<hex unit string>

-- 4" -- 0 0 " ------------------------------------->:

I
I
I
1--
1

I

I
I

->:
I
I

2 ->l

9 ->

A ->

B ->

c ->

I
I
I

D ->l
I
I

E ->l
I
I

F ->l

I
I
I
1--
I
I
I
1--

I
I

->'

2 ->

9 ->

A ->
I

B ->

c ->

D ->

E ->

F ->

<hexadecimal string>

!<-----------------------:
I I
I I

II -------- 0 0 --------
I I
I I

-> I ->l 1--
I I
I I

2 -> I 2 ->l 1--
I I
I I

I
I
I

9 -> 9 ->

A -> A ->

B -> B ->

c -> c ->

D -> D ->l
I
I

E -> E ->I
I
I

F -> F ->l

" -------------------------------->:

2 - 35

Upon input, the skip field causes
buffer to be skipped (by updating
pointer). The number of characters
integer or a delimiter. For example,
be skipped while X(",") causes text
comma encountered to be skipped.

text in the terminal message
the terminal message buff er
skipped can be defined by an
X3 causes three characters to
up to and including the next

Upon output, XS causes eight spaces to be placed into the terminal
message buffer while updating the pointer. X(<delimiter>) is
undefined for output messages. The program message buffer pointer
is unaffected by a skip field.

The location specifier is used to manipulate the program
message-buffer pointer without affecting the terminal
message-buffer pointer. By manipulating the program message-buffer
pointer, fields can be skipped, re-ordered and/or re-used.

There are two variations of the location specifier distinguished by
the existence of an optional sign. When a sign is present, the
program message-buffer pointer is adjusted by <integer> positions
to the left (sign is a "-") or to the right (sign is a "+"). When
there is no sign, the program message-buffer pointer is set to
position <integer>. Care must be taken to keep the pointer within
the bounds of the program message buffer. Upon input, the user
should also be careful not to overlay good data in the program
message buffer.

For more information, refer to "Using Location Specifiers" later in
this section.

An item phrase defines a field of a formatted message. A field can
be comparatively simple such as six alphanumeric characters, or
rather complex, such as a repetition of several variable-length
subfields. In order to encompass the wide variety of possible
fields, several forms of the item phrase are available. All
involve at least one item type, field width pair. The following
diagram shows the syntax of the an item phrase.

2 - 36

<item phrase>

-----<integer> --->(1)

I
I
I

I I
I I

:-->:
I I
I I

:------------------------ <variable --- OR --- <integer> ->i
i i identifier>
i-- <variable -- : ->i

identifier>

i-- T -- (-- <function A <field width> -- , --->(2)
identifier>

(1)-- A (field width>
I I
I I
I I ->i ,--
I I
I I
I B ->i 1--
I I
I I
I J ->i 1--

-- (-- <editing spec.> --)

I
I
I
1--
1
I
I ,--
1
I
I
1--

I
I

I ->i
I
I

B ->i
I
I

J ->:

------------------------------------>:
I I
I I
I I
I I
I I
I I
I I
I I
I
I
I
I
I
I

-->l

(2)-- (internal size> --) -------------->

The item type determines how a field or subfield is to be edited.
Four item types are available: A, B, I, and J. A denotes an
alphanumeric field, and B specifies a tabbed alphanumeric field.
Alphanumeric fields may contain any characters, and leading blanks
are considered significant. Truncation or blank filling occurs on
the right. I denotes an integer field, while J specifies a tabbed
integer field. Integer fields may only contain digits and/or
blanks except for imbedded blanks. They are truncated or
right-justified with zero filling on the left.

The field width determines the length of a field or subfield.
Fields can be fixed or variable in length. The following diagram
shows the syntax of the field width.

2 - 37

<field width>

<integer> -->!
I
I

<EBCDIC unit string>----- , -- <integer> --) -->i
I I
I I
1-- <hex unit string> ---->i

The simplest form of the item phrase is an alphanumeric or integer
field with an <integer> <field width> such as A6 or I9. An A6 item
phrase results in the move of six characters from the buffer
containing the raw message to the formatted message buffer. An
item phrase of I9 would move nine characters subject to the editing
rules already mentioned. The unprotected areas of formatted
screens are usually composed of fixed alphanumeric or integer ·
fields.

A more powerful form of the item phrase employs a <variable field
specifier> <field width> such as A("*",6) or I("+",8). The
internal size determines the size of the field in the program
message buffer.

NOTE

While field lengths of the terminal message buffer
may vary, field lengths of the program message
buffer are always fixed. The delimiter is used to
signify the end of the field in the terminal message
buffer. The field begins where the previous field
ends.

Upon input, a variable-length field is isolated based on the end of
the last field and the delimiter. It is moved into the program
message buffer and justified according to the item type. The
delimiter is not considered one of the characters of the field and,
therefore, is not placed into the program message buffer.

Upon output, a string of characters of length <internal size> is
obtained from the program message buffer. It is compressed by
truncating trailing blanks or leading zeroes, depending on the item
type. The compressed string is placed into the terminal message
buffer, and the delimiter is inserted after the compressed string.
The following diagram shows the syntax of length <internal size>.

<internal size>

-- <integer> --->!

2 - 38

During both input and output, the terminal message buffer is
updated to the position following the delimiter, while the program
message buffer is moved to the right by <internal size> positions.

Tabbed fields, where the item type is B or J, are similar to
variable-length fields on input and the same as fixed fields on
output. On input, a tabbed field can end early if the tab
character (4"05") is encountered. However, unlike a variable
field, where the delimiter must be present, the tab character is
not required to end the field. If enough characters are found, the
field ends automatically.

For example, a B10 item phrase on input causes characters to be
moved from the terminal message buffer to the program message
buffer until either 10 characters have been moved, or a tab
character is encountered. The program message-buffer pointer is
moved 10 characters to the right. The terminal message-buffer
pointer is left pointing to the eleventh character, or to the
character following the tab, whichever happens first. If the
transfer is terminated by a tab character, trailing blanks are
placed in the program message buffer to fill out all 10 character
positions. The tab character is not placed into the program
message buffer.

On output, B5 would achieve exactly the same results as A5, and J7
the same as I7. The tab character is not placed into the terminal
message buffer, as is done with the delimiter of a variable-length,
nontabbed field.

The default tab character (4"05") can be changed by using a
variable field specifier along with the B or J item type. J
("*",5) is the same as J5 except that "*" is the tab character
instead of 4"05". B(4"05",10) is identical to B10.

Each item phrase discussed thus far may be repeated by placing a
repeat part in front of the item type. A repeat part may be fixed
or variable.

A fixed repeat part is designated by an integer. It is a shorthand
method of representing an editing phrase list where each editing
phrase is identical. For example, 2A6 is the same as A6,A6.

A variable repeat part can only be used on output. It is useful
for messages which have a variable number of fields of repeated
data, such as tables with columns of values. These messages must
have, as one of the data fields, a counter specifying the number of
times a particular field will occur.

If a message is to contain a variable repeat part, the format
applied to the message must have a local declaration part. The
local declaration part specifies where in the message the counters
governing the occurrence of the repeated fields are to be found.

2 - 39

Values for variables declared are the first items extracted from
the program message buffer. During each variable assignment, the
program message-buffer pointer is adjusted by a combination of the
optional location specifier and the length of the counter field.
The length of the counter field is determined by the integer
following the keyword FOR. The value of the counter contained in
the program message buffer must be expressed as EBCDIC digits with
a value not greater than 255. As many as six variables can be
declared per format.

After a local variable has been set to a value extracted from the
program message buffer, it can be referred to as a variable
identifier in a variable repeat part. A variable repeat part
consists of an optional update variable, a variable identifier, the
keyword OR and an integer. The object of the repeat part is
repeated either the number of times referred to by <variable
identifier> or <integer> times, whichever is less. If the update
variable is present, its variable identifier is set to <variable
identifier> minus the number of times the repeat object was
repeated. For example, V2 or 8 would cause its object to be
repeated V2 times, but not more than eight times. If V2 had a
value of nine, V3:V2 OR 3A5 would cause A5 to be repeated three
times and V3 would be set to 6. The original value of V3 is lost.
If V2 had been zero, the A5 field would not occur and V3 would be
set to zero. The syntax of a variable identifier follows.

<variable identifier>

I
I
I 1--
I
I
I 1--
I
I
I 1--
I
I
I
1--
I
I
I
1--

V1 -->:
V2 ->

V3 ->

V4 ->
I

V5 I ->1
I
I

V6 ->i

An editing
complicated
composed of
parentheses
lists can be

phrase list enclosed in parentheses is an even more
item phrase. This form can be thought of as a field
several subfields. An editing phrase list enclosed in
can be the object of a repeat part. Editing phrase
nested to 32 levels of parentheses.

Another complicated form of the item phrase, T(<function
identifier>, <item type> <field width>, <internal size>), is a
reference to a translate function. The function identifier refers

2 - 40

to a function which must have been defined in a function
declaration. The <item type> <field width> describes a field in
the terminal message buffer, while internal size describes a field
in the program message buffer.

Formatting Errors

When an error is detected while formatting an input message, the MCS
sets the Format Error field of the common-area header to a nonzero value
as described following. The message is then sent to the application
program for which it was bound.

When an error is detected while formatting an output message, the MCS
message is still sent to the destination station but, in addition, an
error message is sent to the control station specifying what type of
error occurred.

Error Type

2

3

4

5

6

7

Description

Destination pointer out of bounds

Source pointer out of bounds

Nondigit in integer field

Missing skip delimiter

Attempt to use variable repeat on
input

Missing delimiter or variable field
too long

Invalid string in translate field

Only the first error encountered is reported; however, the MCS attempts
to continue formatting a bad message. When a type-3 formatting error
occurs, the nondigit is placed into the erroneous field. For type-6
errors, significant text may be truncated in an attempt to force
excessive data into the program message buffer. Type-7 errors result in
question marks being placed into the erroneous field. Results are
undefined for the other types of errors.

2 - 41

Figures
through
messages

2-4 through 2-8 list five graded
5) of three increasingly difficult
and output messages.

examples
formats

(example sets 1
applied to input

Example set 5 (Figure 2-8) uses the following function declarations:

FUNCTION GENDER(" MALE":"1","FEMALE":"2"),
FUNCTION NUM1 ("ONE": "1 ","TWO": "2"' "THREE": "3", "FOUR": "4 II,

"FIVE": "5", "SIX": 11 6 11 , "SEVEN": "7", "EIGHT": 118",
"NINE": "9"' "TEN": "1 O"' "ELEVEN": "11 II,
"TWELVE": "12").

FUNCTION NUM2 [EXTERNAL:ALPHA,INTERNAL:INTEGER]
("ONE": "1 II' "TWO": "2" '"THREE": "3"' "FOUR": "4 II'

"FIVE": "5 II' "SIX": "6 II' "SEVEN": "7"' "EIGHT": 118 11
,

"NINE": "9", "TEN": "1 O", "ELEVEN": "11 ",
"TWELVE": "12").

FUNCTION DAY ("1 ":"SUN"' "2": "MON", "3": "TUE"' II 4 fl: "WED"'
II 5 II : II THU" ' II 6 II : II FRI II ' II 7" : II SAT II) .

2 - 42

Message as It <Editing specifications> Message as It
Input/ Appears at the Applied to Message Appears to the
Output Terminal In Transit User· Program

Input/ ABC1234XY A3,I4,A2 ABC1234XY
Output

Input ABC 4XY A3,I4,A2 ABC0004XY

Input ABC 4 XY A3,I4,A2 ABC0004XY

Input/ ABC0004XY A3,I4,A2 ABC0004XY
Output

Input AB 5678XY A3,X4,A2 AB XY

Input AB GGGGXY A3,X4,A2 AB XY

Input/ AB XY A3,X4,A2 AB XY
Output

Input ABC DE A2,"*",A3 AB*CDE

Input AB*CDE A2,"*",A3 AB**CD

Output AB*CDE A2,"*",A3 ABC DE

Input RIGHT A5,8"FACE" RIGHTFACE

Output RIGHTFACE A5,8"FACE" RIGHT

D
Output NAME: [HARRY]C "NAME: l " , A5 , "] " , 4" 1 2" HARRY

2

D
Output Name: [Jc "NAME: [" , A5 , " J II , 4" 1 2" (forms

2 req,uest)

Figure 2-4. Example Set 1 - Formatting
Specifications Applied to
Input and Output Messages

2 - 43

Input/
Output

Input

Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Output

Input

Output

Output

Message as It
Appears at the

Terminal

1234XY

<Editing specifications>
Applied to Message

In Transit

I6

Message as It
Appears to the
User.Program

1234XY
(FMTERR set
to 3)

1234XY I6 1234XY
(control station
notified of
error)

ABCDXYZ

ALPHA

AB123XY456

ABCD

AB12CD34

01/28/52

01/28/52

* AB CD EF

XX 1 2 3YY 4 5

®4,A4,@1,A3 XYZABCD

@3,A5 ALPHA

A2,@5,I3,@3,A2,@8,I3 ABXY123456

2A2 ABCD

2(A2,I2) AB12CD34

I2,2("/",I2) 012852

I2,2(X1,I2) 012852

Variable V1 for 2; 03ABCDEF
"*",V1 or 5(X2,A2)

Variable V1 @7 for 2, XXYY000512345
V2 @5 FOR 2; @1 ,
A2,@9,V2:V1 or 3(X1,I1),
@3,A2,@12,V2 or 3(X1,I1)

Figure 2-5. Example Set 2 - Formatting
Specifications Applied to
Input and Output Messages

2 - 44

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input

Input

Input

Input

Input

Input

Input

Input

Message as It
Appears at the

Terminal

15P

E*

E*15P

ABCDEFG+

12345*AB

T
A1B2AXYZ

B

A1B2C3XYZ

T
A1B2C3AXYZ

B

T T
12A34A

B B

T
123456A

B

TT
AA
BB

<Editing specifications>
Applied to Message

In Transit

I("P",5)

A("*" ,3)

A("*",3),I("P",5)

A("+" ,4)

I ("*" , 4) , A2

B6,B3

B6,B3

B6,B3

2J5

2J5

2J5

Figure 2-6. Example Set 3 - Formatting
Specifications Applied to
Input and Output Messages

2 - 45

Message as It
Appears to the

User Program

00015

E

E 00015

ABCD
(FMTERR set
to 6)

1234AB
(FMTERR set
to 6)

A1B2 XYZ

A1B2C3XYZ

A1B2C3

0001200034

1234500006

0000000000

Message as It <Editing specifications> Message as It
Input/ Appears at the Applied to Message Appears to the
Output Terminal In Transit User Program

Input/ A1B2 XYZ B6,B3 A1B2 XYZ
Output

Input/ 0001200034 2J5 0001200034
Output

Input/ ABCDEF123456 B("*",6),J("+",6) ABCDEF123456
Output

Input A*1+ B("*",6),J("+",6) A 000001

Input/ A 000001 B("*",6),J("+",6) A 000001
Output

Input/ ABCDEF123456 3(A2,@+2),@3,3(I2,@+2) AB12CD34EF56
Output

Input/ IJGHEFCDAB @9,4(A2 ,@-4) ,A2 ABCDEFGHIJ
Output

Input XYZ12345,ABC A3,X(", 11),A3 XYZABC

Input XYZ,ABC A3,X(","),A3 XYZABC

Input XYZ ,ABC A3 , x (II ' II) 'A3 XYZABC

Input XYZABC A3,X(", 11),A3 XYZ
(FMTERR set
to 4)

Output ABCDEFGHI ABC 11 , 11 DEF 11 , 11 GHI QRST123

D
Output CRESULTS=0053 4"0C 11 ,"RESULTS= 11 ,I4 0053

4

D
411 0C 11 , 11 RESULTS= 11 ,I4 (forms Output CRESULTS=OOOO

4 request)

Figure 2-7· Example Set 4 - Formatting
Specifications Applied to
Input and Output Messages

2 - 46

Message As It <Editing specifications> Message As It
Input/ Appears at the Applied to Message Appears to the
Output Terminal In Transit User Program

Input ONE MALE T(NUM1 ,A3,1),T(GENDER, 11
A6,1)

Input/ FOURFEMALE T(NUM1 ,A4,1),T(GENDER, 42
Output A6, 1)

Input/ TW03 T(NUM2,A3,1),T(DAY,A1,3) 2TUE
Output

Input SIX#X T(NUM2,A("#",6),2),A1 06X

Input ELEVEN#X T(NUM2,A("#",6),2),A1 11 x

Input TWENTY#X T(NUM2,A("#",6),2),A1 ??X
(FMTERR set
to 7)

Output (FOUR) "(",T(NUM2,A(")",6),2) 04

Input WED T(DAY,A3,1) ?
(FMTERR set
to 7)

Output ??? T(DAY,A3,1) 2
(control
station
notified of
error)

Input/ 3 T(D~Y,A1 ,3) WED
Output

Input/ ONE XT(NUM2,A6,1),A1 ,1X
Output

Figure 2-8. Example Set 5 - Formatting
Specifications Applied to
Input and Output Messages

2 - 47

Using Location Specifiers

This discussion explains the basic concepts of location specifiers. It
is written for the user who has not yet worked with GEMCOS formatting.

The MCS uses two buffers when formatting a message: one buffer contains
the message as it appears at the terminal; the other contains the
message as it appears to the application program. A message consists of
a sequence of one or more fields just as a disk, tape, or card record is
composed of a sequence of fields. A format describes the relationship ·
between the fields of a message that are written/read by a program and
the fields of the message that are received/transmitted by a terminal.

Input formatting causes a message in the terminal message buffer to be
moved, field by field, to the program message buffer. Output formatting
moves fields from the program message buffer to the terminal message
buffer. When a field is moved, whether by input or output formatting,
it is moved under the control of an item phrase, the terminal
message-buffer pointer, and the program message-buffer pointer.

An item phrase consists of a field type, a field length, and an optional
field delimiter. The field type defines which characters are valid in a
field, and controls its justification and fill. The field length
determines the number of characters in the field. The field delimiter,
if present, designates the character which ends a field. The terminal
message-buffer pointer (PT) refers to a particular character position in
the terminal message buffer. Likewise, the program message-buffer
pointer (PP) refers to a particular character position in the program
message buffer.

Pointers PT and PP both begin pointing at the first character (position
1) in their respective messages. As the editing phrases of a format are
applied to data fields, the data is moved from one message buffer to the
other, and the pointers are updated. Unless specifically instructed to
do otherwise, the pointers are updated by moving to the right by the
number of characters moved.

Example:

Assume that the message "ABC 123'' was received from a
terminal, and it was determined that the format (A3,I4) was to
be applied. The situation would initially appear as depicted
in Figure 2-9, with the message placed in the terminal message
buffer, and the program message buffer cleared and the
pointers initialized. The A3 item phrase controls the move of

2 - 48

the first three alphanumeric characters, as
2-10. As can be seen, "ABC" is placed
message buffer, and the pointers are moved
the right.

PT

i
(ABC 123

depicted in Figure
into the program
three positions to

Terminal Message Buffer Program Message Buffer

Figure 2-9.

PT

Initial Contents of Terminal
and Program Message Buffers

pp

!
'ABC 123

l
Terminal Message Buffer Program Message Buffer

Figure 2-10. Contents of Terminal/Message
Buffers After Move Caused
by A3 Item Phrase

Then, the 14 item phrase causes " 123" to be moved. During
output, integer fields are right justified with zeroes filled
and/or blanks converted to zeroes. This "0123" is placed into
the program message buffer. Figure 2-11 shows the final
situation. At this point, the program message buffer is sent
to the appropriate application program.

A higher degree of formatting flexibility may be achieved by moving the
pointers without moving text. PT may be advanced without affecting PP
by using a skip field (that is, the X editing phrase); but only PT ma~
be advanced. PP may be moved in either direction without affecting PT
by using a location specifier.

2 - 49

PT pp

l l
123 IABC0123

Terminal Message Buffer Program Message Buffer

Figure 2-11. Contents of Terminal/Message
Buffers After Move Caused
by I4 Item Phrase

Figures 2-12 through 2-18 illustrate the effect of applying the formats
(A2,@4,A1 ,X1 ,@3,A1) to the output message "WXYZ" using the skip field
and the location specifier.

pp

i
lwXYZ

Terminal Message Buffer Program Message Buffer

Figure 2-12. Contents of Initialized Buffers

r pp

l
lwx jwXYZ

Terminal Message Buffer Program Message Buffer

Figure 2-13. Buffer/Pointer Update
After Applying
Specification A2

2 - 50

r pp

J
lwx jwXYZ

Terminal Message Buffer Program Message Buffer

Figure 2-14.

PT

lwxz
t

Buffer/Pointer Update
After Applying
Specification @4

pp

lwxyz !
Terminal Message Buffer Program Message Buffer

Figure 2-15. Buffer/Pointer Update
After Applying
Specification A1

PP

jwXYz
t

Terminal Message Buffer Program Message Buffer

Figure 2-16. Buffer/Pointer Update
After Applying
Specification X1

2 - 51

PT PP

f wxz
l ! jwxyz

Terminal Message Buffer Program Message Buffer

r y

Figure 2-17. Buffer/Pointer Update
After Applying
Specification ®3

pp

l jWXYz
Terminal Message Buffer Program Message Buffer

Figure 2-18. Buffer/Pointer Updates After
Applying Specification A1
and Sending the Terminal
Message Buffer Contents

2 - 52

MAXIMUM TEXT SIZE STATEMENT ---------

Syntax:

<MAXIMUM TEXT SIZE statement>

-----MAXTEXTSIZE---- --- <integer> --- • --------------------------->!

Semantics:

The MAX TEXT SIZE statement defines the size, in characters, of the
longest message that can pass through the MCS. MAXTEXTSIZE has a
direct effect upon the memory requirements of a GEMCOS MCS. It is
best to keep MAXTEXTSIZE as low as possible. If the MCS has AUDIT
specified as TRUE, the user should never attempt to change
MAXTEXTSIZE in a REGENERATE MCSTCL run; otherwise, old audit files
may have an incompatible record length. Moreover, an increase in
MAXTEXTSIZE usually causes a GENERATE and COMPILE to be required so
that the MCS can have a larger value stack. If AUDIT is FALSE,
MAXTEXTSIZE can be safely lowered on a REGENERATE MCSTCL run. The
default value for MAXTEXTSIZE is 125.

When formatting takes place, resultant messages may contain control
characters such as tabs or carriage returns. Each control
character takes up one or more positions in the formatted message.
An allowance for these characters must be reflected by MAXTEXTSIZE.

Examples:

MAXTEXTSIZE
MAXTEXTSIZE

1920.
300.

2 - 53

MESSAGE BROADCAST STATEMENT

Syntax:

<MESSAGE BROADCAST statement>

----MESSAGEBROADCAST---- -----TRUE-------- • ----------------------->l
I I
I I

l--FALSE-->l

Semantics:

The MESSAGE BROADCAST statement specifies if the code to support
the BROADCAST (BRC) Network Control Command is to be generated. By
default, MESSAGEBROADCAST equals FALSE.

Example:

MESSAGEBROADCAST TRUE.

2 - 54

MESSAGE RECALL STATEMENT

Syntax:

<MESSAGE RECALL statement>

----MESSAGERECALL----- ----TRUE-------- • -------------------------->!
I I
I I

1--FALSE-->I

Semantics:

The MESSAGE RECALL statement indicates whether the code to support
the POP QUEUE (PQ) Network Control Command will be generated.
MESSAGERECALL equals FALSE by default.

Example:

MESSAGERECALL TRUE.

2 - 55

MONITOR TRACE STATEMENT

Syntax:

<MONITOR TRACE statement>

---MONITORTRACE---- -----TRUE------- • ----------------------------->l
I I
I I

i--FALSE-->i

Semantics:

The MONITOR TRACE statement specifies whether to generate logic for
the Debug Monitor. When MONITORTRACE is set, CHANGEREQUESTS
becomes TRUE by default to include the CMF Network Control Command.
The CHANGEREQUESTS code is generated for internal use only.
However, users will not be able to use the seven NCC change
requests. If the user should want to use the seven NCC change
requests, then CHANGEREQUESTS must be set to TRUE in the TCL. If
CHANGEREQUESTS equals TRUE and MONITORTRACE equals FALSE, the CMF
Network Control Command would not be recognized. By default,
MONITORTRACE equals FALSE.

Example:

MONITORTRACE TRUE.

2 - 56

MONITOR TRACE ON STATEMENT ------

Syntax:

<MONITOR TRACE ON statement>

----MONITORTRACEON----- -----TRUE------ • -------------------------->!
I I
I I

i--FALSE->i

Semantics:

The MONITOR TRACE ON statement allows the user to set or reset the
debug monitor flags enabli~g the initialization procedure to be
traced. By default, MONITORTRACEON equals FALSE.

Example:

NOTE

The CM.F command can be used to set or reset any
or all of the monitor flags as soon as
initialization is complete.

MONITORTRACEON FALSE.

2 - 57

MY NAME STATEMENT --------

Syntax:

<MY NAME statement>

----MYNAME---- --- <identifier> --- • ------------------------------>:

Semantics:

Set the MYNAME attribute of the port file GEMCOS uses to 1. Set
the YOURNAME attribute of the port subfile to which GEMCOS
communicates to the same <identifier>.

Example:

MYNAME LAI.

2 - 58

NAME-STACK ENTRIES STATEMENT

Syntax:

<NAME-STACK ENTRIES statement>

----NAMESTACKENTRIES---- --- (integer> --- • ----------------------->:

Semantics:

The NAME-STACK ENTRIES statement specifies the maximum number of
name-stack entries that need to be reserved for variables declared
by user-written code. This parameter is used to ensure that stack
sizes are large enough to execute an MCS which contains
user-written code. If the value assigned in this statement is not
large enough, a name or value-stack overflow error may occur when
the MCS is executed.

Name-stack entries are used to store information concerning
variables. One name-stack entry is used for each data name that
appears in a DECLARE statement. If a data name refers to an array,
it would require two name-stack entries. By default,
NAMESTACKENTRIES is set to O.

To achieve optimal memory use, GEMCOS estimates the name-stack
space required for its variable declarations and overrides the UPL
compiler defaults. If user code is being included,
NAMESTACKENTRIES should be set appropriately. The value given to
NAMESTACKENTRIES is added to the GEMCOS estimate. If user-written
code is not included, the NAME STACK ENTRIES statement may be
ignored.

Examples:

NAMESTACKENTRIES = 25.
NAMESTACKENTRIES = 100.

2 - 59

NCC OK RESPONSE STATEMENT

Syntax:

<NCC OK RESPONSE statement>

C . I -----NC OKRESPONSE---- = ---- <character> ---- • ---------------------> 1

Semantics:

The NCC OK RESPONSE statement defines the message to be returned to
a station upon successful completion of a Network Control Command.
The string must begin and end with a quote and cannot exceed eight
characters in length. By default, NCCRESPONSE is $ (dollar sign).

Examples:

NCCOKRESPONSE
NCCOKRESPONSE
NCCOKRESPONSE

"NCC OK".
"DONE".
"*OK*"·

2 - 60 I

OBJECT CODE FILE NAME STATEMENT

Syntax:

<OBJECT CODE FILE NAME statement>

---OBJECTCODEFILENAME--- --- <file ID> ---- • ---------------------->:

Semantics:

The OBJECT CODE FILE NAME statement allows for the specification of
the MCS object code file name when COMPILE appears in the CONTROL
statement. <File-ID> is a B 1000 file identifier. By default,
OBJECTCODEFILENAME is MCSSRC/OBJECT.

Examples:

OBJECTCODEFILENAME MCS.
OBJECTCODEFILENAME INVENTORY/Mes.

2 - 61

PROGRAM BOJ EOJ STATEMENT

Syntax:

<PROGRAM BOJ EOJ statement>

---PROGRAMBOJEOJ--- ----TRUE-------- • ----------------------------->!
I I
I I

1--FALSE-->I

Semantics:

The PROGRAM BOJ EOJ statement determines if the EXECUTE PROGRAM
(EX), HALT APPLICATION PROGRAM (HAP), and FREE (FRE) Network
Control Commands are to be supported. By default, PROGRAMBOJEOJ
equals FALSE. This statement should be set to TRUE if utility
programs are to be generated into the MCS.

Example:

PROGRAMBOJEOJ = FALSE.

2 - 62

9UEUE BUFFERS STATEMENT

Syntax:

<QUEUE BUFFERS statement>

----QUEUEBUFFERS----- --- <integer> --- • -------------------------->:

Semantics:

The QUEUE BUFFERS statement specifies how many memory buffers are
available to the MCS queue before messages begin to overflow to
disk. The value assigned to QUEUEBUFFERS directly affects the
memory requirements of the on-line system. A value too small or
too large can degrade system throughput. It is suggested that the
user experiment with this statement to find the most efficient
value. QUEUEBUFFERS must not have a value greater than QUEUEDEPTH.
<Integer> may range from 1 to 16. By default, QUEUEBUFFERS has the
value 1.

Examples:

QUEUEBUFFERS 5.
QUEUEBUFFERS 8.

2 - 63

QUEUE DEPTH STATEMENT

Syntax:

<QUEUE DEPTH statement>

-----QUEUEDEPTH----- = --- <integer> --- • --------------------------->!

Semantics:

The QUEUE DEPTH statement specifies the number of messages which
may be outstanding in the queue for the MCS. <Integer> may range
from 1 to 1023. By default, QUEUEDEPTH equals 20.

Examples:

QUEUEDEPTH 5.
QUEUEDEPTH = 75.

2 - 64

(

QUEUE NAME STATEMENT

Syntax:

<QUEUE NAME statement>

----QUEUENAME---- ---- <remote file-ID> ---- • --------------------->!

Semantics:

The QUEUE NAME statement specifies the external file name of the
MCS queue (that is, the remote file opened by the MCS). <Remote
file-ID> should appear in a FILE statement in the user's NDL source
deck. MCSQUEUE is the default value of QUEUENAME.

Example:

QUEUENAME MCSRMT.

2 - 65

RECALL PROGRAM STATEMENT

Syntax:

<RECALL PROGRAM statement>

-----RECALLPROGRAM---- ---- <identifier>---- • -------------------->:

Semantics:

The RECALL PROGRAM statement specifies which program is to be
designated as the recall program. The recall program is used to
recall both audited input and output messages. The identifier must
be 10 characters or less in length. By default, there is no recall
program.

GEMCOS supplies a recall program called MCSRECALL on the release
tape. Further information on MCSRECALL follows.

Examples:

RECALLPROGRAM
RECALLPROGRAM

MCSRECALL.
RECALLPROG.

Using MCSRECALL to Recall Audited Messages

The following gives further information on MCSRECALL. In the Global
section of the TCL, the user is given the option of defining a message
recall program to recall any message inserted into an audit file. There
are two ways to retrieve messages from the audit file: by simply
recalling the last <n> messages, or by recalling messages by time of
day. Only one program needs to be declared to the TCL compiler. The
trancode(s) used must be declared within the Program section of the
recall program. For the syntax of the RECALL PROGRAM statement, see the
preceding railroad diagram.

2 - 66

The following rules must be adhered to when defining the attributes of a
recall program.

1. The program must be declared as a user program.

2. The COM.MONSIZE statement must be absent or set to a value of
60 (default value).

3. The program must not use the auditing capability.

Included on the GEMCOS release tape is a fully functional message recall
object program called MCSRECALL. The user need only declare this
program to the TCL.

Prior to initially executing the supplied recall program, the user must
make the following modifications:

1. The external file name associated with the MCSTIC file must be
the same as that associated with the MCSTIC file of the MCS.

2. The external file name of the MCSREM remote file must be a
remote file of the Network Controller. Also, the Number of
Stations (NST) attribute must be set to the number of stations
requested by the remote file.

See Appendix B for a summary of the files contained in MCSRECALL.

2 - 67

The syntax of a recall message (as expected by MCSRECALL) is as follows:

<recall messsage>

• ---------------------->(1)
I I
I I

l-- <trancode declared in TCL> -->l

(1)--TIME- I --->(2)
I I I I I
I I I I I

l l- (<stn nbr>) -->l l- <time> -- <dash> -- <time> ->l
I I I I I
I I I I I

l l- <stn ident> -->i l- <time of day> -------------->l
I
I
I
I

I-LAST---------------------- <integer> ------------------------->(3)
I I
I I

l- (<stn nbr>) -->l
I I
I I
I ())I 1- stn ident -- 1

I I
I I

:- I --IN----->l
I
I

--OUT---->l
I
I

--INPUT-->l
I
I

--OUTPUT->l
I
I

--IO----->i

(2)--- • ----------->l
I I I I
I I I I

l-- /--ON--- <date> -->l i-- / ----IN------>i
I I
I I

l--OUT----->i
I I
I I

:--IO------>:
I I
I I

l--INPUT--->i
I I
I I

l--OUTPUT-->l

(3)-------------------------- . -------------------------------------->:
I I
I I

l-- I ---PRINTER-->l

2 - 68

<DATA-BASE NAME statement>

i<------ ' -------:
I I
I I

---- DATABASENAME ---- ---- <identifier> -------- • ---------------->:

When the recall source is empty, then the recalled messages are for the
station entering the request; otherwise, they are for the station name
or number requested.

When the message type identifier is INPUT, only the specified input
messages are recalled; when I/O, then both the input and the
corresponding output messages are recalled. When empty, only output
messages are recalled.

The recall message by time of day option allows the user to specify a
time range in which to indicate the messages to be recalled. If a date
is also specified, the messages for that date would be recalled if the
corresponding audit file or files are on disk.

If LAST is specified, the last <n> messages requested would be recalled.
If there are fewer than <n> messages to recall, then the number of
messages found would be recalled.

If PRINTER is selected from message destination, then all the recalled
messages would be sent to the system printer instead of the requesting
station.

Examples (IRC is the user's TCL-defined trancode for the recall program:

IRC.TIME/1200.

IRC.TIME/1200-1215/IO.

IRC.TIME/0800-1600/0N
03/31/79 /IO/PRINTER.

% Recall the output messages stamped
% with time 1200 for this station.

% Recall both the input and output
% messages between 1200 and 1215 for
% this section.

% Recall both the input and output
% messages between 8 AM and 4 PM on
% March 31, 1979 and send them to
% the system printer.

IRC.TIME/(3)/0900-0930 % Recall the input messages initiated
/INPUT. % at station 3 between 9 AM and 9:30

2 - 69

IRC.TIME/LSN2/1000-
1045/0N 04/12/79 I
IO/PRINTER.

IRC.LAST/10.

IRC.LAST/(2)/5/IO.

IRC.LAST/50/PRINTER.

SIGNAL CHARACTER STATEMENT

Syntax:

<SIGNAL CHARACTER statement>

% AM and send them to the requesting
% station.

% Recall both the input and output
% messages from station LSN2 between
% 10 AM and 10:45 AM on April 12,
% 1979 and send them to the system
% printer.

% Recall the last 10 output messages
% this station.

% Recall the last 5 input messages
% and associated output messages from
% station 2 and send them to the
% requesting station.

% Recall the last 50 output messages
% for this station and send them to
% the system printer.

---SIGNALCHARACTER--- = --- <character> --- • ------------------------>:

Semantics:

The SIGNAL CHARACTER statement defines the character which, when
encountered in the first position of a message, signals to the
Network Controller and the MCS that the message is a Network
Control Command. The character must be a single character enclosed
in quotes. By default, SIGNALCHARACTER is "*"

Example:

SIGNALCHARACTER "@".

2 - 70

SIMULATION STATEMENT

Syntax:

<SIMULATION statement>

----SIMULATION----- -----TRUE-------- • ---------------------------->!
I I
I I

1--FALSE-->I

Semantics:

The SIMULATION statement, when set, causes the MCS to open a queue
file instead of the usual remote file. The program MCSSIM can be
used instead of the Network Controller to simulate input via the
card reader. Output is simulated to a line printer using the MCS
Monitor Trace code. The source code for MCSSIM is MCSIMS.
SIMULATION equals FALSE by default.

Example:

SIMULATION FALSE.

2 - 71

SOURCE CODE FILE NAME STATEMENT

Syntax:

<SOURCE CODE FILE NAME statement>

----SOURCECODEFILENAME---- ---- <file ID> ------ • ----------------->!

Semantics:

The SOURCE CODE FILE NAME statement allows for the specification of
the MCS source code file name when GENERATE appears in the CONTROL
statement. <File-ID> is a B 1000 file identifier. By default,
SOURCECODEFILENAME is MCSSRC.

Examples:

SOURCECODEFILENAME MCS/SOURCE.
SOURCECODEFILENAME SOURCE/FILE.

2 - 72

STATUS REPORTS STATEMENT

Syntax:

<STATUS REPORTS statement>

----STATUSREPORTS----- ----TRUE-------- • -------------------------->!
I I
I I

i--FALSE-->i

Semantics:

The STATUS REPORTS statement determines whether to include the
logic to support the following five Network Control Command status
report requests:

1. REPORT FILE STATUS (RFS).
2. REPORT PROGRAM COUNTERS (RPC).
3. REPORT PROGRAM STATUS (RPS).
4. REPORT STATION COUNTERS (RSC).
5. REPORT STATION STATUS (RSS).

STATUSREPORTS equals FALSE by default.

Example:

STATUSREPORTS FALSE.

2 - 73

SUBORDINATE MCS STATEMENT

Syntax:

<SUBORDINATE MCS statement>

----SUBORDINATEMCS---- -----TRUE------- • -------------------------->!
I I
I I

i--FALSE-->J

Semantics:

The SUBORDINATE MCS statement specifies that the GEMCOS MCS is to
be executed from and under the control of a supervisory MCS. The
supervisory MCS can be any valid MCS, but the primary usage of this
option has been designed for execution under SMCS.

The MCS functions depend upon the value of this statement. The
following list details the differences between the non-subordinate
case (false) and the subordinate case (true).

1. Dummy File Opens

a. Nonsubordinate: the MCS will attach to itself as many
stations as it can using the list of stations in the TCL
specifications.

b. Subordinate: the MCS will attach NO stations to itself.

2. Station Condition at EOJ

a. Nonsubordinate: the MCS will mark the stations not ready
before it goes to EOJ after a *HLT command.

b. Subordinate: the MCS will leave the stations ready at EOJ
after a *HLT command.

3. DFR Command

a. Nonsubordinate: the DFR NCC will not be allowed.

b. Subordinate: the DFR NCC will be allowed from any station
that GEMCOS controls.

2 - 74

4. Station Condition Report at BOJ

a. Nonsubordinate: stations not present in the remote file
will be so indicated on the ODT. If the remote file is a
dummy file, the LSNs of the stations attached will be so
indicated on the ODT.

b. Subordinate: no messages will be displayed on the ODT.

The default value for this option is FALSE.

Special Considerations For Running GEMCOS Under SMCS

1. SUBORDINATEMCS must be set to TRUE.

2. If GEMCOS is set up in the SMCS JOBS file with the AUTO-START
option, GEMCOS will be executed with no stations attached.
This is correct in recovery mode, as GEMCOS then attempts to
attach its previously owned stations (see number 7 following).

3. If GEMCOS is set up in the SMCS JOBS file without the NO-EOF
option, GEMCOS will go through its recovery sequence (if
recovery is generated into the MCS) when it is reexecuted.

4. Whenever the SMCS command ON is used to gain access to GEMCOS,
the GEMCOS MCS will consider this station to be "owned" until
the GEMCOS DFR command is used to release it.

The SMCS command OFF should never be used to return a station
to SMCS since GEMCOS will never be informed that the station
is no longer under its control.

5. Whenever the SMCS command PASS is used to forward a request to
GEMCOS, the GEMCOS MCS will assume ownership of the station.
A GEMCOS command DFR will eventually be required to inform
GEMCOS to release the station.

6. In order to bring the GEMCOS MCS to EOJ, a *HLT command should
be entered from an active control station or, in the case
where no stations are active, a *HLT command should be entered
from the ODT.

7. Because of the different mechanism of station allocation under
SMCS, it may be necessary to run GEMCOS alone if recovery
needs to be done on any of its data bases.

If a system or GEMCOS failure occurs and recovery is needed,
the stations which were attached to GEMCOS prior to the
failure should not attach to any programs until the recovery
is finished. GEMCOS will attempt to reattach the stations it

2 - 75

"owned" prior to the failure. As long as such a station has
not attached to another program, SMCS will release the station
to GEMCOS.

If the station has attached to another program, GEMCOS still
attempts recovery, but it may have to use alternate LSNs in
the NDL header when it sends messages to programs. GEMCOS may
also have to write messages to the print file if it encounters
a message for a station it could not attach. (If this
happens, the print file can be closed with the CMF command.)
In either of these cases, a warning message is written to the
monitor stations/CDT.

For additional information on recovery under SMCS, see Section
7.

SYSTEM HALT STATEMENT

Syntax:

<SYSTEM HALT statement>

----SYSTEMHALT---- -----TRUE------- • ------------------------------>!
I I
I I

i--FALSE-->i

Semantics:

The SYSTEM HALT statement specifies whether the code for handling
the HALT (HLT) Network Control Command is to be generated. When
SYSTEMHALT is set to TRUE, CHANGEREQUESTS becomes TRUE (for
internal use only). The seven NCC change requests will not be
accessible unless CHANGEREQUESTS is set to TRUE in the TCL.
SYSTEMHALT equals TRUE by default.

Example:

SYSTEMHALT TRUE.

2 - 76

VALUE-STACK BITS STATEMENT

Syntax:

<VALUE-STACK BITS statement>

-----VALUESTACKBITS----- ---- <integer> ---- • --------------------->l

Semantics:

The VALUE-STACK BITS statement specifies the maximum number of
value-stack bits that are needed as a result of user-code data-name
declarations. This parameter is used to ensure that stack sizes
are large enough to execute an MCS which contains user-written
code. If the value assigned in this statement is not large enough,
a name or value-stack overflow error may occur when the MCS is
executed. The value of a variable which requires 24 or less bits
requires no room on the value stack. However, if a variable
requires more than 24 bits, or if the variable refers to an array,
space would have to be reserved on the value stack for that
variable. By default, VALUESTACKBITS equals zero.

In a fashion similar to the NAME-STACK ENTRIES statement, the
VALUE-STACK BITS statement enables GEMCOS to achieve optimized
memory use. GEMCOS estimates the value-stack space required for
its variables and overrides the UPL compiler defaults. If user
code is included, VALUESTACKBITS should be set appropriately. The
number assigned to VALUESTACKBITS is added to the GEMCOS estimates.
If user-written code is not included, the VALUE-STACK BITS
statement may be ignored.

Examples:

VALUESTACKBITS = 1000.
VALUESTACKBITS = 256.

2 - 77

DEFINITION SECTION

Syntax:

<DEFINITION section>

-----BEGIN---- <ACCESS CONTROL statement> --- <PROGRAM sect.> ------>(1)

(1)--- <STATION sect.> --- <DEVICE sect.> --- <MESS CODE sect.> -~-->(2)

(2)----END---~-->I
I I
I I
I I 1-- • -->1

Semantics:

In the Definition section, the user defines access keys (user IDs),
programs, and stations, as well as their interrelationships. If
the user requires MCS functions not supported by GEMCOS, UPL source
code statements can be merged into a GEMCOS MCS by including a MESS
code section in the Definition section.

2 - 78

ACCESS CONTROL STATEMENT

The following diagram shows the syntax for the ACCESS CONTROL Statement.

L """'"'°""" -i_ -<access code identifier> - = lJ l~ACC-ESSKEY---~-ALL5-. ~•I
an~ode>
entifier t

< p ogram name>
identifier

Semantics:

The ACCESS CONTROL statement allows for the specification of access
codes. An access code is required as part of the sign-on command
syntax (*SGN access code), and identifies the user signing on to
the MCS. An access code identifier is an alphanumeric identifier
up to six characters in length. Associated with each access code
is an item list consisting of transaction codes (trancodes) and/or
program names which that particular user is authorized to use.

When a message is received from a station, the MCS searches for a
transaction code in the message. If one is present, the MCS would
determine if the access code used to sign on at that station is
authorized to use that trancode. If the access code is authorized,
the message would be routed the appropriate program; otherwise, an
error would be returned to the station. If a trancode could not be
found in the message, the MCS would verifythat the access code is
authorized to use the program currently attached to the station.
If so, the message would be routed; if not, an error would be
reported.

NOTE

When the value of sign on for a station is FALSE,
access control is not in effect at that station. No
messages entered at such a station are rejected due
to access control restrictions.

Each trancode encountered in the ACCESS CONTROL statement must
appear in a TRANCODE statement of the Program section. Likewise,
each program name must appear in a program define of the Program
section. If a signed-on user is to have unrestricted use of all
the defined transaction codes and programs, the key word ALL may be
used. If ALL is used, it must be the only item in the item list.

2 - 79

Example:

ACCESSCONTROL
ACCESSKEY ABCD = INQ, PAYROLL.
ACCESSKEY AB1234 = ALL.
ACCESSKEY AB5678 = INQ, XYZ.

2 - 80

PROGRAM SECTION

The following diagram shows the syntax for the Program Section.

l > PROGRAM-<"'"'"m "'mo>--.---------~
identifier

ASSIGNMENT

PORT

USER

UTILITY ----

~,_~_-_-_-_-_----~-----~---T-IT_L_E-~--=-~--<-t-ile--1-0_>_--?> ___ ~~~~-1___.l..__ __ ~>I

5

TRANCODE ~=L< trancode>--.----------.-_..-...,.
identifier

<integer><integer>

RESIDENCE~ = --r>"CORE

4DISK

EXECUTE~= tBOJ

MANUAL--~

ON DEMAND

COMMONSIZE-----r- = ~<integer>-----~

CONVERSATIONSIZE

MAXASSIGNERS --~

MAXCOPIES ---

PORTSIZE ----

ATTACHMESSAGE ----,,..---,.,,. = ~<logical value>

AUD IT ASSIGNMENT

AUDITOUTPUT --

DETACHMESSAGE

OPEN MESSAGE---~

PLMPROGRAM ---,;ot
RESTARTPROGRAM

2 - 81

6

5

Semantics:

INTERFACE~ = t MCS

NONPARTICIPATION

PARTICIPATION---...,

RECOVERY~ EDATABASE

NONE -------3>1
QUEUE RESTORATION

SYNCHRONIZED--.......,;~

'--...--;DATABASENAME

HOST

ALL------'

The library of on-line programs is defined in the Program section.
All programs that open remote files which are to be approved by the
GEMCOS MCS must appear in the Program section. If a program
attempts to open a remote file consisting of at least one station
in the GEMCOS MCS remote file (identified by the QUEUE NAME
statement of the Global section), and if the program does not
appear in the Program section, the MCS would not allow the file to
open.

The Program section is composed of a program define list. Each
program define specifies a program name, a program classification,
and a program statement list.

The program name is limited to 10 characters and cannot contain
slashes. The name can be used optionally in the EX, HAP, RPS, and
RFC Network Control Commands instead of PROGRAM TITLE. If there is
an ACCESS CONTROL statement, and if the program is not a user
program, the program name can appear in its item list to allow
certain access codes to use the program.

The program classification specifies to the MCS how this program
can be executed, as well as how messages are to be routed to it
once it is running. As of the 7.0 GEMCOS release, there are five
program classifications: ASSIGNMENT, UTILITY, USER, PASS, and PORT.
By default, the program classification is ASSIGNMENT.

2 - 82

Assignment Programs

An assignment program may only be executed from the supervisory console,
a card reader, or the Control station. An attempt to execute an
assignment program from any other than the Control station by means of
the EX Network Control Command results in an operator error.

After being executed, an assignment program eventually opens a remote
file in order to gain control of a list of stations in the network. A
GEMCOS MCS would grant control of a particular station to an assignment
program if the MCS controls the station, and if no other assignment or
utility program controls the station. The MCS controls a station when
that station appears in the remote file opened by the GEMCOS MCS. When
an assignment program opens a remote file, the MCS checks each station
defined in the program remote file. If the MCS determines that it
cannot grant control of any of these stations, the FILE OPEN would be
denied. Otherwise, the MCS approves the FILE OPEN request for the
stations in the list for which it is able to grant control. Once
control of a station is given to an assignment program, all messages
entered from that station that do not contain a trancode of a user
program are routed to the assignment program (assuming access control is
not violated).

An assignment program retains control of its stations until it resolves
to close its remote file. If a HAP Network Control Command is entered
from the Control station, the supervisory console, or a card reader, the
MCS places an end-of-file character into the queue of the assignment
program, which prompts it to close its remote file and go to end-of-job.
When an assignment program closes its remote file, the stations are no
longer considered busy and can be attached to another assignment or
utility program.

Thus, the GEMCOS MCS handles file opening and message routing for an
assignment program in much the same way that a Network Controller does
when no MCS is present. However, GEMCOS also provides an assignment
program with additional functions such as a common-area header, trancode
indices, access control, audit, recovery, and formatting.

Utility Programs

A utility program may only be executed from a station in the network.
An attempt to use the EX Network Control Command to execute a utility
program from the supervisory console or a card reader is denied. A
station may not "EX" a utility program when that station is already
controlled by an assignment program or another utility program since the
station would be considered busy.

2 - 83

Upon receipt of an EX Network Control Command from the station, the MCS
determines, in the order listed, the status of the following as they
pertain to the utility program:

1. Program is running.

2. Number of stations attached to the program exceeds the limit
assigned.

3. Number of program copies exceeds the limit assigned.

When the program is not running, the MCS initiates the program with the
ZIP EXECUTE command. Afterward, the initiated program opens a dummy
file. Afterward, the MCS attaches the requesting station. (For further
information about dummy files, refer to the B 1700 Systems Network
Definition Language (NDL) Reference Manual.)

