
Burroughs

Language
Manual

Priced Item
Printed in U.S.A
January 1984 •

1152113

The names, places and/or events depicted herein are not
inte1ded to correspond to any individual, group or
asscciation existing, living or otherwise. Any similarity
or L keness of the names, places, and/ or events with the
narr.es of any individual living or otherwise, or that of
any group or association is purely coincidental and
unintentional.

You should be very careful to ensure that the use of this
software material and/ or information complies with the
law~., rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
witb out notice. Revisions may be issued to advise of
suet changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Do~umentation-West, Burroughs Corporation, 1300 John Reed
Court, City o:~ Industry, California 91745, U.S.A.

B 1000 Systems FORTRAN 77 Language Manual

LIST OF EFFECTIVE PAGES

Page Issue

Title Original
ii Original
iii Original
iv Blank
v thru xviii Original
1-1 thru 1-4 Original
2-1 thru 2-2 Original
3-1 thru 3-5 Original
3-6 Blank
4-1 thru 4-6 Original
5-1 thru 5-7 Original
5-8 Blank
6-1 thru 6-20 Original
7-1 thru 7-5 Original
7-6 Blank
8-1 thru 8-3 Original
8-4 Blank
9-1 thru9-13 Original
9-14 Blank
1 0-1 thru 1 0-4 Original
11-1thru11-26 Original
12-1 thru 12-28 Original
13-1 thru 13-32 Original
14-1 thru 14-· l 6 Original
A-1 thru A-12 Original
B-1 Original
B-2 Blank
C-1 Original
C-2 Blank
D-1 thru D-7 Original
D-8 Blank
E-1 thru E-3 Original
E-4 Blank
F-1 Original
F-2 Blank
G-1 thru G-5 9 Original
G-60 Blank

1152113 iii

Sectiolll

1

2

3

4

5

6

1152113

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS

INTRODUCTION
Related Documents
Basic FORTRAN 77 Concepts
SYNTAX CONVENTIONS .

Title

Railroad Diagrams
Required Items
Optional Items
Loops
Bridges

CHARACTER SET
B 1000 FOR TRAN 77 Character Set

Digits
Letters
Special Characters .
Collating Sequence

PROGRAM STRUCTURE
Statements

Executable Statements
Nonexecutable Statements
Statement Ordering
Statement Labels

Program Units
Main Program

PROGRAM Statement
Main Program Restrictions

Subprograms
Source Input Format

Comments ...
CONSTANTS
Numeric Constants

Integer Constants
Real Constants .
Double-Precision Constants
Complex Constants
Hexadecimal Constants

Logical Constants
Character Constants
VARIABLES AND ARRAYS
Variable Names
Arrays

Array Declarator
Types of Arrays
Array Elements .

Character Substrings
SPECIFICATION STATEMENTS
EXPLICIT TYPE Statements . .

Numeric and Logical Type Statements .

Page

xvii
xvii
xvii
1-1
1-1
1-2
1-2
1-3
1-4
2-1
2-1
2-1
2-1
2-2
2-2
3-1
3-1
3-1
3-1

3-2
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
4-1
4-1
4-1
4-2
4-3
4-4
4-4
4-6
4-6
5-1
5-1
5-2
5-3
5-4
5-4
5-6
6-1
6-1
6-2

v

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont}

Section Title

6 (Cont) Character Type Statement

vi

COMMON Statement
Common Names
Use of Array Declarators
Storage Assignments . .

DAT A Statement
Variable Lists

DATA Implied-DO Loop .
Initial Value Lists .

Repeat Counts
Data Assignment
Character Strings

Hexadecimal Initialization
Conversion During Assignment

DIMENSION Statement
EQUIVALENCE Statement . . .

Single Storage Locations - Numeric
Multiple Storage Locations - Numeric
Array Handling - Numeric . . .
Character Association
Interaction with Common Storage

EXTERNAL Statement
Subprograms as Actual Parameters
User-defined Intrinsic Functions

IMPLICIT Statement
INTRINSIC Statement .
PARAMETER Statement
SA VE Statement

7 EXPRESSIONS
General
Operators
Arithmetic Expressions

Expression Types .
Character Expressions
Logical Expressions .

Logical Operators .
Relational Expressions

8 ASSIGNMENT ST A TEMENTS
Arithmetic Assignment Statement . .
Logical Assignment Statement .
Character Assignment Statement
ASSIGN Statement

9 CONTROL STATEMENTS
CONTINUE Statement . .
DO Statement
- Range of a DO Loop

Page

6-3
6-4
6-5
6-5
6-5
6-7
6-7
6-8
6-8
6-8
6-9
6-9
6-9

6-10
6-11
6-11
6-12
6-12
6-13
6-14
6-14
6-16
6-16
6-16
6-17
6-18
6-19
6-20

7-1
7-1
7-1
7-2
7-2
7-3
7-4
7-4
7-5
8-1
8-1
8-2
8-3
8-3
9-1
9-1
9-2
9-2

Section

9 (Cont)

10

11

1152113

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

Title

DO Statement Execution
DO Loop Activation
Parameter Evaluation
DO-variable Initialization
Iteration Count Initialization

Loop Execution Control
Execution of Statements in the Range
Terminal Statement Execution
Iteration Processing

END Statement
GO TO Statement

Unconditional GO TO
Computed GO TO
Assigned GO TO Statement

IF Statement .
Arithmetic IF Statement
Logical IF Statement
Block IF Statement .

Nesting Level
Block IF Statement Execution

ELSE IF Statement
ELSE IF Statement Execution

ELSE Statement
ELSE Statement Execution

END IF Statement
PAUSE Statement
STOP Statement
FILE DECLARATIONS
ACCESS = <access-Type>
BLANK = <blnk>
BLOCKSIZE = <block-Size>
FILE = <file-Name>
FORM = <form>
KIND = <hardware-Type>
MYUSE = <use-Type> .
Reel = <record-length>
Status = < file-status >
INPUT /OUTPUT
Access Methods

Sequential .
Direct

Control List
Unit
Format .
Record Number
Action Specifiers

END = <label>

Page

9-3
9-3
9-3
9-3
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-5
9-6
9-6
9-7
9-7
9-8
9-9
9-9

9-10
9-10
9-11
9-11
9-12
9-13
9-13
9-13
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-2
11-1
11-1
11-1
11-1
11-2
11-3
11-3
11-3
11-3
11-3

vii

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

Section Title

11 (Cont) ERR= <label>
IOSTAT= <variable>

viii

1/0 List
1/0 Implied-DO Loop
Input List . . .
Output List

READ Statement .
Sequential READ
Direct-Access READ

WRITE Statement
Sequential WRITE
Direct-Access WRITE

PRINT Statement . .
PUNCH Statement
OPEN Statement . .

UNIT = <unit-#>
ACCESS = <access-type>
BLANK = < blnk >
BLOCKSIZE = <block-size>
ERR = <error-specifier>
FILE = <file-name> . . .
FORM = <format>
IOST AT = < iostat-variable >
KIND = <hardware-type>
MYUSE = <use-type>
RECL = <record-length>
ST A TUS = < file-status>
OPEN of a Connected Unit

CLOSE Statement
INQUIRE Statement

INQUIRE by File Statement
FILE = <file>
ACCESS = <access-type>
BLANK = < blnk > . . .
DIRECT = <direct-access>
EXIST = <existence>
FORM = <format>
FORMATTED = <format-allowed>
NAME = <file-name>
NAMED = <named>
NEXTREC = <next-record>
NUMBER = <unit-number>
OPENED = <open-done> .
RECL = <record-length>
SEQUENTIAL = <sequential-access>
UNFORMATTED = < unformat-allowed >

Page

11-4
11-4
11-4
11-5
11-5
11-6
11-7
11-7
11-7
11-8
11-8
11-9
11-9

11-10
11-10
11-11
11-11
11-11
11-11
11-11
11-11
11-12
11-12
11-12
11-12
11-13
11-13
11-13
11-14
11-15
11-15
11-16
11-16
11-16
11-16
11-16
11-16
11-16
11-17
11-17
11-17
11-17
11-17
11-17

. 11-17
11-17

Section

11 (Cont)

12

1152113

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

INQUIRE by Unit Statement
UNIT = <unit-#> . . .
ACCESS = <access-type>
BLANK = < blnk >
BLOCKSIZE = <block-size> .
DIRECT = <direct-access>
EXIST = < existence>

Title

FORM = <format>
FORMATTED = <format-allowed>
KIND = <hardware-type>
MYUSE = <use-type>
NAME = <file-name>
NAMED = <named>
NEXTREC = <next-record>
NUMBER = <unit-number>
OPENED = <open-done> . .
RECL = <record-length>
SEQUENTIAL = <sequential-access>
UNFORMATTED = <unformat-allowed>

Control List for File Positioning Statements
BACKSPACE Statement
ENDFILE Statement
REWIND Statement
FIND Statement
Internal Files
Unformatted I/O
List-Directed I/O .
Namelist 1/0
FORMAT SPECIFICATIONS .
Format Specification Methods .

FORMAT Statement ...
Character Format Specification

Form of a Format Specification
Interaction Between Input/Output List and Format
Edit Descriptors

Repeatable Edit Descriptors
Format Specification I . .
Input Using Iw
Output Using Iw and Iw .m
Format Specification F

Input Using Fw.d .
Output Using Fw.d

Format Specification E .
Input Using Ew .d .
Output Using Ew.d

Format Specification D
Format Specification G .

Page

11-19
11-19
11-19
11-19
11-20
11-20
11-20
11-20
11-20
11-20
11-20
11-21
11-21
11-21
11-21
11-21
11-21
1 L-21
11-22
11-22
11-23
11-23
11-24
11-24
11-25
11-26
11-26
11-26

12-1
12-1
12-1
12-1
12-2
12-2
12-3
12-4
12-7
12-7
12-7
12-8
12-8
12-8
12-9
12-9
12-9

12-10
12-10

ix

Section

12 (Cont)

13

x

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

Title

Input Using Gw .d and Gw .dEe .
Output Using Gw .d and Gw .dEe

Complex Editing
Format Specification L

Input Using Lw . . .
Output Using Lw

Format Specification A
Input Using Aw . . .
Output Using Aw .

Format Specification Z
Input Using Zw . .
Output Using Zw

Nonrepeatable Edit Descriptors
String Editing
Positional Editing

X Editing
T Editing

Slash Editing
Colon Editing
Sign Control . .
Scale Factor .
Blank Control

Positioning By Format Control
Format Modifiers

K Modifier
$ Modifier . .

Carriage Control
List-Directed Formatting

List-directed Input
List-directed Output .

N amelist Formatting . .
NAMELIST Statement
Form of Namelist Input/Output
Namelist Input .
Namelist Output

SUBPROGRAMS . .
Functions

Statement Functions
Referencing a Statement Function .

Function Subprograms
Referencing a Function Subprogram

Execution of an External Function Reference
Actual Arguments for a Function Subprogram

Intrinsic Functions
Specific Name and Generic Name

Subroutine Subprograms
Subroutine

Page

12-10
12-11
12-12
12-12
12-12
12-13
12-13
12-14
12-14
12-15
12-15
12-15
12-16
12-16
12-17
12-17
12-17
12-18
12-18
12-18
12-19
12-19
12-20
12-20
12-21
12-21
12-21
12-21
12-22
12-23
12-24
12-25
12-25
12-27
12-28

13-1
13-1
13-1
13-2
13-3
13-4
13-4
13-4
13-5
13-6

13-14
13-14

Section

13 (Cont)

14

1152113

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

Title

CALL Statement
SUBROUTINE Statement . . .
Actual Arguments for a Subroutine

Intrinsic Subroutines
Block Data Subprogram . . .
ENTRY Statement
Arguments and Common Blocks

Dummy Arguments
Actual Arguments
Association of Dummy and Actual Arguments

Length of Character Dummy and Actual Arguments
Variables as Dummy Arguments
Arrays as Dummy Arguments

Numeric Arrays
Character Arrays

Procedures as Dummy Arguments
Dummy Arguments in ENTRY Subprograms

RETURN Statement .
Standard Return
Alternate Return

COMPILER CONTROL IMAGES
Types of Options . .

Boolean Options
Immediate Options
Value Option

User-Declared Options
Conditional Options
Limiting Options

DYNAMIC
ERRORLIMIT
STACKSIZE ..

Source Input Options
DELETE
INCLUDE
MERGE
OMIT
SEQCHECK
SEQUENCE
SEQUENCE Range Options .
VOID

Source Output Options
DOUBLE ...
INCLNEW
LIST
LISTDELETED
LISTINCL
LISTOMITTED

Page

13-15
13-15
13-15
13-16
13-17
13-19
13-21
13-21
13-21
13-21
13-22
13-23
13-24
13-24
13-27
13-29
13-30
13-30
13-31
13-31

14-1
14-1
14-1
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-5
14-5
14-5
14-5
14-6
14-7
14-7
14-7
14-8
14-8
14-8
14-9
14-9
14-9
14-9
14-9

14-10

xi

Section

14 (Cont)

xii

A

B
c
D

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

LISTP
LISTDOLLAR
MAP.
NEW
PAGE
SUMMARY
XREF
XSEQ

Intermediate Code Module Options
ICM
USEICM
REMOVEICM ..

Miscellaneous Options
AUTO BIND
CLEAR ..
END ...
ERRORLIST
INTERPRETER
INTRINSICS
NOBOUNDS ..

Title

B 1000 FORTRAN 77 LANGUAGE SYSTEM
System Requirements

Required Hardware
Required System Software

User/Compiler Interface . .
Intermediate Code Files
Compiler Files

Input Files
Output Files

Compiler File Names and Defaults
Large FOR TRAN 77 Program Code Files

Mcp Control Records . .
Compilation Source File

? COMPILE Record
Program-name

Label Equations (FILE statement)
? DAT A CARD Record
Source Input File CARD
? END Record

OPTIMIZING PROGRAM COMPILATION
DESCRIPTION OF UNFORMATTED 1/0 RECORDS
STORAGE ALLOCATION
Simple Variables

INTEGER Variables
REAL Variables
DOUBLE PRECISION Variables .
LOGICAL Variables

Page

14-10
14-10
14-10
14-10
14-10
14-11
14-11
14-11
14-11
14-11
14-12
14-13
14-14
14-14
14-14
14-15
14-15
14-15
14-15
14-16

A-1
A-1
A-1
A-1
A-1
A-4
A-4
A-4
A-4
A-5
A-7
A-7
A-7
A-7
A-8
A-9
A-9

A-10
A-10

B-1
C-1
D-1
D-1
D-2
D-2
D-3
D-3

Section

D (Cont)

E

F
G

1152113

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

COMPLEX Variables
Arrays
Data Allocation Information
Code Segmentation Information
FORTRAN77 I ANALYZER
Program Execution
Program Termination
Error Messages . . .
JOB SPAWNING
FORTRAN 77 S-LANGUAGE

Title

Introduction .
Base-Limit Memory Layout .
Instruction Set

Alphabetical List of Mnemonics
Numeric List of Operation Codes

Arithmetic Replacement S-Operators .
Logical Replacement and IF Statement S-Operators .
Branch S-Operators
Type and Sign Conversion S-Operators
Subscript Value Computation S-Operators

Page

D-3
D-4
D-6
D-7
E-1
E-1
E-3
E-3
F-1
G-1
G-1
G-1
G-2
G-2
G-6
G-6
G-8
G-8
G-8
G-9
G-9 Do Loop Maintenance

Character Type S-Operators . .
Subroutine Linkage S-Operators
Special Function S-Operators

· · · · · · G-9

Privileged User S-Operators . . .
Trigonometric and Other Functions

Formats
Registers
Error Condition Information
Values
Local Data Block
Subroutine Linkage Mechanism
Layout Table
Transfer Vector
Assigned GOTO and Format Table
Standard Index
Addresses
Standard Source
Standard Destination
Standard Character Source
Standard Character Destination
Run-Time Dimension Table . . .

Arithmetic Replacement S-Operators
MOVE SINGLE WORD (MOVE)
MOVE DOUBLE WORD (DMOVE)
MOVE REGISTER (RMOVE)
STORE REGISTER (STORE) . . .

G-9
G-10
G-10
G-10
G-11
G-11

. . . . G-11
G-12
G-12
G-12
G-13

. G-14
. G-14

G-15
. G-16

. . . . G-18
G-18
G-19
G-19
G-20

..... G-20
G-20

.. G-21
G-21

. . G-21

xiii

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont}

Section Title Page

G (Cont) LOAD REGISTER (LOAD) G-21

xiv

MOVE MEMORY (MMOVE) G-22
ADD (ADD) SUBTRACT (SUB) MULTIPLY (MUL) DIVIDE (DIV) . G-23

BUMP (BUMP) . G-24
Logical Replacement and If Statement S-Operators G-24

RELATION (IREL, STD.SOURCES are of type INTEGER) (FREL,
STD.SOURCES are of type REAL) (DREL, STD.SOURCES are of type
DOUBLE) . G-24
RELATIONAL IF (IRIF, integer relational IF) (FRIF, floating point relational IF)

(DRIF, double precision relational IF) G-25
LOGICAL RELATION (LOG) G-26
LOGICAL IF - 2 OPERANDS (LIF2) G-26
LOGICAL NOT (LNOT) G-26
LOGICAL IF - 1 OPERAND (LIFl) G-27

Branch S-Operators G-27
UNCONDITIONAL BRANCH (GOTO) G-27
ARITHMETIC IF (AIF) G-28
COMPUTED GOTO (COO) G-28
ASSIGNED GOTO (AGO) G-29

Type and Sign Conversion S-Operators G-30
CONVERT FROM INTEGER TO REAL OR DOUBLE PRECISION (FLOAT) G-30
CONVERT FROM REAL OR DOUBLE PRECISION TO INTEGER (IFIX) G-30
CONVERT FROM DOUBLE TO REAL (SNGL) G-30
CONVERT FROM REAL TO DOUBLE PRECISION (DBL) G-31
ABSOLUTE VALUE (ABS) G-31
CHANGE SIGN (NEG) G-32

Subscript Value Computation S-Operators G-32
VALIDATE DESCRIPTOR (VD) G-32
BUILD ARRAY TABLE (BAT) G-33
BUILD ASSUMED SIZE ARRAY TABLE (BAA T) . G-34
COMPUTE SUBSCRIPT VALUE (CS) G-34
CS WITH BOUNDS CHECKING (CSB) G-35
COMPUTE SUBSCRIPT VALUE WITH ARRAY TABLE, CHECK BOUNDS
(CSV) G-35

DO-Loop Maintenance G-36
DO LOOP UPDATE (DO.UP) G-36

Character Type S-Operators G-38
CHARACTER RELATION (CREL) G-38
CHARACTER RELATIONAL IF (CRIF) G-38
LENGTH (LEN) G-39
SUBSTRING DESCRIPTOR (SSTR) G-39
SUBSTRING MOVE (SSTL) G-40
STORE CHARACTER (STC) . . . G-40
CHARACTER CONCATENATION WITH DESCRIPTOR (CATD) G-41
MOVE CHARACTERS (MVC) G-41
CHARACTER CONCATENATION (CAT) G-42

Section

G (Cont)

1152113

B 1000 Systems FORTRAN 77 Language Manual

TABLE OF CONTENTS (Cont)

Title

Subroutine Linkage S-Operators
SA VE REGISTERS (SA VE) . .
LOCAL BASE (LB)
PASS ACTUAL ARGUMENT (PASS)
SUBROUTINE CALL (CALL)
DYNAMIC SUBROUTINE CALL (DCAL) .
RETURN (RTN)
STATEMENT FUNCTION CALL (SPFCL)
STATEMENT FUNCTION RETURN (SFRTN)
SCRAMBLE AND PROVIDE ARGUMENTS (SP AM)

Special Function S-Operators
FORTRAN STATEMENT NUMBER (STMN)

Privileged User S-Operators
BASE-RELATIVE ADDRESS (ADDR)
INDIRECT DESCRIPTOR OF NUMERIC ARRAYS (DESC)
STORE CHARACTER (STC)
COMMUNICATE (COMM)
LOAD COMMUNICATE REPLY (LCR)
PROCESSOR TIME (TIME)
DISCONTINUE JOB (DS)
WRITE INTEGER DIGITS (WID)
BINARY CONVERSION (BNRY)
SEARCH FOR SIGN (SIGN)
GET REAL VALUE (REAL)
EXAMINE NEXT CHARACTER (NEXT)
WRITE E-FORMAT (WEF)
WRITE F-FORMAT (WFF)
FETCH AND CLEAR ERROR CONDITION (FANC)
EXTRACT BITS (XTRACT)
INSERT BITS (INSERT)
WRITE I-FORMAT (WIF)

Trigonometric and Other Functions
REMAINDER (AMOD)
SINE (SIN)
COSINE (COS)
TANGENT (TAN)
HYPERBOLIC SINE (SINH)
HYPERBOLIC COSINE (COSH)
HYPERBOLIC TANGENT (TANH)
ARCSINE (ASIN)
ARCCOSINE (ACOS) . . .
ARCTANGENT (ATAN) . .
FLOOR (AINT)
NATURAL LOG (ALOG)
LOG TO BASE 10 (ALOGlO) .
SQUARE ROOT (SQRT) .
EXPONENTIAL (EXP)

Page

G-42
G-42
G-43
G-44
G-46
G-46
G-46
G-47
G-47
G-48
G-48
G-48
G-48
G-49
G-49
G-49
G-49
G-50
G-50
G-50
G-51
G-51
G-52
G-52
G-53
G-53
G-53
G-54
G-54
G-54
G-55
G-55
G-55
G-56
G-56
G-56
G-56
G-57
G-57
G-57
G-57
G-58
G-58
G-58
G-59
G-59
G-59

xv

B 1000 Systems FORTRAN 77 Language Manual

LIST OF ILLUSTRATIONS

Figure Title

3-1 Required Order of Statements and Comments
A-1 FORTRAN 77 Compilation System . .
D-1 Representation of [3:4]
D-2 Storage of a Multi-Dimensional Array
G-1 Example of Run-Time Dimension Table

Table

6-1
7-1
7-2
7-3
7-4
8-1
10-1
10-2
12-1
12-2
12-3
13-1
13-2
13-3
13-4
13-5
13-6
A-1
A-2
E-1
G-1
G-2
G-3

xvi

LIST OF TABLES

Title

DAT A Statement Type Conversions
Operators Used in FORTRAN 77 Expressions
Resultant Types of Arithmetic Operations
Resultant Types for Exponentiation
Logical Expression Constructs
Type Conversions in Assignment Statements
Default Attributes
Unit Number /Hardware Default Associations
Input Data Item Types
Input Variable Item Types
Output List Item Types
Intrinsic Functions
Truth Table for Lexical Comparators
Values Returned by the TIME Function .
Values Returned by the DATE Function
Intrinsic Subroutines
Association of Actual and Dummy Arguments
FORTRAN 77 Compiler File Names and Characteristics
ICM Name Conversions
Switch Settings for the FORTRAN77 I ANALYZER Program
Sample Assigned GOTO and FORMAT Table
Operation Codes for ADD, SUBTRACT, MULTIPLY, and DIVIDE
Operation Codes for ADD, SUBTRACT, MULTIPLY, and DIVIDE

Page

3-3
A-3
D-1
D-5

G-20

Page

6-10
7-1
7-2
7-3
7-5
8-2

10-3
10-4
12-5
12-5
12-6
13-7

13-13
13-13

. . 13-14
. 13-17
. 13-23

A-6
A-9
E-1

G-14
G-22
G-23

B 1000 Systems FORTRAN 77 Language Manual

INTRODUCTION

The purpose of this manual is to provide an explanation of the implementation and use of the Bur
roughs B 1000 FORTRAN 77 programming language. The language is designed along the guidelines
of the American National Standards Institute committee for FORTRAN 77 (ANSI X3.9-1978), along
with extensions provided by Burroughs as programming aids, and to conform with the B 1000 system
architecture.

This manual is designed to provide the FORTRAN 77 programmer with a source of reference informa
tion and is not a primer in the language. The manual is organized in a manner that provides ease of
use as a reference document, beginning with basic concepts and proceeding to more complex concepts.

RELATED DOCUMENTS

The following documents are referenced in this document:

B 1000 Systems System Software Operation Guide, Volume 1, form number 1151982.

B 1000 Systems System Software Operation Guide, Volume 2, form number 1152097.

BASIC FORTRAN 77 CONCEPTS

Certain basic concepts concerning the FORTRAN 77 language are presented here prior to the descrip
tion of the B 1000 implementation of this language.

A problem-solving system written in the FORTRAN 77 language is called a source program; a program
which constitutes a self-contained processing structure is called an executable source program. Every
executable FORTRAN 77 program consists of one or more program units which combine to form the
complet<;~ processing structure. Among the program units are the required main program and as many
subprogram units as necessary to complete the source program.

Each program unit is constructed of a series of items called statements. These statements specify the
arithmetic operations which are to be executed, control the order in which program statements are to
be performed, accomplish various program input and output functions (such as reading data records
and printing the results of computations), or describe program data items and provide other program
information without directly producing any actions during program execution.

Each program statement is constructed of a string of appropriate characters which are contained on
one or more physical records (for example, punched cards). A set of these physical records can be input
as a file to a special computer program called a compiler. The compiler first verifies that each source
statement is syntactically correct, and then converts each program unit into FORTRAN 77 S-code and
places this Intermediate Code Module (ICM) into an intermediate code file along with other ICMs of
the same source program. When the S-code has been generated for the program units, the main pro
gram is reexamined to determine which subprograms are needed to execute the FORTRAN 77 program.
The intermediate code file is then searched for the intermediate code modules of these subprograms.
These subprograms, and any intrinsics from the intrinsics library file that are needed, are bound togeth
er with the S-code for the main program to create an executable program. The executable program
can then be executed on the B 1000 system using the FORTRAN 77 interpreter. The interpreter causes
the system hardware to perform the operations specified by the S-code and thus, the source program.
For more detailed information regarding the function of S-code and its relation to the interpreter and
the hardware, refer to the B 1000 Systems System Software Operation Guide, Volume 1, form number
1108982 ..

1152113 xvii

B 1000 Systems FORTRAN 77 Language Manual
Introduction

The B 1000 FORTRAN 77 compiler operates under the control of a Master Control Program (MCP).
Similarly, the S-code generated by the compiler is executed under control of the MCP.

A FORTRAN program that was compiled with the FORTRAN 66 compiler must be recompiled with
the FORTRAN 77 compiler to be able to run with the FORTRAN 77 interpreter.

xviii

B 1000 Systems FORTRAN 77 Language Manual

SECTION 1
SYNTAX CONVENTIONS

RAILROAD DIAGRAMS

Railroad diagrams show how syntactically valid statements can be constructed.

Traversing a railroad diagram from left to right, or in the direction of the arrowheads, and adhering
to the llimits indicated by bridges produces a syntactically valid statement. Continuation from one line
of a diagram t9 another is represented by a right arrow (___.,) appearing at the end of the current line
and at the beginning of the next line. The complete syntax diagram is terminated by a vertical bar
<I).

Items contained in broken brackets (< >) are syntactic variables which are further defined, or require
the user to supply the requested information.

Uppercase items must appear literally. Minimum abbreviations of uppercase items are underlined.

Examplle:

--A HAI LROAD DIAGRAM CONSISTS OF _ ____.......,.__ <bridges> ----~___._] _________ ~-
-<loops >-------1

- <optional items> ---

- <required items> __ __.

>--AND IS TERMINATED BY A VERTICAL BAR.-------------------------1

G50051

The following syntactically valid statements can be constructed from the above diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTI
CAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional-items> AND IS TERMINATED BY A
VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS TERMINATED BY
A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional-items>, <required-items>, <bridges>,
<loops> AND IS TERMINATED BY A VERTICAL BAR.

1152113 1-1

Required Items

B 1000 Systems FORTRAN 77 Language Manual
Syntax Conventions

No alternate path through the railroad diagram exists for required items or required punctuation.

Example:

G50052

Optional Items

Items shown as a vertical list indicate that the user must make a choice of the items specified. An
empty path through the list allows the optional item to be absent.

Example:

-- REQUIRED ITEM---..------ ------.-----~----~~·----------'

<optional item-1 > ---
<optional item-2 > __ __j

G50053

The following valid statements can be constructed from the above diagram:

REQUIRED ITEM

REQUIRED ITEM <optional-item-I >

REQUIRED ITEM < optional-item-2 >

1-2

Loops

B 1000 Systems FORTRAN 77 Language Manual
Syntax Conventions

A loop is a recurrent path through a railroad diagram and has the following general format:

fE--< bridge > < return character> --

___ ,L__ <object of the loop>----------'--------------------

G50054

Example:

_J~-'
~<optional ltem-1 > _J--~-~--------------~----~----~

L_ <optional item-2 >

G50055

The following statements can be constructed from the previous railroad diagram:

< optional-item-1 >

< optional-item-2 >

< optional-item-1 >, < optional-item-1 >

< optional-item-1 >, < optional-item-2 >

< optional-item-2 >, < optional-item-1 >

< optional-item-2 >, < optional-item-2 >

A <loop> must be traversed in the direction of the arrowheads, and the limits specified by bridges
cannot be exceeded.

1152113 1-3

B 1000 Systems FORTRAN 77 Language Manual
Syntax Conventions

Bridges

A bridge indicates the minimum or maximum number of times a path can be traversed in a railroad
diagram.

The following are the two forms of <bridges > :

G50056

n is an integer which specifies the maximum number of times the path can be
traversed.

n is an integer which specifies the minimum number of times the path must be
traversed.

Example:

2

--~--,-----<optional item-1 > ----~_.__-----------------------t
<optional item-2 >-----

G50057

The loop can be traversed a maximum of two times; however, the path for < optional-item-2 > must
be traversed at least one time.

The following statements can be constructed from the railroad diagram in the example:

< optional-item-2 >

<optional-item-I>,< optional-item-2 >

< optional-item-2 >, < optional-item-2 >, < optional-item-1 >

< optional-item-2 >, < optional-item-2 >, < optional-item-2 >

1-4

B 1000 Systems FORTRAN 77 Language Manual

SECTION 2
CHARACTER SET

Characters are the elements from which a language is constructed. The B 1000 FORTRAN 77 language
is based upon a prescribed character set which is described in this section. Each type of character within
this FORTRAN 77 character set is described in this section.

81000 FORTRAN 77 CHARACTER SET
For source program input, the B 1000 FORTRAN 77 character set consists of the following types of
characters:

1. Digits

l) Decimal digits
2) Hexadecimal digits

2. Letters
3. Special Characters

Digits

Two types of digits are employed in the B 1000 FORTRAN 77 language: decimal digits and
hexadecimal digits. Decimal digits are defined as consisting of the characters 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9. These digits are generally used to define program values in terms of the decimal (radix 10)
number system. When the term "digit" is used in this manual, it refers to a member of the set of
decimall digits.

Hexadecimal digits are defined as consisting of the characters in the decimal digit set plus the characters
A, B, C, D, E, and F. These digits are generally used to define program values in terms of the hexadec
imal (radix 16) number system; where A is equivalent to 10 in the decimal system, B is equivalent to
11 in the decimal system, and so forth.

These two digit types are used to represent numerical values in the B 1000 FORTRAN 77 language.

Letters

For the B 1000 FORTRAN 77 language, letters consist of the following 26 characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

1152113 2-1

B 1000 Systems FORTRAN 77 Language Manual
Character Set

Special Characters

Special characters for the B 1000 FORTRAN 77 language consist of the following 16 characters:

blank or space
period or decimal point

(left parenthesis
+ plus sign
& ampersand
$ dollar sign
* asterisk

I

'
OJo

II

right parenthesis
minus sign
slash
comma
percent symbol
colon
apostrophe
equal sign
quotation mark

The blank character has a specific meaning only in string literals and in the FILE declaration statement
(two blanks must follow the FILE statement). Blanks can be used throughout the program to improve
readability.

Collating Sequence

The collating sequence of the character set is such that special characters are less than letters and letters
are less than digits. Within each of these three groups, the collating sequence is the following:

2-2

1. Digits. Have the sequence as normally assigned to numbers; 1 is less than 2, 9 is greater than
7, and so forth.

2. Letters. Listed in ascending order under Letters, in this section.
3. Special Characters. Proper sequence, in ascending order, is listed under Special Characters in

this section.

B 1000 Systems FORTRAN 77 Language Manual

SECTION 3
PROGRAM STRUCTURE

The FORTRAN 77 programming language consists of procedures containing statements conforming to
a general order. The classes of statements and their relative sequence in the FORTRAN 77 program
are d1escribed in this section.

STJ.~TEMENTS

Every executable FORTRAN program (refer to Basic FORTRAN 77 Concepts in the Introduction) con
sists of a sequence of statements, with each statement physically contained on one or more lines, or
on card images. These statements are classified as executable and nonexecutable statements.

Exec:utable Statements

An executable statement is an instruction that causes action to be taken at the point in the program
where the statement is executed. The FORTRAN 77 executable statements described in this document
are as follows:

Assignment statement
BACKSPACE statement
CALL statement
CLOSE statement
CONTINUE statement
DO statement
ELSE statement
ELSE IF statement
END statement
ENDFILE statement
END IF statement

Nom~xecutable Statements

GO TO statement
IF statement
PAUSE statement
PRINT statement
PUNCH statement
READ statement
RETURN statement
REWIND statement
STOP statement
WRITE statement

A nonexecutable statement is an instruction which gives information to the compiler regarding storage
allocation, data initialization, I/O editing specifications, and program units. The FORTRAN 77 non
executable statements described in this document are as follows:

1152113

BLOCK DATA statement
COMMON statement
DATA statement
DIMENSION statement
ENTRY statement
EQUIVALENCE statement
Explicit type statement
EXTERNAL statement
FORMAT statement

FUNCTION statement
IMPLICIT statement
INTRINSIC statement
PARAMETER statement
PROGRAM statement
SA VE statement
Statement function statement
SUBROUTINE statement

3-1

B 1000 Systems FORTRAN 77 Language Manual
Program Structure

Statement Ordering

The order of appearance of statements in the main program or subprogram body is determined by the
following rules:

1. Comment statements and Compiler Control Images can appear, according to their respective
rules, at any point within a program. (For the sake of brevity, the rules following do not de
scribe the relationship of comment statements and Compiler Control Images to the other valid
FORTRAN 77 statements, but as stated previously, comment statements and Compiler Control
Images can appear at any point.)

2. FILE declaration statements must precede all other statements of the main program.
3. PROGRAM is the first statement in the program following any FILE declaration statements.

In a subprogram unit, the SUBROUTINE, FUNCTION, or BLOCK DAT A statement must be
first.

4. All specification statements must precede all DAT A statements, statement function declaration
statements, and executable statements. Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification statements except PARAMETER
statements. Any specification statement that specifies the type of a symbolic name of a constant
must precede the PARAMETER statement that defines that particular symbolic name of a con
stant. The PARAMETER statement must precede all other statements containing the symbolic
names of constants that are defined in that PARAMETER statement.

5. All statement function declaration statements must precede all executable statements.
6. FORMAT statements can appear anywhere within a program unit.
7. ENTRY statements can appear anywhere within a program unit except between a block IF state

ment and the corresponding END IF statement, or between a DO statement and the terminal
statement of the DO loop.

8. The last line of a program unit must be an END statement.

Figure 3-1 shows the required order of statements and comment lines.

3-2

B 1000 Systems FORTRAN 77 Language Manual
Program Structure

FILE DECLARATION STATEMENTS

PROGRAM, FUNCTION, SUBROUTINE, OR
BLOCK DATA STATEMENT

COMMENT IMPLICIT
LINtS STATEMENTS

PARAMETER
FORMAT STATEMENTS

AND
ENTRY OTHER

STATEMENTS SPECIF I CATION
STATEMENTS

STATEMENT
FUNCTION

DATA STATEMENTS
STATEMENTS

"

EXECUTABLE
STATEMENTS

END STATEMENT

G50290

Figure 3-1. Required Order of Statements and Comments

Vertical lines delineate varieties of statements that can be interspersed. For example, FORMAT state
ments can be interspersed with statement function statements and executable statements. Horizontal
lines delineate varieties of statements that must not be interspersed. For example, statement function
stateme:nts must not be interspersed with executable statements. An END statement is also an
executable statement and must appear only as the last statement of a program unit.

The recommended order of appearance of FORTRAN 77 statements in a program unit is as follows:

1. FILE declaration statement.
2. PROGRAM statement (This statement appears only in the main program; otherwise, the

FUNCTION or SUBROUTINE statement appears here.)
3. IMPLICIT statements and PARAMETER statements.
4. DIMENSION, COMMON, INTRINSIC, EXTERNAL, or explicit type statements in any order.
5. EQUIVALENCE statements.
6. DATA statements.
7. Statement function declaration statements.
8. Remainder of program unit.
9. END statement.

1152113 3-3

Statement Labels

B 1000 Systems FORTRAN 77 Language Manual
Program Structure

Statement labels provide a means of referring to individual statements. Any statement can be labeled,
but only executable statements and FORMAT statements can be referred to by the use of statement
labels. The form of a statement label is a sequence of one to five digits, at least one of which must
be nonzero. The statement label can be placed anywhere in columns one through five of the initial
line of the statement. The same statement label must not be given to more than one statement in a
program unit. Blanks and leading zeros are not significant in distinguishing between statement labels.

Examples:

100A=A+1
200 FORMAT (5I4,F7 .2)
300 STOP

PROGRAM UNITS

Every executable FORTRAN 77 program consists of a main program unit which can be preceded and/
or followed by as many subprograms as necessary.

Main Program

A main program unit is a program unit that does not have a FUNCTION, SUBROUTINE, or BLOCK
DAT A statement as the first statement. It can have a PROGRAM statement as the first statement.

There must be exactly one main program unit in an executable program. Execution of an executable
program begins with the execution of the first executable statement of the main program.

PROGRAM Statement

The PROGRAM statement has the following form:

---PROGRAM--------< program-name> ----------------------t

G50291

<program-name> is the symbolic name of the main program unit in which the PROGRAM statement
occurs. The program name can contain up to six characters.

A PROGRAM statement is not required to appear in an executable program. If it does appear, it must
precede any statement in the main program unit except any FILE statements.

The symbolic name <program-name> is global to the executable program and must not be the same
as the name of an external procedure, block data subprogram, or common block in the same executable
program. <program-name> must not be the same as any local name in the main program.

Examples of PROGRAM statements follow:

3-4

PROGRAM INVENT
PROGRAM HYPER

B 1000 Systems FORTRAN 77 Language Manual
Program Structure

Main Program Restrictions

The PROGRAM statement can appear only as the first statement of a main program. A main program
can contain any other statement except a BLOCK DATA, FUNCTION, SUBROUTINE, ENTRY, or
RETURN statement. A main program cannot be referenced from a subprogram or from itself.

Subprngrams

Subprograms (other than block data subprograms) are independent program units. A subprogram is
referenced by a CALL statement or indirectly as a function in an expression. A subprogram can con
tain any FORTRAN 77 statement except a PROGRAM statement and a BLOCK DATA statement (un
less the subprogram is a block, data subprogram). For additional information on subprograms refer
to section 13.

A block data subprogram is a special type of subprogram. Block data subprograms are described in
section 13.

An END statement is required to complete every program unit. Ref er to section 9 for a full description
of the END statement.

SOURCE INPUT FORMAT

The compiler must receive FORTRAN 77 statements from cards, tape, or disk. Source input records
are, in general, free-form format, with the following exceptions:

1. Columns 1 through 5 of a card can contain a statement label (ref er to Statement Labels in this
section). This field is recognized as a label on the first card only of an executable or FORMAT
statement. Statement labels must not occur on continuation lines. A label without an associated
statement causes a syntax error. Blanks and preceding zeros are ignored.

2. Column 6 of the first card of a statement must be blank or contain a zero. A statement can
be continued on up to 19 records by placing any nonblank and nonzero character in column
6 of the continuation cards.

3. Columns 7 through 72 of a card contain the FORTRAN 77 statement.
4. Columns 73 through 80 can contain sequence numbers. This field is checked for ascending se

quence numbering when $ MERGE or $ SEQCHECK is set; otherwise, the field is ignored.

A card containing a $ in column 1 is a Compiler Control Image as described in section 14.

Blank characters are significant only in column 6 of a statement, columns 5 and 6 of a FILE declara
tion, and in string literals. With these exceptions, blanks can be used freely without affecting the mean
ing of the FORTRAN 77 program.

Comments

If a line contains the letter C or an asterisk (*) character in column 1, or is entirely blank, the line
is considered a comment line and is not interpreted. Any characters can follow the letter C or the aster
isk on the same line without affecting program execution.

Comment lines can appear anywhere in the program unit and can precede the initial line of the first
statement of any program unit. Comment lines can appear between an initial line and the first
continuation line or between two continuation lines.

1152113 3-5

B 1000 Systems FORTRAN 77 Language Manual

SECTION 4
CONSTANTS

This section explains the constants available in FORTRAN 77. Constants are formed from the FOR
TRAN 77 character set according to prescribed rules.

Constants function as FORTRAN 77 value data items used in problem solving and related operations
such as input/output (110). Rules governing usage are described in this section.

Constants are classified into three types: 1) numeric constants, 2) logical constants, and 3) character
constants.

NUMERIC CONSTANTS

A constant numeric data item can be expressed by a variety of constant representations which are
grouped into the following categories:

1. Integer constants.
2. Real constants.
3. Double-precision constants.
4. Complex constants.
5. Hexadecimal constants.

These five constant data constructs are described in the following paragraphs and the internal storage
requirements are described in appendix D.

lnteuer Constants

An integer constant consists of a string of decimal digit characters which can be preceded by a sign
character (+ or -). If the constant is nonzero and unsigned, it is interpreted as representing a positive
value .. A zero has the same value whether signed or unsigned. From one to ten decimal digit characters
are permitted and accuracy is ensured providing the value does not exceed -2,147,483,648 (for negative
values) or 2, 147 ,483 ,647 (for positive values). If this limit is exceeded, a syntax error results.

Several examples of valid integer constants follow:

0
+O
--43
17711
999999999
03770
2089934591
-- 5708

Several examples of invalid integer constants follow:

11521 ll3

1.0

3,000
2222222222
-0

Decimal point not permitted,
interpreted as a real constant.
No commas or other punctuation permitted.
Exceeds the largest integer value allowed.
Minus zero is invalid.

4-1

B 1000 Systems FORTRAN 77 Language Manual
Constants

Real Constants

A real constant is stored in the B 1000 processor as an approximation of the actual constant. It can
assume a positive, negative, or zero value.

The three forms of a real constant follow:

1. Basic real constant.
2. Basic real constant followed by a real exponent.
3. Integer constant followed by a real exponent.

The form of a basic real constant is an optional sign, an integer part, a decimal point, and a fractional
part, in that order. Both the integer part and the fractional part are strings of decimal digits; either
of these parts can be omitted, but not both. A basic real constant can be written with more digits
than the B 1000 processor will use to approximate the value of the constant. The number of significant
digits that the processor uses is approximately seven. A basic real constant is interpreted as a decimal
number.

Examples of valid basic real constants follow:

3.141592
0.
0.0
.075
00000000000007.
-253.
- .075

The second and third types of real constants are combinations of a basic real constant or an integer
constant and a real exponent.

The form of a real exponent is the letter E followed by an optionally signed integer constant. A real
exponent denotes a power of ten.

The value of a real constant that contains a real exponent is the product of the constant that precedes
the E and the power of ten indicated by the integer following the E. The integer constant part of the
third type of real constant can be written with more digits than the processor uses to approximate the
value of the constant.

Examples of valid basic real constants followed by a real exponent:

4-2

205.E-3
.01E3
6.02E23
345 .280E - 28
4291.0234E + 8
2.9979E08
32.5E007

B 1000 Systems FORTRAN 77 Language Manual
Constants

Examples of valid integer constants followed by a real exponent:

2E3
602E-19
-8E-43
IE-9
12457 48E + 27

Examplles of invalid real constants follow:

-1597

8.2E+77
4.2E-79
E22

2.7El.2
1E2E3
2,765,987.

No decimal point or E portion,
interpreted as an integer constant.
Exceeds maximum size limit.
Smaller than minimum size limit.
No integer or real part,
interpreted as a variable name.
Exponent part must be an integer.
Only one E portion allowed per constant.
No commas or other punctuation, except
decimal point, permitted.

The range for the magnitude of a real constant is approximately .5397605E-78 .LT. X .LT .
. 7237005E + 76, where X is the real constant. If this limit is exceeded, a syntax error results. For more
information on the in~ernal format of a real constant ref er to appendix 0.

- Doubh;)-Precision Constants

A double-precision constant must be written using scientific notation and is stored in the B 1000 proces
sor as an approximation of the actual constant. It can assume a positive, negative, or zero value. A
double-precision constant uses two consecutive words of storage.

The two forms of a double-precision constant follow:

1. Basic real constant followed by a double·-precision exponent.
2. Integer constant followed by a double-precision exponent.

The form of a double-precision exponent is the letter 0 followed by an optionally signed integer con
stant. A double-precision exponent denotes a power of ten. The form and interpretation of a double
precision exponent are identical to those of a real exponent, except that the letter 0 is used instead
of the]letter E.

The value of a double-precision constant is the product of the constant that precedes the 0 and the
power of ten indicated by the integer following the 0. The integer constant part of the second form
can be written with more digits than the processor uses to approximate the value of the constant. The
number of significant digits that the processor uses is approximately 14.

Exampk~s of valid basic real constants followed by a double-precision constant:

3 .14159265358979300} -
3 .1415926535897930 -- 0 equivalent
+ 1.0 + 3
1234567890.1234560 + 29
6.630-03
9.806650+0

1152113 4~

B 1000 Systems FORTRAN 77 Language Manual
Constants

Examples of valid integer constants followed by a double-precision constant:

1D3 } . l + 1 D + 03 eqmva ent

-363354D-10
1D50

Examples of invalid double-precision constants follow:

3.14159

2.7 D 99
2.7 D-99
1,234,567,890,123.
l.3E45
123456789.12345678901

No D portion, interpreted as a real
constant.
Exceeds maximum size limit.
Smaller than minimum size limit.
Commas not permitted, no D portion.
No D in exponent part.
No D portion, interpreted as a real
constant.

The range of values for double-precision constants is approximately .5397605346E- 78 .LT. X .LT .
. 7237005577E + 76. If this limit is exceeded, a syntax error results. For more information on the inter
nal format of a real constant, refer to appendix D.

Complex Constants

The form of a complex constant is a left parenthesis followed by an ordered pair of real or integer
constants, separated by a comma, and followed by a right parenthesis. The first constant of the pair
is the real part of the complex constant and the second is the imaginary part.

Examples of valid complex constants follow:

(6,0.7)
(12.93,14)
(65,27)
(.004,3 .141)
(.1234567890, 1)

Examples of invalid complex constants follow:

12 No parentheses, and no imaginary part.
(,5 .4) No real part.

Hexadecimal Constants

An alternate representation of program values consists of the hexadecimal constant which corresponds
to digits of base 16. Hexadecimal constants can only be used as data initialization values in a DAT A
statement. For more information on the machine representation of the various data types refer to ap
pendix D.

A hexadecimal constant consists of the letter Z followed by one or more hexadecimal digits. The
hexadecimal constant assigns a value to the entire storage location used by the variable. Variables that
use one storage unit (INTEGER, REAL, and LOGICAL) can contain eight hexadecimal digits.
Variables that use two storage units (DOUBLE PRECISION and COMPLEX) can contain 16
hexadecimal digits. Any excess digits are truncated from the right (low-order digits). When a
hexadecimal value does not fill the variable to which it is assigned, the variable is padded on the left

4-4

B 1000 Systems FORTRAN 77 Language Manual
Constants

with hexadecimal zeros. CHARACTER variables must have two hexadecimal digits assigned for each
character in the string or substring. Specifying too few or too many hexadecimal digits in a CHARAC
TER variable results in a syntax error.

The hexadecimal notation employed by the B 1000 system conforms to the standard form whereby each
hexadecimal digit corresponds to a unique pattern of four bits within a data word. A list of these 4-bit
patterns follows with the corresponding hexadecimal (hex) digits denoted:

Hex Bit Hex Bit
Digit Pattern Digit Pattern

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 c 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Examples of valid hexadecimal constants follow:

Z50180000

Z0123456789ABCDEF

ZOACDEFAll

ZF ABZFAC4D5671234B90F

ZOOOOOOOl

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 4.

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 8.

Valid for any variable of a numeric type
and for LOGICAL. Invalid for CHARACTER
because of odd number of digits.

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 10.

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 4.

Examples of invalid hexadecimal constants follow:

FFF60

Z-1

ZOABCDEFGF

Z333 .330033

1152113

The Z is missing.

A minus sign is not permitted
in a hexadecimal constant.

The character G is not a
hexadecimal digit character.

A decimal point is not allowed
in a hexadecimal constant.

4-5

B 1000 Systems FORTRAN 77 Language Manual
Constants

LOGICAL CONSTANTS
FORTRAN 77 allows the use of logical operations through the medium of the logical expression. Two
logical constants are provided to represent the logical values TRUE and FALSE.

These two logical constants are represented in the source code of a FORTRAN 77 program in the fol
lowing manner:

.TRUE .

. FALSE.

The use of these logical constants is restricted to certain types of expressions. Refer to Logical Expres
sions in section 7 for details. The internal machine representation of these two constants is such that
the data words corresponding to the constant .TRUE. and the integer constant - 1 (all bits set) are
identical; the data word corresponding to the constant .FALSE. and the integer constant 0 are identi
cal. Refer to appendix D for more information on the internal representation of LOGICAL constants.

CHARACTER CONSTANTS
The form of a character constant is an apostrophe followed by a nonempty string of characters, fol
lowed by an apostrophe. The string can consist of any character capable of being represented in the
B 1000 processor. The delimiting apostrophes are not part of the datum represented by the constant.
An apostrophe within the datum string is represented by two consecutive apostrophes with no interven
ing blanks. In a character constant, blanks embedded between the delimiting apostrophes are
significant.

One additional form of a character constant is allowed. A character constant can be of the form as
described in the preceding paragraph except that quotation marks replace the apostrophes in the de
scription. When an apostrophe is used as the string delimiter, a quotation mark within the datum string
is represented by a quotation mark. When a quotation mark is used as the string delimiter, an apo
strophe within the datum string is represented by an apostrophe.

The length of a character constant is the number of characters between the delimiting apostrophes or
quotation marks, except that each pair of consecutive apostrophes or quotation marks counts as a sin
gle character. The delimiting apostrophes or quotation marks are not counted. The length of a charac
ter constant must be greater than zero and no greater than 255.

Examples of valid character constants (b represents a blank character) follow:

"DON'T"
'ABC123bbbDEF'
11111111

'?* -$3'
"b"

'DON"T' (equivalent)

Examples of invalid character constants follow:

11 ABC"DEFG 11

'POIU'b'YT'

4-6

Two adjacent quotation marks are needed if
quotation marks are used as delimiters.

This is interpreted as two strings since
the inner apostrophes are not immediately
adjacent.

B 1000 Systems FORTRAN 77 Language Manual

SECTION 5
VARIABLES AND ARRA VS

FORTRAN 77 variable names and array names are symbolic names which are constructed from the
FORTRAN 77 character set according to appropriate rules. Variables and arrays represent values which
can be altered during program execution.

These constructs are used to identify one or more storage locations for purposes of data storage and
retrievall. The constants of these storage locations are accessed by referencing the associated variable
or array element name.

This section contains a description of variable name construction which extends to array names and
function names. A description of the construction and use of arrays and substrings is also presented.
The internal handling of variables and arrays is described in appendix D.

VARIABLE NAMES

A FORTRAN 77 variable name is an identifier which consists of a string of one to six alphanumeric
characte:rs (letters or digits), with the leading character being a letter. Special characters cannot be used
in variable names.

If the variable name is more than six characters long, a syntax error results. Embedded blanks are
acceptable but are removed by the system. Variables are classified into six fundamental types.

Type

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER

Memory Required

4 bytes
4 bytes
8 bytes
8 bytes
4 bytes
1 byte per character

There is no variable of type hexadecimal. Hexadecimal constants can only be used as data initialization
values in DAT A statements and explicit type statements.

The value represented by a variable of each of these types can be expressed by a constant of the same
type. Thus, the value represented by an integer variable can be expressed by an integer constant, the
value represented by a real variable can be expressed by a real constant, and so forth. Therefore, the
values represented by each variable type must conform to the magnitude and significant digit restric
tions governing the corresponding type of constant.

Unless declared otherwise in an explicit type statement or an IMPLICIT statement, the identifier is
assigned a type according to the initial character. If this initial character is the letter I, J, K, L, M,
or N, then the variable, by default, is of INTEGER type. If this initial character is any other letter,
the variable, by default, is of REAL type. No such defaults exist for DOUBLE PRECISION, COM
PLEX, LOGICAL, or CHARACTER variables. Variables of these types must be declared as such by
explicit type statements.

1152113 5-1

B 1000 Systems FORTRAN 77 Language Manual
Variables and Arrays

Examples of valid variable names (type is assigned according to the first letter, as described in the pre
ceding paragraph) follow:

Variable
Name

LN0599

IF

OF TEN

LOOP3

Description

This variable is of type INTEGER.

This variable is of type INTEGER.
There are no reserved words in B 1000
FORTRAN 77.

This variable is of type REAL. It is
interpreted as OFTEN (blank ignored).

This variable is of type INTEGER.

Examples of invalid variable names follow:

ARRAYS

Invalid
Variable

Name

3LOOP

BE-GIN

REALNUMBER

END$Q

Description

Variable names cannot begin with a digit.

Characters other than letters, digits, or
blanks are not allowed in a variable name.

There are too many characters, only six
are permitted.

The dollar sign ($) character is not a legal
character.

An array is an ordered data set corresponding to an n-dimensional organization such that each member
can be referenced by an array element, with each of the n subscripts in the element denoting a location
in the appropriate dimension. In FORTRAN 77, an array can have a maximum of seven dimensions.

5-2

Array Declarator

B 1000 Systems FORTRAN 77 Language Manual
Variables and Arrays

An array declarator appears in a DIMENSION, explicit type, or COMMON statement and specifies
the symbolic name of an array within a program unit and specific attributes for that array. Only one
array declarator can be specified for a given array in a program unit. The array declarator specifies
the number of dimensions for the array and the bounds on each of those dimensions. An array declara
tor has the following form:

t<
<array-name> (--~-(]\.___<dimension-declarator> _______ ...____

G50294

<array.-name> has the same restrictions as a variable name and uniquely identifies the array. < dimen
sion-declarator> specifies bounds for each dimension. The number of dimension declarators in the ar
ray gives the number of dimensions in the array. <dimension-declarator> contains an <upper
bound > declarator and, optionally, a <lower-bound> declarator. A dimension declarator has the fol
lowing form:

---,....-----------------.----- <upper-bound> --------------

L< lower-bound> : ------

G50295

Both the <lower-bound> declarator and the <upper-bound> declarator can be integer expressions
and ane called dimension-bound expressions. If <lower-bound> is omitted, the lower bound for that
dimension is 1. The values of these. expressions can be positive, negative, or zero, with one restriction:
the value of the upper bound must not be less than the value of the lower bound. The upper-dimension
bound of the last dimension can be an asterisk in assumed-size array declarators.

Examples of statements that use array declarators follow:

DIMENSION L0(-·3:-1,-7:0), ALPHA04,15:20)
LOGICAL EL(0:99,3,27:28)
COMMON NI(l ,2,3,4,5), BETA(2)
REAL N(- 2:2)

The number of elements in an array can be determined by using the following formula:

E = ((ul -11) + 1) * ((u2-12) + 1)* *((un - In)+ 1)

E is the number of elements in the array, the u's are the upper-bound declarators for each dimension,
the l's are the lower-bound declarators for each dimension, and n is the number of dimensions of the
array.

1152113 5-3

B 1000 Systems FORTRAN 77 Language Manual
Variables and Arrays

Types of Arrays

The upper-bound declaration of the final dimension declarator can be an asterisk (*), in which case
the array is an assumed-size array. If the array declaration contains integer variables in the dimension
bound expressions, the array is an adjustable array. If the array contains only integer constant expres
sions in the dimension-bound expressions, the array is a constant array. Only a dummy array can be
an adjustable array or an assumed-size array. Dummy arrays are explained under Arguments in section
13.

Examples:

DIMENSION AL(-1 :I,2:J)

REAL BE(l4, *), CE(I,2:J, *)

COMMON DE(l8)

AL is an adjustable array.

BE is an assumed-size array.
CE is an adjustable array and an
assumed-size array.

DE is a constant array. A constant
array is the only type of array that
can be in COMMON storage.

Array Elements

Each member of an array is called an array element. The following is the proper form of an array
element:

G50296

<subscript-list> consists of as many arithmetic expressions (subscripts), separated by commas, as there
are array dimensions.

Each member of an array is referenced by means of an array element with appropriate subscripts. Each
arithmetic expression in the subscript list of this construct must be of type INTEGER only. The expres
sion can contain any of the arithmetic operators, integer functions, or subscripted integer variables.
A subscript within an array reference must be greater than or equal to the lower bound declared for
that dimension in the array declarator for that array. The subscript must also be less than or equal
to the upper bound declared for that dimension in the array declarator for that array. The number
of subscripts in an array reference must be equal to the number of dimensions in the array declarator
for the referenced array.