When the program is running, the MCS checks whether the number of
stations attached to this program exceeds the maximum assignment limit;
if it does not, the MCS would dynamically attach the station to the
remote file of the program. However, if the number of stations attached
to the program does exceed the limit, the MCS then would proceed to
check whether the number of program copies exceeds the limit
established. If it does not, the MCS would initiate a copy of the
program and attach the station to it. However, if the program copy
limit is exceeded, the MCS would display an error message.

Once the attachment occurs, the utility program controls the station.
All messages entered from that station which do not contain a trancode
or a user program are routed to the utility program.

When the user is finished with a program, the HAP network control
command is entered. This prompts the MCS to detach the station from the
remote file of the utility program. The station is available and can be
attached to another assignment or utility program. When only one
station was attached to the program copy, the MCS places an end-of-file
character in the utility program queue (for that copy only). The
character prompts the program to close the remote file and proceed to
end-of-job.

GEMCOS handles a utility program in much the same manner as the B 1700
illustrative MCS handles a program that opens a remote file. However,
GEMCOS also provides a utility program with additional functions such as
a common-area header, trancode indices, access control, audit, recovery,
and formatting.

2 - 84

User Programs

A user program, like an assignment program, may only be executed from
the supervisory console, a card reader, or the Control station. An
attempt to execute a user program from any station in the network other
than the Control station by means of the EX Network Control Command is
denied. A user program must use a Participation interface (see
INTERFACE Statement below).

After being executed, a user program should open a remote file for
stations it can service. The MCS approves the REMOTE FILE OPEN as long
as the stations in the remote file are controlled by GEMCOS (those
stations not in the remote file of the MCS being deleted from the remote
file of the user program).

NOTE

The MCS does not check to see if another on-line
program controls the stations, since a user program
does not control stations.

User programs can also open a remote file with no stations attached
(that is, a file declared in the NDL with FAMILY =DUMMY).

When the GEMCOS MCS receives a dummy file open from a user program, the
file open is approved. Any station that is declared in the TCL can
communicate with this program, subject to security restrictions.

If GEMCOS is running as a subordinate MCS under the control of SMCS or
any other supervisory MCS, any station that is attached to GEMCOS by the
supervisory MCS is also able to send trancoded messages to any user
program that has previously opened a dummy remote file.

Unlike an assignment program or utility program, a user program receives
a message entered from a station in its remote file only if the message
has a trancode. At a given point in time, a station may be attached to
as many user programs as necessary since the MCS is able to switch
messages entered at the station based on a trancode found in the message
(a station m:ay only be attached to one assignment or utility program at
a time and all messages without a trancode go to that program). A
station may be simultaneously attached to an assignment or utility
program, even though it may still be attached to user programs.

2 - 85

A user program must have at least one TRANCODE statement in its PROGRAM
statement list; otherwise, the program cannot receive any messages.

If several copies of a particular user program are executed, the MCS
would distribute the message load evenly among them. This feature can
increase system throughput since inputs/outputs (I/Os) can be
overlapped.

A user program continues to service the stations in its remote file
until it closes its remote file. If a HAP Network Control Command is
entered for this program, the MCS would place an end-of-file character
in the user program queue, prompting it to go to end-of-job.

Pass Programs

A pass program can be executed at BOJ from the ODT, either manually from
the Control stations, or on demand via the PASS command. It can be
stopped with a HAP command from any of the Control stations.

After it is executed, a pass program opens a dummy file. But the pass
program does not have control over any stations. As long as there are
no security restrictions, a station can pass to any pass program at any
time.

GEMCOS does not allow
conversation functions.
always set to one.

Port Programs

a pass program with audit, recovery, or
The MAXCOPIES attribute of a pass program is

The user can declare programs which use port files rather than remote
files. To do this, set PROGRAM TYPE to PORT. The MAXCOPIES attribute
is always set to 1.

A port program can be executed manually from a Control station or ON
DEMAND. After the port program has been executed, GEMCOS opens a
subport file called TPPORT. In order to communicate with GEMCOS, the
matching port file in the port program also needs to be opened.

If only one of these port files has been opened, the program with the
open port file waits for the matching port to be opened. The status of
this program is: WAIT FOR PORT OPEN.

2 - 86

The user can stop any port program by entering a HAP command at any
Control station. When this is done, GEMCOS sends a message (Message 27)
which tells the program to go to end-of-job and to close its associated
subport. The program must close its subport and stop running if it
receives this message from GEMCOS.

Examples:

PROGRAM A ASSIGNMENT:
TITLE = PACKA/PAYROLL/.
TRANCODE = UPDATE.
COMMONSIZE = 60.

PROGRAM B UTILITY:
TITLE = EDIT/IT.
COMMONSIZE = 75,
RESIDENCE = CORE.

PROGRAM C USER:
TITLE = FIXIT.
TRANCODE = OLD(8,1).
TRANCODE = NEW(9,1).
RESIDENCE = DISK.

PROGRAM D PASS:
TITLE = RD.
INTERFACE = MCS.
EXECUTE = ONDEMAND.

PROGRAM E PORT:
INTERFACE
TITLE PORTPROG.

XFER.
60.

TRAN CODE
COMMONSIZE
PORTSIZE
HOST

= 500.
LABASE. %

%
%
%

IF HOST STATEMENT IS NOT
DECLARED, THE LOCAL HOST
ON WHICH GEMCOS IS EXECUTING
IS USED.

2 - 87

AP300STATUS Statement

Syntax:

<AP300STATUS statement>

----AP300STATUS---- =----<logical value>---- • -------------------->!

Semantics:

The AP300STATUS statement indicates whether the four-byte
AP300STATUS message from the AP300 is forwarded to the attached
application program. The status of the AP300 is reported to the
Control station or the system SPO when the four-byte status is
received. The default value is FALSE.

Example:

AP300STATUS TRUE.

2 - 88

ATTACH MESSAGE Statement

Syntax:

<ATTACH MESSAGE statement>

----ATTACHMESSAGE---- ---- <logical value> ---- • ------------------>l

Semantics:

When ATTACHMESSAGE is set TRUE, the program receives a message in
its remote file giving the LSN of a station which just attached
itself to the program (by means of the *EX Network Control
Command). The first station to attach itself does not generate an
ATTACHMESSAGE. The station can be obtained from the OPENMESSAGE.
The ATTACHMESSAGE consists of a common-area header with the MCSTYPE
field set to 2, the LSN field set to the LSN of the attaching
station, the SEQNO field set to the next audit sequence number, and
the TEXTSIZE field set to 0000. No message text is sent.

When INTERFACE is set to MCS, the common-area header is preceded by
a B 1000 MCS Network Controller interface MCS DATA MESSAGE header
with the Message Type field set to 80. A program with an interface
of Nonparticipation cannot request attach messages. By default,
ATTACHMESSAGE is FALSE.

Example:

ATTACHMESSAGE = TRUE.

2 - 89

AUDIT ASSIGNMENT Statement

Syntax:

<AUDIT ASSIGNMENT statement>

----AUDITASSIGNMENT---- ---- <logical value> ---- • ---------------->!

Semantics:

The AUDIT ASSIGNMENT statement directs the MCS whether to audit
messages that do not have a trancode. Programs declared as user
programs may not use this statement since all messages for that
class of program necessarily contain a trancode. User programs
that require recovery must use the AUDIT TRANSACTIONS statement.
Programs of any other class that require recovery must use this
statement or the AUDIT TRANSACTIONS statement or both. By default,
the MCS does not audit by assignment.

Examples:

AUDITASSIGNMENT
AUDITASSIGNMENT

TRUE.
FALSE.

2 - 90

AUDIT OUTPUT Statement

Syntax:

<AUDIT OUTPUT statement>

----AUDITOUTPUT---- ---- <logical value> ---- • -------------------->l

Semantics:

The AUDIT OUTPUT statement directs the MCS to audit all output
messages from the program to the station. This statement must be
set to TRUE for programs that use synchronized recovery; otherwise,
a warning is issued and the statement is automatically set to TRUE.
For the MCS to audit output, a program must audit either by
assignment or by transaction. Except for synchronized recovery,
AUDITOUTPUT defaults to FALSE.

Examples:

AUDITOUTPUT = TRUE.
AUDITOUTPUT = FALSE.

2 - 91

AUDIT TRANSACTIONS Statement

Syntax:

<AUDIT TRANSACTIONS statement>

:<------------ ' -----------: I I
I I

---AUDITTRANSACTIONS---- ----- <trancode identifier> ------- • --->i
I I
I I

i---ALL------------------->i

Semantics:

The AUDIT TRANSACTIONS statement specifies which previously defined
trancodes are to be audited by the MCS. Only transactions that
cause the data base to be updated should be audited, since all
audited messages are reprocessed during recovery. When ALL is
selected, no individual trancodes may be specified and all
trancodes for this program are audited. When recovery is required
for this program, then either this statement, or the AUDIT
ASSIGNMENT statement, or both, must be specified. By default, the
MCS does not audit by trancode for any program.

Examples:

AUDITTRANSACTIONS
AUDITTRANSACTIONS
AUDITTRANSACTIONS

UPD.
PAY, OE01, OE02, OE04.
ALL.

2 - 92

COMMON SIZE Statement

Syntax:

<COMMON SIZE statement>

----COMMONSIZE---- ---- <integer> ---- • --------------------------->:

Semantics:

The COMMON SIZE statement allows the user to specify the length of
the header preceding the text of messages exchanged between the MCS
and application programs using the Participation interface.
<Integer> must be a value from 60 to 200. Bytes 1 through 60 are
reserved for GEMCOS-defined fields. Bytes 61 through 200 can be
reserved for user-defined fields. User-written code must be merged
into the MCS if it is to access, set, or modify bytes 61 through
<integer>. The COMMON SIZE statement is optional. By default,
COMMONSIZE = 60 (no room reserved for user-defined fields).

Programs using either the Nonparticipation or MCS interface cannot
receive a common area, and thus COMMON SIZE cannot be set.

Examples:

COMMONSIZE 60.
COMMONSIZE 200.

2 - 93

CONVERSATION SIZE Statement

Syntax:

<CONVERSATION SIZE statement>

-----CONVERSATIONSIZE----- ----<integer>---- • ------------------->!

Semantics:

The CONVERSATION SIZE statement is used to establish the size of
the conversation area for a program. The size is specified in
bytes. The MCS cannot generate conversational capabilities without
this statement in the TCL. Anytime this statement is increased to
a value greater than any previously declared CONVERSATION SIZE, the
TCL must be regenerated and recompiled. The maximum value for this
statement is 255.

Examples:

CONVERSATIONSIZE = 30.
CONVERSATIONSIZE = 45.

2 - 94

DATA BASE NAME Statement

Syntax:

<DATA-BASE NAME statement>

I<------ , --------:
I I
I I

---DATABASENAME--- ---- <identifier> ------- • --------------------->:

Semantics:

The DATA BASE NAME statement associates a program with a data base.
When recovery for a program is synchronized or data base, this
statement must be present and specify the name of the data base
that the program belongs to; otherwise, it is not required. When
this statement is required but not given, a syntax error occurs.

When the program is a restart program (RESTART PROGRAM= TRUE),
then more than one data base identifier may be specified providing
that the restart program services more than one data base. When
the program is not a restart program, only one data base identifier
may be specified. A data base identifier is an identifier that
contains between 1 and 17 characters.

Examples:

DATABASENAME = MCSTESTDB.
DATABASENAME LIVEDB, TESTDB.

2 - 95

DETACH MESSAGE Statement

Syntax:

<DETACH MESSAGE statement>

---DETACHMESSAGE--- = ---- <logical value> ---- • -------------------->!

Semantics:

When DETACHMESSAGE is set to TRUE, the program receives a message
in its remote file giving the LSN of the station which has just
detached itself from .. the program (by means of the HAP Network
Control Command). The last station to detach itself does not
generate a DETACH MESSAGE since the program is informed of the fact
(it receives an end-of-file condition on its remote file). The
DETACH MESSAGE consists of a common-area header with the MCSTYPE
field set to 4, the LSN field set to the LSN of the detaching
station, the SEQNO field set to the next audit sequence number, and
the TEXTSIZE field set to 0000. No message text is set.

If INTERFACE is set to MCS, the common-area header is preceded by a
B 1000 MCS/Network Controller interface, MCS DATA MESSAGE header
with the Message Type field set to 80. A program with an interface
of Nonparticipation cannot request DETACH MESSAGES. By default,
DETACHMESSAGE is FALSE.

Example:

DETACHMESSAGE = TRUE.

2 - 96

EXECUTE Statement

Syntax:

<EXECUTE statement>

/<------- ' -------1
I I

---EXECUTE--- ---------ONDEMAND---------- • ------------------------>!
I I
I I

i---BOJ------->i
I I
I I

i---MANUAL---->i

Semantics:

The EXECUTE statement allows the user to reduce intervention by the
console or control station operator during program fire up. Three
options are available: ONDEMAND, BOJ, and MANUAL. ONDEMAND and
MANUAL may not appear together in the same EXECUTE statement. The
default for this statement is MANUAL.

ONDEMAND

This option may only be declared for user and pass programs.
Normally, when an operator enters a message containing a trancode
for a program that is not running, GEMCOS MCS displays an error
message, and the operator must wait until the program is executed
through the console or a Control station.

However, when ONDEMAND is selected, GEMCOS MCS ZIP-executes the
program when it is not running and a trancode message is received
for it. The first message received for the program causes the
execution.

The ONDEMAND execution for pass programs is slightly different from
the previous process. In this case, the first PASS command to the
program causes the execution.

ONDEMAND functions are internal and not visible to the operator.
This feature enables the operator to enter messages without
interruption. The messages are stored in a "tank file." When
GEMCOS MCS receives a FILE OPEN for the program, all "tanked"
messages for that program are sent to it in the same order as
originally received by the GEMCOS MCS. The tank file is closed
when it contains no more messages.

2 - 97

BOJ

The BOJ (beginning-of-job) option can be declared
user, or pass programs. When the GEMCOS MCS
automatically executes all BOJ programs unless
perform recovery.

for assignment,
is executed, it
the MCS needs to

Note that it is advisable to be selective when declaring programs
BOJ so the mix is not filled with unnecessary jobs.

MANUAL

MANUAL may be declared for all classifications of programs. When a
program declared MANUAL is not running, it must be executed with
the EX command. Utility programs can only be declared as MANUAL.

Examples:

EXECUTE
EXECUTE

HOST Statement

Syntax:

MANUAL, BOJ.
ONDEMAND.

<HOST statement>

---HOST--- ---- <identifier> ----- • ------------------------------->:

Semantics:

When initiating a port program, use the HOST Statement to specify
the host name attribute. This statement is valid only when the
Program Type is PORT. The default value for this statement is
NULL.

Example:

HOST LABASE

2 - 98

INTERFACE Statement

Syntax:

<INTERFACE statement>

---INTERFACE--- -------NONPARTICIPATION------ • -------------------->!
I I
I I

1---PARTICIPATION---->l
I I
I I

l---MCS-------------->l

Semantics:

The INTERFACE statement determines the path messages follow as they
flow between a particular program and the stations in its remote
file. It also determines the relationship between the GEMCOS MCS
and the program. Three interfaces are available: Nonparticipation,
Participation, and MCS. The Nonparticipation and Participation
interfaces may only be used by application programs, programs which
open a remote file without headers. The MCS interface may only be
used by MCS programs, programs which open a remote file with
headers. By default, the interface is PARTICIPATION.

2 - 99

Nonparticipation Interface

A Nonparticipation interface is an efficient but static method for a
program to communicate with the stations in its remote file. Figure
2-19 depicts the flow of messages in a Nonparticipation interface.

Stations in
Remote file
of programs

RSNl

R<lN2

• • •
RSNx

RSN signifies the Relative Station Number.

GEMCOS MCS

Figure 2-19. Nonparticipation Interface

Program

With a Nonparticipation interface all messages (except those beginning
with a signal character) that are entered from all stations in the
application program remote file go to the program. The program can
write messages to any of its stations. A construct known as a remote
key allows the program to determine the source and length of an input
and to specify the destination and length of an output.

Messages written by the program or entered from a station beginning with
a signal character are sent to the MCS. GEMCOS Network Control Commands
reach the MCS by means of this signal character when a Nonparticipation
interface is chosen.

Messages beginning with two signal characters that are entered from a
station are processed by the MCS in the following manner:

1. When the trancode is found in the message, the transaction is
routed to the program specified by the trancode, provided the
program is running or declared as ONDEMAND. Output messages
from the program are routed back to the station. This allows
a user at a station that is attached to a non-participating
program, to perform trancode routing to other programs in the
network.

2 - 100

2. When the message (starting from the third character position
only) contains a message-ID, it is considered to be a forms
request, and the blank form is sent back to the station. This
feature is only available in the Advanced and Total Versions
of GEMCOS.

3. When the message contains neither a valid trancode nor
message-ID, it is routed to the program to which the station
is attached. The first two bytes (or two signal characters)
are not returned with the message.

The Nonparticipation interface is efficient since a typical transaction
passes through only one program, the,user program (in addition to the
Network Controller). This interface is static since a station can only
be in one opened (input) remote file at a time, and therefore has access
to only one program. In addition, the MCS does not have access to the
normal flow of messages and is unable to provide audit, formatting,
access control, and its other functions.

When interface is Nonparticipation, the program classification cannot be
USER and there cannot be any transaction codes. The common-area header
will not be on messages received by the program, and the program must
not provide them on output. Thus, COMMONSIZE cannot be set.
ATTACHMESSAGE, DETACHMESSAGE and OPENMESSAGE cannot be TRUE. Users at
stations in the remote file of a Nonparticipation program can neither
use transaction-based routing nor initiate screen requests while the
Nonparticipation program is running. Even if a station has been
assigned a SCREENSIZE, screen wraparound cannot take place while the
station is under control of a Nonparticipation program. Audit, queue
restoration, and formatting are not possible, even though these options
can be specified in the Global section and can be used by Participation
programs attached to other stations in the network while
Nonparticipation programs are running.

If stations can be dedicated to a particular program while the program
is running, and the program does not require access control, audit,
queue restoration, formatting or screen wraparound, it is advantageous
to use the Nonparticipation interface.

Participation Interface

When PARTICIPATION is specified as the program interface, all messages
entered at stations pass through the MCS before being sent to programs,
and all messages written by the program pass through the MCS before
being transmitted to stations. The MCS is said to be "participating" in
the message traffic flowing between the program and the stations of the

2 - 1 01

program remote file. Figure 2-20 depicts the flow of messages in a
Participation interface.

Stations in
lliemote file
of Proqrams

RSNl

.RSN2

• • •
.RSNx

RSN siqnifies the llielative Station Number.

<EMCQS MCS

Figure 2-20. Participation Interface

Proqram

The Participation interface is slightly less efficient in terms of
throughput, since a typical transaction passes through three programs:
the MCS (during input), the user program, and the MCS again (during
output). The slight decrease in efficiency is more than offset by the
full complement of centralized functions provided by the MCS message.
It can provide a full array of centralized functions (including audit,
recovery, formatting, screen wraparound, access control, and various
forms of routing).

Common-Area Header with Participation Interface

Programs which use the Participation interface receive and must provide
the common-area header. This header, in addition to its other
functions, allows the program and MCS to communicate the message text
length and the source/destination station to each other.

The common-area header precedes all messages sent to programs using the
Participation interface, and it is required in front of all messages
written by such programs. The length of the common-area header can vary
from 60 to 200 bytes by program as specified in the COMMONSIZE
statement. The layout of the common-area header is as follows:

2 - 102

01 COMMONAREA.
05 MSGDESTINATION PICTURE 9(1).
05 LSN PIC 9(3).
05 PGMNBR REDEFINES LSN PIC 9(3).
05 MTSMSGTYPE PIC S9(1).
05 SEQNO PIC 9(6).
05 NDLTIME PIC 9(7).
05 TEXTSIZE PIC 9(4).
05 TERMTYPE PIC 9(2).
05 MSG ID PIC X(6).
05 INDEX1 PIC 9(2).
05 INDEX2 PIC 9(2).
05 ERROR PIC 9 (1) •
05 FM TERR PIC 9(1) •
05 MCSTYPE PIC 9(2).
05 INPUT/l.DDR PIC 9(9).
05 RETRYCOUNT PIC 9(1).
05 RECOVERYSTATUS PIC 9 (1) •
05 OUTPUTADDR PIC 9(9).
05 CONVERSATIONSTATUS PIC 9(1) •
05 CONVERSATIONBOJEOJ PIC 9 (1) •
05 USERAREA PIC X() •

The following explains each field in the common-area header in detail.

Fields in Common-area Header

MSG DESTINATION

This field can be filled in by the application program to indicate
special routing. It is used primarily for program-to-program or
program-to station trancode routing. The GEMCOS system fills the
field with the default value before sending it to the program.
Thus, the application program need not adjust the value unless
special routing is required. A list of the values for this field
and the default values, set by GEMCOS, follow.

0 Send to indicated station (final destination
default).

no

Send to indicated program (final destination no
default).

2 Route with trancode (final destination - no default).

3 Route with trancode. Return to station (the GEMCOS
system sets the value to zero).

2 - 1 03

LSN

4 Route with trancode, return to program (GEMCOS sets value
to 1) •

5 This value is set by GEMCOS to indicate that the message
originates from a routeheader station. It should not be
altered unless an intermediate transaction is required.
See Section 10 for explanation of routeheader stations.

For incoming messages or recovered incoming messages, this field
contains the LSN of the originating station. Outgoing messages are
sent to the station whose LSN is stored in this field. For attach
notifications and detach notifications, this field contains the LSN
of the station involved. For open notifications, this field
contains the number of stations in the approved FILE OPEN.

PGMNBR

This field contains the program number of the originating program
in the event that the message must be routed back to the program.
It redefines the LSN field so that no LSN is present if a program
number is specified. MSGDESTINATION will be 1.

NOTE

It is the responsibility of the program to keep
track of the LSN when doing message routing to
another program.

MTSMSGTYPE

SEQ NO

Modular Terminal System Message Type. This field is used to
identify incoming and outgoing messages when the source or
destination is an MTS terminal. Refer to Section 10 for a detailed
explanation of this field.

Sequence Number. The MCS assigns a unique number to each message.
That number is passed to the application program in this field.

2 - 1 04

NDLTIME

NDL Time. This is the time that the Network Controller sends the
message to the MCS.

TEXTSIZE

Text Size. For incoming messages, this is the length in characters
of the message text. It does not include the length of the
common-area header. For open notification, it is set to the LSN
field multiplied by 3. When the application program writes a
message, it must use the ACTUAL KEY of the remote file to specify
the text size. In this case, the size must include the size of the
common-area header.

TERMTYPE

MSG ID

Terminal Type. The MCS sets this field on incoming messages to a
code which identifies the type of the originating device.
Terminal-type codes are assigned in the Terminal section of the
NDL.

Message-ID. The MCS sets this field to the access key signed on to
the station from which the message came. If the station does not
require sign on, the field is blank.

Users who use both GEMCOS formatting and security should be sure
that their programs replace this field either with blanks or with a
valid message-ID. If this field does not contain either blanks or
a valid message-ID, GEMCOS calls the format-module and searches the
list of valid message-IDs, which slows response time.

When the user's program sets this field to a valid message-ID
(refer to the OUTPUT FORMATS statement), the MCS formats the
message before transmitting it to a station. When the program
leaves the field blank, the MCS does not format the message.

INDEX1

Module-Function Index One.
valid trancode, and that

When an incoming message contains a
trancode has module function indices

2 - 105

defined in the TCL, the MCS sets this field to the first index;
otherwise, this field is set to zero.

INDEX2

Module-Function Index Two. When an incoming message has
module-function indices defined in the TCL, the MCS sets this field
to the second index; otherwise, this field is set to zero.

ERROR

When the MCS detects
program by trancode,
values follow:

an error while routing a message from a
a value is returned. Definitions for these

0 No error.

Missing trancode (trancode routing was specified).

2 Requested program or station not available.

3 Return station ID is invalid.

4 Error in routeheader (processor to processor) message.

FMTERR

Format Error When the MCS detects an error
formatting an incoming message, this field is set. Note

Indicator. while
that

errors detected while formatting
to the Monitor stations. Refer
errors under <format declaration>
which can be found in this field.

an outgoing message are reported
to the discussion of formatting
for an explanation of the values

MCSTYPE

Message Type. This field identifies
exchanged between the user application
allowed values and their meanings are:

the type of message being
program and the MCS. The

0 On input, this is a message from a station.
this is the last (primary) message for
transaction.

2 - 106

On output,
the current

(

2

4

6

Not used on input. On output, this is a secondary
message (that is, the program has additional responses to
send for this transaction).

On input, this is a station attach notification. Not
used on output.

On input, this is a station detach notification. Not
used on output.

On input, this is a file open notification.
output.

Not used on

15 On input, this message instructs the restart program to
pass recovery information back to the MCS. Not used on
output.

17 Not used on input. On output, this message is sent by
the restart program to the MCS. It contains recovery
information requested by the MCS.

18 Not used on input.On output, this message is sent by the
restart program to inform the MCS that an error was
found.

20 Not used on input.
the MCS to indicate
needs recovery.

On output, this message is sent to
that the user application program

21 On input, this message instructs the user application
program to prepare for recovery. Not used on output.

22 Not used on input. On output, this message is sent by
the user application program to inform the MCS that it is
ready for recovery (used in response to a type-21 message
only).

23 On input, this message is sent by the MCS to the user
application program immediately after the remote file is
opened. Its purpose is to pass information to the
program that must be saved in the restart data set. Not
used on output.

24 On input, this message is sent to the user application
program instructing it to close its data base and prepare
to terminate processing. Not used on output

25 Not used on input. On output, this message is sent by
the user application program to inform the MCS that the
program has successfully closed its data base and is now
ready to terminate processing.

2 - 107

26

INPUTADDR

Not used on input. On output, the
program sends this message to inform
program would like to go to EOJ.

user application
the MCS that the

Input Audit Disk Address. This field contains the audit-file disk
address of this transaction. When this field is zero, this
transaction was not audited.

RETRY COUNT

Transaction Retry Count. This field contains the number of times
this transaction was submitted to the user application program.
The value is incremented by one whenever an input transaction
causes a user application program to abort.

RECOVERYSTATUS

System Recovery Status. This field indicates
the time this transaction was sent. The
meanings are:

0 The system is not in recovery mode.

the system status at
allowed values and

The system is in recovery
application program abort.

mode caused by a user

OUTPUTADDR

2 The system is performing an archival recovery.

3 The system is in recovery mode caused by a Clear/Start or
an abnormal termination of the MCS.

Output Audit Disk Address. This field contains the audit file disk
address of the output message generated by the user application
program. This field is not used by the program.

2 - 108

CONVERSATIONSTATUS

Conversation Status. This field indicates whether the conversation
path is clear, a conversation is in progress, or an error occurred
by the last message. Descriptions follow for each value that is
possible in this field:

0 Path is clear. There is no conversation in progress at
the station, or the station is nonconversational.

2

3

Conversation in progress. Whether the station is
comunicating with a program is indicated by the value of
the CONVERSATIONBOJEOJ field.

Error. Maximum
The last message
returned.

number of conversations was exceeded.
is neither audited nor delivered, but

Error. Conversation is attempted with a
nonconversational station. Message is returned.

4 Error. Conversation attempted with a conversing station.
Message is returned.

5 Error. A nonconversational program attempts to initiate
a conversation. Message is returned to the program.

CONVERSATIONBOJEOJ

Conversation BOJ EOJ.
end of a conversation.
messages from the user.
possible in the field:

This field indicates the beginning and the
The field is kept up-to-date through the

Descriptions follow for each value that is

For messages to stations:

0 End of conversation, or no conversations in progress.
The MCS expects message text immediately after the
common-area header.

Conversation is beginning or continuing.
text is located between the common-area
message text. Conversation text is
conversation area. If GEMCOS is
participating program, the conversation
as well. well.

2 - 109

Conversation
header and the

stored in the
auditing the

text is audited

For messages from stations:

USERAREA

0 Unoccupied. By returning this value, the station
indicates that it is open for conversation.

Occupied. This value verifies to the program that it is
in conversation with the station. Conversation text
follows the common-area header.

User Area. If COMMONSIZE is 60, the User-area field does not
exist. If COMMONSIZE is greater than 60, the length of the
User-area field (n) is COMMONSIZE minus 60. User-written MESS
procedures must be written if this field is to contain significant
information.

As previously mentioned, the common-area header is placed in front of
the text of messages exchanged between the MCS and programs using the
Participation interface. The length of the text is determined by the
TEXTSIZE field. For incoming messages and recovered incoming messages,
the text is the data received from a terminal. For open notifications,
the text is a list of 3-character LSNs. No text is associated with
attach notifications or detach notifications. For outgoing messages,
the application program sets the text to the data to be sent to a
terminal.

The attach, detach, and/or open notifications can be requested by a
program using the MCS interface. In this case, GEMCOS writes an
MCS-to-MCS data message with a message type-80 (refer to Burroughs B
1700 Systems Network Definition Language Reference Manual). The text of
this data message is a common-area header. Therefore, a subordinate MCS
which expects attach, detach and/or open notifications must be able to
handle an MCS-to-MCS data message from GEMCOS in addition to the
MCS/Network Controller message types. See Table 2-1 for details. The
following legend explains the symbols used in Table 2-1.

2 - 11 0

Legend for Table 2-1

X The MCS sets this field, which contains valid information.

U The MCS sets this field only if the user specified
procedures.

Y The MCS requires the application program to provide valid
information in this field.

V The MCS reads this field only if the user specified
procedures.

W If the program requires queue restoration recovery, the
MCS requires the application program to provide
information in this field.

2 - 1 1 1

Table 2-1

Common-area Header Fields
Containing Valid Information

by MCSTYPE

Written by MCS Written by User
Program

Field MCSTYPE MCSTYPE ---

2,4
0 6 1 5 21 23 24 0 1 17 18 20 22 25 26

MSG DESTINATION x
LSN x x x y y
PGMNBR x
MTSMSGTYPE x
SEQ NO x
NDLTIME x
TEXTSIZE x x x x x x
TERM TYPE x
MCSGID x y y
INDEX1 x
INDEX2 x
ERROR x
FMTERR x
MCSTYPE x x x x x x y y y y y y y y
INPUTADDR x w
RETRY COUNT x
RECOVERYSTATUS x
OUTPUTADDR
USERDATA u u v v
TEXT x x x y y y
CNVERSATIONSTATUS x
CONVERSATONBOJEOJ x y y

2 - 11 2

JVICS Interface

When a program is defined as using an JVICS interface, the flow of
messages is similar to a Nonparticipation interface. All messages
(except those beginning with the signal character) entered from each
station in the MCS program remote file go to the program. The MCS
program can write to any station in its remote file. Figure 2-21
depicts the flow of messages in an MCS interface.

Stations in
Remote file
of Programs

RSNl

RSN2

• • •
RSNx

RSN signifies the Relati911 Station Number.

GEMCOS
Supervisory

MCS

Figure 2-21. JVICS Interface

Subordinate
MCS

PZ'09ram

Two areas in which the MCS interface differs from the Nonparticipation
interface are as follows:

1. A program using an MCS interface must open its remote file
with headers, thereby identifying itself as an MCS program to
GEMCOS and the Network Controller.

2. The program must provide and expect a Network
Controller-defined 50-byte header preceeding all data
messages. With this header, the program may access tallies
and toggles, and may perform functions such as output message
switching, communication with the Network Controller, remote
file management, system interrogation, and system control.
(The Network Controller/Message Control System interface is
defined in Burroughs B 1700 Systems Network Definition
Language Reference Manual.)

When a program using the MCS interface opens its remote file, GEMCOS
assumes the status of a supervisory MCS while the program is considered
a subordinate MCS. The supervisory MCS must be entered into the mix
before any of the subordinate MCS programs.

2 - 113

A program using the MCS interface can be either a utility program, an
assignment program, or a pass program. In brief, stations can
dynamically attach to and detach from a utility program via the EX and
HAP Network Control Commands, while an assignment program controls a
fixed set of stations and can only be initiated from the Control
stations, or the ODT. A pass program controls no stations. It can be
initiated from the ODT, Control stations, or any station via a PASS
command.

Messages entered at stations in a remote file opened by a subordinate
MCS (which do not begin with the GEMCOS signal character) go directly to
the subordinate MCS and are not seen by GEMCOS. As a result, an MCS
program temporarily suspends GEMCOS MCS functions (except certain
Network Control Commands) at the stations in its remote file. While
stations are in the remote file of an MCS program, they cannot use
GEMCOS trancodes, screen wraparound, audit, recovery, or formatting.
Messages beginning with the GEMCOS signal character go to the GEMCOS
supervisory MCS so that, even while a station is attached to a
subordinate MCS, GEMCOS network control commands can be entered.

NOTE

Network Control Commands affecting the attributes of
stations in the remote file of an MCS program cannot
be acted upon. The subordinate MCS is responsible
for the attributes of the stations it controls.

The B 1000 MCS/Network Controller interface allows subordinate MCS
programs to change data communication attributes of associated stations.
However, when a station attribute is changed by a subordinate MCS, the
change is effective only while the subordinate MCS controls the station.
As soon as either the subordinate MCS closes its remote file or the
station detaches itself, GEMCOS returns the station to its original
status.

Examples:

INTERFACE
INTERFACE
INTERFACE

NONPARTICIPATION.
PARTICIPATION.
MCS.

2 - 114

MAXIMUM ASSIGNERS Statement

Syntax:

<MAXIMUM ASSIGNERS statement>

---MAXASSIGNERS--- = ---- <integers> ---- • -------------------------->:

Semantics:

The MAXIMUM ASSIGNERS statement is used for utility programs only.
This statement is used to specify the maximum number of stations
that can be attached to a program concurrently. The maximum value
cannot be greater than the number of stations allowed by GEMCOS.
By default, all attachments are applied to one program.

Examples:

MAXASSIGNERS 5.
MAXASSIGNERS = 2.

2 - 11 5

MAXIMUM COPIES Statement

Syntax:

<MAX COPIES statement>

---MAXCOPIES--- = ---- <integers> ---- • ----------------------------->:

Semantics:

The MAX COPIES statement
this program that can be
at any one time. For
allowable value is one.
greater than one allows
executed manually. (See
earlier in this section.)

is used to specify the number of copies of
running (that is, have a remote file open)
assignment and pass programs, the only
For user programs, setting MAXCOPIES
multiple copies of the program to be

"User Programs," under "PROGRAM SECTION"

The sum of MAXCOPIES for all programs determines how many programs
can be running in the MCS concurrently. An increase in the value
assigned to MAXCOPIES during regeneration may require generating
and compiling so that the MCS has a larger value stack. The value
of MAXCOPIES is safely lowered during regeneration. MAXCOPIES is
set to 1 by default.

Examples:

MAXCOPIES 3.
MAXCOPIES 2.

2 - 11 6

OPEN MESSAGE Statement

Syntax:

<OPEN MESSAGE statement>

---OPENMESSAGE--- = ---- <logical value> ---- • ---------------------->:

Semantics:

When OPENMESSAGE is set to TRUE, the program receives, as the first
message in its remote file, information from GEMCOS listing the
LSNs of the stations which comprise the program remote file. The
OPENMESSAGE consists of a common-area header with the MCS-TYPE set
to 6, the LSN field set to the number of stations in the program
remote file, and the TEXTSIZE field set to LSN *3· The text is set
to a list of 3-byte LSNs. The OPENMESSAGE is not audited.

When the interface is set to MCS, the common-area header is
preceded by a B 1000 MCS/Network Controller interface MCS DATA
MESSAGE header with the Message Type Field set to 80. A program
with an interface of Nonparticipation cannot request the
OPENMESSAGE. By default, OPENMESSAGE is FALSE.

Example:

OPENMESSAGE TRUE.

2 - 117

PLM PROGRAM Statement

Syntax:

<PLM PROGRAM statement>

---PLMPROGRAM---- = ---- <logical value> ----- • --------------------->!

Semantics:

The PLM PROGRAM statement is used to determine if the given program
is the BNA Port Level Manager program. This program is used to
accomplish BNA station transfer. It is a special program which can
only be executed at the ODT.

Declare the PLMPROGRAM as follows:

PROGRAM <PID> UTILITY:
TITLE = BNA/PLM.
INTERFACE = MCS.
PLMPROGRAM = TRUE.

The default for PLMPROGRAM is FALSE.

Only one PLMPROGRAM may be declared. Once the program is running,
the user must enable station transfer. To do this, enter at the
ODT:

NW STATIONTRANSFER +

The PLMPROGRAM may then be executed by a station using the Execute
command.

A station can also be attached to another system. To transfer a
station to another system, the user executes the PLM program from a
station. Enter the following:

*EX BNA/PLM

.. Once the station has been attached to the BNA program, enter:

CONNECT TO <host ID>

(See the BNA User's Reference Manual for a full explanation of the
operating instructions for station transfer.)

2 - 118

(

Enabling station transfer also allows stations on another system to
connect themselves to the MCS on the local system. Such stations
must be declared in TCL with VIRTUALSTATION = TRUE. (See the
VIRTUALSTATION Statement in this manual for additional information
on stations transferring into GEMCOS.)

Examples:

PLMPROGRAJVI
PLMPROGRAM

TRUE.
FALSE.

PORT SIZE Statement

Syntax:

<PORT SIZE statement>

---POR'rSIZE--- ---- <integer> ----- • ------------------------------>!

Semantics:

The PORT SIZE Statement only has meaning for a station with
PORTSIZE = TRUE. This statement specifies the maximum number of
characters that GEMCOS reads or writes to the port associated with
that station. Messages that GEMCOS sends to a port station are
sent in pieces of its port size length. Messages that GEMCOS
receives from a port station are truncated at the largest value of
all port sizes for all port stations. The default value of
PORTSIZE is 2000 characters. The maximum value of PORTSIZE is 3000
characters.

Example:

PORTSIZE 2100.

2 - 11 9

PROGRAM TITLE Statement

Syntax:

<PROGRAM TITLE statement>

---TITLE---=---- <file ID>---- • ---------------------------------->!

Semantics:

The PROGRAM TITLE statement identifies the object-code file name of
a program. The file-ID is a B 1000 file identifier, and it is used
optionally in the EX, HAP, RPS, and RPC Network Control Commands to
refer to the program. When the program name is used in one of
these commands, GEMCOS applies the command to the object-code file
name specified in the PROGRAM TITLE statement.

The PROGRAM TITLE statement is optional. When it is omitted, the
program name is used as the default. Note that the program name is
limited to 10 characters and cannot contain slashes.

Examples:

TITLE
TITLE
TITLE

PACK1/X/Y.
= PGM1.

A/B/.

2 - 120

RECOVERY Statement

Syntax:

<RECOVERY statement>

---RECOVERY--- = -------SYNCHRONIZED------------ • ------------------->!

Semantics:

I

!---DATABASE----------->
I

I 1---QUEUERESTORATION--->
I
I

!---NONE--------------->

The RECOVERY statement declares what type of recovery mechanism (if
any) this program undergoes after a system or program failure.
Synchronized and data base recovery are for programs that are part
of a data base. Queue-restoration recovery is for programs that
are not logically associated with any other programs. The default
for this statement is NONE. See Section 7 for a detailed
explanation of the recovery mechanism.

Example:

RECOVERY = SYNCHRONIZED.

2 - 1 21

RESIDENCE Statement

Syntax:

<RESIDENCE statement>

---RESIDENCE--- =-------DISK--------- • ----------------------------->!
I I
I I

1---CORE--->I

Semantics:

The RESIDENCE statement allows the user to specify where the
program is to reside when not processing messages. The value of
RESIDENCE may be CORE or DISK. A CORE resident program gives
faster response but increases the memory requirements of the data
communication system. The RESIDENCE statement is optional and
defaults to CORE.

Examples:

RESIDENCE = CORE.
RESIDENCE = DISK.

2 - 122

RESTART PROGRAM Statement

Syntax:

<RESTART PROGRAM statement>

---RESTARTPROGRAM--- ---- <logical value> ---- • ------------------->!

Semantics:

The RESTART PROGRAM statement specifies whether or not this program
is to be a restart program. If this statement is set to TRUE, then
the following must also be done:

1. Recovery must be set to either synchronized or data base.

2. A DATA-BASE NAJ:vlE statement must be supplied. More than
one data-base name is allowed if this restart program
services more than one data base, and each data base uses
the same type of recovery (synchronized or data base).

Each data base must have exactly one restart program declared, but
a restart program can service multiple data bases. By default,
RESTARTPROGRAM is set to FALSE.

For information on using the restart program with COBOL74, please see
Appendix F.

Examples:

RESTARTPROGRAM =
RESTARTPROGRAM

TRUE.
FALSE.

2 - 123

SUPPRESS GOOD DAY MESSAGE Statement

Syntax:

<SUPPRESS GOOD DAY MESSAGE statement>

---SUPPRESSGOODDAYMESSAGE--- ----<logical value>---- • ----------->!

Semantics:

The SUPPRESS GOOD DAY MESSAGE statement is used to prevent a
program from receiving the GOOD DAY message at BOJ. A value of
TRUE specifies that the program will not receive the "GOOD DAY"
message. The default value for this statement is FALSE.

2 - 124

TRANCODE Statement

Syntax:

<TRANCODE statement>

i<------------------- ' --------------------:
I I
I I

---TRANCODE--- --- <trncde idnt.> ----------------------------- • -->l
I I
I I

l- <integer> <integer>->i

Semantics:

The TRANCODE statement is used to define trancodes and to associate
them with programs. A trancode identifier is any string up to ten
characters in length. A program of any classification which uses
an interface of Participation may have associated trancodes.
However, only trancodes associated with user programs cause
transaction-based routing to occur. A trancode defined in a
TRANCODE statement may occur in the ACCESS CONTROL statement to
restrict its use to a specific list of access keys.

The module-function indices may optionally be associated with each
trancode. The module-function indices consist of two integer
values. Each integer may be a value from 0 to 63. If a trancode
has module-function indices, they are placed into the common-area
header of messages in which that trancode is present. The
receiving program can use the module-function indices in a UPL CASE
statement or a COBOL GO TO DEPENDING ON in order to branch to the
code which will process that trancode. This eliminates the need
for the application program to determine which trancode has just
been received. If a trancode has no module-function indices or if
there is no trancode in a message, zeroes are placed into the
Module-Function Indices field of the common-area header.

A user program must have at least one TRANCODE statement in its
PROGRAM statement list. Otherwise, the program never receives any
messages. The TRANCODE statement is optional in the PROGRAM
statement list of assignment, utility, and pass programs.

NOTE

If input formatting is to take place, a message must
have a trancode regardless of the classification of
the destination program, so that the MCS is able to
determine which format is to be applied. The

2 - 125

trancode is considered as one of the fields of a
formatted message.

Examples:

TRANCODE
TRAN CODE
TRANCODE

INQ (8, 10), UPDATE (5, 3).
FIX (18, 1) •
HELP.

TRANSACTION CODE POSITION Statement

Syntax:

<TRANCODE POSITION statement>

---TRANCODEPOSITION--- ---- <integer> ----- • ---------------------->:

Semantics:

The TRANCODE POSITION statement allows the user to specify where
trancodes are found in messages from this program. The position
specified in <integer> represents the number of characters after
the common-area header.

Examples:

TRANCODEPOSITION = 6.
TRANCODEPOSITION = 1.

2 - 1 26

STATION SECTION

The following diagram shows the syntax for the Station section.

--~-----------~~~~~~~~<D

r >STATION-<•mtiooNmi>
identifier

CONTROLSTATION

CONVERSATIONAL

MONITORSTATION

PORTSIZE-----41

PORTSTATION----=~

SIGNON -----~

VIRTUALSTATION

SCREENSIZE ;@
TRANCODEPOSITION _J'
TRANCODE ~
VALIDACCESSKEYS~
TYPE)©
HOSTACCESSKEY~
STATIONHOSTNAME

STATIONYOURNAME

~~-------.1
© =~<logical value> 3
©.,__ ____ = ~<integer>------.::.i

©.,__ ____ = _c:n~ode>--'--~
0 = - <access key> -----::i.i

©'"""----- = 1:~:~~
ROUTE HEADER

STANDARD --;::i.i

@------- = -<identifier>------==-i

2 - 127

Semantics:

The Station section must be present to define various attributes of
stations which the MCS is to service. (A GEMCOS MCS opens a remote
file whose name is given in the QUEUE NAME statement.) In the
FAMILY statement of the File section of the user's NDL source, this
remote file was assigned a station identifier list. These are the
stations which the MCS services and which must be defined in the
TCL Station section.

The Station section is composed of
station define describes one station.
station identifier used to refer to
STATION statement list is optional.
contain a CONTROL STATION statement
statement.

a station define list. Each
The station name must be the

that station in the NDL. The
Any of the stations can
and/or a MONITOR STATION

Example:

STATION TD800A:
SIGNON = TRUE.
SCREENSIZE = 1024.
TRANCODEPOSITION = 5.
VALIDACCESSKEYS = ABCD, XXYY, 84080.

STATION TD800B:
SCREENSIZE = 1920.

2 - 1 28

CONTINUOUS LOG ON Statement

Syntax:

<CONTINUOUS LOG ON statement>

---CONTINUOUSLOGON--- = ---- <logical value> ---- • ------------------>!

Semantics:

The CONTINUOUS LOG ON statement is used to determine whether the
MCS should "remember" who was logged on to the station following a
termination of the network (either normally or abnormally). After
the network is restarted, if CONTINUOUSLOGON is TRUE for a station,
the user would remain logged on. Otherwise, any users who were
logged on at the time of failure would be logged off.
CONTINUOUSLOGON = TRUE is ignored when auditing is not present in
the MCS. By default, CONTINUOUSLOGON is set to FALSE.

Examples:

CONTINUOUSLOGON =
CONTINUOUSLOGON

TRUE.
FALSE.

2 - 129

CONTROL STATION Statement

Syntax:

<CONTROL STATION statement>

---CONTROLSTATION--- = ---- <logical value> ---- • ------------------->l

Semantics:

The CONTROL STATION statement allows a station to be designated as
a control station. Privileged Network Control Commands can be
entered from any control station. Any number of stations can be
designated as control stations. In the absence of any control
stations, only the ODT and the card reader can enter privileged
Network Control Commands.

A # 2tion can be changed from a control station to a non-control
station (or vice versa) in a GENERATE or REGENERATE run. By
default, a station is a non-control station.

Example:

CONTROLSTATION = TRUE.

2 - 130

CONVERSATIONAL Statement

Syntax:

<CONVERSATIONAL statement>

---CONVERSATIONAL--- ---- <logical value> ---- • ------------------->\

Semantics:

The CONVERSATIONAL statement
participate in a conversation.
TRUE.

Examples:

CONVERSATION TRUE.
CONVERSATION = FALSE.

determines whether a station can
By default, the statement is set to

2 - 1 31

HOST ACCESS KEY Statement

Syntax:

<HOST ACCESS KEY statement>

---HOSTACCESSKEY--- --- <identifier> --- • ------------------------->I

Semantics:

The HOST ACCESS KEY statement specifies the name of an access key
to be associated with this station. It is only valid if th&
station's type is ROUTEHEADER. If the corresponding routeheader
station on the remote host requires sign on, the specified access
key is sent to the remote host as a valid access key of that
station. This access key must be included in the VALID ACCESS KEYS
statement list in the TCL for the corresponding routeheader station
on the remote host.

It is important to note that a host access key received from a
corresponding routeheader station on a remote host must be included
in the list of valid access keys for this station on the local
host.

This access key does not need to be specified in the ACCESS CONTROL
statement. The maximum length of the access key is six characters.

Examples:

HOSTACCESSKEY
HOSTACCESSKEY

HOST18.
A.

2 - 132

MONITOR STATION Statement

Syntax:

<MONITOR STATION statement>

---MONITORSTATION--- ---- <logical value> ---- • ------------------->l

Semantics:

The MONITOR STATION statement allows a station to be designated as
a monitor station. Errors monitored by the MCS are reported to a
monitor station. Any number of stations can be designated as
monitor stations. If there are no monitor stations, all system
errors are sent to the system ODT.

A station can be changed from a monitor station to a non-monitor
station (or vice versa) in a GENERATE or REGENERATE run. By
default, a station is a non-monitor station.

Example:

MONITORSTATION = TRUE.

2 - 133

~ STATION Statement

Syntax:

<PORT STATION statement>

---PORTSTATION--- = --- <logical value> ---- • ----------------------->!

Semantics:

When PORTSTATION is set to TRUE, GEMCOS receives input and output
through a port file rather than from a data communications station.
Use the MY NAME Statement in the Global Section of the TCL to
specify the file attributes of the port file GEMCOS uses.

Or use these three statements in the Station Section of the TCL to
define the attributes of the port file: the PORT SIZE Statement,
the STATION HOST NAME Statement, and the STATION YOUR NAME
Statement.

The internal name of the port file GEMCOS uses is HOSTPORT. The
default name is GEMPORT. The default value of PORTSTATION is
FALSE.

Example:

PORTSTATION = TRUE.

2 - 134

SCREEN SIZE Statement

Syntax:

<SCREEN SIZE statement>

---SCREENSIZE--- = ---- <integer> ---- • ----------------------------->:

Semantics:

The SCREEN SIZE statement defines the length of the largest message
which may be received by this station. If the MCS determines that
a message larger than <integer> characters is bound for the
station, the message would be broken into several transmissions
until the entire message is sent. The maximum value for SCREEN
SIZE is 4096.