Whenever an array name appears in a program, this array name must be immediately followed by a
subscript list, except when the array name appears in the following:

5-4

1. The dummy argument list of a subprogram reference.
2. The actual argument list of a subprogram reference.
3. The variable list of an input/ output statement, unless the array is an assumed-size array.
4. As a unit identifier or format identifier in an input/output statement, unless the array is an

assumed-size array.
5. A COMMON, DATA, EQUIVALENCE, or explicit type statement.

B 1000 Systems FORTRAN 77 Language Manual
Variables and Arrays

An array can never contain fewer subscripts than are declared for that array in an array declaration.
However, a dummy array can have fewer declared dimensions than the actual array with which it is
associated.

Examples of valid array elements follow:

B(I)

LNO 599(-6) This array element is interpreted as
LN0599(-6).

15(1T(3)) The subscript is an array element.

ARRA Y2(1,0, 1,0) This array element is valid only if the given
subscripts are within the ranges of the
dimensions declared for ARRA Y2.

A(M*N)

Examples of invalid array elements follow:

1(1)

ARRAY3(0)

3ARRAYS(6)

ARRAY(3.6)

A subscript must be a valid arithmetic
expression; an array name does not
constitute such an expression.

This array element is invalid only if
ARRA Y3 does not contain 0 in the dimension
range (example: ARRAY3(-4:-2)).

An array name cannot violate the rules
governing variable names.

The subscript must be INTEGER type only.

A detailed description of the internal representation of FORTRAN 77 arrays is contained in appendix
D.

1152113 5-5

B 1000 Systems FORTRAN 77 Language Manual
Variables and Arrays

CHARACTER SUBSTRINGS

A character variable can either be referenced as a complete entity or any part of the variable can be
referenced using a substring name. A character substring name has the following format:

L <variable-name> :==J
<array-element>

:>-----(-----------~~-~

L<expressionl > ---

__ ...__,----------....--) ---~
L_<expression2 > --~

G50297

The variable referenced can be either a simple character <variable-name> as in the first option, or
a character <array-element> (a character array name followed by a subscript expression).
<expression! > is the character position within the variable where the substring begins and
< expression2 > is the character position within the character variable where the substring ends.
<expression!> and < expression2 > are integer expressions which have the following restriction:

1 .LE. expression! .LE. expression2 .LE. len

The expression len is the length of the character variable from which the substring is being taken. If
< expression2 > is omitted, the substring is assumed to be all of the characters from character position
expression! to the end of the character variable. The form A(:) is equivalent to A, which is assumed
to be the entire character variable, and the form B(sl ,s2, ...) (:) is assumed to be the entire character
array element.

Examples of valid character substrings follow:

5-6

B(2:4)

B(2:)

B(:I + 5)

B(:)

B(3:3)

C(2,3)(5:9)

Character positions 2, 3, and 4 in character
variable B.

All the characters in B from character
position 2 to the end of B.

From the beginning of B to character
position 1+5 in B. Same as B(l:l+5).

All the characters in B. Same as B.

Character position 3 in B.

Character positions 5 through 9 in element
(2,3) of character array C.

B 1000 Systems FORTRAN 77 Language Manual
Variables and Arrays

Examples of invalid character substrings follow:

1152113

D()

D(-1 :)

D(5:4)

D(6.3 +X:)

D(2:8)

E(3:5)(1,I)

No colon.

Negative not permitted.

Expression2 is less than expression!.

Real expression not allowed.

Invalid only if D contains less than eight
characters.

Subscript expression must precede substring
expression.

5-7

B 1000 Systems FORTRAN 77 Language Manual

SECTION 6
SPECIFICATION STATEMENTS

Specification statements are employed to supply compile-time information about program variables I)er
taining to variable types and storage allocation. All specification statements must precede the first
executable statement in a program unit. The specification statements are comprised of the following:

Explicit type statements
COMMON statement
DAT A statement
DIMENSION statement
EQUIV ALEN CE statement
EXTERNAL statement
IMPLICIT statement
INTRINSIC statement
PARAMETER statement
PROGRAM statement
SA VE statement

These statements are described in the following paragraphs in the order just listed.

EXPLICIT TYPE STATEMENTS

The explicit type statements allow the type of a program variable to be explicitly specified for a pro
gram unit and can also specify dimension information. The type assigned is only recognized in the pro
gram unit in which it occurs (main program, subroutine, function, or block data subprogram). A value
can be~ assigned to the variable within the explicit type statement. Explicit type specifications override
any default specifications due to the initial character in the symbolic name of the variable. Refer to
Variable Names in section 5 for additional information.

Program variables can be assigned the following types:

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER

1152113 6-1

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Numeric and Logical Type Statements

An explicit type statement specifying a type of DOUBLE PRECISION, INTEGER, REAL, or COM
PLEX is a numeric type statement. There is only one logical type statement: LOGICAL. These types
of variables have an implied length. Numeric and logical type statements have the following form:

-----------INTEGER----~--~--r-~~-~---~-~~--~------7"~

REAL~-----------1

DOUBLE PRECISION ----

COMPLEX~--~~-~~

LOGICAL ----------i

">----<consta'n~
< functio~:::: ~~
<array-declarator >-------------.......---------------......_-----4

<array-name >----1
< variable-name > __ __,

/ <value-list> /

G50298

<constant-name> is the symbolic name of a constant that is to be given a value in a subsequent PA
RAMETER statement. <value-list> is a list of initial values for the entity. Initial values for numeric
entities must be numeric constants or the symbolic names of numeric constants. A complex constant
must only initialize a variable or array of type COMPLEX. <constant-name> or <function-name>
must not have an associated <value-list>. If the entity is a simple variable, <value-list>, if specified,
must contain only one value. If the entity being typed is an array, <value-list> contains the number
of elements in the array. A dummy variable or dummy array declaration must not contain a <value
list >.

An array declarator can appear only once in a program unit for a specific array. Therefore, if the
dimensions for a given array are given in a DIMENSION statement, the array name, without an array
declarator, must be used in the explicit type statement.

Examples of explicit type statements follow:

REAL IZE/134.99/, LEMON(12:15,-13:1)
LOGICAL CONC/.FALSE./, LUSION(12)
INTEGER NO, DECI, MAL, POINT(-3:0)/1,2,3,4/
DOUBLE PRECISION MORE(3), EXACT

An explicit type statement, if used, must appear before any other statements referencing the variable.

6-2

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Character Type Statement

The character type statement is used to specify that a specific variable can contain string values only.
A variable that is not of type CHARACTER must not be assigned string values at any time. A charac
ter variable can have a specified length, or the variable can assume the default length of one byte.
This length attribute, when specified, is given in the explicit type statement for the character variable.

The CHARACTER explicit type statement has the following form:

-------------------, ------------------

<constant-name> --.-----r-----------..----------------r---------4

G50299

* <length> < function-name >

<array-declarator>--..--~-------~--.------------.---

<array-name >-----1 * <tength > / <value-list>/

< variable-name >

<length> is the length in characters of the variable or array being declared and has a minimum value
of 1 and a maximum value of 255. <length> has one of the following three forms:

1. An integer constant.
2. An integer constant expression (expression containing only integer constants and the symbolic

names of integer constants, no variables) in parentheses.
3. An asterisk (*) character in parentheses ..

The first two forms of < length> specify a constant length for the character entity. The third form
specifies an assumed length for a dummy variable or dummy array. The dummy variable or dummy
array assumes the length of the actual argument with which it is associated.

If the CHARACTER type statement does not have a length attribute, the default length is one charac
ter. A length following an entity in the list overrides the length given for the CHARACTER type state
ment. Any entry in the list that is not followed by a length attribute takes on the length given following
the word CHARACTER, if one is given.

<constant-name> is the symbolic name of a constant to be given a value in a subsequent
PARAMETER statement. <variable-name>, <array-name>, and <array-declarator> are described
in section 5. <function-name> is described in section 13. <value-list> is a list of string constants
separated by commas which initialize the entity being typed. There must be only one value in the <val
ue-list> if the entity is not an array. If the entity is an array, the list contains the number of elements
in the array. A dummy variable or dummy array declaration must not contain a value list.

1152113 6-3

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Example:

CHARACTER * 9 A, B * 4 /'XYZA'/, C /'ABCDEFGHI'/,X * 2
CHARACTER G, I(4:13) * 7, K(2) /'O','D'/

In this example, A has a length of nine characters, B has a length of four characters and is assigned
an initial value, C has a length of nine and has an initial value, and X has a length of two. In the
second statement, G has a length of one. I is a character array; each element contains seven characters.
K is a 2-element character array, each element containing one character and an initial value.

An example of a partial function subprogram of type CHARACTER with dummy variable declarations
follows:

CHARACTER * (*) FUNCTION T(E, F, G)
CHARACTER * (4) E(3)
CHARACTER * (*) F, G

In this example, T is a variable length CHARACTER FUNCTION containing four dummy parameters
(the length of the value returned is dependent on the length declaration for the function in the calling
program unit; refer to section 13). The element length of dummy array E is 4.

Dummy variables F and G have no explicit length and are dependent on the length of the correspond
ing actual arguments. Refer to section 13 for more information on dummy parameters.

COMMON STATEMENT
The COMMON statement allows values to be shared among program units without employing entries
in SUBROUTINE and FUNCTION statement argument lists, while permitting these data items to be
referenced in each program unit. The proper form of the COMMON statement follows:

--COMMON ---~---------------.----r---< array-declarator>-.......-_____.__.....__

- <array-name> ---

<variable-name >

!-----------/
L <block-name> _J

G50300

6-4

Common Names

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

A symbolic name is associated with each block of COMMON storage; this name is called a COMMON
name or block name. Any program unit can access the block of storage associated with this name by
means of a COMMON statement employing this name. COMMON storage associated with a COM
MON name is referred to as COMMON.

A COMMON name is constructed in the same manner as a variable name, except that no type is associ
ated with a COMMON name. A COMMON block need not be named; COMMON storage associated
with no name is called blank COMMON and is assigned the internal identifier &BLANK. If the specifi
cation :for blank COMMON is the first specified in a COMMON statement, the two slashes enclosing
the COMMON name can be omitted. Thus, these two statements are equivalent:

COMMON// A, B(10)
COMMON A,B(lO)

COMMON block names are unique only within COMMON statements. Outside the COMMON state
ment, a COMMON block name can be reused as another element within the program unit (for exam
ple, a simple variable name, an array name, and so forth).

Use of Array Declarators

Array declarators can be used in COMMON statements to declare the dimensions of arrays in the same
manner as type statements or DIMENSION statements. Refer to Array Declarator in section 5 for an
explanation of array declarators.

Storaue Assignments

Each element of a COMMON block is allocated storage in COMMON storage once for an entire
executable program. Each program unit can reference a COMMON block (and hence each location in
the block) by means of an appropriate COMMON statement. The contents of the locations referenced
can be changed in the same manner as the contents of any location local to the program unit.

Variables and arrays are assigned contiguous locations in COMMON storage in the order of appearance
in a COMMON statement. The size of each block of COMMON storage is either as large as the
maximum specification indicated by a COMMON statement referencing the block name in any program
unit, or as large as the maximum length to which the block is extended by an EQUIVALENCE state
ment. Refer to EQUIVALENCE Statement in this section for additional information.

Assume that the following statements are the initial statements of a program unit:

SUBROUTINE MSG
DOUBLE PRECISION D
LOGICAL FLAG(6)
COMMON WORD1,WORD2, D,FLAG,TEXT(20)
COUNT= 1

1152113 6-5

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Assume that the preceding COMMON statement is the largest description of the size of the unlabeled
COMMON block in a given program. The total size of this COMMON block is 30 words. These words
are recognized in the MSG subprogram as the words assigned to the REAL variables WORDl and
WORD2, the word pair assigned to the DOUBLE PRECISION variable D, the six words assigned to
the LOGICAL array FLAG, and the 20 words assigned to the REAL array TEXT. These data words
are contained at relative locations within the COMMON block in the order listed.

The unlabeled COMMON block just described can be referenced, for example, by a COMMON state
ment within another program unit as follows:

SUBROUTINE DUMP
COMMON T(lO)
WRITE (6,l)T

1 FORMAT(1X.10Z8)
RETURN
END

In this example, T is a REAL array. The elements of this array are assigned the data words contained
in the COMMON block, beginning with the initial word of the block and proceeding for 10 words.
Thus, WORDl and WORD2 are equivalent to the array elements T(l) and T(2), respectively; D is
equivalent to elements T(3) through T(4); FLAG(l) through FLAG(6) are equivalent to element T(5)
through T(lO). The data words allocated to the TEXT array in the MSG subprogram are not accessed
in the DUMP subprogram.

Entire arrays, but not individual array elements, can be assigned storage locations in COMMON stor
age.

If the same COMMON name appears more than once in a program unit, the COMMON elements asso
ciated with one appearance are considered extensions to the list of the previous appearance.

Data initialization can be performed by means of a BLOCK DATA subprogram. The BLOCK DATA
subprogram is described in section 1 J. A DOUBLE PRECISION variable in a COMMON block must
not cross a data segment boundary. Each data segment contains up to 256 words.

Variables and array names cannot be duplicated in COMMON statements. One variable cannot be as
signed to more than one block of COMMON storage within a program unit. No dummy arguments
can appear in a COMMON statement. A COMMON block can contain CHARACTER type data, but
if so, it must contain only CHARACTER type data, and any variable name associated with the block
must be of type CHARACTER.

Examples of COMMON statements follow:

6-6

COMMON/BLOCK I/ A,B(IO), C//G, HOLD/BLOCK2/Q(3)
COMMON D
COMMON Tl/CMN/T2,T3,X(-4:-1,8)

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

DATA STATEMENT
The DATA statement is provided to allow compile-time initialization of program variables. All
variables are initialized to 0 if not specified in a DAT A statement or a <value-list> in an explicit
type statement. The proper form of the DAT A statement follows:

---~A

-----------B
--------------! --''--ir-------------------------,..----c - DAT.A -------- <array-name>

<array-element-name>

A

B

<DATA-implied-DO-loop>

<substring-name > ------1

< variable-name> -----

<nonzero-unsigned-int-constant > T •
<constant-name>

C ----,-<constant >-------- / ----~------------..-------'---------------i

1--<constant-name >--...... L , ---
G50301

<constant-name> is the symbolic name of a constant described in the PARAMETER statement. The
items concerning constants are described in section 4. Items concerning arrays, variables, and substrings
are described in section 5. <DATA-implied-DO-loop> s are described in the following subsection en
titled Variable Lists.

If a DAT A statement is used in a program unit, it must appear after all specification statements and
before the END statement in the program unit. The DAT A statement has effect only at compilation
time. Elements of a COMMON block can appear in DATA statements only in a BLOCK DATA sub
program or in a main program.

~

Variable Lists

A variable list in a DAT A statement consists of the following: <array-name> , <array-element
name >, <DATA-implied-DO-loop>, <substring-name>, and <variable-name>. Each element of
the variable list can occur only once. When an array name is written without a subscript, each element
of the array is initialized with an element of the initial value list in the order in which the array
elements are stored. Refer to appendix D for more details.

Each substring expression in the variable list must be an integer constant expression. Each subscript
expression in the variable list must be an integer constant expression except for implied-DO variables
that can appear within the expression.

Example of a variable list:

K, M, A(3), B(2,4, 11), ((X(J ,1),1=l,J),J=1,5)

1152113 6-7

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

DATA Implied-DO Loop

A DATA implied-DO loop is used to specify the elements of an array which are to be initialized. Giv
ing an array name without an implied-DO loop specifies that every element of the array is to be initial
ized. A DATA implied-DO loop has the following form:

- (<DO-list>, <DO-variable>= <initial>, <terminal>---.--- ,<incremental> _J----)

G50302

The range of the implied-DO loop is the list <DO-list>. In the diagram, <DO-list> is a list of array
elements, and/or DATA implied-DO loops separated by commas. The <DO-variable> to the left of
the equal sign is described under the DO statement in section 7. The <initial> , <terminal> , and
<incremental> parameters are any integer constant expressions or integer expressions with this im
plied-DO loop within their range. The parameters and <DO-variable> in the implied-DO are handled
in the same manner as a DO loop. Refer to section 7 for additional information.

The iteration count (section 7) must be positive. With each iteration of the implied-DO, each item in
the <DO-list> is assigned a value from the initial value list (refer to following subsection), and any
list items accessing the <DO-variable> (a parameter in another implied-DO within the range of the
outer implied-DO, or an array containing the <DO-variable> as a subscript) are assigned the new
value of the <DO-variable> .

An example of DATA implied-DO loops within DAT A statements follows:

DIMENSION A(20}, B(6), C(l2, - 4: 10), D(lOO), E(2,2)
CHARACTER * 5 F(6)
DATA (A(I),I=4,15)/12 * 1.5/
DATA (B(J),(C(J ,I),I = - 4,J ,2), D(J),J = 1,6),E/43 * 1.0/
DATA (F(l)(2:4),I = 1,3)/3 * 'ABC' I

In this example, the first DAT A statement initializes elements 4 through 15 of array A to 1. 5. The
second DATA statement initializes all six elements of array B to 1.0; elements (1, - 4), (1, - 2), (1,0),
(2, -4), (2, - 2), (2,0), (2,2), (3, -4), (3, - 2), (3,0), (3,2), (4, -4), (4, -2), (4,0), (4,2), (4,49), (5, -4),
(5, - 2), (5,0), (5,2), (5,4), (6, - 4), (6, - 2), (6,0), (6,2), (6,4), and (6,6) of array C to 1.0, the first six
elements of array D to 1.0, and all of array E to 1.0. The third DATA statement initializes character
positions 2 through 4 of the first three elements of array F to 'ABC'.

Each element of an array must only be initialized once in a DAT A statement in an executable program.
A <DO-variable> in a DAT A implied-DO loop does not affect the value of a program variable with
the same name.

Initial Value Lists

The constant values contained within the slashes comprise the initial value list of the DAT A statement.
The values in the list consist of numeric constants and strings.

Repeat Counts

The constants can optionally be preceded by a repeat count of the form n*, where n is an unsigned
nonzero integer constant, or constant name defined in a PARAMETER statement. This repeat count
indicates the number of times the immediately following constant is to be used for assignment.

6-8

Data Assignment

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Constant values in the initial value list are assigned to elements of the variable list in the order of
occurrence. For example, the following DATA statement initializes the variables A and B to the values
2 and 3, respectively, and initializes C and D to 4.

DATA A,B/2,3/,C,D/2*4/

All elements of the variable list must be matched to the constants in the initial value list, and all con
stants must be used; the number of items in the variable list to be initialized must equal the number
of items in the initial value list. A repeat count (n*) counts for n occurrences of the immediately suc
ceeding entry in the initial value list. An implied-DO has a similar effect on an item in the variable
list. If an entire array is specified in the variable list, but there are not enough constants to completely
initialize it, an error is given.

Character Strings

The initial value list can contain strings of up to 255 characters. Character constants (refer to Character
Constants in section 4) in DATA statements initialize character variables, character substrings, charac
ter arrays, or character array elements. Numeric-typed variables must not be assigned character values,
and character entities must never be assigned numeric values unless the values are hexadecimal. If the
length of the string is less than the length of the character entity to which the string is being assigned,
the string is assigned left-justified with blanks filled in to character storage locations that are unas
signed. If the value being assigned is greater than the length of the character entity to which it is being
assigned, excess characters in the value are truncated from the right.

Examples of valid DATA statements involving CHARACTER entities follow:

CHARACTER *4 X, Y, Z(-17:4) *2
DATA X, B, C, Y, Z/'ABCD', 2*4.3, 'EGH', 20*'IT',2*ZC1C3/

In this example, X is initialized to the value 'ABCD', Y to the value 'EGH ', and the first 20 elements
of array Z to the value 'IT'. The final two elements of Z are initialized to the value 'AC'.

If a long string is being assigned to an array, excess characters in the string after assignment to the
first element of the array are not assigned to the next element of the array. One string can only be
assigned to one variable unless there is a repeat count preceding the string.

Hexadecimal Initialization

Hexadecimal (hex) constants (refer to Hexadecimal Constants in section 4) can be used to initialize ei
ther numeric or character variables, arrays, array elements, or substrings. The exact value represented
in the hex string is assigned, without conversion or regard to type, to the entity in the variable list.
When a hex value is assigned to a numeric entity (COMPLEX, DOUBLE PRECISION, INTEGER,
LOGICAL, REAL), if the hex value is too small, it is filled on the left with zeroes until it fills the
entity. If the hex value is too large to completely fit in the variable item (more than eight hex digits,
or more than 16 for DOUBLE PRECISION), truncation is performed from the left (most significant
digits) until the value can fit into the variable.

Hex constants which are assigned to character entities must exactly fit the character entity; for each
character in the character entity (variable, array element, substring) there must be two hex digits in
the hex string being assigned.

1152113 6-9

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Conversion During Assignment

Table 6-1 indicates the type conversion to be performed on a constant appearing in an initial value
list when assigned as the initial value of a variable.

The CMPLX, DBLE, INT, and REAL functions have the same effect as the CMPLX, DBLE, INT,
and REAL intrinsic functions. Refer to section 13 for more information about these intrinsic functions.

Table 6-1. DAT A Statement Type Conversions

Variable Type

Constant
Type INTEGER REAL DOUBLE LOGICAL CHARACTER

INTEGER None REAL DBLE Invalid Invalid
REAL INT None DBLE Invalid Invalid
DOUBLE INT REAL None Invalid Invalid
LOGICAL Invalid Invalid Invalid None Invalid
CHARACTER Invalid Invalid Invalid Invalid None
COMPLEX INT REAL DBLE Invalid Invalid
Hex None None None None None

The following notation is used in table 6-1.

6-10

Table

None
Invalid
CMPLX

DBLE
INT
REAL

Meaning

No conversion.
Invalid combination resulting in a syntax error.
Perfor·m REAL and assign to real portion; assign
0. to imaginary portion.
Convert to DOUBLE PRECISION.
Truncate.
Convert to REAL.

COMPLEX

CMPLX
CMPLX
CMPLX
Invalid
Invalid
None
None

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

DIMIENSION STATEMENT
The DIMENSION statement specifies the size and number of dimensions of a program array. The fol
lowing is the proper form of the DIMENSION statement:

I
<

------ DIMENSION ___ ___.__---<array-declarator> __ ____._ _____________ --!

G50303

< array-declarator> is described in section 5. Each array referenced in a program unit must have the
array bounds specified exactly once in that program unit. This specification can be accomplished by
means of a DIMENSION, explicit-type, or COMMON statement.

For an array which is not a dummy argument, an array declaration specifies exactly the amount of
internal storage to be allocated to the array and the number of subscripts an element of that array
must have. Ref er to ARRAYS in section 5 for additional information.

Only an array declaration appearing in a subprogram can have dimensions which are variables. The
array name and the variable names appearing in the array declaration must appear in a dummy argu
ment list within the subprogram. Refer to section 13 for more information on dummy arguments.

Examples of DIMENSION statements follow:

DIMENSION A(-12: 10),B(3,3)
DIMENSION C(N,4:J)
DIMENSION D(l3, *)

Arrays C and D in the example are dummy arrays.

EQUIVALENCE STATEMENT

The EQUIVALENCE statement allows the user to assign a number of program data items to a single
unit o:f internal storage. Thus, more than one symbolic name can refer to one storage location. The
following is the proper form of the EQUIV ALEN CE statement:

---EQUIVALENCE

G50304

11521ll3

r (--======-<--ar-ra-y-e:em_e_n_t_> ______ l
<array-name> -----1

< substring>

<variable-name>-------'

6-11

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Each data item grouping in the EQUIVALENCE statement is enclosed in parentheses. Each such
grouping is assigned storage locations to share. The subscripts of array elements in the list must be
integer constants, symbolic names of integer constants, or integer constant expressions and must corre
spond in number to the number of dimensions declared for the array. Two elements of the same array
cannot be equivalenced. Thus, EQUIVALENCE (A(3),B), (A(6),B) is invalid.

No dummy argument or subprogram name can appear in an EQUIV ALEN CE statement. A list item
of type CHARACTER must only be associated with other items of type CHARACTER.

Single Storage Locations - Numeric

The least complicated use of the EQUIVALENCE statement involves the assignment of data items re
quiring a single word (REAL, INTEGER, LOGICAL) of storage to mutual storage location.

As an example, assume that the following statements are the first statements of an executable program:

INTEGER A, AR(2)
LOGICAL L,AL
EQUIVALENCE (A, AR(2), B2), (AL,L)

The EQUIVALENCE statement causes the INTEGER variable A, the INTEGER array element AR(2),
and the REAL variable B2 to be assigned to one data word. The first element of AR is not affected
by this specification statement. A change in the value of any one of the three equivalenced items pro
duces a simultaneous change in the value of the other two items; however, only variables of the same
type contain equivalent changes, and variables of different types become undefined. In this example,
if INTEGER variable A is assigned a value, INTEGER array element AR(2) is assigned the same value,
and REAL variable B2 becomes undefined.

The EQUIVALENCE statement also causes the LOGICAL variables AL and L to be assigned to the
same data word. As the variable L changes value, AL also changes value. For example, the following
assignment statement places the logical value TRUE into variable AL.

L = .TRUE.

Multiple Storage Locations - Numeric

EQUIVALENCE statements can also involve data items requiring more than one word of storage. As
an example, assume that the following statements are the first statements of a program:

DOUBLE PRECISION D
REAL A(2)
EQUIVALENCE (A(l), D, B)

This EQUIVALENCE statement causes the REAL array A, the DOUBLE PRECISION variable D,
and the REAL variable B to be assigned to identical data words. As A and D both require two data
words, the first and second elements of A become equivalent to the first and second words, respective
ly, of the storage unit assigned to D. The variable B requires only one data word and is assigned to
the same location as A(l) and the first word of D. If D was declared as COMPLEX, the preceding
EQUIVALENCE statement would have the same effect.

6-12

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Array Handling - Numeric

The EQUIVALENCE statement can be used to assign a single group of contiguous storage locations
to a number of arrays. The following discussion illustrates the effect of the appearance within an
EQUIVALENCE list of each of these two types of possible array references:

1. An array name.
2. An array element with the same number of subscripts as contained in the declaration declaring

the array.

Assume that the following statements are the first statements of a program unit.

REAL A(4), B(lO, 10), C(lOO), D(50), E(3, 3), F(50)
DOUBLE PRECISION DP(2)
EQUIVALENCE (A,DP(l)), (B(l,l),C(l)),(D,F(26), E(2,l))

The first list in the above EQUIVALENCE statement ((A,DP(l))) causes the REAL array A and the
DOUBLE PRECISION array DP to share four storage words. The first two elements of A (A(l) and
A(2)) become equivalent to the two words of the first element of DP (DP(l)), and the last two elements
of A l(A(3) and A(4)) become equivalent to the two words of the last element of DP (DP(2)). The
appearance of array names only in an EQUIVALENCE list causes equivalencing to begin with the first
element of each array. The second list in the sample EQUIVALENCE statement ((B(l,l),C(l))) causes
the REAL arrays B and C to share 100 storage words. Each element in the 100-element array C (begin
ning with C(l)) is assigned to the same storage location as a unique element of B. The elements of
the 2-dimensional array are stored internally in a column-wise fashion (refer to appendix D). The inter
nal storage locations assigned to C occur in the same order as the elements of array B. Hence, each
C(I) is equivalenced to the I-th internal element of B. If the following two WRITE statements occur
in the same program unit, identical output is produced:

WRITE (6, lO)(C(I),I= 1,100)
WRITE (6,10) B

The final list in the sample EQUIVALENCE statement, (D,F(26),E(2, 1)), indicates that the elements
of the arrays D, F, and E are to be equivalenced in such a manner that D(l), F(26), and the second
internal element of the 2-dimensional array E are to be assigned identical internal locations. The last
25 elements of F, F(26) through F(50), become equivalent to the first 25 elements of D, D(l) through
D(25). Since E is stored internally in the manner described in the explanation of arrays in this section,
equivalencing is handled in the manner illustrated in the following diagram. Each of the lines denotes
a single storage location, and the array element(s) on a line is assigned to the corresponding location.

1152113 6-13

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

F(I)
through

F(25) E(I. I)

0(I) F(26) E(2. I)

0(2) F(27) E(3. I)

0(3) F(28) E(1.2)

0(4) F(29) E(2.2)

0(5) F(30) E(3.2)

0(6) F(3 I) E(l.3)

0(7) F(32) E(2,3)

0(8) F(33) E(3,3)

0(9) F(34)
through through
0(25) F(50)

0(26)
through
0(50)

The following DATA statement initializes the elements E(l ,2), E(2,2), F(28), F(29), D(3), and D(4) with
the value 6.

DATA E(l ,2), E(2,2) I 2*61

Character Association

Character storage locations can be associated with more than one character variable, character array,
or character substring due to an equivalence relation.

A character array can be viewed as a contiguous sequence of n character storage locations, where n
is the number of elements in the character array multiplied by the length of an element.

An example of an EQUIVALENCE statement with CHARACTER arguments follows:

CHARACTER * 5 A, B(2) * 2
EQUIVALENCE (A(3:4), B(l))

In this example, character locations 3 and 4 in A share the same storage locations as B(l). The fifth
character storage location in A (A(5:5)) is the same as the storage location for B(2)(1: 1).

Interaction with Common Storage

The EQUIVALENCE statement can be used to associate additional elements with a COMMON block.
This can extend the block beyond its former terminal point, increasing the size of the block. It is possi
ble to EQUIVALENCE the beginning of an item representing more than one storage location (such
as an array) to an element of the COMMON block, resulting in the addition of storage locations at
the end of the block. The following example illustrates the manner in which a COMMON block can
be extended by the EQUIVALENCE statement.

6-14

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

Assume that the following statements form two units of an executable program:

c

FUNCTION SUM(N)
COMMON GR1/IT(3,3)
DO 1 I= 1,3
DO 1 J = 1,3

1 SUM=SUM+IT(l,J)
SUM=SUM*N
RETURN
END

LOGICAL FUNCTION TEST(L)
LOGICAL X(6)
COMMON GR1/K(9)
EQUIVALENCE (K(6),X)
DO 1 I= 1,9

1 S=S+K(I)
TEST= S.EQ.L.AND.X(l).AND.X(6)

C ELSE TEST IS .FALSE.
RETURN
END

The COMMON block referenced by these two sample program units is labeled GRl. The function
SUM accesses the first nine locations of this block through the 2-dimensional INTEGER array IT. The
function TEST accesses the first nine locations of the block using the INTEGER array K. In addition,
the following two locations of the GRl block are referenced as the LOGICAL array elements X(5)
and X(6), since the X array is equivalenced to the K array starting at the element K(6).

The elc~ments of the array K occur in the same order as the contiguous storage locations assigned to
the array IT but allow these locations to be referenced using only one subscript. Equivalenced portions
of the X and K arrays allow various elements of K to be handled as both INTEGER and LOGICAL
type items.

COMMON blocks cannot be extended backwards by the EQUIVALENCE statement. The following
combination of statements is invalid:

LOGICAL X(6)
COMMON/GRl/K (9)
EQUIV ALEN CE (X(3),K)

Two elements of COMMON storage cannot be made equivalent to each other, either directly or indi
rectly, by an EQUIV ALEN CE statement.

A local variable equivalenced to a COMMON variable becomes a part of the COMMON block for
that program unit. This_ variable cannot be initialized in a DAT A statement or an explicit type state
ment in the program unit because it is in COMMON storage. It cannot be initialized in a BLOCK
DA TA subprogram because it is not explicitly named in a COMMON statement in that program unit.

1152113 6-15

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

EXTERNAL STATEMENT

The EXTERNAL statement is used to identify a subprogram name as representing an external proce
dure and to specify to the compiler binding information relating to the subprogram. The proper form
of the EXTERNAL statement follows:

I
r<

--- EXTE ANAL ___ ..__ ---<subprogram-name> ----L-------------------1

G50306

The EXTERNAL statement has two basic purposes: 1) to identify subprogram names to be passed as
actual parameters in a subprogram invocation, and 2) to override intrinsic function selection in a pro
gram unit.

Subprograms as Actual Parameters

When a subprogram name is used as an actual parameter, it must appear in an EXTERNAL statement.
The invocation of the subprogram associates the dummy subprogram name in the dummy parameter
list with the actual subprogram name. A call to the dummy subprogram is a call to the subprogram
named in the actual parameter list.

Example:

EXTERNAL A
CALL B(A)

SUBROUTINE C(D)
100 CALL D

In this example, the CALL in subprogram C of subprogram D is actually a CALL to subprogram A.
When line 100 is executed, control passes to subprogram A. A subprogram in an actual parameter list
can also be the name of a dummy subprogram in the calling program unit. A block data subprogram
must never appear in the actual parameter list of a subprogram reference.

User-defined Intrinsic Functions

Intrinsic function selection can be overridden through use of the EXTERNAL statement. User func
tions can replace intrinsic functions for a program unit by specifying the user defined function in an
EXTERNAL statement. The user-defined function with the same name as the default intrinsic function
is substituted during the subprogram unit in which the EXTERNAL statement containing the user-de
fined subprogram name occurred. A user could, for example, write a SIN function that is different
from the SIN intrinsic function normally used. If the user only wanted to use the new SIN function
in certain cases, an EXTERNAL statement could be used in each subprogram where the new SIN func
tion is desired.

6-16

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

An example of the EXTERNAL statement used to override intrinsic functions follows:

SUBROUTINE A(X,Y)
EXTERNAL SIN, COS

100 X = SIN(Y) + COS(Y)

SUBROUTINE B(X,Y)
X = SIN(Y) + COS(Y)

REAL FUNCTION SIN(A)

REAL FUNCTION COS(B)

The subprograms specified in the EXTERNAL statement are searched for in the intermediate code
files. Refer to Intermediate Code Modules in section 14. In the previous example,· subprogram A uses
the SIN and COS functions contained within the user program while subprogram B binds in the SIN
and COS functions in the intrinsic function file and references them.

IMPLICIT STATEMENT

The IMPLICIT statement allows the default type assigned to a variable, due to the initial character,
to be altered.

The following is the proper form of the IMPLICIT statement:

-IMPLICIT........__...-1 NTEGE R --------~ (L <letter> -..---------..---1-

R EAL ·--------~ l -<letter >_J

DOUBLE PRECISION-----•

COMPLEX---------

LOGICAL---------

CHARACTER -----------

* <length>

G50307

<length> is an integer constant or integer constant expression in parentheses and is the length of the
character entity that assumes a default type of CHARACTER when it begins with one of the letters
specified in the IMPLICIT statement. <letter> is a letter of the alphabet.

1152113 6-17

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

A program unit can contain one or more IMPLICIT statements. No letter can appear in more than
one IMPLICIT statement in a program unit. If used, IMPLICIT statements must appear before any
other statements except FILE statements (in the main program), Compiler Control Images, comments,
FUNCTION statements, SUBROUTINE statements, and optionally, PARAMETER statements. The
letters used as the first letter of a symbolic constant in a PARAMETER statement preceding the IMP
LICIT statement(s) must not appear in an IMPLICIT statement in that program unit. The IMPLICIT
statement applies only to symbolic names in the program unit in which the statement appears, including
function and dummy arguments.

Symbolic names, whose initial character lies between or is the same as one of the indicated letters,
are to be of the specified type. Each element of the list can be one or two letters separated by a hy
phen. If the element is a letter, a name must begin with that letter to be assigned the specified default
type. If the element is a hyphenated letter pair, the letter pair indicates a range of initial characters
with which the default type is associated. The second letter in a hyphenated pair must be greater in
the collating sequence than the first letter.

Examples of valid IMPLICIT statements follow:

IMPLICIT REAL (I-N)
IMPLICIT CHARACTER * IO (A - Z)
IMPLICIT DOUBLE PRECISION (D)
IMPLICIT LOGICAL (A- C,L), REAL(D- F), COMPLEX(X)

An IMPLICIT statement, occurring in a function subprogram, applies to the name of the function,
any entry names, and all other symbolic names in the function subprogram, unless an explicit type
is specified in an EXPLICIT type statement or in the FUNCTION statement.

IMPLICIT ranges that overlap (for example, REAL (A-K) INTEGER (1-M)) generate an error mes
sage. The first specification is used to determine the variable type.

INTRINSIC STATEMENT

The INTRINSIC statement permits the specific name of an intrinsic function to be used as an actual
argument. If the specific name of an intrinsic function is used as an actual parameter, it must appear
in an INTRINSIC statement.

The proper form of the INTRINSIC statement follows:

------- 1NTR1 NSI c--~r ___ <intrinsic-function-name> _____ _,___ ____ _

G50308

<intrinsic-function-name> is the name of an intrinsic function in the F77INTRIN file. The intrinsic
functions MAXO, AMAXI, DMAXI, AMAXO, MAXI, MIN, MINO, AMINI, DMINI, AMINO, and
MIN I cannot be used as actual arguments (however, this does not preclude usage in an expression that
is an actual argument).

An example of the INTRINSIC statement follows:

INTRINSIC DCOS, NINT

6-18

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

PARAMETER STATEMENT

A PARAMETER statement is used to assign a symbolic name to a constant. The following is the prop
er form of the PARAMETER statement:

I
<

-------PARAMETER -(~----<const-name > = <const-expr >--__,_-)--------
G50309

< const-name > is the symbolic name of a constant that becomes defined with the value determined
from < const-exp > , an expression involving only constants and other symbolic names of constants as
operands, in accordance with the rules for assignment statements as shown in table 6-1. If the constant
name ils of type INTEGER, REAL, DOUBLE PRECISION, or COMPLEX, the corresponding con
stant expression must be an arithmetic constant expression. If the constant name is of type CHARAC
TER or LOGICAL, the corresponding constant expression must be a character constant expression or
a logical constant expression, respectively.

Any symbolic name of a constant that appears in a constant expression must have been defined previ
ously in the same or a different PARAMETER statement in the same program unit.

If a symbolic name of a constant is not of default implied type, the type must be specified by an explic
it type statement or IMPLICIT statement prior to the first appearance in a PARAMETER statement.

Once such a symbolic name is defined, the name can appear in that program unit in any subsequent
statem(~nt as a constant in an expression or in a DAT A statement. A symbolic name of a constant
must not be part of a format specification. A symbolic name of a constant must not be used to form
part of another constant.

An example of a PARAMETER statement follows:

PARAMETER (I = 10)

EXAMPL= 1.0

A symbolic name of a constant must not be given a value more than once in a program unit. A sym
bolic name in a PARAMETER statement can identify only the corresponding constant in that program
unit.

Examples of the PARAMETER statement follow:

CHARACTER *3 A
LOGICAL L
PARAMETER (A="ABC", X=l.414, I=l)
PARAMETER (L=l.GT.2, Y= 14.051)

Z==X+ Y-12.3

115211.3 6-19

B 1000 Systems FORTRAN 77 Language Manual
Specification Statements

SAVE STATEMENT

The SA VE statement is used to retain a variable and its value after the execution of a RETURN or
END statement in a subprogram. The form of the SAVE statement follows:

I<
---------SAVE----- <variable>------'-------------------

G50310

<variable> is a named COMMON block name preceded and followed by a slash, a variable name,
or an array name. Redundant appearances of an item are not permitted. Dummy argument names,
procedure names, and names of entities in a COMMON block must not appear in a SA VE statement.

Within a function or subroutine subprogram, an entity specified by a SA VE statement does not become
undefined as a result of the execution of a RETURN or END statement in the subprogram. However,
such an entity in a COMMON block can become undefined or redefined in another program unit.

A SA VE statement in a main program is optional and has no effect on program execution.

A SA VE statement without a list is treated as though it contained the names of all allowable items
in that program unit.

The appearance of a COMMON block name preceded and followed by a slash (/) character in a SA VE
statement has the effect of specifying all of the entities in that COMMON block.

If a particular COMMON block name is specified by a SA VE statement in a subprogram of an execut
able program, it must be specified by a SA VE statement in every subprogram in which that COMMON
block appears.

If a named COMMON block is specified in a SA VE statement within a subprogram, the current values
of the entities in the COMMON block at the time a RETURN or END statement is executed are made
available to the next program unit that specifies that COMMON block name at execution time.

If a named COMMON block is specified in the main program unit, the current values in the COM
MON block are made available to each subprogram that specifies that named common block. A SAVE
statement in the subprogram that specifies this named COMMON block has no effect on program
execution.

If a local entity, specified by a SAVE statement and not in a COMMON block, exists at the time a
RETURN or END statement is executed in a subprogram, that entity is defined with the same value
at the next reference of that subprogram.

The execution of a RETURN statement or an END statement within a subprogram causes all entities
within the subprogram to become undefined except for the following:

6-20

1. Entities specified by SA VE statements.
2. Entities in blank COMMON.
3. Initially defined entities that have neither been redefined nor become undefined.
4. Entities in a named COMMON block which appears in the subprogram and appears in at least

one other program unit that references that subprogram either directly or indirectly.

B 1000 Systems FORTRAN 77 Language Manual

SECTION 7

EXPRESSIONS

The manner in which expressions are constructed and the general features of the statements that form
the basis of the FORTRAN 77 language are described in this section.

GENERAL

The purpose of expressions is to specify equation-oriented rules whereby a unique data value can be
obtained as a result of operations performed on other data values.

An exjpression is any valid constant, variable, function reference, or any combination of these items
separated by appropriate operators and parentheses. The expression represents the value obtained when
the indicated operations are performed on the indicated values.

Expressions are divided into three basic types: arithmetic, character, and logical.

OPERATORS

The operators which can be employed by a FORTRAN 77 expression are listed in table 7-1. The
relativ1~ precedence assigned to each operator by the compiler is shown. The highest relative precedence
is eight.

The presence of these operators in an expression indicates that an arithmetic, character, or logical oper
ation or a relational comparison is to be performed. Operations of equal precedence are performed
from left to right, except exponentiation which is carried out from right to left. The unary + operator
is ignored. Parentheses can be used to override operator precedence. A character expression (an expres
sion which returns a character value) must not contain any arithmetic operators. Likewise, an arithme
tic expression (an expression which returns a numeric value) must not contain any character operators.

Table 7-1. Operators Used in FORTRAN 77 Expressions

Relative Function
Operator Type Precedence Represented

** Arithmetic 8 Exponentiation
(Unary) Arithmetic 7 Change of sign

I Arithmetic 6 Division
* Arithmetic 6 Multiplication

Arithmetic 5 Subtraction
+ Arithmetic 5 Addition
II Character 5 Concatenation

.NE. Relational 4 Not equal to

.GE. Relational 4 Greater than or
equal to

.GT. Relational 4 Greater than

.EQ. Relational 4 Equal to
.LE. Relational 4 Less than or

equal to
.LT. Relational 4 Less than

1152113 7-1

B 1000 Systems FORTRAN 77 Language Manual
Expressions

Table 7-1. Operators Used in FORTRAN 77 Expressions
(continued)

Operator
.NOT.
.AND.
.OR.

.EQV.
.NEQV.

Type
Logical
Logical
Logical
Logical
Logical

Relative
Precedence

3
2
1
0
0

Function
Represented

Logical negation
Logical conjunction
Logical disjunction
Logical equivalent
Logical nonequivalent

ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numeric value.

An arithmetic expression can contain only arithmetic operators and numeric constants, symbolic names
of constants, variables, array elements, function references, and arithmetic expressions in parentheses.
Logical or character operands of any type are not permissible in arithmetic expressions. In general,
mixed arithmetic operand types are permissible.

Immediately adjacent operators are not permissible and parentheses must be used to avoid adjacent
operators (for example, A* *(-2)).

Expression Types

The types of operands in an arithmetic expression determine the type of the value obtained from the
evaluation of the expression. When a COMPLEX value is combined with any other type of value in
an operation, the result is of COMPLEX type. If none of the operands in an arithmetic operation
are COMPLEX and at least one is DOUBLE PRECISION, the result is of DOUBLE PRECISION
type. If none of the operands in an arithmetic operation are COMPLEX or DOUBLE PRECISION
and at least one of them is REAL, the result is of REAL type. Only if all of the operands in an arith
metic operation are INTEGER, is the result of type INTEGER. Tables 7-2 and 7-3 illustrate the result
ant types of arithmetic operations depending upon the types of operands and the operator involved.
DOUBLE indicates DOUBLE PRECISION type.

For the operators + , - , *, and I, the result of the operation is of the following type:

Table 7-2. Resultant Types of Arithmetic Operations

Type of Type of Second Operand
First

Operand INTEGER REAL DOUBLE COMPLEX

INTEGER INTEGER REAL DOUBLE COMPLEX
REAL REAL REAL DOUBLE COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE COMPLEX
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

7-2

B 1000 Systems FORTRAN 77 Language Manual
Expressions

For exponentiation (**), the result of the operation is of the following type:

Table 7-3. Resultant Types for Exponentiation

Type of Exponent
Type of

Base INTEGER REAL DOUBLE COMPLEX

INTEGER INTEGER REAL DOUBLE COMPLEX
REAL REAL REAL DOUBLE COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE Prohibited
COMPLEX COMPLEX COMPLEX Prohibited COMPLEX

In the case of a divide operation involving two integer operands, the result is an integer value. Thus,
the expression 3/2 represents the value 1 and the expression 3.0/2 represents the value 1.5.

Examples of valid arithmetic expressions follow (all variables are nonlogical, noncharacter):

6
1+6
SIN(3.14159*(-A)+2)
BID(M(l),N(2))
-B*A
A+(-P)
6**X

CHARACTER EXPRESSIONS

A character expression returns a character value of variable length. If a character expression is used
in an assignment statement, the resultant value must be assigned to a character variable, character sub
string, character array element, character array element substring, or character function currently being
defined. The operands in the expression can be character constants, symbolic names of character con
stants, variables, substrings, array elements, array element substrings, function references, or other
character expressions. The operator used for combining operands in a character expression is conca
tenation (//).A character expression must not involve concatenation of an operand whose length specifi
cation :is an asterisk in parentheses, unless the operand is the symbolic name of a constant. The value
returned by the character expression has the total length of all the operands involved in the expression.

115211:3 7-3

B 1000 Systems FORTRAN 77 Language Manual
Expressions

Examples of valid character expressions follow:

'DEFGHIJKLM'

D

x II 'ABCD'

Y II Z II A(2:3) II 'X'

F II FUN(A,B,C)

Simplest form. The expression length
equals 10.

Expression length is the length of
variable D.

Expression length equals the length of
X plus 4.

Expression length equals the length of
Y plus the length of Z plus 2 plus 1.

FUN is a function call (or character
array element). The expression length
equals the length of F plus the length
of the value returned by the function
FUN.

Each variable and function in the above expressions must be of type CHARACTER. For more infor
mation on character assignment, refer to section 8.

LOGICAL EXPRESSIONS

The value TRUE or FALSE is returned by logical expressions. The operands in a logical expression
consist of the following:

1. Logical constant.
2. Symbolic name of a logical constant.
3. Logical variable name.
4. Logical array element reference.
5. Logical function reference.
6. Relational expression.
7. Logical expression in parentheses.

If a logical expression is used in an assignment statement, the result must only be assigned to a logical
variable, logical array element, or logical function currently being defined.

Logical Operators

The .NOT. operator expresses logical negation. It changes the value of a logical operand to its comple
ment. For example, if A is TRUE, the value of .NOT .A is FALSE.

The .AND. operator produces the logical product of two logical expressions. The operation A.AND.B
is TRUE if both A and B are TRUE; the operation is FALSE if either A or B or both are FALSE.

The .OR. operator produces the logical sum of two logical expressions. The operation A.OR.B is
TRUE if either A or B or both are TRUE; the operation is FALSE if both A and B are FALSE.

The .EQV. operator returns the value TRUE when both operands have the same value (are equivalent)
and returns the value FALSE when the operands have different values. For example, if A and B are
both FALSE, or if A and B are both TRUE, the operation A.EQV .B is TRUE; if A and B have differ
ent values, the operation is FALSE.

7-4

B 1000 Systems FORTRAN 77 Language Manual
Expressions

The .NEQV. operator is opposite the .EQV. operator and returns the value TRUE only when the two
operands have different values (are not equivalent).

Table 7-4 summarizes the the preceding explanation of the logical operators.

Table 7-4. Logical Expression Constructs

A B .NOT.A .NOT.B A.AND.B A.OR.B A.EQV.B A.NEQV.B

T T F F T T T F
T F F T F T F T
F T T F F T F T
F F T T F F T F

Examples of logical expressions follow (variables A, B, C, and array L are of type LOGICAL):

A
A.OR.L(3)
A.OR.B.AND.C (A.OR.B).ANQ.C (equivalent expressions)
A.EQV.L(l).NEQV.L(2).0R .. NOT.C

Relatiional Expressions

Relational expressions provide the capability to compare numeric or character values and return the
value TRUE or FALSE depending on the result of the comparison. A relational expression must only
appear in a logical expression. Except when used in a relational expression, numeric or character ex
pressions cannot appear in a logical expression.

When numeric or character operands are used in a relational expression, numeric operands must be
compared with numeric operands and character operands must be compared with character operands.
Character operands in relational expressions are compared lexically. Each character storage location is
compared with the corresponding character storage location in the other half of the relational expres
sion according to the relative location in the EBCDIC collating sequence. In this sequence, A is less
than Z, Z is less than 0, and 0 is less than 9.

Parentheses can be used to override operator precedence.

Examples of logical expressions involving relational expressions follow (B is LOGICAL):

A.GT.(F + G).OR.B
C.LE.I-J
(6*K).L T .(4-T)
'HENRY' .EQV. 'FRED'

1152113 7-5

B 1000 Systems FORTRAN 77 Language Manual

SECTION 8
ASSIGNMENT STATEMENTS

Assignment statements allow arithmetic, logical, character, or label values to be assigned to program
variables. The two proper forms of the assignment statement follow:

---· <variable > = <expression >

----ASSIGN <statement-label> TO <integer-variable>-------

In the first form, <variable> is a variable name as described in section 5. <variable> can be a simple
variable name, array element name, or character substring (in a character assignment statement only).
<expression> determines the type of assignment to be made. <expression> can be numeric, in which
case the <variable> must be of numeric type (REAL, INTEGER, DOUBLE PRECISION, or COM
PLEX); <expression> can be logical, in which case <variable> must be of type LOGICAL; <ex
pression> can be a character expression, in which case the <variable> must be of type CHARAC
TER.

In the second form, <statement-label> must be the label of a statement that appears in the same pro
gram unit as the ASSIGN statement. <statement-label> must be the label of an executable statement
or a FORMAT statement.

ARITHMETIC ASSIGNMENT STATEMENT

An arhhmetic assignment statement involves an arithmetic expression which returns a numeric value
that is assigned to a numeric variable or array element. When such a statement is executed, the arithme
tic expression is evaluated and the value obtained is placed into the storage word or word pair allocated
to the variable or array element.

1152113 8-1

B 1000 Systems FORTRAN 77 Language Manual
Assignment Statements

The variable and the arithmetic expression need not be of the same type. If the types are different,
the expression is first evaluated and automatic conversion is subsequently performed on the value ob
tained to agree with the type of variable to be assigned the value. This automatic conversion proceeds
according to the rules indicated in table 8-1.

Table 8-1. Type Conversions in Assignment Statements

Type of Expression

Type of Double
Variable Integer Real Precision Complex

INTEGER None INT INT INT

REAL REAL None REAL REAL

DOUBLE DBLE DBLE None DBLE
PRECISION

COMPLEX CMPLX CMPLX CMPLX CMPLX

The following notation is used in this table:

Meaning

No conversion.

Word

None
CMPLX Perform REAL and assign to real portion; assign

0. to imaginary.
DBLE
INT
REAL

Convert to DOUBLE PRECISION.
Round to nearest integer.
Convert to REAL.

The CMPLX, DBLE, INT, and REAL functions have the same effect as the CMPLX, DBLE, INT,
and REAL intrinsic functions. Refer to section 13 for more information about these intrinsic functions.

The means of determining the type of an expression is given in tables 7-2 and 7-3. The internal storage
formats of the various data types are described in appendix D.

Examples of valid arithmetic expressions follow:

O(IROW + 2, - 4) = IROW - K(- 137 ,0)
N = I+2+B/3.7
L = 2.6 + (112.3)

LOGICAL ASSIGNMENT STATEMENT

A logical assignment statement involves a logical expression (ref er to Logical Expressions in section
7) which is assigned to a variable or array element of type LOGICAL. When such a statement is
executed, the logical expression is evaluated, and the logical value is placed into the storage word allo
cated to the logical variable.

8-2

B 1000 Systems FORTRAN 77 Language Manual
Assignment Statements

Examples of valid logical assignment statements follow:

L=.TRUE.
LOGIC(2,4) = LOGIC(l,l).AND.L(l,2)
L = G .GT .H.EQV .. NOT .B.EQ .C
L ='FORT' .LE.'RAN'

CHARACTER ASSIGNMENT STATEMENT

A character assignment statement involves a character expression which returns a character value. This
value ils assigned to a variable, substring, or array element of type CHARACTER. When the character
value returned is not of the same size as the variable to which it is to be assigned, padding or trunca
tion occurs. If the value returned by the character expression is larger than the character variable to
the left of the equal sign, characters in the returned value are truncated from the right until the value
is the same size as the variable that is to receive it. If the value is smaller than the variable, the value
is assigned left-justified to the variable and any unassigned character storage locations in the variable
are padded with blanks.

Examples of valid character assignment statements follow:

CHARACTER *3 A,B(- 2: 14),C*6
A='TG'
B(O)='LE' llA
B(-l)(l:l)='A'
c = A(2:2) 11 'O' 11 B(O) 11 B(-1)

ASSIGN STATEMENT

A contains 'TG '
B(O) contains 'LET'
B(- 1) contains 'A '
C contains 'GOLETA'

The ASSIGN statement stores the label of an executable statement in an integer variable. The syntax
of the ASSIGN statement follows.

----ASSIGN <statement-label> TO <integer-variable> ---

Execution of an ASSIGN statement causes <statement-label> to be stored in <integer-variable>.
<statement-label> must be the label of an executable statement or a FORMAT statement that appears
in the same program unit as the ASSIGN statement.

Execution of an ASSIGN statement is the only way to store a statement label value in a variable. A
variable must be defined with a statement label value when referenced in an assigned GO TO statement
(refer to section 9) or when referenced as a format identifier (refer to section 12) in an input/output
statement.

An integer variable defined with a statement label value can be redefined with the same or different
statement label value, or with an integer value. When defined with a statement label value, the variable
must not be referenced in any other way.

Example:

ASSIGN 250 TO LABEL
GO TO LABEL (150,250,350)

1152113 8-3

B 1000 Systems FORTRAN 77 Language Manual

SECTION 9

CONTROL STATEMENTS

The executable control statements are used to alter the normal flow of the program, terminate or sus
pend execution, or control iterative processes. Control can be transferred to labeled executable state
ments only. The control statements are described in the following paragraphs in the order listed:

CONTINUE statement
DO statement
E1'lD statement
GO TO statement
IF statement
ELSE IF statement
ELSE statement
END IF statement
PAUSE statement
STOP statement

CONTINUE STATEMENT

The executable CONTINUE statement has no effect on program execution. The following is the proper
form of the CONTINUE statement:

-----------CONTINUE --- --------------------

G50312

The CONTINUE statement is a dummy executable statement allowing the programmer to position a
label at any desired point within a program. This facilitates transfers to that point and allows the range
of a DO loop to be clearly delimited.

An example of two CONTINUE statements within a partial FORTRAN 77 program follows:

10

30

1152113

DO 10 I= 2,10,2
A(l)=I/M
WRITE (6,lOO)A(I)
IF (A(I)) 30, 10, 10

CONTINUE
M=-M
CONTINUE

9-1

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

DO STATEMENT
The DO statement is a control statement provided to alter the order of the execution of program state
ments. The DO statement allows a series of statements to be repeatedly executed while the value of
a specified program variable is varied between specified limits. The number of times a DO loop is
executed is dependent upon an iteration count. The following is the proper form of the DO statement:

-- DO <label ><DO-variable> = <initial > , <terminal > -------------.---------1

L <incremental > ---

G50313

<label> in the diagram is the statement label of the terminal statement of the DO loop. The
<initial> , <terminal> , and <incremental> parameters are any arithmetic expressions of type INTE
GER, REAL, or DOUBLE PRECISION. The <DO-variable> is an integer, real, or double-precision
variable which is assigned the value of the <initial> parameter upon execution of the DO statement.
The <incremental> parameter is added to the <DO-variable> after execution of the terminal state
ment of the DO loop. Assignments are made according to the rules established in section 8, ASSIGN
MENT ST A TEMENTS. If the <incremental> parameter is left out the value 1 is assumed. The < ter
minal> parameter is used in loop execution control to determine the number of times the DO loop
is executed. Loop execution control is described later in this section.

Range of a DO Loop

The range of a DO loop consists of all the executable statements following the DO statement up to
and including the terminal statement specified in that DO statement.

The range of a DO loop occurring within the range of another DO loop must be entirely contained
within the range of the outer DO loop. This is referred to as nesting of DO loops. More than one
DO loop can have the same terminal statement.

If a DO statement appears within an IF-block, ELSE IF-block, or ELSE-block, the range of that DO
loop must be contained entirely within that IF-block, ELSE IF-block, or ELSE-block. If a block IF
statement appears within the range of a DO loop, the corresponding END IF statement must also ap
pear within the range of the DO loop.

Example:

IF (l.EQ.5) THEN
DO 10 J= 14, 1.-1

IF (R.LE.12.9) THEN
X=7.l+X

ELSE
X=3.22

END IF
10 CONTINUE

9-2

ELSE
X= 1.01

END IF

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

DO Statement Execution

The execution of a DO statement causes the following to occur:

1. The DO loop becomes active.
2. The initial, terminal, and incremental parameters are evaluated.
3. The <DO-variable> is assigned the initial parameter value.
4. The iteration count is determined.

DO Loop Activation

A DO loop becomes active when the corresponding DO statement is executed. The DO loop becomes
inactiv1e when the iteration count is determined to be 0, when a branch is made to a statement outside
the range of the DO loop, or when a RETURN or STOP statement is executed within the range of
the DO loop. Branching to a statement outside the range of a DO loop from within the range of the
DO loop is permitted; however, it is prohibited to branch into the range of a DO loop from outside
the range of the DO loop.

Parameter Evaluation

When the DO statement is executed, the values of the <initial> , <terminal> , and <incremental>
parameters (DO-parameters) are determined. If necessary, the values are converted to the type of the
< DO-vadable > . Any variables used in the parameter expression can be altered within the range of
the DO loop without affecting loop execution control or iteration processing.

DO-variable Initialization

After determining the values of the DO-parameters, the <DO-variable> is assigned the value of the
<initial> parameter. The value of the <DO-variable> can be accessed within the range of the DO
loop by the program; however, the <DO-variable> must never be assigned another value within the
range of the DO loop.

Iteration Count Initialization

The iteration count determines the number of times the DO loop is executed (barring a branch to a
statement outside the range of the DO loop). The initial value of the iteration count is established by
evaluating the following expression:

MAX (INT ((<terminal> - <initial> + <incremental>) I <incremental>), 0)

The itt:~ration count is zero whenever:

<initial> > <terminal> and <incremental> > 0, or
<initial> < <terminal> and <incremental> < 0.

At completion of execution of the DO statement, loop execution control begins.

Loop Execution Control

Loop execution control determines whether or not all of the statements in the range of the DO loop
are to be executed. The iteration count is tested, and if nonzero, execution continues with the first
executable statement within the range of the DO loop. If the iteration count is zero, the DO loop be
comes inactive. If, as a result of this inactivation, all DO loops sharing the same terminal statement
become inactive, execution continues with the first executable statement after the terminal statement.

1152113 9-3

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

If some of the DO loops sharing the terminal statement are active, execution continues as described
in Iteration Processing in this section.

Execution of Statements in the Range

Statements in the range of a DO loop are executed until the terminal statement is reached. A subpro
gram reference is not a transfer of control outside the range of the DO loop. If the <DO-variable>
is passed as a parameter, it must not be assigned another value within the subprogram.

Terminal Statement Execution

Execution of the terminal statement occurs as a result of the normal execution sequence or as a result
of transfer of control from within the DO loop to the terminal statement of the same DO loop. If
the execution of the terminal statement does not cause transfer of control, execution continues with
iteration processing.

Iteration Processing

Iteration processing causes the following four steps to be performed:

1. The <DO-variable> , iteration count, and <incremental> parameter of the last active DO
statement executed are chosen for processing.

2. The iteration count is decremented by one.
3. The <DO-variable> is incremented by the value of the <incremental> parameter.
4. Control is passed to the loop execution control of the DO loop that was chosen for iteration

processing.

Consider the following two examples:

Example:

DO 10 F=3.7, 9.81, 2.03
X=F
DO 101=14, -3, -2

J=J+l
10 K=K-1

CONTINUE

Upon execution of the CONTINUE statement F= 11.82, X=9.79, I= -4, 1=9, and K= -54.

Example:

DO 20 L= 10,
M=L

20 CONTINUE

Upon execution of the CONTINUE statement L = 10, and M = 0. The statement in the range of the
DO loop is never executed.

9-4

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

END STATEMENT
Each program unit consists of a sequence of statements terminated by an END statement. The END
statement is provided for use as the terminal statement of a program unit. The proper form of the
END statement is as follows:

G50314

Every program unit must contain exactly one END statement. If an END statement is encountered dur
ing exc~cution of a subprogram, a RETURN is implied; if an END statement is encountered in a main
program, a STOP is implied.

GO TO STATEMENT
The GO TO statement can be used to transfer control from one point of an executing program to
anothe:r point in the same program unit. The GO TO statement has three forms: 1) the unconditional
GO TO, 2) the computed GO TO, and 3) the assigned GO TO. These three forms of the GO TO
statement are described in the following paragraphs.

Unconditional GO TO

The simplest form of the GO TO statement is the unconditional GO TO which has the following form:

GO TO <label> ------------------------1

G50315

<label> is the statement label of an executable statement in the same program unit as described in
section 3.

Execution of this control statement causes the executable statement bearing the indicated label in the
program unit to be the next statement executed. For example, the statement GO TO 23 causes program
flow to continue at the statement labeled 23.

The statement following a GO TO statement must have a label unless it is an END statement or END
IF statement. This is a syntactical requirement since a GO TO statement breaks the sequential flow
of execution. It is never possible to return to execute the statement following the GO TO unless that
subsequent statement has a label.

1152113 9-5

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

Computed GO TO

The second form of the GO TO statement is the computed GO TO statement. The execution of this
statement causes control to be transferred to a statement whose label appears in the list portion of
the statement or to the next executable statement following the GO TO. How control is transferred
depends on the value of the integer arithmetic expression following the label list. The expression is eval
uated and the result is used to select one of the labels in the list. The computed GO TO has the fol
lowing form:

----- GO TO (__ f_ <label>-----) --.-------.--<int-expression>-----L .~
G50316

If the <int-expression> has the value n when computed, control passes to the n-th label in the label
list. If there are fewer than n labels in the list or if n is less than or equal to zero, control passes
to the next executable statement.

An example of a computed GO TO statement follows:

GO TO (1,25,3,6,l,l7),I + 1

At execution time, the value of I+ 1 is computed. If I+ 1 has the value n, then control passes to the
n-th statement in the list. For example, if I + 1 = 4 (I = 3), then control passes to the statement
labeled 6, the fourth label in the list. If I + 1 = 1 or 5 (I = 0 or 4) in this particular example,
control passes to the statement labeled 1, since both the first and fifth elements of the label list are
1. If I + 1 is less than 1 or greater than 6 (I < 0 or > 5), control passes to the next executable
statement after the computed GO TO.

Assigned GO TO Statement

The syntax of an assigned GO TO statement follows:

-- GOTO <integer-variable> ---.-[--,-J__,..--.-[--_t------.----- T
(<statement-label > l)

<integer-variable> is an integer variable name. <statement-label> is the statement label of an execut
able statement that appears in the same program unit as the assigned GO TO statement. The same
<statement-label> can appear more than once in the same assigned GO TO statement.

At the time of execution of an assigned GO TO statement, <integer-variable> must be defined with
the value of a statement label of an executable statement that appears in the same program unit. < inte
ger-variable> can be defined with a statement label value only by an ASSIGN statement (refer to sec
tion 8) in the same program unit as the assigned GO TO statement. The execution of the assigned
GO TO statement causes a transfer of control to the statement identified by the statement label.

9-6

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

If the parenthesized list of <statement-label> s is present, the statement label assigned to <integer
variabl1e > must be one of the <statement-label> s in the list.

An example of an assigned GO TO statement follows:

ASSIGN 250 TO LABEL
GO TO LABEL (150,250,350)

GO TO LABEL

IF STATEMENT

The IF statement is a control statement provided to cause conditional execution of program state
ment(s)I, depending upon the value of an arithmetic or logical expression.

Arithmetic IF Statement

The arilthmetic IF statement causes conditional branching depending on the value of an arithmetic ex
pression within the statement. The arithmetic IF statement has the following form:

IF (<expression>) <label> , <label> , <label> ---------------1
G50317

<expression> is an arithmetic expression of INTEGER, REAL, or DOUBLE PRECISION type. <la
bel> is a statement label as described in section 3.

The arithmetic IF statement is a 3-way branch. The arithmetic expression inside the parentheses fol
lowing the IF is evaluated and control is transferred to the statement identified by the first, second,
or third label, depending on whether the expression is negative, zero, or positive, respectively.

An example of an arithmetic IF follows:

IF (I - J) 10, 20, 30

If I - J is negative, control is transferred to the statement labeled 10. If I - J is zero, control is transfer
red to the statement labeled 20. If I - J is positive, control is transferred to the statement labeled 30.
Notice that this is actually a test of whether or not J is greater than, equal to, or less than I.

Not all three statement labels of an arithmetic IF need to be different.·

Example:

IF((A- 2)*(B - 3)) 10, 10, 3

In this <!xample, control passes to the statement labeled 3 only if (A-2)*(B-3) is greater than zero; other
wise, control passes to the statement labeled 10.

1152113 9-7

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

The statement following an arithmetic IF must have a label unless it is an END statement.

Logical IF Statement

The logical IF statement conditionally executes a statement depending on the result of a logical expres
sion. The logical IF statement has the following form:

-----IF (<logical-expression>) <executable-statement>--------------~

G50318

<logical-expression> is a logical expression as described in section 7. <executable-statement> is any
executable statement described in section 3 except a DO, block IF, ELSE IF, ELSE, END IF, END,
or another logical IF statement.

<logical-expression> is evaluated. If the value is TRUE, the statement following < logical-expres
sion > is executed. If the value is FALSE, the statement is ignored. In either case, control passes to
the next statement, unless the statement following <logical-expression> was executed and caused a
branch to another point in the program.

The following are examples of logical IF statements:

Example:

IF (A.EQ.B.OR.C.EQ.D)G = G +I

If A equals B, or C equals D (or both), then G is incremented by I; otherwise, G remains unchanged.
In any event, control passes to the next statement.

Example:

IF (LI) GO TO 97

If LI, which must be declared to be a LOGICAL variable, is TRUE, control passes to the statement
labeled 97. If LI is FALSE, control passes to the next statement.

Example:

IF (A.LE.97) IF (B) I2,I2,I3

If A is less than or equal to 97, the arithmetic IF is executed and control passes to statement number
I2 or I3, depending on the value of B. If A is greater than 97, control passes to the next statement.

9-8

Block IF Statement

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

The block IF statement is used along with an END IF statement to control the program execution se
quence. The ELSE IF and ELSE statements are optionally used to further segment the block IF state
ment. The block IF statement has the following form:

G50319

<logical-expression> is a logical expression as described in section 7.

The block IF statement permits the execution of multiple statements depending on the result of a single
condition or multiple conditions within the block IF. Any executable statements can be used following
a block IF statement including another block IF statement.

Example (L is a logical variable):

IF (J.EQ.7) THEN
IF (L) GO TO 50
IF (X.GT.0.25) I= I+ 1
X=5.5

END IF
X=6.5

50 CONTINUE

Nesting Level

When a block IF statement occurs within another block IF statement, the second block IF statement
is nested within the first. The nesting level of a statement is 1 = nl - n2, where nl is the number
of block IF statements occurring up to and including the statement, and n2 is the number of END
IF statements occurring before the statement. Every statement must have a nesting level that is positive
or zero. An ELSE IF statement, ELSE statement, or END IF statement only controls execution of
the block IF statement at the same nesting level. A block IF statement is terminated by the first suc
ceeding END IF statement with the same nesting level. Transfer of control to a statement within an
IF-block from outside the IF-block is prohibited.

An example of invalid transfer of control follows:

IF (Y.EQ.8) THEN
10 IF (X.EQ.5) GO TO 20

IF (X.EQ.7) THEN
20 U=V**W
30 GO TO 40

END IF
40 V=V +5.4

END IF

Statemc~nt 10 is invalid since it is branching into the range of a block IF from outside the range of
the block IF. Statement 30, however, is valid since it is not entering another block IF, only leaving
a block IF.

1152113 9-9

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

Block IF Statement Execution

Execution of a block IF statement causes evaluation of <logical-expression> . If the value of <logical
expression > is TRUE, execution continues with the first executable statement following the block IF
statement and proceeds until the next ELSE IF statement, ELSE statement, or END IF statement on
the same nesting level. The statements between the block IF statement and the next ELSE IF statement,
ELSE statement, or END IF statement on the same nesting level are referred to as the IF-block. If
the execution of the last statement in the IF-block does not result in a transfer of control, control is
transferred to the next executable statement following the END IF statement that terminates the block
IF statement.

10 IF (X.GT.Y) THEN
20 K=5
30 IF (T.LE.O) THEN
40 X=9
50 END IF
60 Y=7
70 END IF

The END IF statement at line 50 terminates the IF-block beginning at line 30. The END IF statement
at line 70 terminates the IF-block beginning at line 10. If the value of the logical expression in line
10 is TRUE, lines 20 through 60 are executed. If the value of the logical expression in line 30 is TRUE,
line 40 is executed.

An IF-block can be empty, in which case control passes to the next executable statement following
the END IF statement that terminates the block IF statement. If the value of <logical-expression>
is FALSE, control passes to the next ELSE IF statement, ELSE statement, or END IF statement with
the same nesting level.

Example (L is a logical variable):

IF (L) THEN
ELSE

X=5
END IF

ELSE IF Statement

The ELSE IF statement is used to specify an alternate execution sequence within a block IF statement.
The ELSE IF statement has the following form:

-----ELSE IF (<logical-expression>) THEN ----------------------t
G50320

<logical-expression> is a logical expression as described in section 7.

The ELSE IF statement must only occur within a block IF statement. There can be any number of
ELSE IF statements between the block IF statement and the next ELSE statement, or the END IF
statement of the same nesting level. An ELSE IF statement must not occur within an ELSE block.

9-10

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

ELSE IF Statement Execution

When an ELSE IF statement is executed, <logical-expression> is evaluated and, if TRUE, program
execution continues with the first executable statement of the ELSE IF-block. The statements between
the ELSE IF statement and the next ELSE IF statement, ELSE statement, or END IF statement are
referred to as the ELSE IF-block. If the last statement in the ELSE IF-block does not cause transfer
of control, or if the ELSE IF-block is empty, control is transferred to the first executable statement
following the END IF statement that terminates the block IF statement at the same nesting level.

If the value of <logical-expression> is FALSE, control is transferred to the next ELSE IF statement,
ELSE statement, or END IF statement at the same nesting level.

Example:

IF (W.EQ.1) THEN
X=l

ELSE IF (W.EQ.2) THEN
Y=2
W=3

ELSE IF (W.EQ.3) THEN
Z=3

END IF

X is assigned a value only if W is equal to 1. Y is assigned a value only if W is equal to 2. Z is
assigne:d a value only if W is equal to 3 and none of the preceding conditions are TRUE. Note that
if W is equal to 2, only the first ELSE IF-block is executed even though W is equal to 3 upon leaving
the second ELSE IF-block. No more than one ELSE IF-block can be executed. An ELSE IF statement
is executed only when the block IF statement and all other preceding ELSE IF statements at the same
nesting level return the value FALSE.

Transfier of control into an ELSE IF block from outside the ELSE IF-block is prohibited. The state
ment label, if any, of the ELSE IF statement must not be referenced by any statement.

ELSE Statement

The ELSE statement delimits a segment of the block IF statement. The ELSE statement has the fol
lowing form:

G50321

The ELSE statement must only occur within a block IF statement. There can be only one ELSE state
ment at the same nesting level within a block IF statement. The ELSE statement is only executed if
a valm: of FALSE is returned for the logical expression in the block IF statement and for the logical
expressions in every ELSE IF statement at the same nesting level as the ELSE statement.

1152113 9-11

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

ELSE Statement Execution

The execution of an ELSE statement has no effect. The statements between the ELSE statement and
the following END IF statement at the same nesting level are called the ELSE-block. The ELSE-block
can contain any executable statements except an ELSE IF statement or an ELSE statement at the same
nesting level. If an executable statement in the ELSE-block does not cause transfer of control, control
is transferred to the first executable statement following the END IF statement at the same nesting
level.

Transfer of control into an ELSE-block from outside of the ELSE-block is prohibited. The statement
label, if any, of an ELSE statement must not be referenced by any other statement. An ELSE IF
block cannot occur within an ELSE-block at the same nesting level.

An example of the ELSE statement follows:

10 IF (A.EQ.7) THEN
20 X=I
30 ELSE IF (A.EQ.6) THEN
40 X=2
50 ELSE IF (A.EQ.5) THEN
60 IF (A.EQ.4) THEN
70 X=3
80 ELSE
90 X=4

100 END IF
110 ELSE
120 IF (A.EQ.3) THEN
130 ELSE IF (A.EQ.2) THEN
140 X=5
150 ELSE
160 X=6
170 END IF
180 END IF
190 CONTINUE

Line 20 is only executed when the value of the logical expression in line 10 is TRUE. After line 20
is executed, a transfer of control is made to line 190. Line 40 is only executed when the value of the
logical expression in line 10 is FALSE and the value of the logical expression in line 30 is TRUE. In
this case, line 20 is not executed. Line 60 begins a nested IF-block. Line 60 is only executed if the
value of the logical expression in line 50 is TRUE and the previous conditions at lines 10 and 30 are
FALSE. The END IF statement at line 100 ends the IF-block beginning at line 60. If line 60 is executed
and the value of the logical expression is TRUE, line 70 is executed and control is transferred to line
190; however, if the value of the logical expression is FALSE, lines 80 and 90 are executed and control
passes to line 190.

If the values of the logical expressions in lines 10, 30, and 50 are all FALSE, control passes to line
110 and the IF-block beginning at line 120 is evaluated.

9-12

END IF Statement

B 1000 Systems FORTRAN 77 Language Manual
Control Statements

The END IF statement terminates the block IF statement. The END IF statement has the following
form:

G50322

For each block IF statement there must be a corresponding END IF statement. The corresponding END
IF statement is the next END IF following the block IF statement at the same nesting level. Execution
of the END IF statement has no effect.

PAUSE STATEMENT

The PAUSE 5tatement is provided to allow an executing program to be suspended indefinitely. The
proper form of the PAUSE statement is as folilows:

---- PAUSE -----.------------------,r-----------------1

<character-constant> -------1

<digit >--._ __ __,,

G50323

The PAUSE statement can be followed by a decimal string of up to five <digits>, or a <character
constant > (as described in section 4).

The execution of the PAUSE statement causes the unconditional suspension of the program being
executed, pending operator action. The required operator action is <job #>OK. In addition to sus
pending the program, the execution of this statement causes the optional integer or string following
the PAUSE statement to be displayed at the operator display terminal (ODT).

STOP STATEMENT

The STOP statement is provided to allow the termination of an executing program. The following is
the proper form of the STOP statement:

STOP

G50324

~----------~~--------~.~

~:character-constant>
L __ __._, __ f5L- <digit > _____ ,__ __ ___

The STOP statement can be followed by a decimal string of up to five <digits>, a <character-con
stant > (as described in section 4).

Execution of the STOP statement causes the unconditional termination of the program being executed.
The c~xecution of the STOP statement is the generally accepted manner in which a program can reach
error-free termination. The optional integer or string following the STOP statement is displayed on the
ODT.

115 21 ll 3 9-13

B 1000 Systems FORTRAN 77 Language Manual

SECTION 10

FILE DECLARATIONS

The FILE declaration statement associates a unit number with an external file and assigns values to
certain file specifiers and file attributes for the unit. An external file is referenced in a FORTRAN
77 I/O statement with a unit number. By default, the B 1000 FORTRAN 77 compiler associates the
unit numbers 5, 6, and 7 with the card reader, line printer, and card punch files, respectively. When
associations other than these are required, or additional files are desired, FILE declaration statements
must be used to inform the compiler of the attributes of the files.

The values assigned to file attributes and file specifiers in a FILE declaration statement can be over
ridden in several ways. A list of ways in which file attributes and file specifiers can be assigned follows.
The list is arranged in order of precedence, with the first item having the highest precedence.

1. A value can be assigned in an OPEN statement (refer to section 11).
2. A value can be assigned by file-equating a file in an EXECUTE statement (refer to B 1000 Sys

tems System Software Operation Guide, Volume 1).
3. A value can be assigned by modifying the object file using the MODIFY command (refer to

B 1000 Systems System Software Operation Guide, Volume 1).
4. A value can be assigned in a FILE declaration statement.

The following is the proper form of the FILE declaration statement:

-----FILE <unit-#> (<tile-list>)---------------------------1

G50325

The word FILE must be in columns 1 through 4 of the card image and must be followed by at least
two blanks. The rest of the line is free-form format. <unit-#> is an integer expression which specifies
the number of the unit to which a file is connected. <file-list> is a list of values for file attributes
and certain file specifiers separated by commas.

The following paragraphs describe the file attributes and specifiers that can appear in <file-list> . Only
one of each of the following specifiers is allowed for each FILE statement.

ACCESS < access-type >
The ACCESS specifier determines whether the access mode for the file is sequential or direct. <access
type > is either a character constant expression having the value SEQUENTIAL or DIRECT, or is a
string of characters spelling the word SEQUENTIAL or DIRECT. Once a file is declared to have a
specific access mode, it can only be accessed in that manner. The default value of < access-type> is
SEQUENTIAL.

BLANK <blnk>
The BLANK specifier determines how blank characters are interpreted in an input file. < blnk > is ei
ther a character constant expression having the value NULL or ZERO, or is a string of characters spell
ing the: word NULL or ZERO. If NULL is specified, blank characters not enclosed in quotes are
ignored. If ZERO is specified, blank characters not enclosed in quotes are interpreted as zeros. The
default value of < blnk > is NULL.

1152113 10-1

B 1000 Systems FORTRAN 77 Language Manual
File Declarations

BLOCKSIZE <block-size>

The BLOCKSIZE attribute specifies the length of a block. <block-size> is an integer constant expres
sion evaluating to a blocksize in bytes and having a maximum value of 65,535. The default value of
< blocksize > is the value of the RECL specifier.

FILE <file-name >
The FILE specifier gives the external name of the file to be accessed. < filedname > must be enclosed
in quotation marks. B 1000 naming conventions are described in the B 1000 Systems System Software
Operation Guide, Volume l, form number 1108982.

If the FILE specifier is not given, the external name is assumed to be the same as the internal name,
and a search for the internal name is made on the device specified. The internal name is constructed
by concatenating the word FILE with the file number specified by the user (for example, FILE3).

FORM <form>

The FORM specifier determines whether the file is being connected for formatted or unformatted 1/0.
<form> is either a character constant expression having the value FORMATTED or UNFOR
MATTED, or is a string of characters spelling the word FORMATTED or UNFORMATTED. If the
FORM specifier is omitted, a value of UNFORMATTED is assumed if the file is being connected for
direct access, and a value of FORMATTED is assumed if the the file is being connected for sequential
access. For a new file, the processor creates the file with a set of allowable forms that includes the
specified form. For an existing file, <form> must be included in the set of allowable forms for the
file.

KIND < hardware-type >
The KIND specifier determines the device to which the file is connected. <hardware-type> is either
a character constant expression having the value DISK (disk pack), PRINTER (line printer), READER
(card reader), TAPE (magnetic tape), PUNCH (card punch), ODT (operator display terminal), or RE
MOTE (remote terminal), or is a string of characters spelling one of the values. The default value of
<hardware-type> is DISK.

MYUSE <use-type>

The MYUSE attribute specifies how the file will be used. <use-type> is either a character constant
expression having the value IN (for input only), OUT (for output only), or IO (for both input and
output), or is a string of characters spelling one of the values. Refer to table 10-1 for additional infor
mation.

RECL < record-length >
The RECL specifier gives the record length for all records of a file. <record-length> is an integer
constant expression evaluating to a record length in bytes. The default value of <record-length> de
pends on the value of the KIND specifier. Refer to table 10-1 for additional information.

STATUS < file-status >
The ST A TUS specifier gives the file status. <file-status> is either character constant expression having
the value NEW, OLD, SCRATCH, or UNKNOWN, or is a string of characters spelling one of the
values. When a file is opened which is declared to have a STATUS value of OLD, the declared device

10-2

B 1000 Systems FORTRAN 77 Language Manual
File Declarations

is searched to locate the file. If the file is not found, a NO FILE condition results. When the file
is closed by the program, the file, including any updates that were made, is saved. When a file is
opened and is declared to have a ST A TUS value of NEW, the declared device is not searched to locate
the me. A new file is created. When closed at the end of the program, the new file is saved on the
device specified. If SCRATCH is specified, a new file is created for use by the executable program,
but is deleted when the file is closed. If UNKNOWN is specified, the file is assumed to exist. If the
MYUSE specifier is not used in the FILE declaration statement with the ST A TUS specifier, using
SCRATCH causes the MYUSE attribute of IO to be set. Using UNKNOWN without the MYUSE spe
cifier causes the MYUSE attribute of IN to be set. The default value of <file-status> is OLD, unless
the file KIND is PRINTER or PUNCH, in which case the default value is NEW.

Association of a unit number with a hardware device (by means of a FILE declaration statement) asso
ciates the unit with the default attributes indicated in table 10-1. Individual attributes can be redefined
either in the FILE declaration for the file, or with a MODIFY (MO) MCP command. Refer to the
B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982 for an explanation
of the MODIFY command. Those file attributes not specifically stated in a FILE statement are given
the default values. File attributes which cannot be specified in the FILE statement must be changed
with the MODIFY command.

Table 10-1. Default Attributes

Specifier DISK l TAPE READER PRINTER PUNCH REMOTE ODT

ACCESS SEQUENTIAL for all hardware types

BLANK NULL for all hardware types

BLOCKSIZE The value of the RECL specifier

FILE See Note l

FORM See Note 2 FORMATTED

RECL 180 T 180 80 132 80 80 80

MY USE See Note 3 IN OUT OUT IO IO

STATUS OLD l OLD OLD NEW NEW OLD OLD

Notes for table 10-1:

1. The default for all hardware types is "FILE" 11 <unit-#> .
2. The default is SEQUENTIAL for FORM = FORMATTED, and DIRECT for FORM

,UNFORMATTED.
3. The defaults for MYUSE depend on the ST A TUS specifier.

1152113

STATUS

NEW
OLD
SCRATCH
UNKNOWN

MYUSE

IO
IN
IO
IN

(ST A TUS = NEW)
(STATUS=OLD)

10-3

B 1000 Systems FORTRAN 77 Language Manual
File Declarations

Each FILE declaration statement can contain the description of only one data file. Each data file must
have a unique unit number associated with that file; no unit number can ref er to more than one data
file. The unit number must always be included in a FILE declaration statement.

FILE declaration statements must precede all other statements except comments and Compiler Control
Images.

The default file types associated with unit numbers 5, 6, and 7 are shown in table 10-2.

Table 10-2. Unit Number/Hardware Default Associations

Unit Hardware Internal/External
Number Type File-Name

5 Card FILES
Reader

6 Line FILE6
Printer

7 Card FILE?
Punch

An example of two FILE declaration statements follows:

FILE 4 (FILE= 'FORTRAN77/SAMPLE/FILE', RECL= 6, KIND= 'TAPE')
FILE 5 (FILE='DATA', STATUS=NEW, ACCESS=DIRECT, RECL=112, KIND=DISK)

N=4
READ (N,100) A, B, C
WRITE (5,200,REC =I) A, B, C
WRITE (6,300) D, E, F, G

In the example, file 5 no longer defaults to the card reader but is attached to a disk file that is being
created (NEW attribute). The name of the disk file associated with file 4 can also be specified as 'SAM
PLE/FILE ON FORTRAN77'. File 6 in the second WRITE statement gets the default device for that
file (the line printer). Thus, no FILE declaration statement is necessary.

10-4

B 1000 Systems FORTRAN 77 Language Manual

SECTION 11
INPUT/OUTPUT

Input/ output statements permit the transfer of data between a program and various peripheral devices
or, as in the case with internal files, between character entities and other program variables. There are
four input/output statements in FORTRAN 77: READ, WRITE, PRINT, and PUNCH.

ACCESS METHODS

Two access methods are available in FORTRAN 77. An input/output statement can specify sequential
access or direct access to a file. A file that has been declared with one access type cannot be ref erred
to using a different access type.

Sequential

A file is opened by the first 1/0 statement accessing that file. When the file is opened for sequential
access, the file pointer is pointing at the beginning of the first record. When an 1/0 statement has
finished execution, the file pointer points at the beginning of the next record. A file that does not have
a DIRECT declaration in the FILE statement can only be accessed sequentially. A record number must
never appear in an 1/0 statement specifying a file opened for sequential access.

Direct

For a file to be accessed directly, it must be declared as DIRECT in a FILE declaration statement.
A file declared to be DIRECT must always have a record number specified in every control list refer
encing the file. The record number is a relative pointer to a record in the file. Any record of the file
can be accessed directly without first accessing the preceding records by giving the relative record num
ber in a control list referencing the file containing the record.

1152113 11-1

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

CONTROL LIST
Every input/output statement has a control list that gives information concerning which unit the I/O
operation is being performed on, the format of the data to be transferred, which record of the file
is to be accessed, and what to do if an error condition occurs. A control list has the following form:

L <(format>

------<character-expression > -----.------------------~>

<unit-II> L:_< record-IJ.i.r:>:---_J------

1---- * __J'

G50326

FMT= -.L..-- <format > --i---) ____ __.

END= <label> -------1

ERR = <label> ----

IOST AT = <variable > __ ___.

REC= <record-II> --
1

- FM'T -:-J__ <format> ----L---+---)----

END= <label> ----------1

ERR = <label>----------+

IOSTAT = <variable> ------'

<format> is the format specifier for the input/ output statement; it determines the manner in which
the data is transmitted.

The unit specifier, <unit-#> , is an integer expression giving the unit number of the file on which the
I/O operation is being performed. An asterisk (*) character appearing in the place of <unit-#>
specifies unit 5 if the control list appears in a READ statement or unit 6 if the control list appears
in a WRITE statement. A <character-expression> can replace the unit number, in which case internal
1/0 is specified. Refer to Internal Files in this section. There can be only one unit specifier in a control
list.

<record-#> is an integer expression giving the number of the desired record in a file. This is only
meaningful with direct access I/O.

The END= and ERR= specifiers are used when an abnormal condition results from the 1/0
operation. The IOST AT= specifier provides a variable to store information regarding the result of the
1/0 operation.

11-2

Unit

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

The unit is the unit number of the file as declared in a FILE statement. There must be only one unit
number specified in a control list for an 1/0 statement. If the UNIT= specifier is omitted, the unit
number must be the first item in the list.

A character variable, character array, character array element, or character substring can replace the
unit number. This is referred to as internal 1/0 and is explained under Internal Files in this section.
If a character entity is used, do not specify a record number.

Format

The format in which data is to be transmitted is specified in the format portion of the control list.
If the: FMT = specifier is omitted, the <format> must follow the first comma in the list; the unit
number, without UNIT = , must be the first item in the list.

The format specifier must be one of the following: 1) the label of a FORMAT statement, 2) a character
constant, 3) a character expression giving a valid format specifier (except an expression that involves
concatenation of a character entity with an asterisk (*) character as the length specification), 4) an as
terisk (*) character for list-directed formatting, or 5) a namelist name for namelist formatting.

Record Number

A record number is specified when direct access of a file is required. The record number is a positive
integer expression specifying the record number from/to which data is to be transmitted. REC= must
always appear before the record number unless the form <unit-#>'< record-#> is used. The apo
strophe in this shortened form separates the unit number from the record number. The unit number
must be the first item in the control list and must not be preceded by the word UNIT= .

Action Specifiers

The entries END= , ERR= , and IOST AT= are action specifiers used to control program flow depend
ent on the result of the 1/0 operation.

END= <label>

The END = option causes a branch to the statement with the specified label when one of the following
conditions occurs:

L Attempted to read beyond the last record previously written on disk.
2 .. Read the EOF mark.
3. Attempted to write beyond the end of the designated number of areas for a disk file.
4.. Read a record beyond the end of an internal file.

If an END= specifier is not given in the control list for an 1/0 statement and one of the four stated
conditions occurs, program execution is halted at the point the exception condition occurs. The END=
specifier is not permitted with direct access 1/0.

1152113 11-3

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

ERR= <label>

The ERR = option causes a branch to the statement with the specified label when one of the following
conditions occurs:

1. For a READ (formatted or unformatted random) when the 1/0 variable list requests more data
than the logical record contains.

2. For direct access files or sequential formatted files, the logical record size is greater than the
declared record size. For sequential unformatted files, the 1/0 can request more data than the
declared record size.

3. When the input data for a formatted read does not meet the requirements of the format specif-
ier.

4. On a formatted write when the type of the variable does not match the format specifier.
5. When the random record key is less than 1.
6. When the format specification exceeds the record size.
7. When a parity error occurs during the data transfer.

If an ERR= specifier is not given for an 1/0 statement and one of the seven exception conditions
occurs within the statement, program execution is terminated at the point where the exception condition
occurs.

IOSTAT = <variable>

The IOST AT= action specifier assigns a value to an integer <variable> or integer array element name
depending on the result of the 1/0 operation in which the option occurs. If no error condition occurs,
the <variable> or array element name is assigned the value 0. If one of the conditions specified under
the END= option occurs, the variable is assigned a value according to the following table:

Condition

No error
End of file
Error

Value

0
-1

2

Examples of control lists:

(6,100)
(4' 12,200,ERR = 300)
(FMT=400, IOSTAT=J, UNIT=8, REC= 103, ERR=800)
(* ,'(2I4)')
(A(l),100)

A(l) is a character array element being used as an internal file.

1/0 LIST

In addition to having a control list, every input/ output statement can have an I/O list associated with
it. An 1/0 list specifies either the variables or array elements that are to be assigned the values of
the data received from the file on input, or the data that is to be transmitted to the file on output.
The items of the list are separated by commas, and the list can optionally contain implied-DO loops.

11-4

1/0 Implied-DO Loop

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

During input, an 1/0 implied-DO loop permits assignment to a specified group of elements in an array
(or arrays) in the input list. During output, an 1/0 implied-DO list permits the value of specified
elements of an array (or arrays) to be transmitted, and allows the value of other list items in the output
list to be transmitted repetitively. An 1/0 implied-DO loop has the following form:

-- (<DO-list >, <DO-variable> = <initial >,<terminal > --..----------~-) ------c

l___ , <incremental> ______J
G50327

The range of the implied-DO loop is the list <DO-list>. The parameters <initial>, <terminal>,
and < ilncremental > can be any integer expressions. The 110 implied-DO loop is executed in the same
manner as the DAT A implied-DO loop. Refer to DATA Statement in section 6 for additional informa
tion.

With each iteration of the DO loop, each item in the <DO-list> is used once with every new value
assigned to the <DO-variable> .

For input, members of the <DO-list> must be either array element names that optionally use the DO
variabk~ as subscripts, or other 1/0 implied-DO loops that optionally use the outer <DO-variable>
in their parameter lists. Each element of the <DO-list> must be separated by commas. The <DO
variable > of an implied-DO loop must not appear in the <DO-list> on input.

For output, the <DO-list> can contain array element names or 110 implied-DO loops, as stated
above, as well as any constants or expressions separated by commas.

The most deeply nested 1/0 implied-DO loop is completed before the next outer <DO-variable> is
incremented, at which time incrementation processing returns to the deeper DO loop level.

Example:

((A(l,J),I = 1,3),J = 1, 10)

The array in the above example is accessed in the following sequence:

A(l,1), A(2,l), A(3,l), A(l,2), A(2,2),

Input List

An input list contains the variables, arrays, array elements, and/or substrings that are to be assigned
the values of the data received from the file. An input list has the following form:

~-------~~--<arr~~lement>--------------~-~}--------i
-<array-name>---------------

-< 1/0-implied-DO-loop > ------------

-<substring> -----------------

<variable> -------------

G50328

1152113 11-5

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

The actual value assigned to an item in the input list is dependent upon the data type of the list item,
the format specifier associated with the list item (refer to Format Specifications in section 12), and
the value of the item in the data file.

If an array name is specified in the input list (not an array element name or an array element name
in an 1/0 implied-DO loop), values are assigned to each element of the array in a colum:n-wise order
(refer to appendix D) until the array is filled, or until the input record is· exhausted. If the input record
is exhausted, an error occurs (refer to ERR = Specifier in this section) unless there is a slash in the
associated format.

Example of an input list:

(A(l),I = 3, 15), D(7), S(l :5), X(l2, 12)(4:5), (Y(J)(3:9),J = 3,5), Z

Output List

An output list contains variables, arrays, array elements, substrings, constants, and expressions (except
character expressions containing a character entity with a length attribute of asterisk (*)) to be transmit
ted to a file. An output list has the following form:

--------------<array-element>

G50329

<array-name> ------------

<constant> --------------

<expression> ---------------1

< 1/0-implied-DO-loop > ----------

<substring> -----------·----t

<variable >

l

The number of significant digits in the value that is output from the items in the output list depends
on the corresponding format specifier for the statement.

If an array name is given, every element of the array is output in the order in which the array is stored
(refer to appendix D).

An example of an output list follows:

X+ 5, Y, (D(l),C,I = 1,13), FUN(X, Y +4) + 3

11-6

J
I

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

READ STATEMENT
The READ statement reads data from peripheral storage or internal files, converts the data, and assigns
the data to internal storage locations indicated by the input list and format portion of the statement.
Provision can also be made to handle errors incurred during the read using action specifiers.

The proper form of the READ statement follows:

READ <control-list>---.--- <input-list>

G50330

If only a format appears as the <control-list>, unit 5 (the card reader) is assumed.

There are two types of data access used with the READ statement: sequential and direct. Sequential
access is assumed when no record number appears in the <control-list> .

Sequential READ

In a sequential READ operation, an entire block of records is brought into the file buff er when the
first READ occurs. The file pointer is positioned at the beginning of the first record, and the first
record is scanned and edited. The data is then assigned to the items in the input list. If there is more
data in the record than is required by the READ input list, the remaining data items are skipped. When
the READ operation is completed, the pointer is positioned at the beginning of the next record.

If a slash character appears in the format for a READ statement, the rest of the record (or all of
the record if the slash is encountered when the record pointer is at the beginning of the record) is skip
ped and the record pointer is positioned at the beginning of the next record. The remaining items in
the input list are filled from this point unless another slash appears. Refer to Slash Editing in section
12 for additional information.

With each subsequent READ or when a slash appears in the format specifier, a new record is accessed
and assigned to the items in the input list. When all the records in a block have been read, a new
block is brought into the buffer by the first READ that accesses a record of the new block.

Examplies of sequential READ statements follow:

Direct--Access READ

READ (6, 100) (A(l),I = l ,M), C, D(2:4)
10 READ (*, '(12,A4)')B, C

READ 4, 200, I, J, K

A direct-access READ can be performed on a file declared as DIRECT. Direct-access READ permits
the acce:ss of any record within the file without first reading the records that precede the desired record.
The direct-access READ has the same general form as a sequential READ. They differ in that a direct
access READ contains a record number in the control list.

1152113 11-7

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

When the initial READ operation occurs in DIRECT mode, the specified file is opened and the block
containing the specified record is brought into the file buffer. Each time a subsequent READ occurs,
the file buff er is checked to see if the specified record is already in the buff er. If the record is found
in the buff er, the record is read in from that buffer. If the record is not in the buff er, the file is read
again and a new block containing the desired record is brought into the buff er.

The record number specified in the control list must be between 1 and the number of records in the
file.

Examples of direct-access READ statements follow:

READ (6'5,100) A
READ (UNIT=7, FMT=200, REC= 12-J, ERR=300) A, B, C(3)

If a slash (/) character does not appear in the format for the READ, the record pointer for the file
is positioned at the beginning of the next record. If a slash does appear in the format for the READ,
the pointer is positioned at the beginning of the next record, and the READ continues from that point.

WRITE STATEMENT

The WRITE statement writes data to peripheral storage, or to an internal file from the internal storage
locations indicated by the output list of the statement. The data can be converted during the transfer
process and positioned within records of a file depending on the specifications in the format identifier.
Provision can also be made to handle error conditions using action specifiers.

The WRITE statement has the following form:

----WRITE <control-list> ---.------------~-------------

---<output-list> ___ _,

G50331

A WRITE statement writes one or more records to a file in either SEQUENTIAL or DIRECT mode.
A file connected for sequential access must be written sequentially. A file connected for direct access
must be written using a record number specifier in the control list.

Sequential WRITE

A sequential WRITE operation to an external file transmits the data in the output list to one or more
records in a file buff er. The initial write opens the file and positions the file pointer at the beginning
of the first record in the file. The file pointer is positioned at the beginning of the next record whenever
a slash (/) character occurs in the format for the WRITE statement and when the WRITE operation
is completed. When a block of records has been written to the buff er, the block is transferred to the
actual hardware device.

If a slash (/) character appears in the format for the WRITE statement, the remaining character posi
tions in the record are filled with blanks, the record is transmitted, the file pointer is positioned at
the beginning of the next record, and the WRITE continues.

Examples of WRITE statements follow:

11-8

WRITE (6,100) A, B, 3+D, FUN(A,V), (A(l),I=l,15)
WRITE 5, 200, 7, 6, 5
WRITE (UNIT= 5, FMT = 100, ERR= 300) ALPHA
WRITE (*, 400) BET A

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

An ast~~risk (*) character in the control list refers to file 6 (the line printer by default). An END=
action specifier cannot appear in the control list of a WRITE statement.

Direct-Access WRITE

A direct-access WRITE operation transmits data to a specified record of the file being accessed. A
record number must always appear in the control list for the direct-access WRITE.

When the initial WRITE operation occurs, the file is opened and the record specified is the initial rec
ord to receive the data in the output list, unless a slash (/) character appears in the format for the
WRITE. In this case, the current record is filled with blanks and is transmitted. The file pointer is
positioned at the beginning of the next record. The WRITE continues from this point.

Examples of direct-access WRITE statements follow:

WRITE (UNIT=4, FMT=700, REC=X) A, D, 45, 'GARBLED'
WRITE (9'DAT- 1, 300) X

PRINT STATEMENT

The PRINT statement obtains data from the internal storage locations indicated by the output list, con
verts the data, and writes it to unit 6 (the line printer in the default condition). This statement is a
variation of the formatted WRITE statement; no action specifier is allowed and the unit number is
not explicitly specified.

The proper form of the PRINT statement follows:

G50332

Execution of a PRINT statement writes data from internal storage to one or more records (if slash
(/) characters appear in the format) of unit number 6. The position of the data file is unchanged prior
to the execution of the PRINT statement. After such a statement is executed, the file pointer is posi
tioned at the record immediately after the record(s) written.

<format> specifies the manner in which the transferred data is edited. <format> is the label of a
FORMAT statement or a character expression (refer to section 12).

1152113 11-9

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

PUNCH STATEMENT
The PUNCH statement obtains data from the internal storage locations indicated by the output list
of the statement and punches to the card punch by default. This statement is a variation of the format
ted WRITE statement. No action specifier is allowed with this statement.

The proper form of the PUNCH statement follows:

-------PUNCH <format>, <output-list> ----------------------1

G50333

The operation of this statement is identical to the operation of the PRINT statement, except for the
unit number. Each PUNCH statement has the implied unit number 7, a card punch file by default.
This default condition can be overridden by redefining unit 7 in a FILE statement.

OPEN STATEMENT
The OPEN statement is used to: 1) connect an existing file to a unit, 2) create a file that was connected
at the start of program execution, 3) create a file and connect it to a unit, or 4) change certain specifi
ers of a connection between a file and a unit.

The execution of the OPEN statement can occur in any program unit of an executable program and
once the file is connected, it can be referenced in any program unit of the executable program.

The OPEN statement has the following form:

---OPEN (-..-------.....---<unit-ti>'

LUNIT=_J

11-10

ACCESS = <access-type > ---

BLANK= <blnk> -------------1

(1_ BLOCKSIZE = <block-size>---------

ERR = <error-specifier>--------~

FILE = <tile-name> ---

FORM= <tormat> ------------1

IOST AT = < iostat-variable > --------

__(1_ KIND = <hardware-type> ----------1

1 MY USE = <use-type> -----------1

(1_ RECL = <record-length> ----------1

ST ATUS = <file-status> ----------

------->

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

The following paragraphs describe the file attributes and specifiers that can appear in an OPEN state
ment.

UNIT = <unit-#>

<unit-#> is an integer expression that specifies the unit number to which a file is connected or to
which a file is to be connected.

ACCESS = <access-type>

< acc<~ss-type > is a character expression whose value is either SEQUENTIAL or DIRECT. The value
of <access-type> specifies the access method for the connection of the file as being sequential or di
rect. For an existing file, the specified access method must be included in the set of allowed access
methods for the file. For a new file, the processor creates the file with a set of allowed access methods
that includes the specified method. The default value of <access-type> is SEQUENTIAL.

BLANK = <blnk>

< blnk > is a character expression whose value is either NULL or ZERO. If NULL is specified, all
blank characters in numerically formatted input fields on the specified unit are ignored. The only ex
ception is a field having all blank characters which is given a value of 0. If ZERO is specified, all
blank characters other than leading blank characters are treated as zeros (0). The default value of
< blnk > is NULL. The BLANK specifier is permitted only for a file being connected for formatted
input/ output.

BLOCKSIZE = <block-size>

<block-size> is an integer expression that specifies the length of a block in bytes. The maximum value
is 65535. The default value is dependent upon the physical unit (KIND) assigned to the file.

ERR = <error-specifier>

<error-specifier> is a statement label of an executable statement that appears in the same program
unit as <error-specifier> . If the OPEN statement contains <error-specifier> and an error occurs dur
ing the execution of the OPEN statement, the following occurs:

1. Execution of the OPEN statement terminates.
2. The position of the file specified in the OPEN statement becomes indeterminate.
3. If the OPEN statement contains the IOSTAT specifier, <iostat-variable> is defined with an

integer value as described in the paragraph on < iostat-variable > that follows.
4. Execution continues with the statement whose label is <error-specifier> .

FILE = <file-name>

< file-·name > is a character expression whose value is the name of the file to be connected to the
specified unit. If the FILE specifier is omitted and the unit is not connected to a file, the unit becomes
connected to a file whose name is formed by the concatenation of FILE and <unit-#> , for example,
FILE8.

1152113 11-11

FORM = <format>

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

<format> is a character expression whose value is either FORMATTED or UNFORMATTED. The
FORM specifier indicates that the file is being connected for either formatted or unformatted input/
output. If this specifier is omitted, a value of UNFORMATTED is assumed if the file is being con
nected for direct access, and a value of FORMATTED is assumed if the file is being connected for
sequential access. For an existing file, the specified form must be included in the set of allowed forms
for the file. For a new file, the processor creates the file with a set of allowed forms that includes
the specified form.

IOST AT = < iostat-variable >

< iostat-variable > is an integer variable or integer array element. < iostat-variable > is assigned the
value zero (0) if no input/ output error condition exists and it is assigned a processor-dependent positive
integer if an input/ output error condition does exist.

KIND = <hardware-type>

<hardware-type> is a character expression which specifies the device to which the file is connected.
The allowable values for <hardware-type> follow:

DISK
ODT
PRINTER
PUNCH
READER
REMOTE
TAPE

The default value of <hardware-type> is DISK.

MYUSE = <use-type>

<use-type> is a character expression which specifies how the file is to be used for input/ output. The
allowable values for <use-type> follow:

Value Definition

IN Input only
OUT Output only
IO Input or output

The default for <use-type> depends on <file-status> as follows:

11-12

< file-status >

NEW
OLD
SCRATCH
UNKNOWN

<use-type>

IO
IN
IO
IN

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

RECL = < record-length>

<record-length> is an integer expression whose value must be positive. It specifies the length of each
record in a file being connected for direct access. If the file is being connected for formatted input/
output, the length is the number of characters. If the file is being connected for unformatted input/
output, the length is measured in processor-dependent units. For an existing file, the <record-length>
value must be included in the set of allowed record lengths for the file. For a new file, the processor
creates the file with a set of allowed record lengths that includes the specified value. The RECL specif
ier must be given when a file is being connected for direct access; otherwise, it must be omitted.

STATUS = <file-status>

<file-status> is a character expression whose value is OLD, NEW, SCRATCH, or UNKNOWN. If
OLD or NEW is specified, a FILE specifier must be given. If OLD is specified, the file must exist.
If NEW is specified, the file must not exist. Successful execution of an OPEN statement with NEW
specified creates the file and changes the status to OLD. If SCRATCH is specified witl;i an unnamed
file, the file is connected to the specified unit for use by the executable program but is deleted either
at the execution of a CLOSE statement referring to the same unit or at the termination of the
executable program. SCRATCH must not be specified with a named file. If UNKNOWN is specified,
the file is assumed to exist. If this specifier is omitted, a value of UNKNOWN is assumed.

OPEN of a Connected Unit

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is permitted.
If the FILE specifier is not included in the OPEN statement, the file to be connected to the unit is
the same as the file to which the unit is connected.

If the file to be connected to the unit does not exist but is the same as the file to which the unit was
connected at the start of program execution, the properties specified by the OPEN statement become
a part of the connection.

If the file to be connected to the unit is not the same as the file to which the unit is connected, the
effect is as if a CLOSE statement without a ST A TUS specifier had been executed for the unit immedi
ately prior to the execution of the OPEN statement.

If the file to be connected to the unit is the same as the file to which the unit is connected, only the
BLANK specifier can have a value different from the one currently in effect. Execution of the OPEN
statem~ent causes the new value of the BLANK specifier to be in effect. The position of the file is unaf
fected.

If a fille is connected to a unit, execution of an OPEN statement on that file and a different unit is
not permitted.

Examples of valid OPEN statements follow:

OPEN (8)
OPEN (UNIT= 8)
OPEN (3,IOSTAT=IERR)
OPEN (UNIT= 7 ,ERR= 850)
OPEN (IUNIT ,FILE= FNAME, KIND= 'DISK' ,MYUSE =IN)
OPEN (1 O,FILE ='TEST .OUT' ,STATUS 'NEW' ,BLOCKSIZE = 90,BLNK = 'ZERO')

1152113 11-13

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

CLOSE STATEMENT

The CLOSE statement terminates the connection of a particular file to a unit.

The proper form of the CLOSE statement follows:

--.---UNIT =---<unit-If> ---...........-__.__-) -..-----1

----IOSTAT= <variable> --------t

------- ERR = <label> ------......

STATUS= I I KEEP

DISP=~DELETE
,___------------<unit-II>---------------

G50334

<unit-#> is an integer expression giving the unit number of the file as declared in a FILE statement.
There must be one and only one unit number specified in the CLOSE statement. If UNIT= is omitted,
<unit-#> must be the first item in the list; otherwise, the specifiers can occur in any order.

Execution of a CLOSE statement containing IOST AT= <variable> causes <variable> to receive an
integer value depending on the outcome of the CLOSE operation. The possible values follow:

Condition

No error
End of file
Error

Value

0
-1

2

If a CLOSE statement contains ERR = <label> and an error occurs during the CLOSE operation,
the operation is terminated and execution continues with the statement labeled <label> which must
be an executable statement that appears in the same program unit as ERR = <label> .

STATUS and DISP are equivalent. Use of these statements in a CLOSE operation determines the dis
position of the file that is connected to the specified unit. KEEP must not be specified for a file whose
status, prior to execution of the CLOSE statement, is SCRATCH. If KEEP is specified for a file that
exists, the file continues to exist after the execution of the CLOSE statement. If KEEP is specified
for a file that does not exist, the file will not exist after the execution of the CLOSE statement. If
DELETE is specified, the file will not exist after execution of the CLOSE statement. If this specifier
is omitted, the assumed value is KEEP unless the file status, prior to execution of the CLOSE state
ment, is SCRATCH. In this case, the assumed value is DELETE.

11-14

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

Examples of valid CLOSE statements follow:

CLOSE 6
CLOSE (UNIT = 2)
CLOSE (3,IOSTAT =I)
CLOSE (UNIT=5,ERR=500,IOSTAT=J)
CLOSE (9,STATUS=KEEP)
CLOSE (UNIT= 8,JOSTAT = l,ERR = 7500, DISP =DELETE)

INQUIRE STATEMENT

The INQUIRE statement inquires about properties of a named file or of a file connected to a particular
unit. The INQUIRE statement has two forms: inquire by file and inquire by unit. All value assignments
are made according to the rules for assignment statements.

The INQUIRE statement can be executed before, while, or after a file is connected to a unit. All values
assigned by the INQUIRE statement are current at the time the statement is executed.

INQUIRE by File Statement

The form of the INQUIRE by file statement follows:

---INQUIRE (FILE= <tile>,-------------------

1152113

ACCESS = <access-type > -
BLANK = < blnk >

DIRECT = <direct-a ccess >

> EXIST = <existence

FORM =<format>

FORMATTED = < fo rmat-allowed >

- NAME = <file-name >

NAMED = <named>

1 NEXTREC = <next-record>

___!1L_ NUMBER = <unit-n umber>

one> OPENED = <open-d

___f1L__ RECL = <record-Ieng th>

1 SEQUENTIAL = <se quential-access >

f -_f1\._ UNFORMATTED = <un ormat allowed>

)-----

11-15

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

The following paragraphs describe the file attributes and specifiers that can appear in an INQUIRE
by file statement.

FILE = <file>

<file> is a character expression that specifies the name of the file on which an inquiry is being made.
The named file need not exist nor be connected to a unit. The value of < file> must have one of
the following forms:

<multi-file-id> I <file-id> ON <pack-name>

<pack-name> I <multi-file-id> I <file-id>

ACCESS = <access-type>

<access-type> is a character variable or character array element that is assigned the value SEQUEN
TIAL if the file is connected for sequential access and DIRECT if the file is connected for direct ac
cess. If there is no connection, <access-type> becomes undefined.

BLANK = <blnk>

< blnk > is a character variable or character array element that is assigned one of the following values:
1) NULL, if null blank control is in effect and the file is connected for formatted input/output, and
2) ZERO, if zero blank control is in effect and the file is connected for formatted input/output. If
there is no connection or if the connection is not for formatted input/ output, < blnk > becomes unde
fined.

DIRECT = <direct-access>

<direct-access> is a character variable or character array element that is assigned one of the following
three values: 1) YES, if DIRECT is included in the set of allowed access methods for the file, 2) NO,
if DIRECT is not included in the set of allowed access methods for the file, and 3) UNKNOWN, if
the operating system is unable to determine whether or not DIRECT is included in the set of allowed
access methods for the file.

EXIST = <existence>

<existence> is a logical variable or logical array element that is assigned the value TRUE if there
exists a file with the specified name; otherwise, <existence> is assigned the value FALSE.

FORM = <format>

<format> is a character variable or character array element that is assigned the value FORMATTED
if the file is connected for formatted input/output, and is assigned the value UNFORMATTED if the
file is connected for unformatted input/ output. If there is no connection, <format> becomes unde
fined.

FORMATTED = <format-allowed>

<format-allowed> is a character variable or character array that is assigned one of the following three
values: 1) YES, if FORMATTED is included in the set of allowed forms for the file, 2) NO, if FOR
MATTED is not included in the set of allowed forms for the file, and 3) UNKNOWN, if the operating
system is unable to determine whether or not FORMATTED is included in the set of allowed forms
for the file.

11-16

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

NAME = <file-name>

< file-name> is a character variable or character array element that is assigned the value of the name
of the file if the file has a name; otherwise, <file-name> becomes undefined. The value of <file
name> is not necessarily the same as the name given in the FILE specifier. For example, the processor
can return a file name that is qualified by user identification. However, the value returned is suitable
for use as the value of the FILE specifier in an OPEN statement.

NAMED = <named>

<named> is a logical variable or logical array element that is assigned the value TRUE if the file
has a name; otherwise, it is assigned the value FALSE.

NEXTREC = <next-record>

<next-record> is an integer variable or integer array element that is assigned the value n + 1, where
n is the record number of the last record read or written on the file connected for direct access. If
the me is connected but no records have been read or written since the connection, <next-record>
is assigned the value 1. If the file is not connected for direct access or if the position of the file is
indeterminate because of a previous error condition, <next-record> becomes undefined.

NUMBER = <unit-number>

<unit-number> is an integer variable or integer array element that is assigned the value of the external
unit identifier of the unit that is currently connected to the file. If there is no unit connected to the
file, <unit-number> becomes undefined.

OPENI ED = < open--done >

<open-done> is a logical variable or logical array element that is assigned the value TRUE if the
file specified is connected to a unit; otherwise, <open-done> is assigned the value FALSE.

RECL = <record-length>

<record-length> is an integer variable or integer array element that is assigned the value of the record
length of the file connected for direct access. If the file is connected for formatted input/output, the
length is the number of characters. If the file is connected for unformatted input/output, the length
is measured in processor-dependent units. If there is no connection or if the connection is not for direct
access, <record-length> becomes undefined.

SEQUENTIAL = <sequential-access>

<sequential-access> is a character variable or character array element that is assigned one of the fol
lowing three values: 1) YES, if SEQUENTIAL is included in the set of allowed access methods for
the filie, 2) NO, if SEQUENTIAL is not included in the set of allowed access methods for the file,
and 3) UNKNOWN, if the operating system is unable to determine whether or not SEQUENTIAL is
included in the set of allowed access methods for the file.

UNFORMATTED = < unformat-allowed >

< unformat-allowed > is a character variable or character array element that is assigned one of the fol
lowing three values: 1) YES, if UNFORMATTED is included in the set of allowed forms for the file,
2) NO, if UNFORMATTED is not included in the set of allowed forms for the file, and 3) UN
KNOWN, if the operating system is unable to determine whether or not UNFORMATTED is included
in the set of allowed forms for the file.