CAUTION

When any station define has a SCREEN SIZE
statement in its STATION statement list, all
station defines must have one. If the SCREEN
SIZE statement is not present, no screen
wraparound would occur.

The occurrence of a SCREEN SIZE statement causes the
screen-wraparound code to be generated into the MCS code file. If
no station is defined as having a SCREENSIZE less than or equal to
the MAXTEXTSIZE specification, the SCREENSIZE statement should be
omitted. The result is a more efficient MCS.

Examples:

SCREENSIZE =
SCREENSIZE

1920.
256.

2 - 135

SIGN ON Statement

Syntax:

<SIGN ON statement>

---SIGNON--- = ---- <logical value> ---- • --------------------------->!

Semantics:

The SIGN ON statement indicates whether a user must sign on at this
station prior to entering messages. When SIGNON is TRUE, the
operator must sign on with one of the access codes listed in the
VALID ACCESS KEYS statement. If VALIDACCESSKEYS is set to ALL, the
operator must sign on with one of the access codes listed in the
ACCESS CONTROL statement. The SIGN ON statement is optional and,
if omitted, defaults to FALSE.

Examples:

SIGNON = TRUE.
SIGNON = FALSE.

2 - 136

STATION HOST NAME Statement

Syntax:

<STATION HOST NAME statement>

---STATIONHOSTNAME--- =----<identifier>---- • --------------------->:

Semantics:

The STATION HOST NAME statement only has meaning for a station with
PORTSTATION = TRUE. Set the HOSTNAME attribute of the port subfile
GEMCOS uses for this station to <identifier>. The default value of
STATIONHOSTNAME is the station name.

Example:

STATIONHOSTNAME = LONDONBASE.

2 - 1 37

STATION YOUR NAME Statement

Syntax:

<STATION YOUR NAME statement>

---STATIONYOURNAME--- ---- <identifier> ---- • --------------------->:

Semantics:

The STATION YOUR NAME Statement only has meaning for a station with
PORTSTATION = TRUE. Set the YOURNAME attribute of the port subfile
GEMCOS uses to communicate with the station to <identifier>. The
default value of STATIONYOURNAME is NULL.

Example:

STATIONYOURNAME LONDON1.

2 - 1 38

SUPPRESS MESSAGES Statement

Syntax:

<SUPPRESS MESSAGES statement>

---SUPPRESSMESSAGES--- ---- <logical value>---- • ----------------->!

Semantics:

The SUPPRESS MESSAGES statement is used to prevent a station from
receiving certain messages. If this attribute has a value of TRUE,
then the station will not receive the following messages:

1. The GEMCOS MCS GOING DOWN message at EOJ.

2. Any message broadcast to all stations (no station list
specified).

3. The GOOD DAY message from a program.

4. The THIS STATION RE-ATTACHED TO GEMCOS message sent after
reattachment when GEMCOS is running in subordinate mode.

The default value for this statement is FALSE.

Example:

SUPPRESSMESSAGES TRUE.

2 - 139

TRANCODE Statement

Syntax: <TRANCODE statement>

!<----- , -------1
I I

---TRANCODE--- ----- <trancode> ------- • -------------------------->:

Semantics:

The TRANCODE statement is used to define trancodes and to associate
them with stations. A trancode identifier is any string up to 10
characters in length. A trancode defined in a TRANCODE statement
may occur in the ACCESS CONTROL statement to restrict its use to a
specific list of access keys.

By using these trancodes, messages from another station or program
can be routed to this station.

Examples:

NOTE

The module-function indices are not applied to
trancodes.

TRANCODE = STATION, STATION2, HELLO.
TRANCODE = HELP.

2 - 140

TRANSACTION CODE POSITION Statement

Syntax:

<TRANCODE POSITION statement>

---TRANCODEPOSITION--- ---- <integer> ---- • ----------------------->!

Semantics:

The TRANCODE POSITION statement allows the user to specify where
trancodes are to be found in messages received from this station.
By default, TRANCODEPOSITION is 1.

Examples:

TRANCODEPOSITION 5.
TRANCODEPOSITION 1.

2 - 141

TRANSACTION MODE Statement

Syntax:

<TRANSACTION MODE statement>

---TRANSACTIONMODE--- = ---- <logical value> ---- • --~--------------->!

Semantics:

The TRANSACTION MODE statement determines whether a station is
allowed to transmit a new input transaction before receiving the
response for the previous input transaction. If TRUE, the MCS
would return the error response "BUSY" for any input from.the
station prior to the receipt and transmission by the MCS of the
response to the current transaction for the station. Also, this
station can only send messages to programs that are declared to use
synchronized recovery. If auditing is not present in the MCS, the
statement TRANSACTIONMODE = TRUE would be ignored. By default,
TRANSACTIONMODE is set to FALSE.

Examples:

TRANSACTIONMODE = TRUE.
TRANSACTIONMODE = FALSE.

2 - 142

TYPE Statement

Syntax:

<TYPE statement>

---TYPE---

Semant~cs:

-------AP300----------- --- • --------------------------->l
I
I

l----MT600---------->
I
I

l----ROUTEHEADER---->
I

I 1----STANDARD------->

The TYPE statement is used to define the physical type of each
station. AP300 and MT600 are standard Burroughs terminal devices.
ROUTEHEADER indicates that this station is actually a "porthole" to
another computer. The GEMCOS MCS on the other computer would
contain a corresponding routeheader station. This is the basic
component used in computer-to-computer message routing. When
ROUTEHEADER is specified, at least one trancode must be defined for
this station, and a HOSTACCESSKEY must be specified when the other
computer requires sign on on the corresponding station. (Refer to
Section 9 for further information about this statement.)

Examples:

TYPE AP300.
TYPE ROUTEHEADER.

2 - 143

VALID ACCESS KEYS Statement

Syntax:

<VALID ACCESS KEYS statement>

---VALIDACCESSKEYS--- = ---- <access key> ---- • --------------------->!

Semantics:

A list of valid access keys can be prepared to enforce access key
validation at sign-on time. Each access code which appears in a
VALID ACCESS KEYS statement must have occurred in the ACCESS
CONTROL statement. ALL indicates that any access code can be used
to sign on at this station. When the statement is omitted and
SIGNON is TRUE, ALL is assumed. This statement has no meaning when
SIGNON is FALSE.

Examples:

VALIDACCESSKEYS = ALL.
VALIDACCESSKEYS = 84080, 84090, ABCD.

2 - 144

VIRTUAL STATION Statement

Syntax:

<VIRTUAL STATION statement>

---VIRTUALSTATION--- = ---- <logical value> ---- • ------------------->!

Semantics:

The VIRTUAL STATION statement is used to determine whether a
station is allowed to transfer to the MCS from another Burroughs
system using Burroughs Network Architecture (BNA) Station Transfer.

The stations which are to transfer in to GEMCOS must be declared in
the TCL as virtual stations. A virtual station must have a station
hostname. An attempt to transfer a station which has not been
declared as a virtual station causes Error 156. Set the following
attributes (as well as any other attributes needed) for stations
transferring in to GEMCOS:

STATION <station name>:
VIRTUALSTATION = TRUE.
STATIONHOSTNAME = <host name>.

If the statement is set to TRUE, the MCS allows the station to
transfer in, provided its hostname matches the hostname defined to
the BNA network on the other side of the system. If the statement
is set to FALSE, the station is not allowed to transfer in using
BNA Station Transfer. The default is FALSE.

Examples:

VIRTUALSTATION
VIRTUALSTATION

TRUE.
FALSE.

2 - 145

DEVICE SECTION

Syntax:

The following diagram shows the syntax for the Device section.

DEVICE ~<device name>-? : ~ STALIST =

CD----->. FORMATSIN:

311E----------------.

© >·
@'"------'>~< trancocle>-......... -

identifier

0---->·
®------>~<message>-......_

identifier

Semantics:

J > <station name> -~->(!)
identifier

The Device section is used to group stations by device class and to
indicate which format is to be applied to a message. The Device
section should be present only if the FORMAT AND FUNCTION statement
list is present in the Global section. The Device section may
never occur when the B 1000 GEMCOS release being used is not an
Advanced Version.

2 - 1 46

Each device define consists of a STATION LIST statement, an INPUT
FORMATS statement, and an OUTPUT FORMATS statement. The device
name may be any identifier and is not referenced elsewhere in the
TCL.

In the following example, an input message from TD800A or TD800B
with trancode INQ or UPDATE is formatted using format X. A message
from TD700A, TD700B or TD700C with trancode INQ or UPDATE has
format Y applied.

Similarly, on output, when a program writes a message with the
message-ID field of the common-area header set to "PAY" or "SHIP"
(left justified with trailing blanks), format X12 is used when the
message is bound for TD800A or TD800B. Format Y12 is applied when
the message is bound for a station in the device class TD700
(TD700A, TD700B or TD700C). When the message-ID field of the
common-area header is set to "RCV", X33 or Y33 is applied, again
depending on the destination of the message.

Finally, when an operator transmits "PAY" or "SHIP" (without
leading or trailing blanks) from station TD800A or station TD800B,
the operator is making a forms request. Using format X12, a
message is built up with all blank data fields (A, B, I, J and T).
The message is sent to the requesting station. Format Y12 would be
used to create the blank-formatted screen if the forms request for
"PAY" or "SHIP" came from TD700A, TD700B, or TD700C. If a "RCV"
forms request is received, format X33 or Y33 would be applied,
depending upon the device classification of the requesting station.

NOTE

Formats X, X12, X33, Y, Y12 and Y33 must have been
defined in the FORMAT AND FUNCTION statement list.

Example:

DEVICE TD800:
STALIST = TD800A, TD800B.
FORMATS IN:

X = INQ, UPDATE.
FORMATSOUT:

X12 =PAY, SHIP.
X33 = RCV.

DEVICE TD700:
STALIST = TD700A, TD?OOB, TD700C.
FORMATS IN:

Y = INQ, UPDATE.
FORMATSOUT:

Y12 =PAY, SHIP.
Y33 = RCV.

2 - 147

INPUT FORMATS Statement

Syntax:

For the syntax of this statement, see the syntax of the Device Section
given previously.

Semantics:

The FORMATS IN statement indicates which format is to be applied to
a particular message entered at a station of a particular device
class before the message is forwarded to the appropriate program.
Only messages with a recognizable trancode are formatted. Each
format-ID must be defined in the FORMAT AND FUNCTION statement
list, and each trancode must be defined in the Program section. A
trancode may be associated with only one format-ID per FORMATS IN
statement.

The MCS determines whether an input message is to be formatted by
attempting to recognize a trancode in the message text. When a
trancode is found, the message is formatted only if the trancode
was associated with a format-ID in the device class determined by
the station where the message originated.

Example:

FORMATSIN:
MT1 = PAY1, PAY2.
FMT2 = INV1.
FMT3 = INV2, INV3.

2 - 148

OUTPUT FORMATS Statement

Syntax:

For the syntax for this statement, see the syntax of the Device section
given previously.

Semantics:

The FORMATS OUT statement indicates which format is to be applied
to a particular message written by a program bound for a station of
a particular device class. Only messages with a recognizable
message-ID in the Message-ID field of the common-area header are
formatted. Each format-ID must be defined in the FORMAT AND
FUNCTION statement list. A message-ID can only be associated with
one format-ID per FORMATS OUT statement and cannot exceed six
characters in length. Station operators can enter a message
consisting solely of a message-ID and, in doing so, make a forms
request.

When the MCS receives a program message, the Message-ID field in
the header is checked. If the field is filled, the contents cause
the MCS to format the message according to the format-ID associated
with the message-ID in the device class. The device class is
determined by the station to which the message is sent.

When the MCS receives a message one to six characters in length
without a recognizable trancode from a station, a check is made to
determine whether the message consists of a message-ID. If so, the
operator entered a forms request. The MCS builds a message with
blank data fields using the format-ID with which the message-ID was
associated in the device class, determined by the station from
which the forms request was received.

Example:

FORMATSOUT:
FOR1 PAYS, PAY9.
FMT1 = INV1.

2 - 149

STATION LIST Statement

Syntax:

For the syntax of this statement, see the syntax of the Device section
given previously.

Semantics:

The STATION LIST statement specifies the stations which are to be
considered part of each device class. Each station name must be
defined in the Station section, and each station name occurring in
the Station section can appear in exactly one STATION LIST
statement.

Example:

STALIST = TD820A, TD820B, TD820C.

2 - 150

MESS CODE SECTION

Syntax:

See the following diagram for the syntax of the MESS CODE section.

STATIC DECLARATIONS: <UPL DECLARATIONstateTent ENDSOURCECODE.

<UPL DEFINE statement>
<UPL FILE statement>

»~

"L DYNAMIC DECLARATIONS:,<UPL DYNAMIC DECLARATIONS statement>!. ENDSOURCECODE. _J

I CLOSEAC
PROCEDURE -~I AUDIT

TION

"i\+CLOSEFI

1'-9.-ERRORH

I MSG FRO

LES

ANDLER

MP ROG RAM

I MAIN TEN ANCE

Semantics:

MSG FRO MSTATION

TION

RECALL

RESTORE

EPROGRAM

INITIATE

RESTO A

SETSIZE

SETVAL

s
UES

: +<UPL PROCEDURE statement>-ENDSOURCECODE.

....
~

The MESS Code section enables the user to include UPL2-mergeable
external source statements to supplement or replace GEMCOS MCS
functions. Mergeable external source statements are for
specialized requirements which demand deviation from the standard
GEMCOS logic.

User-written MESS procedures can be merged into key locations in
the MCS source code file. The function intended for each procedure
is explained, but there is practically no limit to the functions
that can be coded. MESS procedures can be inserted in the
following code locations:

2 - 1 51

1 • Receiving message from station - for formatting, paging, or
routing.

2. Receiving message from program - for formatting, paging, or
routing.

3. Processing Network Control Commands for extending or
replacing the capabilities for network control.

4. Auditing - for replacing or supplementing the standard audit
feature.

5. Error handling - for extending the standard error-handling
logic.

6. Opening for processing required at system startup.

7. Closing - for processing required at system shutdown, such as
closing files used by other MESS procedures.

8. Recalling messages - for disposing of unsent messages when the
system is shut down.

9. Initiating recovery for processing the request of an
application program for recovery.

10. ·Recovery - for replacing the standard recovery logic.

11. Remote file open - for processing that is required when an
application program opens a remote file.

12. Remote file close - for processing that is required when an
application program closes a remote file.

The source code for MESS procedures is submitted as part of the
user's TCL source file. The TCL compiler merges these procedures
into the correct places in the MCS logic.

NOTE

Changes made to the MESS Code section during a
REGENERATE MCSTCL run do not affect the MCS
source code file.

The MESS Code section consists of static
declarations, and a procedure define list.
is optional.

2 - 1 52

declarations, dynamic
The MESS Code section

Example:

STATIC DECLARATIONS:
DECLARE

x
ENDSOURCE.
DYNAMIC DECLARATIONS:

DECLARE
SPEC STRING

ENDSOURCECODE.
PROCEDURE SETSIZES:

PROCEDURE MESS SET_SIZES;
% -

DECLARE
ACCEPT STRING

%

FIXED;

, CHARACTER (X);

CHARACTER(5);

DISPLAY ("ENTER STRING SIZE, XXXXX");
ACCEPT (ACCEPT STRING);
X := BINARY (ACCEPT_STRING);
END MESS SET SIZES;

ENDSOURCECODE. - -

PROCEDURE SETVALUES:
PROCEDURE MESS SET_VALUES;
%

SPEC_STRING :=" ";
END MESS_SET_VALUES;

ENDSOURCECODE.

Static Declarations

Syntax:

See the syntax of the MESS Code section for the syntax of the static
declarations.

Semantics:

In static declarations the user may make UPL2 global declarations
(except dynamic declarations), global defines, and file
declarations. The TCL source cards containing UPL2 source
statements must be surrounded by a TCL static declarations card and
a TCL eng card. The static declarations are optional.

2 - 1 53

If static declarations are present, the NAME-STACK ENTRIES
statement and VALUE-STACK BITS statement of the Global section
should be set appropriately. GEMCOS combines these values into the
UPL2 dollar option, STATIC-MEMORY.

Example:

STATIC DECLARATIONS:
DECLARE

SECURITY FILE OPENED BIT (1) ;
FILE

SECURITY

DEFINE
F
c

ENDSOURCECODE.

Dynamic Declarations

Syntax:

(TITLE = "MCSSEC",
KIND = DISK,
ACCESSMODE = RANDOM,
MAXRECSIZE = 80,
BUFFERS = 1) ;

AS #F' IXED#,
AS #CHARACTER#;

For the syntax of the dynamic declarations, see the syntax of the MESS
Code Section.

Semantics:

In dynamic declarations, the user may make UPL2 dynamic
declarations. The TCL source cards containing UPL2 source
statements must be surrounded by a TCL dynamic declarations card
and a TCL end card. The dynamic declarations are optional.

If dynamic declarations are present, the NAME-STACK ENTRIES
statement and VALUE-STACK BITS statement of the Global section
should be set appropriately.

2 - 154

Example:

DYNAMIC DECLARATIONS:
DECLARE DYNAMIC

WORK AREA CHARACTER(AL.NPR_MAX_TEXT_SIZE+250);
ENDSOURCECODE.

Procedure Define List

Syntax:

See the syntax of the MESS Code section for the syntax of the procedure
define list.

Semantics:

The procedure define list contains user-coded UPL2 procedures, one
per procedure define. Each procedure define begins with a TCL
procedure introduction card, follows with the user's source
statements, and ends with a TCL end card. The MESS procedure-ID of
the procedure introduction card specifies to the TCL where the
user's code is to be merged. The procedure define list is
optional.

If the procedure define list is present, the NAME-STACK ENTRIES
statement and VALUE-STACK BITS statement of the Global section
should be set appropriately to reflect the space required for
variables declared within any of the user-written procedures.

A discussion of each of the MESS procedures is given below.

Example:

PROCEDURE MSGFROMSTATION:
PROCEDURE ZIP IT BIT(1); % . -
IF AD.MSG TEXT SIZE > 3

THEN
IF SUBSTR(SG.TEXT,0,3) = "ZIP" THEN
RETURN (1);

RETURN (0);
END ZIP_IT;

ENDSOURCECODE.

2 - 155

MESS Procedures

This discussion explains when MESS procedures are called, the parameters
required to call them, and the values they must return. All MESS
procedures are optional.

Care must be taken when writing MESS code to avoid duplicating
identifiers already used in the MCS. For this reason, it is useful to
know that all MCS identifiers adhere to the following conventions:

1. DEFINEs begin with three characters: "MD" or
"MS "

2. Files begin with three characters: "MCS".

3. Data names begin with three characters: "XX.", where XX is two
alpha characters of the global declarations. Use the
2-character prefix shown at the beginning of the GEMCOS source
file.

4. Procedure names begin with four characters:
"MCS ".

5. DO-group labels begin with three characters:
"ML ".

MESS procedures have access not only to entities declared
declarations, dynamic declarations, and locally, but also to
areas, files, and procedures used by the standard MCS modules
to the scope rules of UPL2.

in static
many data
according

When programming MESS code, segmenting procedures must be followed.
Some efficiency in memory allocation may be realized if MESS procedure
segments are approximately 800 to 1200 bytes in size, the average size
of standard MCS modules.

If global or local variables are declared by the user in the MESS Code
section, the NAME-STACK ENTRIES statement and VALUE-STACK BITS statement
of t~e Global section should be set appropriately.

2 - 156

AUDIT

This procedure can either supplement or replace the standard auditing
logic. It is called after the standard audit procedure (if generated)
is executed. Any files needed by AUDIT must be declared in the Global
section of MESS code.

AUDIT must accept one parameter:

An indicator [BIT (1)] which denotes the type of message being sent
from the MCS:

1. A value of 0 indicates that the message is bound for a
station.

2. A value of 1 indicates that the message is bound for a
program.

CLOSE ACTION

This procedure is intended to supplement the MCS remote file close or
STATIONDETACH logic. It is called after the MCS performs the necessary
steps to verify that a program is no longer on-line. The CLOSEACTION
procedure must be a function procedure which returns a value [BIT (1)].
However, the value of the return is of no consequence and is reserved
for future use. One useful function of the CLOSEACTION procedure might
be to construct and send a notification of the FILE CLOSE to the
stations involved.

When the action taken by the CLOSEACTION procedure depends upon whether
it is called through a remote FILE CLOSE or through a STATIONDETACH, the
source of the call can be determined by checking the data field
MS.MSG.HDR.TYPE. When this field contains 16, the CLOSEACTION procedure
has been called through a FILE CLOSE. When it contains any other value,
it has been called through a STATIONDETACH.

CLOSE FILES

The CLOSEFILES procedure is given control during system shutdown (EOJ).
Its primary purpose is to close any files that may have been opened in
other MESS routines. This is called only by the MCS.EOJ procedure. It
is not called unless the generation parameter SYS-HALT is set.

2 - 157

ERROR HANDLER

The primary function of this procedure is to supplement the standard
error handling module of the MCS. As a secondary function, it may also
save the contents of MS.MSG.WORK.AREA in case of a data dump.

For certain system errors, a data dump is created. The standard error
handling logic induces the dump by synthesizing an RDM Network Control
Command in MS.MSG.WORK.AREA. The message that was stored in
MS.MSG.WORK.AREA when the error was detected is therefore lost, unless
the ERRORHANDLER procedure saves it.

This routine must accept one parameter: the error message number
[CHARACTER (3)] which corresponds to the error detected.

ERRORHANDLER must be a function procedure that returns a value [BIT (1)]
which tells the MCS what to do with the error condition:

1 • A value of 0 (zero) indicates that the error should be
processed normally.

2. A value of 1 indicates that the MCS is to exit the error
handling module immediately.

The ERRORHANDLER procedure is called by MCS.PRINT.ERROR.

HANDLE RECALL

The HANDLERECALL procedure is given control during system shutdown
(EOJ). At this time, the MCS recalls all messages which have been
routed to a station, but are still awaiting transmission in the queues
of the Network Controller. The HANDLERECALL procedure is invoked each
time a message returns to the MCS.

The HANDLERECALL procedure must be a function procedure which returns a
value [BIT (1)] specifying disposition of the message:

1. A value of 0 (zero) causes the MCS to print the message on a
line printer before discarding it.

2. A value of 1 causes the MCS to discard the message without
further processing.

2 - 1 58

If this procedure is not provided, the MCS prints all recalled messages
before discarding them.

This procedure is called only by MCS.EOJ. It is not called unless the
generation parameter SYS-HALT is set.

INITIATE RESTORE

This procedure is given control when an application program indicates to
the MCS that it needs restoration (by sending a message which has the
MCSTYPE field of the common-area header set to 20). It may either
supplement or replace the module that performs restoration
initialization, depending upon the RESTORATION statement. Its purpose
is to perform any initialization that may be necessary to prepare for
restoration.

MAINTENANCE

This procedure is given control when a message containing the signal
character is received from a station or a program (except for valid SGN
messages). The MAINTENANCE procedure is called from the standard
maintenance module (MCS_MAINT_CONTROLLER), if generated.

The standard maintenance module is generated if either CHANGEREQUESTS,
DATADUMP, MESSAGEBROADCAST, MESSAGERECALL, PROGRAMBOJEOJ, STATUSREPORTS,
SYSTEMHALT, RESTORATION, or MONITORTRACE is TRUE, or if an ACCESS
CONTROL statement is present. When the standard maintenance module is
not generated, the MAINTENANCE procedure is invoked by MCS_MSG_FROM_
STATION or MCS MSG FROM USER PROGRAM.

The MAINTENANCE procedure must be a function procedure which returns a
1-bit value specifying the disposition of the message:

1. A value of 0 (zero) indicates that MAINTENANCE did not process
the message. If the standard maintenance module is present,
it attempts to scan for a standard command and process it. If
the standard maintenance module is not present, the input is
ignored.

2. A value of 1 causes the MCS to consider the message completely
processed whether the standard maintenance module is present
or not.

2 - 159

MAINTENANCE must accept one input para.meter: the number of the calling
procedures (FIXED).

This procedure can be used to implement new Network Control Commands or
change existing commands.

MESSAGE FROM PROGRAM

This procedure is called when the MCS receives a message from an
application program (the MCS does not receive messages from programs
using the Nonparticipation or MCS interface). The message was not
formatted (Advanced Version), nor was it audited. The message may be a
request for message restoration or may contain a signal character.

MSGFROMPROGRAM must be a function procedure which returns a 1-bit value
specifying the disposition of the message:

1. A value of 0 (zero) informs the MCS to continue processing the
message as if there had not been a MSGFROMPROGRAM procedure.

2. A value of 1 means that the message was completely processed.
The MCS exits immediately to the main control procedure and
does not process this message any more.

This procedure can be used to interpret the USERAREA field
(MS COMMON USER) of the common-area header. MSGFROMPROGRAM can perform
specialized output formatting. Nonstandard routing (e.g.,
program-to-program message switching) can be performed using this
procedure.

MESSAGE FROM STATION

This procedure is called when a message is received from a station. If
MSGFROMSTATION is given control, it may assume that there is no
data-communication error associated with the message, the MCS is not
being shut down, the source station is signed on (if sign-on is required
at that station), and the message does not begin with the signal
character. The common-area header to be associated with this message
has been built in MS COMMON AREA <length> (but not yet attached to the
message). When a trancode is present, it has been recognized and noted
in AD.TRN INDEX. The message has not yet been formatted and could be a
forms request (Advanced version only). The message has not yet been
audited.

2 - 160

MSGFROMSTATION must be a function procedure which returns a 1-bit value
specifying disposition of the message:

1. A value of 0 (zero) directs the MCS to continue processing the
message as if there had been no MSGFROMSTATION procedure.

2. A value of signifies that the MSGFROMSTATION
taken full responsibility of the message.
discontinues processing this message.

procedure has
The MCS

If a station is associated with or was attached to the remote file of a
program that uses a Nonparticipation or MCS interface, the·GEMCOS MCS
does not receive any messages from that station. Thus, the MCS cannot
pass control to MSGFROMSTATION for such messages.

This procedure can set fields in the USERAREA (AB.COMMON_USER) of the
common-area header. It can perform specialized routing, access control,
or input formatting, and thus be used for data collection.

OPEN ACTION

This procedure is intended to replace or supplement the action taken by
the MCS after a FILE OPEN STATION ATTACH is approved. Normally, the MCS
sends a "good day" message to each station in the newly-opened file and,
if specified in the TCL, a FILE OPEN notification is sent to the
program.

The OPENACTION procedure must be a function procedure which returns a
value [BIT (1)]:

1. A value of 0 (zero) causes the MCS to send the "good day"
messages and the open notification.

2. A value of 1 causes the MCS to skip the code which sends the
"good day" messages and the open notification.

When the action taken by the OPENACTION procedure depends upon whether
it is called through a FILE OPEN or through a STATION DETACH, the source
of the call can be determined by checking the data field
MS.MSG.HDR.TYPE. When the field contains 10, the OPENACTION procedure
has been called through a FILE OPEN. When it contains any other value,
it has been called through a STATION ATTACH.

2 - 1 61

RESTORE PROGRAM

This procedure is intended to replace the standard MCS restoration
logic. It is called from the main processing loop in
MCS.MODULE.MANAGER. It is called once in each iteration of the loop as
long as the flag MS.RESTORE.PROGRAM has a value of 1. When it is
necessary to handle other network activity during restoration,
MESS.RESTORE.PROGRAM must relinquish control (that is, RETURN)
occasionally, so that the main processing loop can run through another
cycle.

SET SIZES

This procedure is given control during the first phase of initialization
logic in the MCS. Its purpose is to specify sizes for any dynamic
variables declared in the dynamic declarations.

Example:

Assume that static declarations include:

DECLARE MAX SIZE FIXED;

and that dynamic declarations include:

DECLARE DYNAMIC USER AREA CHARACTER(MAX_SIZE);

Then the SETSIZES routine must be provided.
define list> might include:

PROCEDURE SETSIZES:
PROCEDURE MY SETSIZES_ROUTINE;

MAX SIZE := 100;
END MY SETSIZES ROUTINE;

ENDSOURCECODE. -

The procedure

The SETSIZES MESS procedure is called from MCS INITIATE SIZES.

2 - 162

SET VALUES

This procedure is given control during the second phase of
initialization logic in the MCS. The purpose is to specify values for
variables that were declared in the static declarations.

Suppose the static declarations include the following:

DECLARE MAX.VALUES
USER.DATA

FIXED,
CHARACTER (10) ;

In this case, the SETVALUES routine must be provided.
define list can include the following:

PROCEDURE SETVALUES:
PROCEDURE MY SETVALUES_ROUTINE;

MAX VALUES := 200;
USER_DATA := "SOMETHING";

END MY_SETVALUES_ROUTINE;
ENDSOURCECODE.

The procedure

The SETVALUES MESS procedure is called from MCS INITIALIZE TABLES.

Once all the parameters for an MCS have been set up in the TCL, the MCS
can be executed.

BEGINNING SYSTEM OPERATION

The following gives information on executing an MCS, and on console or
card reader input.

EXECUTING AN MCS

Before executing the MCS, the MCSTIC file must be on disk (MCSTIC is
created by the TCL compiler). To initiate the MCS, enter:

EX MCSSRC/OBJECT

2 - 163

If an OBJECT-CODE FILE NAME statement is present in the Global section
of the source TCL, enter:

EX <file-ID>

If the user wants to rename MCSQUEUE by using a FILE statement following
the EXECUTE command, the value of SWITCH 7 determines what occurs. If
SW7 = O, the MCS opens the remote file whose name was given in the QUEUE
NAME statement.

If SW7 = 1, the MCS opens the remote file whose internal file name is
MCSQUEUE.

The external file name of MCSQUEUE
statement or with the MODIFY command.
the queue name specified in the TCL.

EX <GEMCOS-ID>; SW7 = 1;

can be changed in the EXECUTE
This allows the user to override

To do this, enter the following:

FILE MCSQUEUE NAME <remote file-ID>

Under certain circumstances, a Network Controller may have to be
executed.

EXECUTING A NETWORK CONTROLLER

When an MCS is run under system software released prior to 6.1, or when
the C entry of the table name is blank, a Network Controller needs to be
executed. (This only needs to be done if a Network Controller is not
already running.)

When a system software release of 6.1 or later is used, and there is a
nonblank C entry in the name table, the system automatically executes
the Network Controller. (For a description of the system name table
entries, refer to the B 1000 System Software Operational Guide.)

Once the GEMCOS MCS has begun, the user can start application programs
and any subordinate MCS programs.

2 - 1 64

CONSOLE OR CARD READER INPUT ---TO THE MCS

A Network Control Command may be presented to the MCS at any time by
entering an ACCEPT command directly to the MCS. For example, the
following message entered at the supervisory console makes STATIONA not
ready.

<m-n>AX*CSR STATIONA N

The <m-n> is the mix number of the MCS, and the asterisk (*) is the
signal character. No spaces between AX and the signal character are
permitted.

To enter Network Control Commands from a card reader, the operator
should ready a card reader with a deck labeled MCSOLICRD and enter:

<m-n>AXCARDS

The MCSOLICRD deck should contain one Network Control Command per card.
The signal character must be in card column one.

The following section, Section 3, contains additional information on
using Network Control Commands.