1152113 11-17

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

A variable or array element that is defined or undefined as a result of its use as a specifier in an IN
QUIRE statement, or any associated entity, cannot be referenced by any other specifier in the same
INQUIRE statement.

Execution of an INQUIRE by file statement causes the specifier variables or array elements <named> ,
<file-name> , <sequential-access> , <direct-access> , <format-allowed> , and < unformat-allowed >
to be assigned values only if the value of < file> is a valid file. name and if there exists a file by
that name; otherwise, they become undefined. <unit-number> is defined only if <open-done> is de
fined with the value TRUE. The specifier variables or array elements <access-type>, <format>,
<record-length> , <next-record> , and < blnk > are defined only if <open-done> is defined with
the value TRUE.

If an error condition occurs during execution of the INQUIRE statement, all of the inquiry specifier
variables and array elements become undefined.

The specifier variables or array elements <existence> and <open-done> are always defined unless
an error condition occurs.

Examples of INQUIRE by file statements follow:

INQUIRE (FILE= 'F77FILE', ACCESS= ACCTYP)
INQUIRE (FILE= 'TEST' ,RECL = IREC, NEXTREC = NEXREC)
INQUIRE (FILE= FNAME, BLANK= INQ(l),DIRECT = INQ(2), FORM= lNQ(3))
INQUIRE (FILE= 'A/B ON C' ,NAME=FNAME. NUMBER=l UNIT ,UNFORMATTED=UFORM)

11·:18

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

INQUIRE by Unit Statement

The form of the INQUIRE by unit statement follows:

--- INQUIRE (UNIT = <unit-ti> , -------------------------..

1 ACCESS = < acces s-type >

f1_BLANK = <blnk>

lock-size>

t-access >

BLOCKSIZE = <b

DIRECT = <direc

EXIST = <existen

FORM = <format

ce>

>

format-allowed > FORMATTED = <
KIND = <hardwa

MYUSE = < use-ty

NAME = < file-nam

NAMED = <name

NEXTREC = <ne

NUMBER = <unit

re-type>

pe>

e>

d>

xt-record >

-number>

___fl__ OPENED = <open -done>

1 RECL = <recordlength>

SEOUENTIAL = < sequential-access>

- -UNFORMATTED - <unformat allowed>

l)-----

The following paragraphs describe the file attributes and specifiers that can appear in an INQUIRE
by unit statement.

UNIT = <unit-#>

<unit-#> is either an external unit identifier or an internal file identifier. An external unit identifier
refers to an external file and is an integer expression whose value is positive or zero. An internal file
identifa~r refers to an internal file and is the name of a character variable, character array, character
array element, or character substring.

ACCESS = <access-type>

<access-type> is a character variable or character array element that is assigned the value SEQUEN
TIAL if the file is connected for sequential access and DIRECT if the file is connected for direct ac
cess. If there is no connection, <access-type> becomes undefined.

BLANK <blnk>

< blnk > is a character variable or character array element that is assigned the value NULL if null
blank control is in effect and the file is connected for formatted input/ output, and is assigned the value
ZERO if zero blank control is in effect and the file is connected for formatted input/ output. If there
is no connection or if the connection is not for formatted input/output, < blnk > becomes undefined.

1152113 11-19

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

BLOCKSIZE = <block-size>

<block-size> is an integer variable or integer array element that is assigned the value of the block
size of the file.

DIRECT = <direct-access>

<direct-access> is a character variable or character array element that is assigned one of the following
three values: 1) YES, if DIRECT is included in the set of allowed access methods for the file, 2) NO,
if DIRECT is not included in the set of allowed access methods for the file, and 3) UNKNOWN, if
the operating system is unable to determine whether or not DIRECT is included in the set of allowed
access methods for the file.

EXIST = <existence>

<existence> is a logical variable or logical array element that is assigned the value TRUE if the
specified unit exists; otherwise, <existence> is assigned the value FALSE.

FORM = <format>

<format> is a character variable or character array element that is assigned the value FORMATTED
if the file is connected for formatted input/output and is assigned the value UNFORMATTED if the
file is connected for unformatted input/ output. If there is no connection, < format> becomes unde
fined.

FORMATTED = <format-allowed>

<format-allowed> is a character variable or character array that is assigned one of the following three
values: 1) YES, if FORMATTED is included in the set of allowed forms for the file, 2) NO, if FOR
MATTED is not included in the set of allowed forms for the file, and 3) UNKNOWN, if the operating
system is unable to determine whether or not FORMATTED is included in the set of allowed forms
for the file.

KIND = <hardware-type>

<hardware-type> is a character variable or character array element that is assigned the name of the
hardware device to which the file is connected. The following are the possible values:

DISK
PRINTER
PUNCH
ODT
READER
REMOTE
TAPE

MYUSE = <use-type>

<use-type> is a character variable or character array element that is assigned the value IN if only
input is allowed for the file, OUT if only output is allowed, and IO if both input and output are al
lowed.

11-20

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

NAME = <file-name>

< file-·name > is a character variable or character array element that is assigned the value of the name
of the: file if the file has a name; otherwise, it becomes undefined. The value of <file-name> is not
necessarily the same as the name given in the FILE specifier. For example, the operating system can
return a file name that is qualified by user identification. However, the value returned is suitable for
use as the value of the FILE specifier in an OPEN statement.

NAMED = <named>

<named> is a logical variable or logical array element that is assigned the value TRUE if the file
has a name; otherwise, it is assigned the value FALSE.

NEXTREC = <next-record>

<next-record> is an integer variable or integer array element that is assigned the value n + 1, where
n is the record number of the last record read or written on the file connected for direct access. If
the file is connected but no records have been read or written since the connection, <next-record>
is assigned the value 1. If the file is not connected for direct access or if the position of the file is
indeterminate because of a previous error condition, <next-record> becomes undefined.

NUMBER = <unit-number>

<unit-number> is an integer variable or integer array element that is assigned the value of the external
unit identifier of the unit that is currently connected to the file. If there is no unit connected to the
file, <unit-number> becomes undefined.

OPE~l ED = <open-done>

<open-done> is a logical variable or logical array element that is assigned the value TRUE if the
specified unit is connected to a file; otherwise, <open-done> is assigned the value FALSE.

RECL = <record-length>

<record-length> is an integer variable or integer array element that is assigned the value of the record
length of the file connected for direct access. If the file is connected for formatted input/output, the
length is the number of characters. If the file is connected for unformatted input/output, the length
is measured in processor-dependent units. If there is no connection or if the connection is not for direct
access,, <record-length> becomes undefined.

SEQUENTIAL = <sequential-access>

< sequc~ntial-access > is a character variable or character array element that is assigned one of the fol
lowing three values: 1) YES, if SEQUENTIAL is included in the set of allowed access methods for
the file, 2) NO, if SEQUENTIAL is not included in the set of allowed access methods for the file,
and 3) UNKNOWN, if the operating system is unable to determine whether or not SEQUENTIAL is
included in the set of allowed access methods for the file.

1152113 11-21

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

UNFORMATTED = <unformat-allowed>

< unformat-allowed > is a character variable or character array element that is assigned one of the fol
lowing three values: 1) YES, if UNFORMATTED is included in the set of allowed forms for the file,
2) NO, if UNFORMATTED is not included in the set of allowed forms for the file, and 3) UN
KNOWN, if the operating system is unable to determine whether or not UNFORMATTED is included
in the set of allowed forms for the file.

A variable or array element that is defined or undefined as a result of its use as a specifier in an IN
QUIRE statement, or any associated entity, cannot be referenced by any other specifier in the same
INQUIRE statement.

Execution of an INQUIRE by unit statement causes the specifier variables or array elements <unit
number >, <named>, <file-name>, <access-type>, <sequential>, <direct-access>, <format>,
<format-allowed>, < unformat-allowed >, <record-length>, <next-record>, and < blnk > to be
assigned values only if the specified unit exists and if a file is connected to the unit; otherwise, they
become undefined.

If an error condition occurs during execution of the INQUIRE statement, all of the inquiry specifier
variables and array elements become undefined.

The specifier variables or array elements <existence> and <open-done> are always defined unless
an error condition occurs.

The unit specified need not exist or be connected to a file. If it is connected to a file, the inquiry
operation refers to the connection and to the file connected.

Examples of INQUIRE by unit statements follow:

INQUIRE (UNIT= 3,NAME = FNAME)
INQUIRE (UNIT= 7 ,NEXTREC = NREC,,BLOCKSIZE = IBLK, RECL = ILEN)
INQUIRE (UNIT= IUNIT ,FORM= INQ(l), FORMATTED= INQ(2),SEQUENTIAL =1INQ(3))
INQUIRE (UNIT= 10,KIND = HTYPE,\MYUSE =USE, BLANK= BLNK)

CONTROL LIST FOR FILE POSITIONING STATEMENTS

There are four statements that control the positioning of a file: 1) BACKSPACE, 2) ENDFILE, 3)
REWIND, and 4) FIND. Associated with the file positioning statements BACKSPACE, ENDFILE, and
REWIND is a list of specifiers that specify which unit is to be accessed, the status of the operation,
and where execution continues in case of an error. This section describes these specifiers.

The format of the control list for the BACKSPACE, END FILE, and REWIND file positioning state
ments follows:

------- (_ __._ __ ...J ---.---UNIT= --.---<unit-If>------)--.-------

-----IOSTAT = <variable>-----

------ERR= <label>

--------------<unit-II> ------------

G50335

11-22

B 1000 Systems FORTRAN 77 Language Manual
Input/ Output

<unit-#> is an integer expression giving the unit number of the file as declared in a FILE statement.
Only one unit number can be specified in a file positioning statement. If UNIT= is omitted, <unit
#> must be the first item in the list; otherwise, the specifiers can occur in any order.

Execution of a file positioning statement containing IOST AT= <variable> causes <variable> to re
ceive an integer value depending on the outcome of the file positioning operation. The possible values
of <variable> follow:

Condition

No error
Error

Value

0
2

If a file positioning statement contains an ERR= specifier and an error occurs, the operation is termi
nated and execution continues with the statement labeled <label> , which must be an executable state
ment that appears in the same program unit as the ERR = specifier.

The control list must contain exactly one external unit specifier and can contain, at most, one of each
of the other specifiers.

The external unit specified by a file positioning statement must be connected for sequential access.

The specifiers, as described in this subsection, are essentially the same as those described under Control
List in this section and are re-explained to relate them specifically to file positioning statements.

BACKSPACE STATEMENT
The BACKSPACE statement backspaces the specified file one record. The proper form of the BACK
SPACE statement follows:

BACKSPACE---- <control-I ist-for-f i le-positioning-statement > -------------1
G50336

Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned
before the preceding record. If there is no preceding record, the position of the file is not changed.
If the preceding record is an endfile record, the file is positioned before the endfile record.

Backspacing a file that is connected, but does not exist, is prohibited.

ENDFILE STATEMENT
The ENDFILE statement writes an endfile record to the specified file. The proper form of the END
FILE statement follows:

ENDFILE ,---<control-list-for-file-positioning-statements>------------

G50337

1152113 11-23

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

Execution of an ENDFILE statement writes an endfile record as the next record of the file. The file
pointer is then positioned after the endfile record. If the file is a direct-access file, only those records
before the endfile record can be read through subsequent direct access to the file.

Before subsequent 1/0 operations can be performed on a file with an endfile, a BACKSPACE or RE
WIND statement must be used to reposition the file to a point where access can occur.

Execution of an ENDFILE statement for a file that is connected but does not exist, creates the file.

REWIND STATEMENT

The REWIND statement causes the specified file to be repositioned to the initial point. The proper
form of the REWIND statement follows:

----REWIND----< control-list-for-file-positioning-statements> -------------

G50338

Execution of a REWIND statement causes the specified file to be positioned at the initial point. If
the file is already positioned at that point, execution of this statement has no effect on the position
of the file.

Execution of a REWIND statement for a file that is connected but does not exist, is permitted, but
has no effect.

FIND STATEMENT

The FIND statement positions a direct access file at a specified record. The form of the FIND state
ment follows:

FIND (-....----.---------<unit-II> , REC = <record-II>~)

UNIT= I
REC = <record-II> , UNIT = <unit-II> I

L----<unit-11>' <record-II>---------~·

<unit-#> is an integer expression giving the unit number of the file on which the FIND operation
is to be performed. <record-#> is an integer expression giving the number of the record at which
the file is to be positioned.

Execution of a FIND statement positions the designated file immediately before the specified record.

Examples of FIND statements follow:

FIND (3 ,REC= 1024)
FIND (REC= 10000,UNIT = 9)
FIND (2' 1500)
FIND (IUNIT ,REC= IREC)
FIND (IFILE+ l'IPART*2-1)

11-24

INTERNAL FILES

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

Internal files permit the transfer and conversion of data from internal storage to internal storage. An
internal file is a character variable, character array, character array element, or character substring.
An internal file specifier (replacing the UNIT= <unit-#> in the control list) is the symbolic name
of a character variable, character array, character array element, or character substring. No FILE state
ment is associated with an internal file.

A record of an internal file is a character variable, character array element, or character substring.
An internal file that is a character variable, character array element, or character substring contains
only one record. If the file is a character array, it is treated as a sequence of character array elements.
Each array element is a record of the file. The ordering of the records of the file is the same as the
ordering of the array elements in the array (refer to appendix D). Every record of the file has the same
length, which is the length of an array element in the array.

A character storage location in an internal file becomes defined with a value when a WRITE to the
record containing that storage location is performed; when the storage location is contained in the input
list of a READ statement accessing another file; or when a character assignment is performed on a
charact,er entity (character variable, character array element, or character substring) that contains the
character storage location. A READ that accesses an internal file can only be performed on records
whose character storage locations are all defined.

Only sequential access formatted input/output statements are permitted with internal files. After an
input/ output statement accesses an internal file, the file pointer is repositioned at the beginning of the
file. Slash (/) characters (refer to section 12) can be contained in the format of an input/output state
ment that accesses an internal file, in which case, the file pointer is positioned at the beginning of the
next record and the input/output statement continues. If a WRITE statement accesses only part of a
record because slash (/) characters occur in the format or because the end of the input/ output state
ment occurs before the end of a record, then the remainder of the record is filled with blanks.

Examplles of input/output statements that reference internal files follow:

READ (A,100) B,C,D
READ (A,'(14///14)') E,F
WRITE (A,200) H,(I(J),J = 1, 14)
READ (A(3)(2:5),300) K

The first and second READ statements cause array A to be read as though it were a file. The character
values are converted from EBCDIC to the types specified by the format associated with the READ.
The second READ statement converts the first four character locations of the first element of A to
an integer and assigns the integer to variable E. The first four characters of the fourth element are
converted to an integer and assigned to variable F.

The third statement, a WRITE statement, demonstrates the manner in which data can be written to
an internal file. The variables in the output list are converted to EBCDIC representation using the asso
ciated format and assigned to an element or elements of array A.

The fourth statement, a READ statement, shows how an array element substring can be read as a file.
For more information on data assignment in input/output statements, refer to section 12.

1152113 11-25

B 1000 Systems FORTRAN 77 Language Manual
Input/Output

UNFORMATTED 1/0
Data can also be transferred between a file and entities specified within the program by means of un
formatted I/O. Unformatted 1/0 statements take the form of the READ and WRITE statements previ
ously described in this section. A READ or WRITE statement is unformatted if there is no format
specifier; otherwise, it is a formatted READ or WRITE statement. There is no editing or conversion
of transferred data associated with unformatted 1/0. Refer to appendix C, Description of Unformatted
1/0 Records, for additional information.

Execution of an unformatted READ statement fetches one record from the file indicated by the unit
number. If an I/O variable list is specified as part of the statement, data is transferred to the specified
locations. Transfer occurs as full storage units, and the record accessed should have been generated
by unformatted WRITE statements. If no 1/0 variable list is specified on an unformatted READ, one
record is skipped in the file indicated by the unit number.

If the I/O variable list for an unformatted direct-access READ specifies more data to be transferred
than is present in the record, an error occurs. Refer to ERR in this section. The I/O variable list for
an unformatted sequential READ can transfer more than one record.

Execution of an unformatted WRITE statement writes one or more records to the file indicated by
the unit number. The mandatory 1/0 variable list denotes the sequence of values to be contained in
the record. The contents of the indicated storage locations are placed unchanged in the generated rec
ord as full storage units intended to be read by the unformatted READ statement.

The unformatted WRITE statement depends on the declared or default size of records within the af
fected file. When an unformatted direct-access WRITE statement attempts to transfer more values than
can be contained in one record, the program is terminated unless the statement contains an ERR action
specifier. An unformatted sequential WRITE can transfer more than one record.

LIST-DIRECTED 1/0

An asterisk (*) character used as a format specifier indicates that list-directed 1/0 is to be performed.
List-directed I/O is described in more detail in section 12. Examples follow:

READ (5,*)
PRINT *
WRITE (8,FMT = *)

NAMELIST 1/0

A namelist name used as a format specifier indicates that namelist I/O is to be performed. Namelist
1/0 is described in more detail in section 12. Examples follow:

READ (5,NLNAME)
WRITE (UNIT= 9 ,FMT = NLN)

11-26

B 1000 Systems FORTRAN 77 Language Manual

SECTION 12
FORMAT SPECIFICATIONS

A format specification is used in conjunction with a formatted input/ output statement to determine
the editing to be performed between the internal representation and the characters of a record or se
quenc1e of records in a file. A format specification is used with an input statement to determine the
manner in which the characters in the input record are to be converted and what characters of the
input record to use. On output, the format specification is used to determine how the internal data
items are to be converted and placed in the record(s).

FORMAT SPECIFICATION METHODS

There are two methods for specifying a format in an input/ output statement control list. With the first
method, an input/ output statement <control-list> can contain a label specifying that the format
specification is given in a FORMAT statement with the given label. With the second method, a <con
trol-list> can specify a character array name, character variable, or other character expression which
contains the format specification as (part of) the value of the specified character entity. The leftmost
character positions of the specified entity must constitute a format specification when the statement
is executed.

FORMAT Statement

The following is the proper form of the FORMAT statement:

G50339

A FORMAT statement is preceded by a label in columns 1 through 5 of the statement. This is the
label that is specified when referring to the FORMAT statement in the control list of an input/output
statement.

Character Format Specification

When a character array, character variable, or other character expression (not involving the concatena
tion of a character variable with an assumed length) appears as the format identifier in an input/ output
<control-list> , the leftmost character storage locations of the character entity specified must be in
a defined state (contain character values) with character data that constitute a format specification
when the input/output statement is executed.

A character format specification must be of the form described under Form of a Format Specification
in this section. The format specification must begin with a left parenthesis and end with a right paren
thesis. The format specification can optionally be preceded by blanks and the storage locations within
the character entity that follow the format specification can contain other data without affecting the
format specification.

If a format identifier is the symbolic name of a character array, the format specification can extend
beyond the end of the first element of the array. The format identifier is considered to be the conca
tenation of all elements of the array in the order in which the array is stored (refer to appendix D).
However, if the format identifier is a character array element, the format specification must be con
tained entirely within the specified element.

1152113 12-1

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

FORM OF A FORMAT SPECIFICATION

The following is the proper form of a format specification:

-- (_........_r---------.......,.......--....-- <format-specification > ----r----r--L) -----
<repeat-count> <repeatable-edit-descriptor>

< nonrepeatable-ed it-descriptor > ---------------

G50340

As shown in this diagram, a format specification can contain another <format-specification> . A <re
peat-count> can precede a <repeatable-edit-descriptor> or a nested <format-specification> and is
the same as expressing the modified item n times in succession, where n is the number replacing <re
peat-count> in the diagram. <repeatable-edit-descriptor> specifies how to edit the data being trans
ferred. < nonrepeatable-edit-descriptor > specifies a special editing function as described in Nonrepeata
ble Edit Descriptors in this section.

The comma used to separate edit descriptors can be omitted:

1. Between a P edit descriptor and an immediately following F, E, D, or G edit descriptor.
2. Before or after a slash edit descriptor.
3. Before or after a colon edit descriptor.

INTERACTION BETWEEN INPUT/OUTPUT LIST AND FORMAT

The transfer of data between internal storage and a record of a file in a formatted input/ output state
ment is dependent on two factors:

1. The next edit descriptor contained in the corresponding format specification.
2. The next item in the input/output list, if one exists.

For each item in an input/ output list there must be a corresponding repeatable edit descriptor in the
format specification (or two F, E, D, or G edit descriptors if the item in the input/output list is of
type COMPLEX).

When a formatted input/ output statement occurs, the corresponding format specification is accessed
and processed from left to right, except where a repeat specifier occurs beginning at the first left paren
thesis. When a nonrepeatable edit descriptor is encountered, the appropriate action is taken as specified
by that descriptor. When a repeatable edit descriptor is encountered, a search is made for an input/
output list item, and if one exists, appropriately edited information is transferred between the input/
output list item and the record of the file. Processing of the format specification continues from this
point. If a repeatable edit descriptor is encountered and the input/ output list has been exhausted, the
input/ output statement is terminated.

An embedded format specification or repeatable edit descriptor preceded by a repeat specification is
processed as a list of n (where n is the repeat count) format specifications or repeatable edit descriptors
identical to the format specification or edit descriptor without the repeat specification. An omitted re
peat specification is treated the same as a repeat specification whose value is 1.

12-2

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

If format control encounters the rightmost parenthesis of a complete format specification and another
input/output list item is not specified, format control terminates. However, if another input/output
list item is specified, the file pointer is positioned at the beginning of the next record and format con
trol reverts to the beginning of the format specification terminated by the last preceding right parenthe
sis. If there is no such preceding right parenthesis, format control reverts to the first left parenthesis
of the format specification. If such reversion occurs, the reused portion of the format specification
must contain at least one repeatable edit descriptor. If format control reverts to a parenthesis that is
preceded by a repeat specification, the repeat specification is reused.

If an input/ output list contains at least one list item, at least one repeatable edit descriptor must exist
in the :format specification. A format specification of (), or a format specification containing only
nonrepcatable edit descriptors, can only be used with an input/output statement that does not contain
an input/output list. If a format specification of () is given, a record containing no characters is writ
ten or one input record is skipped.

During processing of a format specification, if a colon edit descriptor is encountered and the corre
sponding input/output list has been exhausted, the input/output statement is terminated.

EDIT DESCRIPTORS

Edit descriptors are used to specify the form of a record and direct the editing between the characters
in a record and internal representations of data. The internal representation of a datum corresponds
to the internal representation of a constant of the corresponding type (refer to appendix D).

A field is a part of a record that is read on input or written on output when one I, F, E, D, G, L,
A, Z, H, apostrophe, or quote edit descriptor is processed. The field width is the size in characters
of the field.

Edit de:scriptors are divided into two categories: repeatable and nonrepeatable.

The folllowing is a list of repeatable edit descriptors available in FOR TRAN 77:

Repeatable
Edit

Descriptor

Iw
Iw.m
Ew.d
Ew.dEe
Fw.d
Dw.d
Gw.d
Gw.dEe
Lw
A
Aw
Zw

For integer data.
For integer data.

Meaning

For real, double-precision, or complex data.
For real, double-precision, or complex data.
For real, double-precision, or complex data.
For real, double-precision, or complex data.
For real, double-precision, or complex data.
For real, double-precision, or complex data.
For logical data.
For character data.
For character data.
For any numeric or logical data.

The capital letters A, D, E, F, G, I, L, and Z refer to the type of edit descriptor. The lower-case
letters w, d, e, and m are nonzero unsigned integer constants, where w is the field width, d is the
number of significant digits to the right of the decimal point, e is the number of digits in the exponent,
and m is the number of significant digits in the integer data item.

1152113 12-3

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The following is a list of nonrepeatable edit descriptors:

N onrepeatable
Edit

Descriptors

'hlh2 ... hn'
"hlh2 ... hn"
nHhlh2 ... hn
Tc
TLc
TRc
x
nX
I

s
SP
SS
kP
BN
BZ

Meaning

Apostrophe editing.
Quote editing.
Hollerith editing.
Tab editing.
Tab editing.
Tab editing.
Tab editing.
Tab editing.
Slash editing.
Colon editing.
Sign control.
Sign control.
Sign control.
Scale factor.
Blank control.
Blank control.

H, T, TL, TR, X, /, :, S, SP, SS, P, BN, BZ, ',and" specify a type of editing. The figures hlh2 ... hn
represent characters representable by the processor, c is a nonzero unsigned integer constant, and k
is an optionally signed integer constant giving the scale factor.

Repeatable Edit Descriptors

Repeatable edit descriptors determine the manner in which items in the input/ output list are to be ed
ited and transmitted to or from a file. Each item in an input/ output list is associated with a repeatable
edit descriptor in the corresponding format specification.

12-4

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Table 12-1 summarizes the data item types that can be read using each type of repeatable edit descrip
tor. The letter A indicates that the operation is allowed; the letters NA indicate the operation is not
allowed.

Table 12-1. Input Data Item Types

Format Specification

Data Item Type I F E G D A L z
INTEGER A A A A A A NA NA

REAL NA A A A A A NA NA

DOUBLE NA A A A A A NA NA

LOGICAL NA NA NA A NA A A NA

CHARACTER NA NA NA NA NA A NA NA

Hex NA NA NA NA NA A NA A

Table 12-2 summarizes which repeatable edit descriptors can be associated with each type of item in
an input list. The letter A indicates that the operation is allowed; the letters NA indicate that the
operation is not allowed.

Table 12-2. Input Variable Item Types

Format Specifications

Variable Type I F E G D A L z
INTEGER A NA NA A NA NA NA A

REAL NA A A A A NA NA A

DOUBLE NA A A A A NA NA A

COMPLEX NA A A A A NA NA A

LOGICAL NA NA NA A NA NA A A

CHARACTER NA NA NA NA NA A NA NA

1152113 12-5

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Table 12-3 summarizes which repeatable edit descriptors can be associated with each type of item in
an output list (arithmetic expressions, variables, and so forth). The letter A indicates that the operation
is allowed; the letters NA indicate that the operation is not allowed.

Table 12-3. Output List Item Types

Format Specification

List Item Type I F E G D A L z
INTEGER A NA NA A NA NA NA A

REAL NA A A A A NA NA A

DOUBLE NA A A A A NA NA A

COMPLEX NA A A A A NA NA A

LOGICAL NA NA NA A NA NA A A

CHARACTER NA NA NA NA NA A NA NA

On input, if an exponent is used in the data item, it can have one of the following forms:

E[±] <integer-constant>
D[±] <integer-constant>
± <integer-constant>

If the exponent is preceded by an E or a D and is positive, the + sign is optional.

For numeric input, leading blanks are ignored but are counted in the length of the field w. The inter
pretation of blanks, other than leading blanks, is determined by a combination of any BLANK= spe
cifier in the FILE declaration and any BN or BZ blank control that is currently in effect for the unit.
BN and BZ are described later in this section. A field of all blanks is considered to be zero.

12-6

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Format Specification I

The format specification I is used to transmit data as integer values between internal storage and a
file (either external or internal). The I format specification has two forms: Iw and Iw .m. The .m por
tion of the second form has no effect on input.

Input Using lw

On input, the integer format specification Iw causes the value of the integer data item in the input
field to be assigned to the corresponding integer variable in the input list. The integer data item must
be in the form of an optionally signed integer constant.

The magnitude of the value in the input field must not exceed the maximum magnitude permitted for
an integer data item. Refer to Integer Constants in section 4 for additional information.

Examples:

Variable Type

INTEGER
INTEGER
INTEGER

Output Using lw and lw.m

Data Item

567
27
- 11234

Specification

13
I2
I6

Internal Value

+567
+27
- 11234

On output, the integer format specification I w causes the corresponding integer output list item to be
written to the specified output file.

The field width (w) specifies the number of positions of the record that the list item is to occupy.
Specifying Iw causes the integer number to be placed right-justified in the output field over a field
of blanks. Specifying Iw.m causes at least m digits, including leading zeros if necessary, to be output.
If .m is not specified, at least one digit is output.

Unless otherwise specified, the plus sign is omitted for positive numbers. If a value of the integer quan
tity to be written requires more than w digits, or if w cannot accommodate both the sign position and
the value in the case of a negative quantity, the output field is filled with asterisks (*).

Examples:

List Item
Type

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

List Item
Value

-79
0
-37216
+22
+2361

Output
Specification Field

I4 b-79
13 bbO
I5 *****

I4.3 b022
I4.2 2361

Examples of statements using I format follow:

1152113

100
200

READ (5,100) I,J,K
WRITE (6,200) I,J ,K
FORMAT (313)
FORMAT (13,I2,I5)

12-7

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Assume the input record contains the following (BLANK= ZERO is in effect for the file and b denotes
a blank):

lb23b456bbb789b10

The READ statement from this example assigns the following values to variables I, J, and K:

I= 102
1=304
K=560

Format Specification F

The F format specification is used to transfer real, double-precision, and complex values between inter
nal storage and a file.

Input Using Fw.d

On input, the format specification Fw .d causes the value of the data item in the input field to be as
signed to the corresponding real, double-precision, or complex variable in the input list. The data item
must be in the form of an integer, real, or double-precision constant (ref er to section 4 for the forms
of constants).

The field width (w) specifies the number of positions that the input item is to occupy, including the
decimal point and the exponent, if present, and the decimal digits. The input data item can contain
more digits than FORTRAN 77 uses to approximate the value of the constant. If a decimal point ap
pears in the input field, the actual decimal location in the input value overrides the decimal point place
ment specified by d. If there is no decimal point in the input field, a decimal point is assumed d places
from either the right side of the input field or from the E, D, or signed integer constant denoting the
exponent.

On input, the real format specifiers Fw .d, Ew .d, Ow .d, Dw .d, Ew .dEe, and Ow .dEe function in the
same manner.

Examples:

Variable Type

REAL
REAL
REAL
REAL
DOUBLE PRECISION

Output Using Fw.d

Data Item

3.672593
36725931
-3672.E02
-3672+02
367259D-10

Specification Internal Value

F8.4 + 3.672593
F8.4 + 3672.593
F8.4 -367200.
F8.4 -36.72
Fl0.4 +.00000000367259

On output, the format specification Fw .d causes the corresponding real, double-precision, or complex
output list item to be written without an exponent on the specified output file.

The real number is placed, right-justified and rounded to d decimal places, in the output field superim
posed over a field of blanks. The plus sign is optional for positive numbers (dependent upon the sign
control in effect, described in this section). On output, the field width w must include enough positions
to accommodate d decimal places, a decimal point, and the integral part of the value. The position
for the sign is included in the field width w.

12-8

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

If the magnitude of the number exceeds the specified field width (w), the output field is filled with
asterisk (*) characters.

Examples:

List Item Type

REAL
REAL
REAL
REAL
DOUBLE PRECISION
REAL
REAL
REAL

List Item Value

+ 36.7929
+ 36.7934
-0.0316
0.0
37624.816952
+ 579.645
-579.645
-0.895

Examplc~s of statements using F format follow:

CHARACTER *12 A
READ (* ,'(2F6.2,F3.2)') (X(I),I = 1,3)
WRITE (A,'(3F4.1)') X(l), X(2), X(3)

SpecificatiOn

F7.3
F9.3
F6.3
F6.4
F8.3
F6.2
F6.2
F5.2

Assume the input record contains the following (b denotes blank).

21E- 0360.215b12

The variables would take on the following values:

X(l) = .21E- 03 = .00021
X(2) = 60.215
X(3)= .12

Output Field

b36.793
bbb36.793
b- .032
b.0000

579.65

b-.90

The value transmitted to the character variable A, which is used as an internal file, would be the fol
lowing:

A==' .060.2****'

Format Specification E

The E format specification is used to transfer real, double-precision, or complex values between a file
and internal storage. The Ew .d, Dw .d, and Ew .dEe edit descriptors indicate that the external field oc
cupies w positions, the fractional part of which consists of d digits (unless a scale factor greater than
one is in effect), and the exponent part consists of e digits. The e has no effect on input.

Input Using Ew.d

On inplllt, the format specifiers Ew.d, Fw.d, Gw.d, and Dw.d function in the same manner.

Output Using Ew .d

On output, the format specification Ew.d causes the corresponding real, double-precision, or complex
output list item to be written with an exponent on the specified output file. The number is normalized
(most significant digit placed immediately to the right of the decimal point) by multiplying the number
by lO**e. The e becomes the exponent which is output with the number if the scale factor is zero.

1152113 12-9

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The real number is placed right-justified and rounded to d digits, together with a 4-place exponent
field, in the output field over a field of blanks. Since no significant digits are written to the left of
the decimal point in the output field, d has a different interpretation with the Ew .d format. The posi
tion for the minus sign required for negative numbers is included in the field width w. For positive
numbers, w has the value d + 5 + (the number of leading blanks desired). For negative numbers,
w has the value d + 6 + (the number of leading blanks desired, and an optional plus sign). The
decimal point must be counted when determining the field width.

Examples:

List Item Type

REAL
REAL
REAL
REAL
DOUBLE PRECISION

List Item Value

+ 36.7929
-36.7929
-36.7929
22.323
872568. 394816897

Specification

E12.5
Ell.5
El0.5
E8.1E3
E12.7

Examples of statements using E format follow:

READ (*,100) X,Y,Z
PRINT 100, X,YJZ

100 FORMAT (El. l ,E9.3,E10.3E3)

Assume the input record contains the following (b denotes blank).

1bl23bE-02b12.3bE+02

The variables would be assigned the following values:

X=.l
Y = .123E - 02 = .00123
Z= 12.3E+02= 1230

Output Field

bb.36793E + 02
- .36793E + 02

b.2E+001
. 8725684E + 06

The values output to the file (line printer by default) would be the following:

* .123E-02 .123E+004

Format Specification D

The format specification Dw .d is identical to Ew .d, except that the exponent part of the output con
tains a D rather than an E.

Format Specification G

The G format specification is a multi-purpose format descriptor which can be used with variables of
type INTEGER, REAL, DOUBLE PRECISION, or LOGICAL.

Input Using Gw .d and Gw .dEe

On input, the G format specification is interpreted as an I, F, E, D, or L format descriptor, depending
upon the type of the variable in the input list. The Ee portion of the Gw .dEe form is ignored on input.

If the input variable is of type INTEGER or LOGICAL, the Gw.d format specification functions in
the same manner as the Iw or Lw specification, respectively. The .d portion of the general form is
still required, but is ignored.

12-10

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

If the :input variable is REAL or DOUBLE PRECISION, the Gw.d and Gw.dEe format specifications
functions in the same manner as the Fw .d, Ew .d, Ew .dEe, and Dw .d.

Examples:

Variable Type

REAL
LOGICAL
INTEGER
REAL
DOUBLE PRECISION

Output Using Gw.d and Gw.dEe

Data Item

529.4
T
45
-6.1E+04
5.3294D+02

Specification

G5.1
Gl
G2
G8.l
Gl0.4

Internal Value

+ 529.4
.TRUE.
+45
-61000.
+ 532.94

On output, the general format specifications Gw .d and Gw .dEe cause the corresponding output list
item to be written to the specified output file. The data item type is determined by the type of the
output list item and can be either INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL.

The G format specification is interpreted as an I, F, E, D, or L format specification, depending upon
the magnitude and the type of the output list item.

If the output list item is of type INTEGER or LOGICAL, the Gw .d format specification functions
in the same manner as the Iw or Lw specification, respectively. The .d portion of the general form
is still required, but is ignored.

If the output list item is REAL, DOUBLE PRECISION, or COMPLEX, the Gw.d and Gw.dEe specifi
cations produce either an F, E, or D format representation according to the following criteria (N is
the absolute value of the list item, n is 4 for Gw .d and e + 2 for Gw .dEe):

If 0.1 < = N < 1 output format is F(w-n).d, nX

If 1 < = N < 10 output format is F(w-n).(d-1), nX

If lO**(d-2) < = N < lO**(d-1) output format is F(w-n).1, nX

If lO**(d- 1) < = N < lO**d output format is F(w - n).O, nX

If none of the above conditions apply, the output format is Ew.d, Ew.dEe, or Dw.d depending
on the type of the output list item and whether Gw .d or Gw .dEe is used as the format specifica
tion.

For example, if 5.7319 is the value represented internally and Gl0.3 is the format specified, the result
ing format would be F6.2, 4X, which would output bb5.73bbbb.

If the format specified for the value 5731.9 were Gl0.3, the resulting format would be El0.3, with
the corresponding output bb.573E + 04. Since 5731 is greater than 10**3 (1000), the specification would
produce an E-format representation.

On output of REAL or DOUBLE PRECISION, the field width (w) must include enough positions to
accommodate an exponent, a decimal point, and a sign position if the quantity is negative, or a sign
is specified in the format. Refer to Sign Control in this section for additional information.

1152113 12-11

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Examples:

List Item Type

REAL
REAL
INTEGER
LOGICAL
DOUBLE PRECISION
REAL

List Item Value

+ 10.
+ 100000.
-10
.TRUE.
+ 123467890123.
+ 101010.

Examples of statements using the G format follow:

LOGICAL LOG

Specification

G12.5 =F8.3
G12.5 =E12.5
G5.0=I5
G4.0=L4
G20.13 =F16.0
G 10.5 = El0.5

READ (3,100) X, LOG, INTEG
100 FORMAT (3G9.3)

Output Field

bblO.OOObbbb
bb.10000E+06
bb-10
bbbT
bbl23467890123.bbbb
.10101E+06

WRITE (*,'(G9.2,G2.0,G10.0)') X, LOG, INTEG

Assume the input record contains the following (b denotes a blank):

-1234E-03b.TFILLERb12345678

The values of the variables would be:

X= - l.234E-03 = - .001234
LOG=.TRUE.
INTEG = 12345678

The values transmitted to file 6 would be:

-0.12E-02bTbbl2345678

Complex Editing

A complex data item consists of a pair of separate real data items; therefore, the editing is specified
by two successively interpreted F, E, D, or G edit descriptors. The first of the edit descriptors specifies
the real part; the second specifies the imaginary part. The two edit descriptors need not be the same
edit descriptor used twice. Nonrepeatable edit descriptors can appear between the two successive F, E,
D, or G edit descriptors.

Format Specification L

The format specification L is used to transfer logical data items between internal storage and a file.

Input Using Lw

On input, Lw causes the value of the LOGICAL data item in the input field to be assigned to the
corresponding variable or array element of type LOGICAL in the input list. The input field width (w)
must be greater than or equal to 1. The input field consists of optional blanks, optionally followed
by a decimal point, followed by a T or an F. The T or F can be followed by additional characters
in the field. The logical constants .TRUE. and .FALSE. are acceptable input forms.

12-12

Examples:

Output Using Lw

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Data Item

T
. F
TFILLERS
bbbF

Specification Internal Value

Ll .TRUE.
L2 .FALSE .
L9 .TRUE.
L4 .FALSE.

On output, the format specification Lw causes the corresponding logical list item in the output list to
be written to the specified output file. The logical value T for .TRUE. or F for .FALSE. is written
adjacent to w- 1 blanks.

List Item Value

.FALSE.

.FALSE.
.TRUE.

Specification

Ll
L3
L2

The following are statements using L format:

LOGICAL LOGl, LOG2
CHARACTER * 7 A,B
A== '(L5,L2)'
READ (5,A),LOG1,LOG2
WRITE (B,A) LOG1,LOG2

Output Field

F
bbF
bT

Assume the input record contains the following (b denotes a blank):

.TRUEbF

Execution of this program segment would cause the LOGICAL variables LOGl and LOG2 to be as
signed the following values:

LOGl=T
LOG2=F

The output to the internal file (character variable B) would be the following:

bbbbTbF

Format Specification A

The A format specification is used to transmit EBCDIC character data between internal storage and
a file. Only CHARACTER type entities (variables, arrays, and so forth) in the input/ output list can
be associated with A edit descriptors in the corresponding format specification. If the field width w
is not specified in the A edit descriptor, the width of the field is the declared length of the input/
output list item.

1152113 12-13

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Input Using Aw

On input, the alphanumeric format specification Aw causes the character string of width w in the input
field to be assigned to the corresponding character variable, character array element, or character array
substring. The number of characters that can be stored in a variable depends upon the length of the
character entity in the input list.

If the field width (w) exceeds the maximum number of characters (m) that can be contained within
the input variable, the first w - m characters are skipped and the remaining rightmost (m) characters
are assigned to the variable. If the field width (w) is less than the maximum number of characters that
can be contained within the input variable, the alphanumeric string is assigned left-justified, with trail
ing blanks, to the variable.

Examples:

Variable Type

CHARACTER * 4
CHARACTER * 7
CHARACTER * 10
CHARACTER * 1

Data Item

ABCDEFGH
ABCbEFG
ABCD

Specification Internal Value

AB

Blanks are not ignored when using an A edit descriptor.

Output Using Aw

AS EFGH
A7 ABCbEFG
A3 ABCbbbbbbb
A2 B

On output, the alphanumeric format specification Aw causes the corresponding list item in the output
list to be written on the specified output file. If the field width (w) exceeds the maximum number of
characters that can be contained in the output list item, the alphanumeric string is placed right-justified
in the output field over a field of blanks. If the field width (w) is less than the number of characters
in the output list item, the leftmost characters in the variable are written.

Examples:

List Item Type

CHARACTER * 4
CHARACTER * 3
CHARACTER * 5
CHARACTER * 4
CHARACTER * 12

List Item Value

ABCD
ABC
ABCDb
ABCD
ABbbbCDEFbbG

Specification Output Field

A6 bbABCD
AS bbbbbABC
A3 ABC
A2 AB
A9 ABbbbCDEF

Examples of statements using A format follow:

12-14

CHARACTER *2 A(5)
READ (5,'(5A2)') A
READ (A,100) (l(J),J = 1,5)
WRITE (A,100) (l(J),J = 5,1, -1)

100 FORMAT (12)

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Assume the input record contains the following:

1234567890

The first READ statement assigns the data to an internal file (character array A). The second READ
uses data in A to assign integer values to array I. The WRITE statement returns the values to array
A in reverse order. The following are the values of A after the first READ operation is completed:

A(ll) = '12' A(2) = '34' A(3) = '56' A(4) = '78' A(5) = '90'

After the second READ operation, elements of array I have the following values:

I(l) = 12 I(2) = 34 I(3) = 56 I(4) = 78 I(5) = 90

After the WRITE operation, the elements of A have the following values:

A(ll) = '90' A(2) = '78~ A(3) = '56' A(4) = '34' A(5) = '12'

Reversion (refer to Interaction Between Input/Output List and Format in this section) must be used
when processing the FORMAT statement used in the program segment.

Format Specification Z

The Z format specification can be used to assign hexadecimal digits to variables or to transmit data
in hexadecimal form to a variable or array of any data type other than type CHARACTER.

Input Using Zw

On input, the hexadecimal format specification Zw converts the EBCDIC representation of the digits
0 through 9 and the characters A through F in the input field to 4-bit hexadecimal digits and assigns
them to the corresponding INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or COMPLEX var
iable in the input list. Leading, embedded, and trailing blanks within the input field are interpreted
as zeros. The hexadecimal digits in the input field are transmitted right-justified to the corresponding
input variable.

If the width (w) of the input field is less than the length of the variable (in hexadecimal digits), leading
zeros ar1e supplied. If the field width (w) is greater than the length of the input variable (in hexadecimal
digits), the leftmost digits are truncated. Refer to section 7, Hexadecimal Assignment in DAT A State
ment, for a description of storage requirements for the different types of variables.

Examples:

Variable Type

INTEGER
REAL
DOUBLE PRECISION
LOGICAL

Output Using Zw

Data Item

OOBC614E
4BEBCE50
C140000BC614E009
00000001

Internal
Specification Representation

Z8 OOBC614E
Z8 4BEBCE50

Z16 C140000BC614E009
Z8 00000001(.TRUE.)

On output, the hexadecimal format specification Zw causes the hexadecimal value of the corresponding
INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or COMPLEX output list item to be con
verted to the EBCDIC representation of the hex digits 0 through F and then to be written to the
specified file.

1152113 12-15

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The hexadecimal value is placed right-justified in the output field over a field of blanks. If the length
of the output list item (in hexadecimal digits) is less than the field width (w), leading blanks are sup
plied. If the length of the output list item (in hexadecimal digits) is greater than the field width (w),
the leftmost digits are truncated. Refer to appendix D for additional information.

Examples:

List Item Type

INTEGER
REAL
INTEGER
REAL
DOUBLE PRECISION
LOGICAL

List Item Value

OOOBC614
4BEBCE50
OOOBC614
4BEBCE50
C140000BC614E009
00000001 (.TRUE.)

Specification Output Field

Z9 bOOOBC614
Z9 b4BEBCE50
Z6 OBC614
Z6 EBCE50

Z16 C140000BC614E009
Z9 bOOOOOOOl

Examples of statements using Z format follow:

LOGICAL LA
READ (5,100) LA, Y
WRITE (6,200) LA, Y

100 FORMAT (Zl,Z8)
200 FORMAT (L2,F10.4)

Assume the input record contains the following (b denotes a blank):

lbOOOOOOO

The output record would contain the following after the program segment is executed:

bTbbbbb.0000

Nonrepeatable Edit Descriptors

Nonrepeatable edit descriptors permit the use of special editing functions within the format specifica
tion. Nonrepeatable edit descriptors are not associated with any items of the input/ output list and can
not be preceded directly by a repeat specifier.

String Editing

The string (or Hollerith) format specification wHs, 's', or "s" allows character strings to be written
without employing character variables as storage.

The letter w in the Hollerith form is the number of characters, including blanks, following the H that
are part of the output string.

The 's' and "s" edit descriptors have the form of character constants.

Examples:

12-16

100
200
300
400

PRINT 200
FORMAT ('ISN"T THIS NICE?')
WRITE (6,400) A
FORMAT (30HTHE DIAMETER OF THE CIRCLE IS ,F5.2," INCHES.")

Positional Editing

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The position within a record at which data transfer is to occur can be determined using the X, T,
TL, and TR edit descriptors. Using these edit descriptors permits the processing of the same character
positions within a record more than once or the capability of skipping character positions within a rec
ord.

When used with input, positional edit descriptors permit the same characters within a record to be read
more than once, possibly with different format specifiers. Also, character positions within the input
record can be skipped by positioning the pointer beyond the unwanted characters.

When used with output, positional edit descriptors can allow characters within the output file to be
overwritten, or character positions within the record can be skipped. Any character positions within
the record that are skipped and had not previously been filled are written as blanks.

X Editing

The nX edit descriptor causes the next data transfer to occur n character positions forward from the
current position. The X edit descriptor does not cause any data to be transmitted. The unmodified
edit dt~scriptor X is the same as specifying lX.

Examples:

100 READ (A,'(12,2X,13)') (J(l),I = 3,4)
200 WRITE (9,300)
300 FORMAT ("12345",7X,"67890")

The READ statement in this example reads two integer fields into array positions J(3) and J(4) from
an int~~rnal file (character variable or character array A). Two character positions are skipped between
the first and second fields. The WRITE statement writes two strings that are each enclosed by quota
tion marks with seven blanks between them.

T Editing

The Tn edit descriptor indicates that the next datum to be transferred is to begin at character position
n.

The TLn edit descriptor specifies that the next datum to be transferred is to begin n character positions
to the left of the current position.

The TRn edit descriptor specifies that the next datum to be transferred is to begin n character positions
to the right of the current position.

An example of T editing follows:

READ (6, 100) A,I
100 FORMAT (T8,F3.2, TL3,13)

Both variables A and I receive values from the same location within the current record, bytes 8 through
10.

1152113 12-17

Slash Editing

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The slash edit descriptor (/) indicates the end of data transfer on the current record. With both sequen
tial and direct-access files, the rest of the current record is skipped and the file is positioned at the
which becomes the current record of the file. On output to a file connected for sequential access, a
new record is created and becomes the last and current record of the file. Processing of the format
specification continues from this point.

A record containing only blanks can be written on output. If any character positions in a record are
skipped due to slash editing, the record is written with blanks in these character positions. On input,
an entire record can be skipped by using slash editing.

Examples:

100 READ (5,'(12/I2/I2)') I,J,K
200 WRITE (* ,600) (X(l),I = 1,100)
300 READ (A,600) (X(l),I= 1,100)
600 FORMAT (50(2I2/))

The READ statement at line 100 in the previous example reads three integer fields and skips to the
beginning of the next record after reading each field. The WRITE statement at line 200 writes 100
elements of array X on each of 50 records of file 6, two elements per record. The READ statement
at line 300 reads 100 elements of array X from character array A. Each element of A must have a
length of at least four characters, since two I2 fields are read from each element. Array A must have
at least 50 elements.

Colon Editing

A colon edit descriptor (:) indicates that the processing of the current format specification is to termi
nate if there are no further items in the corresponding input/ output list.

Example:

WRITE (6,100) 1,2
WRITE (6,200) 1,2

100 FORMAT (" LENGTH= ",I2," WIDTH= ",I2," DEPTH= ",I2)
200 FORMAT (" LENGTH= ",12:" WIDTH= ",12:" DEPTH= ",I2)

The following is the result of the previous example:

LENGTH= 1 WIDTH= 2 DEPTH=
LENGTH= 1 WIDTH= 2

The colon, following the second I2 in line 200, caused the output list to be checked for more items.
Since none were found, the WRITE was terminated. The first WRITE statement could only terminate
and found to be exhausted.

Sign Control

The S, SP, and SS edit descriptors are used to control the printing of an optional plus sign that can
be printed with values that are output using I, F, E, D, and G edit descriptors.

The S and SS edit descriptors in B 1000 FORTRAN 77 suppress the printing of a plus sign preceding
positive numbers for the duration of the format specification from the point at which the S or SS oc
cur. Sign suppression is the default condition at the beginning of format processing.

12-18

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The SP edit descriptor forces the printing of a plus sign preceding positive numeric values for the dura
tion of the format specification from the point at which the SP edit descriptor occurs. An adequate
field width must be provided to contain the additional output character. If there is not enough space
for th<~ plus sign, asterisks are printed in the field.

Example:

WRITE (6,100) 21.7,193.2,18,234
100 FORMAT (SP,2F5.l,2(14,SS))

Execution of the program segment in this example results in the following output:

+ 21.7***** + 18 234

Scale Factor

The scale factor is specified by the kP edit descriptor, where k is an optionally signed integer constant
called the scale factor. The scale factor is zero at the beginning of each input/ output statement. When
a scale factor is established, it remains in effect until the next kP edit descriptor or the end of the
input/output statement. The scale factor affects values interpreted by subsequent F, E, D, and G edit
descriptors.

The scale factor affects editing in the following manner:

1.. On input with F, E, D, and G editing (providing that no exponent exists in the field) and on
output with F editing, the externally represented number equals the internally represented num
ber multiplied by lO**k (EXTERNAL = INTERNAL *(lO**k) or (INTERNAL= EXTERNAL/
(lO**k)).

2 .. On input with F, E, D, and G editing, the scale factor has no effect if there is an exponent
in the field.

3.. On output with E and D editing, the real part of the quantity is multiplied by lO**k and the
corresponding exponent is reduced by k.

4.. On output with G editing, the . scale factor only has effect when the value of the list item re
quires that E editing is used, and then it has the same effect as with E output editing.

Examples:

READ (5,'(2PF4.l)') A
WRITE (6, '(- 3P2E14. 7)') A, 41174.

If the input record contains the value 1234, then A has the value 1.234 (123.4/(10**2)). The output
record has the following value:

bb.0001234E + 04bb.0004117E + 08

Blank Control

The BN and BZ edit descriptors specify how blanks within a numeric input field are to be interpreted.
During processing of a format specification, these descriptors override the BLANK= setting for the
file as specified in the file declaration from the point of occurrence until the end of the input/ output
statement.

The BN edit descriptor specifies that all blanks in the numeric input field are to be ignored. The effect
is the same as if all blanks were removed and the data right-justified in the field.

1152113 12-19

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The BZ edit descriptor specifies that all blanks within the numeric input field are to be interpreted
as zeros.

Example:

CHARACTER *11 A
A= '1 3 5 6 01'
READ (A,100) I,J,K

100 FORMAT (BZ,12,13,BN,16)

After execution of the preceding program segment, the variables have the following values:

I= 10
1=305
K=601

The BN and BZ edit descriptors have no effect on output.

Positioning By Format Control

After each I, F, E, D, G, L, A, Z, H, apostrophe, or quotation mark edit descriptor is processed,
the file pointer is positioned after the last character read or written in the current record.

After_ each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned according to the
manner described under Nonrepeatable Edit Descriptors in this section.

If reversion occurs (refer to Interaction Between Input/Output List and Format in this section), the
file is positioned at the beginning of the next record before processing of the format specification is
resumed.

During a READ operation, any unprocessed characters of the record are skipped whenever the next
record is read.

Format Modifiers

Format modifiers change the output fields of integer, real, double-precision, or complex data by insert
ing comma (,) or dollar sign ($) characters.

The format modifiers can be used with the lw, Iw.m, Fw.d, Ew.d, Dw.d, Ew.dEe, and Ew.dDe edit
descriptors. They can also be used with the Gw .d edit descriptor when the input/ output list items are
type integer, real, or double precision.

The two forms of format modifiers follow:

The modifier symbols K and $ indicate the type of format modification. The format modifiers appear
to the left of the edit descriptor and to the right of any repeat specifier. Both can appear together.
Format modifiers cannot be used on input.

12-20

K Modifier

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The K modifier inserts comma (,) characters into the output field between digit triples to the left of
the decimal point. The field width w must be wide enough to accommodate the comma (,) characters
in addition to the other characters.

$ Modifier

The $ modifier inserts a dollar sign ($) character immediately to the left of the leftmost nonblank char
acter in the output field. The field width w must be wide enough to accommodate the dollar sign ($)
character in addition to the other characters.

An example of the use of both the K and $ format modifiers follows:

SUM=75250.
WRITE (6,100) SUM

100 FORMAT ("TOTAL COST:",$KF15.2)

Execution of this program segment results in the following output:

TOTAL COST: $75,250.00

Carriage Control

When a line printer is used for output, the first character of each line of print controls the spacing
of the printer carriage. The control characters are as follows:

Character

(blank)
0 (zero)
1 (one)

+ (plus sign)
n (any digit
2 through 9)

Action

Single-space before printing.
Double-space before printing.
Skip to channel 1 of carriage control
tape before printing. (Advance to first
line of next page).
No advance before printing.
Advance to channel n before printing.

The first character of the print line is used only to control the action of the printer carriage. It is not
printed.

LIST-DIRECTED FORMATTING

List-directed formatting provides a way to input and output records without explicit reference to a for
mat specification. The format specifier used in list-directed input/ output is the asterisk (*) character.
The format of list-directed input is determined by the values and value separators that make up the
input record(s). The format of list-directed output is determined by the values of the items in the out
put list.

1152113 12-21

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

The values that are written to a file in list-directed output and the values that are assigned to items
of the input list in list-directed input are either constants, null values, or have one of the following
forms:

r*c
r*

where r is an unsigned, nonzero, integer constant, and c is a constant. The r*c form represents r succes
sive appearances of the constant c, and the r* form represents r successive null values. Neither of these
forms can contain embedded blank characters, except where permitted within the constant c.

A value separator is one of the following:

1. A comma (,) character optionally preceded by one or more contiguous blank characters and
optionally followed by one or more contiguous blank characters.

2. A slash (/) character optionally preceded by one or more contiguous blank characters and op
tionally followed by one or more contiguous blank characters.

3. One or more contiguous blank characters.

The end of a record has the same effect as a blank character. Any sequence of two or more consecutive
blank characters is treated as a single blank character, unless it is within a character constant.

List-directed Input

List-directed input occurs when an asterisk (*) character is used as a format specifier in an input state
ment. The format of list-directed input is determined by the values and value separators that make
up the input record(s). The general forms that these values and value separators can take are described
in the preceding paragraphs. The form of the input value must be acceptable to the format specification
of the corresponding input list item. All input forms that are normally acceptable to a corresponding
format specification are acceptable in list-directed formatting except as noted below.

When the corresponding input list item is of type real or double precision, the input form must be
a numeric input field. A numeric input field is a field suitable for F editing and is assumed to have
no fractional part unless a decimal point (.) character appears within the field.

When the corresponding list item is of type complex, the input form consists of a left parenthesis "("
character followed by an ordered pair of numeric input fields separated by a comma (,) character and
followed by a right parenthesis ")" character. The first numeric input field is the real part of the com
plex constant and the second is the imaginary part. Each of the numeric input fields can be preceded
or followed by blank characters. The end of a record can occur between the real part and the comma
(,) character or between the comma (,) character and the imaginary part.

When the corresponding list item is of type logical, the input form cannot include either slash (/) or
comma (,) characters among the optional characters permitted for L editing.

When the corresponding list item is of type character, the input form consists of a nonempty string
of characters enclosed in apostrophe (') characters. Each apostrophe (') character within a character
constant is represented by two consecutive apostrophe (') characters without an intervening blank char
acter or end of record. Character constants can be continued from the end of one record to the begin
ning of the next record. The end of the record does not cause a blank character or any other character
to become part of the constant. The constant can be continued on as many records as needed. The
slash (/), comma (,), and blank characters can appear in character constants.

12-22

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Assume that len is the length of the list item, and w is the length of the character constant. If len
is less than or equal to w, the leftmost len characters of the constant are transmitted to the list item.
If len is greater than w, the constant is transmitted to the leftmost w characters of the list item and
the remaining len minus w characters of the list item are filled with blank characters. This occurs as
though the constant were assigned to the list item in a character assignment statement.

A null value is specified in one of three ways: 1) having no characters between successive value separa
tors, 2) having no characters preceding the first value separator in the first record read by each execu
tion of a list-directed input statement, or 3) using the r* form. A null value has no effect on the defini
tion status of the corresponding input list item. If the input list item is defined, it retains its previous
value; if it is undefined, it remains undefined. A null value must not be used as either the real or
imaginary part of a complex constant, but a single null value can represent an entire complex constant.
The end of a record following any other separator, with or without separating blank characters, does
not sp 1ecify a null value.

A slash (/) character encountered as a value separator during execution of a list-directed input state
ment terminates execution of that input statement following the assignment of the previous value. If
there are additional items in the input list, the effect is as if null values had been supplied for them.

All blank characters in a list-directed input record are considered to be part of some value separator
except for the following:

1. Embedded blank characters in a character constant.
2. Embedded blank characters enclosing the real or imaginary part of a complex constant.
3. Leading blank characters in the first record read by each execution of a list-directed input state

ment, unless immediately followed by a slash (/) or comma (,) character.

An example of a program segment containing list-directed input follows:

DOUBLE PRECISION DP
COMPLEX COMPLX
LOGICAL LOGIC
CHARACTER*7 CHAR
REAL REAL
INTEGER INT(l 0)
READ (5,*) DP,COMPLX,CHAR, REAL,LOGIC,INT

Examples of input records that can be read by the preceding list-directed input statement follow:

1234567890.123D + 29, (2,0.37), T, 'ABCDEFG', 9876.54321, 10* 1
lD + 20,(1,0.25),F, 'NEWCHAR', 7.0,5,5,5,5,5,5,5,5,5,5
1D+20 /(1,0.25) Tl 'NEW' , 7.0, 5 5 5 5 5 5 5 5 5 5

List-directed Output

List-directed output occurs when an asterisk (*) character is used as a format specifier in an output
statement. The format of list-directed output is determined by the values of the items in the output
list. The form of the value separators is described in the introductory paragraphs with the exception
that the slash (/) character is not an output separator. The general form of the output values is also
as described in the introductory paragraphs and is the same as required for input except as noted in
the following paragraphs.

New records can begin as necessary, but except for complex constants and character constants, the end
of a re:cord does not occur within a constant and blank characters do not appear within a constant.

1152113 12-23

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Logical constants are output as T for the value TRUE and F for the value FALSE.

Integer constants are output with the effect of an Iw edit descriptor, with an appropriate value of w.

Real and double-precision constants are output with the effect of either an F edit descriptor or an E
edit descriptor, depending on the magnitude x of the value. If x is within the range lO**dl .LE. x
.LT. 10**d2, where dl and d2 are processor-dependent integer values, the constant is output with the
format OPFw.d; otherwise, the format lPEw.dEe is used.

Complex constants are enclosed in parenthesis "()" characters, with a comma (,) character separating
the real and imaginary parts. The end of a record can occur between the comma (,) character and
the imaginary part only if the entire constant is as long as, or longer than, an entire record. The only
embedded blank characters permitted within a complex constant are between the comma (,) character
and the end of a record and one blank character at the beginning of the next record.

Character constants that are output are not preceded or followed by a value separator. The constants
are not delimited by apostrophe (') characters and each internal apostrophe (') character is represented
externally by one apostrophe (') character. If any record begins with the continuation of a character
constant from a preceding record, the processor inserts a blank character at the beginning of the record
for carriage control.

If two or more successive values in an output record have identical values, the processor has the option
of outputting a repeated constant of the form r*c instead of the sequence of identical values.

Each output record begins with a blank character to provide carriage control when the record is
printed.

An example of a program segment containing list-directed output follows:

DOUBLE PRECISION DP/1234567890.123456D+29/
COMPLEX COMPLX/(2,0.37)/
LOGICAL LOGIC/.TRUE./
CHARACTER *7 CHAR/' ABCDEFG' I
REAL REAL/9876.54321/
INTEGER INT(lO)/l, l ,2,2,2,3,3,3,3,3/
WRITE (6,*) 'CONSTANTS: ',DP,COMPLX,CHAR,REAL,LOGIC,INT

Execution of this program segment results in the following list-directed output:

CONSTANTS: .1234568E + 39, (2.000000, .3700000)ABCDEFG 9876.542,
T, 2*1, 3*2, 5*3

NAMELIST FORMATTING

Namelist formatting provides a way to use a single name to input and output a list of variables, arrays,
or array elements without reference to a format specification. The single name is called the namelist
name and is declared in a NAMELIST statement. Namelist formatting is indicated by the use of a
namelist name as a format specifier in an input/ output statement.

12-24

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

NAMELIST Statement

The form of a NAMELIST statement follows:

i< -- l'JAMELIST-_._ __ / <namelist-name> / <namelist>

< name:list-name > follows the same naming conventions as variables.

< namelist > has the following form:

Names of dummy arguments cannot appear in < namelist > .
In a NAMELIST statement, the variables and arrays whose names appear in the < namelist > are de
clared to be named by < namelist-name > . A variable or array can be named in more than one namelist
list.

Examples of NAMELIST statements follow:

NAMELIST NLIST I A, B, C, D
NAMELIST BBALL/RUNS, HITS, ERRORS, INNING, SCORE!, SCORE2

Form of Namelist Input/Output

An input statement specifying namelist formatting uses a namelist data group as input. An output state
ment specifying namelist formatting creates a namelist data group as output. A namelist data group
consists of one or more records. The first character in each record of a data group must be a blank.
The second character of the first record of a data group must be an ampersand (&) character followed
immediately by a < namelist-name > . The < namelist-name > must contain no embedded blank charac
ters and must be followed by one or more blank characters. Following these blank characters is a se
quence: of value assignments separated by comma (,) characters. The end of a data group is indicated
by the appearance of the four characters &END .. A comma (,) character can optionally appear before
&END. The remainder of the record following &END is ignored.

A value assignment has one of the following forms:

1. variable name = constant.
2. array name = list of values separated by comma (,) characters.
3. array element name = list of values separated by comma (,) characters.

A value has one of the forms:

1. k*constant
2. constant

where k is an unsigned, nonzero, integer constant. The k*constant form is equivalent to a list of k
successive appearances of the constant.

1152113 12-25

In the form:

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

array name = list of values

the list of values must contain no more constants than there are elements in the array.

In the form:

array element name = list of values

the list of values must contain no more constants than there are in the array block beginning with
the named element and ending with the last element of the array.

The constants can be integer, real, double-precision, complex, logical, or character constants. If the
constant is logical, the forms T and F can also be used for .TRUE. and .FALSE., respectively.

No embedded blank character can appear in the variable names, array names, array element names,
or in the arithmetic or logical constants. Any trailing blank characters that follow integer constants
or follow exponent parts of real or double-precision constants are treated as zeros. Any number of
blank characters can appear: 1) between the variable name, array name, or array element name and
the equal sign (=) character, 2) between the equal sign (=) character and the constant or list of values,
3) between a value and the preceding comma (,) character in a list of values, 4) between a value assign
ment and the preceding comma (,) character and 5) between &END and the preceding comma (,) char
acter.

The end of a record in the data group can only occur in the following places: 1) between the namelist
name and a value assignment, 2) between a value assignment and the preceding comma (,) character
in the list of value assignments, 3) between the equal sign (=) character and the constant or list of
values, 4) between a value and the preceding comma (,) character in a list of values, and 5) between
&END and the preceding value assignment, comma (,) character, or namelist name.

A variable or array whose name appears in the list of value assignments in the data group for the
< namelist-name > must be named in the namelist list for < namelist-name > . It is not necessary for
all of the variables and arrays named in the namelist list to have their names appear in the list of
value assignments in the data group for < namelist-name >. The order of the names in < namelist >
is not significant. A name associated with a name appearing in a namelist list for < namelist-name >
cannot be substituted for that name in the value assignment list in the data group for < namelist
name >.

12-26

Namelist Input

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

When an input statement specifying namelist formatting is executed, the file is positioned and accessed
repeatedly until the data group for the specified namelist is found. For each value assignment, assign
ment to the indicated variable or array occurs as follows:

1. For the form:

variable name = constant

the constant is assigned to the variable.

2. For the form:

array name = list of values

each constant in the list of values is assigned to an element of the array. The elements of the
array are assigned in the order specified by the array element ordering, beginning with the first
element.

3. For the form:

array element name = list of values

each constant in the list of values is assigned to an element of the array. The elements of the
array are assigned in the order specified by the array element ordering, beginning with the
element specified in the value assignment.

Conversion is applied in the same manner as for arithmetic, logical, and character assignment state
ments.

A variable named in the namelist list for < namelist-name > but whose name does not appear in a
value assignment in the data group for namelist < namelist-name > retains its current value if defined
or remains undefined. Any element of an array named in the namelist list for < namelist-name > which
is not assigned a value in a value assignment in the data group for namelist < namelist-name > retains
its current value if defined or remains undefined.

An example of namelist input follows:

INTEGER INT(10)
NAMELIST/ CONSTS/DP ,COMPLX, LOGIC,CHAR,REAL,INT
READ (6,CONSTS)

Examples of data groups that can be read by the preceding namelist input statement follow:

&CONSTS LOGIC=F, REAL = 7.0 &END
&CONSTS DP =7777.77D+30, CHAR='NEWCHAR', INT(5)=100, &END
&CONSTS COMPLX = (33,3.3),INT= 10*0, &END
&CONSTS &END

1152113 12-27

B 1000 Systems FORTRAN 77 Language Manual
Format Specifications

Namelist Output

When an output statement specifying namelist formatting is executed, the output is written to the file
in a form that can be read by a READ statement specifying the same namelist name as a format specif
ier. The values of all of the variables and arrays whose names appear in the namelist list for the
specified namelist are written. The values of integer, real, double-precision, complex, logical, and char
acter variables or arrays are written as integer, real, double-precision, complex, logical, and character
constants respectively. Fields for the data are made large enough to contain all significant digits.

The value of a variable is written in the form:

variable name = constant

The values of an array are written in the form:

array name = list of constants

where the list of constants contains one constant for each element in the array, written in the order
specified by the array element ordering.

An example of a program segment containing namelist output follows:

DOUBLE PRECISION DP /1234567890.12345D + 291
COMPLEX COMPLX/(2,0.37)/
LOGICAL LOGIC/.TRUE./
CHARACTER *7 CHAR/' ABCDEFG' I
REAL REAL/9876.54321/
INTEGER INT(lO)/l ,l ,2,2,2,3,3,3,3,3/
NAMELIST /CONSTS/DP, COMPLX,LOGIC, CHAR,REAL,INT
WRITE (6,CONSTS)

Execution of this program segment results in the following data group:

&CONSTS DP = .123456789012345D + 39, COMPLX = (2.000000, .3700000),
LOGIC =T,CHAR = "ABCDEFG", REAL =9876.542, INT =2*1, 3*2,5*3,
&END

The number of records output and the location of the end of each record depend upon the output
device.

12-28

B 1000 Systems FORTRAN 77 Language Manual

SECTION 13
SUBPROGRAMS

Subprograms are program units which can be invoked in the main program or any other program seg
ment as a separate executable procedure or which can be used for data initialization. There are three
types of subprograms: functions, subroutine subprograms, and block data subprograms. These three
types of subprograms and associated concepts and statements are described in this section.

FUNCTIONS

Functions are procedures which return a value to a calling program unit at the point at which the call
was made.

Example:

A FUNC(B,C) + Y

In this example, FUNC is the name of a function. Control transfer_s to the function named FUNC
during processing of the expression. A value is obtained from the function and used in the position
occupied by the symbolic name FUNC in the expression. The value is then added to the value of
variable Y and the result is assigned to A. Parentheses must always appear following the function refer
ence even if there are no arguments (refer to ARGUMENTS in this section) being passed.

There are three types of function subprograms that can be used in FORTRAN 77. A function which
is a single statement within the program unit that references it is a statement function. A function
which is a separate subprogram that can be referenced by any other program unit (including another
function) is a function subprogram. A function which is supplied by FORTRAN 77 for the user is
an intrinsic function.

Statement Functions

A statement function is a function which can be expressed as one statement. It has the same general
form as an assignment statement, except that the function name and dummy argument list appear to
the left of the replacement operator. This statement is called a statement function declaration. The fol
lowing is the proper form of a statement function declaration:

--<function-name> (---.-------------r-) --..-- = <expression>

lt<dumm:·argument :>iJ
G50342

<function-name> is the name of the statement function and is constructed in the same manner as
a variable name. <function-name> has the default type associated with the initial letter in its name
unless another type is given in an IMPLICIT statement or explicit type statement (refer to Explicit Type
Statem1~nt in section 6). <function-name>, if declared to be type CHARACTER, can have any length
declaration, except an assumed length (CHARACTER * (*)).

1152113 13-1

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Once a symbolic name is used as the name of a function in a program unit, that name cannot be used
for any other purpose in that program unit except as the name of a common block.

<dummy-argument> is a dummy variable which is used by the statement function. A < dummy-argu
ment > list in a statement function cannot contain array names or alternate return specifiers (ref er to
Alternate Return in this section). Dummy arguments are described later in this section.

<expression> is an arithmetic, logical, or character expression (depending on the type associated with
the function name) employing any of the following:

l. A constant.
2. The symbolic name of a constant.
3. A variable reference.
4. An array element reference.
5. An intrinsic function reference.
6. A reference to a statement function for which the statement function statement appears in pre

ceding lines of the program unit.
7. An external function reference.
8. An expression enclosed in parentheses that meets all of the requirements specified for the <ex

pression>.

Each variable reference can be either a reference to a dummy argument of the statement function or
a reference to a variable that appears within the same program unit as the statement function state
ment. If the symbolic name of a local variable or subprogram dummy variable is also the name of
a dummy variable in the statement function, the dummy variable within the statement function is used
without affecting the value of the local variable or subprogram dummy variable.

Referencing a Statement Function

A statement function is referenced by using its name in an expression.

Execution of a statement function reference results in the following:

1. Evaluation of actual arguments that are expressions.
2. Association of actual arguments with the corresponding dummy arguments.
3. Evaluation of the expression.
4. Conversion, if necessary, of an arithmetic expression value to the type of the statement function

as explained in Arithmetic Assignment Statements in section 7, or a change, if necessary, in
the length of a character expression value as described in Character Assignment Statements in
section 7.

The resulting value is available to the expression that contains the function reference.

The actual arguments, which constitute the argument list, must agree in order, number, and type with
the corresponding dummy arguments.

An actual argument in a statement function reference can be any expression except a character expres
sion involving concatenation of an operand whose length specification is an asterisk in parentheses,
unless the operand is the symbolic name of a constant.

When a statement function reference is executed, the actual arguments must be defined.

A statement function can reference other statement functions. However, the statement function(s) being
referenced must be declared before the statement function making the reference and must also be de-

13-2

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

clared within the same program unit. A function reference in the <expression> of a statement func
tion must not change the value of any dummy argument associated with the statement function.

An example of a statement function follows:

REAL X,Y
CIRCUM(Y) = SQRT(C- (Y**2))

100 X = CIRCUM(Y)*2

END

In the example, the expression at line 100 temporarily transfers control to statement filnction CIR
CUM. The value returned by CIRCUM (a real value) is multiplied by 2 and assigned to X. CIRCUM
references an intrinsic function called SQRT within its expression.

Function Subprograms

A function subprogram is a separate program unit with local data and, optionally, other function sub
programs. Any variable names, except dummy variable names and common variables, are local to the
function subprogram. Any change in the value of a local variable has no effect on any variable with
the same symbolic name occurring in any other program unit.

Function subprograms permit the function to be comprised of more than one statement. The beginning
of a function subprogram is denoted by a FUNCTION statement. The following is the proper form
of the FUNCTION statement:

L::TFUNCTION<function-name >1 (--.----<dummy-argument>·----..-

G50343

A FUNCTION statement declares <function-name>, and optionally, <type> for the function. The
naming convention for <function-name> is the same as that for a variable name. The function must
assign a value to the <function-name> before the end of the function.

<type> can be declared in the FUNCTION statement, in an IMPLICIT statement, or in an explicit
type statement following the function declaration (refer to Explicit Type Statement in section 6).
<type> can be any data type, including CHARACTER * < expr > and CHARACTER *(*), where
< expr > is an integer constant expression that does not contain the symbolic name of an integer. For
a function declared as CHARACTER *(*), the length of the value returned is determined by the length
declaration for the function name in the calling program unit. The length declaration in the calling
program unit must be an integer constant expression. If no type is assigned, the default <type> asso
ciated with the first letter of <function-name> is assumed.

<dummy-argument> is a dummy variable name, dummy array name, or dummy procedure name. The
<dummy-argument> list must not contain an alternate return specifier.

1152113 13-3

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Referencing a Function Subprogram

A function subprogram is referenced by using the function name in an expression of an executable
program.

Execution of an External Function Reference

Execution of a function subprogram results in the following:

1. Evaluation of actual arguments that are expressions.
2. Association of actual arguments with the corresponding dummy arguments.
3. The actions specified by the referenced function.

The type of the function name in the function reference must be the same as the type of the function
name in the referenced function. The length of the character function in a character function reference
must be the same as the length of the character function in the referenced function.

When a function subprogram is executed, the function must be one of the function subprograms in
the executable program.

Actual Arguments for a Function Subprogram

The actual arguments in a function subprogram reference must agree in order, number, and type with
the corresponding dummy arguments in the referenced function. The use of a subroutine name as an
actual argument is an exception to the rule requiring agreement of type.

An actual argument in an external function reference must be one of the following:

13-4

1. Any expression except a character expression involving concatenation of an operand whose
length specification is an asterisk in parentheses, unless the operand is the symbolic name of
a constant.

2. An array name.
3. An intrinsic function name.
4. An external procedure name.
5. A dummy procedure name.

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

An actual argument in a function reference can be a dummy argument that appears in a dummy argu
ment list within the subprogram containing the reference.

Example:

COMPLEX X,I
CHARACTER * 5 A, B * 3

A(3:4)='MN'
100 A=B('ABC') II A(3:4)

X=I()

END
FUNCTION B(C)
CHARACTER * 3 B, C

B=C(1:2) II 'J'
END
COMPLEX FUNCTION I
COMPLEX L

I= (4.5, 5.7) * L
END

The two functions in the example return values to the expressions in which they are referenced at the
position where the reference is made. In each case, an assignment is made within the body of the func
tion to the function name. This value is converted to the type of the function and becomes the value
that is returned. At line 100, for example, character variable A is assigned the value "ABCMN".

The function subprogram can contain any statements recognizable by FORTRAN 77, except FILE,
BLOCK DATA, PROGRAM, or SUBROUTINE. As with the main program, all declaration and
specification statements must precede the first executable statement in the subprogram. A function sub
program cannot contain a direct or indirect reference to itself.

A function subprogram is terminated by an END statement.

lntrin:sic Functions

Intrinsic functions are subprograms supplied by FORTRAN 77 for use by the programmer. The values
returrn~d by intrinsic functions and their definitions are given in table 13-1 and are available for use
within the expression in which they occur. Intrinsic functions are referenced either by a specific name
or by a generic name. The manner in which intrinsic functions are referenced is described in the fol
lowing paragraphs.

1152113 13-5

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Specific Name and Generic Name

When an intrinsic function is referenced by a specific name (refer to table 13-1), the type of the value
returned is the type associated with the specific name. The types of the arguments are fixed and must
agree with the types given in table 13-1. When a generic name is used to refer to an intrinsic function,
the type of the result (except for intrinsic functions performing type conversion, nearest integer, and
absolute value of a complex argument) is the same as the type of the actual arguments. No explicit
type is associated with the generic name of an intrinsic function.

For those intrinsic functions that have more than one argument, all arguments must be of the same
type. If the specific or generic name of a function is used in a subprogram as a dummy argument
or as a local variable or is specified in an EXTERNAL statement, then the intrinsic function becomes
unavailable for use in that subprogram. Only the specific name of an intrinsic function can be used
as an actual argument (refer to Intrinsic Statement in section 6).

All angles are expressed in radians. The result of a function of type COMPLEX is the principal value.

13-6

Intrinsic
Function

Type
Conversion

Truncation

Ne:arest
Whole Number

Nearest
In1teger

Absolute
Value

115211.3

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-1. Intrinsic Functions

Number of Generic Specific Type of
Definition Arguments Name Name Argument

- INTEGER
Conversion to I INT INT REAL
integer int(arg) IFIX REAL

See Note I IDINT DOUBLE
- COMPLEX

Conversion to REAL INTEGER

Real I REAL FLOAT INTEGER
- REAL

See Note 2 SNGL . DOUBLE
- COMPLEX

- INTEGER
Conversion to I DBLE - REAL
Double - DOUBLE

See Note 3 - COMPLEX

Conversion to I or 2 CMPLX - INTEGER
Complex - REAL

See Note 4 - DOUBLE
- COMPLEX

Conversion to
Integer 1 - ICHAR CHARACTER

See Note 5

Conversion to
Character I - CHAR INTEGER

See Note 5

int (arg)
AINT REAL

See Note I I AINT
DINT DOUBLE

int (arg + .5) if arg > O
I ANINT

AN INT REAL
int (arg - .5) if arg< O DNINT DOUBLE

int (arg + .5) if arg> O 1 NINT
NINT REAL

int (arg -- .5) if arg < 0 IDNINT DOUBLE

I arg I IABS INTEGER
or, if arg is Complex 1 ABS ABS REAL
(arg•• 2 + argi**2)**0.5 DABS DOUBLE

See Note 6 CABS COMPLEX

Function

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

REAL
REAL
REAL
REAL
REAL

DOUBLE
DOUBLE
DOUBLE
DOUBLE

COMPLEX
COMPLEX
COMPLEX
COMPLEX

INTEGER

CHARACTER

REAL
DOUBLE

REAL
DOUBLE

INTEGER
INTEGER

INTEGER
REAt
DOUBLE
REAL

13-7

Intrinsic
Function

Remaindering

Transfer
of Sign

Positive
Difference

Double-Precision
Product

Choosing
Largest
Value

Choosing
Smallest

Value

Length

Index of
a Substring

Imaginary Part of
Complex Argument

Conjugate of a
Complex Argument

Square Root

Exponential

Natural
Logarithm

13-8

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-1. Intrinsic Functions (Cont)

Number of Generic Specific
Definition Arguments Name Name

argl-int(argl /arg2)*arg2 2 MOD MOD

See Note 7 AMOD
DMOD

largl lif arg2 ~ 0 I SIGN
-largl lif arg2 < 0 2 SIGN SIGN

See Note 8 DSIGN
argl - arg2 IDIM
if arg 1 > arg2 2 DIM DIM
0 if argl ~ arg2 DDIM

argl * arg2 2 - DPROD

MAXO
MAX AMAX I

max (argl, arg2, ...) ~2 DMAXI
- AMA XO
- MAXI

MINO
MIN AMINI

min (argl, arg2, ...) >2 DMINI
- AMINO
- MINI

Length of Character
1 - LEN Entity. See Note 9

Location of Substring
arg2 in String arg 1 2 - INDEX
See Note I 0

argi
1 AIMAG See Note 6 -

(argr, -argi)
I CONJG See Note 6 -

SQRT
arg**0.5 l SQRT DSQRT
See Note 11 CSQRT

EXP
e**arg I EXP DEXP

CEXP
ALOG

log (arg) DLOG

' I LOG CLOG See Note 1 2 -1 \iJ
'

Type of

Argument Function

INTEGER INTEGER
REAL REAL
DOUBLE DOUBLE

INTEGER INTEGER
REAL REAL
DOUBLE DOUBLE

INTEGER INTEGER
REAL REAL
DOUBLE DOUBLE

REAL DOUBLE

INTEGER INTEGER
REAL REAL
DOUBLE DOUBLE
INTEGER REAL
REAL INTEGER

INTEGER INTEGER
REAL REAL
DOUBLE DOUBLE
INTEGER REAL
REAL INTEGER

CHARACTER INTEGER

CHARACTER INTEGER

COMPLEX REAL

COMPLEX COMPLEX

REAL REAL

I
DOUBLE DOUBLE
COMPLEX COMPLEX

REAL REAL
DOUBLE DOUBLE
COMPLEX COMPLEX
REAL RLAL
DOUBLE DOUBLE
COMPLEX COMPLEX

Intrinsic
Fiunction

Common
Logarithm

Sine

Cosine

Tangent

Arcsine

Arccosine

Arctangent

Hypetbolic
l Sine

Hyperbolic
Cosine

Hyperbolic
Tangent

Lexically Greater
Than or Equal

Lexically
Greater Than

Lexically Less
Than or Equal

Lexically
Less Than

1152113

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-1. Intrinsic Functions (Cont)

Number of Generic Specific Type of
De·finition Arguments Name Name Argument Function

log 10 (arg) ALOGIO REAL REAL
See Note 12

1 LOG IO
DLOGIO DOUBLE DOUBLE

sin (arg) I SIN SIN REAL REAL

See Note 13
1
l\.-,

DSIN DOUBLE DOUBLE
CSIN COMPLEX COMPLEX

cos (arg)
cos REAL REAL

I cos DCOS DOUBLE DOUBLE
See Note 13,i ~ """ ccos COMPLEX COMPLEX

tan (arg) I TAN TAN REAL REAL
See Note 13 DTAN DOUBLE DOUBLE

arcsin(arg) I ASIN A.SIN REAL REAL
See Note 14 DA SIN DOUBLE DOUBLE

arccos (arg) I ACOS ACOS REAL REAL
See Note 15 DA COS DOUBLE DOUBLE

arctan (arg) I ATAN ATAN REAL REAL
See Note 16 DATAN DOUBLE DOUBLE

larctan (arg I /arg2~ ATAN2 REAL REAL
See Note 16 2 ATAN2

DATAN2 DOUBLE DOUBLE

sinh (arg) I SINH SINH REAL REAL
DSINH DOUBLE DOUBLE

cosh (arg) 1 COSH COSH REAL REAL
DCOSH DOUBLE DOUBLE

tanh (arg) I TANH TANH REAL REAL
DTANH DOUBLE DOUBLE

argl ~ arg2
2 LGE CHARACTER LOGICAL See Note 17 -

argl > arg2
2 LGT CHARACTER LOGICAL See Note 17 -

argl ~ arg2
2 LLE CHARACTER LOGICAL See Note 17 -

argl < arg2
2 LLT CHARACTER LOGICAL See Note 17 -

13-9

Intrinsic
Function

Time

Date

Pseudo
Random
Number

Bit
Manipulation

13-10

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-1. Intrinsic Functions (Cont)

Number of Generic Specific Type of
Definition Arguments Name Name Argument Function

See Note 18 1 - TIME CHARACTER REAL

See Note 19 1 - DATE CHARACTER CHARACTER

See Note 20 1 - RANDOM INTEGER REAL

INTEGER INTEGER
See Note 21 2 AND - REAL REAL

LOGICAL LOGICAL

INTEGER INTEGER
See Note 22 2 OR - REAL REAL

LOGICAL LOGICAL

INTEGER INTEGER
See Note 23 2 EQUIV - REAL REAL

LOGICAL LOGICAL

INTEGER INTEGER
See Note 24 1 COM PL - REAL REAL

LOGICAL LOGICAL

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Notes for table 13-1:

1. For arg of type INTEGER, INT(arg) .EQ. arg. For arg of type REAL or DOUBLE PRECI
SION, there are two cases: if ABS(arg) .LT. 1, then INT(arg) .EQ. O; if ABS(arg) .GE. 1, then
INT(arg) is the integer with the largest magnitude that does not exceed the magnitude of arg
and whose sign is the same as the sign of arg.

Example:

INT(- 3. 7) = - 3

For arg of type COMPLEX, INT(arg) is the value obtained by applying the above rule to the
real part of arg.

For arg of type REAL, IFIX(arg) is the same as INT(arg).

2. For arg of type REAL, REAL(arg) is arg. For arg of type INTEGER or DOUBLE PRECI
SION, REAL(arg) is an approximation of arg with only the amount of precision that a REAL
datum can contain. For arg of type COMPLEX, REAL(arg) is the real part of arg.

For arg of type INTEGER, FLOAT(arg) is the same as REAL(arg).

3. For arg of type DOUBLE PRECISION, DBLE(arg) is arg. For arg of type INTEGER or RE
AL, DBLE(arg) is an approximation of arg with the amount of precision that a DOUBLE PRE
CISION datum can contain. For arg of type COMPLEX, DBLE(arg) is an approximation of
the real part of arg with the amount of precision that a DOUBLE PRECISION datum can con
tain.

4. CMPLX can have one or two arguments. If only one, the argument can be of type INTEGER,
REAL, DOUBLE PRECISION, or COMPLEX. If there are two arguments, both must be of
the same type and can be of type INTEGER, REAL, or DOUBLE PRECISION.

For arg of type COMPLEX, CMPLX(arg) is arg. For arg of type INTEGER, REAL, or DOU
BLE PRECISION, CMPLX(arg) is the complex value whose real part is REAL(arg) and whose
imaginary part is zero.

CMPLX(argl ,arg2) is the complex value whose real part is REAL(argl) and whose imaginary
part is REAL(arg2).

5. ICHAR provides a means of converting from type CHARACTER to type INTEGER, based
on the position of the character in the processor collating sequence. The first character in the
collating sequence corresponds to position 0 and the last to position n - 1, where n is the
number of characters in the collating sequence. Ref er to section 2 for more information on the
Burroughs FORTRAN 77 collating sequence.

1152113

The value of ICHAR(arg) is an integer in the range 0 .LE. ICHAR(arg) .LE. n - 1, where
arg is an argument of type CHARACTER of length one. The value of arg must be a character
which can be represented by the B 1000 processor. The position of that character in the collat
ing sequence is the value of ICHAR.

For any characters cl and c2 which can be represented by the B 1000 processor, (cl .LE. c2)
is TRUE only if (ICHAR(cl) .LE. ICHAR(c2)) is TRUE, and (cl .EQ. c2) is TRUE only if
(ICHAR(cl) .EQ. ICHAR(c2)) is TRUE ..

CHAR(i) returns the character in position i of the B 1000 FORTRAN 77 collating sequence.
The value is of type CHARACTER of length one. The expression i must be an integer expres
sion whose value must be in the range 0 .LE. i .LE. n - 1.

13-11

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

ICHAR(CHAR(i)) = i

CHAR(ICHAR(c)) = c

(for 0 < = i < = n - 1)

(for any character c which can be
represented by the B 1000 processor)

6. A complex value is expressed as an ordered pair of real numbers, (argr ,argi), where argr is the
real part and argi is the imaginary part.

7. The result for MOD, AMOD, and DMOD is undefined when the value of the second argument
is zero.

8. If the value of the first argument of ISIGN, SIGN, or DSIGN is zero, then the result is zero,
which is neither positive nor negative.

9. The value of the argument of the LEN function need not be defined at the time the function
reference is executed.

10. INDEX(argl ,arg2) returns an integer value indicating the starting position within the character
string argl of a substring identical to string arg2. If arg2 occurs more than once in argl, the
starting position of the first occurrence is returned. If arg2 does not occur in argl, the value
0 is returned. The value 0 is also returned if LEN(argl) .LT. LEN(arg2).

11. The value of the argument of SQRT and DSQRT must be greater than or equal to zero. The
result of CSQRT is the principal value with the real part greater than or equal to zero. When
the real part of the result is zero, the imaginary part is greater than or equal to zero.

12. The value of the argument of ALOG, DLOG, ALOGlO, and DLOGlO must be greater than
zero. The value of the argument of CLOG must not be (0.,0.). The range of the imaginary
part of the result of CLOG is - pi .LT. imaginary part .LE. pi. The imaginary part of the
result is pi only when the real part of the argument is less than zero and the imaginary part
of the argument is zero.

13. The absolute value of the argument of SIN, DSIN, COS, DCOS, TAN, and DT AN is not re
stricted to be less than 2*pi.

14. The absolute value of the argument of ASIN and DASIN must be less than or equal to one.
The range of the result is -pi/2 .LE. result .LE. pi/2.

15. The absolute value of the argument of ACOS and DA COS must be less than or equal to one.
The range of the result is 0 .LE. result .LE. pi.

16. The range of the result of ATAN and DATAN is - pi/2 .LE. result .LE. pi/2. If the value
of the first argument of AT AN2 and DATAN2 is positive, the result is positive. If the value
of the first argument is zero and the second argument is positive, the result is zero. If the value
of the first argument is zero and the second argument is negative, the result is pi. If the value
of the first argument is negative, the result is negative. If the value of the second argument
is zero, the absolute value of the result is pi/2. The arguments must not both have the value
zero. The range of the result for ATAN2 and DATAN2 is -pi .LT. result .LE. pi.

17. LGE, LGT, LLE, and LL T are used to compare CHARACTER strings according to the ASCII
collating sequence described in American National Standard Code for Information Interchange,
ANSI X3.4-1977 (ASCII). Table 13-2 describes the conditions that return TRUE and FALSE
values for these comparators. There is no intrinsic function for "lexically equal to" since the
normal comparator (.EQ.) can be used whether the collating sequence is ASCII or EBCDIC.

13-12

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-2. Truth Table for Lexical Comparators

Comparator .TRUE. .FALSE.

LGE(al,a2) al equals a2 al precedes a2
al follows a2

LGT(al,a2) al follows a2 al equals a2
al precedes a2

LLE(al,a2) al equals a2 al follows a2
al precedes a2

LLT(al,a2) al precedes a2 al equals a2
al follows a2

If the operands for LGE, LGT, LLE, and LL T are of unequal length, the shorter operand
is essentially extended to the length of the longer operand with blank characters in the extended
portion.

If either of the character entities being compared contains a character that is not in the ASCII
character set, the result is dependent upon the B 1000 processor.

18. TIME(arg) returns a real value in units of seconds according to the value of the character con
stant arg, as shown in table 13-3.

Table 13-3. Values Returned by the TIME Function

Value of
Character Constant arg

DAY
ELAPSED
PROCESSOR

Value Returned

Current time of day
Elapsed clock time for the program
Total processor time for the program

The DA TE function can also obtain the current time of day.

19. DATE(arg) returns a CHARACTER *6 value of the current date according to the value of the
character constant arg, as shown in table 13-4.

1152113 13-13

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-4. Values Returned by the DATE Function

Value of
Character Constant arg

MMDDYY
YYMMDD
YYDDD
HHMMSS

Value Returned

Current date in the form MMDDYY
Current date in the form YYMMDD
Current date in the form YYDDD
Current time of day in the form HHMMSS

20. RANDOM(arg) returns a uniformly distributed psuedo random number between 0.0 and 1.0.
The argument must be an integer variable or integer array element. The function uses the
initial integer value as a seed to begin random number generation and modifies the integer
argument for any subsequent generation. For this reason, it is suggested that the argument
not be the DO variable of a DO loop. Each reference to the RANDOM function in an arith
metic expression must be evaluated whenever the expression itself is evaluated.

21. AND(argl ,arg2) returns the logical product of all data bits in argl with all data bits in arg2.
Each argument must be defined with hexadecimal data.

22. OR(argl ,arg2) returns the logical sum of all data bits in argl with all data bits in arg2. Each
argument must be defined with hexadecimal data.

23. EQUIV(argl,arg2) returns the logical equivalence of all data bits in argl with all data bits in
arg2. The bit pattern returned has a 1 for every bit position in which the arguments are the
same and a 0 for every bit position in which they are different. Each argument must be de
fined with hexadecimal data.

24. COMPL(arg) returns the logical complement of all data bits in the argument. The argument
)'\: must be defined with hexadecimal data.

SUBROUTINE SUBPROGRAMS

A subroutine subprogram is a procedure external to the main program containing one or more subrou
tines. A subroutine subprogram has a SUBROUTINE statement as the first statement and can contain
more than one entry point by the use of ENTRY statements (ref er to ENTRY ST A TEMENT in this
section). A subroutine subprogram can contain any statements except a FILE, PROGRAM, or BLOCK
DAT A statement. As with the main program, all declaration and specification statements must precede
the first executable statement. A subroutine subprogram is terminated by an END statement.

There are two types of subroutine subprograms. The first type is called a subroutine and is a subpro
gram provided by the user and is not supplied by FORTRAN 77. The second type is called an intrinsic
subroutine and is a subprogram supplied by FORTRAN 77 for the user.

Subroutine

A subroutine is a program unit that can be referenced by the main program or any other program
unit by using a CALL statement.

13-14

CALL Statement

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

The following is the proper form of the CALL statement:

--CALL <subroutine-name>--...----(-E-~rgurnent > ---'---.---

G50344

<subroutine-name> is the symbolic name of a subroutine that exists and has been declared in a SUB
ROUTINE or ENTRY statement. <actual-argument> is described under Actual Arguments in this sec
tion.

Execution of a CALL statement causes the following to occur:

1. Actual arguments that are expressions are evaluated.
2. Actual arguments are associated with the corresponding dummy arguments in the referenced

subroutine.
3. Control is transferred to the specified subroutine.

A subroutine subprogram can call another subprogram, but cannot call itself either directly or indirect
ly.

SUBROUTINE Statement

The following is the proper form of the SUBROUTINE statement:

-SUBROUTINE< subroutine-name> T (E-:rgument >

G50345

<subroutine-name> is the symbolic name of a subroutine conforming to the rules for variable names.
There is no type associated with a subroutine name. <dummy-argument> is a dummy variable name,
dummy array name, dummy procedure name, or an asterisk (*) character. Dummy arguments are de
scribed in this section. One or more dummy arguments of a subroutine can become defined or rede
fined to return results to the calling program unit.

Actual Arguments for a Subroutine

The actual arguments in a subroutine reference must agree in order, number, and type with the corre
sponding dummy arguments in the dummy argument list of the referenced subroutine. The use of a
subroutine name or an alternate return specifier as an actual argument is an exception to the rule re
quiring agreement of type.

1152113 13-15

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

An actual argument in a subroutine reference must be one of the following:

1. An expression (except a character expression involving concatenation of an operand whose
length specification is an asterisk in parentheses, unless the operand is the symbolic name of
a constant).

2. An array name.
3. An intrinsic function name.
4. An external procedure name.
5. A dummy procedure name.
6. An alternate return specifier of the form *s, where s is the statement label of an executable

statement that appears in the same program unit as the CALL statement.

An actual argument in a subroutine reference can be a dummy argument name that appears in a
dummy argument list within the subprogram containing the reference. An asterisk dummy argument
must not be used as an actual argument in a subprogram reference.

Intrinsic Subroutines

Intrinsic subroutines are subroutines supplied by FORTRAN 77 for the user. These subroutines are
Burroughs extensions to the guidelines of the American National Standards Institute committee for
FORTRAN 77 (ANSI X3.9-1978).

Table 13-5 contains the intrinsic subroutines supplied by FORTRAN 77 and their proper form and se
mantics.

13-16

Intrinsic
Subroutine

Produce a
dump file

Terminate
a program

Transfer
bit values
from one
variable
to another

Transfer a
control
string to
the MCP

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Table 13-5. Intrinsic Subroutines

Form

CALL DUMP

CALL EXIT

CALL MVBITS
(<a>,,<i>,
<j>,<k>)

CALL ZIP
(<string>)

Semantics

Causes a dumpfile to be
produced. After the dumpfile
has been produced, execution
continues with the statement
following the CALL DUMP
statement.

Causes termination of a
program as though a STOP
statement had been executed.

< a> and < b > are variables or
array elements of type
integer, real, or logical.
<i>, <j >, and <k> are integer
expressions. The < k > bit
subfield of <a> starting at
the < i >th bit from the high
order end of <a> is replaced
by the < k > bit subfield of < b >
starting at the < j >th bit from
the high order end of < b > . The
sums < i > plus < k > and < j > plus
< k > must not be greater than
the number of bits per storage
unit plus 1.

< string> is an array or
character expression
containing a valid MCP
control string. The CALL ZIP
statement zips the control ,
string to the M CP.

BLOCK DATA SUBPROGRAM
The block data subprogram is a nonexecutable program unit which has as the first statement a BLOCK
DAT A statement. The block data subprogram cannot contain any executable statements and initializes
elements in labeled and unlabeled COMMON to predetermined values. More than one block data sub
program is allowed per executable program as long as an attempt is not made to initialize the same
COMMON block twice.

1152113 13-17

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

The proper form of the BLOCK DAT A statement is as follows:

----BLOCK DATA---...,.---------.----------

L <name> __ _,

<name> is the name of the block data subprogram, and its construction is governed by the same
rules that apply to variable names (refer to Variable Names in section 5).

The block data subprogram is only a means whereby elements in COMMON storage can be initialized
at compile time. These elements can be reassigned a value at any time during the execution of the pro
gram.

The statements following the BLOCK DAT A statement define the elements in COMMON storage to
be initialized, and only the explicit type COMMON, DIMENSION, EQUIVALENCE, IMPLICIT, PA
RAMETER, and DAT A declaration statements can be used. An END statement must be the last state
ment in the subprogram.

The construction of block data subprograms is subject to the following restrictions:

1. A block data subprogram must contain at least one COMMON statement.
2. All elements of a COMMON block must appear in the COMMON statement list even though

some of those elements are not to be initialized.
3. All type, dimension, initial values, or equivalent information associated with the variables o;

arrays in a COMMON block must be declared in the block data subprogram. A COMMON
statement must also appear in the program unit referencing the COMMON block, as well as
any declarations necessary to completely describe the entities referenced.

4. There can be only one unnamed block data subprogram in an executable program.
5. More than one COMMON block can be initialized by a block data subprogram.
6. Elements of any one COMMON block cannot be initialized by more than one block data sub

program.

Example:

BLOCK DATA ALPHA
LOGICAL Ll, L2
DOUBLE PRECISION D(2)
COMMON/BLOC1/I,R,Ll/BLOC2/M,D,C,L2
DIMENSION R(3), M(2,2)
DATA D/2*1.92837465DO/
DATA I,R/456,2*1.56, 5.1/, L2/.TRUE./
END

In this example, elements in the COMMON blocks labeled BLOCl and BLOC2 are to be initialized;
therefore, all the elements in these blocks are listed in a COMMON statement. This is permissible, as
more than one COMMON block can be initialized by a block data subprogram. All type and dimension
information associated with the COMMON blocks is declared by the explicit type and DIMENSION
statements. As required, the initial and last statement of the subprogram are, respectively, the BLOCK
DATA and END statements.

13-18

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

ENTRY STATEMENT
'Fhe ENTRY statement permits a procedure to begin at a particular statement within the subprogram

The ENTRY statement permits a procedure to begin at a particular statement within the subprogram
in which the ENTRY statement appears. The symbolic name of an entry in a subprogram, called the
entry name, can be used in a calling program as the name of a subroutine entry if the entry declaration
occurs within a subroutine subprogram, or as a function subprogram entry if the entry declaration oc
curs within a function subprogram. An ENTRY statement can occur anywhere following the SUBROU
TINE or FUNCTION statement and preceding the END statement in the subprogram. The following
is the]proper form of the ENTRY statement:

--ENTRY <entry-name>---....---- (-E=-~rgument >------

G50346

< entry--name > is the symbolic name of the entry into the subprogram and it follows the same naming
conventions as a variable. <dummy-argument> is the symbolic name of a variable, array, dummy
procedure name, or (if the ENTRY occurs within a subroutine subprogram) an asterisk (*) character.
An ENTRY statement in a function subprogram and the corresponding <dummy-argument> list fol
low the same rules as a FUNCTION declaration and is referenced in the same manner as a function
subprogram. An ENTRY statement in a subroutine subprogram and the corresponding < dummy-argu
ment > list follow the same rules as a SUBROUTINE dedaration, and is referenced in the same man
ner as a subroutine subprogram.

There can be more than one ENTRY statement within a subprogram. The ENTRY statement can begin
anywhere after the SUBROUTINE or FUNCTION declaration statement, except within a block IF
statement or between a DO statement and the terminal statement of the DO loop. When control is
passed to a subprogram by referencing the appropriate function name, subroutine name, or entry
name, every ENTRY statement following the subprogram name referenced, within the same subpro
gram, is ignored for that reference of the subprogram.

A reference to an entry name in an expression (function entry) or in a CALL statement (subroutine
entry) r 1esults in the following:

1. Evaluation of actual arguments that are expressions.
2. Association of actual and dummy arguments.
3. Transfer of control to the first executable statement after the specified <entry-name> within

an existing function or subroutine subprogram.

1152113 13-19

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

An example of an ENTRY statement in a subroutine subprogram (subroutine entry) follows:

CALL CALC(A,B)

END

SUBROUTINE XALG(X,Y,Z)

ENTRY CALC(X,C)

END

If an ENTRY statement occurs within a function subprogram, the symbolic name given in the ENTRY
statement (the <entry-name>) is equivalenced to the FUNCTION name. An assignment to either name
is equivalent and the names can be used interchangeably, if of the same type. The <entry-name> is
not required to have the same type as the name of the function subprogram. The <entry-name> can
not appear in an executable statement preceding the ENTRY statement in which it is declared.

An example of an ENTRY statement in a function subprogram (function subprogram entry) follows:

INTEGER EXPRl, EXPR2, X

100 X = EXPRl + EXPR2

END

INTEGER FUNCTION EXPRl
INTEGER EXPR2

200 1=2
ENTRY EXPR2

300 I= I+ 1
EXPRl=I
END

In this example, the expression at line 100 makes two function calls. The first function call transfers
control to line 200. The second function call transfers control to line 300. Variable X is finally assigned
the value 7 (local variables retain values between subsequent references of the subprogram in which
they occur).

13-20

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

ARGUMENTS AND COMMON BLOCKS

Arguments and common blocks provide means of communication between the referencing program unit
and th1e referenced procedure.

Data can be communicated to a statement function or intrinsic function by an argument list. Data can
be communicated to and from an external procedure by an argument list or common blocks. Procedure
names can be communicated to an external procedure only by an argument list.

A dummy argument appears in the argument list of a procedure. An actual argument appears in the
argumt:~nt list of a procedure reference.

The number of actual arguments must be the same as the number of dummy arguments in the refer
enced procedure.

Dummy Arguments

Statement functions, function subprograms, and subroutine subprograms use dummy arguments to in
dicate the types of actual arguments and whether each argument is a single value, array of values, pro
cedure, or statement label. A statement function dummy argument can be only a variable.

Each dummy argument is classified as a variable, array, dummy procedure, or asterisk (*) character.
Dummy argument names can appear wherever an actual name of the same class and type can appear,
except where explicitly prohibited.

Dummy argument names of type integer can appear in adjustable dimensions in dummy array declara
tors. Dummy argument names must not appear in EQUIVALENCE, DATA, PARAMETER, SAVE,
INTRINSIC, or COMMON statements, except as common block names. A dummy argument name
must not be the same as the procedure name appearing in a FUNCTION, SUBROUTINE, ENTRY,
or statiement function statement in the same program unit.

Actual Arguments

Actual arguments specify the entities that are to be associated with the dummy arguments for a
particular reference of a subroutine or function. An actual argument must not be the name of a state
ment function in the program unit containing the reference. Actual arguments can be constants, sym
bolic names of constants, function references, expressions involving operators, and expressions enclosed
in parentheses only if the associated dummy argument is a variable that is not defined during execution
of the referenced function subprogram.

The type of each actual argument must agree with the type of the associated dummy argument, except
when the actual argument is a subroutine name or an alternate return specifier.

Association of Dummy and Actual Arguments

At the execution of a function or subroutine reference, an association is established between the corre
sponding dummy and actual arguments. The first dummy argument becomes associated with the first
actual argument; the second dummy argument becomes associated with the second actual argument,
and so forth.

All appearances within a function or subroutine subprogram of a dummy argument, whose name ap
pears in the dummy argument list of the procedure name referenced, become associated with the actual
argument when a reference to the function or subroutine is executed.

1152113 13-21

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

A valid association occurs only if the type of the actual argument is the same as the type of the corre
sponding dummy argument. A subroutine name has no type and must be associated with a dummy
procedure name. An alternate return specifier has no type and must be associated with an asterisk (*)
character.

If an actual argument is an expression, it is evaluated just before the association of arguments takes
place.

If an actual argument is an array element name, the subscript is evaluated just before the association
of arguments takes place. The subscript value remains constant as long as that association of arguments
persists, even if the subscript contains variables that are redefined during the association.

If an actual argument is a character substring name, the substring expressions are evaluated just before
the association of arguments takes place. The value of each of the substring expressions remains con
stant as long as that association of arguments persists, even if the substring expression contains
variables that are redefined during the association.

If an actual argument is a function subroutine name, the procedure must be available at the time it
is referenced.

If an actual argument becomes associated with a dummy argument that appears in an adjustable dimen
sion, the actual argument must be defined with an integer value at the time the procedure is referenced.

A dummy argument is undefined if not currently associated with an actual argument. An adjustable
array is undefined if the dummy argument array is not currently associated with an actual argument
array, or if any variable appearing in the adjustable array declarator is not currently associated with
an actual argument and is not in a common block.

Argument association can be carried through more than one level of procedure reference. A valid asso
ciation exists at the last level only if a valid association exists at all intermediate levels.

Argument association within a program unit terminates at the execution of a RETURN or END state
ment in the program unit. There is no retention of argument association between one reference and
the next of a subprogram.

Length of Character Dummy and Actual Arguments

If a dummy argument is of type CHARACTER, the associated actual argument must be of type
CHARACTER and the length of the dummy argument must be less than or equal to the length of
the actual argument. If the length (len) of a dummy argument of type CHARACTER is less than the
length of an associated actual argument, the leftmost len characters of the actual argument are associ
ated with the dummy argument.

If a dummy argument of type CHARACTER is an array name, the restriction on length is for the
entire array and not for each array element. The length of an array element in the dummy argument
array can be different than the length of an array element in an associated actual argument array, array
element, or array element substring, but the dummy argument array must not extend beyond the end
of the associated actual argument array.

13-22

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

If an actual argument is a character substring, the length of the actual argument is the length of the
substring. If an actual argument is the concatenation of two or more operands, the length is the sum
of the kmgths of the operands.

Table 13-6 shows the types of actual arguments that can be associated with a given dummy argument.

Table 13-6. Association of Actual and Dummy Arguments

Dummy Argument

Simple Variable

Array Name

Procedure Name

Asterisk (*) Character

Variables as Dummy Arguments

Actual Argument

A constant, variable
array element,
substring, or expression
of the same type.

Array name, array
element, or array
element substring.

Intrinsic function,
external procedure,
or dummy procedure.

*n (where n is a
statement label).

A dummy variable must be associated with an actual argument that is a constant, variable, array
element, substring (simple or array element), or expression of the same type as the dummy variable.
The actual argument and the associated dummy argument must always have the same type.

If the dummy argument is of type CHARACTER, the length of the dummy argument must be less
than or ,equal to the length of the actual argument. If the length of the dummy argument is less than
the length of the actual argument, the rightmost len - n characters of the actual argument are ignored,
where le:n is the length of the actual argument and n is the length of the dummy argument. The length
of a dummy character argument is constant for every invocation of the subprogram if the length
specification is a constant or integer constant expression. If the length specification is an integer expres
sion containing variables, the value of the expression is determined with each invocation of the subpro
gram. This value becomes the length of the character entity for the duration of the subprogram. If
the length of the dummy character argument (or array) is assumed, the dummy argument (or array)
assumes the length of the actual argument. If the actual argument is a constant, substring, or character
expression, the number of characters in the constant, substring, or expression is the length of the actual
argument.

1152113 13-23

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

An example of the use of actual arguments and dummy arguments follows:

X = A(3., Y ,(Z),4. + FUNB(3))

REAL FUNCTION A(B,C,D,E)

100 D=9.34
200 C = D - 1.10

END

In this example, Y is the only actual argument that can have its value changed by the called subpro
gram: When D is assigned a value at line 100, the assignment is local to the function and has no effect
on the calling program unit. When C is assigned a value at line 200, the value of Y is also affected
in the calling program.

Arrays as Dummy Arguments

The actual argument associated with a dummy array must be an array name, an array element, or an
array element substring. If the actual argument is an array element, it is an index into the actual array,
and that portion of the actual array from the element specified to the end of the array is passed to
the dummy array. In this case, the dummy array begins at the element specified by the actual
parameter. When variables are used in the expression of the subscripts of the actual array element,
the index into the actual array is determined at the time of the call and changes in value of these
variables during execution of the subprogram have no effect on the association of the dummy and actu
al arrays. Any attempt to reference an element that exceeds the declared bounds for the dummy array
causes program termination at the point where the reference occurs.

A dummy array need not have the same number of dimensions or the same number of elements as
the corresponding actual array; however, a dummy array must not be associated with an actual array
in such a way as to extend beyond the last element of the actual array.

Association of arrays of differing sizes and dimensions is done according to array element ordering,
as described in appendix D. The following paragraphs describe the correspondence that is established
between the actual argument and the dummy argument in the subprogram at the time the subprogram
reference is executed.

Numeric Arrays

If the dummy array is a constant dimension array (refer to Types of Arrays in section 5), it must not
have more elements than the actual array. If the actual parameter is an array element, the initial
element of the dummy array is associated with the element specified by the actual parameter. If, for
instance, the actual array is dimensioned A(4,5), the dummy array is dimensioned B(- 3: 1,2), and the
CALL appears as:

13-24

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

CALL EXAMP(A(2,3))

END

SUBROUTINE EXAMP(B)
Dl[MENSION B(-2:1,2)

END

The following list shows the storage sequence for the portions of the two arrays which are associated
and their correspondence:

A(2,3)
B(--2,1)

A(3,3)
B(-1,1)

A(4,3)
B(O, 1)

A(l,4)
B(l, 1)

A(2,4)
B(-2,2)

A(3,4)
B(-1,2)

A(4,4)
B(0,2)

A(l,5)
B(l,2)

As can be seen from this list, if the dummy array is dimensioned to have less elements than the actual
array, references into the actual array that exceed the bounds of the dummy array are not permitted.
A(2,5) in the above example can not be referenced by dummy array B.

If the dummy array is an adjustable array, the variables given in the dimension bounds for that array
must appear in a common block in the subprogram containing the adjustable array, or in the same
dummy parameter list as the adjustable array in which they are used. When a reference is made to
the subprogram containing the adjustable array in the parameter list, the values of the variables used
in the 1bounds declaration of the adjustable array are evaluated. These values are then used to determine
bounds for the adjustable array for that reference of the subprogram. When the bounds of the
adjustable array are determined, the number of elements in the adjustable array must not exceed the
number of elements of the actual array or that portion of the actual array which is passed. Every time
the adjustable array is referenced, the bounds of each subscript are checked. If any of the dimension
bounds are exceeded, an error occurs.

Example:

DIMENSION A(- 5 :0,0:9)
DATA 1/6/
CALL JUST(A(- 2,8),1)

I== 15
CALL ADJUST(A(- 1,0),1)
END

100 SUBROUTINE JUST(B,J)
DIMENSION B(J)

200 ENTRY ADJUST(B,J)

END

1152113 13-25

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

When the subprogram in this example is entered through statement 100 (CALL JUST), array B has
6 elements and is associated with array A beginning at element A(- 2,8) (then A(- 1,8), A(0,8),
A(- 5,9), and so forth). When the program is entered at statement 200 (CALL ADJUST), array B
is associated with 15 elements in array A beginning with element A(-1,0) (then A(O,O), A(-5,1), and
so on), and ending with element A(- 4,3).

If the dummy array is an assumed size array, the declaration contains an asterisk (*) character as the
declaration for the upper bound of the final dimension. The dimension bounds that precede the final
dimension can contain constants or variables as in a constant array or an adjustable array. The product
of the sizes of the dimensions (dimension size = upper bound - lower bound + 1) that precede the
dimension containing the asterisk must not exceed the size of the actual array or that portion of the
actual array which is passed.

Example:

DIMENSION A(15)
X = ASSUME(A(3))

END

FUNCTION ASSUME(B)
DIMENSION B(4,4, - 3:*)

END

This example generates an error because the product of the sizes of the dimensions in B that precede
the dimension containing the asterisk (*) character is greater than the number of elements passed in
the call (4*4>13).

The assumed-size array can be dimensioned differently from the actual array with which it is associ
ated. The upper bound for the final dimension is the smallest positive number that enables the dummy
array to contain every element of the actual array that is passed.

Example:

DIMENSION A(3,4)
CALL ASSUME(A)

END

SUBROUTINE ASSUME(B)
DIMENSION B(3,3, *)

END

In this example, the smallest number replacing the asterisk (*) character that enables B to contain all
the elements of A is 2. This does not inf er that all elements of B that contain a 1 or a 2 in the final

13-26

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

dimension subscript can be referenced. Only those elements of B that are associated with an element
of A can be referenced during execution of the subprogram. The association between arrays A and
B can be illustrated as follows:

A(l,1)
B(l, 1, 1)

A(l,3)
B(l,3,1)

A(2,l)
B(2,l,l)

A(2,3)
B(2,3, 1)

A(3,l)
B(3,l,l)

A(3,3)
B(3,3, 1)

A(l,2)
B(l,2,1)

A(l,4)
B(l,1,2)

A(2,2)
B(2,2,l)

A(2,4)
B(2,l ,2)

A(3,2)
B(3,2,l)

A(3,4)
B(3, 1,2)

Array elements A(l, 1) and B(l, 1, 1) reference the same storage location, array elements A(2, 1) and
B(2,1,ll) reference the same storage location, and so on. Referencing B(3,2,2) is invalid in the previous
example. When a reference is made to an assumed-size array, the bounds of each subscript are checked,
and the final displacement into the dummy array is also checked to determine whether a reference is
being made beyond the end of the actual array.