2 - 1 65

SECTION 3
~~~-

USING NETWORK CONTROL COMMANDS 

This section discusses the functions of Network Control Commands, and 
provides the syntax for each command. A control station administers the 
network through Network Control Commands (NCCs). They are used for the 
following functions: 

1. Access Control: 

a. Enable and disable users. 
b. Sign on and off. 

2. MCS control. 

3. Message Control: 

a. Reroute messages. 
b. Retrieve queued messages. 
c. Send messages to other stations. 

4. Program Control: 

a. Execute and terminate application programs. 
b. Report program status. 

5. Station status: 

a. Report station status. 
b. Change station status. 
c. Use port stations. 

Every Network Control Command generates some kind of response. 
are three kinds of responses: 

There 

1. Confirmation without data. This response is specified by the 
user through the NCC OK RESPONSE statement. 

2. Confirmation with data. For Network Control Commands which 
request that data be returned, the data itself serves as 
confirmation that the command was executed. 

3. Rejection. If a command was not successfully executed, a 
message is returned giving the reason. 

3 - 1 



A Network Control Command (NCC) consists of a signal character, a short 
mnemonic command code, and in some cases, one or more parameters. 
Commands are free in form, with words separated by one or more spaces. 

The user may define a signal control character using the Signal 
Character statement in the TCL. The default for the character is an 
asterisk (*). In the following diagrams, the signal character option is 
shown by <s>. 

Railroad diagrams are used to show the syntax of the Network Control 
Commands. Instructions for reading the diagrams are in Appendix G.) 

USING THE HELP COMMAND 

The HELP command gives information about Network Control Commands. When 
the user enters this command, a list of Control Commands and their 
meanings are displayed on the user's terminal. 

Syntax: 

----- * -------HELP------------------------------------------------->I 
I I --
1 I 

I- <s> ->I 

Semantics: 

The HELP command produces a list of the Network Control Commands 
and a brief explanation of their meanings. Restricted commands are 
indicated with an asterisk (*). Since a carriage return character 
(®OD®) terminates each line, nonscreen devices can also receive a 
formatted HELP screen. Note that the output can consist of several 
messages, depending on the value of MAXTEXTSIZE. 

3 - 2 



SECURITY CONTROL COMMANDS 

These commands can be used only if an ACCESS CONTROL statement appears 
in the user source TCL • 

.!?_!_SABLE USER (DUS) 

The DUS command is used to prevent an access code from being used for 
logging on. 

Syntax: 

----- * -----DUS-- <access code> ----------------------------------->: 
I I 
I I 

i- <s> ->i 

Example: 

@ DUS ABCD 

In this example, the user ABCD is no longer able to sign on until 
the access code is enabled again. 

3 - 3 



ENABLE USER (EUS) 

The EUS command is used to mark an access code as enabled. The enabled 
user-ID, with the correct password, can then be used to sign on. 

Syntax: 

----- * ------EUS--- <access code> --------------------------------->! 
I I 
I I 

1- <s> ->I 

Example: 

@ EUS ABCD 

In this example, the user ABCD may sign on. 

SIGN OFF (BYE) 

The BYE command disconnects a signed-on user from a station. The user 
should sign off after completing the transaction to ensure that no 
unauthorized person is able to gain access to the system. BYE cannot be 
entered from a station which does not require signing on. If the user 
is attached to a Utility Program (via the EX command) at the time "*BYE" 
is entered, an implicit HAP of that utility program is automatically 
done by the :MCS. 

Syntax: 

---- * ------BYE---------------------------------------,-------------> I 
I I --
1 I 

I- <s> ->I 

3 - 4 



SIGN ON (SGN) 

The SGN command is used to gain access to the system at a station which 
requires signing on. 

Syntax: 

---- * -------SGN----- <access code>------------------------------->: 
I I -- I I 
I I I I 

i- <s> ->i i--SECURED------->i 

Examples: 

@ SGN ABCD 

In this example, the ABCD would be signed on if it is defined in 
the ACCESS CONTROL statement, and is valid for that station. 

@ SGN SECURED 

In this example, the user is not actually signing on, but is 
requesting that GEMCOS return a pre-formatted sign-on screen where 
the user need only enter a valid access code and transmit. The 
entered access code will not be visible on the screen. This option 
is only valid for TD830 or MT983 terminals, or any terminal that 
supports the TD830 highlight characters. 

3 - 5 



UPDATE ACCESS KEYS (UPD ACCESSKEY) 

The UPD command also allows the user to update or change existing access 
codes. The change is permanent, since the MCSTIC file is rewritten with 
each change. Only access codes which are not signed on may be changed. 
Attempting to change an access code which is signed on causes an error 
message to be displayed. 

After the entry of a correct UPD command, the GEMCOS MCS displays a 
message on the ODT. This message states the old access code, the new 
access code, and the station making the change. 

Since the change is permanent, the user's TCL no longer contains the 
correct access codes. To obtain an up-to-date listing of the access 
codes, the TCL compiler may be run with CONTROL = REPORT. The UPD 
command must be entered at a control station. 

Note that the UPDATE command can also be used to update or change the 
names of port stations. Please see Port Stations Commands at the end of 
this section. 

Syntax: 

---- * ~-------UPD ACCESSKEY---- <access code> ------------------->(1) 
I I 
I I 

l- <s> ->l 

(1)-----TO------ <new access code> --------------------------------->l 

Semantics: 

This command changes an existing access code to a new access code. 

Examples: 

$ UPD ACCESSKEY SALES TO SELLIT 
@ UPD ACCESSKEY ROBERT TO BOB 

3 - 6 

\ 



STATION ATTACHMENT COMMANDS 

The following commands attach and detach stations from GEMCOS. 

ATTACH LSN (ATT) 

When GEMCOS is running subordinate to another MCS, this command allows 
output-only devices (such as AP1300's) to be attached to GEMCOS. This 
command is used to attach a station to GEMCOS which has been attached 
previously to the primary MCS. Please note that the ATT command does 
not appear in the list of commands on the HELP screen. 

First, attach the station to GEMCOS by entering the SMCS ATTACH 
This command is found in the SMCS manual. (See Introduction 
form number of this manual.) Then enter the GEMCOS ATT command. 
command causes GEMCOS to recognize the station. 

command. 
for the 
The ATT 

If the station is not defined in the TCL or is attached to another 
program, GEMCOS returns the message: INVALID LSN <entry>. 

Syntax: 

----- * --------ATT---- <LSN> --------------------------------------->! 
I I 
I I 

I- <s> ->I 

Semantics: 

Use the logical station number (LSN). The station name is invalid. To 
detach the station, use the DFR command. Do not use the SMCS DETACH 
command. 

Example: 

&ATT 9 

3 - 7 



DETACH FROM REMOTE FILE (DFR) 

This command is used to detach a station from the MCS remote file. This 
command is valid only if the station was subsequently attached to the 
MCS remote file; this means that the station was not given to the MCS 
during the initial remote file open, but attached later. In order to 
detach from the remote file, the station cannot be attached to any 
program. The logical station number (LSN) option should be used to 
detach statio attached with the ATT command. 

Syntax: 

I ---- * ------DFR------------------------------------------------------>1 
I I I I 
I I I I 

l- <s> ->l l---- <LSN> ----->l 

Semantics: 

If no logical station number (LSN) is entered, the station from 
which the command is entered will be detached from the MCS remote 
file. 

Example: 

@ DFR 
* DFR 7 

3 - 8 



PROGRAM CONTROL COMMANDS 

These commands can be used only if PROGRAMBOJEOJ TRUE. 

EXECUTE PROGRAM (EX) 

The EX command is used to start assignment, user, utility, or pass 
programs. It is also used to attach a station to a utility program 
which is already running. Either the program name or program title may 
be used in the EX command. In both cases, the MCS will zip-execute the 
program title. Confirmation of this command merely indicates that the 
MCS communicated ZIP-execute to the MCP; it does not guarantee that the 
program actually started. 

Syntax: 

<EXECUTE command> 

* -------EX----- <program 
I I I 
I I I 

i- <s> ->i i- <program 

name> ------------------------------->(1) 
I 
I 

title> ->i 

:<--------------------------------------------------: I I 
I I 

(1)------------------------------------------------------------------->i 
I I 
I I 

l---LOCK---------------------------------------->i 
I I 
I I 
I I 
I I 

i-- <integer> ---------------------------------->: 
I I 
I I 
I I 
I I 

i---US---- <usercode> --- "/" --- <password> --->i 
I I 
I I 

:-- = ->l 

Semantics: 

The execute options are described in detail in the B 1000 System 
Software Operational Guide. If the user-password option was 
entered during a normal run, it will not be present in the 
ZIP-execute statement used for recovery. 

3 - 9 



NOTE 

GEMCOS does not check for valid usercodes. If 
the system is unsuccessful performing 
ZIP-execute with the usercode, the user must 
initiate the program at the ODT. 

Examples: 

@ EX A 
@ EX PROG/A 
@ EX PROG/A 12345 
@ EX PROG/A US AB/CD 
@ EX PROG/A LOCK US = AB/CD 
@ EX PROG/A US AB/CD 12345 LOCK 

FREE STATION FOR EXECUTION (FRE) 

The FRE command is used to free a station that has become locked due to 
the failure of a utility program. 

Syntax: 

---- * ------FRE---------------------------------------------------->l 
I I --
1 I 

l- <s> ->l 

Semantics: 

This command can be entered from any station that has become 
"locked." This condition arises whenever a utility program is 
executed and fails to open its remote file successfully. When this 
happens, a further attempt to execute any utility program causes 
error 151. The FRE command clears the station and allows a utility 
program to be executed again. This command should be entered only 
when it is certain that the executed utility program has failed. 

3 - 1 0 



HALT APPLICATION PROGRAM (HAP) 

The HAP command is used to cause an end-of-file condition on the remote 
file that an assignment, user, or pass program has opened. In the case 
of utility programs, the station at which the HAP command was entered is 
detached from the program. When the last station detaches itself, an 
end-of-file condition is sent to the utility program. Program-name is 
optional only for utility programs. If this command is entered during a 
conversation at a station, the conversation is automatically terminated, 
and the conversation area is cleared. 

Syntax: 

* -------HAP-------------------------------------------------->I 
I I -- I I 
I I I I 

I- <s> ->i i-- <program name> --->i 

Example: 

@HAP PROG/A 
@ HAP 
@ HAP A 

I I 
I I 

l-- <program title> -->i 

3 - 11 



PROGRAM PASS (PASS) 

The PASS command is used to send messages to a utility, assignment, or 
pass program from a station not attached to the program. 

Syntax: 

----- * -----PASS----- <program 
I I I 
I I I 

i- <s> ->i i-- <program 
I 
I 
I 
1-- <program 

Semantics: 

name> -------
1 
I 

title> -->i 
I 
I 

number> ->l 

<data string> --------->l 

The program name, title, or number is assigned in the Program 
section of the TCL. 

For a utility program, the purpose of the PASS command is to allow 
communication with the utility program without having to be 
attached to the program through the EX command. The program 
specifier must refer to a utility program that is currently 
running. The data string is passed to the program as is. To use 
the PASS command, at least one station in the GEMCOS network must 
be attached to that utility program which is to receive the data 
string. All output messages generated by the program are routed 
back to the station of origin. 

For an assignment program, the semantics are the same as those for 
a utility program. The purpose of allowing a station to pass to an 
assignment program is to make it easier to use remote-print 
programs. An assignment program can open a named remote file which 
contains only remote-printer stations. Input specifications can 
then be passed to the program from other stations (e.g., TD 830s). 
These other stations do not have to be attached to the program. 

For a pass program, no stations need to be attached to the program. 
Any user can pass data to any pass program from any station in the 
GEMCOS network, as long as there are no security restrictions. If 
a pass program is not currently running, and it also has the 
EXECUTE option set to ONDEMAND in the TCL, then the first PASS 
command for that program causes GEMCOS to zip-execute the program 
automatically. 

3 - 12 



Examples: 

@ PASS CANDE ?WHERE ALL 
@ PASS RD KB 

MCS CONTROL COMMANDS 

There are two MCS Control commands: AUDIT OK (AOK) and HALT SYSTEM 
(HLT). 

AUDIT OK (AOK) 

The AOK command is used in response to a message on the control station 
or on the console printer of the form: 

FILE MISSING - MCSAUDIT/AUDITXXX 

It informs the MCS that the requested audit file is available on disk. 
This command can be entered only at the console printer through an 
ACCEPT. 

Syntax: 

---- * ------AOK---------------------------------------------------->I 
I I --
1 I 

I- <s> ->I 

3 - 13 



HALT SYSTEM (HLT) 

The HLT command brings the data communications system to a stop. This 
command can be used only if SYSTEMHALT is TRUE. 

Syntax: 

---- * -----HLT---------------------------------------------------->l 
I 
I 

I -.~ I I 
I I I 

l.,. <s> ->l l--KILL--->l 
I I 
I I 
l--READY-->l 

Semantics: 

When KILL is not specified, the system comes to an orderly stop, 
and untransmitted messages are recalled. When KILL is specified, 
the system corries to an abrupt stop, and messages may be lost. 

When READY is specified, the system comes to an orderly stop, and 
the stations are made ready. This is helpful when running multiple 
MCSs. 

3 - 14 

( 



MESSAGE CONTROL COMMANDS 

There are two MCS control commands: BROADCAST (BRC) and POPQUEUE (PQ). 

BROADCAST (BRC) 

The BRC command is used to send a message to other stations in the 
network. It is available only if MESSAGEBROADCAST is TRUE. 

Syntax: 

l<----------------------l 
I I 
I I 

--- * ------BRC------- <station name> ------ --- <message-text> -->I 
1 I I I 
I I I I 

I- <s> ->l I- <LSN> ----------->I 
I I 
I I 

l--ODT ------------->i 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. More than one station name or LSN may 
be entered, in which case the message is sent to each station. If 
no station specifier is entered, the message is sent to all 
stations in the network. If ODT is entered, the message is sent to 
the console printer. 

Examples: 

@ BRC : GOOD MORNING 
@ BRC 3 TD4 : WHAT'S HAPPENING? 
@ BRC ODT : PLEASE LOAD PROGRAM BLACK/JACK 

3 - 15 



POP QUEUE (PQ) 

The PQ command is used to recall messages from the output queue of a 
station. This command can be used only if MESSAGERECALL is TRUE. 

Syntax: 

---- * ------ PQ <station name-1> ---------------------------->(1) 
I I I I I 
I I I I I 

l- <s> ->l 

I 
I 
I ,-- <LSN-1> --------->J 1---ALL--->i 

(1)------------------------------------------------------------------->i 
I I 
I I 

J--PRINT------------------------->J 
I I 
I I 

J--SEND---- <station-name-2> ---->l 
I I 
I I 

J-- <LSN-2> -------->J 

Semantics: 

The station name is assigned in the Station section of the NDL. 
The logical station number (LSN) represents the position of the 
station definition in the Station section of the NDL. 

If ALL is not entered, only the oldest message would be recalled. 
If ALL is entered, then all messages in the queue would be recalled 
in order, with the oldest one first. If neither PRINT nor SEND is 
specified, recalled messages would be discarded. PRINT causes 
recalled messages to be printed on a system printer. SEND causes 
recalled messages to be sent to the indicated station. 

Examples: 

@ PQ 5 

In this example, one message from the queue for station 5 is 
retrieved and discarded. 

3 - 16 



@ PQ 3 ALL PRINT 

In this example, all messages for station 3 are recalled and 
printed. 

@ PQ TD1 SEND TD2 

In this example, one message for TD1 is sent to TD2 instead. 

3 - 17 



REPORT COMMANDS 

With the exception of REPORT DATA DUMP, which is controlled by the 
DATADUMP statement, these commands are controlled by the STATUS REPORTS 
statement. 

When examining error statistics it should be kept in mind that: 

1. Counters start at zero each time the MCS is executed. 

2. The MCS increments a counter by the retry limit when the 
Network Controller reports an error to the MCS, but the 
Network Controller reports an error only when the retry limit 
is exceeded. Thus, the number of errors reported in the 
response to the Network Control Command may be slightly less 
than the number that actually occurred. 

REPORT DATA DUMP (RDM) 

The RDM command allows access to the contents of MCS data fields. 

Syntax: 

----- * ------RDM PRINT--------------------------------------------->i 
I I --
1 I 
I I 1- <s> ->1 

Semantics: 

When PRINT is specified, the report is sent to a system printer and 
the contents of MCS tables are included. When PRINT is not 
entered, only information that is not in tables is included. Other 
report commands are available for displaying table information at a 
remote station. 

3 - 18 



REPORT FILE STATUS (RFS) 

The RFS command returns the following information about a remote file: 

1. File name. 
2. Queue number of the remote file. 
3. Name of the program which opened the remote file. 

Syntax: 

---- * ------RFS---------------------------------------------------->I 
I I -- I I 
I I I I 

. I- <s> ->I 1-- <file name> -->I 

Semantics: 

If a specific file name is not entered, the status of all remote 
files is returned. 

Example: 

@ RFS REMOT1 

3 - 19 



REPORT PROGRAM COUNTERS (RPC) 

The RPC command returns the following information about a program: 

1. The number of the program. 
2. Number of messages sent to the program. 
3. Number of messages received from the program. 
4. The job number of the program, if it is running. 

Syntax: 

--- * RPC ---------------------------------------------------------->! 
I I 
I I 

1-- <program name> ---->I 
I I 
I I 
1-- <program title> --->I 
I I 
I I 

1-- <program number> -->I 

Semantics: 

The program name, program title, or program number is assigned in 
the Program section of the TCL. If neither a program name, a 
program title, nor a program number is entered, the status of all 
programs is reported. If there is more than one copy of a program 
(MAXCOPIES > 1), statistics are given for all copies of the 
program, including copy number. 

Examples: 

@ RPC MY/FROG 
@ RFC 2 
@RFC PACK1/USER/FROGRAM1 
@ RFC 

3 - 20 



REPORT PROGRAM STATUS (RPS) 

The RPS command returns the following information about a program: 

1. Name of the program. 
2. Title of the program. 
3. Whether the program is running. 
4. Program classification. 

Syntax: 

---- * ------RPS------------------------------------------------------>I 
I I I I 
I I I 

I- <s> ->I 1-- <program name> ---->I 
I I 
I I 

1-- <program title> --->I 
I I 
I I 
1-- <program number> -->I 

Semantics: 

The program name, program title, or program number is defined in 
the Program section of the TCL. If neither a program name, a 
program title, nor a program number is entered, the status of all 
programs is reported. 

Examples: 

@ RPS PROG/A 
$ RPS A 
$RPS PACK1/PROG/A 
$ RPS 

3 - 21 



REPORT STATION COUNTERS (RSC) 

The RSC command returns the following statistics about a station: 

1 • Number of messages sent. 
2. Number of messages received. 
3. Number of data communications errors. 
4. Number of Network Control Commands affecting the station. 
5. Number of changes made. 

Syntax: 

---- * ------RSC---------------------------------------------------->i 
I I -- I I 
I I I I 

I- <s> ->I i-- <station name> -->I 
I I 
I I 

1-- <LSN> ------------>I 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. If neither station name nor LSN is 
provided, statistics are reported for all stations. 

Example: 

@ RSC TD1 

3 - 22 



REPORT STATION STATUS (RSS) 

The RSS command reports the following about a station: 

1. Whether the station is ready, enabled, signed on, or attached. 

2. Usage (input, output, or both). 

3. Which program the station is attached to, if any. 

Syntax: 

----- * ------RSS--------------------------------------------------->l 
I I -- I I 
I I I I 

I- <s> ->I 1-- <station name> -->I 
I I 
I I 

1-- <LSN> ----------->I 

Semantics 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. If neither option is provided, status 
is reported for all stations. 

Example: 

@ RSS TD1 

3 - 23 



CHANGE COMMANDS 

The existence of these commands is controlled by the CHANGE REQUESTS 
statement and the MONITOR TRACE statement in the TCL statements. 

CHANGE MONITOR FLAG (CMF) 

The CMF command is used to enable or disable monitoring of procedures in 
the MCS. 

Syntax: 

---- * -----CMF--- --------D------------------------------------>i 
1 I I - I 
I I I I 

I- <s> ->I :---!--->: 

Semantics: 

N (normal) sets the monitor flag to 0 (zero); D (diagnostic) sets 
the monitor flag to 1. 

The following command can be used to close the print file if GEMCOS 
opens the file. (This could happen, for example, with Error 45 -
Invalid Input.) To close the print file, enter: 

CMF : N 

Examples: 

@ CMF : D 

Procedures will be monitored. 

@ CMF : N 

No procedures are monitored. 

3 - 24 



CHANGE STATION ADDRESS (CSA) 

The CSA command is used to give the Network Controller a new logical 
address for a station. 

Syntax: 

----- * ------CSA----- <station name> ------1------------------->(1) 
1 I I I I - I 
I I I I I I 

:- <s> ->I :-- I I 0 I <LSN> ------->1 1--------------->1 

(1)---- <address>---------------------------------------------------->: 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. Codes I or 0 indicate whether the new 
address applies on i~put or output. 

Example: 

@CSA 5 0 1A 

Station 5 will have an output address of "1A". 

3 - 25 



CHANGE STATION DIAGNOSTIC (CSD) 

The CSD command is used to inform the Network Controller whether to use 
normal diagnostic request logic (as defined in the NDL) for a station. 

Syntax: 

* ------CSD----- <station name> --------N-------------------->i 
1 I I I I - I 
I I I 
,- <s> ->I i--

I I I 

<LSN> ------->I i ----D------> I 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. The code N selects normal request 
logic; D selects diagnostic logic. 

Example: 

@ CSD 2 D 

3 - 26 



CHANGE STATION FREQUENCY (CSF) 

The CSF command is used to assign a new input or output frequency 
(priority) to a station. 

Syntax: 

---- * -----CSF---- <station name> --------1-------------------->(1) 
I I I I I - I 
I I I I I I 

I- <s> ->l l- <LSN> -------->! l-----0----->l 

(1)--- <frequency>----------------------------------------------->! 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. The codes I and 0 specify whether the 
frequency applies on input or output. The variable <frequency> 
must be an integer less than or equal to 255. 

Example: 

@ CSF TD2 I 250 

3 - 27 



CHANGE STATION MAXIMUM RETRY (CSM) 

The CSM command is used to give a new value to the number of times the 
Network Control tries to retransmit a message when there are errors. 

Syntax: 

---- * -------CSM----- <station-name>----- <retries> -------------->i 
I I I I 
I I I I 

i- <s> ->i i-- <LSN> --------->i 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. The variable <retries> must be an 
integer up to two digits long. 

Example: 

@ CSM 1 16 

3 - 28 



CHANGE STATION QUEUE (CSQ) 

The CSQ command is used to re-route messages bound from one station to 
another station. 

Syntax: 

---- * -----CSQ------ <station name 1> -------<station name 2> ---->i 
I I -- I I I I 
I I I I I I 

i- <s> ->i i-- <LSN 1> --------->i i-- <LSN 2> --------->i 

Semantics: 

Station name 1 or logical station number (LSN) 1 is the original 
station, and station name 2 or LSN 2 is the new station. If 
station specifier 1 and station specifier 2 are the same, routing 
reverts to the original station. 

Example: 

@ CSQ TD1 TD4 

Messages which would ordinarily go to station TD1 will now go to 
station TD4. 

3 - 29 



CHANGE STATION READY (CSR) 

The CSR command is used to mark a station as ready or not ready. The 
Network Controller does not attempt to do any input/output on a station 
that is not ready. 

Syntax: 

---- * -----CSR----- <station name> --------R------------------~-->i 
1 I I I I - I 
I I I I I I 
I ( ) I I 1- S) - I 1- <LSN> ---------> i !----!-------> i 

Example: 

@ CSR 3 R 

3 - 30 



CHANGE STATION TRANSMISSION NUMBER (CST) 

The CST command is used to give a new value to the transmission number 
of a station. 

Syntax: 

* -----CST---- <station name> ------I---------------------->(1) 
1 I I I I - I 
I I I I I I 

l- <s> ->l i- <LSN> --------> l l--0------> l 

(1)--- <transmission number>------------------------------------->! 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. The codes I and 0 indicate whether the 
input or output transmission number is to be changed. 

Example: 

@ CST TD1 I 35 

3 - 31 



FORMAT UPDATE (UPD) 

There is one Network Control Command to update formats. This command is 
only provided in the Advanced and Total Versions of GEMCOS. The UPD 
command makes updated formats available to all stations in the MCS 
network. Formats can be updated using the UPDATEFMT option of the 
Control command in the TCL, or by using the Format Generator or Format 
Maker. Updated formats are consequently placed in the MCSFORMATS file 
or the GEMCOS/NONINTERPS file. (For additional information on 
noninterpretive formatting, see the B 1000 GEMCOS Format Generator 
User's Guide.) The old version of the format remains available 
throughout the network until the UPD command is entered. Upon entry of 
the command, updated formats are available. 

Syntax: 

---- * -------UPD FORMATS------------------------------------------->i 
I I ~-

I I 

i- <s> ->i 

Semantics: 

This request causes all previously-modified formats to be updated 
and made available to all stations in the network. 

Example: 

@ UPD FORMATS 

3 - 32 



AUDIT & RECOVERY COMMANDS 

The existence of these commands is controlled by the AUDITASSIGNMENT, 
AUDITTRANSACTIONS, and RECOVERY statements of the Program section. 

CLEAR DISABLED PROGRAM (CLE) 

The CLE command is used to clear disabled programs and to cause recovery 
to be initiated. 

Syntax: 

---- * ------CLE-----
1 I I 
I I I 

:- <s> ->i i--

Semantics: 

1 
I 
I 
1--

<program name> -------------------------------->: 
I 
I 

<program title ---->l 
I 
I 

<program number> -->i 

The program name, title, or number is assigned in the Program 
section of the TCL. 

If, after clearing a disabled program, recovery does not begin, at 
least one other program in the data base is still disabled. When 
all programs are cleared, recovery of the data base is initiated. 

Examples: 

@ CLE PROG1 
@ CLE 2 

3 - 33 



RECOVER DATA BASE (REC) 

The REC command is used to initiate recovery of a particular data base 
or of all data bases declared in the TCL. 

Syntax: 

---- * ------REC------------------------------------------------------>i 
I I I I 
I I I I 

i- <s> ->i i-- <data-base name> ---->i 
I I 
I I 

1-- <data-base number> -->I 

Semantics: 

The data-base name or number is assigned in the Data Base Name 
statement of the Program section in the TCL. If neither is 
specifed, recovery is initiated for all data bases that are 
declared to this MCS. Otherwise, recovery is initiated only for 
the selected data base. If any programs in the data base are 
disabled at the time of the request, an error message is displayed 
on the control station listing the numbers of the disabled 
program(s). These programs can then be cleared using the CLE 
command, and recovery is initiated. 

Examples: 

@ REC 
@ REC LIVEDB 
@ REC 0 

3 - 34 



REFRESH COMMAND (REF) 

The REF command is used to recall the most recent audited output 
message. 

Syntax: 

-----*------REF--------------------------------------------------->! 
I I 
I I 

1- <s> ->I 

Semantics: 

This request causes the MCS to display the last audited output 
message for the station. An error is returned when there are no 
output messages for the station. 

Example: 

@ REF 

3 - 35 



RESET BUSY STATUS (RBS) 

If a station is defined with TRANSACTIONMODE = TRUE, the station can 
become locked into a busy status. This occurs when a station sends a 
message to a synchronized recovery program and the program does not 
respond. Should a station receive error 106, this indicates that the 
station has a busy status (refer to Appendix D, MCS Error Messages). 
The RBS Network Control Command must be entered from a control station 
or from the ODT. 

Syntax: 

---- * -----RBS-------- <station name> ---------------------------->l 
I I I I I I I I 
1- <s> ->l I- <LSN> -------->l 

Semantics: 

The station name or logical station number (LSN) is assigned in the 
Station section of the NDL. Entry of this command causes the 
specified station to be taken out of a busy status. Once the 
command is processed, the station operator may enter input at the 
station. If the station is not busy, this command has no effect. 

Examples: 

@ RBS STATION2 
@ RBS 3 

3 - 36 

( 



TIME 

The TIME command initiates or terminates the GEMCOS timing mechanism. 
This mechanism gathers statistics about the processing time for various 
transactions and stores these statistics in a disk file with the 
internal name of MCSTIME. 

Syntax: 

---- * ------TIME--------------------------------------------------->I 
I I -- I I 
I I I I 

I- <s> ->i i---START--->I 
I I 
I I 

i---STOP---->i 
I -- I 
I I 

1---QUIT---->I 

Semantics: 

The TIME command may contain one of these three options: START, 
STOP, or QUIT. If none of these options is entered, the current 
status of the timing mechanism is returned. 

TIME START initiates the timing mechanism. The results of each 
transaction are stored in an array. When the array is filled, the 
array is written to a disk file. 

TIME STOP causes GEMCOS to stop entering data into the array, but 
does not close the file. 

TIME QUIT, on the other hand, causes the contents of the array to 
be written to disk and the file to be closed with LOCK. 

The timing file has a time stamp 
The time stamp allows multiple 
file is: 

MCSTIME/<time stamp> 

which is appended to <file-ID>. 
timings. The name of the timing 

When the timing file is closed (by entering *TIME QUIT), and then 
opened (by entering *TIME START), a new timing file is opened with 
a different name. Analyze the timing files by compiling the sample 
source file, GEMCOS/MCSTIMRPTS. 

The MCS automatically does a TIME QUIT at end-of-job if the timing 
function is enabled. 

3 - 37 



Note that entering the same option more than once has no effect. 

Examples: 

@TIME START 
@TIME STOP 

PORT STATION COMMANDS 

The following commands are used with port stations. 

DISABLE PORT STATION (DPS) 

The DPS command is used to disable a port station. When this command is 
entered, GEMCOS closes the subfile of HOSTPORT for the associated port 
station and marks the station NOT READY. 

Syntax: 

---- *-------DPS--- <port station name> --------------------------->: 
I I 
I I 

:- <s> ->: 

Examples: 

*DPS PSTN 

3 - 38 



ENABLE PORT STATION (EPS) 

The EPS command is used to enable a port station. 
GEMCOS opens the port subfile of HOSTPORT for 
station and marks the station READY. 

Syntax: 

When EPS is entered, 
the associated port 

---- * ------EPS----- <port station name>---------------------------->! 
I I 
I I 

l- <s> ->i 

Examples: 

*EPS PSTN1 

3 - 39 



UPDATE STATION HOST NAME/STATION YOUR NAME 

The UPDATE (UPD) command allows the user to update or change the 
HOSTNAME and YOURNAME of a port station. The change is permanent, since 
the MCSTIC file is rewritten with each change. Only those port stations 
which are fully closed can be changed. The UPD command must be entered 
at a Control station. 

Since the change is permanent, the user's TCL no longer contains the 
correct STATIONHOSTNAMES and STATIONYOURNAMES. To obtain a current 
listing of port stations with the correct HOSTNAMES/YOURNAMES, run the 
TCL compiler with CONTROL = REPORT. 

Syntax for UPDATE - HOSTNAME Command: 

------ * ------UPD--- <port station name> ---STATIONHOSTNAME-------->(1) 
I I 
I I 

1- <s> ->I 

(1)-----TO---- <new station host name>------------------------------->! 
*p 
Syntax for UPDATE - YOURNAME Command: 
*l 0 2 
------ * ------UPD--- <port station name> ---STATIONYOURNAME---------->i 

I I 
I I 
I- <s> ->I 

(1)-----TO---- <new station your name>------------------------------->! 

This command allows the user to update the STATIONHOSTNAME and 
STATIONYOURNAME of port stations dynamically. The user can always put 
extra dummy port stations in the TCL. Then when the need arises, the 
user can update the dummy names to meaningful names without recompiling. 

Examples: 

*UPD PSTN STATIONHOSTNAME TO PARISBASE 
*UPD PSTN STATIONYOURNAME TO PARIS1 

3 - 40 



SECTION 4 

MESSAGE FORMATTING AND ROUTING 

The first part of this section discusses the formatting of messages for 
application programs. The next part illustrates several practical uses 
for message formatting. The last part of this section discusses how 
GEMCOS routes messages. 

The material given here on message formatting is not intended to be a 
complete survey of the topic. For additional information, see the 
Format and Function List and the Device Section in Section 2. The 
material in Section 2 describes formatting syntax and semantics. 

Also see the B 1000 Generalized Message Control System (GEMCOS) 
Formatting Guide. 

FORMATTING AND APPLICATION PROGRAMS 

In an on-line environment, proper message formatting is essential for 
effective use of the terminal. Properly formatted input and output 
messages aid readability, and assist both the occasional terminal user 
and the full-time terminal operator. The formatting of input and output 
messages is therefore a required function that must be performed by each 
application program or by some other part of the system. 

When an application program formats its own input/output messages, 
changing or modifying a message format becomes a major problem (e.g.,· 
when existing formats are not suitable for a new terminal type). If the 
formatting is "hard-coded" into the application programs, such changes 
require program patches and recompilation, and can potentially introduce 
new problems. In addition, this approach requires more memory to store 
the formatting code that must be duplicated for each program. 

These problems are avoided by using the Generalized Formatting module in 
the MCS. With this approach, the formatting code is stored in only one 
location, the MCS. Thus, messages can be changed without modifying the 
application programs. Since formatting code is generalized in the MCS 
and is based on disk files MCSFORMATS and GEMCOS/NONINTERPS, format 
changes can be implemented by merely updating either MCSFORMATS or 
GEMCOS/NONINTERPS. The MCS does not have to be modified. (For 
additional information on noninterpretive formatting, see the B 1000 
GEMCOS Format Generator User's Guide.) 

4 - 1 



For non-formatted messages, GEMCOS has another helpful feature called 
screen wraparound. This feature is discussed in the following material. 

SCREEN WRAPAROUND 

If a non-formatted message is too long to be accepted by a station, the 
MCS breaks the message into two or more transmissions. Whenever 
possible, the message is segmented on word boundaries. The segment is 
as long as possible, without splitting a word or exceeding the buffer at 
the station. 

Because a formatted mesage could be segmented in the middle of a forms 
field, the screen wraparound feature is not recommended for formatted 
messages. The MCS sends a warning message to the Control station if the 
screen wraparound feature is used to send a formatted message to a 
station. 

The MCS generates code for screen wraparound when the station screensize 
is declared larger than the MAXTEXTSIZE specification in the Global 
section of the TCL. 

The next material discusses editing phrases used with formatted 
messages. 

GEMCOS EDITING PHRASES 

The most common GEMCOS editing phrases are described in the following 
table. 

Editing Phrase 

Alpha Item Type 

Integer Item 

Description 

In the form A<integer>, this phrase moves 
<integer> bytes from the raw message to the 
edited message. 

In the form I<integer>, this phrase moves 
<integer> bytes from the raw message to the 
edited message (as does Alpha Item Item Type), 
and it also verifies that data being entered 
contains only digits and blanks (no embedded 
blanks). It also right justifies numbers and 

4 - 2 



Skip Field 

EBCDIC String 

Hexadecimal String 

Function Call 

Location Specifiers 

inserts 
input. 

leading zeroes where required on 

In the form X<integer>, this phrase inserts 
<integer> spaces into the message. 

In the form "<character string>", this phrase 
places a character string into the formatted 
message on output. 

In the form 4"<hexadecimal character string>", 
this phrase is composed of digits 0 through 9 
and letters A through F. It is used in the 
same way as EBCDIC string to insert characters 
in the message; however, it can be used to 
insert any character, including nonprintable 
EBCDIC characters. The primary use of this 
phrase is to insert terminal control 
characters (e.g., carriage returns, line 
feeds), many of which are nonprintable. 

In the form T<function name>, <alpha item 
type>/ <integer item type>,<integer>, this 
phrase converts any string of six characters 
or less to any other string of six characters 
or less. The function name is used to specify 
which function is to be used in the REPLACE 
operation. The alpha item type or the integer 
item type is used to specify the length and 
type of the external character string, and the 
integer is used to specify the length of the 
internal character string. 

In the form @<sign><integer>, this phrase 
overrides the normal mode of sequential 
operation of the formatter. It may be 
required to skip around in the message (e.g., 
if specific fields are to appear in a 
different order on the terminal than they come 
from the program). @+<integer> skips 
<integer> bytes forward; @-<integer> skips 
<integer> bytes backward. 

4 - 3 



OUTPUT FORMATTING EXAMPLE 

In this example, it is assumed that the purpose of a program is to 
return information about records in a customer file, and that the 
program has the following output area and is sending the following data: 

* 
* 
* 
* 
* 

* 
* 

* 
* 

01 

COBOL Description 

SAMPLE-OUTPUT-AREA. 
05 CUSTOMER-NAME 

05 ACCOUNT-NBR 

PIC X(30). 

PIC 9(6). 
05 TOTAL-AR-BALANCE 
05 TERMS 

PIC zzz,zzz.99 
PIC X. 

7 7 DAYS 
1 10 DAYS 
C COD 
3 = 30 DAYS 

05 CURRENT-BALANCE PIC 
05 ADDON-PERCENT PIC 
05 OVER-7-DAYS-BALANCE PIC 
05 DATE-LAST-INVOICED PIC 
05 OVER-14-DAYS-BALANCE PIC 
05 CREDIT-LIMIT PIC 
05 OVER-21-DAYS-BALANCE PIC 
05 PRICE-CODE PIC 
05 DELINQUENT-FLAG PIC 

1 = YES 
0 = NO 

ZZZ,ZZZ.88 
zz9. 
zzz,zzz.99 
99/99/99. 
zzz,zzz.99 
Z(6). 
zzz,zzz.99 
9. 
9. 

05 OVER-28-DAYS-BALANCE 
05 WAREHOUSE 

PIC zzz,zzz.99 
PIC XX. 

05 ITEM-SUBSTITUTE-FLAG 
1 = YES 
0 = NO 

05 CREDIT-BALANCE 

PIC 9. 

PIC zzz,zzz.99 

Sending Data 

THE WILSON FOOD 
STORES 
220030 
15,365.50 

8,420.10 
9 
824.10 
08/01/77 
3,281.10 
20000 
.oo 
2 
1 

2,840.20 
A1 
1 

.oo 

The following TCL could be used to format the output messages for a 
TD700 which has eight lines of 32 characters each: 

CONTROL = GENERATE, LIST, COMPILE. 
GLOBAL: 

CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
STATUSREPORTS = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 

4 - 4 



FORMAT 

BEGIN 

END. 

OUT700 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 

% LINE 1 
X1 , A30, X1, 

% LINE 2 
11 ACCT- 11 ,I6,X2,"TOTAL",X4,A10, 

% LINE 3 
"TERMS-" ,A1 ,X6, "CURRENT" ,X2,A10, 

% LINE 4 
"ADDON-",A3,X4,"0VER 7",X2,A10, 

% LINE 5 
"L/I-" ,A8,X1, "OVER 14" ,X2,A10, 

% LINE 6 
"LIMIT-" ,A6,X1, "OVER 21 ",X2,A10, 

% LINE 7 
"PRICE-" ,I1 ,X1, "DF-" ,I1 ,X1, "OVER 28" ,X2,A10, 

% LINE 8 
"WHSE-" ,A2,X1, "SUB-" ,I1 ,X1, "CREDIT" ,X2,A10). 

PROGRAM SAMPLE USER: 
TITLE = GEMCOSPACK/GEMCOS/SAMPLE. 
TRANCODE = CUSTIN. 

STATION TD7A: 
TRANCODEPOSITION 1. 

STATION TD7B: 
TRANCODEPOSITION 1. 

STATION TD7C: 
TRANCODEPOSITION 1. 

DEVICE TD700: 
STALIST = TD7A, TD7B, TD7C. 
FORMATSOUT: 

OUT700 = ARINFO. 

Figure 4-1 depicts the formatted output of the data returned from the 
application program (with the Format-ID field of the header set to 
ARINFO) and in turn sent to one of the stations listed under the device 
"TD700". The MCS uses format OUT700 to format the message. 

4 - 5 



THE WILSON FOOD STORES 
ACCT-220030 TOTAL 
TERMS-3 CURRENT 
ADDON- 9 OVER 7 
L/I-08/01/77 OVER 14 
LIMIT- 20000 OVER 21 
PRICE-2 DF-1 OVER 28 
WHSE-Al SUB-1 CREDIT 

15,365.50 
8,420.10 

824. 10 
3 ' 2 8 1 . 1 0 

.00 
2 ' 8 4 0 . 2 0 

. 0 0 

Figure 4-1. Sample Formatted Output 
Data Display 

It may be desirable to use functions to convert the data coming from the 
application program to a more readable form. For example, in the 
preceding format, the TERMS code 3 is not very definitive. It would be 
better to display something more descriptive like 30 DAY. To do this, 
the following function is defined: 

FUNCTION 
TERMS [EXTERNAL:ALPHA,INTERNAL:ALPHA] ( 

II 7 DAY": "7", 
"10 DAY":"1", 
"30 DAY": "3", 
"COD ":"C"). 

This function description converts "7" to "7 DAY", "1" TO "10 DAY", etc. 
DELINQUENT-FLAG and ITEM-SUBSTITUTE-FLAG displayed as a "1" or a "O" 
could also be changed to display a Y or N by defining the following 
function: 

FUNCTION 
BINARYOUT700 [EXTERNAL:ALPHA, 

INTERNAL: INTEGER]( 
"Y": "1 ", 
"N": "O"). 

To take advantage of these functions, the calls must be inserted in the 
format being used, necessitating the following change to line 3: 

% LINE 3 
"TERMS-",T(TERMS,A6,1),X1,"CURRENT",X2,A10, 

4 - 6 

'~ 



Lines 7 and 8 would then read as follows: 

% LINE 7 
"PRICE-" ,I1 ,X1, "DF-" ,T(BINARYOUT700,A1, 1) ,X1, "OVER 28", 

X2,A10, 
% LINE 8 

"WHSE-",A2,X1 ,"SUB-",T(BINARYOUT700,A1,1),X1,"CREDIT", 
X2,A10). 

The TCL deck now appears as follows: 

CONTROL = REGENERATE, LIST. % IT IS NOT REQUIRED TO GENERATE 
% AND COMPILE THE MCS SINCE WE ARE ONLY CHANGING 
% FUNCTIONS AND FORMATS 

GLOBAL: 
CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
STATUSREPORTS = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 

FUNCTION 
TERMS [EXTERNAL:ALPHA,INTERNAL:ALPHA] ( 

"7 DAY":"7", 
"10 DAY":"1 ", 
"30 DAY": "3", 
"COD ":"C"), 

BINARYOUT700 
[EXTERNAL:ALPHA,INTERNAL:INTEGER] ( 

FORMAT 

"y": "1 "' 
"N": "O"). 

OUT700 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

X1,A30,X1, 
% LINE 2 

"ACCT-",I6,X2,"TOTAL",X4,A10, 
% LINE 3 

"TERMS-" ,T(TERMS,A6, 1) ,X1, "CURRENT" ,X2,A1 O, 
% LINE 4 

"ADDON-",A3,X4,"0VER 7",X2,A10, 
% LINE 5 

"L/I-" ,A8,X1, "OVER 14" ,X2,A10, 
% LINE 6 

"LIMI'I1-" ,A6,X1, "OVER 21 ",X2,A10, 
% LINE 7 

"PRICE-",I1,X1,"DF-",T(BINARYOUT700,A1,1),X1, 
"OVER 28",X2,A10, 

4 - 7 



% LINE 8 

BEGIN 

END. 

"WHSE-" A2 X1 "SUB-" T(BINARYOUT700 A1 1) X1 ''' ' ' ' '' "CREDIT",X2,A10). 

PROGRAM SAMPLE USER: 
TITLE = GEMCOSPACK/GEMCOS/SAMPLE. 
TRANCODE = CUSTIN. 

STATION TD7A: 
TRANCODEPOSITION = 1. 

STATION TD7B: 
TRANCODEPOSITION 1. 

DEVICE TD700: 
STALIST = TD7A, TD7B, TD7C. 
FORMATSOUT: 

OUT700 = ARINFO. 

Figure 4-2 depicts the formatted output data returned from the 
application programs and forwarded to the stations as a result of the 
function description and modified TCL deck. 

r 

\.. 

THE WILSON FOOD STORES 
ACCT-220030 TOTAL 1 5 , 3 6 5 . 5 0 
TERMS-30 DAY CURRENT 8,420.10 
ADD ON- 9 OVER 7 824.10 
L/I-08/01/77 OVER 14 3,281.10 
LIMIT- 20000 OVER 2 1 . 0 0 
PRICE-2 DF-Y OVER 28 2,840.20 
WHSE-Al SUB-Y CREDIT . 0 0 

Figure 4-2. Example Formatted Output 
Data Display for Redefined 
Forms Function 

"""' 

.I 

If two TD830s (having 24 lines of 80 characters each) are now added to 
the network, a new format is required to take advantage of the larger 
scree.n. The larger screen permits more descriptive headers and allows 
for re-arrangement of the data to make it more readable. A function can 
be used to convert 1 and 0 to YES and NO rather than the more cryptic Y 
and N. This requires defining the following new function and new 
format. 

4 - 8 



New Function: 

FUNCTION 
BINARYOUT800 [EXTERNAL:ALPHA, 

INTERNAL:INTEGER] ( 
11 YES 11 : 11 1", 
"NO": 110 11 ). 

New Format: 

OUT800 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

X17,"CUSTOMER NAME:",X2,A30,4"0D", % 4"0D" IS CARRIAGE 
% RETURN 

% LINE 2 
4"0D", % LEAVE BLANK LINE 

% LINE 3 
"ACCOUNT NUMBER",X5,I6,X15,"TOTAL A/R BALANCE",X2,A10, 
4"0D", 

% LINE 4 
"TERMS" ,X14, T(TERMS,A6, 1 ) ,X15, "CURRENT" ,X11 , A10, 4 "0D", 

% LINE 5 
11 ADDON RATE",X9,A3,"%",X17,"0VER 7 DAYS",X7,A10,4"0D", 

% LINE 6 
"DATE LAST INVOICED",X1,A8,X13,"0VER 14 DAYS",X7,A10, 
4"0D", 

% LINE 7 
"CREDIT LIMIT",X7,A3,",",A3,X14,"0VER 21 DAYS",X7,A10, 
4 11 0D 11

, 

% LINE 8 
"PRICE CODE",X9,I1,@+1, % SKIP OVER SUBSTITUTE FLAG 
X20,"0VER 28 DAYS",X7,A10,4"0D", 

% LINE 9 
11 WAREHOUSE 11 ,X10,A2,@+1, % SKIP OVER DELINQUENT FLAG 
X19, 11 CREDIT11 ,X13,A10,4 11 0D 11

, 

% LINE 10 
"SUBSTITUTE FLAG",X4,@-24, % SKIP BACK TO GET SUBS FLAG 

T(BINARYOUT800,A3,1),X18,"DELINQUENT FLAG",X4, 
X4,@+12, % SKIP FORWARD TO GET DELINQUENT FLAG 
T(BINARYOUT800,A3,1)). 

4 - 9 



The new stations and the new device type must be defined, resulting in 
the following TCL deck: 

CONTROL = REGENERATE, LIST. % IT IS NOT REQUIRED TO GENERATE 
% AND COMPILE THE MCS SINCE WE ARE ONLY CHANGING 
% FUNCTION, FORMAT, STATION AND DEVICE DEFINITIONS. 

GLOBAL: 
CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
STATUSREPORTS = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 
FUNCTION 

TERMS [EXTERNAL:ALPHA,INTERNAL:ALPHA] ( 
II 7 DAY":"7 11 , 

11 10 DAY":"1", 
11 30 DAY": 11 3", 
"COD II: "C"), 

BINARYOUT800 
[EXTERNAL:ALPHA,INTERNAL:INTEGER] ( 

"Y": "1 ", 
"N": "O"), 

BINARYOUTSOO 
[EXTERNAL:ALPHA,INTERNAL:INTEGER] ( 

"YES II : II 1 II ' 

"NO ":"O"). 
FORMAT 

OUT700 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

X1 , A30, X1 , 
% LINE 2 

"ACCT-",I6,X2,"TOTAL",X4,A10, 
% LINE 3 

"TERMS-" ,T(TERMS,A6, 1) ,X1, "CURRENT" ,X2,A1 O, 
% LINE 4 

"ADDON-",A3,X4,"0VER 7",X2,A10, 
% LINE 5 

"LI I - II ' AS ' x 1 , II 0 VER 1 4 " ' X2 , A 1 0 , 
% LINE 6 

"LIMIT-" ,A6,X1, "OVER 21 ",X2,A10, 

% LINE 7 
11PRICE-",I1 ,X1,"DF-",T(BINARYOUT700,A1,1),X1, 
"OVER 28",X2,A10, 

% LINE 8 
"WHSE-", A2, X1 , "SUB-", T ( BINARYOUT700, A 1 , 1 ) , X1 , 
"CREDIT",X2,A10), 
OUT800 ( 4"0COOOO", 5 CLEAR SCREEN AND HOME CURSOR 

% LINE 1 
X17, "CUSTOMER NAME:",X2,A30,4"0D", % 4"0D" IS 

4 - 1 0 



% CARRIAGE RETURN 
% LINE 2 

4"0D", % LEAVE BLANK LINE 
% LINE 3 

"ACCOUNT NUMBER",X5,I6,X15,"TOTAL A/R BALANCE",X2, 
A10,4"0D", 

% LINE 4 
"TERMS" , X1 4, T (TERMS, A6, 1 ) , X1 5, "CURRENT", X11 , A 1 0, 
4 "OD", 

BEGIN 

% LINE 5 
"ADDON RATE",X9,A3,"%",X17,"0VER 7 DAYS",X7,A10, 
4"0D", 

% LINE 6 
"DATE LAST INVOICED",X1,A8,X13,"0VER 14 DAYS",X7, 
A10,4"0D", 

% LINE 7 
"CREDIT LIMIT" ,X7 ,A3, II' II ,A3,X14, "OVER 21 DAYS" ,X7' 
A10,4"0D", 

% LINE 8 
"PRICE CODE",X9,I1,@+1, % SKIP OVER SUBSTITUTE 

% FLAG 
X20,"0VER 28 DAYS",X7,A10,4"0D", 

% LINE 9 
"WAREHOUSE",X10,A2,@+1, % SKIP OVER DELINQUENT 

% FLAG 
X19,"CREDIT",X13,A10,4"0D", 

% LINE 10 
"SUBSTITUTE FLAG",X4,@-24, % SKIP BACK TO GET 

% SUBS FLAG 
T(BINARYOUT800,A3,1),X18,"DELINQUENT FLAG", 
X4,X4,@+12, % SKIP FORWARD TO GET DELINQUENT 

% FLAG 
T(BINARYOUT800,A3,1)). 

PROGRAM SAMPLE USER: 
TITLE = GEMCOSPACK/GEMCOS/SAMPLE. 
TRANCODE = CUSTIN. 

STATION TD7A: 
TRANCODEPOSITION = 1. 

STATION TD7B: 
TRANCODEPOSITION = 1. 

STATION TD7C: 
TRANCODEPOSITION = 1. 

STATION TDBA: 
TRANCODEPOSITION = 1. 

STATION TDSB: 
TRANCODEPOSITION = 1. 

DEVICE TD700: 
STALIST = TD7A, TD7B, TD?C. 
FORMATSOUT: 

OUT700 = ARINFO. 

4 - 11 



END. 

DEVICE TD800: 
STALIST = TD8A, TD8B. 
FORMATSOUT: 

OUT800 = ARINFO. 

With the new stations properly defined, the application program does not 
have to specify the type of terminal its response is to be sent to. 
When it sends a message to the MCS with the format-ID set to ARINFO, the 
MCS uses the appropriate format for the specific device type. If the 
message is in route to station TD7A, TD7B, or TD7C, it appears on the 
screen exactly as in the previous example. However, if it is going to 
TD8A or TD8B, the MCS uses format OUT800 and displays the message 
depicted in Figure 4-3. 

CUSTOMER NAMEt THE WILSON FOOD STORES 

ACCOUNT NUMBER 220030 
TEIMS 30 DAY 
ADDON RATE 9\ 
DATE LAST INVOICED 08/01/77 
CREDIT LIMIT 20,000 
PRICE CODE 2 
WAREHOUSE Al 
SUBSTITUTE FLAG YES 

'l'O'l'AL A/R BALANCE 
CURRENT 
OVER 7 DAYS 
OVER 14 DAYS 
OVER 21 DAYS 
OVER 28 DAYS 
CREDIT 
DELINQUENT FLAG 

Figure 4-3. Sample Formatted Output 
for TD830 Terminal 

4 - 12 

15,365.50 
8,420.10 

824.10 
3,281.10 

.oo 
2,840.20 

.oo 
YES 



INPUT FORMATTING EXAMPLE 

Expanding the example described above, assume the program needs a 
message with the following three fields: a 6-character transaction-code 
field containing GUSTIN, a 6-digit field containing the customer account 
number, and a 1-digit flag informing the program whether to include 
aging of the account balance in the response (1 =YES; 0 =NO). Two 
input formatting requirements are: to build a form on the screen for the 
operator to fill with in the required information, and to form the data 
transmitted from the terminal for the application program. 

The first objective is met by defining an output format which builds the 
form on the screen. This format (like all output formats) can be sent 
to the station by two means. It is sent when an application program 
sends a message to that terminal with the format-ID of the header set to 
the appropriate format-ID for that format, or when the terminal operator 
keys in the format-ID directly. If it comes from a program, it is 
filled with the data sent from the program. If the request comes from 
the station, the format is sent to the station as if a program had sent 
that format with the data area containing all spaces. Thus, the input 
form for the TD 700 terminals could be built using the following format: 

EMPTY 700 C 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

"[CUSTIN]",4"0D", 
% LINE 2 

"CUSTOMER ACCOUNT NUMBER",X2,"[",A6,"]", 
% LINE 3 

"RECEIVABLE AGING INFO? [",A3,"]", 
4"1200000005000000"). % PUT TERMINAL IN FORMS 

% MODE AND TAB ONCE 

The DEVICE section for the TD700s must also be changed to read: 

DEVICE TD700: 
STALIST = TD7A, TD7B, TD7C. 
FORMATSOUT: 

OUT700 = ARINFO. 
EMPTY700 = CSTFRM. 

Figure 4-4 depicts the display that would be sent by the MCS in response 
to the forms request (when the terminal operator transmits CSTFRM). 

4 - 13 



[CUSTINJ 
CUSTOMER ACCOUNT 
RECEIVABLE AGING 

NUMBER [ 
INFO? [ 

Figure 4-4. Sample Input Form 
for TD700 Terminal 

The format for the TD830 terminals is the same except for the form left 
delimiter and right delimiter which are [ and ], respectively, on the 
TD700 and 4"IF" and 4"1E" on the TD 830. Thus, the format can be 
described as follows: 

EMPTY800 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

4"1F","CUSTIN",4"1EOD", 
% LINE 2 

"CUSTOMER ACCOUNT NUMBER",X2,4"1F",A6,4"1EOD", 
% LINE 3 

"RECEIVABLE AGING INFO? ",4"1F",A3,4"1E", 
4"27E6000005000000"). % PUT TERMINAL IN FORMS 

% MODE AND TAB ONCE 

The DEVICE section for the TD830 device would be: 

DEVICE TD800: 
STALIST = TD8A, TD8B. 
FORMATSOUT: 

OUT800 = ARINFO. 
EMPTY800 = CSTFRM. 

Thus, when the operator transmits CSTFRM from a TD830, the MCS returns 
the display depicted in Figure 4-5. 

It is also necessary to format the message from the station for the 
application program. The same format for both the TD700 and the TD830 
can be used since both send data in the same format (CUSTIN followed by 

4 - 1 4 



six characters of account number, followed by three characters to 
indicate whether the response is to include aging information). 

Since the program expects a 1 or 0 for the aging flag, a function is 
used to allow the operator to enter YES, Y (or 1 for 1), and to enter 
NO, N (or 0 for 0). This function is as follows: 

FUNCTION 
EXTERNAL:ALPHA,INTERNAL:INTEGER [EXTERNAL:ALPHA, 

INTERNAL:INTEGER] ( 
"YES" :"1 ", 
"Y": "1 ", 
II 1 II : II 1 H t 

"NO": "O", 
"N": "O", 
"O": "O"). 

Now the format appears as follows: 

FORMAT 
IN ( 

A6,I6,T(BINARYIN,A3,1)). 

4 - 1 5 



(COSTIN) 
CUSTOMER ACCOUNT NUMBER ( 
RECEIVABLE AGING INFO? [ 

Figure 4-5. Sample Input Form 
for TD830 Terminal 

Finally, this format must be added to the FORMATSIN portion of the 
device description of both the TD700 and the TD830. The TCL is as 
follows: 

CONTROL = REGENERATE, LIST. % IT IS NOT REQUIRED TO GENERATE 
% AND COMPILE THE MCS SINCE WE ARE ONLY CHANGING 
% FUNCTION, FORMAT, STATION AND DEVICE DEFINITIONS. 

GLOBAL: 
CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
STATUSREPORTS = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 
FUNCTION 

TERMS [EXTERNAL:ALPHA,INTERNAL:ALPHA] ( 
" 7 DAY": "7", 
"10 DAY":"1", 
"30 DAY": "3", 
"COD ":"C"), 

4 - 16 



EXTERNAL:ALPHA,INTERNAL:INTEGER 
[EXTERNAL:ALPHA,INTERNAL:INTEGER] ( 

"Y" : "1 " , 
"N":"O"), 

EXTERNAL:ALPHA,INTERNAL:INTEGER 
[EXTERNAL:ALPHA,INTERNAL:INTEGER] ( 

"YES": "1 II' 
"NO":"O"), 

EXTERNAL:ALPHA,INTERNAL:INTEGER 
[EXTERNAL:ALPHA,INTERNAL:INTEGER] ( 

"YES II : II 1 II ' 

"Y": II 1 II' 
ti 1 It : II 1 II ' 

"NO": "O", 
"N":"O", 
"O":"O"). 

FORMAT 
OUT700 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

X1 ,A30,X1, 
% LINE 2 

"ACCT-",I6,X2,"TOTAL",X4,A10, 
% LINE 3 

11 TERMS- 11 ,T(TERMS,A6,1),X1,"CURRENT",X2,A10, 
% LINE 4 

"ADDON-",A3,X4,"0VER 7",X2,A10, 
% LINE 5 

"L/I-" ,A8,X1, "OVER 14" ,X2,A10, 
% LINE 6 

"LIMIT-" ,A6,X1, "OVER 21 ",X2,A10, 
% LINE 7 

"PRICE-" ,I1 ,X1, "DF-" ,T(BINARYOUT700,A1, 1) ,X1, "OVER 28", 
X2,A10, 

% LINE 8 
"WHSE-" A2 X1 "SUB-" T(BINARYOUT700 A1 1) X1 "CREDIT" ''' ' '' '' ' X2,A10,0UT800 ( 4"0COOOO", % CLEAR SCREEN AND 

% HOME CURSOR 
% LINE 1 

X17,"CUSTOMER NAME:",X2,A30,4"0D", % 4"0D" IS CARRIAGE 
% RETURN 

% LINE 2 
4"0D", % LEAVE BLANK LINE 

% LINE 3 
"ACCOUNT NUMBER",X5,I6,X15,"TOTAL A/R BALANCE",X2,A10, 
4"0D", 

% LINE 4 
"TERMS", X1 4, T (TERMS, A6, 1 ) , X1 5, "CURRENT", X11 , A 10, 4 "OD", 

% LINE 5 
"ADDON RATE",X9,A3,"%",X17,"0VER 7 DAYS",X7,A10,4"0D", 

% LINE 6 

4 - 1 7 



"DATE LAST INVOICED",X1 ,A8,X13,"0VER 14 DAYS",X7,A10, 
4 "OD", 

% LINE 7 
"CREDIT LIMIT",X7,A3,",",A3,X14,"0VER 21 DAYS",X7,A10, 
4 "OD", 

% LINE 8 
"PRICE CODE",X9,I1,@+1, % SKIP OVER SUBSTITUTE 

% FLAG 
X20,"0VER 28 DAYS",X7,A10,4"0D", 

% LINE 9 
"WAREHOUSE",X10,A2,@+1, % SKIP OVER DELINQUENT 

% FLAG 
X19,"CREDIT",X13,A10,4"0D", 

% LINE 10 
"SUBSTITUTE FLAG",X4,@-24, % SKIP BACK TO GET SUBS 

% FLAG 
T(BINARYOUT800,A3,1),X18,"DELINQUENT FLAG", 
X4,X4,@+12, % SKIP FORWARD TO GET DELINQUENT FLAG 
T(BINARYOUT800,A3,1)), 

EMPTY700 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

"[CUSTIN]",4"0D", 
% LINE 2 

"CUSTOMER ACCOUNT NUMBER",X2,"[",A6,"]", 
% LINE 3 

"RECEIVABLE AGING INFO? [",A3,"]", 
4"1200000005000000"), % PUT TERMINAL IN FORMS 

% MODE AND TAB ONCE 
EMPTY800 ( 4"0COOOO", % CLEAR SCREEN AND HOME CURSOR 
% LINE 1 

4" 1 F II , II CUST IN II , 4II1 EOD II , 
% LINE 2 

"CUSTOMER ACCOUNT NUMBER 11 ,X2,"1F 11 ,A6,4"1EOD 11 , 

% LINE 3 
. "RECEIVABLE AGING INFO? "4 11 1F" ,A3,4"1E 11 , 

IN ( 

BEGIN 

4"27E6000005000000 11
), % PUT TERMINAL IN FORMS MODE 

% AND TAB ONCE 

A6,I6,T(BINARYIN,A3,1)). 

PROGRAM SAMPLE USER: 
TITLE = GEMCOSPACK/GEMCOS/SAMPLE. 
TRANCODE = CUSTIN. 

STATION TD7A: 
TRANCODEPOSITION = 1. 

STATION TD7B: 
TRANCODEPOSITION = 1. 

STATION TD7C: 
TRANCODEPOSITION = 1. 

STATION TD8A: 
TRANCODEPOSITION = 1. 

STATION TD8B: 

4 - 18 



END. 

TRANCODEPOSITION = 1. 
DEVICE TD700: 

STALIST = TD7A, TD7B, TD7C. 
FORMATSIN: 

IN = CUSTIN. 
FORMATSOUT: 

OUT700 = ARINFO. 
EMPTY700 = CSTFRM. 

DEVICE TD800: 
STALIST = TDBA, TD8B. 
FORMATSIN: 

IN = CUSTIN. 
FORMATSOUT: 

OUT800 = ARINFO. 
EMPTYSOO = CSTFRM. 

Figure 4-6 depicts the filled-in input form. When transmitted, the MCS 
receives CUSTIN12345 YES. The MCS first checks for a trancode and 
determines that this message is to be sent to the program 
GEMCOSPACK/GEMCOS/SAMPLE because the trancode is CUSTIN. The MCS then 
formats the message using the format IN, since the Device section 
associates the format IN with the format-ID CUSTIN. After formatting 
with format IN, the message is CUSTIN0123451. This message is then sent 
to the application program. 

[CUSTIN] 
CUSTOMER ACCOUNT 
RECEIVABLE AGING 

NUMBER [ 12345 
INFO? [YES] 

Figure 4-6. Sample Filled-In Input Form 

MESSAGE ROUTING 

The concept of message routing covers 
programs, and messages from programs 
involves a message sent from a station 
is finished, it returns a response to 

both messages 
to stations. 

to a program. 
the station. 

4 - 19 

from stations to 
The usual case 
When the program 

GEMCOS uses remote 



files, common-area headers, and transaction codes to route messages to 
application programs. 

USING REMOTE FILES 

Remote files link application programs 
designer uses the FAMILY statement in the 
(NDL) to associate a group of stations with 
identified by a number which corresponds to 
declared in the FAMILY statement. 

and stations. The network 
Network Definition Language 
a remote file. Stations are 
the order in which they were 

The application program opens a remote file, and those stations declared 
in the FAMILY statement are then attached to that remote file. From 
then on, the Network Controller routes messages from those stations only 
to that program that opened the remote file. 

Messages are exchanged in the record area of that file. In COBOL, an 
actual key can be used to exchange information about the message (such 
as message type, message length, source, destination station.) Use the 
actual key in COBOL only to specify the text size of an outgoing 
message. 

USING COMMON-AREA HEADERS 

GEMCOS offers a common-area header option. This option offers parts of 
the standard remote file interface. The common-area header appears in 
the record area of a file in front of the message. 

When the common-area header is selected, the MCS attaches the 
common-area header to each message sent to an application program and 
removes it from each message received from an application program, so 
that this header does not accompany the message on the Network 
Controller side of the MCS. 

When an application program receives a message from the MCS, the Logical 
Station Number (LSN) field in the common-area header is set to the 
originating station. If the LSN has not been changed at the time the 
application program returns a message to the MCS, the MCS routes the 
message to the same station. 

But if the application program needs the response sent to another 
station, the LSN field is changed to the correct value for that station. 
See Section 2 for additional information on using common-area headers. 

4 - 20 



USING TRANSACTION-BASED ROUTING 

Transaction-based routing (TBR) is another optional method of routing 
messages from the MCS to application programs. In this method of 
routing, each message has a transaction code, which can occur anywhere 
in the message text. 

A group of transaction codes is associated with each application 
program. Therefore, a message with a certain transaction code is always 
routed to the same program, regardless of where the program originated. 