The following is an example of a constant dimension, adjustable dimension, and assumed-size dimen
sion in a single array:

DIMENSION A(- 10:0,3, - 1: 1, - 4: - 3)
I=2

100 CALL JUMBLE(A(- 7 ,2, - 1, - 4),I) Pass 184 of 198 element array

END

SUBROUTINE JUMBLE(B,J)
DIMENSION B(4, - 3:J ,O:*) Upper bound of last dimension is 7. B(4,0,7)

is the last element of B that can be referenced.

In this example, the value of the last dimension of B is 7. However, only the following elements of
B with 7 as the last dimension can be referenced:

B(l,-3,7) B(2,-3,7) B(3,-3,7) B(4,-3,7) B(l,-2,7)
B(2, -2,7) B(3, -2,7) B(4, -2,7) B(l, -1,7) B(2, -1,7)
B(3, -1,7) B(4, -1,7) B(l,0,7) B(2,0,7) B(3,0,7) B(4,0,7)

This list gives the storage sequence for the largest subscript in the final dimension. B(4,0, 7) is the final
storage location of array B when referenced at line 100.

Charac:ter Arrays

A dummy array can have a character type as well as one of the numeric types. A dummy array can
be a constant array, adjustable array, or an assumed-size array. In addition, the length of each element
can be fixed or assumed (refer to Character Type Statements in section 6). If the length of the elements
in the actual and dummy arrays are not the same length, the dummy and actual array elements do
not consist of the same characters, but an association still exists.

When a subprogram is invoked, the length of an element of the dummy array is first determined. If
the length contains an expression, the value of the expression is determined and becomes the length
of an element of the array during execution of the subprogram. If the length is assumed, the length
of an 1element becomes the length of the corresponding actual array element or array element substring
if the actual argument is an array element substring.

1152113 13-27

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Next, the number of elements in the array is determined by inserting values for any expressions in ad
justable dimensions. For a type CHARACTER, the number of elements in the dummy array can exceed
the number of elements in the actual array. However, the number of character storage locations in
the dummy array can not exceed the number of character storage locations in the actual array. The
formula for determining the number of character storage locations in a character dummy array is
similar to the formula for determining the number of elements in a numeric array. It is the product
of the sizes of the dimensions multiplied by the length of an individual element.

Example:

CHARACTER * 4 A(6,5)

The size of the dummy array in this example is 120 characters. The actual array with which it is associ
ated must have at least 120 characters.

In an assumed-size dummy character array (upper bound of the final dimension contains an asterisk
(*) character), the product of the sizes of the dimensions before the dimension containing the asterisk,
multiplied by the length of an individual character, must not exceed the number of character storage
locations passed. The number of elements in an assumed-size dummy character array is determined by
the following formula:

n = INT(< c >I< len >)

< c > is the number of character storage locations passed and < len > is the length of an element of
the dummy array.

If the actual parameter is an array element, the subprogram reference passes the memory address of
that element, the element length, and the number of bytes from the element to the end of the array.
If the actual parameter is an array element substring, the subprogram reference (as in this case) also
passes the address of the substring, along with the length of the substring, and the number of bytes
from the beginning of the substring to the end of the array.

Example:

13-28

CHARACTER * 5 A(3)
CALL REMAP1(A(1)(2:4))
CALL REMAP2(A(2)(1 :3))
CALL REMAP3(A,5)

END

SUBROUTINE REMAPl(B)
CHARACTER * 3 B(2,2)
CHARACTER * (*) C(2, *)
CHARACTER * (I) D(2)

ENTRY REMAP2(C)

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

ENTRY REMAP3(D,I)

END

When this subroutine is referenced through REMAP 1, actual array A is associated with dummy array
B. The storage locations in array A, starting with storage location A(1)(2:2), are associated in groups
of three: (the length of an element in B) with the elements of array B. The following list shows the
association between the elements of array B and the storage locations in array A:

B(l,l) with A(1)(2:4)
B(2,1) with A(l)(5:5) // A(2)(1:2)
B(1,2) with A(2)(3: 5)
B(2,2) with A(3)(1 :3)

Any change made to an element of array B during this reference of the subroutine is also a change
to the corresponding locations in array A.

When the subroutine is referenced through REMAP2, dummy array C is associated with actual array
A. Array C is an assumed-size array and also has an assumed length for its elements. In this case,
the elements of C take on the length of the substring passed (3). The substring in the actual parameter
list is also an index into array A, and the initial storage location of C is the storage location of A
containing the value F before the subroutine reference. The value of the final dimension of C must
be large enough to allow C to contain all character storage locations in A (there are 10 passed) but
not allow C to extend beyond the end of A. Therefore, the value of the final dimension of C must
be 2, since this is the smallest number that allows C to contain all of the locations passed in the CALL.
Howevt::r, not all of the subscripts within these bounds can be referenced. The character storage loca
tions in A are associated in groups of three with the elements of C in the following manner:

C(ll, 1) with A(2)(1 :3)
C(2,l) with A(2)(4:5) // A(3)(1:1)
C(ll ,2) with A(3)(2:4)

The element C(2,2) cannot be referenced because C would extend beyond the displacement bound of
A by two character storage locations. If, in the previous example, the first dimension bound of C is
4, a run-time error would occur because 4 (number of elements preceding the asterisk (*) character)
multiplied by 3 (the length of an element) equals 12, which is greater than 10 (the number of characters
passed) ..

When the subroutine is referenced through REMAP3, the storage locations in array A are associated
with arrny D. The element length of array D is also passed when REMAP3 is invoked. In the previous
example, D obtains a length of five characters for each element in D. Element D(l) points to the same
memory locations as A(l), and D(2) points to the same memory locations as A(2) when REMAP3 is
invoked.

Procedures as Dummy Arguments

If the actual argument associated with a dummy argument is the name of an external procedure, the
dummy argument name can be used to reference the procedure (subprogram) during the subprogram.
Refer to the EXTERNAL Statement in section 6.

1152113 13-29

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

Dummy Arguments in ENTRY Subprograms

The same rules apply to the dummy arguments in the ENTRY statement as to the dummy arguments
in a SUBROUTINE or FUNCTION declaration statement. In addition, a dummy argument appearing
in the dummy argument list of an ENTRY statement cannot appear in a preceding executable statement
unless it also appears in a dummy argument list in an ENTRY, SUBROUTINE, or FUNCTION state
ment prior to the executable statement in question. All declarations associated with dummy arguments,
including dummy arguments appearing in ENTRY statements only, must be given before the first
executable statement of the subprogram unit.

Example:

SUBROUTINE ALPHA

100 A=5.2

ENTRY OMEGA(A)

END

In this example, the variable A is a dummy argument of the ENTRY statement OMEGA. The use
of A at statement 100 is not valid since it has not yet been declared in a dummy argument list. When
A is referenced at statement 100, it is considered to be a local variable. The later use of A as a dummy
argument in the ENTRY statement is ambiguous, since A cannot be both a local variable and a dummy
argument within the same subprogram.

RETURN STATEMENT
The RETURN statement is a control statement provided to specify the manner in which control is re
turned to the calling program unit following the execution of a subprogram.

The proper form of the RETURN statement follows:

~-RETURN~~~~~~~~~~~~--.~~~~~~~~~~~~~--~~~~~~~---i

L <expression> __ ___..

G50347

<expression> is an integer expression specifying an alternate return.

A function or subroutine subprogram can cause termination of program execution by the execution
of a STOP statement, or return of control to the calling program unit by execution of a RETURN
statement or END statement. Use of a RETURN statement in a main program is prohibited. The point
in the calling program at which execution resumes is determined by the form of the RETURN state
ment employed. The RETURN statement has two forms: standard return, and alternate return.

13-30

Standard Return

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

The execution of a RETURN statement of the first form causes a standard return to the calling pro
gram unit. For a subroutine, the first executable statement following the CALL statement which in
voked the subroutine is executed next. For a function, FORTRAN 77 resumes evaluating the rest of
the expression that contains the function reference in the calling program unit.

If the END statement of the subprogram is encountered before a RETURN statement is executed, a
standard return is performed.

Alternate Return

The second form of the RETURN statement allows control to be returned to a specified, labeled,
executable statement in the calling program unit. An alternate return from a function is not allowed.

An alternate return is indicated in a subprogram by a RETURN statement followed by an arithmetic
expression. The value of this expression must be an integer. The integer value, n, is used to select the
n-th asterisk (*) character in the dummy argument list of the SUBROUTINE. If n is greater than the
number of asterisk (*) characters in the list, or if n is less than or equal to zero, a standard return
is performed. These asterisks in the dummy argument list are referred to as alternate return specifiers.

The statement label corresponding to the selected asterisk (*) character is specified in the actual argu
ment list, preceded by an asterisk and is used to identify the statement to which control is to be re
turned. The actual argument list of the CALL statement must contain such a statement label in each
position where the dummy argument list of a SUBROUTINE statement or ENTRY statement contains
an asterisk.

An example of alternate returns follows:

CALL SUBA(Al, *33,A2, *20,11)
15 Z=Al + II
20 Z=Z+A2
33 Z=Z+Al

The called subroutine could be the following:

SUBROUTINE SUBA (A,* ,B, * ,J)
IF (A) 5,6,7

5 RETURN 1
6 J=J+B

RETURN INT(A + 2)
7 RETURN

END

In this 1example, suppose that when the IF statement in the subroutine is reached, A is positive. A
branch ils made to statement number 7, which is a normal return. The subroutine then returns to the
calling program unit at the statement following the CALL, statement number 15.

If A is less than zero when the IF statement in the subroutine is reached, there is a branch to statement
number 5. This is an alternate return to the first label in the actual argument list, since RETURN 1
selects the first asterisk (*) character in the dummy argument list. The return in the calling program
unit is to statement number 33.

1152113 13-31

B 1000 Systems FORTRAN 77 Language Manual
Subprograms

If A is equal to zero when the IF statement in subroutine SUBA is executed, there is a branch to state
ment number 6. Since A = 0 when the arithmetic expression is evaluated, the statement becomes RE
TURN 2. This causes a return to statement number 20 in the calling program unit.

A CALL statement that results in an alternate RETURN can be regarded as a CALL followed by a
computed GO TO, shown as follows:

CALL SUBA(Al, *33,A2, *20,II)

This statement can be treated as an equivalent replacement for:

CALL SUBA(Al ,A2,Il,JUMP)
GO T0(33,20),JUMP

JUMP is assigned a value of 1 or 2 (or some other value if return is to be standard) by the subroutine.

13-32

B 1000 Systems FORTRAN 77 Language Manual

SECTION 14
COMPILER CONTROL IMAGES

This section describes Compiler Control Images (CCis): instructions with which the user controls the
options provided by the FORTRAN 77 compiler. This section also describes the function of the CCI
controlled files used by the FORTRAN 77 compiler.

A CCI consists of a dollar sign ($) character in column 1 and one or more options with the associated
parameters, if any, separated by blanks in the next 71 columns of the line (columns 2 through 72).
A second but optional dollar sign ($) character in column 2 of the line specifies that the line upon
which a CCI appears is written to a CCI-controlled file labeled NEWSOURCE. The use of this file
is explained more fully in the explanation of the NEW option in this section. A CCI can appear on
any line within the source code of a FORTRAN 77 program and affects the compilation only after
the point where encountered.

TYPES OF OPTIONS

Compiler Control Images consist of three types of options: boolean, immediate, and value. These types
of options are described next.

Boolean Options

A boolean option is one which is either SET (enabled or TRUE) or RESET (disabled or FALSE).
When SET, a boolean option causes the FORTRAN 77 compiler to apply an associated function to
all subs1equent processing until disabled. The following commands specify the condition of a boolean
option:

SET
Enables or sets the option (TRUE). The use of the SET keyword in the POP command is optional.

RESET
Disables or resets the option (FALSE).

POP
Each time an option is SET or RESET, its value (TRUE or FALSE) is placed on a stack associated
with the option. All options have a default setting which is the first value on the stack. A POP
command discards the current setting of the boolean and the value (TRUE or FALSE) on the top
of the stack associated with the specified option becomes the new setting for the option.

More than one SET, RESET, or POP command can occur on a single card image.

If a single SET, RESET, or POP command is being used to affect more than one option, the options
specified must be enclosed in parentheses and must be separated from other options by at least one
blank character.

Examples of the SET, RESET, and POP commands follow:

$SET AUTOBIND
$RESET (OMIT AUTOBIND)
$POP (AUTOBIND OMIT) SET (SEQCHECK XREF XSEQ)
$RESET LISTDOLLAR MAP SUMMARY

1152113 14-1

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

In the first example, the SET command enables the AUTOBIND option (stack value TRUE).

In the second example, the RESET command disables the OMIT and AUTOBIND options (stack value
FALSE).

In the third example, the POP command discards the current setting of the AUTOBIND and OMIT
options and replaces it with the value in the top entry of the stack associated with each option. In
this case, the POP command causes the AUTOBIND option to have the value TRUE, since the top
stack value of FALSE (resulting from the second example) is replaced with the next stack value of
TRUE (resulting from the first example). Also, the SEQCHECK, XREF, and XSEQ options are en
abled in this example.

In the fourth example, since no parentheses are present, the RESET command applies only to the
LISTDOLLAR option. The MAP and SUMMARY options are enabled in this example since they are
assumed to be individual SET commands with the optional SET keyword missing.

Immediate Options

Immediate options are only in effect during the period required to perform the desired task. For exam
ple, the PAGE option immediately advances the paper to the beginning of the next page of the printer
listing.

Example:

$PAGE

Value Option

A value option causes the the FORTRAN 77 compiler to store a value associated with a given function.
A value option must be followed by a space or an equal sign (=) character and then by the quantity
desired.

Examples:

$DYNAMIC= 520
$REMOVEICM MYICM

The options described in the remainder of this section are organized according to function, not accord
ing to the type of option. The type of option is designated in each option description. The groupings
for these options are User-Declared Options, Conditional Options, Limiting Options Source Input Op
tions, Source Output Options, Intermediate Code Module Options, and Miscellaneous Options.

14-2

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

USEB-DECLARED OPTIONS

The DECLARE command allows the user to declare temporary boolean options that can be used with
the SET, RESET, and POP commands and can be used in boolean expressions. The DECLARE com
mand has the following form:

-- DECLARE T---<boolean-option-name> -------.-----------------1

< ~ -~'- <boolean-option-name> -----)

<boolean-option-name> is any name of six or fewer characters that is not already an option name.
The name must be declared before it can be used with the SET, RESET, or POP commands or before
it can be used in a boolean conditional expression. If more than one <boolean-option-name> is
specified in the DECLARE command, the names must be enclosed in parentheses and must be
separated by at least one blank character. The default value of a user-declared boolean option is
FALSE ..

Exampk~s:

DECLARE MOD2

DECLARE (CODEl CODE2 TEST)

CONIDITIONAL OPTIONS

A conditional option allows a list of options to be performed only if a boolean expression evaluates
to TRUE. The boolean expression must consist of user-declared booleans and boolean operators. A
conditional option has the following form:

--IF <bo~ean~xpren~n> <opt~n~in> Fl ~---------------------~

If <boolean-expression> evaluates to TRUE, the Compiler Control Image options specified by <op
tion-list> are performed. <option-list> contains one or more options separated by at least one blank
character.

<boolean-expression> has the following form:

--i- --....,.--<user-declared-boolean>

LNOT_J
:::J-~L.----N-O_T_J_,__ <user-declared-boolean>

EOV--=.J

1152113 14-3

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

<user-declared-boolean> is the name of a boolean that is declared by the user with the DECLARE
command. The boolean operators NOT, AND, OR and EQV have equal precedence and are evaluated
from left to right.

Examples:

IF TEST INCLUDE "TEST/PROGRAM" FI

IF MONTH7 OR MONTHS AND NOT YEAR2 USEICM "MONTHCODE" (JULY,AUG) FI

LIMITING OPTIONS

The following CCI options specify various limits for the current compilation.

DYNAMIC

DYNAMIC is a value option that specifies the size, in words, to be assigned to the dynamic memory
of an object program. Each data page of dynamic memory contains 256 words and the total number
of data pages allowed for an object program is 1024. By default, the compiler assigns an amount of
dynamic memory equal to the sum of all the data pages. Therefore, DYNAMIC can only be used to
reduce the size of dynamic memory assigned to the object program. Reducing the size of dynamic mem
ory can be used with an object program that cannot obtain enough system memory to be executed.
Reducing the size of dynamic memory can also be accomplished by modifying the MEMORY attribute
of the object file (refer to the B 1000 Systems System Software Operation Guide, Volume 1). When
dynamic memory is reduced from the default size, the need for memory overlays can increase the
execution time of the program. Refer to Data Allocation Information in appendix D for a description
of how data is allocated to dynamic memory.

Example:

$DYNAMIC = 512

This example, although assigning a value equal to two data pages, cannot contain two full pages at
the same time because a word from the total dynamic memory of the program is used to link memory
pages together.

ERRORLIMIT

ERRORLIMIT is a value option that specifies the number of syntax errors the compiler can encounter
in the source program before terminating the compile. If the ERRORLIMIT option is not present, the
quantity of syntax errors does not cause the compile to terminate.

Example:

$ERRORLIMIT 5

144

STACKSIZE

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

ST ACKSIZE is a value option that specifies the size of the subprogram parameter stack. The parameter
stack contains the addresses or values of all actual arguments being passed to subprograms, as well
as the :subprogram return addresses. Arguments are placed on the stack when a subprogram is refer
enced and popped off the stack when the subprogram is exited. Only those arguments that were placed
on the stack when the subprogram was entered are popped off when the subprogram is exited. By de
fault, the value of STACKSIZE is set to the maximum possibly required.

Example:

$STACKSIZE 20

This example would allow the stack to contain a maximum of 20 entries. Memory space is conserved
by making the stack as small as possible.

SOURCE INPUT OPTIONS

The following options describe the form the source input to the compiler is to take. These options,
except OMIT and SEQCHECK, are only recognized by the compiler if MERGE is set.

DELETE

DELETE is a boolean option that inhibits all source images from the file named SOURCE beginning
at the specified line number from being compiled into the object file until the option is reset. All source
images that are deleted are not written to the file named NEWSOURCE if NEW is set. DELETE is
ignored if MERGE is disabled. The DELETE option is reset by default.

Example:

$SET DELETE
$RESET DELETE

00001000
00002000

If a line number appears in columns 73-80 of the record, the compiler begins deleting source images
at the line where DELETE is SET, and stops deleting where the DELETE option is RESET. If no
line number appears on the card image that sets the DELETE option, the action begins at the current
line.

INCLUDE

INCLUDE is an immediate option that specifies a range of lines from another source file that is to
be compiled and inserted at the point where the INCLUDE option occurs. The INCLUDE option has
the following form:

INCLUDE "<file-name>" -~----

L < s1 > =r-
< sl > is the beginning line number and < s2 > is the ending line number in the range of lines from
the fik~ <file-name> to be included in the compilation at the point where the INCLUDE option oc
curs. If a range is not specified, all records from the file are included. If < sl > is omitted, the range
of lines from the start of the file to < s2 > are included. If TO < s2 > is omitted, the range of lines
from < sl > to the end of the file are included.

1152113 14-5

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

Example:

$INCLUDE "(MY)/LIBRARY" 1200 TO 1500

MERGE

MERGE is a boolean option that causes the compiler to combine a secondary source input file with
the primary source input file during compilation. The MERGE option has the following form:

G50349

<file-name> is the name of the file to be merged with the primary input file. If <file-name> is not
specified, a file named SOURCE is searched for unless otherwise pre-empted by a label equation. The
MERGE option must be specified in the primary source file named CARD. The MERGE procedure
is as follows:

1. The compiler reads a source card image from each file (CARD and SOURCE) examining the
line numbers in columns 73 - 80.

2. The card image with the lower line number is processed by the compiler.
3. The compiler continues by reading the next card image from the file that previously had the

lower line number, and compilation continues with step 2.
4. If a card image from the primary file (CARD) does not have a line number, it is immediately

processed without comparison with the current line in SOURCE.

Example:

?DATA f.AfC
isrr ME~:;GE

$SU DELETE
iF {A.LE.?.) GQ ra 10

i::.ESCT DElt.:Tf
?t:NG

100014'.>0
000 01500
00001&00

This example ignores all input from file SOURCE from line 1400 through 1600. When the line immedi
ately preceding line 1400 in file SOURCE has been compiled, the next statement to be compiled is line
1500 in file CARD.

If the line numbers of the two source card images are equal, the primary source card image is used
and the secondary source card image is discarded. The MERGE option is reset by default.

14-6

OMIT'

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

OMIT is a boolean option that causes all source input from file SOURCE to be ignored beginning
with the line number of the OMIT card image or with the next card image from the file SOURCE
if the OMIT card does not contain a line number. Card images from file SOURCE are ignored until
the OMIT option is reset. When the OMIT option is reset, card images are again used from file
SOURCE beginning at the next line number greater than the line number containing the RESET OMIT.
The OMIT option can be on a card image in the primary source file or in the secondary source file.
Unlike the DELETE option, the source images that were ignored are written to the file NEWSOURCE
if the NEW option is set.

iSET CM IT
X=X+2
X=X11'1t2

HES ET OMIT

The OMIT option is reset by default.

SEOCHECK

OOOUlUOO
00001200
C00013·00
C0002200

SEQCHECK is a boolean option that causes the compiler to verify that line numbers of source input
to the compiler are in ascending order. When merging, the compiler looks at the line number of the
next source card image chosen for compilation and compares it with the line number of the last card
image that was compiled. If the input is out of sequence, a sequence error is generated.

Examplle:

$SET SEQCHECK

SEQUENCE

SEQUENCE (or SEQ) is a boolean option that causes the compiler to assign line numbers to source
card images written to file NEWSOURCE. This includes those card images that were omitted because
the OMIT option was set. The values assigned to the line numbers are dependent on the setting of
the sequence range options. The SEQUENCE option is reset by default.

Example:

$SET SEQ

1152113 14-7

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

SEQUENCE Range Options

The SEQUENCE range options are value options that specify the values of the line numbers assigned

The SEQUENCE range options are value options that specify the values of the line numbers assigned
to the source output file NEWSOURCE. The SEQUENCE range options can appear anywhere in the
primary or secondary source file, before or after the SEQUENCE option and can appear more than
once. The following are the proper forms of the SEQUENCE range options:

-<base>-----------------------------------!

-- + <increment> __________________ .;___ ___________ ----1

G50350

<base> is an integer constant which is the line number of the next record to be written to file NEW
SOURCE. The base is 1000 by default when the SEQUENCE option is encountered. The + <incre
ment> specifies the amount to add to the base line number after each line is written to NEWSOURCE.
<increment> is 1000 by default.

Examples:

1. $10 + 10

$SET SEQ

2. $SEQ 10 + 10 00001000

These two examples are equivalent. The SEQUENCE range options must appear on a CCI so as not
to be associated with any other option requiring an integer or plus sign (+) integer as a parameter
or a value.

VOID

VOID is an immediate option that causes the compiler to discard all source input from file SOURCE
starting at the line following $VOID and continuing until the line number in file SOURCE exceeds
the specified line number on the VOID option. VOID is ignored if MERGE is disabled.

Example:

$VOID 1000 00000010

This example discards lines 11-1000 of file SOURCE.

SOURCE OUTPUT OPTIONS

The following options affect the format of the printer listing of the source output generated by the
compiler.

14-8

DOUBLE

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

DOUBLE is a boolean option that produces a double-spaced listing of the source program from the
point where the option is encountered. This option is reset by default.

Examples:

$SET DOUBLE
$PAGE RESET DOUBLE

The second example demonstrates that two options can appear on the same line.

INCLNEW

INCLNEW is a boolean option that causes the compiler to write any source language statements fol
lowing the INCLUDE option to the file NEWSOURCE when NEW is enabled. INCLNEW is reset
by default.

Example:

$SET INCLNEW

LIST

The LIST option causes the compiler to produce a listing of the source program being compiled. This
is a boolean option which is set by default.

Example:

$SET LIST

LISTDELETED

LISTDELETED is a boolean option that causes the compiler to list all source language input deleted
by enabling the DELETE or VOID options. This option is reset by default.

Example:

$SET LISTDELETED

LISTll\ICL

LISTINCL is a boolean option that causes the compiler to list all source language input which was
accepted for compilation as a result of enabling the INCLUDE option. This option is reset by default.

Example:

$SET LISTINCL

1152113 14-9

LISTOMITTED

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

LISTOMITTED is a boolean option that causes the compiler to list all source language input which
was omitted by enabling the OMIT option. This option is reset by default.

Example:

$SET LISTOMITTED

LISTP

LISTP is a boolean option that causes the compiler to list those source images that are input from
the file CARD. If LIST is set, this option has no effect. LISTP is reset by default.

Example:

$SET LISTP

LISTDOLLAR

LISTDOLLAR is a boolean option that causes the compiler to list all Compiler Control Images during
compilation. LISTDOLLAR is reset by default.

Example:

$SET LISTDOLLAR

MAP

MAP is a boolean option that causes the compiler to include, as part of the output listing, information
concerning the allocation of variables within the object code produced by the compilation process.
MAP is reset by default.

Example:

$SET MAP

NEW

NEW is a boolean option that causes the compiler to output the source created by the MERGE process
to a file named NEWSOURCE or optionally, to the file named after the keyword NEW. This option
is ignored if MERGE is disabled. NEW is reset by default.

Example:

$SET NEW
$SET NEW FILEA

PAGE

PAGE is an immediate option that causes the listing to skip to the beginning of the next page.

Example: $PAGE

14-10

SUMMARY

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

SUMMARY is a boolean option that causes the compiler to produce a summary of appropriate infor
mation about the compilation on the output listing. SUMMARY is reset by default.

Exam pl<~:

$SET SUMMARY

XREF

XREF is a boolean option that causes the compiler to print a cross-reference listing of symbolic names
and statiement labels of the source input. Cross-referenced names are associated by line number unless
the XSEQ option is used.

Exam pk:

$XREF

XSEQ

XSEQ is a boolean option used in conjunction with the XREF option that causes the cross-referenced
names to be associated by sequence number.

Exam pk:

$XSEQ

INTERMEDIATE CODE MODULE OPTIONS

An Intermediate Code Module (ICM) is a code module generated by the compiler from the compilation
of the main program or any subprogram. The code generated from the compilation of each syntactical
ly correct program unit is written ·to a temporary file named ICM. The code from each program unit
is contained within a code module within file ICM. The following options permit the user to save and
reuse sellected ICMs that are compiled without syntax errors: ICM, REMOVEICM, and USEICM.

ICM

ICM specifies that file ICM is to be saved, and optionally, gives a name for the file in which it is
to be saved. The ICM option has the following form:

G50351 ?
I

I\ II

ICM

If <file-name> is specified, the ICM option creates a liqrary f,, with the name <file-name>; other
wise, the ICM option creates a library file with the name(fil!RTN°:)The library file contains all syntacti
cally correct program units from the file ICM. The names of tlieICMs in the library file are the same
as the names of the subprograms. The names of any main programs are the names given in a PRO
GRAM statement, or OMAIN by default. If specified, ICM must appear before any FORTRAN 77
language statements and any USEICM Compiler Control Images.

1152113 14-11

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

An example of the ICM option follows:

$ICM "SUBCODE"
PROGRAM CALCUL

SUBROUTINE GEOM (I)

REAL FUNCTION TRIG

This example creates an ICM library file named SUBCODE which contains three ICMs (if the entire
program is syntax-error free): CALCUL, GEOM, and TRIG. Since AUTOBIND is set by default, the
ICMs are also bound together into an executable code file. If AUTOBIND is reset, no attempt is made
to bind the program modules together and the source file need not contain a main program (CALCUL
in the above example).

USEICM

USEICM specifies an ICM library code file containing subprograms to be used (all or part) by the
current compile. The USEICM option has the following form:

---USEICM ---------..----------------~---.---------- = -----------r-----------------1
"< file-name>"

L---f-.................... < ICM-name > -h-...___~__.
G50352 { __ L. J
<file-name> is the name of the ICM library file on disk. Each <ICM-name> specified is regarded
as a syntax-free code module, which is written to file ICM being created by the current compile. The
equal sign (=) character specifies that all code modules in <file-name> are to be used by the current
compile. No subprogram or main program being compiled can have the same name as a code module
brought in by the USEICM option.

An example of the USEICM option follows:

$ICM "CONTROL"
$USEICM "SUBCODE"(CALCUL, GEOM J
INTEGER FUNCTION TRIG

In this example, CALCUL (from the example under ICM) is used as the main program when the pro
gram is bound together.

14-12

REMOVEICM

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

REMOVEICM removes code modules from file ICM being created. This option is especially convenient
when the user attempts to bring in an ICM library code file with a large number of modules and re
place only a few modules with new ones with the same name from the current compile. The REMO
VEICM option has the following form:

- REMO VE ICM --------:----(1--1-r_ <ICM-name> --1'--):\---------------;
L __ L ';.~ G50353

<ICM-name> is the name of an intermediate code module within file ICM being created. The REMO
VEICM and USEICM options provide the capability to selectively recompile portions of a previously
compiled program which had syntax errors or logical errors in some of the program units. This concept
is illustrated by the following example:

The source program name FORTPROG was compiled as follows:

$lC~ "MYMUOS"
PPOGRA~ VAL

SUB~OUTINE FREQCEX~ VERlf l

SURROUTINE CONV

INTEGER FUNCTION CO~PUT

•

0000101)0

00012000

00024000

00()33000

Suppose the user wants to recompile subroutine FREQ to update it or correct a syntax error, and bind
the entire program into an executable FORTRAN 77 code file. The following card images would pro
vide the desired results:

1152113

?CO COOEFILE fO~TRAN77 LI
?fl SOU~CE NAM FOFTPFOG
?O.ATA C~.RD

$S£T MEf-.GE NDt
$US£ICM "~YMOOS" =
$~EM OV EI CM FF E 0
$ S:::: T 0 t11 T
UESET OMIT

If C!.NE.J~2> CALL CONV
'f,SfT OMIT

0001199q
OC'.>17100
000239CJ9

14-13

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

This example recompiles only subroutine FREQ, and obtains the rest of the program from ICM library
code file MYMODS. The FORTRAN 77 statement that was added could also have been added by using
CANDE or some other means, and the above sequence performed without the card image containing
the FORTRAN 77 statement.

MISCELLANEOUS OPTIONS

The following miscellaneous options are provided by FORTRAN 77.

AUTOBIND

AUTOBIND is a boolean option that causes the compiler to combine the ICMs in file ICM into an
executable code file. ICM contains intermediate code modules created from the compilation of subpro
grams, main programs, and any modules added by a USEICM control option. The AUTOBIND option
has the following form:

G503.54

<main-program-name> is the name of a main program in ICM to be used as the main program of
the executable code file. A program name is specified by a PROGRAM statement or is OMAIN if no
PROGRAM statement is present. This permits a source file to contain more than one main program.
However, no two main programs or subprograms can have the same name. This causes a duplicate
file situation in I CM.

If no <main-program-name> is specified, the binder uses either:

1. The last compiled syntactically correct main program explicitly named in a PROGRAM state
ment.

2. OMAIN, if there is no explicitly named main program in ICM.

An example of the use of the AUTOBIND compiler control option follows:

$SET AUTOBIND "MAIN2"

The AUTOBIND option is set by default. If AUTOBIND is reset, no attempt is made to create an
executable cO-de file from I CM.

CLEAR

CLEAR is an immediate option that causes all boolean options except MERGE and NEW to be reset.

Example:

$CLEAR

14-14

END

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

END is. an immediate option that causes the compiler to terminate compilation and close and save all
currently open disk files. This permits the user to specify a premature end to compilation anywhere
within the program being compiled.

Examplle:

$END

ERROIRLIST

00066000

ERROR.LIST is a boolean option which, when set, causes the compiler to list all syntax errors encoun
tered during compilation in a separate file called ERRORS. ERRORLIST is set by default if running
through CANOE; otherwise, it is reset.

Examplle:

$RESET ERRORLIST

INTERPRETER

INTERPRETER is a value option that specifies the name of the interpreter to be used with the
executable code file being generated. INTERPRETER has the following form:

~~INTERPRETER ''~interpreter-name~''~~~--~~~~~~~~~~~~~~~~~~~~~

G50355

<interpreter-name> is the name of a disk file that is an interpreter for FORTRAN 77. The default
interprt~ter name is FORTRAN77/INTERP3M.

Example:

$INTERPRETER "INTDEBG"

INTRINSICS

INTRINSICS is a value option which specifies the name of the intrinsics file to be used when compiling
the FORTRAN 77 program. The INTRINSICS option has the following form:

~~tNl"RINSICS ''~intrinsics-name ~tt~~~~~~~~~~~~~~~~~~~~~~~~~~

G50356

<intrinsics-name> is the name of a disk file which contains all intrinsics necessary to compile the pro
gram. The default intrinsic file name is FORTRAN77/INTRINSICS.

Example:

$INTRINSICS "USER/(JONES)/INTRINAL T"

1152113 14-15

NO BOUNDS

B 1000 Systems FORTRAN 77 Language Manual
Compiler Control Images

NOBOUNDS is a boolean option that inhibits the compiler and interpreter from checking bounds when
arrays are referenced. Program execution time can be enhanced by setting this option once it is deter
mined that all array references are correct. This option is set by default.

Example:

$NO BOUNDS

14-16

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX A
B 1000 FORTRAN 77 LANGUAGE SYSTEM

The purpose of this appendix is to provide an outline of the features of the B 1000 FORTRAN 77
language system. This includes the following:

1. A summary of system requirements.
2. A digest of user-oriented compiler information.
3. A complete description of control records and the structure of the FORTRAN 77 compilation

source file.

The FORTRAN 77 compiler described in this appendix and the object programs generated by it are
designed to operate under control of the B 1000 Master Control Program (MCP).

SYSTEM REQUIREMENTS

The following is a description of the system hardware and software required for the B 1000 FORTRAN
77 language system.

Require~d Hardware

The following hardware devices must be provided for the FORTRAN 77 system to operate: B 1000
processor (except B 1825, B 1830, and B 1710 series of processors), and disk.

Require~d System Software

The FORTRAN 77 system file requirements are as follows:

1. The FORTRAN 77 compiler (which includes a binding phase).
2. The intrinsic file (which contains various subprograms supplied with the compiler).
3. The FORTRAN 77 interpreter (which executes the object code).

The FORTRAN 77 compiler, interpreter, and intrinsic files must all reside on the same disk, unless
otherwise specified in a Compiler Control Image. Refer to INTERPRETER and INTRINSICS in sec
tion 14. If these files are on a user disk cartridge or pack, they are referenced by prefacing their names
with the disk cartridge or pack name.

USER/COMPILER INTERFACE

The purpose of the B 1000 FORTRAN 77 compiler is to accept application programs written in the
FORTRAN 77 language and to produce from these programs object code which can be executed on
the B 1000 system.

Concurrent to the production of object code, the user is provided with compile-time debugging and
diagnostic facilities and the ability, to a limited extent, to control the functions performed by the com
piler, such as in the area of compiler file handling. Compiler file handling is available using the FOR
TRAN 77 Compiler Control Images. Refer to section 14 for additional information.

1152113 A-1

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

The debugging and diagnostic facilities provided by the compiler are compile-time additions to the com
piler-provided printer listing of input source statements. The following items are provided as diagnostic
aids by the compiler:

1. Syntax-error messages, which are placed on the printer listing generally following the line of
text bearing the questionable statement.

2. Messages denoting warnings are placed on the printer listing following the line bearing the in
correct statement.

3. A special character is printed above the syntax-error or warning message to give the
approximate location of the error.

4. Various compiler information messages.

All user communication with the compiler and all compiler output is handled using compiler files. A
description of the interface between the user and the FORTRAN 77 compiler is, therefore, an examina
tion of the features of these compiler files. Figure A-1 contains the names and characteristics of the
compiler files.

A-2

COMPILER INPUT FILES
(SOURCE LANGUAGE
INPUT AND COMPILER

CONTROL I MAG ES)

r--~

INTER:MEDIATE

CODE FILE(S)

(AUX ICM)

INTRINSIC
f=ILE

(INTIRINSICS)

GI MARY
JT FILE

CARD)

OPTIONAL

SECONDARY

INPUT FILE
(SOURCE)

OPTIONAL
TEfHIARY
INPUT FILE
(LIBRARY)

G50357

1152113

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

FORTRAN 77

~

COMPILER
~

BINDER

~

I
cnoss

REFERENCE
WORKFILE
(F77XREF)

Figure A~l. FORTRAN 77 Compilation System

COMPILER - GENERATED
OUTPUT FILES

r ___ A ____ 'I

OPTIONAL
UPDATED

~ SYMBOLIC FILE
(NEWSOURCE)

OBJECT
- CODE FILE

(CODE)

INTERMEDIATE
... CODE FILE

(ICM)

OPTIONAL
LINE PRINTER -.... LISTING

(LINE)

~
DIAGNOSTIC

~ FILE

(ERRORS)

~

A-3

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

Intermediate Code Files

Depending on the Compiler Control Images used, intermediate code files and/ or a single executable
file is produced by the compiler. Each subprogram is compiled into a separate file in an intermediate
nonexecutable form. An executable file is produced by the binding part of the compiler using the
?COMPILE record specification or through the appropriate Compiler Control Image. For information
on the use of Compiler Control Images, refer to section 14.

Compiler Files

Compiler communication is handled through various input and output files.

The compiler has the capability of merging input from two files on the basis of sequence numbers.
When inputs are being merged, indications of text insertions or replacements are made to appear on
the output listing. In addition to the output listing, the FORTRAN 77 compiler can also generate an
updated symbolic output file. These files can be created in addition to the compiler-generated output
code file. Compiler input and output files are described in detail in the following text.

Input Files

The primary compiler input file is a file with the internal name CARD; the secondary input file is
a serial disk file with the internal name SOURCE. The presence of the primary file CARD is required
for each compilation; the presence of the secondary file SOURCE is optional for each compilation.
File CARD is coded with SO-character records and is unblocked. File SOURCE is coded with SO-charac
ter records and uses input blocking. Both the CARD file and the SOURCE file can be label-equated
(using label equation records) to change the file's external file name and hardware device. Refer to
the description of the FILE statement in the B 1000 Systems System Software Operation Guide, Vol
ume 1.

Output Files

Output files produced by the compiler include intermediate and object code files, an updated symbolic
file, a syntax-error file, and a line printer listing. The intermediate code file has the internal name ICM.

The object code file has the internal name CODE and is saved on disk after the compilation unless
the COMPILE system control record specifies otherwise. The external file name of the saved code file
is identical to the program-name appearing on the COMPILE record. Refer to the subsection entitled
MCP Control Cards in this appendix.

The compiled program is logically segmented within the resultant code file by program unit. The code
for each program unit begins at a physical disk segment boundary and fills as many disk segments
as required within the limits of the system. The updated symbolic file is, by default, a disk file (NEW
SOURCE) generated only if the compiler control option NEW is set. This file contains the compilation
source input or a selected portion of this input as specified by the compiler control option NEW and
can be used as the SOURCE file for a succeeding compilation.

The printer listing is an optional print file that is created unless the compiler control option LIST is
reset. The LIST option is set by default. The file has the internal name LINE, and contains the fol
lowing information:

1. Source and Compiler Control Images input to the compiler.
2. Code segmentation information.
3. Error messages and error count.
4. Processor compilation time and elapsed compilation per subprogram unit.
5. Timing breakdown of major compilation activities for all program units.

A-4

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FOR TRAN 77 Language System

6. Estimated space needed for the program files.
7. Total number of bits of object code generated for each subprogram.
8. Number of disk segments required for the program code file.
9. Estimated memory required to run the object program.

Depending upon the specified setting of the LIST and MAP compiler control options, the printer listing
can contain more or less information than the basic items listed above.

Compiler File Names and Defaults

The FORTRAN 77 input and output files and information concerning the configuration of each file
are listed in table A-1. Table A-1 lists the internal name of the file (the name used when the file is
declared within the FORTRAN 77 compiler), the purpose served by the file, the default hardware de
vice of the file, the default record size (RSZ) and records per block (RECORDS.BLOCK) of the file,
and a brief commentary on the file.

1152lll3 A-5

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

Table A-1. FORTRAN 77 Compiler File Names and Characteristics

Internal
Name

CARD

SOURCE

LIBRARY

F77XREF

CODE

NEWSOURCE

LINE

ERRORS

INTRINSICS

ICM

AU XI CM

Purpose

Input card
file

Input disk file

Input disk file

Cross reference
work file

Executable
object code
file

Updated
symbolic
output file

Line printer
listing

Diagnostic file

Intrinsics and
intrinsic
functions

Intermediate
code file

Intermediate
code file

Default
Hardware

CARD
READER

DISK

DISK

DISK

DISK

DISK

LINE
PRINTER

REMOTE

DISK

DISK

DISK

RSZ/
Block

80/1

180/1

180/1

25/60

180/1

90/2

132/ I

132/ I

180/ I

180/1

180/J

Comments

Required for each compilation. Primary
compiler input file.

Optional file: not necessary for
compilation. Secondary compiler input
file, selected by setting MERGE CCI.

Optional file: not necessary for
compilation. Tertiary compiler input file,
selected by setting INCLUDE CCI.

Work file used by cross reference.

Generated object code file. Saved or
discarded and assigned the program
name.

Optional output file produced when
NEW CCI is set.

Output from the compile.

Default error file if running from
CANOE.

The intrinsics and intrinsic functions
file.

As output: destination of intermediate
code modules from the compiler. Saved
ifICM set. As input: source of inter
mediate code modules to the binder.

Optional input. Source of previously
compiled intermediate code modules to
be copied into file GIF for transmission
to the binder if USEICM is set.

The attributes of any of these files can be changed through use of label equation records directed to
the compiler. Ref er to the discussion on the FILE card in the B 1000 Systems System Software
Operation Guide, Volume 1.

A-6

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

Large FORTRAN 77 Program Code Files

Code files on the B 1000 system must be contained in one disk area. If the FORTRAN 77 compiler
terminates because the file space was exceeded for the code file, the BLOCKS.PER.AREA file attribute
of the CODE file of the FORTRAN 77 compiler must be increased in the following way.

COMPILE <code-file-name> FORTRAN?? LI
FILE CODE BLOCKS.PER.AREA = <integer>;

The value of <integer> must be greater than the default value of 700.

MCP CONTROL RECORDS

When a FORTRAN 77 source program is compiled, the actions to be performed are specified by con
trol records. Control records included in a compilation source file are of two types: MCP control rec
ords (? records), and Compiler Control Images ($ records). The structure of the FORTRAN 77 compil
ation source file is explained in the text that follows.

Compilation of a FORTRAN 77 source program is achieved by presenting the compilation source file
to the MCP. The entities comprising the structure of the FORTRAN 77 compilation source file and
the order of occurrence follow.

Compiilation Source File

1. ? COMPILE record.
2. Label equation records. (FILE statement) (optional).
3. ? DAT A CARD record. (Necessary only if the source program is to immediately follow, as with

punch cards. Refer to the DATA statement in the B 1000 Systems System Software Operation
Guide, Volume 1.)

4. Source input file CARD. (Compiler Control Images can be inserted here.)
5. ? END (end of file) record. (Necessary only if the DATA statement is used.)

MCP control cards are distinguishable from other cards by an invalid character in column 1 for 80-
column cards or a question mark (?) character for 96-column cards. An invalid character is represented
by a question mark (?) character for clarity in this manual. If the program is compiled from the ODT,
the que:stion mark is deleted. MCP control information is entered in a free-form format in columns
2 through 72.

? COMPILE Record

The ? COMPILE record instructs the MCP to compile the indicated program-name with FORTRAN
77 using one of the following options:

1. ? COMPILE program-name FORTRAN??

This option causes the source program to be compiled, bound, and executed (compile and go).
The resultant object program is not entered in the disk directory. The resultant intermediate
code files are removed from the disk directory upon binding unless the Compiler Control Image
$ICM is specified.

2. ? COMPILE program-name FORTRAN?? LIBRARY

This option causes the source program to be compiled and bound, but not executed. The result
ant object program is entered in the disk directory. The resultant intermediate code files are
removed from the disk directory upon binding unless the Compiler Control Image $ICM is
specified. Execution is specified by the execution statement, ? EXECUTE <program-name>,

1152113 A-7

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

placed after the ? END record, if present. Additional information on the ? EXECUTE state
ment can be found in the B 1000 Systems System Software Operation Guide, Volume 1.

3. ? COMPILE program-name FORTRAN77 SAVE

This option causes the source program to be compiled, bound, and executed, and the resultant
object program to be entered in the disk directory. The resultant intermediate code files are
removed from the disk directory upon binding unless the Compiler Control Image $ICM is
specified.

4. ? COMPILE program-name FORTRAN77 SYNTAX

This option causes the source program to be compiled only for a syntax check.

For compile card options 1, 2, and 3, the intermediate code files are created and left in the disk direc
tory after compilation until binding occurs. If the program is terminated before binding, or the com
piler control option NO AUTO BIND is specified, the intermediate code files remain in the directory.
Refer to section 14 in this manual, for additional information. If any errors result during compilation,
the error-free intermediate code files remain in the directory and no binding occurs. The error-free in
termediate code files remaining in the directory do not have to be recompiled.

If the required intermediate code files are not on disk or a subprogram is referenced which was not
compiled, a message stating that the file or subprogram unit is missing is given during binding. Subpro
grams can be compiled independently or with the main program which references them.

Program-name

The program-name can consist of one, two, or three identifiers of up to 10 characters each, separated
by slashes. Following are the four forms a program-name can take:

1. family-name (an identifier which is a single file name).
2. family-name/file-identifier (an identifier which can be a single file name or a file with subpro

gram entries).
3. dp-id/family-name/file-identifier (the disk-pack-identifier is specified when a removable disk

pack is used).
4. dp-id/family-name/ (a single file name residing on a removable disk pack).

An executable code file has the program-name specified on the COMPILE statement. Intermediate code
files have the program-name on the COMPILE statement, except that the file-identifier is replaced by
the following:

1. The subprogram name in a SUBROUTINE or FUNCTION statement.
2. Zero (0) followed by the file-identifier (if any) for an unbound main program.
3. BLOCK. for the BLOCK DATA subprogram.

The disk-pack-identifier must be included in the program-name if the intermediate code files are in
other than the system disk directory.

A-8

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FOR TRAN 77 Language System

Table A-2 shows the four forms an intermediate code file program-name can take given the family
name, file-identifier, and disk-pack identifier.

Table A-2. ICM Name Conversions

~·

Program-names on COMPILE Statement
Type of

ICM MAIN

Unbound MAIN/O
Main
Program

SUBROUTINE X MAIN/X

BLOCK DATA MAIN/BLOCK.
Subprogram

MAIN is the family-name.
SUB is the file-identifier.

MAIN/SUB

MAIN/OSUB

MAIN/X

MAIN/BLOCK.

FORTRAN77 is the disk-pack identifier.

Label Equations (FILE statement)

FORTRAN77 FORTRAN77

MAIN/SUB MAIN/

FORTRAN77t FORTRAN77/
MAIN/OSUH MAIN/O

FORTRAN771 FORTRAN77/
MAIN/X MAIN 1X

FORTRANn· FORTRAN77t
MAIN/BLOCK. MAIN1 BLOCK.

Label 1equations can optionally be included in the compilation source file and can be used to modify
the original attributes of the FORTRAN 77 system files. Label equations are specified with the FILE
statement.

If used, the FILE statement immediately follows the COMPILE record and precedes ?DATA CARD,
if present. The general form of the FILE statement follows.

- '?FILE <internal-file-name> <t1le-attrihutP-l1'it

G50358

A list of file-attributes and uses can be found in the B 1000 Systems System Software Operation Guide,
Volume 1, under the FILE statement.

The FORTRAN 77 compiler's internal file names for use with the FILE statement are shown in table
A-1.

? DA.TA CARD Record

A record of the following form is required to label the source file if the source file is to follow the
? COMPILE record and any label equations.

-- J [)A TA CARD ----------------------------------!

G50359

1152113 A-9

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

Source Input File CARD

These records are the FORTRAN 77 statements comprising the source program.

? END Record

The ? END record designates the end of file for the compilation source file if the DAT A statement
is used. The ? END record is coded as follows:

~-}ENo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---1

G50360

The ? END card is the last card in the compilation source file.

The examples that follow show seven ways a program named JOB, containing two subprograms (SUBI
and SUB2), can be compiled and executed using the MCP control statements ? COMPILE, ? DAT A,
and ? END.

Example 1 - Compile and go:

?COMPILE JOB FORTRAN77
?DATA CARD

PROGRAM JOB

END

SUBROUTINE SUBl

END

FUNCTION SUB2

END
?END

A-10

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

Examplle 2 - Compile, execute, save ICMs:

?COMPILE JOB FORTRAN77
?DATA CARD
$ICM

PROGRAM JOB

END

SUBROUTINE SUBl

END

FUNCTION SUB2

END
?END

or ?COMPILE JOB FORTRAN77 SAVE
?DATA CARD
$ICM

PROGRAM JOB

END

SUBROUTINE SUBl

END

FUNCTION SUB2

END
?END

When the SAVE option is used, the object program is also entered in the disk directory.

1152113 A-11

B 1000 Systems FORTRAN 77 Language Manual
B 1000 FORTRAN 77 Language System

Example 3 - Compile and execute in three steps:

?COMPILE SUB FORTRAN77 LIBRARY
?DATA CARD
$ICM
$NO AUTOBIND

SUBROUTINE SUBl

END
?END

?COMPILE JOB FORTRAN77 LIBRARY
?DATA CARD
$ICM
$NO AUTOBIND
C MAIN PROGRAM JOB

END
?END

?COMPILE SUB FORTRAN77 LIBRARY
?DATA CARD
$ICM

FUNCTION SUB2

END
?END
?EXECUTE JOB

A-12

(An ICM named SUB/SUBl is on disk.)

(An ICM named JOB/O is on disk.)

or ?COMPILE SUB FORTRAN77 SA VE
?DATA CARD
$ICM

FUNCTION SUB2

END
?END

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX B
OPTIMIZING PROGRAM COMPILATION

When compiling on B 1000 systems with sufficiently large memory configurations, FORTRAN 77 com
pilation times can be enhanced in the following ways.

1. The size of the compiler's dynamic memory is a factor that affects compilation time. Dynamic
memory size can be increased from the default of ~00,000 bits by the following control state-
ment: 2~0 1 otJll

?MODIFY FORTRAN77 MEMORY = integer

Increasing dynamic memory size for the compiler results in increased compilation speed unless
there is not enough memory for code segments, MCP overlays, and other programs.

2. Compiler files can be assigned to different disk drives, enhancing compilation time by relieving
disk arm contention. When a pack-id precedes the program-name on a COMPILE card, each
intermediate code file and the object code file are written to the designated user pack. When
no pack-id precedes the program-name, those files are written to system disk. Likewise, when
a pack-id precedes the compiler name on the COMPILE card, the FORTRAN 77 compiler, the
INTRINSICS built-in function and intrinsic file, and the FORTRAN 77 interpreter are expected
by the MCP to reside on the specified disk.

3. Only one buffer is associated with each of the compiler files. Associating two buffers with each
of the compiler files generally speeds compilation time. This is accomplished by using the fol
lowing statements:

?MODIFY FORTRAN77
?FILE <file-name> BUFFERS = 2

The file names of each of the compiler files can be found in table A-1 in appendix A. For additional
information concerning the FILE statement, refer to the B 1000 Systems System Software Operation
Guide, Volume 1.

1152113 B-1

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX C
DESCRIPTION OF UNFORMATTED 1/0 RECORDS

Each unformatted record is written as 32 bits of control information, followed by the values of the
variabks in the 1/0 variable list. Each variable generates an 8-bit, 32-bit, or 64-bit grouping depending
on whether the item is of type CHARACTER, INTEGER, REAL, LOGICAL, DOUBLE PRECISION,
or COMPLEX.

For example, if three single-precision variables (A,B,C) were written unformatted, the record on disk
would appear as 32 bits of control information, followed by 32 bits containing the machine representa
tion of A, followed by another 32 bits containing the machine representation of B, followed by a third
32-bit group containing the machine representation of C. The 32 bits of control information have the
following format:

Bit Meaning

1-16 Always set for unformatted 1/0.

17 When set, indicates that the unformatted record
begins in this logical record.

18 When set, indicates that the unformatted record
ends in this logical record.

19-32 Length field. This is the total number of bytes in
the logical record, including the control word.
To calculate the length field:
1. Add four bytes for each REAL, INTEGER,

and LOGICAL variable, eight bytes for each
DOUBLE PRECISION and COMPLEX variable,
and one byte for each character variable.

2. To the sum in item 1, add four bytes
for the control word.

In order to read an unformatted record, the 1/0 variable list of the read statement must agree in order
with the list of the write statement originally used to write the unformatted record.

The default logical record size for disk is 180 bytes (one segment), which is sufficient for the control
information and 44 single-precision variables. If the list size on a sequential WRITE exceeds the de
clared or default logical record size, the filled logical record is written and a second logical record is
built, 1;;ontaining additional control information followed by those items which did not fit the first
logical record. This process continues until the list is exhausted. If the list size for a direct-access
WRITE exceeds the logical record size, a data error results.

1152113 C-1

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX D
STORAGE ALLOCATION

Each B 1000 FORTRAN 77 data item is allocated one or more units of storage, depending upon the
type of value(s) the item represents. The primary unit of storage involved is the 32-bit word. Word,
in this appendix, refers to 32 contiguous bits unless otherwise stated.

This appendix describes: I) the allocation of storage to two groups of data items: simple variables and
arrays, and 2) the compiler and binder listings describing the storage allocation of both data and code.
Simple variables include the following types: INTEGER, REAL, LOGICAL, DOUBLE PRECISION,
COMPLEX, and CHARACTER. An array is a grouping of data words in contiguous memory loca
tions. Arrays can be of the same types as simple variables; an array consists of a group of contiguous
data words of type CHARACTER, INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOG
ICAL.

The notation [m:n] is used in this appendix to describe data word fields. The bits in a data word are
numbere!d 0 through 31. In the notation used here, m denotes the number of the leftmost bit of the
field being described, and n denotes the number of bits in the field. For example, in the byte field
shown in figure D-1, bits 3 through 6 are described by (3:4).

0 2 3 4 5 6 7

G50361

Figure D-1. Representation of [3:4]

Hexadecimal constants are used extensively in this appendix to indicate word contents. Such constants
are particularly suited to describing the value of a data word, since each digit in a hexadecimal constant
indicates the contents of a 4-bit field.

SIMPLE VARIABLES

Each simple variable generally requires one or two words of storage, depending upon the type of the
variable. CHARACTER variables are an exception to this rule. Storage is allocated to CHARACTER
variables in groups of 8-bit bytes, depending upon the declared length.

1152113 D-1

INTEGER Variables

B 1000 Systems FORTRAN 77 Language Manual
Storage Allocation

An INTEGER variable requires one word of storage. The data word corresponding to an INTEGER
variable is partitioned as follows:

Field

[0:32]

Contents

Integer (2's-complement)

Integer values are represented internally in 2's-complement notation.

An example of the internal representation of the integer 10 (represented in hexadecimal constant nota
tion) follows:

ZOOOOOOOA

An example of the internal representation of - 10 follows:

ZFFFFFFF6 (Twos-complement notation)

Integer values -2,147,483,648 through 2,147,483,647 can be stored with accuracy. A larger range re
quires more than 32 bits.

REAL Variables

A REAL variable requires one word of storage. The data word corresponding to a REAL variable is
partitioned as follows:

Field

[O: 1]
[1 :7]
[8:24]

Contents

Mantissa sign bit (1 = negative, 0 = positive)
Hexadecimal exponent (in excess-64 notation)
Mantissa field (normalized hexadecimal number)

Real (floating-point) values are represented internally in two parts: the mantissa in signed-magnitude
form and the exponent, which is a hexadecimal exponent in excess-64 notation. The sign of the value
is denoted by the mantissa sign bit of the data word. This bit is 0 for positive or zero values and
1 for negative values. The magnitude of the mantissa is stored left-normalized within the data word,
with the radix point assumed to the left of the mantissa field. The exponent, expressed in excess-64
notation, represents the power of 16 by which the mantissa (in hexadecimal form) must be multiplied
to determine the actual position of the radix point. In other words, the excess-64 exponent represents
the number of hexadecimal positions that the radix point must be moved to represent the actual
hexadecimal value. In excess-64 notation, an exponent equal to 64 represents an exponent value of 0.

Examples of the internal representations of the indicated real numbers follow:

D-2

Real Value

17.5
16.8
-65.1
10000.5
.000583
- .000583

Hex Constant

Z42118000
Z4210CCCC
ZC2411999
Z44271080
Z3E26351D
ZBE26351D

B 1000 Systems FORTRAN 77 Language Manual
Storage Allocation

The range that can be stored in real form is approximately .539761E-78 through .7237006E + 76. Up
to seven decimal digits can be stored with accuracy.