Within the limits of security restrictions, a station can send a message 
to any program by including in the message one of the transaction codes 
associated with that program. 

If a message does not have a transaction code or if the transaction code 
is invalid, the message is sent to the program attached to the 
originating station. If no program is attached to that station, the 
message is rejected. 

SELECTING A METHOD OF MESSAGE ROUTING 

The method used by the GEMCOS MCS to route messages to application 
programs is determined by: 

1. The program classification (i.e., Assignment, Utility, User, 
or Pass) specified in the Program section. 

2. The type of interface (i.e., Nonparticipation, Participation, 
or MCS) specified in the INTERFACE statement. 

Thus, 10 combinations of program classification and interface are 
possible: three interfaces for assignment programs, three interfaces for 
utility programs, one interface (Participation) for user programs, and 
three interfaces for pass programs. The following example lists all 10 
meaningful TCL descriptions. 

4 - 21 



Example: 

PROGRAM X1 UTILITY: 
TITLE = X. 
INTERFACE = NONPARTICIPATION. 
RESIDENCE = DISK. 

PROGRAM X2 UTILITY: 
TITLE = X. 
INTERFACE = MCS. 
OPENMESSAGE = TRUE. 
ATTACHMESSAGE = TRUE. 
RESIDENCE = DISK. 

PROGRAM X3 UTILITY: 
TITLE = X. 
INTERFACE = PARTICIPATION. 
COMMONSIZE = 100. 
TRANCODE = X(1,1). 
OPENMESSAGE = TRUE. 
ATTACHMESSAGE = TRUE. 
DETACHMESSAGE = TRUE. 
RESIDENCE = DISK. 

PROGRAM X4 USER: 
TITLE = X. 
INTERFACE = PARTICIPATION. 
COMMONSIZE = 100. 
TRANCODE = X(1,1). 
OPENMESSAGE = TRUE. 
RESIDENCE = DISK. 
EXECUTE = ONDEMAND. 

PROGRAM X5 ASSIGNMENT: 
TITLE = X. 
INTERFACE = MCS. 
OPENMESSAGE = TRUE. 
RESIDENCE = DISK. 

PROGRAM X6 ASSIGNMENT: 
TITLE = X. 
INTERFACE = NONPARTICIPATION. 
RESIDENCE = DISK. 
EXECUTE = MANUAL. 

4 - 22 

% OPTIONAL 

% OPTIONAL 

% OPTIONAL 

% OPTIONAL 
% OPTIONAL 
% OPTIONAL 

% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 

% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 

% OPTIONAL 

% OPTIONAL 
% OPTIONAL 

% OPTIONAL 

% OPTIONAL 
% OPTIONAL 



PROGRAM X7 ASSIGNMENT: 
TITLE = X. 
INTERFACE = PARTICIPATION. 
COMMONSIZE = 100. 
TRANCODE = X(1,1). 
OPENMESSAGE = TRUE. 
RESIDENCE = DISK. 
EXECUTE = BOJ. 

PROGRAM X8 PASS: 
TITLE =X. 
INTERFACE=MCS. 
RESIDENCE = DISK. 

PROGRAM X9 PASS: 
TITLE = X. 
INTERFACE = NONPARTICIPATION. 
RESIDENCE = DISK. 
EXECUTE = MANUAL. 

PROGRAM X10 PASS: 
TITLE = X. 
INTERFACE = PARTICIPATION 
COMMONSIZE = 100. 
TRANCODE = X(1,1). 
RESIDENCE = DISK. 
EXECUTE = BOJ. 

% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 

% OPTIONAL 

% OPTIONAL 

% OPTIONAL 

% OPTIONAL 
% OPTIONAL 

% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
% OPTIONAL 
%OPTIONAL 
% OPTIONAL 

Several general comments apply to these TCL descriptions: 

1. More than one TRANCODE statement is allowed where a TRANCODE 
statement is optional or required. 

2. In a Program description, no PROGRAM statement may occur more 
than once. 

3. The following defaults are in effect: 

a. The default for OPENMESSAGE, ATTACHMESSAGE, and 
DETACHMESSAGE is FALSE. 

b. The default for RESIDENCE is CORE. 

c. The default for COMMONSIZE is 60. 

d. The default for INTERFACE is PARTICIPATION. 

e. The default for EXECUTE is MANUAL. 

4 - 23 



Each program uses one of the 10 possible combinations best. The 
following discussion explains how to use the TCL to describe the program 
to GEMCOS in different situations. 

For example, a program which was written prior to acquiring GEMCOS might 
not require any GEMCOS options other than the capability of remote 
execution by authorized personnel. This program needs to be described 
in the TCL as X1. Its program name should be associated in the 
ACCESSCONTROL statement with access keys which are then assigned to 
authorized persons. Since the program is defined as a utility program, 
it can be executed from any station. Since it uses the Nonparticipation 
interface, it does not have to be recompiled to conform to the GEMCOS 
common-area header or to the B 1700/B 1800 MOS/Network Controller 
interface. 

In another case, the user may be using CANDE and ODESY, which are MCS 
programs, and station operators would like the ability to switch between 
these programs. Without GEMCOS, both CANDE and ODESY must be shut down 
and brought back up to switch a station. This is very inconvenient to 
the rest of the station operators. However, if both CANDE and ODESY are 
defined as X2 programs, GEMCOS, as a supervisory MCS, can switch a 
station between these two MCS programs on demand from the station 
without interrupting the rest of the stations. Since sessions with 
CANDE and ODESY are to be initiated remotely, they are described as 
utility programs. Since both are MCS programs, they must use the MCS 
interface. 

In a third situation, the user might want to design a program which 
could be initiated remotely and take advantage of the GEMCOS formatting 
capability. To support remote execution, this program must be a utility 
program. If formatting is to take place, trancodes must be defined, and 
a common-area header is required. The X3 TCL description would be used. 

Another situation might arise in which there are several stations, each 
requiring access to several data bases. It would be undesirable to have 
one large program handle all of the data bases. Conversely, writing 
several small modular programs for each data base would be more 
efficient, but would require the user to repeatedly execute and halt 
these programs. This is an especially awkward and time-consuming 
process for rarely-used programs that process only a few transactions 
before the next program must be executed. 

The preferable solution is to assign trancodes for each data-base 
accessing method, write modular programs to handle these trancodes, 
place these programs in the mix (possibly as disk-resident programs), 
and describe a series of X4 programs in the TCL. The trancodes would be 

4 - 24 



used to switch messages from any of the stations to any of the programs 
(and could be used to take advantage of formatting). 

In a fifth situation, the user may have the Remote Job Entry (RJE) 
package. RJE is an MCS which requires a line to a host system. It is 
executed from the supervisory console printer or a card reader, not by 
the host system. If the host system is occasionally used by some 
program other than RJE which runs under GEMCOS, the host system would 
have to be included in the remote file opened by GEMCOS. GEMCOS would 
allow RJE to gain access to the host system, if RJE was described as a 
X5 program. RJE uses the MCS interface and normally communicates with 
the same station, making it an assignment program. 

Finally, in certain applications, the program attaches itself to 
stations. It is either undesirable or impossible for stations to 
initiate the program. Perhaps a station is to be dedicated to a program 
or the station is an output-only device. Programs which determine the 
message routing via remote file attachment can be accommodated by being 
described as either an X6 or X7 program. If no GEMCOS capabilities are 
required, the X6 description suffices. If GEMCOS is to provide 
functions (such as formatting, audit, screen wraparound ) for the 
program, the X7 description is necessary. 

NON-STANDARD ROUTING 

Non-standard routing includes the cases in which messages are routed by 
trancode from station to station, program to station, or program to 
program. Note that recovery is not defined for these cases. 

Station To Station 

The originating station must enter a trancode assigned to the 
destination station. The message will be routed to the destination, and 
any response must be explicitly sent by the user of this station. 

Routing From Programs 

In order for a program to route a message using a trancode, or to any 
place other than the originator, the MSGDESTINATION field in the 
common-area header must,be set. This field not only specifies the 
immediate type of routing, but also indicates what to do with the 
response. Following is a description of the possible values of the 
MSGDESTINATION field: 

4 - 25 



Value Definition 

0 

2 

3 

4 

5 

Send to station indicated in LSN field (final 
destination). 

Send to program indicated in PGMNBR field (final 
destination). 

Route by trancode (final destination). 

Route by trancode (destination should be a program; 
response to be sent to specified LSN; GEMCOS will 
set MSGDESTINATION field in common-area header to 0 
and set LSN field to LSN supplied by the program in 
the common-area header before sending the message). 

Route by trancode (destination should be a program; 
response to be sent to originating program; GEMCOS 
will set MSGDESTINATION field in common-area header 
to 1 and set PGMNBR field to originating program 
number before sending the message). 

This value is set by GEMCOS to indicate that this 
message came from a routeheader station. 

If a message is routed to a program via TBR (DEST-TYPE is 3 or 4), 
GEMCOS would change DEST-TYPE to 0 or 1 before sending the message; 
i.e., the receiving program does not need to do anything to the 
common-area header in order to return the message to the originator. 

If the request cannot be handled (for example, requested program is not 
running or requested station is busy), an error message would be 
returned to the requesting program. See the definition of the ERROR 
field in Common-Area Header in Section 2 for a list of possible error 
codes. 

NOTE 

It is the responsibility of the program to keep 
track of the LSN when routing a message to another 
program. The PGMNBR field redefines the LSN field. 

4 - 26 



Examples: 

Assume the following TCL: 

BEGIN 
PROGRAM PROGRAM1 USER: 

TRANCODE = PROG1. 
TRANCODEPOSITION = 1. 

PROGRAM PROGRAM2 USER: 
TRANCODE = PROG2. 
TRANCODEPOSITION 1. 

STATION STATION1: 
TRANCODE = STA 1 • 
TRANCODEPOSITION = 1. 

STATION STATION2: 
TRANCODE = STA2. 
TRANCODEPOSITION = 1. 

Example (STATION1 to STATION2): 

1 • Operator at STATION1 
operator at STATION2. 
the trancode "STA2". 

wants to send a message to 
He prece~es his message with 

2. GEMCOS sends the message to STATION2. 

Example 2 (STATION1 to PROGRAM1 to PROGRAM2 to STATION1): 

1. Operator at STATION1 sends data with trancode of 
PROG1. 

2. GEMCOS routes the message to PROGRAM1. 

3. PROGRAM1 receives the message. It cannot process 
it, so it places a 3 in MSGDESTINATION (TBR and 
return to station), places a trancode of PROG2 in 
front of the message, and sends it. 

4 - 27 



4. GEMCOS changes MSGDESTINATION to 0 and routes the 
message to PROGRAM2. 

5. PROGRAM2 processes the message, and sends it; it 
does not need to alter MSGDESTINATION, as it was set 
to 0 by GEMCOS. 

6. GEMCOS routes the message to STATION1. 

Example 3 (STATION1 to PROGRAM1 to STATION2 and STATION1 ): 

1. Operator at STATION1 enters data with a trancode of 
PROG1. 

2. GEMCOS routes the message to PROGRAM1. 

3. PROGRAM1 receives the message. This transaction 
indicates that the system will soon need to come 
down. The other station must be warned, so PROGRAM1 
sends a warning by setting the MSGDESTINATION to 2 
(TBR - final destination), setting the trancode to 
STA2, and sending the message. PROGRAM1 then 
finishes processing, restores the MSGDESTINATION to 
O, and sends the final results. 

4. GEMCOS routes the warning message to STATION2, and 
routes the results of the transaction back to 
STATION1. 

Example 4 (STATION1 to PROGRAM1 to PROGRAM2 to PROGRAM1 to 
STATION1): 

1. Operator at STATION1 enters the trancode PROG1 along 
with his data. 

2. GEMCOS routes the message to PROGRAM1. 

PROGRAM2 receives the 
message, it is found 
needed which is in a 
PROGRAM2. It places 
return to program), 
trancode of PROG2. 

message. In processing the 
that certain information is 
data base available only to 
4 in MSGDESTINATION (TBR and 

and sends its data with a 

4. GEMCOS changes the MSGDESTINATION to 1 (return to 
indicated program - final destination), and sends to 
PROGRAM2. 

4 - 28 



5. PROGRAM2 receives 
sends the results; 
have to be altered 
GEMCOS. 

the message, processes it, and 
note that MSGDESTINATION did not 

because it was set to 1 by 

6. GEMCOS routes the message to PROGRAM1. 

7. PROGRAM1 finishes processing, 
MSGDESTINATION in the common-area 
sends the final results. 

restores the 
header to 0 and 

8. GEMCOS sends the message back to STATION1. 

4 - 29 



SECTION 5 

USING PORT FILES 

Port file communication is an asynchronous movement of data which 
proceeds directly from a program to the queues maintained by the Master 
Control Program (MCP). Port files allow GEMCOS on one computer to 
commmunicate with GEMCOS on other computers using Burroughs Network 
Architecture (BNA). They also allow communication between programs on 
the same computer. This feature is only available with the 12.00 
release (or later) of the MCP. 

USING STATIONS AS PORTS 

A user can declare stations as ports rather than as data communications 
stations. To do this, the PORT STATION statement in the TCL is set to 
TRUE. 

In this situation, the user also needs a program which emulates a port 
station and has a port file. The user's program needs to: 

1. Specify KIND = PORT. 
2. Have an internal name of HOSTPORT. 
3. Have a default name of GEMPORT. 

USING PORT PROGRAMS 

In the Program section of the TCL, users can declare programs which use 
port files rather than remote files. To do this, the PROGRAM TYPE is 
set to PORT. 

In this case, users also must have a program which emulates a port 
program. This program must have a port file (specify KIND = PORT) with 
the name TPPORT. 

The MAXCOPIES attribute of a port program is always set to 1. 

5 - 1 



A port program can be executed in three ways: 

1. Manually, from a Control station. 
2. At beginning-of-job. 
3. By using the ON DEMAND option. 

After the port program has been executed, GEMCOS opens a subport of the 
port file TPPORT. In order to communicate with GEMCOS, the matching 
port file in the port program also must be opened. 

If only one of these port files has been opened, the program with the 
open port file waits for the matching port to be opened. The status of 
this program is: WAIT FOR PORT OPEN. 

The user can stop any port program by entering a HAP command at any 
Control station. When this is done, GEMCOS sends a message (see Message 
27) which tells the program to go to end-of-job and to close its 
associated subport. The program must close its subport and stop running 
if it receives 'this message from GEMCOS. 

The following shows how the port file interface is written in the TCL. 

PROGRAM E PORT: 
INTERFACE = 
TITLE 
TRANCODE 
COMMONSIZE = 
PORT SIZE 
HOST 

PARTICIPATION. 
PORTPROG. 
XFER. 
60. 
500. 

= LABASE. % 
% 
% 
% 

IF HOST STATEMENT IS NOT 
DECLARED, THE LOCAL HOST 
ON WHICH GEMCOS IS EXECUTING 
IS USED. 

For additional information, see 
files, port stations, and port 
Section 2 of this manual. 

the TCL statements 
programs. These 

concerning port 
statements are in 

SUMMARY OF PORT FILE STATEMENTS IN THE TCL 

The Global section of the TCL has one statement used with port files, 
the MYNAME statement. 

5 - 2 



The Program section contains information on how to specify a port 
program. The HOST and PORTSIZE statements, which apply to port 
programs, are also in this section. 

Four statements in the Station section are used with the port file 
interface. They are: 

1. The PORTSIZE statement. 
2. The PORTSTATION statement. 
3. The STATIONHOSTNAME statement. 
4. The STATIONYOURNAME statement. 

In addition, several Network Control Commands are used with port files. 
They include: 

1. The ENABLE PORT STATIONS (EPS) command. 

2. The DISABLE PORT STATIONS (DPS) command. 

3. Two commands for updating port programs: 

a. UPDATE STATION HOSTNAME command. 
b. UPDATE STATION YOURNAME command. 

Please refer to Section 3 for additional information on these Network 
Control Commands. 

For more information on port files, please refer to: 

Burroughs Network Architecture, 
Reference Manual. 

Architectural Description 

Burroughs Network Architecture, Network Control Reference 
Manual. 

B 1000 Burroughs Network Architecture 
Operations Manual. 

5 - 3 

Installation and 



SECTION 6 

SELECTING OPTIONS FOR ACCESS CONTROL (SECURITY) 

B 1000 GEMCOS provides for both access security and process security. 
Access security prevents unauthorized persons from using the system. 
Process security limits the functions an authorized person is allowed to 
perform. 

ACCESS SECURITY 

Access security is implemented by requiring a user to sign on with a 
valid usercode (access key) before the station accepts any messages. 
The same user code also can be used to sign on at several stations 
simultaneously. 

Some stations may already be physically secure. Therefore, signing-on 
is not necessary at all stations. Each installation can specify which 
stations do not require signing-on. 

A list of active usercodes is defined in the TCL and is stored in the 
MCSTIC file of the TCL compiler. The TCL compiler also updates the list 
of active usercodes. At any time, a station may be enabled or disabled. 
If the station is disabled, a user cannot sign on until the station is 
enabled again. 

Usercodes can also be restricted to a specified station or stations. A 
user is allowed to sign on only if the following conditions are met: 

1. The station requires sign-on. 
2. The station is not already signed on. 
3. The user enters a valid usercode. 
4. The access code entered is valid at the station being used. 

PROCESS SECURITY 

GEMCOS offers two types of process security. Transaction 
limits which transaction codes a signed-on user can enter. 
security is used when messages do not have transaction codes. 

6 - 1 

security 
Program 



A usercode can be limited to any combination of stations, trancodes, or 
programs. As usercodes are defined in the TCL, they are associated with 
a list of valid transaction codes and program identifiers. When users 
sign on, they are restricted to those transactions or programs 
associated with their usercode in the TCL. 

DEFINING ACCESS CONTROL IN THE TCL 

Access control is defined in three sections of the TCL. 
section defines each program and the transaction codes for 
The ACCESS CONTROL statement defines the access codes, the 
the transaction codes that each access code can use. 
section defines the stations in the network and the 
required to sign on at each station. 

The Program 
each program. 
programs, and 

The Station 
access codes 

A GEMCOS MCS for an on-line system with three programs (a user program 
with trancodes UPDATE and INQ, a user program with trancode EDIT, and a 
utility program) could be generated without security using the following 
TCL deck: 

CONTROL = GENERATE, LIST, COMPILE. 
GLOBAL: 

CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 

BEGIN 
PROGRAM PAYROLL USER: 

TITLE = PAYROLL. 
TRANCODE = UPDATE. 
TRANCODE = INQ. 

PROGRAM TEXTEDIT USER: 
TITLE= USERPACK/TEXTEDIT/. 
TRANCODE = EDIT. 

PROGRAM GAME UTILITY: 
TITLE = GAME. 

STATION TD8A: 
STATION TD8B: 
STATION TD8C: 

END. 

The following TCL deck can be used 
system. Each person is required to 
code before using the system. Once 
is permitted to use any program or 
any station. 

to add user codes to this sample 
sign on to GEMCOS with a valid user 
signed on, the user in this example 
trancode. The user may sign on at 

6 - 2 



CONTROL = GENERATE, LIST, COMPILE. 
GLOBAL: 

CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 

BEGIN 

END. 

ACCESSCONTROL: 
ACCESSKEY JOE = ALL. 
ACCESSKEY JIM = ALL. 
ACCESSKEY TOM = ALL. 

PROGRAM PAYROLL USER: 
TITLE = PAYROLL. 
TRANCODE = UPDATE. 
TRANCODE = INQ. 

PROGRAM TEXTEDIT USER: 

% ALL MEANS THIS 
% ACCESSCODE IS 
% ALLOWED TO USE ALL 
% PROGRAMS AND 
% TRANCODES. 

TITLE= USERPACK/TEXTEDIT/. 
TRANCODE = EDIT. 

PROGRAM GAME UTILITY: 
TITLE = GAME. 

STATION TD8A: 
SIGNON = TRUE. 
VALIDACCESSKEYS = ALL. 

STATION TD8B: 
SIGNON = TRUE. 
VALIDACCESSKEYS = ALL. 

STATION TD8C: 
SIGNON = TRUE. 
VALIDACCESSKEYS = ALL. 

% ALL MEANS ALL 
% USERCODES CAN 
% SIGN ON AT 
% THIS STATION 

6 - 3 



The preceding TCL deck provides three access codes: JOE, JIM, and TOM. 
All three codes can be used at any station and, once signed on at any 
station, any program or transaction code can be used. A more 
restrictive system can be defined. For example, user code TOM could be 
restricted to trancode EDIT only, and user code JIM to trancode INQ and 
program GAME, while allowing user code JOE to use all trancodes and 
programs. The TCL deck with this more restrictive access security 
scheme would be as follows: 

CONTROL = GENERATE, LIST, COMPILE. 
GLOBAL: 

CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 

BEGIN 

END. 

ACCESSCONTROL: 
ACCESSKEY JOE ALL. 
ACCESSKEY JIM = INQ, GAME. 
ACCESSKEY TOM = EDIT. 

PROGRAM PAYROLL USER: 
TITLE = PAYROLL. 
TRANCODE = UPDATE~ 
TRANCODE = INQ. 

PROGRAM TEXTEDIT USER: 
TITLE= USERPACK/TEXTEDIT/. 
TRANCODE = EDIT. 

PROGRAM GAME UTILITY: 
TITLE = GAME. 
STATION TD8A: 
SIGNON = TRUE. 
VALIDACCESSKEYS ALL. 

STATION TD8B: 
SIGNON = TRUE. 
VALIDACCESSKEYS ALL. 

STATION TD8C: 
SIGNON = TRUE. 
VALIDACCESSKEYS ALL. 

6 - 4 



Finally, certain user codes may be restricted to particular stations. 
For example, to allow JIM to sign on only at station TD8A, JOE at TD8A 
and TD8C, and TOM at all three stations, the TCL deck would be as 
follows: 

CONTROL = GENERATE, LIST, COMPILE. 
GLOBAL: 

CHANGEREQUESTS = TRUE. 
PROGRAMBOJEOJ = TRUE. 
SYSTEMHALT = TRUE. 
MAXTEXTSIZE = 1980. 

BEGIN 

END. 

ACCESSCONTROL: 
ACCESSKEY JOE = ALL. 
ACCESSKEY JIM = INQ, GAME. 
ACCESSKEY TOM = EDIT. 

PROGRAM PAYROLL USER: 
TITLE = PAYROLL. 
TRANCODE = UPDATE. 
TRANCODE = INQ. 

PROGRAM TEXTEDIT USER: 
TITLE= USERPACK/TEXTEDIT/. 
TRANCODE = EDIT. 

PROGRAM GAME UTILITY: 
TITLE = GAME. 

STATION TD8A: 
SIGNON = TRUE. 
VALIDACCESSKEYS ALL. 

STATION TD8B: 
SIGNON = TRUE. 
VALIDACCESSKEYS TOM. 

STATION TD8C: 
SIGNON = TRUE. 
VALIDACCESSKEYS = JOE, TOM. 

6 - 5 



SECTION 8 

TESTING, PATCHING, TIMING, AND DEBUGGING 

This section discusses programs and procedures to use in testing, 
patching, timing, and debugging GEMCOS. The first of these programs is 
MCSSIM, an auxiliary program used to test a GEMCOS MCS. 

TESTING 

The program MCSSIM makes it possible 
user MESS code, without the presence of 
network. Inputs are simulated using 
listed on a line printer. 

to test a GEMCOS MCS, including 
a Network Controller or a remote 

a card reader and outputs are 

The MCS runs in simulation mode when the SIMULATION statement is 
specified with a value of TRUE. In simulation mode, the MCS changes the 
device type of MCSQUEUE from a remote file to a queue file. Hence, 
input message traffic no longer comes from the network but from any 
program writing into a queue file labeled MCSQUEUE. MCSSIM is such a 
program. The source of MCSSIM is MCSIMS. 

MCSSIM expects a card file labelled MCSSIMCRD. The format of MCSSIMCRD 
is closely related to the B 1000 MCS/Network Controller interface. The 
MCS/NC interface consists of a series of message types, each having an 
explicit function. For a definition of these message types, refer to 
the B 1000 Systems Network Definition Language (NDL) Reference Manual. 
The user should be familiar with the MCS/Network Controller interface 
before attempting to use a GEMCOS MCS in simulation mode. 

MCSSIM reads cards in a format defined by the MCS/Network Controller 
interface and builds a record to be sent to the MCS. The information 
for each record to be sent to the MCS must be punched beginning in card 
column 1, extending to column 80, and onto succeeding cards if 
necessary. Column positions of the cards correspond directly to byte 
positions of the message types. MCSSIM is able to determine how many 
cards are required, concatenating the card images into the record to be 
placed into MCSQUEUE. 

For example, if a station-status reply was to be sent to the MCS, one 
card 
would 
reply 
a text 

would be punched with 80 characters of information. A second card 
be required for the remaining 35 characters (a station-status 
is always 116 characters long). If a message from a program with 
size of 150 characters were to be simulated, three cards would be 

8 - 1 



required. The first card would have the appropriate 50-character 
message header (with the TEXTSIZE field set to 150) and the first 30 
characters of text. The second card would contain the next 80 
characters of text. The third card would have the remaining 40 
characters. 

One exception exists to the above MCSSIMCRD card format rule. For data 
message types, the ERROR field, corresponding to card columns 24 and 25, 
represents 16 bits of information, not two characters of information. 
The two card columns cannot be used to express all possible combinations 
of 16 bits. Therefore, card columns 24 and 25 remain blank. The 
information to be placed in the ERROR field of the record is expressed 
in the FILLER field, columns 45 through 50, as a decimal number 
representing the desired bit configuration. 

MCSSIM converts the information in the FILLER field to a bit string, 
places the results into the ERROR field and blanks out the FILLER field. 
To simulate a time-out condition, for example, the value 004096 would be 
punched into the FILLER field. 

When MCSSIM is to simulate messages from a program to the MCS, and that 
program is using a Participation interface, the common-area header must 
be present. For example, suppose that a 10-character message is 
simulated from a program whose COMMONSIZE is 60. Two cards are 
required. The first card would have a MCS/Network Controller header in 
columns 1 through 50. Columns 51 through 80 would contain the first 30 
bytes of the common-area header. Columns 1 through 30 for the second 
card would hold the remaining 30 bytes of common-area information. The 
10 characters of text would follow in columns 31 through 40. 

Regardless of whether the MCS is operating in the simulation mode, it 
must perform its initialization routines. In order to initialize 
correctly, the MCS must receive information about the network it is to 
control or simulate. During initialization, the MCS a remote file 
information reply (message type 29) as the first record in MCSQUEUE. 

In normal mode, the MCS receives this reply from the Network Controller 
by issuing a remote file information request. From the remote file 
information reply, the MCS identifies the appropriate LSNs. The MCS 
expects a station status response (message type 21) for each station in 
its remote file. Here again, in normal mode, the MCS receives these 
replies from the Logic Network Controller by issuing station status 
requests. From the station status replies, the MCS is able to associate 
LSNs with station names. 

8 - 2 



After the initialization process, the MCS may go through the network 
restoration procedure. When this is the case, Network Controller change 
responses (message type 23) may be expected by the MCS. During the 
initialization process, only change responses and FILE OPEN requests are 
recognized by the MCS. 

Once the MCS ends initialization (or network restoration), it enters its 
normal message processing mode. Any message can be sent to the MCS for 
testing purposes. However, care must be taken when the message sent to 
the MCS causes the MCS to expect a Network Controller response. 

For example, a valid Change Station Ready command (*CSR 1n) input to the 
MCS causes the MCS to issue a change request (message type 22) which 
must be answered by a Network Controller Change Response message. 
Somewhere in the MCSSIMCRD deck following the CSR command, there should 
be a Network Controller change response to the MCS change request. For 
ease of use, the MCS should not be caused to issue change, recall, or 
remove requests. 

EXAMPLE SIMULATION CARD DECK 

In this example (see Figure 8-1), a network with one statiort, LSN01, is 
simulated. The first card of MCSSIMCRD is a remote file information 
reply specifying that there is one station in the remote file. The 
second and third cards are a station status reply describing LSN01 as 
being ready, enabled, having a retry count of 255, etc. The fourth card 
simulates a report program status command from LSN01. Cards five and 
six simulate a FILE OPEN request by a program named PGMA. A message 
from PGMA to LSN01 is simulated with card seven. Note that PGMA has 
included a common-area header of 60 bytes. 

'lCATA MCSSIMCRC 
Z90000 000000000000100000 000001 0010 00 
Z10010001LSN1 11344022500 020Z07 07 
Z550000000001000000000000000000000003 
01000100040010000000000 0000000000000000044000QOO:RPS 
103000000000000000000000 PGMA 0 00002 

001 
0000010068002000COQCOOO 000000000000000004400000000010 

HI THE RE 
?END 

Figure 8-1. Example Simulation Card Deck 

8 - 3 

001CRMT1 

0008 



PATCHING 

Another auxiliary program, MCSFIX, provides the same patching 
capabilities as the User Programming Language 2 (UPL2) compiler. Thus, 
a source-code file can be patched, listed, and/or sequenced without 
having to be compiled. In particular, this program is intended for use 
with MCSGTS, when it is necessary to release a patch notice. 

The file names used by MCSFIX correspond to those of the UPL compiler: 

1. Disk input source file is labeled SOURCE. 
2. Disk output source file is labeled NEWSOURCE. 
3. Card input patch file is labeled CARDS. 

MCSFIX always expects the input card file and creates the output disk 
file (although the disk file may be closed with purge). Records in 
CARDS fall into one of two categories: control cards and patch cards. 
Control cards, identified by a dollar sign ($) in column one, specify 
MCSFIX options. Patch cards and cards without a dollar sign in column 1 
are used to create new lines of source code, or to replace existing 
lines. 

Columns 73 through 80 are reserved for optional sequence numbers. When 
sequence numbers exist in either of the two input files, they should be 
in ascending order; otherwise, an error is reported. However, when an 
error is detected, the run is not aborted, even though results are 
unpredictable (but possibly of value). 

8 - 4 



The following is a list of available options and their actions: 

Option 

LIST 

MERGE 

NEW 

NO 

SEQ <ssssssss> 
+ IIII 

Action 

This option creates a listing of the output disk 
file. If a sequence number is specified in columns 
73 through 80, the list starts at that number, or 
if it does not exist, at the next highest number. 
By default, LIST is set. 

When this option is set, MCSFIX expects the file 
labeled SOURCE, merges records from the file CARDS, 
and creates the output file (refer to NEW option to 
save the output file). A record from CARDS 
replaces a record in SOURCE when both have the same 
sequence number. A record from CARDS is inserted 
when there is no record in SOURCE with a matching 
sequence number. (To delete records in SOURCE, 
refer to VOID option.) 

When MERGE is not set, an input disk file is not 
created directly from the input card file. The 
control card specifying MERGE must precede any 
patch cards and may not be reset. By default, the 
MERGE option is off. 

This option causes the output disk file to be saved 
(closed with lock). The control card with NEW 
specified must precede any patch cards and may not 
be reset. By default, the NEW option is off. 

This option turns off or reverses the effect of any 
options which follow it on the same control card. 
This is different than the UPL compiler (in which 
NO applies only to the option immediately following 
it). 

This option causes sequence numbers starting with 
ssssssss and incrementing by IIII to be applied to 
the output disk file (and printer listing if LIST 
is set). IIII may not exceed 9999. NO SEQ 
terminates any sequencing taking place. Sequence 
numbers of records in CARDS are always relative to 
the old sequence numbers in SOURCE regardless of 

8 - 5 



VOID <nnnnnnnn> 

whether or not the sequencing of the output disk 
file is specified. 

The VOID option causes records from SOURCE not to 
be included in NEWSOURCE (i.e., it deletes them). 
<nnnnnnnn> must be present in columns 73 through 
80. If <rnmmrnmmmm> is not present, the record in 
the input disk file with the sequence number 
<nnnnnnnn> is voided. When <mmmmm.mmm> is present 
in columns 7 through 14, all records with sequence 
numbers <nnnnnnnn> through <mmmmmmmm>, inclusive, 
are voided. 

To execute MCSFIX, the following control cards are used: 

? EXECUTE MCSFIX 
? FILE SOURCE NAME <input-file-identifier>; 
? FILE NEWSOURCE NAME <output-file-identifier>; 
? DATA CARDS 
(control and patch cards) 
? END 

8 - 6 



TIMING 

A timing mechanism helps users keep statistics on the amount of time 
GEMCOS takes to process various transactions. The TIME command 
activates the timing mechanism. The TIME command is explained in 
Section 3. A disk file is built containing the timing results. This 
file is called MCSTIME/<random number>. Turn the timing mechanism on by 
entering: 

* TIME START 

If the mechanism is not 
requires will not be used. 

Field Name Length 

TYPE BIT(1) 

SEQUENCE-NBR BIT(23) 

TIME-IN BIT(24) 

TIME-OUT BIT(24) 

LSN BIT(8) 

turned on, the memory that the disk 
Table 8-2 shows the layout of MCSTIME: 

Table 8-2 

Layout of MCSTIME 

Explanation 

= Input, 0 = Output 

Number in Common Header. 

Time the message came in. 

Time the message went out. 

Logical Station Number. 

TEXT CHARACTER(6) If TYPE= 1, first 6 bytes. 
TYPE = 2, length of message. 

file 

If 

Users can write their own programs to analyze the MCSTIME file, or they 
can compile the sample report program on the release tape. The source 
file is called GEMCOS/MCSTIMRPTS. The source is compiled as follows: 

CO <OBJ FID> UPL2 LI FILE CARD NAME 
GEMCOS/MCSTIMRPTS DISK DEF; 

8 - 7 



To run the report program, simply execute the <object file ID> and file 
equate the name of the time file. Enter the following: 

EX <object file ID>; FILE MCSTIME NAME 
MCSTIME/<number> 

The report program also allows users to analyze only selected 
transactions. To use this option, SWITCH 0 must be greater than O. The 
operator is then allowed to select six bytes. Only transactions 
beginning with these six characters are analyzed. 

In addition, users can also create an optional disk file with fields in 
character format. This file is created if SWITCH 9 is greater than O. 
The file is called MCSTIMEOUT, and has the same fields that are printed 
in the report. Table 8-3 describes these fields and gives their lengths 
(in bytes). 

Field 

ENTRY 

LSN 

DATA 

TIME-IN-1 

TIME-IN-2 

TIME-IN 

TIME-IN-PERCENT 

Table 8-3 

Format of Output File 

Length 

5 

3 

6 

8 

8 

5 

3 

Explanation 

Sequential number. 

Logical Station Number. 

First 6 bytes of message. 

Time the MCS read the input 
message. 

Time the MCS wrote the 
message. 

TIME-IN-1 minus TIME-IN-2. 

Percentage of total time. 

8 - 8 



MESSAGE LENGTH 

TIME-OUT-1 

TIME-OUT-2 

TIME-OUT 

TIME-OUT-PERCENT 

NON-MCS-TIME 

NON-MCS-PERCENT 

TOTAL-TIME 

4 

8 

8 

5 

3 

5 

3 

6 

Length of this message. 

Time the MCS read an output 
message. 

Time the MCS wrote an output 
message. 

TIME-OUT-2 minus TIME-OUT-1 

Percentage of total time. 

Total non-MCS time. 

Percentage of total time. 

Total time for this 
transaction. 

Since 8.38 seconds is the maximum time that can be stored as the value 
returned by the timer function, times in excess of 8.38 seconds will not 
be accurately recorded. 

DEBUGGING 

The following material gives information on debugging using the GEMCOS 
monitor trace and the GEMCOS data dump. 

USING THE GEMCOS MONITOR TRACE 

The monitor is a procedure within the MCS which produces a listing which 
can be used to trace the logic flow. Calls on the monitor are made at 
the entrance to nearly every procedure, and at other key points in the 
MCS. Since MESS procedures can also call on the monitor, the monitor is 
a valuable tool for debugging interfaces between MESS code and the 
standard MCS. 

8 - 9 



The monitor listing displays: 

1. An identification of the procedure now executing. 

2. Any information pertinent to the current procedure. 

3. The seQuence number in the MCS source code file at the point 
where the monitor was called. 

Since the monitor is a generative option, the MCS used for normal 
operation does not have to carry the overhead of monitor logic. Users 
can generate a second MCS which is exactly like the production MCS, 
except that the MONITOR generation parameter is set in the TCL. The 
second MCS is used only if problems arise that need to be diagnosed. 

When an MCS is generated with the MONITOR parameter set, the monitor 
listing can be turned on and off either dynamically, by using a Network 
Control Command, or between executions of the MCS, by the TCL compiler. 
Furthermore, the monitor can be selected for individual procedures, or 
only for those procedures suspected of being related to a problem. The 
methods of changing the monitor parameters, calling the monitor trace, 
and a sample monitor trace are discussed in the following material. 

Changing the Monitor Flag 

Change the settings of the monitor flag in either of these two ways: 

1. When the MCS is running, enter a CMF (change monitor flag) 
Network Control command. 

2. When the MCS is not running, run the TCL compiler with 
REGENERATE and set MONITORTRACEON TRUE or FALSE. 

Calling the Monitor Procedure 

If a procedure is to be monitored, it must contain at least one call on 
the ,monitor procedure. The monitor is invoked by a UPL2 statement of 
the form: 

MD_MONITOR(s1, s2); 

8 - 10 



The MD MONITOR parameters are as follows: 

1. s1 is a string of up to 30 characters specifying the name of 
the current procedure. 

2. s2 is a string of up to 82 characters which 
information that may be useful for debugging 
names and contents of significant data items). 

contains 
(usually 

any 
the 

Each time MD MONITOR is invoked, these parameters are printed in order 
on one line of the monitor listing, along with the sequence number of 
the line which called the MONITOR procedure. 

Monitor calls are ordinarily 
can be executed. However, 
for debugging. 

Sample Monitor Trace 

the first statement in each routine that 
they can be placed anywhere that is useful 

The following is an example of a portion of a GEMCOS trace. 

READ BY MCS 
<aa> TYPE=01, VARIANT=O, LSN=004, TEXT SIZE=0005, REMOTE FILE NO= •• 

TALLY=OOOOOOOOO, TOGGLE=OOOOOOOO, TERMINAL TYPE=44 
<bb>-- TRAN1 

<cc>-- MCS PROCESS MSG 23096000 SG.HDR TYPE=01 SG.HDR LSN= •• 
MCS-MSG FROM STATION 20006100 AD.MSG SOURCE=02-AD.MSG LSN= •• 
MCS TRANCODE-RECOGNIZER 17200000 AL.NPR NUM TRN=0006 MS 

Each entry in the trace is preceded by one of two headings: READ BY MCS 
or WRITTEN BY MCS. The NDL message type is immediately below this 
heading and indicates the type of message being processed. The 
remaining fields in the first two lines above (marked <aa>) are fields 
in the NDL 50-byte header. For documentation on these fields, see the 
NDL Manual (or DOCUMENT/NDL on the SYSTEM tape.) 

8 - 11 



The next line of the sample trace is the data text line(s). It is the 
line marked <bb> above. There are up to 80 characters of data on a 
line. In this example, the text size is only 5, so the user knows that 
TRAN1 is the entire message. Unprintable characters are displayed 
between the characters < and > (for example, <OD25> is a line-feed, 
carriage return). 

The next portion (labeled <cc>) is divided into three columns. The 
first column contains the names of the called procedures. The second 
column contains the sequence numbers at which these procedures were 
invoked. The third column contains the values of those GEMCOS variables 
which the programmer wanted in the trace. Note that starting with the 
6.00 release, the module numbers have been deleted from this section. 

USING THE GEMCOS DATA DUMP 

A data dump can be created on demand, by entering the Network Control 
Command *RDM PRINT from any station. The data dump can also be created 
automatically, when the MCS detects a serious error. 

The data dump is divided into sections, some of which are optional, 
depending parameters which were sent in the TCL. 

It provides a "snapshot picture" of the state of the MCS, certain 
significant data items, and the message work area. It can be used for 
debugging and for reporting statistical information maintained in the 
GEMCOS tables. 

When a problem occurs, a data dump should be done immediately 
afterwards. In some cases, it should be done both before and after the 
problem. Note that the GEMCOS MCS will automatically produce a data 
dump if a fatal error occurs. 

The first section in the data dump is one of the most important. It 
reflects the status of the Station Table at the time of the dump. The 
stations are listed in the order that GEMCOS learns of their existence. 
Index 0 is reserved for the ODT. The actual LSN is shown in the third 
field from the end of the second line. 

To correlate the fields with the source, simply precede down the entries 
in the Station Table. The order is the same until the field ADDED is 
encountered in the second line. Although the remaining fields are not 
in exact order, it should be obvious which headings correspond to which 
fields. If you have any doubt, simply refer to the routine 

8 - 12 



MCS-DUMP-STATION-TABLE in the source file. Any fields which have a 
1-digit value are Boolean fields. A 1 means true and a 0 means false. 

The next table printed is the Station Statistics Table. This section of 
the report presents a record of data comm activity for each station. 
Note that stations are shown in the same order as in the previous 
section. 

The following section is a printout of the Active Users Table. There is 
one entry for each user declared in the TCL. The field USR.PGM.MASK 
indicates which programs each user is allowed to access. That is, the 
first digit represents the first program, the second digit the second 
program, etc. Note that there will be as many digits as there are 
programs in TCL. If a 1 is listed for a user and program in the table, 
then that user is allowed to access that program. A 0 indicates that 
the user cannot access that program. 

The field USR.TRN.MASK lists the trancodes which a user is allowed to 
enter. This mask works in the same manner as the previous one, except 
that in this case, the digits represent trancodes. Again, there is one 
digit per trancode declared in the TCL. 

The File Table is in the next section. This table shows all the remote 
files opened under control of GEMCOS. The first entry, index zero, is 
for the GEMCOS MCS itself. The remaining entries are assigned at file 
open time. The QUEUE NUMBER field is the remote file number. The field 
PROGRAM LINK is the Link to Program Table. Finally, the field 
FILE.STATION.MASK tells which stations are attached to that file. It 
operates in the same manner as the USER PROGRAM MASK above. 

After this is the Program Table. This 
programs described in the TCL. Again, 
GEMCOS MCS. The VALID field indicates 
(1) or not (0). The entry DEFLINK 
Definition Table (PDT) described below. 
to the File Table above. 

section contains data for all 
ENTRY ZERO is reserved for the 
whether the program is running 

shows the link to the Program 
The field FILE LINK is the link 

The following section, the Transaction Table, stores information for 
each trancode defined in the TCL. The entry PGM.DEF.LINK is a link to 
the Program Definition Table described below. The entry FORMAT 
indicates whether a format is to be applied to messages containing this 
trancode. The entry TBR indicates whether the trancode is for a program 
(1) or for a station (0). The entries INDEX.1 and INDEX.2 are the 
optional indices associated with each trancode. Finally, AUDIT 
indicates whether the trancode is to be audited (1) or not (0). 

8 - 13 



The Program Definition Table follows. There is is one entry in this 
table for each program described in TCL. Once again, index zero is 
reserved for the MCS. The field labelled "TYPE" indicates to which type 
the program belongs: type assignment program (0), utility program (1), 
or user program (2). 

The field labeled DISTRIB contains the index to the Program Table for 
the latest copy of the program. The field REC indicates whether the 
program is in recovery (1) or not (0). The field IFACE indicates the 
program interface, e.g. MCS. Finally, the field marked PGM.TABLE.MASK 
indicates whether the program and/or any of its copies is running (1) or 
not (0). There are as many digits as there are programs possible. (A 
program with MAXCOPIES = 3 counts as three possible programs.) 

Next is the Network Parameter Record Report. 
information from the NPR record in the MCSTIC 
contains global information concerning the MCS, 
the base records for the different record types. 

These fields contain 
file. This record 

as well as pointers to 

The subsequent section has global information. This section lists 
certain data declarations at lexic level zero of the GEMCOS source. 
This section is printed mainly for debugging purposes. 

The next two sections, the Format Table and the Function Table, are both 
optional. These sections list all the formats and functions by index 
(in the order declared). The listing of disk or memory with each index 
depends upon whether the format is resident (1) or not (2). 

Following the Format Table and the Function Table is the Audit Table. 
This report simply lists the audit files that have been created during 
the current run. These audit files are listed by date-time stamp. 

The last section of the report is the Optional Data Base Table. This 
table shows all data bases declared in the TCL and the status of these 
data bases. The field labeled RESTRTPDTLINK is the link to the Program 
Definition Table for the Restart program. The field labeled IN.RECOVERY 
PDTTBLMASK indicates which programs using that data base are in 
recovery. The programs in recovery are listed in Program Definition 
Table. order. The first digit represents the first program, and so 
forth. 

8 - 14 



SECTION 2_ 

USING THE STATION OPTIONS 

B 1000 GEMCOS provides an interface to four different types of stations: 
AP300, MT600, Routeheader, and Standard. This attribute is specified in 
the STATION statement within the Station section of the TCL. Depending 
on the type declared, other parameters may also be required. The 
following material discusses communication with AP300, MT600, and 
Routeheader stations. It also discusses copying disk files using 
routeheaders and Burroughs Network Architecture (BNA) Station Transfer. 

AP300 

The AP300 is a free-standing matrix printer capable of operating with 
the data communications interface of a host system. B 1000 GEMCOS 
provides the interface for on-line operations between the AP300 and 
application programs. 

The AP300 has various options which may be programmatically loaded into 
the printer from a host program. The AP300 has the capacity to send 
various status conditions to the computer. B 1000 GEMCOS intercepts the 
status condition messages and displays them at the Network Controller 
station. Optionally, as specified by the user, GEMCOS forwards the 
status message to the program to which the AP300 is attached. (This 
capability exists only if the AP300 is attached to an assignment 
program.) 

MT600 

The MT600 modular terminal (sometimes called the soft terminal) is a 
sophisticated, forms-processing system. When a form is created on the 
terminal, a program is also created to direct the processing of the 
form. After processing, the form is stored either in a file at the 
terminal or in the host processor. If the form is stored in the host 
processor, it is loaded down-line at a later time. By user 
specification, the program directs either some or all data fields of the 
form to the host processor. Similarly, the form receives either some or 
all data fields. In addition to the memory allocated for the form and 
the programs, an additional memory area is available for direct 
communication with the host processor. This area is referred to as the 
command message area. 

9 - 1 



To sort out this complex array of communications possibilities, special 
headers have been designed to precede messages and indicate the nature 
of the text being sent. With the exception of command message area (C/M 
area) messages, all messages from the modular terminal have these 
headers, and all messages to the terminal are preceded by them. 
Furthermore, all messages other than continued C/M area and forms 
messages must be followed by a special trailer. 

The GEMCOS interface to the modular terminal does not include formatting 
the input or output of the terminal. The interface capability serves to 
do the following: 

1. Determine the type of message that was sent from the terminal. 

2. Extract the trailer and header from the input message. 

3. Determine the type of message to be sent to the terminal. 

4. Add the trailer and header (extracted from the input message) 
to the output message. 

A 1-character field in the common-area header serves to identify all 
message types, directed to or originating from application programs. 

PROCESSING INPUT FROM THE MTS 

GEMCOS examines all messages from the MTS and determines whether a 
header is present in each. When no header is present, a zero is placed 
in the MSG-TYPE field of the common-area header. Zero indicates that 
the message is from the common area. When the header is present, the 
message type is taken from the header and placed in the MSG-TYPE field. 
The head~r and trailer are then removed from the message text. 
Auditing, routing, and other types of processing proceed normally. 

PROCESSING OUTPUT TO THE MTS 

GEMCOS constructs the header for the response to the MTS by employing 
the message type that was received from the MTS in the common-area 
header. Before GEMCOS constructs headers for return messages, it 
validates the message type. Any message having an invalid header 
identification is discarded, and an error message is sent to the control 
station. When the message type is zero (0) in the message from the MTS, 
no header or trailer is sent with the message returned to the MTS. 
Otherwise, the header and trailer are created and sent with the MTS. 

9 - 2 



MTS MESSAGE TYPES 

The following list provides the valid message types that are in the 
common-area header of messages passed between programs and GEMCOS. 

Message 
~ 

0 

2 

-2 

3 

-3 

4 

6 

7 

8 

-8 

Meaning 

Send or receive command message area. 

Send or receive total form definition. 

Send or receive 
definition. 

first buffer 

Send or receive condensed form. 

of total form 

Send or receive first buffer of condensed form. 

Send or receive all data fields. 

Send or receive selected data fields. 

Recovery point message. 

Last continuation buffer (forms only). 

Intermediate continuation buffer (forms only). 

ROUTEHEADERS (COMPUTER-TO-COMPUTER COMMUNICATION) 

GEMCOS provides a single level of computer-to-computer communication 
through a feature called routeheaders. The term routeheaders refers to 
a special 48-byte header placed on the message by GEMCOS before the 
message is routed to a remote host. This header contains routing 
information used by GEMCOS and is never seen by the user. Either host 
can be any Burroughs system from the CMS machines through the B 7800, 
provided both hosts are running a GEMCOS MCS. 

9 - 3 



A routeheader station (remote) is treated as a normal station by the 
GEMCOS MCS. It must be declared in the Station section of the TCL. The 
TYPE statement is required to identify a particular station as a 
routeheader station. However, this station is imaginary (there is no 
physical device). Rather, each computer has one or more "portholes" 
through which it can communicate with another computer. This porthole 
is the routeheader station. 

ROUTING 

A message can only be routed from one computer to another computer using 
trancodes. Messages can ultimately be routed to either a station or a 
program on the remote host. All trancodes of messages bound for a 
routeheader station must be declared for that routeheader station. All 
trancodes of messages bound from a routeheader station must belong tc 
some program or station. Trancode assignments must be coordinated 
between the host systems. 

No action is required by the user programs or stations regarding the 
content of a routeheader. The MCS removes the routeheader on input and 
reattaches it on output. The output message is automatically routed 
back to the initiating routeheader station. This means that TBR 
programs do not have to be modified to accommodate routeheader stations. 

NOTE 

The MCS uses the LSN field of the common header as 
an index to the routeheader table. This LSN field 
therefore should not be used by the program. 

PROTOCOL 

The MCS originating a message to a routeheader 
station or a program) prefixes the message with 
before sending it. The message must contain 
program or station in the receiving host system. 

station (from either a 
the 48-byte routeheader 
a trancode of either a 

The receiving host strips off the routeheader, and stores it in a table 
when the message is bound for a program. The message is then routed by 
trancode, if possible. When the message contains no trancode, or the 
station or program is not available, the message is discarded and an 
error code is sent back to the initiating routeheader station. 

9 - 4 



Upon receipt of a message from a program, the MCS will reattach the 
saved routeheader, and send the message back to the originating 
routeheader station. If there are no errors, the response would be 
routed back to the originating station if the message originated from a 
station or to the originating program (or wherever the program chooses 
to route the output), if the message originated from a program. If an 
error exists, an error message would be routed to the originating 
station or program. 

ACCESS CONTROL 

The value specified in the HOSTACCESSKEY statement in the Station 
section is put into the routeheader before sending any message to the 
other host. When a message is received on the other host, the host 
access key value is checked against the valid access keys of that 
routeheader station, when sign on is required for that station. If the 
host access key is invalid, an error code would be returned to the 
originating host, and the message would not be processed. This sign-on 
verification is completely invisible to the user because it is taken 
care of within the routeheader. 

FORMATTING 

Input messages from a local station are formatted as a function of the 
trancode and device defined in the TCL. Messages from a program to a 
local station are formatted based on the message-ID, or the trancode, if 
no message-ID is found. 

Originating messages from a routeheader station are formatted based on 
the format-ID in the routeheader, or the trancode, if no format-ID is 
found. 

Originating messages from a program to a routeheader station are 
formatted as follows: 

1. When a message-ID is specified, it is placed in the 
routeheader. When the return message is received by the MCS, 
that specified message-ID is returned in the routeheader and 
will be used as an output format message-ID, if valid. This 
postponed formatting allows a program to specify a format to 
be used after a program on the remote host has processed the 
message and returned it to the local host. 

2. In addition, local formatting 
trancode. 

9 - 5 

will occur based on the 



For messages returned from a program to the MCS on the other host, local 
formatting occurs based only on the trancode. If a format-ID was 
specified from the initiating host in the routeheader, it is returned in 
the return routeheader to that host. If no format-ID was supplied from 
the initiating host, the message-ID supplied by the program is returned 
in the routeheader if no local formatting was done. 

SUSPENSION 

When the MCS determines that it cannot store any more routeheaders from 
a remote host, it temporarily suspends that host from sending any 
additional messages by issuing a suspension message. When there is 
sufficient room to store more routeheaders, a resumption message is sent 
to the suspended host and processing can then continue. 

When the MCS receives a suspension message from another host, it will 
not allow any messages to be sent to that host until it receives a 
resumption message. During this time, any attempt to send a message to 
that host will result in the following error message: 

PROGRAM OR STATION NOT AVAILABLE 

RECOVERY 

Recovery of routeheader stations is not implemented in B 1000 GEMCOS. 

ERROR HANDLING 

When an error is detected during the processing of a routeheader 
station, an error code is placed in the routeheader before the message 
is returned to the originating routeheader station. When a return 
routeheader is received at the originating host, and the error code is 
non-zero, one of the following messages is sent to the originating 
station or program: 

1. TRANCODE MISSING 

2. PROGRAM OR STATION NOT AVAILABLE 

3. USERCODE HAS NO ACCESS TO PROGRAM 

4. THIS COMPUTER HAS NO ACCESS TO DESTINATION COMPUTER 

9 - 6 



5. INVALID ROUTEHEADER TYPE 

6. ROUTEHEADER TABLE FULL - CAN NOT PROCESS MESSAGE 

7. ROUTEHEADER MESSAGE IS LESS THAN 48 BYTES 

8. INVALID INPUT FORMAT REQUEST 

9. DESTINATION IS NOT A PROGRAM 

10. FORMAT ERROR 

NDL CONSIDERATIONS 

The request sets and controls used by each pair of routeheader stations 
must be compatible. More than one type of protocol may be applicable 
for each of the possible inter-system and intra-system connections. 

The point-to-point connection requests and control has been tested and 
works between two B 1000 computers. The poll-select protocol has worked 
between a B 1000 computer and a B 6000 computer where the B 1000 is the 
"master" and the B 6000 is the polled "slave." 

Example: 

In this example it is assumed that there are two B 1000 
computers for each TCL description, although in principle this 
example is applicable to any two computer systems. Each 
computer will run a GEMCOS MCS. Those TCL statements which 
deal with routeheaders are presented here for both Computer 1 
and Computer 2. 

A graphic representation of the following TCL specificiations 
on each computer is shown in Figure 9-1. 

TCL for Computer 1 : 

% 

% 

BEGIN 
ACCESSCONTROL: 

ACCESSKEY HOST2 = ALL. 
ACCESSKEY USER1 = ALL. 

PROGRAM PROGRAM1 USER: 
TRANCODE = PGM1. 
EXECUTE = ONDEMAND. 

9 - 7 



STATION STATION1 : 
SIG NON = TRUE. 
VALIDACCESSKEYS = USER1. 
TRAN CODE = STN1. 

% 
STATION HOST2: 

TYPE = ROUTEHEADER. 
SIGNON = TRUE. 
VALIDACCESSKEYS = HOST2. 
HOSTACCESSKEY HOST1. 
TRAN CODE = PGM2, STN2. 

END. 

TCL for Computer 2: 

% 

% 

% 

On HOST1 : 

BEGIN. 
ACCESSCONTROL: 

ACCESSKEY HOST1 = ALL. 
ACCESSKEY USER2 = ALL. 

PROGRAM PROGRAM2 USER: 
TRANCODE = PGM2. 
EXECUTE = ONDEMAND. 

STATION STATION2: 
SIGNON = TRUE. 
VALIDACCESSKEYS = USER2. 
TRANCODE = STN2. 

STATION HOST1 : 

END. 

TYPE 
SIG NON 
VALIDACCESSKEYS 
HOSTACCESSKEY 
TRAN CODE 

= ROUTEHEADER. 
TRUE. 
HOST1. 
HOST2. 
PGM1, STN1. 

1. When either STATION1 or PROGRAM1 enters a message with a 
trancode of STN2, the message is routed to Computer 2 

~ 

through the routeheader station and delivered to 

9 - 8 



STATION2. 

2. Any message entered that contains the trancode PGM2 is 
routed, in similar fashion, to PROGRAM2 on Computer 2. 
If PROGRAM2 is not currently running, it would be 
executed automatically. The output from PROGRAM2 is 
automatically routed back to the originator on Computer 
1 • 

On HOST2: 

1. When either STATION2 or PROGRAM2 enters a message with a 
trancode of STN1, the message is routed to Computer 1 
through the routeheader station and delivered to 
STATION1. 