DOUBLE PRECISION Variables

A DOUBLE PRECISION variable is allocated two words of storage. The first word is identical to the
data word of a REAL variable, with the second word considered as an extension to the right of the
mantissa of the first word. The two data words corresponding to a DOUBLE PRECISION variable
are partitioned as follows:

Field

[O: 1]
[1 :7]
[8:56]

Contents

Mantissa sign bit (0 = positive, 1 = negative)
Hexadecimal exponent (in excess-64 notation)
Mantissa (normalized hexadecimal number)

Double-precision values are represented internally in two parts: the mantissa in signed-magnitude form,
and the exponent as a hexadecimal exponent in excess-64 notation, identical to the representation of
REAL variables as described in this appendix. The magnitude of the mantissa is stored left normalized
within the 56-bit mantissa field.

The maximum range that can be stored in double-precision form is the same as for a REAL variable.
Up to 18 decimal digits can be stored with accuracy.

LOGICAL Variables

A LOGICAL variable requires one word of storage. The data word corresponding to a LOGICAL
variable is partitioned as follows:

Field

[0:31]
[31: 1]

Contents

Limited use
Value bit

Bits 0 through 30 are only used when .TRUE. is assigned to a LOGICAL variable in the FORTRAN
77 source code. In this case, bits 0 through 31 (all bits) are set to 1. Bit 31 is the only bit actually
tested in a logical comparison. If its value is 1, the value of the variable is TRUE; if its value is 0,
the value of the variable is FALSE. The value of the leftmost 31 bits is ignored. For example, if a
LOGICAL variable is equivalenced to any odd-valued (-5,-3,-l,l,3,5, and so on) INTEGER
variable, the value of the LOGICAL variable is TRUE. When equivalenced to any even-valued
(- 4, - 2,0,2,4, and so on) INTEGER variable, the LOGICAL variable is FALSE.

COMPLEX Variables

A COMPLEX variable is allocated 64 bits of storage. The first of these two data words contains the
REAL part of the variable, while the remaining data word contains the imaginary part of the variable.
Each of these two data words is identical to the data word of a REAL variable.

1152113 D-3

B 1000 Systems FORTRAN 77 Language Manual
Storage Allocation

The two data words corresponding to a COMPLEX variable are partitioned as follows:

Field Contents
First data word (real part)

[O: I]
[1 :7]
[8:24]

Mantissa sign bit (1 = negative, 0 = positive)
Hexadecimal exponent (in excess-64 notation)
Mantissa (normalized hexadecimal number)

Second data word (imaginary part)

[0: 1] Mantissa sign bit (1 = negative, 0 = positive)
[1 :7] Hexadecimal exponent (in excess-64 notation)
[8:24] Mantissa (normalized hexadecimal number)

The real and imaginary values are represented internally in the identical manner as described above
for REAL variables.

The maximum magnitude that can be stored in each data word is the same as for a REAL variable.

ARRAYS

FORTRAN 77 arrays are provided to allow the user to organize program storage locations into a struc
ture convenient to the user. Internally, an array is stored as a group of one or more contiguous data
words. A description of the correspondence between the array elements and the group of internal stor
age words follows.

A FORTRAN 77 array of any legal number of declared dimensions (1 < = n < = 7) is represented
internally by a I-dimensional array (a vector) of storage locations. Each element of the array has stor
age requirements identical to that of a simple variable of the same type as the array. For example,
each element of a REAL array requires one word of storage, whereas each element of a DOUBLE
PRECISION array requires two words of storage. The partitioning of each storage word is identical
to that of the storage word(s) corresponding to a simple variable of the same type as the array element.

Each INTEGER, REAL, and LOGICAL array is allocated a series of internal data words exactly equal
in number to the elements of the array. DOUBLE PRECISION arrays are allocated twice as many
internal data words as array elements. CHARACTER arrays are allocated space in 8-bit bytes. Word
size for a CHARACTER array depends on the declared size in the corresponding specification state
ment: 1 byte (8 bits) for each byte of declared length. Refer to Character Type Statements in section
6 for additional information. For I-dimensional arrays, the internal data word, word pair, or n-byte
word corresponding to each array element occurs in the same position in the internal array as the
element occurs in the array.

For example, arrays Al and A2 are declared using the following statements:

DIMENSION Al(l :20)
DOUBLE PRECISION A2(20)

The REAL array Al is allocated 20 words of storage (one word per element), and the DOUBLE PRE
CISION array A2 is allocated 40 words of storage (two words per element). Therefore, the array
element Al(2) is assigned the second word of the internal array corresponding to Al, and A2(2) is
assigned the third and fourth words of the internal array corresponding to A2.

D-4

B 1000 Systems FORTRAN 77 Language Manual
Storage Allocation

An example of a declaration of a CHARACTER array follows:

CHARACTER * 20 A3(5: 15)

Array A3 is allocated 11 words of storage. Words for this array are 20 bytes long.

Arrays of more than one dimension are stored by columns into one continuous internal vector of stor
age words. This storage process occurs in the manner displayed in figure D-2.

A (1, 1) ---CA (1, 1)
A (2, 1)

A (3, 1)
[A(2,1)

[A(3,1)

[A(1,2) 1-- A (1, 2)
A (2, 2)

I
A (3, 2)

A (2,2)

G503t32
[~A (3, 2)

Figure D-2. Storage of a Multi-Dimensional Array

The word(s) corresponding to each element of the 2-dimensional array in this diagram arc located in
the internal array in the order shown. Beginning with element A(l, l), each successive element in the
array :is stored in the order of occurrence: proceeding down each column of the array, from the left
most columns to the rightmost columns. For an array of three dimensions or greater, this process is
repeat1ed for each successive layer of the array (each value of the third subscript, fourth subscript, fifth
subscript, and so forth).

For any n-dimensional array, the elements of the array correspond (in a set order) to successive storage
locations in the I-dimensional internal array associated with the array. The appropriate order is identi
cal to that obtained when one lists all of the array elements by varying the first subscript most rapidly,
the seicond subscript next, and so forth. As an example, the elements of the 5-dimensional array
A(2, 1,2,2, 1) are stored in this order:

A(l,l,l,l,l)
A(2,l,l,l,1)
A(l,l,2,1,1)
A(2, 1,2, 1, 1)
A(l,l,l,2,1)
A(2, l, 1,2, 1)
A(l, 1,2,2, 1)
A(2, 1,2,2, 1)

1152113 D-5

B 1000 Systems FORTRAN 77 Language Manual
Storage Allocation

Element A(l, 1, 1, 1, 1) in this example corresponds to the first element of the internal array, element
A(2, 1, 1, 1, 1) corresponds to the second element of the internal array, and so forth.

NOTE
For clarity, the dimensions in the preceding two examples begin with the val
ue 1, but FORTRAN 77 allows negative subscripts also. Refer to Array Dec
larations in section 5.

An array A, having n dimensions, can be declared by means of an array declaration of the type:

DIMENSION A(Ll:Ul,L2:U2, L3:U3, ... ,Ln:Un)

Ln and Un represent the lower and upper bounds of dimension n, respectively, where n is an integer
between 1 and 7, inclusive. (If the lower bound is omitted, it defaults to 1.)

Array A contains elements of the form:

A(Sl,S2,S3, ... ,Sn)

The position, P, of the storage unit (word, word pair, or n-byte word) assigned to this array element
within the corresponding internal array, can be found by means of the following formula:

P = (Sl - Ll + 1) + ((Ul - Ll + 1) * (S2 - L2))

A multidimensional array can be equivalenced to a 1-dimensional array and the elements of the 1-di
mensional array will then correspond in order to the storage units assigned to the multidimensional
array. This order is also the order in which array elements are considered when an array name appears
without a subscript list within the variable list in a 1/0 statement, or as the item to be initialized in
a DATA statement.

DATA ALLOCATION INFORMATION

Storage allocated for data in a program can consist of two components: dynamic memory and static
memory. Dynamic memory is segmented into pages of 1024 bytes each which can be overlayed and
recalled as necessary during the execution of a program. Static memory is not segmented.

The compiler groups data in a program in two categories: local data and common blocks. Each group
of data is assigned a location in either dynamic or static memory depending on the size of the data.
If the size of a local data group is 2048 bytes or greater, the data is placed in dynamic memory; other
wise, it is placed in static memory. If the size of a common block is 4096 bytes or greater, the common
block is placed in dynamic memory; otherwise, it is placed in static memory.

If the size of a common block is less than 4096 bytes in one routine of a program and is 4096 bytes
or more in another routine of the program, the following compiler error message results:

PLEASE RECOMPILE FORCING ALL REFERENCES TO
'<common-block-name>' TO DYNAMIC MEMORY

This error is corrected by defining the size of the common block to be 4096 bytes or more in each
routine it appears. Dummy data items can be added to the common block so that it contains the neces
sary 4096 bytes.

D-6

B 1000 Systems FORTRAN 77 Language Manual
Storage Allocation

For each subprogram, data is assigned addresses relative to zero in both static and dynamic memory.
The relative address for each variable is listed by the compiler (when the MAP option is set) in the
SYMBOLIC REFERENCE INFORMATION table. In this table, each variable that is assigned an ad
dress in dynamic memory has a page number associated with its address; each variable that is assigned
an address in static memory does not have a page number associated with its address.

In order to determine the actual address assigned to a variable in static memory, it is necessary to use
the allocation information printed by the binder portion of the compiler. This information is listed by
the compiler by default in the MODULE ALLOCATION INFORMATION table. This table lists the
actual starting address in static memory of the local data for each subprogram. This starting address
must be added to the relative address listed in the SYMBOLIC REFERENCE INFORMATION table
that follows the subprogram containing the variable.

The binder lists by default the starting address of each block of data in the BLOCK DAT A ALLOCA
TION INFORMATION table. If the local data of a subprogram is large enough to be placed in dynam
ic memory, the block of data is given a name consisting of a dollar sign ($) character followed by
the first five characters of the subprogram name. This table gives the name of the block of data, its
starting address in either static or dynamic memory, and its size in bytes.

Any block of data allocated to dynamic memory is given an integral number of pages. For example,
if a block is 2500 bytes long, it is allocated three 1024 byte pages. The next block is allocated space
starting with the fourth page.

CODIE SEGMENTATION INFORMATION

The object code produced by the compiler is broken into segments that are overlayed in memory as
necessary. A mapping of the beginning code address for each source statement is provided by default
in the CODE ADDRESSES listing that follows each subprogram. This listing consists of pairs of num
bers, where the first number is the source line number and the second number is the code address.

The CODE ADDRESSES listing contains addresses relative to zero. To determine the actual code ad
dress for a particular source statement, it is necessary to use the final code mapping given by the binder
in the MODULE ALLOCATION INFORMATION table. The name of each subprogram is listed in
the table along with the segment number where the code for that subprogram starts. This starting seg
ment number must be added to the relative code address given in the CODE ADDRESSES listing to
compute the actual code address. Code for a subprogram is allocated an integral number of segments,
therefore, displacements within a segment do not change from those in the CODE ADDRESSES list
ings, only the segment numbers change.

1152113 D-7

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX E
FORTRAN77 /ANALYZER

The FORTRAN77/ANALYZER program is a utility program which analyzes either a FORTRAN 77
code file, a FORTRAN 77 intermediate code file, or both.

A codi~ file is generated from the compile operation and is used for the execution of the program.
It contains information concerning the program parameter block, file parameter block, code segment
dictionary, data page dictionary, data pages, layout table, and the code to be executed.

An intermediate code file is generated by the Compiler Control Image ICM. This code file consists
of a directory and one or more Intermediate Code Modules (ICMs). The directory records the number
of ICMs, the ICM names, and the ICM locations in the file.

An ICM consists of a header describing information pertinent to the module, as well as the address
and size information of the following parts of the module:

1. Data (preinitialized data, code addresses to be resolved and symbol table information)
2. File Parameter Block (if any)
3. Code (subroutine, function, or main program)
4. Reference Table (where subroutines, functions, and common blocks are referenced in the code)

The following entities generate an Intermediate Code Module (ICM): the main program, a subroutine,
a function, an entry point, a block data subprogram, and one or more file declarations.

PROGRAM EXECUTION

The FORTRAN?? I ANALYZER program is executed with the following statement:

EXECUTE FORTRAN?? I ANALYZER

Various switch settings can modify the mode of operation of the FORTRAN?? I ANALYZER program.
These switch settings are described in table E-1.

1152113

Table E-1. Switch Settings for the FORTRAN77/ ANALYZER Program

Switch

0

1

Value Description

0 Default setting. All input is from a remote
terminal. All output is to a remote terminal
except when directed to a line printer by a
command preceded by P or PRINT.

1 All input is through accept messages from
the ODT. All output is to a line printer.

3 All input is from a card reader and all
output is to a line printer.

0

1

Default setting. Page ejects are inserted in
the output to a line printer.

Page ejects are suppressed.

E-1

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 I Analyzer

The user provides input options through a remote terminal, the ODT, or a card reader, depending on
the selected switches. In response to the command prompt ENTER FILE NAME, the user enters the
following:

<code file name or I CM file name>

This statement must be preceded by the mix number if SWITCH 0 = 1. The program verifies the
file name and either gives an error message or responds with the command prompt:

ENTER OPTIONS, NULL TO STOP, OR HELP

If the user enters HELP, the program provides a list of appropriate options according to the file type
the user has indicated. These options determine the part of the code or ICM file to be analyzed. The
list of options displayed for a code file follows:

PPB
FPB
SD
DD

Option

DP [page number]
LT
CODE [number, name

or ALL]
ALL
GET < file-name>

Definition

Program Parameter Block
File Parameter Block
Code Segment Dictionary
Data Page Dictionary
Data Page (one or all, default is all)
Layout table

All of the above
Get another file

For an ICM file, the list of options displayed follows:

Option

ALL
DIRECTORY
an ICM name
HEADER
DATA
FPB
CODE
REF
GET <file-name>

Definition

Directory and all I CMs
Directory listing
ICM name to be analyzed
ICM Header
ICM Data
ICM File Parameter Block
ICM Code
ICM Reference Table
Get another file

Options are entered individually or serially. If entered serially, they are separated by comma (,) or
blank characters.

If CODE is specified, it can be followed by either a code segment number, a code segment name, or
the word ALL indicating that all code segments are to be analyzed. If CODE is entered without qualifi
cations, the program prompts the user to enter more information.

If ICM is specified, only one name can be specified at a time. If qualifying options are not specified,
the default is an analysis of the entire ICM.

E-2

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 I Analyzer

PROGRAM TERMINATION

The FORTRAN77 I ANALYZER program is terminated by transmitting a BYE or a null entry.

ERROR MESSAGES

The following is a list of possible error messages.

<segment name> : INVALID SEGMENT NAME. TRY AGAIN.

<option name> : INVALID OPTION. TRY AGAIN.

<page number> : PAGE NUMBER OUT OF BOUND. TRY AGAIN.

<segment number> : SEGMENT OUT OF BOUND. TRY AGAIN.

<token entered> : INVALID OPTION.
or

INVALID ICM NAME.
or

MORE THAN ONE ICM SPECIFIED.

<ICM name> : ICM NOT FOUND

FILE MISSING : <file name entered>

INVALID FILE NAME

FORTRAN77 ICM OR CODE FILE REQUIRED

1152113 E-3

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX F
JOB SPAWNING

The following sample program illustrates the use of job spawning using the B 1000 FORTRAN 77 lan
guage. This program zips a sort and then waits for data to be returned before continuing.

FILE 4<KINO=OISK,RECL=80.BLOCKSIZE=320.STATUS=NEW,HYUSE=IO,fILE=·co•>
C MODIFY FILE4 TO TYPE QUEUE AND QHX=lO AFTER COMPILATION.
FILE 5CKIND=DISK.RECL=~O.BLOCKSIZE=4000.SJATUS=NEW,FILE=•s1NP•)
FILE 7CKINO=DISK1RECL=80·BLOCKSIZE=160.SJATUS=NEW.FILE=·soRJIN•)
FILE 6CK1ND=OISK•RECL=40•BLOCKSIZE=40001SJATUS=OLO•FILE= 8 SOUT•)

CHARACTER •80 CQUEUE
WRITE(71100)"FILE IN SINP <DISK DEFAULT> our SOUT (OISK DEFAULJ)W
WRITEC7.100) "KEY Cl 5)"

100 FO~MATCA)
CLCJ SE 7
DO 200 I = l• 100

200 WRITE{5.300) INTCRANOOHCJ> * lOCOOl
300 FORHAJ(l5)

CLJ SE 5
WRITEC4•"C" •>•>
BACKSPACE 4
CALL ZIPC"QU CQ EX SORTiFI CARDS NAM SORTIN OSK DEF%•)
I = 0

310 REAOC4.100) CQUEUE
If (CQUEUEC1:2) .EQ. •oo•) THEN

I = I + 1
IF CCQUEUEC51:52> .EQ. •00•1 THEN

IF CI .LT. 41 GO TO 310

ELSE
GU TO 360

IF Cl .EQ. 3> JHEN
PRINT 100• • SORT INTRINSIC GOT AN ABNORMAL EOJ.•

ELSE
PRINT 100• " SORT PROGRAM GOT AN ABNORMAL EOJ.•

ENO If
STOP

ENOIF
£NI> If
If (CQUEUEC1:2) .EQ. •as·> I - I • 1
GO TO 310

360 00 400 I = 1, 100
READC6.500) J

ltOO PRINT 500.- J
500 FO~MATC" "•IS>

CALL ZIPC•RE SORTIN%">
ENll

1152113 F-1

INTBODUCTION

B 1000 Systems FORTRAN 77 Language Manual

APPENDIX G
FORTRAN 77 S-LANGUAGE

The B 1000 FORTRAN 77 S-Language provides the virtual machine interface between the code gener
ated by the FORTRAN 77 compiler and the FORTRAN 77 interpreter. This appendix describes the
format of FORTRAN 77 S-instructions and explains each operator as a member of one of the fol
lowing classes:

ARITHMETIC
LOGICAL REPLACEMENT AND IF STATEMENT
BRANCHING
TYPE AND SIGN CONVERSION
SUBSCRIPT VALUE COMPUTATION
DO-LOOP MAINTENANCE
CHARACTER TYPE
SUBROUTINE LINKAGE
SPECIAL FUNCTION
PRIVILEGED USER
TRIGONOMETRIC AND OTHER FUNCTIONS

All FORTRAN 77 S-Language programs have associated with them a base register and a limit register.
The area between the base and the limit is to be used as data space only. All program code, organized
in segment form, is stored at any available location in memory according to the memory management
algorithms used by the B 1000 operating system.

Various parameters necessary for the running of the S-Language object code and maintained by the
operating system are stored beyond the Limit Register in the Run Structure Nucleus (RSN).

BASE-LIMIT MEMORY LAYOUT

Static memory contains:

1. Intrinsic common blocks, consisting of:

• Overflow I divide-by-zero mask
• Statement number
• Debug· interface table address
• Environment nucleus block address
• Segment dictionary address
• Data dictionary address
• Code segment number
• I/O buffer
• I/O pointers and variables known to the interpreter
• Common intrinsic variables

2. Local data blocks, consisting of:

• Return address
• Descriptors of dummy arguments
• Other local data, but not including paged arrays

1152113 G-1

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

3. Other common blocks as declared, not including paged blocks.

Dynamic memory contains paged local arrays and/or equivalence groups and paged common blocks.
The placement of these elements in dynamic memory is determined by size. Since data pages are byte
addressable, a data item can begin at any byte address. A numeric item occupies four or eight bytes
of memory. The size of most data pages is 1024 (2** 10) bytes, except for the last page of a data block.
A data block consists of consecutive data pages as described by the data dictionary.

A code segment contains a transfer vector of variable length followed by executable code consisting
of S-operators. Refer to the subsection entitled Formats for the format of a transfer vector.

INSTRUCTION SET

This subsection contains two lists of the instruction set of the FORTRAN 77 S-language. The first is
an alphabetical list of mnemonics and the second is a numeric list of operation codes grouped accord
ing to function.

Alphabetical List of Mnemonics

G-2

Mnemonic

ABS
ACOS
ADDR
AGO
AIF
AINT
ALOG
ALOGlO
AMOD
ASIN
ATAN

BAT
BAAT
BNRY
BUMP

CALL
CAT
CATO
CGO
COMM
cos
COSH
CREL
CRIF
cs
CSB
csv

DADD

Numeric
Operation

Code Function

6S Absolutize
9C Arccosine
6A Base-relative address
67 Assigned GOTO
65 Arithmetic IF
9E Floor
9F Natural log
AO Log to base 10
94 Remainder
9B Arcsine
90 Arctangent

SB Build array table
SC Build assumed size array table
S 1 Get binary input
A3 Bump

70 Subroutine call
7B Character concatenation
79 Character concatenation with descriptor
66 Computed GOTO
7C Communicate
96 Cosine
99 Hyperbolic cosine
5E Character relation
5F Character relational IF
SD Compute subscript value
SE CS and check bounds
SF CS with array table, also checks bounds

50 Double add

1152113

Mnemonic
DBL
DCAL
DDIV
DESC
DMOVE
CMUL
DO.UP
DREL
DRIF
DS
DSUB

EXP

FANC
FADD
FAMMM
FAMMR
FAMRM
FAMRR
FARMM
FARMR
FARRM
FARRR
FDIV
FDMMM
FDMMR
FDMRM
FDMRR
FDRMM
FDRMR
FDRRM
FDRRR
FLOAT
FMMMM
FMMMR
FMMRM
FMMRR
FMRMM
FMRMR
FMRRM
FMRRR
FMUL
FREL
FRIF
FSMMM
FSMMR
FSMRM
FSMRR

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

Numeric
Operation

Code
57
71
53
6B
02
52
90
5C
5D
7F
51

A2

87
oc
37
36
35
34
33
32
31
30
OF
4F
4E
4D
4C
4B
4A
49
48
54
47
46
45
44
43
42
41
40
OE
5A
5B
3F
3E
3D
3C

(continued)

Function
Double precision
Dynamic subroutine call
Double divide
Make descriptor
Move double word
Double multiply
DO loop update
Double relation
Double relational IF
Discontinue job
Double subtract

Exponential

Fetch and clear error condition
Real add
Real add - mem,mem,mem
Real add - mem,mem,reg
Real add - mem,reg,mem
Real add - mem,reg,reg
Real add - reg,mem,mem
Real add - reg,mem,reg
Real add - reg,reg,mem
Real add - reg,reg,reg
Real divide
Real divide - mem,mem,mem
Real divide - mem,mem,reg
Real divide - mem,reg,mem
Real divide - mem,reg,reg
Real divide - reg,mem,mem
Real divide reg,mem,reg
Real divide - reg,reg,mem
Real divide - reg,reg,reg
Convert from integer to floating point
Real multiply - mem,mem,mem
Real multiply - mem,mem,reg
Real multiply - mem,reg,mem
Real multiply - mem,reg,reg
Real multiply - reg,mem,mem
Real multiply - reg,mem,reg
Real multiply - reg,reg,mem
Real multiply - reg,reg,reg
Real multiply
Real relation
Real relational IF
Real subtract - mem,mem,mem
Real subtract - mem,mem,reg
Real subtract - mem,reg,mem
Real subtract - mem,reg,reg

G-3

Mnemonic
FSRMM
FSRMR
FSRRM
FSRRR
FSUB

GOTO

HMON

IADD
I AM MM
IAMMR
IAMRM
I AM RR
IARMM
IARMR
IARRM
IARRR
IDIV
IDMMM
IDMMR
IDMRM
IDMRR
IDRMM
IDRMR
IDRRM
IDRRR
IFIX
IMMMM
IMMMR
IMM RM
IMM RR
IMRMM
IMRMR
IMRRM
IMRRR
IMUL
INSERT
IREL
IRIF
ISM MM
ISMMR
ISM RM
ISM RR
ISRMM
ISRMR
ISRRM
ISRRR

G-4

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

(continued)
Numeric

Operation
Code Function

3B Real subtract reg,mem,mem
3A Real subtract reg,mem,reg
39 Real subtract reg,reg,mem
38 Real subtract reg,reg,reg
OD Real subtract

64 Unconditional branch

92 Hardware monitor (not implemented)

08 Integer add
17 Integer add mem,mem,mem
16 Integer add mem,mem,reg
15 Integer add mem,reg,mem
14 Integer add mem,reg,reg
13 Integer add - reg,mem,mem
12 Integer add reg,mem,reg
11 Integer add reg,reg,mem
10 Integer add reg,reg,reg
OB Integer divide
2F Integer divide mem,mem,mem
2E Integer divide mem,mem,reg
2D Integer divide mem,reg,mem
2C Integer divide mem,reg,reg
2B Integer divide - reg,mem,mem
2A Integer divide reg,mem,reg
29 Integer divide - reg,reg,mem
28 Integer divide reg,reg,reg
55 Convert from floating to integer
27 Integer multiply - mem,mem,mem
26 Integer multiply mem,mem,reg
25 Integer multiply mem,reg,mem
24 Integer multiply - mem,reg,reg
23 Integer multiply reg,mem,mem
22 Integer multiply reg,mem,reg
21 Integer multiply reg,reg,mem
20 Integer multiply reg,reg,reg
OA Integer multiply
89 Insert bits
58 Integer relation
59 Integer relational IF
lF Integer subtract - mem,menn,mern
lE Integer subtract mem,menn,reg
lD Integer subtract - mem,reg,mem
lC Integer subtract mem,reg,reg
1B Integer subtract reg,mem,mem
lA Integer subtract - reg,mem,reg
19 Integer subtract reg,reg,mem
18 Integer subtract reg,reg,reg

Mnemonic
ISUB

LB
LCR
LEN
LIFl
LIF2
LNOT
LOAD
LOG

MMOVE
MOVE
MVC

NEG
NEXT

PASS

REAL
RMOVE
RTN

SAVE
SFCL
SFRTN
SIGN
SIN
SINH
SNGL
SPAM
SQRT
SSTL
SSTR
STC
STMN
STORE

TAN
TANH
TIME

VD

WEF
WFF
WID
WIF

XTRACT

1152113

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

(continued)
Numeric

Operation
Code Function

09 Integer subtract

6E Local base
7D Load communicate reply
6C Character length
63 Logical IF, 1-operand
61 Logical IF ,2-operands
62 Logical NOT
06 Load register
60 Logical relation

07 Move memory
01 Move single word
7A Move character

69 Change sign
84 Examine next character

6F Pass descriptor

83 Get real value
04 Move register
72 Subroutine return

6D Save registers
73 Statement function call
74 Statement function return
82 Search for optional sign
95 Sine
98 Hyperbolic sine
56 Convert from double to single precision
75 Scramble and provide arguments
Al Square root
77 Substring move
76 Substring descriptor
78 Store characters
91 FORTRAN statement number
05 Store register

97 Tangent
9A Hyperbolic tangent
7E Processor time

8A Validate descriptor

85 Write E-format
86 Write F-format
80 Write integer digits
93 Write I-format

88 Extract bits

G-5

Numeric List of

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Operation Codes

This subsection contains a numeric list of operation codes grouped according to

Arithmetic Replacement S-Operators

Numeric
Operation

Code Mnemonic Function

00 Invalid
01 MOVE Move single word
02 DMOVE Move double word
03 Invalid
04 RMOVE Move register
05 STORE Store register
06 LOAD Load register
07 MMOVE Move memory

08 IADD Integer add - ss,ss,sd
09 ISUB Integer subtract - ss,ss,sd
OA IMUL Integer multiply - ss,ss,sd
OB IDIV Integer divide - ss,ss,sd
OC FADD Floating add - ss,ss,sd
OD FSUB Floating subtract - ss,ss,sd
OE FMUL Floating multiply - ss,ss~sd
OF FDIV Floating divide - ss,ss,sd

10 IARRR Integer add - reg,reg,reg
11 IARRM Integer add - reg,reg,mem
12 IARMR Integer add - reg,mem,reg
13 IARMM Integer add - reg,mem,mem
14 I AM RR Integer add - mem,reg,reg
15 I AM RM Integer add - mem,reg,mem
16 I AM MR Integer add - mem,mem,reg
17 I AM MM Integer add - mem,mem,mem

18 ISRRR Integer subtract - reg,reg,reg
19 ISRRM Integer subtract - reg,reg,mem
lA ISRMR Integer subtract - reg,mem,reg
lB ISRMM Integer subtract - reg,mem,mem
lC ISM RR Integer subtract - mem,reg,reg
lD ISM RM Integer subtract - mem,reg,mem
lE ISM MR Integer subtract - mem,mem,reg
lF ISMMM Integer subtract - mem,mem,mem

20 IMRRR Integer multiply - reg,reg,reg

G-6

function.

1152113

Numeric

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

(continued)

Operation
Code Mnemonic Function

21 IMRRM Integer multiply reg,reg,mem
22 IMRMR Integer multiply reg,mem,reg
23 IMRMM Integer multiply reg,mem,mem
24 IMM RR Integer multiply mem,reg,reg
25 IMM RM Integer multiply mem,reg,mem
26 IMMMR Integer multiply mem,mem,reg
27 IMMMM Integer multiply mem,mem,mem

28 IDRRR Integer divide reg,reg,reg
29 IDRRM Integer divide reg,reg,mem
2A IDRMR Integer divide reg,mem,reg
2B IDRMM Integer divide reg,mem,mem
2C IDMRR Integer divide mem,reg,reg
2D IDMRM Integer divide mem,reg,mem
2E IDMMR Integer divide mem,mem,reg
2F IDMMM Integer divide mem,mem,mem

30 FARRR Floating add reg,reg,reg
31 FARRM Floating add reg,reg,mem
32 FARMR Floating add reg,mem,reg
33 FARMM Floating add reg,mem,mem
34 FAMRR Floating add mem,reg,reg
35 FAMRM Floating add - mem,reg,mem
36 FAMMR Floating add mem,mem,reg
37 FAMMM Floating add mem,mem,mem

38 FSRRR Floating subtract reg,reg,reg
39 FSRRM Floating subtract reg,reg,mem
3A FSRMR Floating subtract reg,mem,reg
3B FSRMM Floating subtract reg,mem,mem
3C FSMRR Floating subtract mem,reg,reg
3D FSMRM Floating subtract mem,reg,mem
3E FSMMR Floating subtract mem,mem,reg
3F FSMMM Floating subtract mem,mem,mem

40 FMRRR Floating multiply reg,reg,reg
41 FMRRM Floating multiply reg,reg,mem
42 FMRMR Floating multiply reg,mem,reg
43 FMRMM Floating multiply reg,mem,mem
44 FMMRR Floating multiply - mem,reg,reg
45 FMMRM Floating multiply mem,reg,mem
46 FMMMR Floating multiply mem,mem,reg
47 FMMMM Floating multiply mem,mem,mem

48 FDRRR Floating divide reg,reg,reg
49 FDRRM Floating divide reg,reg,mem
4A FDRMR Floating divide reg,mem,reg
4B FDRMM Floating divide reg,mem,mem
4C FDMRR Floating divide mem,reg,reg

G-7

Numeric
Operation

Code
4D
4E
4F

50
51
52
53

A3

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Mnemonic
FDMRM
FDMMR
FDMMM

DADD
DSUB
DMUL
DDIV

BUMP

(continued)

Function
Floating divide - mem,reg,mem
Floating divide - mem,mem,reg
Floating divide - mem,mem,mem

Double precision add
Double precision subtract
Double precision multiply
Double precision divide

Bump

Logical Replacement and IF Statement S-Operators

Numeric
Operation

Code

58
59
5A
5B
5C
5D
60
61
62
63

Mnemonic

IREL
IRIF
FREL
FRIF
DREL
DRIF
LOG
LIF2
LNOT
LIFl

Function

Integer relation
Integer relational IF
Floating relation
Floating relational IF
Double relation
Double relational IF
Logical relation
Logical IF - 2 operands
Logical NOT
Logical IF - 1 operand

Branch S-Operators

Numeric
Operation

Code

64
65
66
67

Mnemonic

GOTO
AIF
coo
AGO

Function

Branch unconditional
Arithmetic IF
Computed GOTO
Assigned GOTO

Type and Sign Conversion S-Operators

G-8

Numeric
Operation

Code

54
55
56
57
68
69

Mnemonic

FLOAT
IFIX
SNGL
DBL
ABS
NEG

Function

Convert from integer to floating
Convert from floating to integer
Convert from double to single precision
Convert from single to double precision
Absolute value
Change sign

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

Subscript Value Computation S-Operators

Numeric
Operation

Code

SA
SB
SC
SD
SE
SF

Mnemonic

VD
BAT
BAAT
cs
CSB
csv

Function

Validate descriptor
Build array table
Build assumed size array table
Compute subscript value
CS with bounds checking
CS with array table, also checks bounds

Do Loop Maintenance

Numeric
Operation

Code Mnemonic Function

90 DO. UP Update DO loop

Character Type S-Operators

Numeric
Operation

Code

5E
5F
6C
76
77
78
79
7A
7B

Mnemonic

CREL
CRIF
LEN
SSTR
SSTL
STC
CATD
MVC
CAT

Subroutine Linkage S-Operators

1152113

Numeric
Operation

Code

6D
6E
6F
70
71
72
73
74
75

Mnemonic

SAVE
LB
PASS
CALL
DCAL
RTN
SFCL
SFRTN
SPAM

Function

Character relational
Character relational IF
Character length
Substring descriptor
Substring move
Store characters
Concatenation with descriptor
Move character
Concatenation

Function

Save/restore registers
Local base
Pass descriptor
Subroutine call
Dynamic subroutine call
Subroutine return
Statement function call
Statement function return
Scramble and provide arguments

G-9

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

Special Function S-Operators

Numeric
Operation

Code Mnemonic Function

91 STMN FORTRAN statement number
92 HMON Hardware monitor (not implemented)

Privileged User S-Operators

Numeric
Operation

Code

6A
6B
78
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
93

Mnemonic

ADDR
DESC
STC
COMM
LCR
TIME
DS
WID
BNRY
SIGN
REAL
NEXT
WEF
WFF
FANC
XTRACT
INSERT
WIF

Function

Base-relative address
Make descriptor
Store characters
Communicate
Load communicate reply
Processor time
Discontinue job
Write integer digits
Get integer input
Get optional sign
Get floating input
Examine next input
Write E-format
Write F-format
Fetch and clear error condition
Extract bits
Insert bits
Write I-format

Operators @94@ through @A2@ can also be used as privileged operators with the format: PRIV <desired
function> STD_SOURCE . . . STD_DESTINA TION. · These operators are described under Tri
gonometric and Other Functions.

Trigonometric and Other Functions

All of these operators can be used as privileged operators.

G-10

Numeric
Operation

Code

94
95
96
97
98
99
9A
9B
9C

Mnemonic

AMOD
SIN
cos
TAN
SINH
COSH
TANH
ASIN
ACOS

Function

Remainder
Sine
Cosine
Tangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Arcsine
Arccosine

FORMATS

B 1000 Systems FOR TRAN 77 Language Manual
FOR TRAN 77 S-Language

(continued)
Numeric

Operation
Code

9D
9E
9F
AO
Al
A2

Mnemoinic
ATAN
AINT
ALOG
ALOGlO
SQRT
EXP

@A4@ through @FF@

Function
Arctangent
Floor
Natural log
Log to base 10
Square root
Exponential

Invalid

This subsection contains the formats of the elements that make up the S-instructions.

Registers

SCRATCH.PAD ASSIGNMENTS

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

A

TEMP.HI
!TEMP
SCRATCH.5
CODE.SEQ.NUMBER
SCRATCH
DAT A.DICT .BASE
BR.REG
LOCAL.DAT A.BLOCK
TRANSFER.VECTOR I CSB
NEXT.INST.PTR
ACC.5 (Hi)
ACC.4 (Hi)
ACC.3 (Hi)
ACC.2 (Hi)
ACC.1 (Hi)
SCRATCH.1

Error· Condition Information

B

TEMP.LO
SCRATCH.3
SCRATCH.6
SCRATCH.4
IX-REG 11
IX-REG 10
IX-REG 9
IX-REG 8
IX-REG 7
IX-REG 6
IX-REG 5 (ACC.5 Lo)
IX-REG 4 (ACC.4 Lo)
IX-REG 3 (ACC.3 Lo)
IX-REG 2 (ACC.2 Lo)
IX-REG 1 (ACC.1 Lo)
SCRATCH.2

Six bilts that contain error information are located between the base and the limit (at a base-relative
address). The six bits are located at byte address 27, following a filler of BIT(2), and are set as follows:

1152113

Bit

First
Second
Third
Fourth
Fifth
Sixth

Bit is set if:

An overflow conditions occurs
An exponent underflow condition occurs
A divide-by-zero condition occurs
Overflow is permitted
Underflow is permitted
Divide by zero is permitted

G-11

Values

Format:

Local Data Block

32 BITS

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Integer
2's complement integer

Logical
FALSE = 0, TRUE = not 0

Real
sign
exponent (excess 64; radix 16)
mantissa

Double Precision
sign
exponent (excess 64; radix 16)
mantissa

Character
byte

EXTERNAL_CODE_ADDRESS
filler
SEGMENT _NUMBER
bit displacement into segment

BIT(32)

BIT(32)

BIT(l)
BIT(?)
BIT(24)

BIT(l)
BIT(7)
BIT(56)

BIT(8)

BIT(4)
BIT(lO)
BIT(18)

48 BITS 48 BITS 32 BITS each

.__R_E_T_u_R_N_A_n_n_R_E_s_s ___ A_R_G_1 ___ A_R_G_2 _I · . · I LOCAL v ARIABLES I · · · C
Subroutine Linkage Mechanism

A 48-bit argument descriptor is built using the PASS S-operator for each actual argument passed.

Execution of the CALL S-operator in the calling subroutine updates the return-address field of the lo
cal data block associated with the called subroutine, and control is passed to the called subroutine.

Execution of the RTN S-operator in the called subroutine uses the return address information in its
local data block to get back to the calling subroutine. The return-address field is cleared before control
is returned to the calling subroutine.

G-12

Layout Table

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

The layout table contains the names and types of variables.

For each subroutine and common block (in a block data subprogram only), there is an entry in this
format:

Format:

Name of subprogram
#TV ENTRIES
#SYT'lBOL ENTRIES

CHARACTER
BIT C 8)
BIT (20)
BIT (20)
CHARACTER

(6)

Address-of Local data block
TV'S(#TV ENTRIES)
SYMBOLSCiSYMBOL_ENTRIES) with the

NAME
LENGTH
ARRAY VARIANT
TYPE -
INDIRECT VARIANT
BLOCK-RE[ATIVE ADDRESS

format:

CHARACTER
BITC8)
BITC1>
BITC3)
BITC1>
BITC19>

where LENGTH has a value of zero for a
non-character symbol and TYPE has one of
the following values:

1 = INTEGER
2 = REAL
3 = DOUBLE
4 = COMPLEX
5 = LOGICAL
6 = CHARACTER
7 -= LABEL

(6)

(6)

SYMBOLSC#SYMBOL ENTRIES) can also have the following
format if the preceding entry describes an actual
array CARRAY_VARIANT ON and INOIRECT_VARIANT Off):

Number of dimensions BITC3>
Number of elements BIT(17>
Lower bound of first dimension BIT(8)
Upper bound of first dimension BIT<12)
Lower bound of second dimension BITC8>
Upper bound of second dimension 81T(12)
Lo~er bound of third dimension BIT(8)
Upper bound of third dimension BITC12>

The field
the value
or if the
the sizes

containing the number of dimensions contains
zero if there are more than three dimensions
values of the lower or upper bounds exceed
of their respective fiel~s.

TV'S is an array of transfer vector items that has the number of elements specified by
#TV _ENTRIES.

SYMBOLS is an array of symbols that has the number of elements specified by #SYMBOL_ENTRIES
and is used by the dump analyzer.

115211.3 G-13

Transfer Vector

Format:

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Length of transfer vector BITC24)
SEGMENT DISPLACEMENT CODE ADDRESS(ES)

[Numbir of code adaress~s varies, 0 included]
Filler cw;th value of @0@)
COOE SEGMENT NUMBER
Bit aisplacement into segment

BIT(4)
BITC10>
BITC18)

Block address <can be local data block and/or
common block address>

Filler (with value of @300@)
Base-relative block address

BITC12)
BITC20)

(byte offset)

The transfer vector is zero-relative, beginning at the right where the first S-operator starts. Entry zero
of the transfer vector is always the local data block address. Other entries can be either code addresses
or common block addresses, which can be intermixed in the transfer vector.

24 BITS 32 BITS 32 BITS 32 BITS

TV <;OMMON ••• CODE LOCAL DATA S-OPS ••• • • •
LENGTH BLK ADDR ADDRESS BLOCK ADDR

TV(N) TV(l) TV(l) TV(O)

Assigned GOTO and Format Table

The assigned GOTO and FORMAT table is an array of N elements in which (N -1) is the number
of unique labels assigned in a program unit.

Executable statement label entry forinat:

Filler
Code address (see description under Addresses
in this appendix)

BIT(8)
BIT(24)

FORMAT statement label entry format:

Byte off set into local data block BIT(32)

Table G-1 is a sample assigned GOTO and FORMAT table constructed by the compiler. A sample
of FORTRAN 77 code which could generate the table is given in the text following.

G-14

Table G-1. Sample Assigned GOTO and FORMAT Table

~ 1""11111-----Column 1 = 32 Bits------1•..,..I~---- Column 2 = 32 Bits ----11 l
4

011000000000000000000000000000000
100000000000000000000000000000000
001000000000000000000000000000000
100000000000000000000000000000000

<row 1 unused>
code address for label 5
data address for FORMAT 15
code address for label 10
data address for FORMAT 20

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

The value in the first row of column 1 is the total number of code addresses and FORMAT label ad
dresses Jin column 2.

The first bit of each row after the first is 0 for code addresses or 1 for FORMAT label addresses.

For FORMAT label addresses, all bits in column 1 are zero except the first. This zero area is the area
pointed to by OP .3 in the assigned GOTO operator, but OP .3 does not exist for VARIANT 6 of the
PASS operator.

Each bit in column· 1 (except bit 0) specifies whether a branch can be made to the code address in
column 2 for a particular assigned GOTO statement. Bit 1 is fQr the first assigned GOTO statement
in the program unit, bit 2 is for the second assigned GOTO statement in the program unit, and so
forth.

In table G-1, for example, the first assigned GOTO can only branch to the first code address, and
the second assigned GOTO can branch to either code address. The FORTRAN 77 code to generate
such a table might look like:

Standard Index

Format:

STD_INDEX

Variant
Index

BIT(l)
Bit varying

Variant

0
1

ASSIGN 5 TON
ASSIGN 15 TO I
GO TO N(5)

5 CONTINUE
10 ASSIGN 10 TO N

GO TO N(l0,5)
ASSIGN 20 TO J

15 FORMAT(...)
20 FORMAT(...)

Index

REGISTER_NUMBER
Tag
Address

Tag Address

BIT(4)
BIT(3) followed by
Bit varying

0 DIRECT_ADDR
1 INDIRECT_ADDR
2 PO_ADDR

3-7 Undefined

115 2113 G-15

Addresses

Format:

DIRECT ADDR

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Loca! block versus non-paged common block variant
If VARIANT=O, byte offset

The 19 bits of offset are in 2 1 s complement.
Cit leading bit is on, the value is negative)

If VARIANT=1, TV INDEX followed by
3yte offset. -

INDEXED DIRECT ADDR
DIRECT ADDR -
STD_IN~EX <content contains element subscript)

CHARACTER DIRECT ADDR
DIRECT 7tDDR -
LENGTH- {element length in bytes)

INDEXED CHARACTER DIRECT ADOR
DIRECT ADDR -
STD INnex <content contains element subscript)
LENGTH (element length in bytes)

PO ADOR
Page number
Byte offset into page

INDEXED PO ADOR
PO AD15R -
STn_INDEX (content contains element subscript)

CHARACTER PO ADDR
PO Ai>OR-
L ENGTH (element length in bytes)

INDEXED CHARACTER PO ADDR
PO ADUR - -
ST~ INDEX <content contains element subscript)
LENGTH (element length in bytes)

INDIRECT AODR
Local 5lock versus non-paged common block variant
If VARIANT=Q byte offset.

The 19 b1~s of offset are in 2's complement.
Cif the leading bit is on, the value is negative)

If VARIANT=1, TV INDEX followed by
Byte offset -

INDEXED INDIRECT ADDR
INOIR!CT ADOR ·-
STD_INDEX (content of element sub~cript

apolies to address passed)

CHARACTER INDIRECT ADDR
INDIRECT ADDR -

INDEXED CHARACTER INDIRECT ADDR
INDIRtCT ADDR -
STD_INDEX (content of element subscript

applies to address passed)

CODE l\ODRESS
Fitler (reserved for further development)
Bit displacement into code segment

EXTERNAL CODE ADDRESS (PASSED)
Code s~gment number
Bit displacement into code segment
Filler

G-16

BIT(1)
BIH19>

BIT<10>
BIT{19)

Bit varying
Bit varying

Bit varying
BIT(8)

Bit varying
Bit varying
8ITC8>

BITC10>
BITC10)

BIT(2Q)
Bit varying

BITC20)
8IT<8)

BITC20>
Bit varying
BITC3)

BITC1>
BIT<19)

BITC10)
BITC19>

Bit varying
Bit varying

Bit varying

Bit varying
Bh varying

BITC6)
BITC18)

BIT(14)
8ITC18)
BITC16)

REGISTER_NUMBER

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

MEM_ADDR (byte offset into local data block>

INDIRECT DESCRIPTOR
Non-inaexed versus indexed variant
REGISTER NUMBER
If VARIANT=1, STD_INOEX

aasi<; descriptor
Static versus dynamic memory variant
If VARIANT=O, base-relative address
If VARIANT=1, page/offset address
LENGTH

ARRAY DESC PASSED
aas·ic descriptor
NUMBER_ELEMENTS_PASSED

CHAR DESC PASSED
Ba1ii c desc ri pt or
Fi Iller

PO Al>DR PASSED
'Sasi c-desc ri pt or
Filller

11521ll3

Bll(4)

BIT(20)

BIT(1)
BIT(4)
Bit varying

BIT(1)
BIT(19)
BIT<19>
BIT(8)

BITC28)
BIT(20)

BITC28)
BITC20)

BIT(28)
BITC20>

G-17

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

Standard Source

Format:

STD_SOURCE

Variant
Source

BIT(4)
Bit varying

Variant SOURCE_LOCATION

0 Interpreter creates
1 Interpreter creates
2 Interpreter creates
3 Interpreter creates
4 In line
5 In line
6 In line
7 In line
8 DIRECT_ADDR
9 INDIRECT_ADDR
A PO_ADDR
B Unused
C INDEXED_DIRECT_ADDR
D INDEXED_INDIRECT_ADDR
E INDEXED_PO_ADDR
F REGISTER_NUMBER

Contents
(SOURCE_LOCA TION)

Integer value 0
Integer value = 1
Integer value = 2
Integer value = 3
4 bit in-line literal
10 bit in-line literal
32 bit in-line literal
64 bit in-line literal
32/64 bit variable
Basic descriptor
32/64 bit variable

Same as 8
Same as 9
Same as A
32/ 64 bit variable

Standard Destination

Format:

STD_DESTINA TION

G-18

Variant
Destination

BIT(3)
Bit varying

Variant Destination

0 DIRECT_ADDR
1 INDIRECT_ADDR
2 PO_ADDR
3 Unused
4 INDEXED_DIRECT_ADDR
5 INDEXED_INDIRECT_ADDR
6 INDEXED_PO_ADDR
7 REGISTER_NUMBER

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Standard Character Source

Format:

STD_CHAR_SOURCE

Variant
Source

BIT(4)
Bit varying

Variant

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

Invalid
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid

SOURCE_ADDRESS

LENGTH(BIT(8)) // IN_LINE
CHARACTER_DIRECT_ADDR
CHARACTER_INDIRECT _ADDR
CHARACTER_PO_ADDR
Unused
INDEXED_CHARACTER_DIRECT_ADDR
INDEXED __ CHARACTER_INDIRECT_ADDR
INDEXED_CHARACTER_PO_ADDR
INDIRECT _DESCRIPTOR

Standard Character Destination

Format::

STD_CHAR_DESTINA TION

Variant
Destination

BIT(3)
Bit varying

Variant Destination

0 CHARACTER_DIRECT_ADDR
1 CHARACTER_INDIRECT_ADDR
2 CHARACTER_PO_ADDR
3 Unused

Contents
(SOURCE_ADDRESS)

BYTE_LENGTH in-line literal
Character
CHARACTER_DESCRIPTOR
Character

Character
CHARACTER_DESCRIPTOR
Character
CHARACTER_DESCRIPTOR

4 INDEXED_CHARACTER_DIRECT _ADDR
5 INDEXED_CHARACTER_INDIRECT _ADDR
6 INDEXED_CHARACTER_PO_ADDR
7 INDIRECT_DESCRIPTOR

1152113 G-19

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

Run-Time Dimension Table

An example of a run-time dimension table constructed by the BAT /BAA T S-operators for array
A(J ,N ,2) is shown in figure G-1.

Scale BIT(24) BASE_OFFSET BIT(24)

LENGTH Lower bound BIT(24) Upper bound BIT(24)

<J>

<N*J>

< N*J*2 >

•
• • • • • • • • • • ••• Assumed size

Last upper bound = maximum possible subscript value.

Figure G-1. Example of Run-Time Dimension Table

ARITHMETIC REPLACEMENT $-OPERATORS

The following is a list of arithmetic replacement S-operators ordered by operation code.

MOVE SINGLE WORD (MOVE)

Operation Code: 01

Format:

8 BITS VARIES VARIES

I @01@ I STD_SOURCE STD_DESTINATION I

STD_SOURCE :: = REAL I INTEGER

Operation:

STD_DESTINA TION : = STD_SOURCE

G-20

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

MOVE DOUBLE WORD (DMOVE)

Operation Code: 02

Format:
8 BITS VARIES VARIES

[io,_2_@_~_s_T_D ___ s_o_u_R_c_E __ ~_sT_D ___ D_E_sT_I_N_A_T_Io_N_

The standard source is a double-precision value.

Operation:

STD_DESTINA TION : = STD_SOURCE

MOVE REGISTER (RMOVE)

Operation Code: 04

Format:

Operation:

8 BITS 4 BITS

I @04@ I REGISTER_NUMBER

OP.I

Contents of OP .2 get contents of OP .1.

STORE REGISTER (STORE)

Operation Code: 05

Format:

8 BITS 4 BITS

REGISTER_NUMBER

4 BITS

REGISTER_NUMBER

OP.2

20 BITS

MEM_ADDR ~SA ____ _,__ __________________ _,_ ____________ _
Operation:

Contents of specified register stored at specified MEM_ADDR.

LOAD REGISTER (LOAD)

Operation Code: 06

Format:
8 BITS 20 BITS 4 BITS

~0_6_®_ ... ___.__M_E_M ___ A_D_D_R _ __,.____R_E_G_Is_T_E_R ___ N_u_M_B_E_R __

Operation:

Value at MEM_ADDR loaded to specified register.

1152113 G-21

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

MOVE MEMORY (MMOVE)

Operation Code: 07

Format:
8 BITS

@07@

Operation:

Value at OP.I moved to OP.2.

ADD (ADD)

SUBTRACT (SUB)

MULTIPLY (MUL)

DIVIDE (DIV)

Operation Codes: shown in table G-2

20 BITS 20 BITS

MEM_ADDR MEM_ADDR

OP.I OP.2

With two operands of standard source and
one operand of standard destination.

Table G-2. Operation Codes for ADD, SUBTRACT, MULTlPLY, and DIVIDE

ADD SUBTRACT MULTIPLY DIVIDE

DOUBLE PRECISION DADD DSUB DMUL DDIV
@50@ @51@ @52@ @53@

REAL FADD FSUB FMUL FDIV
@QC@ @OD@ @OE@ @OF@

INTEGER IADD ISUB IMUL IDIV
@08@ @09@ @QA@ @OB@

Format:

8 BITS VARIES VARIES VARIES

OPCODE STD_SOURCE STD_SOURCE STD_DESTINATION

OP.I OP.2 OP.3

Operation:

STD_DESTINA TION : = OP.I [+, - ,*,/] OP.2

G-22

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

ADD (ADD)

SUBTRACT (SUB)

MlJL TIPL Y (MUL)

DIVIDE (DIV)

The operands are of the form:

reg, reg, reg
re,:J,reg,mem
reg,mem,mem
reg,mem,reg

With operands as shpwn below.

mem,mem,rrem
mem,reg,mem
m e m , m e "' , r e g
mem,reg,reg

where reg is a REGISTER_NUMBER and mem is a MEM_ADDR.

Operation Codes: shown in table G-3

Table G-3. Operation Codes for ADD, SUBTRACT, MULTIPLY, and DIVIDE

ADD SUBTRACT MULTIPLY DIVIDE

mem,mem,mem I AM MM @I7@ ISMMM @IF@ IMM MM @27@
FAMMM @37@ FSMMM @3F@ FMMMM @47@

IAMMR @I6@ ISMMR @IE@ IMMMR @26@
mem,mcm,reg FAMMR @36@ FSMMR @3E@ FMMMR @46@

I AM RM @I5@ ISM RM @ID@ IMM RM @25@
mem,reg,mem FAMRM @35@ FSMRM @3D@ FMMRM @45@

IAMRR @I4@ ISM RR @IC@ IMM RR @24@
mem,reg,reg FAMRR @34@ FSMRR @3C@ FMMRR @44@

IARMM @I3@ ISRMM @IB@ IMRMM @23@
reg,mem,mem FARMM @33@ FSRMM @3B@ FMRMM @43@

IARMR @I2@ ISRMR @IA@ IMRMR @22@
reg,mcm,reg FARMR @32@ FSRMR @3A@ FMRMR @42@

IARRM @I l@ ISRRM @19@ IMRRM @21@
reg,reg,mem FARRM @3I@ FSRRM @39@ FMRRM @4I@

IARRR @IO@ ISRRR @18@ IMRRR @20@
reg ,reg ,reg FARRR @30@ FSRRR @38@ FMRRR @40@

Format:
8 BITS

[OPCODE ADDRI ADDR2 ADDR3

OP.I OP.2 OP.3
Operation:

Contents (ADDR3)

1152113

contents (ADDRI) [+, - , + ,/] contents (ADDR2)

IDMMM @2F@
FDMMM @4F@

IDMMR @2E@
FDMMR @4E@

IDMRM @2D@
FDMRM @4D@

IDMRR @2C@
FDMRR @4C@

IDRMM @2B@
FDRMM @4B@

IDRMR @2A@
FDRMR @4A@

IDRRM @29@
FDRRM @49@

IDRRR @28@
FDRRR @48@

G-23

BUMP (BUMP)

Operation Code: A3

Format:

Operation:

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

8 BITS VARIES 24 BITS

___ @_A_3_@_) -.1....._sT_o ___ o_E_s_T_I_N_A_T_Io_N _ _.___L_IT_E_R~

STD_DESTINA TION : = STD_DESTINA TION + literal

where the addition performed is an integer add.

LOGICAL REPLACEMENT AND IF STATEMENT $-OPERATORS

The following is a list of logical replacement and IF statement S-operators ordered by operation code.

RELATION (IREL, STD.SOURCES are of type INTEGER)

(FREL, STD.SOURCES are of type REAL)

(OREL, STD.SOURCES are of type DOUBLE)

Operation Codes:

58 - IREL
5A - FREL
5C - DREL

Format:

8 BITS

OPCODE I
Operation:

VARIES VARIES

STD_SOURCE I STD_SOURCE

OP.1 OP.2

For interpretation of mask, see DRIF (Op @SD@).

3 BITS

MASK

OP.3

VARIES

STD _DESTINATION

OP.4

STD_DESTINA TION : = TRUE if OP .1 relates to OP .2 in any of the ways specified by the
mask, otherwise FALSE.

TRUE @FFFFFFFF@ and FALSE @00000000@.

G-24

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

RELA T'IONAL IF (IRIF, integer relational IF)

Operation Codes:

59 - IRIF
5B - FRIF
5D - DRIP

Format:

8 BITS

["OPCODE

OPCODE

Operation:

(FRIF, floating point relational IF)

(DRIF, double precision relational IF)

VARIES VARIES 3 BITS

STD __ SOURCE STD_SOURCE MASK

OP.I OP.2 OP.3

24 BITS

CODE_ADDRESS

OP.4

For a mask of:

1

Then branch to CODE.ADDRESS if:

2
3
4
5
6

whe:re OP .1 AND OP .2 are of type:

1152113

INTEGER
REAL
DOUBLE PRECISION

OP.1 .LE. OP.2
OP.1 .GE. OP.2
OP.1 .EQ. OP.2
OP.1 .NE. OP.2
OP.1 .LT. OP.2
OP.1 .GT. OP.2

if OP-CODE is IRIF
if OP-CODE is FRIF
if OP-CODE is DRIP

G-25

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

LOGICAL RELATION (LOG)

Operation Code: 60

Format:

8 BITS VARIES

@60@ STD_SOURCE

OPCODE

Operation:

OP.I

VARIES 3 BITS VARIES

STD_SOURCE LOP STD_DESTINATION

OP.2 OP.3 OP.4

STD_DESTINA TION : = OP. I LOP OP .2 where LOP is:

0 ___. NEQV
I ___. AND
2 ___. OR
3
4 ___. EQV
5 ___. NAND
6 ___. NOR
7

LOGICAL IF - 2 OPERANDS (LIF2)

Operation Code: 61

Format:
8 BITS VARIES VARIES

(EXOR)

(not used)
(NEOR)

(not used)

3 BITS 24 BITS

@61@ STD_SOURCE STD_SOURCE LOP CODE_ADDRESS

OPCODE OP.I OP.2 OP.3 OP.4
Operation:

For interpretation of the mask, see Logical Relation (Op @60@).
Branch to CODE_ADDRESS if the result of (OP .1 MASK OP .2) is TRUE.

LOGICAL NOT (LNOT)

Operation Code: 62

Format:

8 BITS

@62@

OPCODE
Operation:

VARIES

STD_SOURCE

OP.I

VARIES

STD_DESTINATION I
OP.2

STD_DESTINATION : = COMPLEMENT(STD_SOURCE)

G-26

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

LOGICAL IF ~ 1 OPERAND (Llf 1)

Operation Code: 63

Format:

8 BITS VARIES 24 BITS

~3@ v STD_SOURCE CODE_ADDRESS

OPCODE OP.I OP.2 OP.3

Operatilon:

V == 0 -+ if STD_SOURCE TRUE then branch to CODE_ADDRESS.

V == 1 -+ if STD_SOURCE FALSE then branch to CODE_ADDRESS.

BRANCH S-OPERATORS

The following is a list of branch S-operators ordered by operation code.

UNCONDITIONAL BRANCH (GOTO)

Operation Code: 64

Format:

8 BITS 24 BITS

@64@ I CODE_ADDRESS

OPCODE OP.I

Operation:

Branch to the CODE_ADDRESS (displacement into code segment).

115211l3 G-27

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

ARITHMETIC IF (Alf)

Operation Code: 65

Format:

8 BITS VARIES 24 BITS 24 BITS 24 BITS

(al65(a! VAR STD_SOURCE CODE_ADDRESS CODE_ADDRESS CODE_ADDREssJ

OPCODE OP.I OP.2 OP.3 OP.4 OP.5

Operation:

If STD_SOURCE < 0 then branch to CODE_ADDRESS in OP .2
If STD_SOURCE 0 then branch to CODE_ADDRESS in OP.3
If STD_SOURCE > 0 then branch to CODE_ADDRESS in OP.4

VARIANT = 1 ~ STD_SOURCE is double precision
VARIANT = 0 ~ STD_SOURCE is real or integer

The variant only exists so that if the following standard source is a literal, NIP can be aligned
correctly at code address as the operation is stepped through.

COMPUTED GOTO (CGO)

Operation Code: 66

Format:

8 BITS VARIES 8 BITS 24 BITS 24 BITS

~@_6_6_@~J~sT_n ___ s_o_u_R_c_E~~c_o_u_N_T~~c_o_n_E ___ A_n_n_R~Es_s~j· ··I cooE_ADDREss

OPCODE OP.l OP.2 OP.3 •• ti OP.COUNT

STD_SOURCE : : = contains an index into the list of code addresses following.

COUNT : : = the number of CODE_ADDRESS following.

CODE_ADDRESS . - the address to branch to.

Operation:

Branch to the code address pointed to by the index in STD_SOURCE.

G-28

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

ASSIGNED GOTO (AGO)

Operation Code: 67

Format:

8 BITS VARIES VARIES VARIES

@67@ STD DESTINATION STD.SOURCE STD.SOURCE

OPCODE OP.I OP.2 OP.3

OP.I points to a table with N rows and 2 columns where (N -1) is the number of unique labels
assigned in a program unit.

Operation:

If the most significant bit of OP .2 is zero (SUBBIT(OP .2,0, 1)
signed a label and an error is given.

0), then the variable is not as-

If the value of SUBBIT(OP .2, 1) is greater than the value of the first entry in the table (pointed
to by OP .1), the assigned label is not in the table and an error is given.

If the OP .3 bit of the table entry whose row equals OP .2 in the first column of the table equals
0 (SUBBIT (OP.l(OP.2,1),0P.3,1) = 0), the label is out of scope and an error is given.

Otherwise, if none of the above conditions is TRUE, branch to the code address found at the
table entry whose row equals OP.2 in the second column of the table (OP.l(OP.2,2)).

Refer to the format section at the beginning of this appendix for the description of the assigned
GOTO table.

1152113 G-29

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

TYPE AND SIGN CONVERSION S-OPERATORS

The following is a list of type and sign conversion S-operators ordered by operation code.

CONVERT FROM INTEGER TO REAL OR DOUBLE PRECISION (FLOAT)

Operation Code: 54

Format:
8 BITS VARIES I BIT VARIES

@54@ STD_SOURCE VARIANT STD_DESTINATION

OPCODE OP.I OP.2 OP.3

Operation:

STD_DESTINA TION : = FLOA T(STD_SOURCE)

If VARIANT 1 , STD_DESTINA TION is double precision.
If VARIANT = 0 , STD_DESTINA TION is real.

CONVERT FROM REAL OR DOUBLE PRECISION TO INTEGER (IFIX)

Operation Code: 55

Format:

8 BITS

CU255@

OPCODE

Operation:

I BIT VARIES

VARIANT STD_SOURCE

OP.I OP.2

STD_DESTINA TION : = IFIX(STD_SOURCE)

If VARIANT = 1, STD_SOURCE is double precision.
If VARIANT = 0, STD_SOURCE is real.

CONVERT FROM DOUBLE TO REAL (SNGL)

Operation Code: 56

Format:

8 BITS VARIES

VARIES

STD_DESTINATION

OP.3

VARIES

@56@ STD_SOURCE STD~DESTINATION I
OPCODE OP.I OP.2

Operation:

STD_DESTINATION : = SNGL(STD_SOURCE)

G-30

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

CONVERT FROM REAL TO DOUBLE PRECISION (DBL)

Operation Code: 57

Format::

8 BITS VARIES VARIES

@57@ STD_SOURCE STD_DESTINATION

OPCODE OP.I OP.2

Operation:

STD_DESTINATION : = DBL(STD_SOURCE)

ABSOLUTE VALUE (ABS)

Operation Code: 68

Format:

8 BITS 2 BITS VARIES VARIES

@68@ VARIANT STD_SOURCE STD DESTINATION

OPCODE OP.I OP.2 OP.3

Variant STD_SOURCE

00 Floating point number
01 Double-precision number
10 Integer
11 Undefined

Operation:

STD_DESTINA TION : = absolute value (STD_SOURCE)

1152113 G-31

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

CHANGE SIGN (NEG)

Operation Code: 69

Format:

8 BITS 2 BITS VARIES VARIES

@69@ VARIANT STD_SOURCE STD DESTINATION

OPCODE OP.I OP.2 OP.3

Variant STD_SOURCE

00 Real
01 Double precision
10 Integer
11 Unused

Operation:

STD_DESTINA TION : = - (STD_SOURCE)

SUBSCRIPT VALUE COMPUTATION S-OPERATORS

The following is a list of subscript value computation S-operators ordered by operation code.

VALIDATE DESCRIPTOR (VD)

Operation Code: SA

Format:

8 BITS 20 BITS

@8A@ MEM ADDR

OPCODE OP.I

VARIES

STD SOURCE

ELEMENT
LENGTH
DECLARED

VARIES

STD SOURCE

ARRAY
SIZE
DECLARED

MEM_ADDR is the block-relative address of the descriptor of the argument passed. This descriptor
describes where the actual argument is, its element length passed, and the actual size passed.

ELEMENT LENGTH DECLARED EQL 0 implies assumed-length.

ARRAY SIZE DECLARED is the number of elements passed if the array is a numeric array, or the
number of bytes passed if the array is a character array, or zero if the array is a character variable.
It points to the size field of the run-time dimension table built by the BAT /BAA T S-operators if it
is assumed size or adjustable size. Otherwise, it is a literal.

Operation:

1. Verify that the size of the array declared is less than or equal to the size of the array passed.
2. Modify the descriptor at MEM_ADDR to reflect the declared element length.

G-32

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

BUILD ARRAY TABLE (BAT)

Operation Code: SB

Format:

8 BITS 4 VARIES VARIES

~8B@ CNT STD _DESTINATION STD_SOURCE I DIM_! I ••• I DIM_CNTI

OPCODE TABLE LENGTH

CNT : : = number of dimensions

Format of DIM_#:

VARIES VARIES

STD_SOURCE STD_SOURCE

LOWER BOUND UPPER BOUND

Operation: ,

Construct an array descriptor using the remaining information of the format:

where

OFFS ET
DIM INFO 1
DI M:I Nfo: 2

DIM INFO.CNT
Silt -

= 1

BITC32) see item 1 below
RECOR01
RECOR01

RECORD1
BITC32> see ;tem 2 below

RECORD1 format:

A # BIT(32>
=A C#-1)*D C#-1) Ln~ER BOUND BIT{32)

UPPER:soUND BITC32)
= (1 + UPPER BOUND #

- LOWER:BOUND:#>

1. OFFSET= - (LOWER_BOUND_l * A_l + . . . + LOWER_BOUND_CNT * A_CNT)
2. SIZE = A_(CNT+ l)*LENGTH (or what is passed in if assumed-size)
3. UPPER_BOUND_CNT is replaced by SIZE/LENGTH

1152113 G-33

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

BUILD ASSUMED SIZE ARRAY TABLE (BAAT)

Operation Code: SC

Format:

8 BITS 4 VARIES 20 BITS VARIES

STD_DEST. MEM_ADDR STD_SOURCE DIMI I · . · I DIM_CNT I
L-~~_J_~~__J~~~~~~-1-~~~~~--L-~~~~~---&.-~~--

@8C@ CNT

T ABLE LENGTH

CNT = number of dimensions

Format of dimension information:

Operation:

VARIES

I STD_SOURCE

LOWER BOUND

Same as the BAT S-operator except:

VARIES

STD_SOURCE J
UPPER BOUND

1. MEM_ADDR is used to fetch either assumed length and/or assumed size.
2. If LENGTH = 0, use assumed length.
3. If dimension count of upper bound = 0, use assumed size.

COMPUTE SUBSCRIPT VALUE (CS)

Operation Code: SD

Format:

8 BITS 4 VA 20 VA VA 20

@8D@ CNT SI Ml S2 • • • S_CNT M __ CNT

CNT :: = number of subscripts present

S :: = STD_SOURCE (subscripts)

M# : : = scale factor

Operation:

STD_DESTINATION . - Sl * Ml + S2 * M2 + ... + S_CNT * M_CNT

G-34

VA

STD_DEST.

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

CS W'ITH BOUNDS CHECKING (CSB)

Operation Code: SE

Format:

8 BITS 4 VARIES

~3_E_@ ________ c_N_T __ _._ __ s_1 __ _.__s_2 ___ ••• S_CNT STD DESTINATION

OPCODE

S# Format:

VARIES VARIES VARIES 20

STD_SOURCE STD_SOURCE STD_SOURCE M#

SUBSCRIPT LOWER BOUND UPPER BOUND SCALE

Operation:

Same as for CS except that the subscript is checked to verify that lower bound is LEQ subscript
LEQ upper BOUND before the index value is computed.

STD_DESTINATION : = Sl * Ml + ... + S_CNT * M_CNT

COMPUTE SUBSCRIPT VALUE WITH ARRAY TABLE, CHECK BOUNDS (CSV)

Operation Code: SF

Format:

8 BITS 4 VA VA VA VA VA

[@8F@ CNT STD_DESTl ~··· S_CNT STD_DEST2

CNT : : = 4-bit literal indicating number of dimensions

S :: = STD_SOURCE (subscripts)

STD_DESTl is address of array descriptor as described by BAT.

Operation:

STD_DEST2 : = OFFSET + (Sl * A_l + S2 * A_2 + .. . + S_CNT * A_CNT

Sutbscript bounds checking is always performed.

1152113 G-35

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

DO-LOOP MAINTENANCE

The following is a list of DO-loop maintenance S-operators ordered by operation code.

DO LOOP UPDATE (DO.UP)

Operation Code: 90

Format:

8 BITS 3 BITS VAR

@90@ VARIANT

OPCODE OP.I OP.2

Variant OP.2 OP.3

0 STD_INDEX STD_DEST

STD_INDEX STD_SOURCE

2 STD_INDEX STD_DEST

3 STD_INDEX STD_DESTI

4 STD_SOURCE

5 STD_DEST

G-36

VAR VAR

OP.3 OP.4

OP.4

STD_SOURCE

CODE__ADDR

STD_SOURCE

CODE__ADDR

CODE__ADDR

CODE__ADDR

VAR

OP.5

OP.5

CODE__ADDRESS

STD_ DESTINATION

CODE__ADDRESS

STD_DEST2

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

Operatiion:

Variant DO-type Loe

Top

Function

0 DO 2 l=N,M IF (STD_INDEX GT STD_SOURCE) THEN
STD_DESTINATION = STD_INDEX

2

3

DO 2 l=N,M Btm

Do 2 I=N,M,L Top
O/o STD_SOURCE = ITER_CNT
O/o REG = CTR_ VAR

DO 2 I= N,M,L Btm
OJoSTD_INDEX =CTR_ VAR
OJoSTD_DESTl(O) =!NCR
OJoSTD_DESTl(l)= ITER_CNT
%STD_DEST2 =CTR_ VAR

GO TO CODE_ADDRESS
END IF

STD_INDEX = STD_INDEX + 1
IF (STD_INDEX LE STD_SOURCE)

* GO TO CODE_ADDRESS
STD_DESTINATION = STD_INDEX

If (STD _SOURCE LE 0) THEN
STD_DESTINATION = STD_INDEX
GO TO CODE_ADDRESS

END IF

STD_INDEX = STD_INDEX + STD_DESTI(O)
STD_DESTI(l) = STD_DESTl(l) - I
IF (STD_DESTl(l) GT 0)

* GO TO CODE_ADDRESS
STD_DEST2 = STD_INDEX

4 DO 2 X = A,B,C Top IF (STD_SOURCE LE 0)

5

115211:3

OJoSTD_SOURCE = ITER_CNT * GO TO CODE_ADDRESS

DO 2 X = A,B,C Btm
OJoSTD_DEST. = ITER_CNT

%CTR_ VAR incremented separately
STD_DESTINATION = STD_DEST. - 1
IF (STD_DEST. GT 0) GO TO CODE_ADDR.

NOTE
The top DO.UP S-operator is generated only if the compiler cannot deter
mine whether or not the DO loop is executed at least once.

STD_DESTl in the form of VARIANT 3 is a 2-element array.

G-37

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

CHARACTER TYPE S-OPERATORS

The following is a list of character type S-operators ordered by operation code.

CHARACTER RELATION (CREL)

Operation Code: SE

Format:

8 BITS VARIES VARIES 3 BIT VARIES

[@5E@ 1 STD_CHAR_SOURCE I STD_CHAR_SOURCE MSK STD DESTINATION

OPCODE OP.I OP.2 OP.3 OP.4

Operation:

STD_DESTINA TION : = TRUE if OP .1 relates to OP .2 in any of the ways specified by the
mask; otherwise, FALSE.

For interpretation of the mask, see Character Relational If (Op @SF@).

Right blank fill is assumed.

CHARACTER RELATIONAL IF (CRIF)

Operation Code: SF

Format:

8 BITS VARIES

I @SF@ STD_CHAR_SOURCE

OPCODE

Operation:

OP.I.

For a mask of:

1
2
3
4
s
6

Right blank fill is assumed.

G-38

VARIES 3 BIT

STD _CHAR_SOURCE MSK

OP.2 OP.3

then branch to CODE.ADDRESS if:

OP.l .GT. OP.2
OP.I .LT. OP.2
OP.l .NE. OP.2
OP.l .EQ. OP.2
OP.1 .GE. OP.2
OP.I .LE. OP.2

24 BITS

CODE_ADDRESS

OP.4

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

LENGTH (LEN)

Operation Code: 6C

Format:

8 BITS VARIES VARIES

@6C@ STD_CHAR_SOURCE STD.DESTINATION

OPCODE OP.I OP.2

Operation:

STD_DESTINATION : = CHAR_LENGTH (STD_CHAR_SOURCE)

Length of STD_CHAR_SOURCE is returned in bytes.

SUBSTRING DESCRIPTOR (SSTR)

Operation Code: 76

Format:

8 BITS VARIES VARIES VARIES VARIES

J @76',_®_..____s_T_D ___ c_H_A_R ___ D_E_s_T_1 ______ s_T_D ___ s_o_u_R_c_E_1____,~_sT_D ___ so_u_R_c_E_2___....£.._L_A_s_T ___ o_P_

where LAST _OP can be either:

VARIES

STD _CHAR_DEST2

3 BITS

@7@

Operation:

OR

VARIES

STD _DESTINATION

If LAST_OP is of STD_CHAR_DESTINATION form, then

STD_CHAR_DEST2 = STD_CHAR_DESTl (STD_SOURCEl : STD_SOURCE2),

otherwise,

STD_DESTINATION = CHARACTER_DESCRIPTOR of
(STD_CHAR_DESTl (STD_SOURCEl : STD_SOURCE2)).

Right truncation or blank fill occurs.

1152113 G-39

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

SUBSTRING MOVE (SSTL)

Operation Code: 77

Format:

8 BITS VARIES VARIES VARIES VARIES

@77@ STD_CHAR_SOURCE STD_CHAR_DEST. STD_SOURCEl STD_SOURCE2

Operation:

STD_CHAR_DEST.(STD_SOURCEl : STD_SOURCE2) STD_CHAR_SOURCE

Right truncation or blank fill occurs.

STORE CHARACTER (STC)

Operation Code: 78

Format:

8 BITS VARIES VARIES VARIES VARIES

@78@ STD CHAR_SOURCE STD_CHAR_DEST. STD_DEST. STD_SOURCE

OPCODE OP.I OP.2 OP.3

Operation:

G-40

STD_CHAR_DEST(STD_DEST : STD_DEST + STD_SOURCE)
STD_CHAR_ SOURCE// STD_CHAR_SOURCE // STD_CHAR_ SOURCE// ...

STD_DESTINA TION : = STD_DESTINA TION + STD_SOURCE

Action automatically stops if LEN(STD_CHAR_DESTINA TION) is reached.

OP.4

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

CHARACTER CONCATENATION WITH DE~r.RIPTOR (CATO)

Operation Code: 79

Format:

8 BITS VARIES VARIES VARIES VARIES

j ®79®·~-'-~s_T_n ___ c_H_A~R ___ s_R_c_1-'-__ s_T_n ___ c_H __ A_R ___ s_R_c_2 __ .__s_T_n ___ c_H_A_R ___ n_E_s_T __ _.__s_T_D ___ n_E_s_T __ I
OPCODE OP.I OP.2 OP.3 OP.4

Operation:

STD_CHAR_DESTINA TION STD_CHAR_SRCl II STD_CHAR_SRC2

andl

STD_DESTINA TION = CHARACTER_PO_ADDR descriptor of
(STD_CHAR_DEST, MIN (LEN(STD_CHAR_DEST),
LEN(STD_CHAR_SRCl) + LEN(STD_CHAR_SRC2)))

Right truncation or blank fill occurs.

MOVE CHARACTERS (MVC)

Operation Code: 7 A

Format::

8 BITS VARIES VARIES

@7A@ STD_CHAR_SOURCE STD _CHAR_DESTINA TION

OPCODE OP.I OP.2

Operation:

STD_CHAR_DESTINA TION : = STD_CHAR_SOURCE

Right truncation or blank fill as needed.

1152113 G-41

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

CHARACTER CONCATENATION (CAT)

Operation Code: 7B

Format:

8 BITS VARIES VARIES VARIES

STD_CHAR_SRC2 LiTD_CHAR_DEST
L_ ______ _J__ __________________ _._ ______________ ~

@7B@ STD_CHAR_SOURCE

OPCODE OP.I OP.2 OP.3

Operation:

STD_CHAR_DESTINATION = STD_CHAR_SOURCEl II STD_CHAR_SRC2

Right truncation or blank fill occurs.

SUBROUTINE LINKAGE $-OPERATORS

The following is a list of subroutine linkage S-operators ordered by operation code.

SAVE REGISTERS (SAVE)

Operation Code: 6D

Format:

8 BITS 4 BITS VARIES

@6D@ v NUMBER_ TO _SA VE STD_DESTINATION

Operation:

If V = 0 save ND)(_REGS #6 thru (1 + NUMBER_TO_SAVE) at STD_DEST
IF V = 1 restore ND)(_REGS 116 thru (1 + NUMBER __ TO_SAVE) from STD_DEST

G-42

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

LOCAL BASE (LB)

Operation Code: 6E

Format:

8 BITS 1 BIT 10 BITS VARIES

@6E@ 0 TV _INDEX STD _DESTINATION

OR

8 BITS 1 BIT 20 BITS VARIES

[@6E®---~~----B_Y_T_E~o_F_F __ sE_T~--~sT_D~ __ n_E_sT_1_N_A_T_1o_N~_.
Operation:

If VARIANT = 0 then,

STD_DESTINATION : = base-relative address of local data block for ENTRY(TV_INDEX).

If VARIANT = 1 then,

STD_DESTINATION : = base-relative address of local data block pointed at by code address
located at given byte offset in current local data block.

1152113 G-43

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

PASS ACTUAL ARGUMENT (PASS)

Operation Code: 6F

Format:

8 BITS 4 VARIES VARIES

@6F@ v SOURCE REGISTER_OFFSET

VARIANT

0

Source

STD_DESTINA TION
STD_CHAR_DESTINA TION
CODE_ADDRESS

Value Passed

word address
CHARACTER_DESCRIPTOR
code address (see below)

1
2
3
4
5
6

7

8-F

STD_SRC, STD_DEST
STD_SRC, STD_DEST
STD_SRC, STD_CHAR_DEST
STD_DEST ,STD_SRC

STD_SRC, STD_CHAR_DEST,
STD_SRC, STD_SRC
unused

ARRAY _DESCRIPTOR (single word)
ARRAY_DESCRIPTOR (double word)
character array descriptor
assigned format
(ARRAY _DESC_P ASSED)
character array descriptor
(used for substring)

Operation:

G-44

A descriptor is constructed and written to the location described by the REGISTER_OFFSET.
Further information about this operation follows:

1. When the VARIANT equals 2, the specified code address is of the form:

1 BIT 20 BITS

0 MEM __ ADDR

OR

1 BIT 10 BITS

TV_INDEX

2. When the VARIANT equals 3 or 4, the standard source operand is the array size and the stan
dard destination operand is the first array element.

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

3. When the VARIANT equals 6, the standard destination operand points to the assigned FOR
MAT table (consisting of N rows and 2 columns). Refer to the Formats subsection of this ap
pendix for a description of the assigned FORMAT table.

The following error checking is done:

1) If the most significant bit of the standard source operand is zero, then the variable is
not assigned a label and an error is given.

2) If the value of SUBBIT(STD_SRC, 1) is greater than the value of the first table entry,
then the assigned label is not in the table and an error is given.

3) If the zero bit of the table entry whose row equals the STD_SRC in the first column
of the table equals 0, then the label is not a FORMAT label and an error is given.

If no error is detected, the array descriptor passed is constructed which points to the FORMAT
address found in the row equal to the standard source operand in column 2 of the assigned
FORMAT table. The descriptor passed reflects @FFFF@ elements and a length equal to zero.
The FORMAT address pointed to by the descriptor is the local base-relative byte address of
the first array element.

4. When the VARIANT equals 7, the first standard source operand is the array size.
STD_CHAR_DEST(SECOND STD_SRC:THIRD STD_SRC) is the first array element. The
second standard source operand is the first character and the third standard source operand
is the last character of the standard character destination.

5. The REGISTER___ OFFSET has one of two formats:

1 BIT 4 BITS 10 BITS

[0 REGISTER_NUMBER BYTE OFFSET INTO FOREIGN BLOCK

OR
1 BIT 19 BITS 10 BITS

[BYTE OFFSET INTO BYTE OFFSET INTO FOREIGN BLOCK
LOCAL DATA BLOCK

The base-relative bit address (the index) added to the byte offset (DIRECT_ADDR) is the ad
dress of the destination of the 48-bit descriptor.

All arguments are passed by address, except code addresses. If an argument is passed in the
user program by value, a copy is made and the address of the copy is passed as the argument.

1152113 G-45

B 1000 Systems FORTRAN 77 Language Manua1
FOR TRAN 77 S-Language

SUBROUTINE CALL (CALL)

Operation Code: 70

Format:

8 BITS 10 BITS

@70@ TV_INDEX

Operation:

Branch to external code address. The subprogram address is a IO-bit transfer vector index.

DYNAMIC SUBROUTINE CALL (DCAL)

Operation Code: 71

Format:
8 BITS VARIES

@71@ STD _DESTINATION

Operation:

Same as CALL except branch to CODE_SEGMENT_DISPLACEMENT found at address con
tained in the standard destination.

RETURN (RTN)

Operation Code: 72

Format:

8 BITS

@72@

Operation:

NEXT_INST_PTR : = return address (from memory location 0 in local data block).

Returns to address specified in local data block.

G-46

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

STATEMENT FUNCTION CALL (SPFCL.)

Operation Code: 73

Format:

8 BITS 24 BITS VARIES

I @73@ __.__o _ _.___c_o_n_E ___ A_n,_n_R_E_s_s_L..--_sT_n ___ n_E_s_T_I_N_A_T_Io_N___.

8 BITS

OR

VARIES VARIES
·---~~---~~~~--~~~~--~~~~~~~~~

~.__J_ __ -1-_s_T_D ___ D_E_s_T __ IN_A_T_I_o_N _ _,___sT_D ____ DE_sT_I_N_A_T_Io_N _ __.

When the one-bit VARIANT = 1, the first standard destination contains an external code address.

Operation:

Store NEXT_INST_PTR as EXTERNAL_CODE_ADDRESS at STD_DESTINATION (the
first operand following the variant), then branch to specified code address (when VARIANT =
0) or to external code address contained in first STD_DESTINA TION (when VARIANT = 1).

STATIEMENT FUNCTION RETURN (SFRTN)

Operation Code: 74

Format:

8 BITS VARIES

@74@ STD_DESTINATION

Operation:

Branch to EXTERNAL_CODE_ADDRESS stored in STD_DESTINATION.

1152113 G-47

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

SCRAMBLE AND PROVIDE ARGUMENTS (SPAM)

Operation Code: 75

Format:

8 BITS 8 BITS 8 BITS VARIES

@75@ #PARMS_TO_ADD #PARMS_PASSED ORDER_INFO

Operation:

#P ARMS_P ASSED are copied to an interpreter implied location. (#P ARMS_P ASSED +
#PARMS_TO_ADD) 48-bit descriptors are zeroed out. #PARMS_PASSED are copied back as
specified by ORDER_INFO.

ORDER_INFO is an array of #P ARMS_P ASSED elements; each element is BIT(20) and con
tains addresses which are the locations where the 48-bit argument descriptors are to be written.
Length of ORDER_INFO is (#PARMS_PASSED * 20).

SPECIAL FUNCTION S-OPERATORS

The following is a special function S-operator.

FORTRAN STATEMENT NUMBER (STMN)

Operation Code: 91

Format:

8 BITS 14 BITS

@91@ LITERAL

Operation:

Move the 14-bit literal to the FORTRAN statement number field in the base-limit area.

Debug interpreters also check for breakpoint matching.

PRIVILEGED USER S-OPERATORS

The following is a list of privileged user S-operators ordered by operation code.

G-48

NOTE
All references to BUFF, OFFSET, SIZE, BZFLG, and so forth (common ref
erences used in intrinsics) indicate predefined locations in memory. These val
ues are not passed in the operator itself.

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

BASE-RELATIVE ADDRESS (ADDR)

Operation Code: 6A

Format:

8 BITS VARIES VARIES

~,_@ _ _.___s_T_D ___ D_E_sT_I_N_A,_T_Io_N _ __.____s_T_D ___ D_E_s_T_IN_A_T_1_o_N___,

OPCODE OP.I OP.2
Operation:

OP.2 : = ADDRESS(OP.I) - BASE_REGISTER

INDIRECT DESCRIPTOR OF NUMERIC ARRA VS (DESC)

Operatilon Code: 6B

Format:

8 BITS VARIES VARIES VARIES

[@6B@ STD _CHAR_DEST STD __ SRCl STD_SRC2

OPCODE OP.I OFFSET LENGTH

Operation:

STD_DESTINA TION : = (SEGMENT, DISPLACEMENT, LENGTH)
Descriptor of SUBSTR (STD_CHAR_DEST, OFFSET, LENGTH)

NOTE

VARIES

STD _DESTINATION

OP.4

STD_CHAR_DEST describes the first byte of a numeric field. No checks
are made for valid values of OFFSET or LENGTH.

STORtE CHARACTER (STC)

Operation Code: 78

STC is also a character type S-operator.

COMMUNICATE (COMM)

Operation Code: 7C

Format:

Operation:

8 BITS

[@7C@

OPCODE

VARIES

STD _DESTINATION

VARIES

STD_SOURCE

Communicate (to the MCP) the information which is left-justified in standard destination.
STD_SOURCE indicates the number of bits to be communicated.

1152113 G-49

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

LOAD COMMUNICATE REPLY (LCR)

Operation Code: 70

Format:

8 BITS VARIES

@7D@ STD_DESTINA TION

OPCODE

Operation:

STD_DESTINATION : = last 24 bits of the communicate reply.

It is expected that STD_DESTINA TION is of type INTEGER.

PROCESSOR TIME (TIME)

Operation Code: 7E

Format:

8 BITS VARIES

@7E@ STD_DESTINA TION

Operation:

STD_DESTINATION : = PROCESSOR_ TIME.

DISCONTINUE JOB (OS)

Operation Code: 7F

Format:

8 BITS VARIES

@7F@ STD_CHAR_DESTINATION J
OPCODE

Operation:

Causes host to be aborted giving the message contained at STD_CHAR_DESTINA TION.

G-50

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

WRITE: INTEGER DIGITS (WID)

Operation Code: 80

Format::

8 BITS VARIES VARIES

[i_s_o®_--'-__ s_T_D ___ s_o_u_R_c_E_.1.-_s_T_D ___ s_o_u_R_c_E---J

OPCODE OP.I OP.2

Operation:

Writes OP .1 to predefined memory location the value, DECIMAL(OP .1, for the length specified
in OP .2 (in bytes).

Lef1t truncation of zero fill occurs as needed.

BINARY CONVERSION (BNRY)

Operation Code: 81

Format:

8 BITS VARIES

@81@ STD_DESTINATION

Operation:

Wrllte to the location specified by the standard destination the value which is the SUBSTR of
BUFF, offset by BFRPTR, for the length specified by size.

Binary conversion stops when a non-numeric/non-blank is encountered. The offset and size loca
tions are updated to reflect the index and length of the remaining substring.

If BZFLG is TRUE, blank characters are treated as zeroes; otherwise, blank characters are treated
as nulls.

1152113 G-51

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

SEARCH FOR SIGN (SIGN)

Operation Code: 82

Format:

8 BITS VARIES

@82@ STD _DESTINATION

Operation:

Reduce SUBSTR (BUFF, OFFSET, SIZE) until first NEQ " " (by adjusting offset and size).
On EOS DO; STD_DESTlNATION : = .FALSE.; RETURN; END;

STD_DESTINA TION : = (first char) .EQ. " - " ;

If (first char) = + or - , reduce the adjusted substring to skip the sign.

STD_DESTINATION reflects whether or not a minus sign (-) character is found.

GET REAL VALUE (REAL)

Operation Code: 83

Format:

8 BITS 1 BIT VARIES VARIES

@83@ VARIANT STD DESTINATION STD_DESTINATION

OP.I OP.2

Operation:

G-52

OP .1 . - float the binary value of SUBSTR (BUFF, OFFSET, SIZE)

OP .2 . - number of decimal digits found after the decimal point

Real value conversion stops when it encounters a character which is none of the following: a
decimal digit, a blank, a decimal point. Offset and size are updated to reflect the index and length
of the remaining substring.

If BZFLG is TRUE, blank characters are treated as zeroes; otherwise, blanks are treated as nulls.

If VARIANT @(l)l@ then STD_DESTINATION is double precision else STD_DESTINATION
is single precision

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

EXAMINE NEXT CHARACTER (NEXT)

Operation Code: 84

Format:

8 BITS 8 BITS 24 BITS

LITERAL CODE_ADDRESS

OP.I

Operation:

If (SIZE .EQ. 0) THEN RETURN ;
IF SUBSTR (BUFF,OFFSET,l) .EQ. OP.1

THEN DO;
BUMP OFFSET BY 1 ;
DECREMENT SIZE BY 1 ;
BRANCH TO CODE_ADDRESS ;

END;

SIZE is the length of the substring represented by BUFF.

WRITE E-FORMAT (WEF)

Operation Code: 85

Format:

8 BITS VARIES

@85@ STD_SOURCE

Operation:

OP.2

Wri1te to a predefined memory location in E-format the value contained in the standard source.

WRITE F-FORMAT (WFF)

Operation Code: 86

Format:

8 BITS VARIES

@86@ STD_SOURCE

Operation:

Write to a predefined memory location in F-format the value contained in the standard source.

1152113 G-53

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

FETCH AND CLEAR ERROR CONDITION (FANC)

Operation Code: 87

Format:
8 BITS 3 BITS VARIES

@87@ MASK STD_DESTINAT!ON J
Operation:

Write to STD_DESTINA TION the value:
MASK .AND. ERROR_CONDITION_INFO

ERROR_CONDITION_INFO : = (.NOT. MASK) .AND. ERROR_CONDITION_INF

where ERROR_CONDITION_INFO is three bits of information located at a base-relative ad
dress. It has the same format as the mask:

First bit
Second bit
Third bit

overflow condition
exponent underflow condition
divide-by-zero condition

The .AND. operation is done bit by bit.

EXTRACT BITS (XTRACT)

Operation Code: 88

Format:
8 BITS VARIES VARIES

@88@ STD_DEST. STD_SOURCE

OP.I OP.2

Operation:

OP.4 : = SUBBIT (OP.l, OP.2, OP.3)

INSERT BITS (INSERT)

Operation Code: 89

Format:
8 BITS VARIES VARIES

@89@ STD_SOURCE STD_DEST.

OP.I OP.2
Operation:

SUBBIT(OP .2, OP .3, OP .4) : = OP .1

G-54

VARIES

STD_SOURCE

OP.3

VARIES

STD_SOURCE

OP.3

VARIES

STD_DEST.

OP.4

VARIES

STD_SOURCE

OP.4

B 1000 Systems FOR TRAN 77 Language Manual
FOR TRAN 77 S-Language

WRITIE I-FORMAT (WIF)

Operatlion Code: 93

Format:

8 BITS VARIES

@93@ STD_SOURCE

Operation:

Write to a predefined memory location in I-format the value contained in the standard source.

NOTE
Operators @94@ through @A2@ can also be used as privileged operators.
They are described under the section entitled Trigonometric and Other Func
tions.

TRIGONOMETRIC AND OTHER FUNCTIONS

The folllowing is a list of S-operators ordered by operation code for trigonometric and other functions.

NOTE
All STD_SOURCES and STD_DESTINA TIONS are real.

Any of these operators can also be used as privileged operators.

REMAINDER (AMOD)

Operation Code: 94

Format:

8 BITS VARIES VARIES VARIES

@94@ STD_SOURCE STD_SOURCE STD _DESTINATION

OP.I OP.2

Operation:

STD_DESTINATION . - OPl - (AINT(OP1/0P2) * OP2)

1152113 G-55

SINE (SIN)

Operation Code: 95

Format:

Operation:

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

8 BITS VARIES VARIES

@95@ STD_SOURCE STD_DESTINATION

STD_DESTINATION : = sine of STD_SOURCE

COSINE (COS)

Operation Code: 96

Format:

8 BITS VARIES VARIES

@96@ STD_SOURCE STD_DESTINATION I
Operation:

STD_DESTINATION : = cosine of STD_SOURCE

TANGENT (TAN)

Operation Code: 97

Format:

8 BITS VARIES VARIES

@97@ STD_SOURCE STD_DESTINATION I
Operation:

STD_DESTINATION : = tangent of STD_SOURCE

HYPERBOLIC SINE (SINH)

Operation Code: 98

Format:

8 BITS VARIES VARIES

@98@ STD_SOURCE STD_DESTINATION I
Operation:

STD_DESTINATION : = hyperbolic sine of STD_SOURCE

G-56

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

HYPEBBOLIC COSINE (COSH)

Operation Code: 99

Format:
8 BITS VARIES VARIES

@99@ STD_SOURCE STD _DESTINATION

Operation:

STD_DESTINA TION : = hyperbolic cosine of STD_SOURCE

HYPEFlBOLIC TANGENT (TANH)

Operation Code: 9A

Format:
8 BITS VARIES VARIES

@9A@ STD_SOURCE STD _DESTINATION

Operation:

STD_DESTINATION : = hyperbolic tangent of STD_SOURCE

ARCSINE (ASIN)

Operation Code: 9B

Format:

8 BITS VARIES VARIES

~B_® __ _.__s_T_D ___ s_o_u_R_cE __ -L-__ s_TD ____ oE_s_T_I_N_A_TI_o_N __ ~
Operation:

STD_DESTINA TION- : = arcsine of STD __ SOURCE

ARCCOSINE (ACOS)

Operation Code: 9C

Format:

8 BITS VARIES VARIES

@9C@ STD_SOURCE STD _DESTINATION

Operation:

STD_DESTINATION : = arccosine of STD_SOURCE

1152113 G-57

B 1000 Systems FORTRAN 77 Language Manual
FORTRAN 77 S-Language

ARCTANGENT (ATAN)

Operation Code: 9D

Format:
8 BITS VARIES VARIES

@90@ STD_SOURCE STD _DESTINA TIO~
Operation:

STD_DESTINA TION : = arctangent of STD_SOURCE

FLOOR (AINT)

Operation Code: 9E

Format:

8 BITS VARIES VARIES

@9E@ STD_SOURCE STD_DESTINATION I

Operation:

STD_DESTINA TION : = The integer whose magnitude is the largest integer which does not ex
ceed the magnitude of STD_SOURCE and whose sign is the same as that of STD_SOURCE.

If -1 < STD_SOURCE < 1, then STD_DESTINATION : = 0.0

For example, AINT(-3.7) -3.0

NATURAL LOG (ALOG)

Operation Code: 9F

Format:

8 BITS VARIES VARIES

@9F@ STD_SOURCE STD_DESTINATION

Operation:

STD_DESTINATION : = natural log of STD_SOURCE

G-58

B 1000 Systems FORTRAN 77 Language Manual
FOR TRAN 77 S-Language

LOG TO BASE 10 (ALOG10)

Operation Code: AO

Format:

8 BITS VARIES VARIES

~-o_@_....____s_T_D ___ s_o_u_R_c_E __ _.____s_T_D ___ D_E_s_T_IN_A_T_I_o_N _ ___.

Operation:

STD_DESTINATION : = log to base 10 of STD_SOURCE

SQUt~RE ROOT (SQRT)

Operation Code: Al

Format:

8 BITS VARIES VARIES

@Al@ STD_SOURCE STD_DESTINATION

Operatlion:

STD_DESTINATION : = square root of STD_SOURCE

EXPONENTIAL (EXP)

Operatlion Code: A2

Format:

8 BITS VARIES VARIES

.__@_A_2_@__,.____s_T_n ____ s_o_u_R_cQ STD_DESTINATION

Operation:

STD_DESTINATION : = e ** STD_SOURCE

115211l3 G-59

B 1000 Systems FORTRAN 77 Language Manual

$ Modifier 12~21

? COMPILE Record A-7
? DATA CARD Record A-9
? END Record A-10

INDEX

ACCESS= (access-type) 11-11, 11-16, 11-19
Access Methods 11-1
ACCESS Specifier 10-1
Action Specifiers 11-3
Actual Arguments 13-21
Actual Arguments for a Function Subprogram 13-4
Actual Arguments for a Subroutine 13-15
Addresses G-16
Allocation Information of Data D-6
Alphabetical List of Mnemonics G-2
Alternate Return 13-31
Arguments 13-21
Arithmetic Assignment Statement 8-1
Arithmetic Expressions 7-2
Arithmetic IF Statement 9-7
Arithmetic Replacement S-Operators G-6, G-20
Array Declarator 5-3
Array Elements 5-4
Array Handling - Numeric 6-13
Arrays 5-2
Arrays D-4
Arrays as Dummy Arguments 13-24
ASSIGN Statement 8-3
Assigned GO TO Statement 9-6
Assigned GOTO and Format Table G-14
Association of Dummy and Actual Arguments 13-21
AUTOBIND 14-14
BACKSPACE Statement 11-23
Base-Limit Memory Layout G-1
Basic FORTRAN 77 Concepts xvii
BLANK= (blnk) 11-11, 11-16, 11-19
Blank Control 12-19
BLANK Specifier 10-1
BLOCK DATA Subprogram 13-17
Block IF Statement 9-9
Block IF Statement Execution 9-9
BLOCKSIZE = (block-size) 11-11, 11-20
BLOCKSIZE Specifier 10-2
Boolean Options 14-1
Branch S-Operators G-8, G-27
Bridges 1-4
CALL Statement 13-15
Carriage Control 12-21
CHARACTER 6-1
Character Arrays 13-27
Character Assignment Statement 8-3

1152113 1

2

B 1000 Systems FORTRAN 77 Language Manual

INDEX (CONT)

Character Association 6-14
Character Constants 4-6
Character Expressions 7-3
Character Format Specification 12-1
Character Set, B 1000 FORTRAN 77 2-1
Character Strings 6-9
Character Substrings 5-6
Character Type S-Operators G-9, G-38
Character Type Statement 6-3
CLEAR 14-14
CLOSE Statement 11-14
Code Segmentation Information D-7
Collating Sequence 2-2
Colon Editing 12-18
Comments 3-5
Common Blocks 13-21
Common Names 6-5
COMMON Statement 6-4
Compilation Source File A-7
Compiler File Names and Defaults A-5
Compiler Files A-4
COMPLEX 6-1
Complex Constants 4-4
Complex Editing 12-12
COMPLEX Variables D-3
Computed GO TO 9-6
Concepts, Basic FORTRAN 77 xvii
Conditional Options 14-3
Constants, Character 4-6
Constants, Logical 4-6
Constants, Numeric 4-1
CONTINUE Statement 9-1
Control List 11-2
CONTROL LIST FOR FILE POSITIONING STATEMENTS 11-22
Control Records of the MCP A-7
Conversion During Assignment 6-10
Data Allocation Information D-6
Data Assignment 6-9
DATA Implied-DO Loop 6-8
DATA Statement 6-7
DELETE 14-5
Descriptors, Edit 12-3
Diagrams, Railroad 1-1
Digits 2-1
DIMENSION Statement 6-11
Direct 11-1
DIRECT= (direct-access> 11-16, 11-20
Direct-Access READ 11-7
Direct-Access WRITE 11-9
DO Loop Activation 9-3

B 1000 Systems FORTRAN 77 Language Manual

Do Loop Maintenance G-9
DO Statement 9~1, 9-2

INDEX (CONT)

DO Statement Execution 9-3
DO-LOOP Maintenance G-36
DO-variable Initialization 9-3
DOUBLE 14-9
DOUBLE PRECISION 6-1
DOUBLE PRECISION Variables D-3
Double-Precision Constants 4-3
Dummy Arguments 13-21
Dummy Arguments in ENTRY Subprograms 13-30
DYNAMIC 14-4
Edit Descriptors 12-3
ELSE IF Statement 9-1, 9-10
ELSE IF Statement Execution 9-11
ELSE Statement 9-1, 9-11
ELSE Statement Execution 9-12
END 14-15
END IF Statement 9-1, 9-13
END Statement 9-1, 9-5
END= (label) 11-3
ENDFILE Statement 11-23
ENTRY Statement 13-19
EQUIVALENCE Statement 6-11
ERR = <error-specifier> 11-11
ERR= (label) 11-4
Error Condition Information G-11
Error Message from FORTRAN77/ANALYZER E-3
ERRORL IMIT 14·-4
ERRORLIST 14-15
Executable Statements 3-1
Execution of an External Function Reference 13-4
Execution of FORTRAN77/ANALYZER E-1
Execution of Statements in the Range 9-4
EXIST = <existence) 11-16, 11-20
Explicit Type Statements 6-1
Expression Types 7-2
Expressions, Arithmetic 7-2
Expressions, Character 7-3
Expressions, Logical 7-4
EXTERNAL Statement 6-16
FILE = (file-name> 11-11
FILE = (file) 11-16
File Positioning Statements, Control List 11-22
FILE Specifier 10-2
Files, Internal 11-25
FIND Statement 11-24
FORM= <format) 11-12, 11-16, 11-20
Form of a Format Specification 12-2
Form of Namelist Input/Output 12-25

1152113 3

4

B 1000 Systems FORTRAN 77 Language Manual

INDEX (CONT}

FORM Specifier 10-2
Format 11-3
Format Modifiers 12-20
Format of Source Input
Format Specification A
Format Specification D
Format Specification E
Format Specification F
Format Specification G
Format Specification I
Format Specification L

3-5
12-13
12-10
12-9
12-8
12-10
12-7
12-12

Format Specification Methods 12-1
Format Specification z 12-15
Format Specifications , Form of 12-2
FORMAT Statement 12-1
Formats of S-Intructions G-11
FORMATTED = (format-allowed) 11-16, 11-20
Formatting, List-Directed 12-21
Formatting, NAMELIST 12-24
FORTRAN77/ANALYZER Error Messages E-3
FORTRAN77/ANALYZER Execution E-1
FORTRAN77/ANALYZER Termination E-3
Function Subprograms 13-3
Functions 13-1
Functions, Trigonometric G-55
GO TO Statement 9-1, 9-5
Hexadecimal Constants 4-4
Hexadecimal Initialization 6-9
I/O Implied-DO Loop 11-5
I/O List 11-4
I/O, List-Directed 11-26
I/O, Namelist 11-26
I/O, Unformatted 11-26
ICM 14-11
IF Statement 9-1, 9-7
IF Statement S-Operators G-24
Immediate Options 14-2
IMPLICIT Statement 6-17
INCLNEW 14-9
INCLUDE 14-5
Initial Value Lists 6-8
Input Files A-4
Input Format, Source 3-5
Input List 11-5
Input Using Aw 12-14
Input Using Ew.d 12-9
Input Using Fw.d 12-8
Input Using Gw.d and Gw.dEe 12-10
Input Using Iw 12-7
Input Using Lw 12-12

B 1000 Systems FORTRAN 77 Language Manual

INDEX (CONT}

Input Using Zw 12-15
Input/Output List and Format, Interaction Between 12-2
INQUIRE by File Statement 11-15
INQUIRE by Unit Statement 11-19
INQUIRE Statement 11-15
Instruction Set G-2
INTEGER 6-1
Integer Constants 4-1
INTEGER Variables D-2
Interaction Between Input/Output List and Format 12-2
Interaction with Common Storage 6-14
Interface of User/Compiler A-1
Intermediate Code Files A-4
Intermediate Code Module Options 14-11
Internal Files 11-25
INTERPRETER 14-15
Intrinsic Functions 13-5
INTRINSIC Statement 6-18
Intrinsic Subroutines 13-16
INTRINSICS 14-15
IOSTAT = (iostat-variable) 11-12
IOSTAT= (variable) 11-4
Iteration Count Initialization 9-3
Iteration Processing 9-4
K Modifier 12-21
KIND = (hardware-type) 11-12, 11-20
KIND Specifier 10-2
Label Equations (FILE statement) A-9
Large FORTRAN 77 Program Code Files A-7
Layout of Memory, Base-Limit G-1
Layout Table G-13
Length of Character Dummy and Actual Arguments 13-22
Letters 2-1
Limiting Options 14-4
LIST 14-9
List-Directed Formatting 12-21
List-Directed I/O 11-26
List-directed Input 12-22
List-directed Output 12-23
List, Control 11-2
List, I/O 11-4
LISTDELETED 14-9
LISTDOLLAR 14-10
LISTINCL 14-9
LISTOMITTED 14-10
LIS TP 14-10
Local Data Block G-12
LOGICAL 6-1
Logical Assignment Statement 8-2
Logical Contants 4-6
Logical Expressions 7-4

1152113 5

6

B 1000 Systems FORTRAN 77 Language Manual

Logical IF Statement 9-8
Logical Operators 7-4

INDEX (CONT)

Logical Replacement and IF Statement S-Operators G-8
Logical Replacement S-Operators G-24
LOGICAL Variables D-3
Loop Execution Control 9-3
Loops 1-3
Main Program 3-4
Main Program Restrictions 3-5
MAP 14-1 0
MCP Control Records A-7
Memory Layout, Base-Limit G-1
MERGE 14-6
Methods of Access 11-1
Methods of Format Specification 12-1
Miscellaneous, Options 14-14
Multiple Storage Locations - Numeric 6-12
MYUSE = <use-type) 11-12, 11-20
MYUSE Specifier 10-2
NAME = (file-name> 11-17, 11-21
NAMED= (named) 11-17, 11-21
NAMELIST Formatting 12-24
Namelist I/O 11-26
Namelist Input 12-27
Namelist Output 12-18
NAMELIST Statement 12-25
Names of Variables 5-1
Nesting Level 9-9
NEW 14-10
NEXTREC = <next-record) 11-17, 11-21
NOBOUNDS 14-16
Nonexecutable Statements 3-1
Nonrepeatable Edit Descriptors 12-16
NUMBER= <unit-number) 11-17, 11-21
Numeric and Logical Type Statements 6-2
Numeric Arrays 13-24
Numeric Constants 4-1
Numeric List of Operation Codes G-6
OMIT 14-7
OPEN of a Connected Unit 11-13
OPEN Statement 11-10
OPENED= (open-done) 11-17, 11-21
Operators 7-1
Option Types 14-1
Optional Items 1-2
Options, Conditional 14-3
Options, Intermediate Code Module 14-11
Options, Limiting 14-4
Options, Miscellaneous 14-14
Options, Source Input 14-5
Options, Source Output 14-8

B 1000 Systems FORTRAN 77 Language Manual

INDEX (CONT}

Options, User-Declared 14-3
Output Files A··4
Output List 11~6

Output Using Aw 12-14
Output Using Ew.d 12-9
Output Using Fw.d 12-8
Output Using Gw.d and Gw.dEe 12-11
Output Using Iw and Iw.m 12-7
Output Using Lw 12-13
Output Using Zw 12-15
PAGE 14-10
Parameter Evaluation 9-3
PARAMETER Statement 6-19
PAUSE Statement 9-1, 9-13
Positional Editing 12-17
Positioning By Format Control 12-20
PRINT Statement 11-9
Privileged User S-Operator G-48
Privileged User S-Operators G-10
Procedures as Dummy Arguments 13-29
PROGRAM Statement 3-5
Program Units 3-4
Program-name A-8
PUNCH Statement 11-10
Railroad Diagrams 1-1
Range of a DO Loop 9-2
READ Statement 11-7
REAL 6-1
Real Constants 4-2
REAL Variables D-2
RECL = <record-length) 11-13, 11-17, 11-21
RECL Specifier 10-2
Record Number 11-3
Referencing a Function Subprogram 13-4
Referencing a Statement Function 13-2
Related Documents xvii
Relational Expressions 7-5
REMOVEICM 14-13
Repeat Counts 6-8
Repeatable Edit Descriptors 12-4
Required Hardware A-1
Required Items 1-2
Required System Software A-1
Requirements of System A-1
RETURN Statement 13-30
REWIND Statement 11-24
Run-Time Dimension Table G-20
S-Intruction Format G-11
S-Operator, Privileged User G-48
S-Operators, Arithmetic Replacement G-20

1152113 7

8

B 1000 Systems FORTRAN 77 Language Manual

INDEX (CONT}

S-Operators, Branch G-27
S-Operators, Character Type G-38
S-Operators, IF Statement G-24
S-Operators, Logical Replacement G-24
S-Operators, Sign Conversion G-30
S-Operators, Special Function G-48
S-Operators, Subroutine Linkage G-42
S-Operators, Subscript Value Computation G-32
S-Operators, Type Conversion G-30
SAVE Statement 6-20
Scale Factor 12-19
Segmentation Information of Code D-7
SEQCHECK 14-7
SEQUENCE 14-7
SEQUENCE Range Options 14-8
Sequential 11-1
SEQUENTIAL= (sequential-access) 11-17, 11-21
Sequential READ 11-7
Sequential WRITE 11-8
Set of Characters for B 1000 FORTRAN 77 2-1
Set of Instructions G-2
Sign Control 12-18
Sign Conversion S-Operators G-30
Simple Variables D-1
Single Storage Locations - Numeric 6-12
Slash Editing 12-18
Source Input File CARD A-10
Source Input Format 3-5
Source Input Options 14-5
Source Output Options 14-8
Special Characters 2-2
Special Function S-Operators G-10, G-48
Specific Name and Generic Name 13-6
Specification Methods for Format 12-1
Specifications, Form of the Format 12-2
Specifier, ACCESS 10-1
Sp e c if i er , BL AN K 1 0 - 1
Specifier, BLOCKSIZE 10-2
Specifier, FILE 10-2
Specifier, FORM 10-2
Specifier, KIND 10-2
Spec if i er, MYUSE 10-2
Specifier, RECL 10-2
Specifier, STATUS 10-2
STACKS IZE 14-5
Standard Character Destination G-19
Standard Character Source G-19
Standard Destination G-18
Standard Index G-15
Standard Return 13-31
Standard Source G-18

B 1000 Systems FORTRAN 77 Language Manual

Statement Functions 13-1
Statement Labels 3-4
Statement Ordering 3-2

INDEX (CONT)

Statement, Arithmetic Assignment 8-1
Statement, ASSIGN 8-3
Statement, BACKSPACE 11-23
Statement, Character Assignment 8-3
Statement, CLOSE 11-14
Statement, COMMON 6-4
Statement, CONTINUE 9-1
Statement, DATA 6-7
Statement, DIMENSION 6-11
Statement, DO 9-2
Statement, END 9-5
Statement, ENDFILE 11-23
Statement, ENTRY 13-19
Statement, EQUIVALENCE 6-11
Statement, EXTERNAL 6-16
Statement, FIND 11-24
Statement, GO TO 9-5
Statement, IF 9-7
Statement, IMPLICIT 6-17
Statement, INQUIRE 11-15
Statement, INTRINSIC 6-18
Statement, Logical Assignment 8-2
Statement, OPEN 11-10
Statement, PARAMETER 6-19
Statement, PAUSE 9-13
Statement, PRINT 11-9
Statement, PUNCH 11-10
Statement, READ 11-7
Statement, RETURN 13-30
Statement, REWIND 11-24
Statement, SAVE 6-20
Statement, STOP 9-13
Statement, WRITE 11-8
Statements 3-1
Statements, Explicit Type 6-1
STATUS = <file-status) 11-13
STATUS Specifier 10-2
STOP Statement 9-1, 9-13
Storage Assignments 6-5
String Editing 12-16
Subprogram, BLOCK DATA 13-17
Subprograms 3- 5
Subprograms as Actual Parameters 6-16
Subprograms, Subroutine 13-14
Subroutine 13-14
Subroutine Linkage Mechanism G-12
Subroutine Linkage S-Operators G-9, G-42

1152113 9

10

B 1000 Systems FORTRAN 77 Language Manual

INDEX (CONT)

SUBROUTINE Statement 13-15
Subroutine Subprograms 13-14
Subscript Value Computation S-Operators G-9,G-32
Substrings, Character 5-6
SUMMARY 14-11
System Requirements A-1
T Editing 12-17
Terminal Statement Execution 9-4
Termination of FORTRAN77/ANALYZER E-3
Transfer Vector G-14
Trigonometric and Other Functions G-10
Trigonometric Functions G-55
Type and Sign Conversion S-Operators G-8
Type Conversion S-Operators G-30
Type Statements, Explicit 6-1
Types of Arrays 5-4
Types of Options 14-1
Unconditional GO TO 9-5
UNFORMATTED= (unformat-allowed) 11-17, 11-22
Unformatted I/O 11-26
Unit 11-3
UNIT= (unit-#) 11-11, 11-19
Units, Program 3-4
U s e of Ar ray D e c 1 a r a t o rs 6 - 5
USEICM 14-12
User-Declared Options 14-3
User-defined Intrinsic Functions 6-16
User/Compiler Interface A-1
Value Options 14-2
Values G-12
Variable Lists 6-7
Variable Names 5-1
Variables as Dummy Arguments 13-23
Variables, Simple D-1
VOID 14-8
WRITE Statement 11-8
X Editing 12-17
XREF 14-11
XSEQ 14-11

Title:

Documentation Evaluation Form

B 1000 Systems FORTRAN 77 Language Manual Form No: _1~1~5_2~1_1~3~~~~~~

Date: January 1984

Burroughs Corporation is interested in receiving your comments
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

[J Addition D Deletion D Revision D Error

Comments:

From:

Name

Title

Company ------~---~-----------------------
Address

Phone Number ----------------------------

Remove form and mail to:

Burroughs Corporation
Corporate Documentation - West

1300 John Reed Court
City of Industry, CA 91745

U.S.A.

Date ----------------

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	F-01
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	G-34
	G-35
	G-36
	G-37
	G-38
	G-39
	G-40
	G-41
	G-42
	G-43
	G-44
	G-45
	G-46
	G-47
	G-48
	G-49
	G-50
	G-51
	G-52
	G-53
	G-54
	G-55
	G-56
	G-57
	G-58
	G-59
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	replyA