2. Any message entered that contains the trancode PGM1 is 
routed, in similar fashion, to PROGRAM1 on Computer 1. 
If PROGRAM1 is not currently running, it would be 
executed automatically. The output from PROGRAM1 is 
automatically routed back to the originator on Computer 
2. 

COMPUTER I COMPUTER2 

STATION I STATION2 

l l 
HOSTI QJ GEMCOS GEMCOS 

MCS MCS 
HOST2 

I l 
PROGRAM I PROGRAM2 

Figure 9-1. Sample Routeheader Configuration 

9 - 9 



TRANSFERRING DISK FILES 

An auxiliary program, MCSFILXFER, allows the user to transfer disk files 
from one computer to another using the routeheader capability of GEMCOS. 

From an MCS-controlled station, a user can enter a command which 
specifies the name of a file to be transferred to or from another 
computer. The file transfer program (MCSFILXFER) attempts to transfer 
the file, and informs the user when the transfer is complete or has 
failed. This program transfers only one file at a time. Blocking and 
record size are maintained during a file transfer. 

Code files can be transferred across like systems and still be executed. 
This is possible because all data is transmitted in a manner that is 
invisible to the user. 

The following rules must be adhered to when defining the attributes of 
the file transfer program in the Program section of the TCL: 

1. The program must be declared as a user program. 

2. The COMMONSIZE statement must be absent or set to a value of 
60 (default size). 

3. The program must not use the auditing capability. 

Included on the GEMCOS release tape is a fully functional file transfer 
object program called MCSFILXFER. The user must declare this program to 
the TCL. 

Prior to initially executing the supplied file transfer program, the 
user must make certain modifications. The external file name of the 
remote file, MCSREMOTE, must be a remote file known to the Network 
Controller. Also, the Number Of Stations (NST) attribute must be set to 
the number of stations requested by the remote file. 

c; 
See Appendix B for a summary of all files contained in MCSFILXFER. 

There are three commands which a user can enter at a given station. The 
commands are COPY, ABORT and WHAT. The syntax and semantics for these 
commands follow. 

9 - 10 



COPY COMMAND 

Syntax: 

---COPY--- <file name 1> ------------------------------------------->(1) 
I I 
I I 

1---AS--- <file name 2> -->I 

(1)----TO-------- <dest. trancode> ----------------------------------->! 
I I I I 
I I I I 

I-FROM-->! !--USING-- <orig. trancode> -->I 

Semantics: 

This command is used to initiate the file transfer mechanism. 
<File name 1> is the name of the file on the system which is 
sending the file. <File name 2> is the name of the file on the 
system which is receiving the file. If <file name 2> is not 
specified, it will default to <file name 1>. Whenever a file name 
is specified for a B 1000 computer, the above syntax for the file 
name must be adhered to. 

The keyword TO specifies that a disk file is to be sent to the 
remote computer from the local computer; the keyword FROM specifies 
that a disk file is to be sent from the remote computer to the 
local computer. 

The destination trancode must be a valid trancode for the remote 
computer's file transfer program running under a GEMCOS MCS. The 
user must know this trancode. This trancode and any other possible 
destination trancodes that the user may wish to use for a 
particular computer (routeheader station) must be declared for that 
routeheader station on the local computer. 

The origination trancode specifies the trancode which the remote 
file transfer program is to use to communicate with the local file 
transfer program. If not specified, it would default to "FTPLS." 
on a B 6800, FT4800 on a B 4800, FT1800 on a B 1000 and FTCMS on 
CMS machines. This trancode, and any other possible origination 
trancodes that the user may wish to use, including the default 
value of FT1800, must be declared for the file transfer program on 
the local computer. 

9 - 11 



ABORT COMMAND 

Syntax: 

----ABORT------------------------------------------------------------->i 

Semantics: 

The ABORT command instructs the file transfer program to 
discontinue the current file transfer, when one is in progress. 
When the file transfer program receives this command, it instructs 
the file transfer program on the remote host to discontinue the 
current transfer, regardless of who initiated the request. This 
command can be entered at any time. 

WHAT COMMAND 

Syntax: 

----WHAT-------------------------------------------------------------->I 

Semantics: 

This command returns the current status of the file transfer 
program to the requester. The possible responses are AVAILABLE and 
BUSY. If BUSY is returned, the file transfer program will not 
accept a COPY command. 

FILE TRANSFER EXAMPLE 

Example: 

Assume that 
computers. 
is called 
following 
GEMCOS MCS 

a file transfer is to occur between two B 1000 
The computer that initiates the file transfer request 

HOSTA, and the other computer is called HOSTE. The 
statements exist in the TCL specifications for each 
on each system. 

9 - 12 



TCL of GEMCOS on HOSTA: 

PROGRAM FTS USER: % FILE TRANSFER PROGRAM ON 
% HOSTA 

TRANCODE = FT18A, COPY, ABORT, WHAT. 
STATION RHA: % ROUTEHEADER STATION TO HOSTB 

TRANCODE = FT18B. 
TYPE = ROUTEHEADER. 

STATION TD830A: % STATION WHERE COMMANDS WILL 
% BE ENTERED 

TCL of GEMCOS on HOSTB: 

PROGRAM FTB USER: % FILE TRANSFER PROGRAM ON 
% HOSTB 

TRANCODE = FT18B, COPY, ABORT, WHAT. 
STATION RHB: % ROUTEHEADER STATION TO HOSTA 

TRANCODE = FT18A. 
TYPE = ROUTEHEADER. 

A user at station TD830A on HOSTA (under control of a GEMCOS MCS) 
wishes to transfer the disk file MONDAY/NEWS to HOSTB with a file 
name of MONDAY/A.NEWS on diskpack BACKUP. The following dialogue 
accomplishes the requested file transfer: 

(from TD830A) 

(from FTA) 

(from TD830A) 

(from FTA) 

(from FTA) 

(from FTB to ODT 
on HOSTB) 

COPY "MONDAY/NEWS" AS 
"MONDAY/A.NEWS ON BACKUP" TO 
FT18B USING FT18A 

COPY INITIATED 

WHAT 

BUSY 

FILE MONDAY/NEWS TRANSFERRED 
TO (FT18B) 

FILE MONDAY/A.NEWS ON BACKUP 
TRANSFERRED FROM (FT18A) 

When file transfer occurs between two B 1000 computers, only one 
(or neither) file transfer program can use the default origination 
trancode of FT1800. In this example, the default trancode was not 
used. 

9 - 13 



BNA STATION TRANSFER 

As of the 7.0 software release, GEMCOS supports Burroughs Network 
Architecture (BNA) Station Transfer. Users can transfer a station on a 
remote Burroughs system to their own system and have that station under 
the control of GEMCOS. 

The opposite transfer can also be done. A station under the control of 
GEMCOS can be transferred to a remote Burroughs system. To do a BNA 
station transfer while running GEMCOS, the following needs to occur: 

1. MCSTCL modifies the GEMCOS remote file MCSQUEUE so that it has 
a protocol of 98. This allows GEMCOS to be the MCS which 
actually handles all station transfer activity for the user's 
system. 

2. If GEMCOS is running under SMCS and SMCS is to handle all the 
station transfers, then GEMCOS needs to be modified. GEMCOS 
must be modified because only one 98 MCS can be in the mix at 
one time. Modify GEMCOS as follows: 

MO <GEMCOS object file> FI MCSQUEUE 
PROTOCOL 0 

3. Execute BNA programs first at the ODT. (See the BNA Reference 
Manual for additional information on how to run BNA.) Once the 
programs have been executed and are in WAIT status, enable the 
station transfer at the ODT. To do this, enter: 

NW STATIONTRANSFER + 

4. The user's TCL must contain an entry for the Port Level 
Manager's (PLM) program. Declare the PLM program in the TCL 
as follows: 

PROGRAM <PID> 
TITLE 
INTERFACE 
PLMPROGRAM 

UTILITY: 
BNA/PLM. 
MCS. 
TRUE. 

To transfer a station to another system, the user executes the 
PLM program from his/her station by entering: 

*EX BNA/PLM 

9 - 14 



Once the station is attached to the BNA program, the user 
enters: 

CONNECT TO <host ID> 

(See the BNA Reference Manual for additional 
instructions for station transfer.) 

operating 

5. The stations which are to transfer in to GEMCOS must be 
declared as virtual stations in the TCL. A virtual station 
must have a station hostname. An attempt to transfer in a 
station not declared in the TCL produces Error 156. For 
stations transferring in to GEMCOS, set the following 
attributes (as well as any others required): 

STATION <station name>: 
VIRTUALSTATION = TRUE. 
STATIONHOSTNAME = <host name>. 

The station hostname must match the hostname as defined to the 
BNA network on the other system. If this is not done, the 
request to transfer in will be denied. 

Once a station has been transferred in, it is just like like 
any other station. However, the RSS Command shows that it is 
a virtual station. This command also shows its hostname and 
BNA mode address. 

If this station is declared as a control station, then it is 
able to perform privileged Network Control Commands, such as 
HLT. If this station is declared as a Monitor station, then 
it receives error messages. 

9 - 1 5 



SECTION 10 

USING THE CONVERSATIONAL FEATURE 

The conversational feature is a unique method of communication between a 
participating program and a terminal. Conversations involve three 
system elements: the station, the program, and the MCS. Participating 
program messages typically consist of the GEMCOS header and message 
text. In conversational messages, conv·ersation text is embedded between 
the header and the message. Conversation text is only updated by the 
program. When a program sends a message, the MCS removes the 
convers~tion text from the message and stores it in the conversation 
area of memory. As new text is returned from the station, the MCS 
returns the conversation text to the message before delivering it to the 
program. 

Through this procedure, the program is relieved from declaring tables or 
allocating memory for the conversation text; instead, these tasks are 
assumed by the MCS. The MCS allocates a conversation table. Each 
conversation area is an element of the table. The MCS allocates the 
conversation table according to the maximum number allowed in the system 
simultaneously. Areas are only used and brought into memory as 
required. 

Stations may only converse with one program at a time. Conversely, 
programs may communicate with several stations simultaneously. Normally 
program messages can still be sent to a station that is conversing with 
a program. Each conversation is assigned one conversation area. There 
may be many conversational programs and conversational stations in the 
TCL. The MCS needs to maintain only one copy of the conversation table. 
This process eliminates duplicate information and reduces memory usage. 

TCL SPECIFICATIONS 

To create the conversational capability, three statements are used: 
CONVERSATIONLIMIT, CONVERSATIONSIZE, and CONVERSATIONAL. For more 
information on the syntax of these statements, refer to Section 2. 

CONVERSATION LIMIT STATEMENT 

This statement determines the maximum number of stations that may 
converse concurrently. The statement is entered in the Global section. 
Any conversation initiated which exceeds the limit established with this 
statement causes an error. The initial message of the conversation 

1 0 - 1 



which caused the error is not sent to the intended destination; instead, 
it is returned to the program with an error status in the message 
header. The program may either periodically attempt to send the initial 
conversation message until a conversation area is available (i.e., until 
another conversation has been terminated) or it may send a message 
notifying the station operator of the temporary shutout. 

CONVERSATION SIZE STATEMENT 

The conversation size varies among 
established using this statement. 
conversational capabilities, the largest 
applied as the conversation size for all 

programs. The size for each is 
When several programs have 
conversation size among them is 
conversation areas. 

The conversation area allocated by the MCS may be much larger than the 
conversation sizes specified for certain programs. However, the MCS 
only provides the number of bytes required by each program. Areas must 
be allocated at the start of running a program; they cannot be allocated 
as required. Afterward, the areas may be used and assigned as reqµired. 

NOTE 

The message 
conversation 
consist of a 

size declared must be large enough for 

text. The 
establish the 

CONVERSATIONAL STATEMENT 

messages. Conversation messages 
header, conversation text, and message 
MAXTEXTSIZE statement is used to 
message size. 

This statement is used to assign the conversational capability to 
stations. The capability is assigned to a station being defined by 
assigning the value TRUE to the statement; assigning the value FALSE 
excludes a station from the conversational capability. If a program 
attempts to communicate with a nonconversational station, an error 
occurs. (For further information about this statement, refer to 
"Station Section" in Section 2 of this manual.) 

All three statements are declared in the TCL as follows: 

1. For the Global section (optional): 

CONVERSATIONLIMIT = <nn>. 
(nn represents a 2-digit number) 

10 - 2 



2. For the Program section: 

a. CONVERSATIONSIZE = <nnn>. 
(nnn represents a 3-digit number) 

b. INTERFACE = PARTICIPATION. 

c. AUDITOUTPUT = TRUE. 
(This attribute must be declared 
conversations.) 

for recovery of 

3. For the Station section (optional): 

CONVERSATIONAL = TRUE. 
(TRUE is the default value) 

PROCEDURES FOR CONVERSATIONAL PROGRAMS 

It is the task of all conversational programs to indicate the beginning 
and the end of a conversation. They also include the conversation text 
in the message. Two fields have been added to the message header which 
enable the program to perform these tasks: the CONVERSATIONBOJEOJ field 
and the CONVERSATIONSTATUS field. 

Once a program receives a message, the value of the CONVERSATIONSTATUS 
field indicates whether the path is clear for the message, a 
conversation is in progress at the station, or the message has caused an 
error. A definition for each value follows. 

Value 

0 

2 

Definition 

Path is clear; either no conversation is in 
progress, or the station is nonconversational. 

Conversation is in progress at the station. The 
value of the CONVERSATIONBOJEOJ field indicates 
whether another program is conversing with the 
station. 

Error. The maximum number permitted for 
simultaneous conversations has been exceeded. The 
last program message is returned (without the audit) 
to the program. 

10 - 3 



3 

4 

5 

Error. Program attempted to initiate a conversation 
with a nonconversational station. The message is 
returned to the program. 

Error. Program attempted to converse with a station 
which is currently conversing with another program. 
The message is returned to the program in error. 

Error. A nonconversational 
conversation. The message 
program. 

program initiated a 
is returned to the 

The program designates the appropriate value for the CONVERSATIONBOJEOJ 
field in the message header. The definition of these values follows. 

Value Definition 

0 For messages directed to a station, this value means 
that no conversation is in progress. The MCS 
expects message text immediately after the message 
header. For messages directed to a program, this 
means that the station is unoccupied, and therefore 
available for conversation. 

For messages directed to a station, this value means 
that a conversation is in progress. Conversation 
text follows the header and precedes the output 
text. It is stored in the conversation. However if 
the program is being audited, both the conversation 
text and output text would be audited. For messages 
directed to a program, this means that the station 
is occupied. The program that is currently 
conversing with the station receives this value in 
~ach conversation message from the station. 

A recommended remote file record and working storage definition is 
presented in Figure 10-1. 

NOTE 

In Figure 10-1 below, N1 represents the length of 
the user postion of the common-area header. If 
there is no user portion, the MCS-USER-AREA should 
not be given. N2 represents the length of the user 

10 - 4 



text. N3 represents the length of the user's 
conversation text. N4 represents N2 minus N3. 

01 REMOTE-FILE-RECORD. 
05 COMMON-HEADER. 

10 
10 MCS-LSN-NBR 

10 MCS-OUTPUT-ADDR 
10 MCS-CONVERSATION-STATUS 
10 MCS-CONVERSATION-BOJEOJ 

05 MCS-USER-AREA 
05 TEXT-AREA 
05 TEXT-WITH-CONV REDEFINES TEXT-AREA. 

10 CONVERSATION-TEXT 
10 REGULAR-TEXT 

WORKING-STORAGE SECTION. 
01 WS-INPUT 

01 WS-OUTPUT 

01 WS-CONVERSATION-AREA 

PIC 9. 
PIC 9(3). 

PIC 9(9). 
PIC 9. 
PIC 9. 
PIC X(N1). 
PIC X(N2). 

PIC X(N3). 
PIC X(N4). 

PIC X(N4). 

PIC X(N5). 

PIC X(N3). 

Figure 10-1. Recommended Remote File Record 
and Working Storage Definition 

The proper sequence of events for a user program with conversational 
capabilities is outlined in the following basic-logic-flow example. 
(See Figure 10-1 for remote file record and working storage 
definitions.) 

10 - 5 



Example: 

PROCESS. 
READ MCSQUEUE AT END MOVE 1 TO EOF 

GO TO PROCESS-EXIT. 
IF MCS-TYPE = 24. 

<SEND "TYPE 25" MESSAGE> 
GO TO PROCESS-EXIT. 

IF MCS-TYPE = 21 
<PROCESS & SEND "TYPE 22" MESSAGE> 
GO TO PROCESS-EXIT. 

IF MCS-CONVERSATION-STATUS > 1 
<PROCESS CONVERSATION ERROR> 
GO TO PROCESS-EXIT. 

IF MCS-CONVERSATION-STATUS = 0 OR 
(MCS-CONVERSATION-STATUS = 1 and 
MCS-CONVERSATION-EOJEOJ = 0) 

* NO CONVERSATION TEXT IN MESSAGE 
MOVE TEXT-AREA TO WS-INPUT 

ELSE 
* CONVERSATION TEXT IN MESSAGE 

MOVE CONVERSATION-TEXT TO WS-CONVERSATION-AREA 
MOVE REGULAR-TEXT TO WS-INPUT. 

<START PROCESS> 

IF MCS-CONVERSATION-BOJEOJ = 0 and 
MCS-CONVERSATION-STATUS = 1 
<NO CONVERSATION ALLOWED> 

MOVE WS-OUTPUT TO TEXT-AREA 
<OR BUILD OUTPUT IN TEXT-AREA> 

ELSE 
<MAY INITIATE OR CONTINUE CONVERSATION> 
<TO BEGIN OR CONTINUE CONVERSATION:> 

MOVE WS-CONVERSATION-AREA TO CONVERSATION-TEXT 
MOVE WS-OUTPUT TO REGULAR-TEXT 

<OR BUILD OUTPUT DIRECTLY IN TEXT-AREA> 
MOVE 1 TO MCS-CONVERSATION-BOJEOJ 

<NO CONVERSATION OR TO END A CONVERSATION> 
MOVE WS-OUTPUT TO TEXT-AREA 
MOVE 0 TO MCS-CONVERSATION-BOJEOJ. 

<SEND.OUTPUT> 

PROCESS-EXIT. 
EXIT. 

1 0 - 6 



• 

To avoid reducing recovery efficiency, programs must terminate completed 
conversations, particularly at stations that continually receive 
nonconversational messages. 

RECOVERY OF CONVERSATIONAL PROGRAMS 

The AUDITOUTPUT statement of a conversational program must be declared 
TRUE in the Program section in order to recover conversation text after 
a system failure. Conversation text is recovered through audited output 
messages • 

Conversations initiated by a data base or synchronized recovery program 
which are in progress when a system failure occurs are recovered. New 
conversations are temporarily excluded from participating stations until 
the recovery process is complete. However, nonconversational messages 
are permitted at all stations and programs while the system is being 
recovered. Stations that are not conversing at the time of the failure 
may converse with programs that are not required in the recovery 
process. Once the recovery process is complete, all stations and 
programs are free to converse. 

SUMMARY 

The conversational feature provides various benefits. The number of 
file accesses is reduced by storing data that is repeatedly used by 
programs. Conversation areas are brought into memory as required. The 
number of copies of a program does not affect the area size allocated. 
Also, stations conversing with programs are only assigned one 
conversation area. These imposed limitations eliminate duplication of 
information and reduce the space required to store station information 
for a program. Finally, access to certain transactions and programs can 
be controlled by restricting the number of stations that are assigned 
the conversational capability. 

10 - 7 



SECTION 7 

USING AUDIT AND RECOVERY OPTIONS 

GEMCOS provides auditing, controlled shutdown, and several options for 
recovery. This section presents each of these features. 

AUDITING 

GEMCOS keeps an audit trail of all messages sent to an application 
program or to a data base. The TCL can be used to create the MCS with 
just the audit feature, or with both audit and recovery. 

When the audit option is used, the MCS makes an audit trail of all 
messages sent to an application program. For nonsynchronized recovery, 
messages may be audited. But for synchronized recovery, messages must 
be audited. 

The MCS assigns sequence numbers to messages. These sequence numbers 
identify the messages. The common-area header communicates the sequence 
numbers to application programs. In synchronized recovery (available 
only with the Total version), the MCS also assigns a data-base sequence 
number when the message is received. 

The audit trail is written on a disk file. When the audit file is 
filled or reaches end-of-job, it is closed and a new one is created. 
The file is then available for copying to another device. 

Each new audit file has its own file identifier. This audit file-ID is 
MCSAUDIT/AUDITnnn, where <nnn> is a number in the range 0 through 999, 
and is incremented for each new audit file. 

When the MCS needs an audit file for recovery (other than the audit file 
it is currently creating), and that file is not currently on disk, it 
displays the following message on the Control station or console 
printer: 

FILE MISSING - MCSAUDIT/AUDITnnn 

7 - 1 



While the MCS waits for the backup audit file, it contindes to service 
the network. The operator informs the MCS that the requested backup 
audit file is available by entering the AOK Network Control Command at 
the console keyboard. 

During recovery, the MCS continues to process messages for programs that 
are not recovered. When the MCS receives a message which is destined 
for a program that is being recovered, it sends a message to the 
originating station indicating that recovery is in progress and that the 
input message was ignored. 

GEMCOS also provides for controlled shutdown when this is needed. The 
steps in controlled shutdown are discussed in the following material. 

If the 
provides 
steps: 

CONTROLLED SHUTDOWN 

data communications system 
controlled system shutdown. 

needs to be terminated, GEMCOS 
System shutdown has the following 

1. A messsage is sent to all stations, informing them that 
shutdown has begun. 

2. Further input is disabled. 

3. The MCS creates an end-of-file condition on all remote files. 

4. Any messages remaining in the queues of the Network Controller 
are recalled and printed on a line printer. 

5. The MCS terminates. 

Any messages that cannot be delivered to their destinations are 
accounted for on the printer listing. 

The rest of this section discusses GEMCOS recovery options. 

SELECTING RECOVERY OPTIONS 

B 1000 GEMCOS provides a broad range of recovery options within the TCL. 
This means that the user can analyze the needs of particular 
applications and then select the recovery options which best meet those 
needs. 

7 - 2 



In this manual, recovery means that a failure has occurred, and that 
normal transaction processing cannot be continued until some corrective 
action has been taken. The recovery process is the re-establishment of 
normal processing. 

Throughout this section, assume that the user wants to avoid situations 
in which file and/or data base reloads are required following a failure. 
Such failures cause the on-line user network to be non-productive. All 
transactions that have occurred since the data base was last dumped to 
backup storage must be reprocessed. The time lost in in this process is 
costly. The cost is directly related to the following factors: 

1. Data base size. 
2. Length of time since last data base dump. 
3. Transaction volumes since last data base dump. 
4. Transaction-throughput activity. 

Further, assume that the user desires to free 
recovery concerns as much as possible. This 
recovery solutions are extremely complex 
batch/on-line system where a data base is 
multiprogramming environment. 

user programmers from 
is desirable because 
for an integrated, 

being updated in a 

The goal of B 1000 GEMCOS is to make the recovery process present, yet 
virtually invisible to application programs. In return, the user is 
expected to follow several straightforward programming conventions for 
normal processing. These conventions vary slightly, depending upon the 
level of recovery desired. 

Although the MCS is "ignorant" of any data management system and 
contains no data management code embedded within it, the recovery 
mechanism fully accommodates DMS II (Burroughs Data Management System -
Version II). The recovery mechanism works with any data management 
system as long as the programming conventions discussed in this chapter 
are followed. 

NO RECOVERY 

Among the recovery options available to the user is the specification 
that no recovery be applied to a "failed" program or data base. This 
option is the default option for every program declared in the TCL. 

7 - 3 



It may also be specified in the Program section with the following TCL 
syntax: 

RECOVERY NONE. 

When the system or program fails, no attempt is made to reprocess any 
messages that may have been lost at the time of failure. This is true 
regardless of whether the MCS is auditing messages for that program. 

RECOVERY UNDER SMCS 

The user can recover GEMCOS when it is running under Subordinate MCS 
(SMCS). To do this, SUBORDINATEMCS must be set to TRUE in the TCL. 
After a system or GEMCOS failure, GEMCOS tries to reattach all the 
stations it controlled previously. 

GEMCOS must be able to reattach at least one station in order to perform 
recovery. It needs at least one station to be able to open files. 
GEMCOS also needs a valid LSN for the Network Definition Language (NDL) 
header. 

NOTE 

Do not change the Network Definition Language (NDL) 
before starting the MCS, since Logical Station 
Numbers (LSNs) are used. 

It is also possible for GEMCOS to operate without any stations attached 
if the following conditions have been met: 

1. GEMCOS is not in recovery. 
2. All stations have entered a DFR command. 

In this situation, the only valid command that can be entered at the ODT 
is a HLT command with no programs running. Any other input causes the 
following message to be displayed at GEMCOS stations: 

** NO STATIONS ACTIVE 

In most situations, however, GEMCOS must reattach at least one station. 
Having attached that station, GEMCOS then proceeds with recovery. 

7 - 4 



Unless the SUPPRESSMESSAGES option has been set for a given 
GEMCOS sends each station a message which tells the operator 
station has been reattached to GEMCOS. GEMCOS also sends this 
to the Monitor station(s) or Operator Display Terminal (ODT). 

station, 
that the 
message 

When it has finished attaching stations, GEMCOS sends a message to all 
of these stations noting the results. The following material discusses 
situations that happen if GEMCOS cannot reattach a station. 

Sometimes GEMCOS cannot reattach 
station attached itself to 
reexecuted. If GEMCOS finds a 
file, recovery is aborted. The 

a station after a failure because the 
another MCS before GEMCOS could be 

message for such a station in the audit 
user must free the station and retry the 

recovery. 

Note, however, that 
contains the original 
that the input LSN is 
the print file. 

the common-area header for this message still 
(invalid) LSN. GEMCOS displays a message stating 
invalid and that the message is being written to 

CAUTION 

If it receives a FILE OPEN message for stations it 
does not control, GEMCOS aborts. This happens only 
if, after a failure, GEMCOS cannot reattach stations 
before they are attached to other programs. 

Another special situation occurs with user COBOL74 programs. These 
programs should not move the Common-Area LSN into the OUTPUT-CD station 
name. If GEMCOS cannot reattach the station, the COBOL74 program may be 
assigned an invalid key. 

Recovery when GEMCOS is running under SMCS creates several special 
conditions. Regular recovery is discussed in the following material. 

RECOVERY OPTIONS AVAILABLE 

The lowest level of recovery, queue restoration, is for programs which 
do not share a data base with any other program. Queue restoration 
places the responsibility for determining if recovery is required on the 
user application program. The user application program must also direct 
the MCS to begin recovery with a certain specified message. When the 
MCS ~eceives a request from a program for queue restoration, it re-sends 
all succeeding audited messages to that program. 

7 - 5 



The next level of recovery, data base recovery, is for application 
programs which share a data base with other programs. The only recovery 
responsibility placed on the user program is to save certain information 
from the MCS-supplied header in a place where it can be accessed by the 
restart program (defined later in this section). In DMS II programs, 
this is normally the restart data set. 

The other recovery requirement for such a user program is that the 
program must notify the MCS when a DMS II abort occurs. When the MCS 
determines that recovery is needed (at BOJ, because a program has 
failed, or because a program notified the MCS that a DMS II abort 
occurred), the MCS executes the restart program. After all messages are 
received from the restart program, the MCS begins recovery of each 
program in the data base that requires it. The order of recovery is 
oldest message first. 

The most sophisticated form of recovery, synchronized recovery, is 
similar to data base recovery. In this type of recovery, the MCS 
recovers each message in the order that it updated the data base when 
the message was originally processed. To accomplish this, the MCS 
assigns a Data Base Sequence Number (DBSN) to each output message from 
the program. When recovery is required, the order of message recovery 
is in DBSN order rather than oldest input message first. Also, during 
synchronized recovery, the MCS performs an output message analysis to 
minimize duplicate output messages at the station. 

QUEUE RESTORATION RECOVERY 

When a user application program receives a transaction from the MCS in 
the course of normal processing, it should check the MCS-INPUT-ADDR 
field in the common-area header. When this field is nonzero, and this 
program may need to be recovered later, the data in the MCS-INPUT-ADDR 
field must be saved. 

When recovery is required, the user must return the data in the 
MCS-INPUT-ADDR field to the MCS. When the MCS-INPUT-ADDR field is zero, 
the transaction is not audited, and the user application program should 
ensure that this transaction does not cause any updates unless this 
program does not use recovery. 

The MCS performs queue restoration for programs which have this message 
in the in the Program section of the TCL: 

RECOVERY QUEUERESTORATION. 

7 - 6 



This recovery is initiated when the user application program sends a 
message to the MCS with the common-area header MCS-TYPE field set to 20. 
Also, this program should set the common-area header MCS-INPUT-ADDR 
field to the value it contained in the last completed transaction. This 
value would have been saved as previously described in the course of 
normal processing. 

The user application program should then ignore all transactions from 
the MCS until it receives a message with MCS-TYPE set to 21. Next, the 
user application program should send a message to the MCS with MCS-TYPE 
set to 22. This "handshaking" process ensures that no extraneous 
messages are processed by the program. 

Finally, the MCS passes all the recovered transactions back to the 
application program, and normal transactions can again be sent as they 
are received. The application program determines when recovery is 
complete by checking the MCS-RECOVERY-STATUS field in the common-area 
header. A value of zero indicates that this message is a normal 
message. 

When more than one program needs queue restoration concurrently, the MCS 
passes the messages to the programs in the order they were placed on the 
audit file in one pass of the audit file. The MCS makes no attempt to 
reproduce the exact sequence of transactions and/or data base updates 
which occurred during normal processing. 

During queue restoration, the MCS does not perform 
analysis. The MCS passes all recovered output 
application programs to the stations. 

NONSYNCHRONIZED AND SYNCHRONIZED 
DATA BASE RECOVERY 

any output message 
received from the 

The following discussion assumes a basic knowlegde of the B 1000 Data 
Management System II (DMS II) Reference Manual. Programs that were 
declared in the Program section of the TCL with a DATA BASE NAME 
statement fall into one of two categories. The first category consists 
of programs that were declared with this TCL statement: 

RECOVERY DATABASE. 

7 - 7 



This is nonsynchronized data base recovery, called data base recovery in 
this manual. The second category consists of programs that were 
declared with the TCL statement: 

RECOVERY = SYNCHRONIZED. 

This is synchronized data base recovery, called synchronized recovery in 
this manual. 

Opening !!. Remote File 

When a data base or synchronized recovery program opens its remote file, 
the first message sent to it has the common-area header MCS-TYPE field 
set to a value of 23. The first three bytes of the message text area 
contain the program number, the next three bytes contain the multi-copy 
number, and the next twelve bytes contain the date/time stamp. In user 
application programs using DMS II, this information must be saved to 
place in the restart data set. See Figure 7-1 for a recommended data 
set definition, and Figure 7-2 for a remote file record definition. 

RESTARTAREA RESTART DATA SET ( 
GEMCOS-LITERAL 
GEMCOS-PGM-NBR 
GEMCOS-MULTI-NBR 
GEMCOS-DATE-TIME 
GEMCOS-DATA 

% 
POPULATION = 100; 
% 
RESTARTSET ORDERED SET OF RESTARTAREA 

KEY IS ( 
GEMCOS-LITERAL, 
GEMCOS-DATE-TIME, 
GEMCOS-PGM-NBR, 
GEMCOS-MULTI-NBR); 

ALPHA (6); 
NUMBER (3); 
NUMBER (3); 
NUMBER ( 12); 
NUMBER (9)) 

Figure 7-1. Recommended DMS II Restart 
Data Set Definition 

7 - 8 



In Figure 7-2 below, N1 is the length of the user portion of the 
common-area header; if there is no user portion, then MCS-USER-AREA 
should not be specified. N2 is the length of the user's text. N3 is N2 
minus 18. 

01 GEMCOS-REMOTE-FILE-RECORD. 
05 GEMCOS-COMMONAREA-HEADER. 

10 MCS-LSN 
10 FILLER 
10 MCS-SEQ-NO 
10 MCS-NDL-TIME 
10 MCS-TEXT-SIZE 
10 MCS-TERM-TYPE 
10 MCS-MSG-ID 
10 MCS-INDEX-1 
10 MCS-INDEX-2 
10 MCS-F.MT-ERR 
10 MCS-TYPE 
10 MCS-INPUT-ADDR 
10 MCS-RETRY-COUNT 
10 MCS-RECOVERY-STATUS 
10 MCS-OUTPUT-ADDR 
10 FILLER 
10 .MCS-USER-AREA 

05 MCS-TEXT 
05 MCS-TYPE-23-MESSAGE REDEFINES 

10 GEMCOS-HEADER-PGM-NBR 
10 GEMCOS-HEADER-MULTI-NBR 
10 GEMCOS-HEADER-DATE-TIME 
10 FILLER 

PIC 9(4). 
PIC 9. 
PIC 9(6). 
PIC 9(7). 
PIC 9(4). 
PIC 9(2). 
PIC X(6). 
PIC 9(2). 
PIC 9(2). 
PIC 9(2). 
PIC 9(2). 
PIC 9(9). 
PIC 9. 
PIC 9. 
PIC 9(9). 
PIC 9(2). 
PIC X(N1). 
PIC X(N2). 

MCS-TEXT. 
PIC 9(3). 
PIC 9(3). 
PIC 9(12). 
PIC X(N3). 

Figure 7-2. Recommended Remote File 
Record Definition 

7 - 9 



Upon receipt of this message, the following COBOL code should be 
executed in the DMS II user application program: 

MODIFY RESTARTSET AT 
GEMCOS-LITERAL 
GEMCOS-DATE-TIME 
GEMCOS-PGM-NBR 
GEMCOS-MULTI-NBR 

= "GEMCOS" AND 
= GEMCOS-HEADER-DATE-TIME AND 
= GEMCOS-HEADER-PGM-NBR AND 
= GEMCOS-HEADER-MULTI-NBR 

ON EXCEPTION 
CREATE RESTARTAREA 

MOVE "GEMCOS" TO GEMCOS-LITERAL 
MOVE GEMCOS-HEADER-DATE-TIME TO GEMCOS-DATE-TIME 
MOVE GEMCOS-HEADER-PGM-NBR TO GEMCOS-PGM-NBR 
MOVE GEMCOS-HEADER-MULTI-NBR TO GEMCOS-MULTI-NBR 
MOVE 0 TO GEMCOS-DATA. 

Transaction Processing 

A transaction is any message in which the MCS-TYPE is set to the value 
zero. A DMS II application program must do two things in addition to 
processing each input transaction. First, it checks the MCS-INPUT-ADDR 
field of the common-area header. If the field is zero, the program 
should not do any updates to the data base, as this transaction has not 
been audited and will, therefore, not be recovered. 

Second, if the MCS-INPUT-ADDR field is nonzero, it must be saved in the 
restart data set. To do this, enter: 

MOVE MCS-INPUT-ADDR TO GEMCOS-DATA. 

If MCS-TYPE is set to zero, updates to the restart data set would be 
permitted. 

Output messages are then sent to the MCS according to the following: 

1. MCS-TYPE should be set to zero on the last message. 

2. MCS-TYPE should be set 
transactions. 

to one on any intermediate 

A minimum of one output message must be sent to the MCS for each audited 
input transaction. 

7 - 10 



End-of-Job 

The user application programs should be prepared for the receipt of a 
message from the MCS with MCS-TYPE set to 24. This message instructs 
the program to close the data base. 

If the data base is closed successfully, the program should send the MCS 
a response message having MCS-TYPE set to 25. The MCS then sends an 
end-of-file (EOF) indicator, and the program goes to end-of-job (EOJ). 
If a program abort is detected when the data base is closed, the program 
should send the MCS a message with MCS-TYPE set to 20. 

If an application program closes its remote file and/or goes to EOJ at 
any other time, the MCS considers the program to be aborted. 
Application programs may not delete the restart data set record before 
proceeding to end-of-job. 

Program Abort 

When an application program associated with a data base aborts (that is, 
it closes its remote file before receiving an EOF or is abnormally 
terminated), the MCS marks that program disabled, and stops accepting 
messages from stations for any program using that data base. When an 
operator or the network administrator enables the program (using the CLE 
Network Control Command) from the Control station or the console, the 
MCS executes the restart program, after taking any corrective action. 

After the restart program sends the MCS the necessary recovery 
information, the aborted program is re-executed by the MCS. All 
transactions not reflected on the data base are re-sent to the program 
to which they were originally sent. The MCS then returns to normal 
processing. 

Recovery Processing 

When a user application program detects a DMS II abort, it should send 
the MCS a message with MCS-TYPE set to 20. The program should then 
ignore all messages from the MCS until it receives a message with 
MCS-TYPE set to 21. When a user application program receives a message 
with MCS-TYPE set to 21 (whether or not it has sent a type-20 message), 
it should execute the following coding sequence: 

7 - 11 



BEGIN-TRANSACTION NO-AUDIT RESTARTAREA 
ON EXCEPTION 

<exception handling code> • 
END-TRANSACTION NO-AUDIT RESTARTAREA 

ON EXCEPTION 
<exception handling code> • 

This code sequence clears the DMS II abort flag prior to the initiation 
of recovery. An ABORT exception at BEGIN TRANSACTION or END TRANSACTION 
can be ignored; processing does continue. Finally, the program should 
send a message to the MCS with MCS-TYPE set to 22. The MCS then sends 
the program the transactions that were rolled back from the data base. 
When recovery is finished, the MCS begins sending normal transactions as 
they are received. The application program can determine when recovery 
is complete by checking the MCS-RECOVERY-STATUS field in the common-area 
header. A value of zero indicates that this message is a normal 
message. 

Recovery After System Failure 

When an MCS terminates abnormally (i.e., a DS or DP condition arises or 
a HLT KILL is performed), or the MCP fails and a Clear/Start is 
necessary, the MCS, when re-executed, executes the restart program and 
checks the audit file to determine if any transactions are not reflected 
in the data base. If there are transactions that are not reflected in 
the data base, the trancode's program or programs are automatically 
executed by the MCS. All unprocessed transactions are sent to the 
corresponding programs. Normal processing begins when all recovered 
messages are sent. 

Data Base Recovery (Nonsynchronized) 

Data base recovery performs a queue restoration on all application 
programs in the data base needing recovery. Data base recovery does not 
attempt to duplicate the order of updates to the data base, or to 
perform any output analysis. The only difference between data base 
recovery and queue restoration (after the initialization) is that data 
base recovery does not allow messages to be entered from stations for 
any program using the data base until all programs using the data base 
have finished recovery. 

7 - 12 



Synchronized Recovery 

DMS II rolls back a data base in time to remove logical data base 
updates that were partially completed at the time of a failure. (A 
single logical update transaction normally results in multiple data base 
updates.) During recovery, the MCS performs an audit trail analysis of 
the state of the rolled-back data base, so that input transactions which 
were removed from the data base are "recycled" for application 
processing. 

Input transactions which have been successfully audited by the MCS prior 
to failure, but have not yet reached the point where they are passed to 
an application program for processing are queued again. "Recycled" 
transactions can be reprocessed so that the identical update sequence to 
the data base is maintained. 

The MCS does not just send to each program its particular transactions 
in the same sequence that the program received them prior to failure. 
Rather, it attacks the more complex problem of re-establishing the exact 
sequence of events that occurred on the data base. This recovery 
technique takes into consideration the fact that some variable number of 
independent program executions could be receiving transactions 
concurrently, and thus, each transaction could result in multiple 
concurrent updates to the data base. 

This feature becomes extremely important when multiple transactions 
which result in access to common data are asynchronously flowing through 
the system at the same time. 

With synchronized recovery, application programmers and terminal 
operators do not need to know about failures. Application programmers 
and terminal operators can remain unaware of failures, because data 
bases can be maintained simultaneously which are in total agreement with 
any messages delivered to the network prior to the time of failure. 

Further, to eliminate duplicate transmissions, the MCS analyzes the 
input transactions which were recycled because of a data base rollback 
of application-generated output. 

To do this, the MCS directs the Network Controller to return a "good 
results" reply when a primary output message is received at the station. 

7 - 13 



The MCS ensures that a successful, totally synchronized recovery has 
occurred. Yet, under certain circumstances, the MCS may lose output 
messages or send duplicate output messages to stations. Extraneous 
updates to the data base, the most critical cases, do not occur. 

If output messages are lost, the MCS notifies the terminal operator of 
the extent of that loss. If duplicate output messages are sent, the MCS 
informs the terminal operator that a list of possible duplicate messages 
follows. After sending these messages, the MCS informs the terminal 
operator that the possible duplicate messages are finished. In both 
cases, the number of messages lost or duplicated is usually quite small. 

Recovery-Related Conventions 

The next paragrapns explain the conventions which the user needs to 
follow to ensure a synchronized recovery. 

1. A user program must claim transaction-related resources prior 
to updating any of them. Thus, all necessary data management 
records should be locked before entering the transaction 
state. In many situations, this might entail merely locking a 
particular node within a data hierarchy. 

2. A user program must not unlock any transaction resources until 
the transaction is complete. Thus, the DMS II END-TRANSACTION 
can be allowed to unlock data management records. 

3. A user program must send messages to stations according to the 
following protocol: 

a. "Secondary outputs" are sent first. These are outputs 
which are passed to the MCS with the MCS-TYPE field of 
the common-area header set to 1. The value 1 signifies 
to the MCS that the user program is not done with the 
current transaction and wishes to send more output. 

b. The last output generated during normal processing by a 
user program as a result of receiving a given input 
transaction is termed the "primary output." The primary 
output of a transaction is a message sent by the user 
program with a value of 0 in the MCS-TYPE field of the 
common-area header. The value 0 signifies to the MCS 
that the user program is finished with the current 
transaction. The MCS assigns the Data Base Sequence 
Number (DBSN) at this time. 

7 - 14 



The primary output can be delivered to a station other 
than the originating station, or it can have a text 
length of zero. In the latter case, no output message is 
delivered to the station and the MCS audits an output 
message of zero length. 

NOTE 

A zero-length message takes a 
station out of forms mode. 

4. A user program must cause the DMSII restart information to be 
forwarded to the DMS II audit trail when the program leaves 
the transaction state. The user program should not cause the 
DMSII restart information to be forwarded when the program is 
entering the transaction state. 

The proper sequence of events for a user program which has synchronized 
recovery is outlined in the following basic logic flow example. 

Example: 

INITIALIZE. 
OPEN DATABASE. 
READ MCSQUEUE AT END STOP RUN. 
IF MCS-TYPE NOT = 23 STOP RUN. 
MODIFY RESTARTSET AT 

GEMCOS-LITERAL 
GEMCOS-DATE-TIME 
GEMCOS-PGM-NBR 
GEMCOS-MULTI-NBR 

ON EXCEPTION 
CREATE RESTARTAREA 

"GEMCOS" AND 
GEMCOS-HEADER-DATE-TIME AND 
GEMCOS-HEADER-PGM-NBR AND 
GEMCOS-HEADER-MULTI-NBR 

MOVE "GEMCOS" TO GEMCOS-LITERAL 
MOVE GEMCOS-HEADER-DATE-TIME TO GEMCOS-DATE-TIME 
MOVE GEMCOS-HEADER-PGM-NBR TO GEMCOS-PGM-NBR 
MOVE GEMCOS-HEADER-MULTI-NBR TO GEMCOS-MULTI-NBR 
MOVE 0 TO GEMCOS-DATA. 

PERFORM PROCESS THRU PROCESS-EXIT UNTIL EOF = 1. 
STOP RUN. 

PROCESS. 
READ MCSQUEUE AT END MOVE 1 TO EOF 

GO TO PROCESS-EXIT. 
IF MCS-TYPE = 24 

<SEND "TYPE 25" MESSAGE> 
GO TO PROCESS-EXIT. 

7 - 1 5 



IF MCS-TYPE = 21 
<PROCESS & SEND "TYPE 22" MESSAGE> 
GO TO PROCESS-EXIT. 

<LOCK DATA BASE RECORDS TO BE UPDATED> 
BEGIN-TRANSACTION NO-AUDIT RESTARTAREA. 

<MOVE RESTART INFORMATION TO RESTART AREA> 
* 
* 
* 

<UPDATE DATA BASE> 
<SEND SECONDARY OUTPUTS> 

END-TRANSACTION AUDIT RESTARTAREA. 
<SEND PRIMARY OUTPUT> 

PROCESS-EXIT. 
EXIT. 

HOUSEKEEPING CONSIDERATIONS 

In a production environment, it is necessary to do general 
"housekeeping" at the program, data base, and MCS levels. Programs need 
to be recompiled, data base and MCS audit files need to be backed up to 
tape, and most importantly, all of these system modules need to be kept 
in strict synchronization. 

In order to alleviate the confusion of maintaining and preserving the 
integrity of an on-line GEMCOS, the following "housekeeping" tips are 
suggested. 

1. Do not delete the restart data set record from the restart 
data set when an application program goes to EOJ. 

2. To reset the GEMCOS auditing mechanism, and thus remove all 
the MCSAUDIT files from disk, the following steps should be 
taken in the order specified: 

a. Delete all records in the restart data set. 

b. Back up the data base to some off-line medium. 

c. Remove the MCSAUDIT audit files from disk. 

d. Do a REGENERATE of the TCL deck in order to create a new 
MCSTIC and formats file. 

3. It is not recommended that the user copy a saved initial 
MCSTIC file back to disk. This can cause unpredictable 
results during normal processing. When it is inconvenient to 
regenerate the TCL specifications due to their length, an 

7 - 16 



initial MCSTIC file can be recopied back to disk only if all 
records are removed from the restart data set concurrently. 

RESTART PROGRAM 

Every system of programs (data base) that has 
have a restart program defined. Like other 
program is defined in the Program section 
program uses the following special syntax: 

RESTARTPROGRAM TRUE. 

synchronized recovery must 
TCL programs, the restart 
of the TCL. The restart 

Only one restart program may be defined for a system. 

When DMS II rolls back a data base, the restart program retrieves all 
the data base restart data of application programs that will be involved 
in the recovery mechanism, sorts this information, and passes it to the 
MCS. The restart program then goes to EOJ. The MCS also executes the 
restart program if the previous run of the MCS terminated abnormally. 

GEMCOS supplies a documented COBOL source file of a sample restart 
program which is to be used with DMS II. This sample demonstrates the 
proper passes of control from the restart program to the MCS, as well as 
the logic flow within the program. 

The user can patch this source to replace the naming conventions of the 
restart data set used by GEMCOS with the user's data names. This sample 
source also contains information on the values of the common-area header 
MCS-TYPE field. The only changes the user needs to make to this are to 
change the data base name and, possibly, the remote file name. 
Otherwise, this source can be compiled and integrated into the system. 

7 - 17 



RECOVERY CYCLE 

The GEMCOS recovery cycle can be initiated in any of the following ways: 

1. By the REC Network Control Command. 

2. When a user program passes the abort indicator back to the MCS 
(a message with MCS-TYPE set to 20). 

3. When the MCS is restarted after it has abnormally terminated, 
or after the operating system has abnormally terminated. 

When an application program using recovery 
terminates (with the CLE Network Command). 

abnormally 

In the first three cases, recovery is initiated automatically when the 
situation is recognized by the MCS. In the fourth case, recovery is 
indicated after the aborted program is cleared by the operator. 

Any transaction which is recycled to a User Program during recovery is 
flagged with MCS-RECOVERY-STATUS of the common-area header set to one of 
the following values: 

Value 

0 

2 

3 

Explanation 

The system is not in recovery mode. 

The system is in recovery mode because an application 
. program aborted. 

The system is performing an archival recovery. 

The system is in recovery mode because of a Clear/Start 
or an abnormal termination of the MCS. 

In addition, a transaction which causes a user program to abnormally 
terminate is resubmitted with the common-area header MCS-RETRY-COUNT 
field incremented by one. The MCS always resubmits an aborted 
transaction. The user program must degide how to process the 
transaction. 

7 - 18 



Figure 7-3 shows the sequence of events at a Control station during 
recovery after a user program has abnormally terminated. Messages 
prefixed by (u) are messages that were entered at the station by the 
user. Messages prefixed by (s) are messages that were sent by the MCS 
to the station. Any other station that attempted to input transactions 
during recovery (and was ignored) is informed that recovery is finished. 
A station that is idle during recovery is not informed that recovery is 
done. 

(u) TRN1 <data> 

(s) **ERROR 435 126 : UNEXPECTED CLOSE FROM PGM - <nnn> 

(s) ?? 127 TO INITIATE RECOVERY, CLEAR PGM - <nnn> 

(u) *CLE <nnn> 

(s) $OK$ 

(s) ?? 108 BEGIN RECOVERY OF DATABASE - <mmm> 

(s) ?? 109 END RECOVERY OF DATABASE - <mmm> 

Figure 7-3. User Program Abnormal Termination 
Recovery Cycle 

ARCHIVAL RECOVERY 

If DMSII reconstruction fails, or if a program bug corrupts the data 
base, the user may need to reconstruct the sequence of events which the 
data communications network performed upon the data base. This sequence 
of events may have occurred over a period of many days. 

Archival recovery uses the MCS-created audit files from the original 
processing of transactions. Before starting archival recovery, the 
operator must ensure that the data base on disk reflects a known "good" 
state. If the audit files the MCS needs are not present, the MCS 
prompts the operator to load the files it needs. 

Load the data base and audit files which correspond to the "good" state. 
If the current MCSTIC file does not correspond to this state (if, for 
example, a REGENERATE was done later), then also copy in the MCSTIC 
file. 

7 - 19 



Use the current MCSTIC file for archival recovery. This file allows 
recovery back to the last GENERATE or REGENERATE. 

If recovery prior to the last GENERATE or REGENERATE is required, then 
the following files are needed: 

1. The previous MCSTIC file. 
2. The previous audit files. 
3. The previous restart data. 

Therefore, always back these files up when doing a REGENERATE. 

For both 5.01 and 6.0 GEMCOS, always start archival recovery at the ODT. 
Make the stations AVAILABLE. 

To begin archival recovery, execute the MCS with Switch 1 set to 1 (SW1 
1). After initialization, the MCS displays the following messages on 

the display console: 

1. 
2. 

?? 110 
?? 111 

GEMCOS ARCHIVAL RECOVERY 
ENTER ARCHIVAL SPECIFICATIONS 

At the ODT, supply this information: 

1. The name of the data base to be recovered. 

2. A list of all programs in the data base that 
recovered, or, if all programs are to be recovered, 
"ALL". 

are to be 
the word 

Supply this information in free format, using the following syntax: 

<archival recovery request> ::=RECOVER DATABASE 
<data base specifications> 

<data base specifications> ::=<data base name> 
<program list> 

<program list> ::=<program name>/ 
<program name> , <program 
list> / ALL 

7 - 20 



The archival recovery mechanism recovers only one data base per archival 
run. If more than one data base needs to be recovered, separate 
archival runs are needed. 

GEMCOS does not recover batch programs. The user can only run batch 
programs after the following steps have been done: 

1. GEMCOS has been halted. 
2. The audit files have been backed-up. 
3. The restart data set has been backed up. 

lt is possible, however, for a batch program to pass transactions to an 
on-line program, which then sends the transactions to GEMCOS. 

The user can also convert a batch program to an on-line program which 
sends all of the transactions in one BEGIN-END TRANSACTION statement. 
In this case, every message but the last one is a secondary output. The 
last message is the primary output. 

Recovery begins when GEMCOS reads the restart data set and ends when the 
last transaction is processed. 

During archival recovery, no messages generated by application programs 
are released to the stations, and no input is permitted from any 
station. (Note that NCC commands can be entered through an ODT.) 

When archival recovery is finished, the MCS goes to end-of-job. All 
messages from the MCS during archival recovery are sent to the display 
console. If one or more programs are disabled at the time of archival 
recovery, they are automatically enabled before archival recovery 
begins. 

Figure 7-4 shows a typical sequence of events and the console traffic 
for an MCS archival recovery run. The operator generates messages 
prefixed by a (u). Either the MCS or the MCP generates messages 
prefixed by an (s). When archival recovery is complete, the data base 
has been recovered. The MCS can then be re-executed normally to restart 
on-line processing. 

7 - 21 



(u) EX GEMCOS/MCS; SW1 = 1 

(s) GEMCOS/MCS = 1234 BOJ. 

(s) % GEMCOS/MCS ?? 110 GEMCOS ARCHIVAL RECOVERY 

(s) % GEMCOS/MCS ?? 111 ENTER ARCHIVAL SPECIFICATIONS 

(u) 1234AX RECOVER DATABASE TESTDB ALL 

(s) % GEMCOS/MCS ?? 115 BEGIN ARCHIVAL RECOVERY 

(s) % GEMCOS/MCS ?? 108 BEGIN RECOVERY OF DATABASE -
<nnn> 

(s) % GEMCOS/MCS ?? 109 END RECOVERY OF DATABASE - <nnn> 

(s) % GEMCOS/MCS ?? 116 END ARCHIVAL RECOVERY 

(s) GEMCOS/MCS = 1234 EOJ. 

Figure 7-4. MCS - Archival Recovery Cycle 

RECOVERY CONTROL MESSAGES 

Many different types of MCS-TYPE messages are passed to and from the MCS 
during the recovery cycle. Use the following table for quick reference 
to the Recovery Control Messages. 

7 - 22 



MCS-TYPE 
Value 

15 

17 

18 

20 

21 

22 

23 

24 

25 

Written 
~ 

MCS 

Restart 
program 

Restart 
program 

User 
program 

MCS 

User 
program 

MCS 

MCS 

User 
program 

Table 7-1 

Recovery Control Messages 

Definition and Usage 

Sent by MCS to restart program 
requesting restart data be retrieved. 

Sent by restart program to MCS. 
Contains restart data information for 
all programs in the data base. 

Sent by restart program to MCS whenever 
a fatal error is encountered. 

Set to MCS by 
whenever program 
program abort. 

application program 
encounters a DMS II 

Set to application program by MCS 
informing program recovery is about to 
be initiated. 

Sent to MCS by application program in 
response to type-21 message. 

Sent 
FILE 

to application 
OPEN. Contains 

program by MCS at 
pertinent restart 

data information. 

Sent to application program 
instructing program to close 
base. 

by MCS 
the data 

Sent to MCS by application program in 
response to type-24 message. 

7 - 23 



GEMCOS provides effective recovery procedures, while maintaining data 
base and network integrity. Because GEMCOS has several options for 
recovery, this procedure is flexible and efficient. In addition, the 
user can analyze the requirements of application programs and then 
select the recovery options best suited to the needs of those programs. 

7 - 24 



APPENDIX A 

SUMMARY OF NETWORK CONTROL COMMANDS 

This appendix summarizes the Network Control Commands. Refer to Section 
3 for a complete explanation of these commands. See Appendix G for an 
explanation of how to read the syntax diagrams. 

THE HELP COMMAND 

HELP 

Syntax: 

* ---•---HELP------------------------------------------------->I 
I I --
1 I 

1- <s> ->I 

SECURITY CONTROL COMMANDS 

DISABLE USER (DUS) 

Syntax: 

* -----DUS-- <access code> ----------------------------------->! 
I I 
I I 

1- <s> ->I 

ENABLE USER (EUS) 

Syntax: 

* ------EUS--- <access code> --------------------------------->! 
I I 
I I 

I- <s> ->I 

SIGN OFF (BYE) 

Syntax: 

---- * -----BYE----------------------------------------------------->I 
I 1--
1 I 
,- <s> ->I 

A - 1 



SIGN ON (SGN) 

Syntax: 

---- * -----SGN----- <access code> --------------------------------->! 
I 1-- I I 
I I I I 

I- <s> ->I 1--SECURED------->I 

UPDATE ACCESS KEYS (UPD ACCESSKEY) 

Syntax: 

---- * -----UPD ACCESSKEY--- <access code> ----------------------->(1) 
I I 
I I 

I- <s> ->I 

(1)-----TO-~---- <new access code> --------------------------------->I 

STATION ATTACHMENT COMMANDS 

ATTACH LSN (ATT) 

Syntax: 

---- * ------ATT--- <LSN> -------------------------------------------->! 
I I 
I I 

I- <s> ->I 

DETACH FROM REMOTE FILE (DFR) 

Syntax: 

---- * ------DFR------------------------------------------------------>I 
I I I I I I I I 
1- <s> ->l 1--- <LSN> --->I 

A - 2 



PROGRAM CONTROL COMMANDS 

EXECUTE PROGRAM (EX) 

Syntax: 

*-----EX----- <program name> --------------------------------->(1) 
I I I I 
I I I I 

I- <s> ->I 1-- <program title> -->I 

!<-----------------------------------------------------------: I I 
I I 

(1)------------------------------------------------------------------->I 
I 
I 

1---LOCK------------------------------------------------> 
I 
I 

1-- <integer> ------------------------------------------> 
I 
I 

1---US----------- <usercode> --- "/" --- <password> ----> 
I I 
I I 

:- = ->l 

FREE STATION FOR EXECUTION (FRE) 

Syntax: 

---- * ------FRE---------------------------------------------------->I 
I I --
1 I 

I- <s> ->I 

HALT APPLICATION PROGRAM (HAP) 

Syntax: 

•--- * ------HAP--------------------------------------------------->I 
I I -- I I 
I I I I 

i- <s> ->I 1-- <program name> --->I 
I I 
I I 

1-- <program title> -->I 

A - 3 



PROGRAM PASS (PASS) 

Syntax: 

* -------PASS---- <program name> ------
1 

<data string> ----------->i 
I I 
I I 
1- <s> ->I 

AUDIT OK (AOK) 

Syntax: 

I 

I 
1--
1 
I 
I 
1--

I 
<program title> -->i 

I 
I 

<program number> ->i 

MCS CONTROL COMMANDS 

---- * -----AOK----------------------------------------------------->i 
I I --
1 I 

i- <s> ->i 

HALT SYSTEM (HLT) 

Syntax: 

---- * ----HLT----------------------------------------------------->l 
I I -- I I 

I 
1- <s> 

I I I 

->i /--KILL--->j 
I I 

1--READY-->l 

MESSAGE CONTROL COMMANDS 

BROADCAST (BRC) 

Syntax: 

\<---------------------1 
I I 

--- * ------BRC------- <station name> ------ --- <message-text> -->I 
1 I I I 
I I \ I 
1- <s> ->i 1-- <LSN> ---------->i 

I I 
I I 

i---ODT------------->l 

A - 4 



POP QUEUE (PQ) 

Syntax: 

---- * ------PQ------- <station name-1> ---------------------------->(1) 
I I I I I I 
I I I I I I 

I- <s> ->I 1--- <LSN-1> --------->! 1---ALL--->I 

(1)------------------------------------------------------------------->I 
I I 
I I 

1--PRINT--------------------------->I 
I I 
I I 

1--SEND----- <station-name-2> ----->I 
I I 
I I 

i--- <LSN-2> --------->! 

REPORT COMMANDS 

REPORT DATA DUMP (RDM) 

Syntax: 

---- * ------RDM PRINT----------------------------------------------> I 
I I ~-
I I 

l- <s> ->I 

REPORT FILE STATUS (RFS) 

Syntax: 

------ * ------RFS-------------------------------------------------->l 
I I ~- I I 
I I I I 

I- <s> ->I 1-- <file name> -->l 

REPORT PROGRAM COUNTERS (RPC) 

Syntax: 

--- * ---RPC--- ------------------------------------------------------>! 
I . 
I 

<program name> ----->I 
I 
I 

<program title> ---->I 
I 
I 

<program number> --->I 

A - 5 



REPORT PROGRAM STATUS (RPS) 

Syntax: 

------ * -------RPS--------------------------------------------------->i 
I I I I 
I I I I 

i- <s> ->l l--- <program name> ----->i 
I I 
I I 

i--- <program title> ---->i 
I I 
I I 

i--- <program number> --->l 

REPORT STATION COUNTERS (RSC) 

Syntax: 

------ * ------RSC-------------------------------------------------->i 
I I -- I I 
I I I I 

i- <s> ->i i-- <station name>-->i 
I I 
I I 

i-- <LSN> ---------->i 

REPORT STATION STATUS (RSS) 

Syntax: 

------ * ------RSS-------------------------------------------------->l 
I I -- I I 
I I I I 

i- <s> ->i i-- <station name> -->l 
I I 
I I 

i-- <LSN> ----------->i 

CHANGE COMMANDS 

CHANGE MONITOR FLAG (CMF) 

Syntax: 

------ * -------CMF---
1 I 
I I 

l- <s> ->i 

I 
I 
I 
1--

D -------------------------------->: 
I 
I 

N -->l 

A - 6 



CHANGE STATION ADDRESS (CSA) 

Syntax: 

------*------CSA---- <station name>--------- I -------------->(1) 
I I I I I - I 
I I I I I I 

l- <s> ->i i- <LSN> ----------->l l--- Q --------->l 

(1)---- <address>------------------------------------------------>: 

CHANGE STATION DIAGNOSTIC (CSD) 

Syntax: 

* ------CSD------ <station name> ----------- N ------------->i 
I I I I I - I 
I I I I I I 

i- <s> ->i i-- <LSN> ----------->i i--- .Q ----->i 

CHANGE STATION FREQUENCY (CSF) 

Syntax: 

------ * ------CSF----- <station name>---------- I ------------>(1) 
I I I I I - I 
I I I I I I 

i- <s> -> i i- <LSN> ------------ i i---- Q ----> i 

(1)--- <frequency>----------------------------------------------->: 

CHANGE STATION MAXIMUM RETRY (CSM) 

Syntax: 

------ * -------CSM----- <station-name> -----<retries>------------>! 
I I I I 
I I I I 

i- <s> ->i i-- <LSN> ---------->! 

CHANGE STATION QUEUE (CSQ) 

Syntax: 

* ------CSQ----- <station name 1> ------- <station name 2> --->I 
I I -- I I I I 
I I I I I I 

i - <s> -> l l -- <LSN 1 > ----------> i 1-- <LSN 2> ---------> i 

A - 7 



CHANGE STATION READY (CSR) 

Syntax: 

------*-----CSR------ <station name> --------- R --------------->I 
I I I I I - I 
I I I I I I 

I- <s> ->I i -- <LSN> -----------> l l -- ! -->I 

CHANGE STATION TRANSMISSION NUMBER (CST) 

Syntax: 

*-----CST----- <station name>-------- I --------------->(1) 
I I I I I - I 
I I I I I I 

l- <s> ->I i-- <LSN> -----------1 l-- Q -->I 

(1)--- <transmission number>------------------------------------->! 

FORMAT UPDATE (UPD) 

Syntax: 

------ * -------UPD FORMATS-----------------------------------------> I 
I I --
1 I 

I- <s> ->I 

AUDIT & RECOVERY COMMANDS 

CLEAR DISABLED PROGRAM (CLE) 

Syntax: 

------ * ------CLE------
1 I I 
I I I 

I- <s> ->I 1---, 
I 
I 

·---

<program name> ------------------------------>! 
I 
I 

<program title> -->I 
I 
I 

<program number> ->I 

A - 8 



RECOVER DATA BASE (REC) 

Syntax: 

------ * ------REC---------------------------------------------------->i 
I I I I 
I I I I 

i- <s> ->l i--- <data-base name> ----->i 
I I 
I I 

i--- <data-base number> --->i 

REFRESH COMMAND (REF) 

Syntax: 

------ * ------REF---------------------------------------------------->i 
I I 
I I 

i- <s> ->i 

RESET BUSY STATUS (RBS) 

Syntax: 

------ * -----RBS----- <station name>----------------------------->: 
I I I I 
I I I I 

i- <s> ->i i- <LSN> ---------->i 

TIME 

Syntax: 

*------TIME------------------------------------------------>: 
I I 
I I 

i- <s> ->i 

I 
I 

i---START---> 
I 
I 

i---STOP----> 
I --
\ 

i---QUIT----> 

PORT STATION COMMANDS 

DISABLE PORT STATION (DPS) 

Syntax: 

------*-------DPS--- <port station name> ------------------------->: 
I I 
I I 

i- <s> ->i 

A - 9 



ENABLE PORT STATION (EPS) 

Syntax: 

------ * -------EPS----- <port station name> ------------------------->: 
I I 
I I 

i- <s> ->i 

UPDATE STATION HOST NAME/STATION YOUR NAME 

Syntax for UPD - HOSTNAME Command: 

------ * ------UPD--- <port station name> ---STATIONHOSTNAME-------->(1) 
I I 
I I 

i- <s> ->i 

(1)---TO--- <new station host name>---------------------------------->: 

Syntax for UPD - YOURNAME Command: 

------ * -------UPD--- <port station name> ---STATIONYOURNAME------->(1) 
I I 
I I 

i- <s> ->i 

(1)---TO--- <new station your name>---------------------------------->! 

A - 10 



APPENDIX B 

SUMMARY OF FILES 

The following table summarizes GEMCOS system files. 

Internal Input (I) External 
Program Name Output (0) Device Name 

MCSSRC/OBJECT MCSTIC I/O Disk 
MCSFORMATS I/O Disk 
MCSQUEUE I/O Remote 
MCSBCKLG I/O Queue 
MCSAUDIT I/O Disk MCSAUDIT/ 

AUDITnnn 
MCSOLDAUDIT I/O Disk MCSAUDIT/ 

AUDITnnn 
MC SPRINT 0 Printer 
MC STANK I/O Disk MC STANK/ 

<random number> 
MC SQ FULL I/O DISK MC SQ FULL/ 

<random number> 
MC ST I ME 0 DISK MCSTIME/ 

<random number> 
MCSZIPPGM I/O DISK 

MC SS IM PRINT.OUT 0 Printer MCSSIMPRT 
CARDS I Card MC SS IMC RD 
MCSQUEUE 0 Queue 

MCSFIX SOURCE I Disk 
NEWSOURCE 0 Disk 
CARDS I Card 
LINE 0 Printer 

MCSGO I Disk MCSGTS 
I Disk MCSFTS 
I Card MCSCRD 
0 Disk MCSSRC 
0 Disk MCSFIT 
I/O Disk MCSTMP 
0 Printer MCSERN 

B - 1 



Internal Input (I) External 
Program Name Output ( 0) Device Name 

MCSTCL MC SIN I Card MC SIN 
MCSLST 0 Printer MCSLST 
MCSPRM 0 Disk MCSTMP 
MC ST IC 0 Disk MC ST IC 
MCSFORMATS I/O Disk MCSFORMATS 
MCSERROR I DISK GEMCOS/MCSERROR 
MCSTMP I/O Disk MCSTMP1 
OLDMCSTIC I Disk MCSTIC 
MCSRPT 0 Printer J.ViCSRPT 
DIRECTORY I/O Disk work MCSDIRECTY 

MCSRECALL MCSTIC I Disk MC ST IC 
MC SR EM I/O Remote MCSREM 
MCSAUDIT I Disk MCSAUDIT/ 

AUDITnnn 
MCSPRT 0 Printer MC SP RT 

MCSFILXFER MCSREMOTE I/O Remote MCSREMOTE 
MC SDI SK I/O Disk 

B - 2 



APPENDIX C 

LIMITS OF TCL SIZE 

The TCL compiler has several size limitations. They restrict the 
maximum number of various entities such as stations or programs which 
can be declared in the TCL. These size limitations follow: 

The <MAXCOPIES statement> must be less than 256 

The number of programs must be less than 1000 

The number of trancodes must be less than • 1000 

The number of message-IDs must be less than • • 1024 

The number of stations must be less than 1000 

The number of devices must be less than • • • 1024 

The number of functions must be less than • 1024 

The number of formats must be less than •• 1024 

The number of users must be less than • 1000 

The number of routeheader stations must be less than. 256 

The number of trancodes + the number of stations + 

the number of programs must be less than • • 1367 

The number of devices * the number of trancodes * 10 
must be less than • • • • • • • . • • • • • 65535 

The number of message-IDs * number of devices * 10 
must be less than • • • • • • • • • • 65535 

c - 1 



APPENDIX D 

MCS ERROR HANDLING 
AND ERROR MESSAGES 

This section discusses error handling by the MCS and the format of error 
messages. The end of this section lists MCS error messages. 

ERROR HANDLING BY THE MCS 

The GEMCOS error handling subsystem provides the logic needed to handle 
error conditions not dir0ctly related to applications tasks. GEMCOS 
takes automatic action to keep the system running and communicates the 
error condition to an operator. 

GEMCOS distinguishes three categories of errors: 

1. Errors made by a station operator. 
2. Persistent data communications errors. 
3. System errors. 

When GEMCOS detects an error made by a system operator, it sends a 
message to the operator. If it detects other kinds of errors, GEMCOS 
sends messages to the Control station or to the console printer, if the 
Control station is not available. OperatJrs can then use Network 
Control Commands to diagnose or circumvent the problem. 

The Network Controller handles transient data communications errors, but 
persistent errors are reported to the MCS. The MCS then informs the 
Control stations. 

The MCS also keeps statistics on errors. The station accumulates the 
statistics, which the operator can retrieve using Network Control 
Commands. 

System errors have several causes. They can result from input/output 
errors on the peripheral devices the MCS uses, or they can be caused by 
software problems. The software problems may be in the MCS, the Network 
Controller, or application programs. 

D - 1 



When it detects a system error, the MCS reports the error to the Control 
station. For serious errors, the MCS also produces a dump of its tables 
for debugging. The MCS is designed to continue running unless a Control 
station or the system operator discontinues its operation. 

FORMAT OF ERRORS 

This appendix describes all standard network messages generated by the 
MCS to inform users of errors or other conditions. The general format 
of a system or data communications error message is: 

HH:.MM ** ERROR NNN message 

The general format of an operator message is: 

HH:MM #NNN message 

The number NNN is the message number. 

If DATADUMP = TRUE is specified in the TCL, all error messages numbered 
less than or equal to 30 are ·accompanied by a table dump. For other 
messages, a dump can be obtained by using the RDM Network Control 
Command. 

ERROR MESSAGES 

0 INVALID HALT PHASE 

During system shutdown, the current phase of shutdown is different 
from the one expected. 

SUGGESTED ACTION: 

Orderly shutdown may not be possible, and the MCS may have to be 
discontinued. 

INVALID STATUS REQUEST 

During initialization, the MCS was sending status requests to the 
Network Controller and the Network Controller responded with an 
error message stating that some request was not valid. As a 

D - 2 



result, the corresponding 
initialized. 

entry in the MCS tables is not 

SUGGESTED ACTION: 

Discontinue the MCS, and execute it again. 

2 HARDWARE EXCEPTION ON MCSTIC 

While reading from or writing to MCSTIC, the MCS detected a 
physical disk error (such as a parity error). The MCS suspends 
itself, awaiting keyboard input from the system operator. 

SUGGESTED ACTION: 

If the operator responds to the ACCEPT, the MCS attempts to shut 
down either gracefully (if SYSTEMHALT = TRUE was specified in the 
TCL) or directly. Otherwise the user must DS or DP the MCS. 

3 EOF ON MCSTIC READ OR WRITE 

The MCS attempted to read from or 
record number. The MCS suspends 
the operator to an ACCEPT. If 
attempts to terminate normally. 

write to MCSTIC using an invalid 
itself, awaiting a response from 
the operator responds, the MCS 

SUGGESTED ACTION: 

Analyze the dump for a possible software error. 
record in MCSTIC for invalid record pointers. 
have to be created. 

4 INVALID RECORD ID IN MCSTIC 

Check the NPR 
A new MCSTIC may 

The MCS read a MCSTIC record, but the ID field at the beginning of 
the record was not the one expected. The MCS suspends itself, 
awaiting a response from the operator to an ACCEPT. If the 
operator responds, the MCS attempts to terminate normally. 

SUGGESTED ACTION: 

Analyze the dump for a possible software error. Check the NPR 
record in MCSTIC for invalid record pointers. A new MCSTIC may 
have to be created. 

D - 3 



6 INVALID MESSAGE SOURCE ON SEND 

When attempting to send a response to a Network Control Command, 
the MCS discovered that the LSN in the header was invalid. 

SUGGESTED ACTION: 

The message cannot be sent out and is dropped. It can be recovered 
from the data dump. 

8 CONVERSATION MISMATCH IN AUDIT FILE 

The MCS attempts to perform a recovery. The conversation 
information in the MCSTIC file does not match the audit records. 

SUGGESTED ACTION: 

Review the audit files and rerun the MCS program. 
recurs, execute a data dump and monitor trace. 

10 INVALID MESSAGE VARIANT 

If the error 

The MCS has received a message whose variant field is not zero from 
the Network Controller. 

SUGGESTED ACTION: 

The message is discarded, but can be recovered from the dump. The 
Network Controller is suspect. 

11 INVALID FILE OPEN - STATION MYUSE 

An application program attempted to open a remote file containing a 
station whose MYUSE is not consistent with the open type. 

SUGGESTED ACTION: 

The application program must be discontinued. Either its OPEN must 
be modified or the MYUSE of the station must be changed in the NDL. 

13 PGM NEEDS RECOVERY - STN IS ATTACHED 

A utility or assignment program needs to be recovered. GEMCOS 
cannot reattach one or more stations to the program that were 
attached at the time of failure because these stations are 
currently attached to another program. 

D - 4 



SUGGESTED ACTION: 

This error indicates a situation that GEMCOS cannot resolve. This 
error only occurs when GEMCOS is running subordinate to SMCS and 
cannot reatta~h all of its former stations after a failure. Detach 
all GEMCOS stations from any programs they may be attached to and 
then re-execute the MCS. 

14 PGM NEEDS RECOVERY - NO STNS ATTACHED 

A utility or assignment program needs to be recovered, but GEMCOS 
cannot reattach to the program any stations that were attached 
previously at the time of failure. 

SUGGESTED ACTION: 

This error indicates a situation that GEMCOS cannot resolve. This 
error only occurs when GEMCOS is running subordinate to SMCS and 
cannot reattach all of its former stations after a failure. Detach 
all GEMCOS stations from any programs they may be attached to and 
then re-execute the MCS. 

17 RECOVERY OPENED CURRENT AUDIT FILE 

During recovery, the MCS attempted to open the current audit file 
for message reprocessing. 

SUGGESTED ACTION: 

Rerun the MCS. 
monitor trace. 

If the problem persists, obtain a data dump and 

18 BAD AUDIT RECORD DURING RECOVERY 

During recovery, the MCS attempted to read or write an audit file 
with an invalid key. 

SUGGESTED ACTION: 

Rerun the MCS. 
monitor trace. 

If the problem persists, obtain a data dump and 

19 FATAL ERROR FROM RESTART PGM - PROGRAM 

This error immediately follows the error explaining the nature of 
the problem. 

D - 5 



SUGGESTED ACTION: 

Check the logic of the restart program as well as any application 
programs involved. 

20 BAD FILE # IN DETACH MSG 

The MCS received a detach message from the Network Controller, but 
was unable to associate the remote file number with any known 
program. 

SUGGESTED ACTION: 

Check the MCS and Network Controller interface logic and analyze 
the data dump (if present) to obtain the program name. 

21 BAD PGM # IN DETACH MSG 

The MCS received a detach message from the Network Controller for a 
program that was not running. 

SUGGESTED ACTION: 

Check the MCS and Network Controller interface and corresponding 
data dump. 

22 EOF / EXCEPTION ON FORMAT FILE READ 

While reading from the format file, the MCS detected either an 
end-of-file condition or a hardware exception. The MCS terminates 
when this happens. 

SUGGESTED ACTION: 

Submit the system dump produced by the GEMCOS MCS to the local 
Burroughs representative. 

23 NO STNS ATTACHED, CANNOT CONTINUE 

The MCS received a file-open request from the network controller, 
but no stations were controlled by the MCS at that time. 

SUGGESTED ACTION: 

If GEMCOS is in the 
failure and is under 
GEMCOS was unable 
previously, because 

process of initiating recovery after system 
the control of SMCS, this error indicates that 
to reattach any of the stations it owned 
these stations now are attached to other 

D - 6 



programs. When the user attempts to run GEMCOS 
SMCS, the stations should not attach to other 
recovery is complete. 

24 RECOVERY ABORTED, STN NOT AVAILABLE - <explanation> 

recovery 
programs 

under 
until 

The MCS needs to send a recovered message to the program indicated 
by the specified station. GEMCOS, however, is unable to send the 
message because it does not own the station in question. 

30 OUTPUT MESSAGE INVALID DUE TO: - <VARIANT> 

The send message routine detected an error in the header of a 
message that was prepared by some other procedure. The meanings of 
the different possible variants are: 

1. HARDWARE TYPE - An attempt was made to send a message to a 
station which cannot receive messages because of its hardware 
type (such as a card reader). 

2. NDL MSG TYPE - The message type field in the header does not 
have a valid value. 

3. TEXT SIZE 
greater then 
generation. 

The message 
the maximum 

text size field 
text size as 

4. LSN - The LSN in the header is invalid. 

in the header 
declared at 

is 
TCL 

In all cases, except text size errors, the message is dropped. In 
the case of text size errors, the message is truncated to text-size 
bytes and sent. 

SUGGESTED ACTION: 

Obtain a Monitor Trace of the error, if possible, and submit this 
trace to the local Burroughs representative. 

31 POSSIBLE FRACTURED FORMAT AT LSN <LOGICAL STATION NUMBER> 

Screen wraparound sent a message containing a format to the 
indicated station. This is a warning message indicating that the 
format could be split in the middle of a forms field. 

D - 7 



32 OPEN DENIED - MAXCOPIES EXCEEDED 

An attempt made to execute more than the maximum number of copies 
of a given program. 

SUGGESTED ACTION: 

DS or DP the suspended program. Regenerate the TCL if the program 
is a user program and more copies are desired. 

33 CANNOT HAP UTIL PGM FROM SPO OR CRD 

An HAP Network Control Command cannot be entered from the console 
printer or the card reader for programs which have been described 
in the TCL as utility programs. 

SUGGESTED ACTION: 

Enter the command at the station(s) which entered the EX command 
for this program. 

34 OPEN DENIED - OPEN OUTPUT CONFLICT 

A program opened a remote file output only but the MCS detected one 
or more of the following conflicts: 

1. Program must be declared NONPARTICIPATION. 
2. Program must not be an MCS. 
3. Program must not be a user program. 

SUGGESTED ACTION: 

Re-evaluate the program requirements and modify either the program 
remote file open or the TCL. 

35 STATION NNN DATACOM ERROR: <VARIANT> 

The MCS has received an 
controller about station NNN. 
statistics reporting (RSC). 
the variant. 

1 • PARITY ERROR 
2 • BUFFER OVERFLOW 
3. READ MEMORY PARITY 
4. TIME OUT 
5. BREAK 
6. END OF BUFFER 

error indication from the network 
The error is reported and logged for 

The following are the valid values for 

7. LOSS OF DATA SET READY 

D - 8 



8. LOSS OF CARRIER 
9. ADDRESS ERROR 
10. TRANSLATE ERROR 
11. FORMAT ERROR 
12. READ NOT READY 

SUGGESTED ACTION: 

Anaylze the data communications network for possible problems with 
terminals, modems, lines, or other data communications equipment. 

36 OPEN DENIED - SYSTEM SHUT DOWN 

An application program attempted to open a remote file during 
system shutdown. 

SUGGESTED ACTION: 1.=Analyze the datacommunications network 

The program must be discontinued. 

37 OPEN DENIED ON REMOTE FILE 

An application program attempted to open a remote file to which no 
stations could be attached. 

SUGGESTED ACTION: 

Check the FAMILY statement in the File section of the NDL and the 
Station section of the TCL deck. 

38 GEMCOS MCS GOING DOWN 

This message is sent to any station which attempts to enter a 
message during system shutdown. The input message is ignored. 

39 INVALID PROGRAM NUMBER 

The MCS has detected that a program has gone to EOJ, but is not 
recognized by the MCS as an active program. 

SUGGESTED ACTION: 

Use the RDM PRINT Network Control Command and the 
keyboard commands to obtain diagnostic information. 
listing may also be helpful. 

D - 9 

DM console 
A monitor 



40 PROGRAM NOT KNOWN 

A program not defined in the TCL was referenced in an EX or HAP 
Network Control Command. 

SUGGESTED ACTION: 

Use the RDM PRINT command to obtain a list of valid names. 

41 INVALID PROGRAM NAME PROGRAM-NAME 

The program named in the Network Control Command either does not 
exist or does not have a remote file open. 

42 PROGRAM NOT IN DISK DIRECTORY PROGRAM-NAME 

The program name in the EX Network Control Command is not on disk. 

43 INVALID STATION NAME STATION-NAME 

The station name in the Network Control Command was not recognized. 

44 NO ACTIVE FILE NAMED FILE-NAME 

The file named in the Network Control Command either does not exist 
or has not been opened. 

45 INVALID INPUT MESSAGE - VARIANT 

When reading from its input queue, the MCS detected an error in the 
input message. The type of error is identified by the variant: 

1. INVALID MESSAGE TYPE FROM PROGRAM NUMBER <program number> 

The MCSTYPE field in the GEMCOS Common Area Header (CAH) 
is not one of the allowable values described in Section?? 

2. BAD TEXT SIZE FROM PROGRAM NUMBER <program number> 

The text size is greater than that allowed by the 
MAXTEXTSIZE specification. 

3. INVALID LSN FROM PROGRAM NUMBER <program number> 

The LSN field in the GEMCOS Common Area Header describes 
an invalid or inactive LSN. 

D - 10 



4, MISSING HEADER FROM PROGRAM NUMBER <program number> 

The program did not supply a GEMCOS header. 

5. INVALID ROUTEHEADER RETURN FROM LSN FROM PROGRAM NUMBER 
<program number> 

The Routeheader 
the CAH pointed 
Table. 

Table index stored 
to an invalid LSN 

in the LSN field of 
in the Routeheader 

6. INVALID MESSAGE DESTINATION TYPE FROM PROGRAM NUMBER 
<program number> 

The message destination field of the CAH is not one of 
the allowable values described in Section 2. 

In either case the message is ignored, but is printed for debugging 
purposes. 

SUGGESTED ACTION: 

A type error in a message from an application program means that 
the program has put a value other than 0 (zero) in the type field 
of the actual key. In case of a SIZE error, longer messages can be 
allowed by changing MAXTEXTSIZE and regenerating. 

46 INVALID OPERATION MNEMONIC 

The Network Control Command mnemonic was not recognized. 

47 INVALID OPTION ITEM 

Some item expected as an option in a Network Control Command is 
invalid. 

48 INVALID CHANGE DATA ITEM 

The value of a data item in a Change Network Control Command is 
invalid. 

49 COMMAND MISSING DATA ITEM 

An item is missing from a Network Control Command. 

D - 11 



50 EX COMMAND IGNORED - STA ATTACHED 

An EX Network Control Command was entered from a station when the 
station was already attached to an assignment or utility program. 

SUGGESTED ACTION: 

If the station is attached to a utility program, enter a HAP 
command for that program and retry the EX. If the station is 
attached to an assignment program, all EX command from this station 
will return an error until the assignment program closes its remote 
file. 

51 EX COMMAND LOCKOUT - TRY AGAIN 

The EX.command was temporarily not available; therefore, retry the 
command. 

52 TRANCODE'S PGM NOT ONDEMAND 

The station entered 
currently executing 
statement "EXECUTE = 

SUGGESTED ACTION: 

a valid trancode, but 
and was not declared 

ONDEMAND". 

the program is not 
in the TCL with the 

Send a message to the Control station or system operator requesting 
that the necessary program be executed or regenerated with EXECUTE 
= ONDEMAND. 

53 INVALID MONITOR FLAG 

The flag specification in a CMF command is invalid. 

54 INVALID STATION LIST 

A BRC command contains more stations in the destination list than 
exist in the system. 

SUGGESTED ACTION: 

Use fewer stations in the list. 
is sent to all stations. 

If the list is null, the message 

D - 1 2 



55 FILE NOT OPEN 

The MCS received a file close from a program whose remote file is 
not open. 

56 INVALID INPUT - MISSING SIGNAL CHAR 

The MCS received a message from the console keyboard and no signal 
character was present at the beginning of the message. 

SUGGESTED ACTION: 

Re-enter the command with the signal character (as declared in the 
TCL) in position 1. 

57 TRANCODE'S PGM DIDN'T OPEN THIS STATION 

The remote file which was opened by the program which handles this 
trancode did not contain this station. 

SUGGESTED ACTION: 

Change the FAMILY statement for this file in the NDL. 

58 PROGRAM NOT RUNNING - <PGM NAME> 

An attempt was made to pass a message to a utility program which 
was not running. 

SUGGESTED ACTION: 

Execute the program from a station before passing a message to it 
from another station. 

59 NO TRANCODE AND STA NOT ATTACHED 

The message entered did not have a trancode 
formatting is being used), and the station 
utility or assignment program. 

60 USER ID NOT ALLOWED AT THIS STATION 

(or a message-ID if 
is not attached to a 

This user is not allowed to sign on at this station. 

D - 1 3 



61 SECURITY FAILURE - INVALID USER-ID 

The user-ID in a SGN command is not recognized by the system. 

62 SECURITY FAILURE - USER-ID DISABLED 

The user-ID in a SGN command is disabled. 

SUGGESTED ACTION: 

The user cannot sign on until the user-ID is enabled by the EUS 
command. 

63 SIGN-ON NOT REQUIRED 

A SGN command was received from a station which either does not 
require signing on or is already signed on. 

SUGGESTED ACTION: 

Proceed with normal transactions as if signed on. 

64 SECURITY FAILURE - SIGN-ON REQUIRED 

The MCS received a message (other than a SGN command) from a 
station which requires signing on, but is currently signed off. 
The message just entered is ignored. 

SUGGESTED ACTION: 

Sign on with a SGN command. 

65 SECURITY FAILURE - RESTRICTED PROGRAM 

A message was entered by a user who is not allowed to use the 
destination program. The input message is ignored. 

66 SECURITY FAILURE - RESTRICTED TRANS 

A message was entered by a user 
transaction code in that message. 

who is not allowed to use the 
The message is ignored. 

D - 14 



67 SECURITY FAILURE - RESTRICTED NCC 

A Network Control Command was entered from a station that is not 
allowed to execute that command. Most commands are allowed only 
from the Control station. 

68 SIGN-ON COMPLETE AT TIME ON DATE 

A SGN command was successfully processed. 

SUGGESTED ACTION: 

The user is now signed on, and interaction with the system may 
begin. 

69 SIGN-OFF COMPLETE AT TIME ON DATE 

A BYE command was successfully processed. 

SUGGESTED ACTION: 

Interaction with the system from this station is prohibited until 
some user successfully signs on again. 

70 CHANGE DENIED 

The Network Controller responded to a network-change request with a 
change-denied message. 

SUGGESTED ACTION: 

The Network Controller should be checked to determine the reason 
for denial. 

71 INVALID CHANGE TYPE 

The Network Controller found the type code in a network-change 
request to be invalid. 

SUGGESTED ACTION: 

The maintenance module of the MCS should be checked for possible 
software error. 

D - 15 



72 INVALID CHANGE RESULT 

The Network Controller made an invalid response to a change request 
from the MCS. 

SUGGESTED ACTION: 

There may be a problem in the logic of the Network Controller. 

73 INVALID CHANGE COMJ'IIAND 

The Network Controller responded to a change request from the MCS, 
but the response is not what the MCS expected. 

SUGGESTED ACTION: 

Investigate the maintenance module of the MCS for a possible 
software error. 

74 SEND DENIED ON CHANGE 

The MCS found an error in a change request sent from the MCS to the 
Network Controller. 

SUGGESTED ACTION: 

The change command cannot be processed. Network activity 
continues, but further change requests may be ignored. If more 
changes are critical, the system must be shut down and restarted. 

75 STATION NOT ATTACHED TO THIS PROGRAM <PGM NAME> 

An attempt was made to HAP a utility program from a station. The 
station, however, was currently attached to a different program. 

76 HAP COMMAND LOCKOUT, TRY AGAIN 

The HAP command was temporarily unavailable; therefore, retry the 
command. 

77 OPEN DENIED - FROG ALREADY RUNNING 

An assignment program attempted to open a remote file when there 
already was a copy of that program running. Only user programs can 
have multiple copies running. 

D - 16 



SUGGESTED ACTION: 

The assignment program must be DSed. 

78 CANNOT EX UTIL PGM FROM CARD OR SPO 

An EX Network Control Command cannot be entered from the Control 
station or card reader for programs which have been described in 
the TCL as utility programs. 

SUGGESTED ACTION: 

Either enter the EX command from a station or make the regenerate 
run of the TCL to describe this program as an assignment program or 
user program 

79 OPEN DENIED - UTIL PGM NOT EXPECTED 

A program described in the TCL as a utility program attempted to 
open a remote file, and the MCS was not expecting the open request 
(i.e., the program was not executed from a station). 

SUGGESTED ACTION: 

DS the program and execute it from the station that is to use it. 

80 UNEXPECTED ATTACH REPLY RECEIVED 

The MCS received an unexpected ATTACH REPLY from the Network 
Controller. The message is ignored. 

SUGGESTED ACTION: 

Check the MCS and Network Controller logic. 

81 ATTACH REPLY MISMATCH 

The 'MCS received an ATTACH REPLY which attached the wrong station 
or the wrong file or both. 

SUGGESTED ACTION: 

Check the MCS and Network Controller logic. 

D - 17 



82 ATTACH REQUEST DENIED BY NC, TYPE = DENIAL REASON 

The last attach request sent by the MCS was denied by the Network 
Controller. The station will not be attached. The possible values 
of denial reason are described in the B 1700 Systems Network 
Definition Language (NDL) Reference Manual, form 1073715. 

SUGGESTED ACTION: 

Check the MCS and Network Controller logic. 

83 UNEXPECTED DETACH REPLY RECEIVED 

The MCS received an unexpected DETACH REPLY from the Network 
Controller. The message is ignored. 

SUGGESTED ACTION: 

Check the MCS and Network Controller logic. 

84 DETACH REPLY MISMATCH 

The MCS received a DETACH REPLY which detached the wrong station or 
the wrong file or both. 

SUGGESTED ACTION: 

Check the MCS and Network Controller logic. 

85 STATION NOT ATTACHED, INPUT IGNORED 

If no participating programs are declared in the TCL, and a station 
is not attached to a program, any message sent from that station 
results in this error. Entering *HAP without a program name when 
not attached also creates this error condition. 

86 FMT ERR, DEST PTR OUT OF BOUNDS 

The formatted message is larger than MAXTEXTSIZE. 

SUGGESTED ACTION: 

Check the description of the format in the TCL. 

D - 18 



87 FMT ERR, SOURCE PTR OUT OF BOUNDS 

The raw (unformatted message) is larger than MAXTEXTSIZE. 

SUGGESTED ACTION: 

Check the description of the format in the TCL. 

88 FMT ERR, NON-DIGIT IN INTEGER FIELD 

The formatting code found a non-numeric character or an embedded 
blank in an integer field. 

SUGGESTED ACTION: 

Check the format description in the TCL and the application program 
logic. 

89 FMT ERR, MISSING SKIP DELIMITER 

The message from the application program was missing a skip 
delimiter. 

SUGGESTED ACTION: 

Check the format description in the TCL and the application program 
logic. 

90 FMT ERR, VARIABLE REPEAT ON INPUT 

The station message invoked a format containing a variable repeat. 

SUGGESTED ACTION: 

Change the format description in the TCL to exclude any variable 
repeats on input. 

91 FMT ERR, MISSING DELIMITER 

The message from the application program was missing a delimiter. 

SUGGESTED ACTION: 

Check the format description in the TCL and the application program 
logic. 

D - 19 



92 FMT ERR, INVALID TRANSLATE FIELD 

The formatter attempted to translate a portion of the message from 
the application program using a TRANSLATE function, but the text 
did not match any of the internal strings of that function. 

SUGGESTED ACTION: 

Check the format and function description in the TCL and the 
application program logic. 

93 OPEN DENIED - WRONG TCL INTERFACE 

Either the application program opened a remote file "with headers" 
and the TCL INTERFACE statement for that program was not declared 
to be INTERFACE = MCS, or the INTERFACE was declared to be MCS, but 
the program did not open its remote file "with headers". 

SUGGESTED ACTION: 

Correct the TCL INTERFACE parameter to match the program and 
regenerat~ MCSTIC. 

94 INPUT IGNORED DURING RECOVERY 

The MCS received a message which is bound for a program that is 
undergoing recovery. The input message is ignored. 

SUGGESTED ACTION: 

When recovery is complete, enter the message again. Messages may 
be entered for programs not being recovered. 

95 HAP NOT ALLOWED - PGM OPENED OUTPUT 

An attempt was made by a station to *HAP a program declared to be 
"output only". This is not accepted since the MCS cannot send an 
EOF to an output-only remote file. 

SUGGESTED ACTION: 

The program must be able to finish without aid from the MCS or it 
must be DSed. 

D - 20 



96 CAN'T SEND EOF TO OUTPUT ONLY PGM # <PROGRAM> 

During the MCS shutdown phase, programs are sent an EOF indicator 
which re~uires them to terminate. However, output-only programs 
cannot be sent this EOF notice. 

SUGGESTED ACTION: 

The program must be terminated manually. 

97 OPEN DENIED - PROGRAM NOT KNOWN 

A program which was not defined in the TCL attempted to open a 
remote file. 

SUGGESTED ACTION: 

DS or DP the program. Modify the TCL deck to include this program. 

98 OPEN DENIED - PROGRAM DISABLED 

A program known to the MCS attempted to open a remote file but the 
program was marked disabled. 

SUGGESTED ACTION: 

DS or DP the program. Clear the program (*CLE) from the console 
printer or Control station. If all programs belonging to the data 
base are marked OK, recovery is then initiated. 

99 OPEN DENIED - PGM OPENED 2 HJ.VITE FILES 

A program attempted to open more than one remote file concurrently. 
The MCS permits a program only one remote open at any given time. 

SUGGESTED ACTION: 

DS or DP the program. Disallow the program from concurrent remote 
file opens. 

100 ABNORMAL CLOSE DONE ON RESTART PGM - <PROGRAM> 

The MCS received a remote file close message from 
Controller, but the restart program was still active. 
101and102.) 

D - 21 

the Network 
(See errors 



SUGGESTED ACTION: 

Check the MCS and restart program interface logic. 

101 ENTER "OK" TO RESTART RESTRT PGM 
102 ENTER "NO" TO KILL THE MCS 

These two error messages are displayed on the Control station or 
console printer when a serious problem is encountered with the 
restart . program. A message immediately preceding these errors 
explains the nature of the problem. 

SUGGESTED ACTION: 

Either enter "OK" or "NO" from the console printer by means of the 
accept mechanism. 

103 OPEN DENIED-RESTART PGM NOT EXPECTED 

A restart program opened a remote file, but the MCS was not 
expecting a remote file to be open at that time. 

SUGGESTED ACTION: 

DS or DP the program. 
logic. 

Check the MCS and restart program interface 

104 END POSSIBLE DUPLICATE MESSAGES 

This error message always occurs in conjunction with error 105. A 
station receives this message after all possible duplicate messages 
have been displayed at the station at the finish of a synchronized 
recovery. 

105 BEGIN POSSIBLE DUPLICATE MESSAGES 

This error message and error 104 are displayed at the end of a 
synchronized recovery if there are any messages for a station that 
the MCS cannot be sure the station has already seen. These 
messages are displayed between message 105 and message 104. 

106 BUSY 

An attempt was made to enter a transaction at a station before the 
output from the previous transaction was received. This only 
occurs if TRANSACTIONMODE = TRUE for that station. The entered 
transaction is ignored. 

D - 22 



SUGGESTED ACTION: 

Wait for output from previous transaction, or enter the RBS Network 
Control Command to reset the busy status of the station. 

107 MSG NOT FOR SYNC DATABASE PGM 

An attempt was made to send a message to a program that is not part 
of a synchronized data base (as declared in the TCL). 

SUGGESTED ACTION: 

Either restrict messages 
base programs only, 
TRANSACTIONMODE to FALSE. 

from this station 
or set the TCL 

108 BEGIN RECOVERY OF <DATABASE/PROGRAM> - <number> 
109 END RECOVERY OF <DATABASE/PROGRAM> - <number> 

to synchronized data 
Station statement 

These two messages are displayed on the control station or console 
printer at the start and finish of recovery whenever recovery is 
initiated. For data base and synchronized recovery, the word 
DATABASE appears, otherwise the word PROGRAM appears. 
Additionally, any station that attempts to send a message to a 
program currently undergoing recovery receives message 109 upon 
completion of recovery. 

110 GEMCOS ARCHIVAL RECOVERY 
111 ENTER ARCHIVAL SPECIFICATIONS 

These messages are displayed on the console printer whenever the 
MCS is executed in archival recovery mode. 

SUGGESTED ACTION: 

Enter the desired specifications as described in Archival Recovery 
in Section 9. 

112 INVALID ARCHIVAL SPECIFICATIONS 

The archival specifications entered at the console printer were 
incomplete or totally incomprehensible. 

D - 23 



SUGGESTED ACTION: 

Consult Archival Recovery in Section 9 to determine the proper 
syntax. 

113 MISSING OR UNRECOGNIZED WORD - <WORD> 

The archival specifications 
contained a word (indicated 
unrecognized or unexpected. 

entered 
in the 

at the console printer 
error message) that was 

SUGGESTED ACTION: 

Consult Archival Recovery in Section 9 to determine the proper 
syntax. 

114 "ALL" MUST BE ONLY NAME IN PGM LIST 

The archival specifications entered at the console printer 
contained program names in addition to the word "ALL". 

SUGGESTED ACTION: 

Either enter a list of program names or the word "ALL" at this 
point in the archival specifications. 

115 BEGIN ARCHIVAL RECOVERY 
116 END ARCHIVAL RECOVERY 

These two messages are displayed on the console printer 
start and finish of archival recovery, respectively. 
displaying message 116, the MCS terminates. 

117 NO INPUT ALLOWED: ARCHIVAL RECOVERY 

at the 
After 

An attempt was made by a station to send a message to a program 
while the MCS was in archival recovery mode. This and any other 
such request is ignored. 

SUGGESTED ACTION: 

Do not send any messages to programs during archival recovery. 

D - 24 



118 PROGRAM NOT IN DATABASE - <number> 

The archival specifications entered at the console printer contain 
a program name that does not belong to the previously mentioned 
data base. 

SUGGESTED ACTION: 

Check the archival specifications against the TCL specifications 
describing which programs belong to the data base. 

119 CANNOT PASS TO USER-TYPE PROGRAM 

An attempt was made to pass a message to a User-type program. 

120 MCSTIC TIME MISMATCH - <audit file-name> 

The MCSTIC date/time stamp in the MCSTIC file for the current audit 
file does not match the MCSTIC date/time stamp in the audit file. 

SUGGESTED ACTION: 

Check the validity of the MCSTIC file and the audit file named 
<audit file-name>. 

121 AUDIT FILE TIME MISMATCH - <audit file-name> 

The audit file date/time stamp in the MCSTIC file for the current 
audit file does not match the audit file date/time stamp in the 
audit file. 

SUGGESTED ACTION: 

Check the validity of the MCSTIC file and the audit file named 
<audit file-name>. 

122 CURRENT TIME LESS THAN LAST AUDIT 

The value of the current time maintained by the system clock is 
less than the time of the last audit performed by the MCS. 

SUGGESTED ACTION: 

Check the validity of the system time clock. 

D - 25 



124 ROUTEHEADER ERROR - <explanation> 

An attempt was made to send a message to a routeheader station or a 
message was received from a routeheader station that contained an 
error. 

SUGGESTED ACTION: 

The <explanation> portion of the error details the problem. It is 
necessary to examine the TCL on both hosts for possible conflicts. 

125 MCS LOST REPLY TO <NN> INPUTS TO PGM - <number> 

During synchronized recovery, the MCS detected <NN> input messages 
from a given station to a program for which no output messages were 
ever received. 

SUGGESTED ACTION: 

An inquiry into the data base should be made to see if the 
transactions in question are on the data base. 

126 UNEXPECTED CLOSE FROM PGM - <number> 

A program that is part of a data base using audit and recovery was 
terminated abnormally. The data base is marked as needing 
recovery. Error message 127 always follows this message. 

127 TO INITIATE RECOVERY, CLEAR PGM - <number> 

Either this program just terminated abnormally or an attempt was 
made to initiate recovery (by the MCS or the user). In either 
case, the program must be cleared before recovery can begin. 

SUGGESTED ACTION: 

Clear the disabled program using the *CLE command. If recovery 
does not begin, then at least one other program in the data base is 
still disabled and must also be cleared. 

128 FILE MISSING - <audit file-name> 

During recovery, the named audit file was sought on disk by the MCS 
but was not found. 

D - 26 



SUGGESTED ACTION: 

The named audit file must be loaded on disk, and an *AOK command 
must be entered on the console printer. 

129 FILE LOCKED - <audit file-name> 

During recovery, the MCS tried to open the named audit file but 
found it was locked by another program. 

SUGGESTED ACTION: 

The program that locked 
by the MCS, and an *AOK 
printer. 

the named audit file must free it for use 
command must be entered on the console 

130 INCORRECT FILE - <audit file-number> 

During recovery, the MCS opened the named audit file and determined 
that one or both of the date/time stamps in the file did not match 
the value stored in the MCSTIC file. 

SUGGESTED ACTION: 

Check the named file to insure that it is the correct file. 

131 WRONG AUDIT RECORD REQUESTED - PGM <number> 

During recovery, the MCS found an error in the audit file during an 
attempt to service a program. The program is DSed if it is part of 
a data base; otherwise, the MCS is terminated. 

SUGGESTED ACTION: 

Either bring the MCS back up or clear the DSed program. 

132 UNEXPECTED TYPE 22 MSG FROM PGM - <number> 

This program sent the MCS 
program can only send this 
message. The program is DSed. 

SUGGESTED ACTION: 

an unsolicited 
message upon 

Investigate the logic of this program. 
initiate recovery. 

D - 27 

type-22 
receipt 

message. A 
of a type-21 

Clear the program to 



133 NO AUDITED MESSAGES FOR REF NCC 

An *REF command was entered to recall the last audited output 
message for a station, but the MCS had no audited messages for this 
station. 

134 OLD AUDIT FILE MISSING FOR REF NCC 

An *REF command was entered, but the last audited message for that 
station was in an audit file that is not on disk. 

SUGGESTED ACTION: 

Load the missing audit file on disk. 

135 MISSING PROGRAM NAME 

A Network Control Command was entered that required either a 
program name or number, but none was found. 

SUGGESTED ACTION: 

Refer to the syntax of the Network Control Command that was in 
error. 

136 INVALID PROGRAM - <token> 

The program name or number entered (token) was found to be either 
invalid or unrecognized. 

SUGGESTED ACTION: 

Refer to the TCL specifications for a list of all valid program 
names. 

137 PROGRAM NOT DISABLED - <program name or number> 

An attempt was made to clear a program (using the *CLE command) 
that was not disabled. 

SUGGESTED ACTION: 

If there is any doubt of the status of the program, recovery can be 
performed on that data base. 

D - 28 



138 INVALID DATABASE NAME - <database name or number> 

The data base name or number entered was found to be either invalid 
or unrecognized. 

SUGGESTED ACTION: 

Refer to the TCL specifications for a list of all valid data base 
names. 

139 PROGRAM DISABLED - <program name or number> 

An attempt was made to execute this program either by the *EX 
command or by entering a trancode for this program, but the program 
was disabled. 

SUGGESTED ACTION: 

Clear the program with the *CLE command and, thus, initiate 
recovery of this data base. 

140 EOF ALREADY SENT TO - <program name> 

An attempt was made to send a *HAP command to a program more than 
once. 

SUGGESTED ACTION: 

If the program does not go to EOJ within a few minutes, investigate 
the EOF logic of the remote file of the program. 

141 INPUT IGNORED; PROGRAM TERMINATING 

An attempt was made to send a message to a program that is in the 
process of halting (a *HAP command was performed on this program). 

SUGGESTED ACTION: 

Re-execute the program. 

142 UNEXPECTED TYPE 25 MSG FROM PGM - <program number> 

A program 
common-area 
message. 

sent the 
header 

MCS a message 
set to 25 without 

D - 29 

with MCS-TYPE field of the 
first receiving a type-24 



SUGGESTED ACTION: 

Investigate the program's MCS interface logic. 

143 TYPE 17 OR 18 MSG FROM PROGRAM - <program number> 

A program that was not declared in the TCL to be a restart program 
sent a message to the MCS with the MCS-TYPE field of the 
common-area header set to 17 or 18. 

SUGGESTED ACTION: 

Investigate the program's MCS interface logic. 
programs can send type-17 or-18 messages. 

144 REF NCC CANNOT COME FROM SPO 

Only restart 

An attempt was made to enter a *REF command from the console 
printer. This is not allowed and is ignored. 

145 RESTART PGM RETURNED BAD DATABASE - <database-name> 

The MCS was expecting the restart program to return the name of the 
data base to be recovered, but the name returned did not match the 
MCS's expectations. 

SUGGESTED ACTION: 

Investigate the restart program's MCS interface 
<database-name> is what was received by the MCS. 

146 RESTART PGM FOUND ERROR - DATABASE <database-name> 

logic. The 

The restart program 
See error messages 
suggested action. 

found an error while accessing the data base. 
101 and 102 for further explanation and 

147 RESTART PGM RETURNED BAD PDT # - <PDT number> 

The restart program returned a bad value for the PDT number. This 
value was originally stored in the restart data set by the program 
that created the record. 

SUGGESTED ACTION: 

Investigate the program logic of all programs in the data base that 
deals with the type-23 message. 

D - 30 



148 RESTART PGM RETURNED BAD FROG # - <FROG number> 

The restart program returned a bad value for the FROG number. This 
value was originally stored in the restart data set by the program 
that created the record. 

SUGGESTED ACTION: 

Investigate the program logic that deals with the type-23 message 
in all programs in the data base. 

149 MISSING USERCODE/PASSWORD 

An attempt was made to execute 
option of the EXECUTE command, 
found. 

SUGGESTED ACTION: 

a program with the user-password 
but no usercode/password pair was 

Refer to the EXECUTE statement in the Program Control Commands 
Section in Section 3. 

150 INVALID USERCODE/PASSWORD 

An attempt was made to execute a program with the user-password 
option of the EXECUTE command, but an invalid usercode/password was 
entered. 

SUGGESTED ACTION: 

Refer to the EXECUTE statement in the Program Control Commands 
Section in Section 3. 

151 COMMAND IGNORED, DUPLICATE TRNSMIT - <EX/HAP> 

An attempt was made to EXECUTE or halt (HAP) a utility program 
before a previous EXECUTE or HAP of the program was completed. 

SUGGESTED ACTION: 

Do not enter consecutive EXECUTEs or HAPs of utility programs. 

152 CANNOT DFR FROM NONSUBORDINATED MCS 

An attempt was made to detach a station from the GEMCOS remote 
file. GEMCOS, however, has not been declared a subordinate MCS. 

D - 31 



SUGGESTED ACTION: 

See the subordinate MCS statement in the Global section. 

153 STATION STILL ATTACHED TO A PROGRAM 

A DFR Network Control Command was entered from a station which was 
still attached to a program. 

SUGGESTED ACTION: 

A HAP command should be entered before attempting the DFR. 

154 DUPLICATE OPTION - <lock/charge num/us> 

One of the options of the EXECUTE command was entered more than 
once. Refer to Program Control Commands in Section 3. 

SUGGESTED ACTION: 

Re-enter command. 

155 ENABLE STATION TRANSFER AT ODT 

BNA station transfer must be enabled at the ODT before a user can 
execute the PLM program at a station. 

156 VIRTUAL CONNECT DENIED FOR <STN NAME> 

A virtual connect request for a virtual station was denied for one 
or more of the following reasons: 

1. The station was not defined in the TCL. 

2. The station hostname did not match the station hostname 
in the TCL. 

3. The station was already connected. 

157 DISCONNECT FROM VIRTUAL STATION <STN NAME> <HOSTNAME> 

A virtual station has disconnected from this MCS. 

D - 32 



158 QUEUE FULL CONDITION ENCOUNTERED: <STN NAME> 

GEMCOS has detected a 
station. All messages 
station is made ready 
are then delivered in 
exhausted. The tanked 
with the PQ command. 

full-queue condition at the indicated 
bound for that station are tanked until the 
and put in the receive mode. The messages 
groups once every minute until the tank is 
messages can also be flushed from the tank 

159 EOF ON MCSTANK - FILE CLOSED - DUMP 

GEMCOS has detected an unexpected EOF condition on its 
The file is closed for analysis and a system dump 
Processing then continues. The system dump and file 
listed using standard system software. Then submit the 
a Burroughs representative. 

160 UNEXPECTED GOOD RESULTS FROM LSN - LSN 

tank file. 
is taken. 

should be 
results to 

The MCS received a good results reply message from the Network 
Controller for a station that was not expecting this message. 

SUGGESTED MESSAGE: 

Check the MCS and Network Controller interface logic. 

161 INVALID FILE CLOSE - VARIANT 

An application program tried to close a remote file which it did 
not previously open. The close request is ignored. If "variant" 
is INVALID FROG NUMBER, then the program does not have any remote 
files open. If "variant" is FILE NOT OPEN, then it has at least 
one other remote file open. 

SUGGESTED ACTION: 

Scrutinize the application program for possible logic flaws. 

162 INVALID MSGID FOR THIS DEVICE 

A forms request was entered at a station and the message-ID was not 
valid for that station. 

D - 33 



163 GOOD RESULTS RETURNED BAD LSN - LSN 

The MCS received a good results reply 
Controller, but was unable to recognize 
the LSN. 

SUGGESTED ACTION: 

message from the Network 
the station indicated by 

Check the MCS and Network Controller interface logic. 

164 INCOMPLETE UPDATE COMMAND 

The UPD Network Control Command entered at this station was not 
complete. 

165 INVALID KEY WORD AFTER "UPD" 

The second word in the UPD Network Control Command must be either 
"FORMATS" or "ACCESSKEY". 

166 INVALID UPDATE, ACCESSKEY SIGNED ON 

An attempt was made to change an active access key with the UPD 
Network Control Command. Only access keys which are not signed on 
can be changed. 

167 CANNOT UPDATE TO EXISTING ACCESSKEY 

An attempt was made to change an access key to an existing access 
key with the UPD Network Control Command, i.e., the second name in 
the command was already a valid access key. 

168 THIS STATION RE-ATTACHED TO GEMCOS 

When GEMCOS is running subordinate to SMCS and a SYSTEM/GEMCOS 
failure occurs, this message is sent to each station which is 
successfully reattached. This message can be suppressed by setting 
SUPPRESSMESSAGES = TRUE in the TCL for that station. 

169 PROGRAM BEING ZIPPED - PLEASE WAIT 

This message is displayed when a trancode is received for a program 
which is not running and is declared ONDEMAND in the TCL. GEMCOS 
continues to respond with this message to entries of the trancode 
until the program successfully opens its remote file. 

D - 34 



170 RECOVERY ERROR, STN NOT AVAILABLE - <explanation> 

The MCS received a message from a recovering program and the LSN in 
the common-area header is invalid. GEMCOS will change the LSN to a 
valid number and then send the message. 

171 COULD NOT RE-ATTACH LSN <N> 

When GEMCOS was running subordinate to SMCS, a failure occurred, 
and GEMCOS could not reattach the indicated LSN. GEMCOS recovers 
anyway, as long as the station is not needed for the recovery. If 
that station is needed for the recovery, detach the station from 
its program and then re-execute GEMCOS. 

172 NBR OF STATIONS RE-ATTACHED = <N> 

When GEMCOS was running subordinate to SMCS, a failure occurred. 
This message indicates the number of stations which were 
re-attached to GEMCOS. 

173 DESTINATION STN HAS QFULL CONDITION 

The destination station of a PQ command has a QFULL condition and 
therefore is invalid. Clear the QFULL condition or send the popped 
messages to a different station. 

174 STATION ALREADY ATTACHED TO GEMCOS 

An attempt was made to attach a station that is already controlled 
by GEMCOS. No further action is required. 

175 INVALID LSN <entry> 

An attempt was made to attach. a station with the ATT command. The 
LSN was invalid because it was non-numeric, not defined in the TCL, 
or not first attached to GEMCOS with the ATTACH command of SMCS. 

176 ONLY VALID FROM SUBORDINATE MCS 

The command entered is valid only from an MCS with SUBORDINATEMCS 
TRUE in the TCL. 

D - 35 



177 EOF/EXCEPTION ON NONINTERP FILE 

While reading the noninterpretive format file, the MCS detected 
either an end-of-file condition or a hardware exception. Although 
the format requested has not been read, the MCS attempts to 
continue. 

178 NOT ENOUGH DATA FOR FORMAT FROM <program number> 

A program requested a noninterpretive format, but it did not send 
enough data to fill all of the format's output fields. 

179 TOO MUCH DATA FOR FORMAT FROM PROGRAM <program number> 

A program requested a noninterpretive format, but it sent more data 
than could fit in the format's output fields. 

D - 36 



APPENDIX E 

HARDWARE REQUIREMENTS 

Peripheral hardware needed to generate and execute a GEMCOS MCS 
includes: 

1 • Card reader. (Optional. May be card reader or data 
communications terminal.) 

2. Line printer. 

3. Console printer/keyboard. 

4. Disk subsystem. (If AUDIT is used, at least 4.6 
recommended, including MCP and Network 
requirements, but excluding user data files.) 

5. Single-line or multiline control. 

megabytes are 
Controller 

A minimum of 38K bytes of main memory (exclusive of MCP requirements) is 
needed to generate an MCS. The smallest MCS that can be generated 
requires 7K bytes (exclusive of MCP and Network Controller 
requirements). Memory requirements increase for each option generated 
and for each additional entry in MCS tables. 

The following chart can be used to estimate memory requirements in bytes 
for an MCS generated by GEMCOS. The calculation of the run structure as 
performed by the generator is a relatively complex process, and this 
chart is a simplification of it. Thus, the number calculated here is 
only an estimate of the memory requirements. It should be accurate to 
within 10 percent of the actual value. 

The memory requirements for resident formats are difficult to estimate, 
and it is assumed in the algorithm used in the chart that all formats 
are to reside on disk. To determine the amount of memory required for 
resident formats, compile the format descriptions with MCSTCL setting 
LIST in the CONTROL statement. The printer file labeled MCSRPT will be 
produced. Consult the pages which refer to FUN and FOR records adding 
the "lengths" of all functions and formats where "residence" is 1. 

Note that the memory requirements of a B 1000 object code file can be 
obtained with the CODE/ANALYZER program found on a system release tape. 
However, in the case of a GEMCOS MCS, the calculation of the file space 

E - 1 



is not entirely correct since the MCS modifies several attributes of its 
files at run time. 

FILE SPACE 

MCSQUEUE 

Enter MAXTEXTSIZE on line 1. 1) 

Enter 50 on line 2. 2) 

If any program uses the PARTICIPATION 
interface enter 200 on line 3; otherwise 
enter O. 3) 

Add lines 1, 2 and 3 giving line 4. 4) 

Enter the number of stations defined in 
the <STATION section> on line 5. 5) 

Enter 5 on line 6. 6) 

---

---

---

---
---

Multi ply lines 5 and 6 giving line 7. 7) __ _ 

Enter QUEUEBUFFERS-1 on line 8. 8) 

Enter line 4 on line 9. 9) 

Multiply lines 8 and 9 giving line 10. 10) 

MC ST IC 

MC SPRINT 

If MONITORTRACE is TRUE, enter 248 on 
line 13. 

MCSAUDIT 

Enter AUDITRECORDSIZE on line 14. 

Enter 357 on line 15. 

If AUDIT is TRUE, add lines 14 and 15 
giving line 16; otherwise, enter 0 on 
line 16. 

E - 2 

12) 

13) 

14) 

15) 

16) 

537 

---
---



MCSOLDAUDIT 

If recovery is required, enter line 15 
on line 17; otherwise enter O. 

Add lines 11, 12, 13, 16 and 17 giving 
line 18. 

RUN STRUCTURE NUCLEUS 

Enter 337 on line 19. 

F.I.B. dictionary 

Enter 80 on line 20. 

GLOBAL VARIABLES 

17) 

18) 

19) 

20) 

Enter 368 on line 21. 21) 

If DATA DUMP is TRUE, enter 3 on line 22. 22) 

If MESSAGERECALL or CHANGEREQUESTS is 
TRUE, enter 37 on line 23. 23) 

If PROGRAMBOJEOJ is TRUE, enter 6 on line 24. 24) 

If any program uses an interface 
of Participation, enter 203 on line 25. 25) 

If SYSTEMHALT is TRUE, enter 5 on line 26. 26) 

If AUDIT is TRUE, enter 36 on line 27. 27) 

If recovery is synchronized for any program, 
enter 234 on line 28; if RECOVERY = DATABASE 
or QUEUERESTORATION for any program, enter 11 
on line 28. 28) 

If the MCS is to format any message, 
enter 13 on line 29. 29) 

If the MCS is to provide access control, 
enter 35 on line 30. 30) 

If a CONTROLSTATION is specified, 
enter 5 on line 31. 

E - 3 

31) 

---

---

---

---

---



If any Network Control Command is to be 
supported, enter 178 on line 32. 

Add lines 21 through 32 giving line 33. 

32) 

33) 

GLOBAL TABLES AND MESSAGE AREAS (Excluding formatting) 

If any program uses an interface of 
Participation, enter 203 on line 34. 34) 
If any kind of recovery is required, enter 
AUDITRECORDSIZE + 30 on line 35; if only audit
ing is required, enter AUDITRECORDSIZE on line 
35. 35) 

Enter MAXTEXTSIZE on line 36. 36) 

Enter 55 on line 37. 37) 

Enter the number of stations defined 
in the station section on line 38. 38) 

Enter 91 on line 39. 39) 

Multiply lines 38 and 39 giving line 40. 40) 

Enter the sum of all copies of all programs 
on line 41. 41) 

Enter 51 on line 42. 42) 

Multiply lines 41 and 42 giving line 43. 43) 

Enter the number of trancodes defined in the 
Program section on line 44. 44) 

Enter 13 on line 45. 45) 

Multiply lines 44 and 45 giving line 46. 46) 

Enter the number of programs defined in 
the Program section on line 47. 47) 

Enter 9 on line 48. 48) 

Multiply lines 47 and 48 giving line 49. 49) 

Enter line 38 on line 50. 50) 

Enter line 43 on line 51. 51) 

Enter line 46 on line 52. 52) 

E - 4 

~~~ 

~~~ 



Enter 49 on line 53. 53) 

Add lines 50 through 53 giving line 54. 54) 

Multiply lines 50 and 54 giving line 55. 55) 

Enter 8 on line 56. 56) 
If an ACCESS CONTROL statement is present, 
divide line 55 by line 56 giving line 57. 57) 

Add lines 34, 35, 36, 37, 40, 43, 46, 
49 and 57 giving 'line 58. 58) 

GLOBAL FORMATTING TABLES AND MESSAGE AREAS 

Enter line 4 on line 59. 59) 

Enter number of functions defined on 
line 60. 60) 

Enter 3 on line 61. 61) 

Multiply lines 60 and 61 giving line 62. 62) 

Enter the number of formats defined on 
line 63. 63) 

Enter 3 on line 64. 64) 

Multiply lines 63 and 64 giving line 65. 65) 

Enter line 60 on line 66. 66) 

Enter the number of message-IDs defined 
in the Device section on line 67. 67) 

Add lines 66 and 67 giving line 68. 68) 

Enter the number of devices defined in 
the Device section on line 69. 69) 

Multiply lines 68 and 

Enter 10 on line 71. 

Multiply lines 70 and 

Enter 8 on line 73. 

Divide line 72 by line 

69 giving 

71 giving 

73 giving 

line 70. 

line 72. 

line 74. 

E - 5 

70) 

71) 

72) 

73) 

74) 

---

---

---

---

---

---

---

---

---

---

---



Enter line 67 on line 75. 

Enter 6 on line 76. 

Multiply lines 75 and 76 giving 77. 

Enter 384 on line 78. 
Add lines 59, 62, 65, 74, 77 and 78 
giving line 79. 

GLOBAL PROCEDURE VARIABLES 

If MONITORTRACE is TRUE, enter 45 on 

75) 

76) 

77) 

78) 

79) 

line 80. 80) 

Enter 145 on line 81. 81) 

Enter 0 on line 82. 82) 

Enter 18 on line 83. 83) 

If stations have been assigned 
SCREENSIZE values in the Station section, 
add lines 82 and 83 giving line 84. 84) 

If DATADUMP is TRUE, enter 303 on line 85. 85) 

Enter 0 on line 86. 86) 

Enter 0 on line 87. 87) 

If AUDIT is TRUE, add lines 86 and 87 
giving line 88. 88) 

Add lines 80, 81, 84, 85 and 88 giving 
line 89. 89) 

LOCAL VARIABLES 

Enter 41 on line 90. 

If any network control command is to be 
supported, enter 170 on line 91. 

If any message is to be formatted, 
enter 315 on line 92. 

Enter 123 on line 93. 

E - 6 

90) 

91) 

92) 

93) 

---

---

---

---

---

---

---

---



Enter largest value of lines 91, 92 and 
133 on line 94. 

Add lines 90 and 94 giving line 95. 

MESS CODE 

Enter the number assigned to 

94) 

95) 

VALUESTACKBITS on line 96. 96) 

Enter 8 on line 97. 97) 

Divide line 96 by line 97 giving line 98. 98) 

Enter the number assigned to 
NAMESTACKENTRIES on line 99. 99) 

Enter 3 on line 100. 100) 

Multiply lines 99 and 100 giving line 101. 101) 

Add lines 98 and 101 giving line 102. 102) 

Add lines 19, 20, 33, 58, 79, 89, 95 
and 102 giving line 103. 103) 

Compute 10% of line 103 and enter on 
line 1 04. 1 04) 

Add lines 103 and 104 giving line 105. 105) 

OTHER MEMORY CONSIDERATIONS 

DICTIONARY CONTAINER 

MASTER CODE SEGMENT DICTIONARY 

MEMORY LINKS 

Add lines 106 through 109 giving line 110. 

Add lines 18, 105, and 110 giving the 
Estimated Memory to Run: 

E - 7 

106) 

107) 

109) 

110) 

---

---

---

---
---

---

30 

30 

100 

2150 



MCSTIC FILE DISK SPACE REQUIREMENTS 

A record in the MCSTIC file is 180 bytes long. 
contains from 40 to 100 records. 

AUDIT FILE DISK SPACE REQUIREMENTS 

The file normally 

The disk space used for audit files depends largely on the operational 
procedures used at a specific installation. The system must be able to 
hold at least two audit files on disk at one time, since audit files can 
be stored on some off-line medium such as magnetic tape when closed. 

A record in an audit file is 180 bytes by default. If AUDITRECORDSIZE 
is specified, the length of the record is determined by the user. The 
file contains AUDITPAGESIZE*40 records. 

E - 8 



APPENDIX F 

COBOL74 PROGRAMS AND B 1000 GEMCOS 
~--~~ ~~~ 

GEMCOS provides interface capabilities between the GEMCOS-generated MCS 
and COBOL74 programs. Burroughs COBOL74 complies to the coding 
standards established by the American National Standa~ds Institute 
(ANSI) of 1974. (For further information about the COBOL74 language, 
refer to the B 1000 System COBOL74 Reference Manual for the latest 
release of the B 1000 systems.) 

TCL REQUIREMENTS 

COBOL74 programs that interface with GEMCOS do not affect or require 
changes in the specifications established in the TCL. However, the 
programs must be declared in the Program section of the TCL, and defined 
as participating programs in order to facilitate COBOL74 interface. 

NETWORK DEFINITION LANGUAGE (NDL) REQUIREMENTS 

The NDL/LIBRARY file, provided for the 9.0 release of the B 1000 system, 
includes COBOL74 declarations and the COBOL74SEL request set. Both the 
declarations and the request set must be copied from the NDL/LIBRARY 
file and merged into the appropriate area in the user's NDL source file. 
POLL/SELECT devices, interfacing with COBOL74 programs, require a 
DIAGNOSTIC statement in the Terminal section of the NDL. This statement 
must specify the request set, POLLTCTD, in the RECEIVE portion, and 
COBOL74SEL in the TRANSMIT portion of the statement. An example 
follows. 

Example: 

TERMINAL TD830: 
ADDRESS = 2. 
TRANSMISSION = O. 
REQUEST = CANDEPOLTD : RECEIVE, CANDESELTD : TRANSMIT. 
DIAGNOSTIC POLLTCTD : RECEIVE, COBOL74SEL : TRANSMIT. 
BUFFERSIZE = 2000. 
TYPE = 46. 

F - 1 



The ,Network Controller is recompiled upon entering specifications such 
as those presented in the example above as well as merging declarations 
and the COBOL74SEL request set. (For additional information, refer to 
the B 1000 Systems Network Definition Language (NDL) Reference Manual.) 

COBOL74 PROGRAM REQUIREMENTS 

Before COBOL74 programs send messages to the GEMCOS MCS, they must 
execute the ENABLE <cd-name> or the RECEIVE INPUT <cd-name> command. 
Either command generates a network-control FILE OPEN message (TYPE 
18), which is sent to the MCS. The MCS accepts no messages from a 
COBOL74 program until it receives the FILE OPEN message. 

RESTRICTIONS 

Multiple COBOL74 programs using communication descriptions (CDs) must 
not open the same remote file. If this occurs, the results are 
unpredictable due to the 9.0 system software implementation. This 
restriction limits the use of the MAXCOPIES statement. 

USING THE RESTART PROGRAM 

The restart program has been converted to COBOL74. Two source files are 
on the 7.0 release tape. The first source file is GEMCOS/MCSRSTRT74, 
which uses a remote file. The second source file is GEMCOS/MCSRSTRTCD, 
which uses communication descriptions. Both source files should be 
modified before they are compiled. 

F - 2 



APPENDIX G 

SYNTAX DIAGRAM CONVENTIONS 

This appendix explains the "railroad" syntax diagrams used with the 
syntax of Transaction Control Language statements and Network Control 
Commands. The following rules apply to these syntax diagrams: 

1. Any path traced along the forward direction of the arrows 
produces syntactically valid TCL source code. 

2. Any "bridge" over a digit may be traversed a maximum number of 
times specified by the digit. If the digit is followed by an 
asterisk(*), the path must be crossed at least once. 

3. Uppercase letters in the syntax diagrams indicate key words 
which are literally in the statement. 

4. Lowercase letters, words and phrases enclosed within angle 
brackets (< and>) are either references to an intermediate 
diagram, or syntactic variables, which represent information 
to be supplied by the user. 

5. A colon must be preceded and followed by a least one space. 

6. A file-ID is a B 1000 file identifier. 
System Software Operational Guide. 

Refer to the B 1000 

7. A remote file-ID is a 10-character identifier defined in the 
File section of the NDL. 

8. A station name is a 10-character identifier defined in the 
Station section of the NDL. 

9. All other TCL identifiers may contain alphanumeric characters. 

1 o. 

Identifiers have no intrinsic meaning. They are used to name 
access codes, programs, trancodes, messages, formats, and 
functions. The access code identifiers and message 
identifiers may not exceed 6 characters. Trancode identifiers 
may not exceed 10 characters. Program name identifiers, 
format identifiers, and function identifiers should not exceed 
30 characters. 

A logical 
position 
the NDL. 

station number (LSN) is a number that shows the 
of the station definition of the Station section in 

11. A string is any number of characters enclosed within quotes. 
A string must begin and end on the same TCL source record. 

G - 1 



12. An external string or an internal string is a string of 6 
characters or less. 

13. An EBCDIC unit string is a string with exactly one character. 

14. A character is A through Z, 0 through 9, or any valid special 
character. A character is not enclosed within quotes. 

15. An integer is a string of digits (0 through 9). 

16. For a definition of a UPL2 DECLARATION statement, UPL2 DEFINE 
statement, UPL2 FILE statement, UPL2 DYNAMIC DECLARATION 
statement, or UPL2 PROCEDURE statement, refer to the 
DOCUMENT/SDL2 file on the release tape. 

G - 2 



ABORT command, 9-12 
Abort program, 7-11 
Access control, 1-7, 6-1, 9-5 
ACCESS CONTROL statement, 2-79 
Access security, 6-1 

INDEX 

AP300 station option, 9-1 
AP300STATUS statement, 2-88 
Application program interface, 1-5 
Archival recovery, 7-19 
Assignment programs, 2-83 
ATTACH LSN (ATT) command, 3-7 
ATTACH MESSAGE statement, 2-89 
Audit, 1-7, 2-163 
AUDIT ASSIGNMENT statement, 2-90 
AUDIT FILE FAMILY ID statement, 2-18 
AUDIT FILE PACK ID statement, 2-19 
AUDIT OK (AOK) command, 3-13 
AUDIT OUTPUT statement, 2-91 
AUDIT PAGE SIZE statement, 2-20 
AUDIT procedure, 2-157 
AUDIT RECORD SIZE statement, 2-21 
Audit and recovery commands, 3-33 
Audit and recovery options, 7-1 

auditing, 7-1 
controlled shutdown, 7-2 
selecting recovery options, 7-2 

AUDIT TRANSACTIONS statement, 2-92 
Auxiliary Programs 

(see MCSFILXFER, MCSFIX, MSCRECALL, MCSSIM) 
(see also Utility programs) 

Basic GEMCOS formatting pragmatics 
(see Location specifiers, using 

Beginning system operation, 2-163 
BNA station transfer, 9-14 
BOJ option, 2-98 
BROADCAST (BRC) command, 3-15 
Buffer/Pointer updates, 2-50 

Change commands, 3-24 
CHANGE MONITOR FLAG (CMF) command, 3-24 
CHANGE REQUESTS statement, 2-22 
CHANGE STATION ADDRESS (CSA) command, 3-25 
CHANGE STATION DIAGNOSTIC (CSD) command, 3-26 
CHANGE STATION FREQUENCY (CSF) command, 3-27 
CHANGE STATION MAXIMUM RETRY (CSM) command, 3-28 
CHANGE STATION QUEUE (CSQ) command, 3-29 
CHANGE STATION READY (CSR) command, 3-30 



INDEX (continued) 

CHANGE STATION TRANSMISSION (CST) command, 3-31 
CHECKPOINT INTERVAL statement, 2-23 
CLEAR DISABLED PROGRAM (CLE) command, 3-33 
CLOSE ACTION procedure, 2-157 
CLOSE FILES procedure, 2-157 
COBOL74 programs, using F-1 
Common-area header 

fields in, 2-103 
participation interface with, 2-102 
using, 4-20 
valid information by MCSTYPE, 2-112 

COMMON SIZE statement, 2-93 
COMPILE OPTIONS statement, 2-24 
Compiler, TCL (MCSTCL), 1-7, 2-1 

(see MCSTCL) 
Computer-to-computer communication, 9-3 

(see routeheaders) 
CONTINUOUS LOG ON statement, 2-129 
Controlled shutdown, 7-2 
Control messages, in recovery, 7-22 
CONTROL statement, 2-9 
Control stations, 1-5 
CONTROL STATION statement, 2-130 
CONVERSATION LIMIT statement, 2-25, 10-1 
CONVERSATION SIZE statement, 2-94, 10-2 
Conversational feature, 10-1 

procedures, 10-3 
recovery, 10-7 
TCL specifications, 10-1 

CONVERSATIONAL statement, 2-131, 10-2 
COPY command, 9-11 

DATA BASE NAME statement, 2-95 
Data base recovery, 7-7 
DATA DUMP statement, 2-26 
Debugging aids, 1-7, 8-9 

data dump, 8-12 
monitor trace, 8-9 

Deck description in TCL, 2-8 
Declarations, MESS Code 

dynamic declarations, 2-154 
procedure define list, 2-155 
static declarations, 2-153 

Definition section, 2-78 
DETACH FROM REMOTE FILE (DFR) command, 3-8 
DETACH MESSAGE statement, 2-96 
Device section, 2-146 
DISABLE PORT STATION (DPS) command, 3-38 

2 



INDEX (continued) 

DISABLE USER (DUS) command, 3-3 
Disk files, transferring, 9-10 
Dynamic declarations, 2-154 

ENABLE PORT STATION (EPS) command, 3-39 
ENABLE USER (EUS) command, 3-4 
End-of-job, 7-11 
ERROR HANDLER procedure, 2-158 
Error handling, 1-5, 9-6, D-1 
Error messages 

format of, D-2 
MCS error messages, D-1 
standard, using, 2-6 

EXECUTE PROGRAM (EX) command, 3-9 
EXECUTE statement, 2-97 

BOJ option, 2-98 
manual option, 2-98 
ONDEMAND option, 2-97 

Executing a network controller, 2-164 
Executing an MCS, 2-163 
Executing the TCL compiler (MCSTCL), 2-5 

using a CANDE file, 2-7 
using card deck, 2-7 

Files, GEMCOS 
created by TCL, 2-11 
summary of, B-1 

File transfer, example of, 9-12 
FORMAT AND FUNCTION statement list, 2-27 
Format declaration, 2-29, 2-31 
FORMAT FILE NAME statement, 2-15 
FORMAT UPDATE (UPD) command, 3-32 
Formatting, 4-1 

application programs, 4-1 
basic pragmatics, 2-48 
functions and formats file (MCSFORMATS), 2-2 
input example, 4-12 
location specifiers, 2-48 
noninterpretive, 4-2 
output example, 4-4 
(see Format and Function statement list, 

INPUT FORMATS statement, OUTPUT FORMATS 
statement 

Formatting errors, 2-41 
FREE STATION FOR EXECUTION command, 3-10 
Function declaration, 2-29 
Functions and formats file (MCSFORMATS), 2-2 

3 



INDEX (continued) 

GEMCOS data dump explanation, 8-12 
GEMCOS editing phrases, 4-3 
GEMCOS/NONINTERPS, 4-2 
GEMCOS versions, 1-2 
Global section, 2-16 

HALT APPLICATION PROGRAM (HAP) command, 3-11 
HALT SYSTEM (HLT) command, 3-14 
HANDLE RECALL procedure, 2-158 
Hardware requirements, E-1 
HELP command, with Network Control commands, 3-2 
HOST statement, 2-98 
HOST ACCESS KEY statement, 2-132 
HOST statement, 2-98 

INITIATE RESTORE procedure, 2-159 
Input formatting example, 4-12 
INPUT FORMATS statement, 2-148 
Input to MCS 

from card reader, 2-165 
from console, 2-165 

Interface to programs 
MCS, 2-113 
nonparticipation, 2-100 
participation, 2-101 

INTERFACE statement, 2-99 
IRC, 2-69 

Library statement, using, 2-4 
Limits of TCL size, C-1 
Location specifiers, using, 2-48 

MAINTE~ANCE procedure, 2-159 
MANUAL, 2-.98 
MAXIMUM ASSIGNERS statement, 2-115 
MAXIMUM COPIES statement, 2-116 
MAXIMUM TEXT SIZE statement, 2-53 
MCS 

control commands, 3-13 
error messages, D-1 
interface, 2-113 
output messages, 2-113, D-1 

MCSFILXFER program, 9-10 
MCSFIX program, 8-4 
MCSFORMATS, 2-2 
MCSGO program, modifying, 2-6 

4 



INDEX (continued) 

MCSRECALL program, 2-66 
recalling audited messages, 2-66 
syntax of recall message, 2-68 

MCSSIM program, 8-1 
sample card deck, 8-4 

MCSIN program (TCL Source Image), 2-3 
sample source image, 2-7 
(see Source image) 

MCSTCL (TCL compliler), 2-1 
executing, 2-5 
loading system files, 2-5 

MCSTIC file (Table Information Control file), 2-2 
MCSTIC FILE NAME statement, 2-14 
MCSTIME file, 8-7 
MCSTYPE, 2-112 
Mergeable external source statements (MESS), 1-2, 2-151 
MESS code section, 2-152 
MESS procedures, 2-151 
MESSAGE BROADCAST statement, 2-54 
Message Control commands, 3-15 
Message formatting, 1-7, 4-1 

(see Formatting) 
MESSAGE FROM PROGRAM procedure, 2-160 
MESSAGE FROM STATION procedure, 2-160 
MESSAGE RECALL statement, 2-55 
Message recovery, 1-1 

(see Recovery) 
Message Routing, 1-6, 4-1, 4-20, 4-21, 4-25 

nonstandard, 4-25 
routing from programs, 4-25 
station-to-station, 4-25 

Messages, error, D-1 
(see Formatting error messages) 

Monitor 
(see Monitor trace, using) 

MONITOR STATION statement, 2-133 
MONITOR TRACE ON statement, 2-57 
MONITOR TRACE statement, 2-56 
Monitor trace, using, 8-9 
MT600 station option, 9-1 
MY NAME statement, 2-58 

NAME-STACK ENTRIES statement, 2-59 
NCC OK RESPONSE statement, 2-60 
NDL, used with routeheaders, 9-7 
Network administration, 1-3 

5 



INDEX (continued) 

Network Control commands (NCCs), 
Change commands, 3-24 
Help command, 3-2 
MCS Control commands, 3-13 
Message Control commands, 3-15 
overview of, 1-5, 3-1 
Program Control commands, 3-9 
Report commands, 3-18 
Security Control commands, 3-3 
Station Attachment commands, 3-7 
summary of, A-1 

Network restoration, 1-4, 2-2 
(see also MCSTIC) 

Nonparticipation interface, 2-100 
Nonsynchronized and synchronized data base recovery, 7-7 
No recovery, 7-3 

OBJECT CODE FILE NAME statement, 2-61 
ONDEMAND option, 2-97 
OPEN ACTION procedure, 2-161 
OPEN MESSAGE statement, 2-117 
Operation, beginning system 2-163 
OUTPUT FORMATS statement, 2-149 
Output formatting example, 4-4 

Participation interface, 2-101 
Common-area header with, 2-109 

Pass programs, 2-86 
Patching, 1-7, 8-4 
PLM PROGRAM statement, 2-118 
POP QUEUE (PQ) command, 3-16 
Port files, 5-1 

port file statements in TCL, 5-2 
port programs, 5-1, 2-86 
stations as ports, 5-1 

Port programs, classification 2-86 
PORT SIZE statement, 2-119 
PORT STATION statement, 2-134 
Procedure define list, MESS code, 2-155 
Process security, 6-1 
Program abort, 7-11 
PROGRAM BOJ EOJ statement, 2-62 
Program classifications 

assignment, 2-83 
pass, 2-86 
port, 2-86 
user, 2-85 
utility, 2-83 

6 



INDEX (continued) 

Program Control commands, 3-9 
PROGRAM PASS (PASS) command, 3-12 
Program section, 2-81 
PROGRAM TITLE statement, 2-120 

QUEUE BUFFERS statement, 2-63 
QUEUE DEPTH statement, 2-64 
QUEUE NAME statement, 2-64 
Queue restoration recovery, 7-6 

Recall message, syntax of 2-68 
RECALL PROGRAM statement, 2-66 
RECOVER DATA BASE (REC) command, 3-34 
Recovery, 1-7, 7-1 

after system failure, 7-12 
archival, 7-19 
controlled shutdown, 7-2 
control messages, 7-22 
cycle, 7-18 
data-base recovery, 7-12 
end-of-job, 7-11 
housekeeping considerations, 7-16 
nonsynchronized, 7-6 
no recovery, 7-3 
processing, 7-6 
program abort, 7-11 
routeheaders, recovery with, 9-6 
SMCS, under, 7-4 
synchronized, 7-7 
transaction processing, 7-10 

RECOVERY statement, 2-121 
REFRESH (REF) command, 3-35 
Remote files, using 4-20 
Remote program execution, 1-1 
Report commands, 3-18 
REPORT DATA DUMP (RDM) command, 3-18 
REPORT FILE STATUS (RFS) command, 3-19 
REPORT PROGRAM COUNTERS (RFC) command, 3-20 
REPORT PROGRAM STATUS (RPS) command, 3-21 
REPORT STATION COUNTERS (RSC) command, 3-22 
REPORT STATION STATUS (RSS) command, 3-21 
RESET BUSY STATUS (RBS) command, 3-36 
RESIDENCE statement, 2-122 
Restart program 7-17 
RESTART PROGRAM statement, 2-123 
RESTORE PROGRAM procedure, 2-162 
ROUTEHEADERS, 9-3 

7 



INDEX (continued) 

SCREEN SIZE statement, 2-135 
Screen wraparound, 4-2 
Security, 1-7, 6-1 

access, 6-1 
defining, 6-2 
process, 6-1 
routeheaders, 9-5 
(see Access control) 

Security Control commands, 3-4 
SET SIZES procedure, 2-162 
SET VALUES procedure, 2-163 
SIGNAL CHARACTER statement, 2-70 
SIGN OFF (BYE) command, 3-4 
SIGN ON (SGN) command, 3-5 
SIGN ON statement, 2-136 
SIMULATION statement, 2-71 
SMCS 

GEMCOS, running under, 2-75 
recovery under, 7-4 

SOURCE CODE FILE NAME statement, 2-72 
Source image 

card deck or CANDE file, 2-3 
creating, 2-3 
sample, 2-8 

Static declarations, 2-153 
Station Attachment commands, 3-7 
STATION HOST NAME STATEMENT, 2-137 
STATION LIST statement, 2-150 
Station options 

AP300, 9-1 
MT600, 9-1 
routeheader, 9-3 

Station section, 2-127 
Station types 

(see Station options) 
STATION YOUR NAME statement, 2-138 
STATUS REPORTS statement, 2-73 
SUBORDINATE MCS statement, 2-74 
Summary of files, B-1 
Summary of Network Control commands, A-1 
Supervisory MCS, 1-4 
SUPPRESS GOOD DAY MESSAGE statement, 2-124 
SUPPRESS MESSAGES statement, 2-139 
Synchronized recovery, 7-7 
Syntax diagrams, conventions of, G-1 
Syntax errors, checking for, 2-7 
System files, loading, 2-5 
SYSTEM HALT statement, 2-76 

8 



INDEX (continued) 

System operation, beginning, 2-163 
System overview, 1-1 
System requirements 

(see Hardware requirements) 

Table Information Control file (MCSTIC), 2-2 
TCL compiler (MCSTCL), 1-8, 2-1, 2-5 
TCL size limitations, C-1 
Testing, 1-8, 8-1 

Sample simulation card deck, 8-3 
TIME command, 3-37 
Timing, 1-8, 8-7 
TRANCODE statement, 2-125, 2-140 
Transaction-based routing (TBR), using, 4-21 
TRANSACTION CODE POSITION statement, 2-126, 2-141 
Transaction Control Language compiler, 1-8, 2-1 

executing, 2-2 
related files, 2-1 ~ 2-2 
source image, 2-3 

Transaction Control Language (TCL), 2-1 
TRANSACTION MODE statement, 2-142 
Transaction processing, 7-10 
Transferring disk files, 9-10 

example, 9-12 
TYPE statement, 2-143 

UPDATE ACCESS KEYS command, 3-6 
UPDATE STATION HOST NAME command, 3-40 
UPDATE STATION YOUR NAME command, 3-40 
User programs, 2-85 
Utility programs, 1-8, 2-83 

VALID ACCESS KEYS statement, 2-144 
VALUE-STACK BITS statement, 2-77 
VIRTUAL STATION statement, 2-145 

WHAT command, 9-12 

9 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	02-153
	02-154
	02-155
	02-156
	02-157
	02-158
	02-159
	02-160
	02-161
	02-162
	02-163
	02-164
	02-165
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	G-01
	G-02
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09

