
Burroughs 

Language Manual 

Distribution Code SC Priced Item 
Printed in U.S.A. 5024516 

October 1986 



Burroughs cannot accept any financial or other 
responsibilities that may be the result of your use 
of this information or software material, includ
ing direct, indirect, special or consequential dam
ages. There are no warranties extended or granted 
by this document or software material. 

You should be very careful to ensure that the use of this 
software material and/or information complies with the 
laws, rules, and regulations of the jurisdictions with re
spect to which it is used. 

The information contained herein is subject to change 
without notice. Revisions may be issued to advise of 
such changes and/or additions. 

Comments or suggestions regarding this document should be submitted on a 
Field Communication Form (FCF) with the CLASS specified as 2 (S.W:System 
Software), and the Type specified as 1 (F.T.R.), and the product specified as the 
7-digit form number of the manual (for example, 5024516). 



Section 

2 

5024516 

B 1000 Systems D MSII 
Host Language Interface Language Manual 

TABLE OF CONTENTS 

Title Page 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Manual Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Data Management System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
DMS DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 

DMS/DASDL Language Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
DMS Functional Description Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
DMS Host Language Interface Manual . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

RELATED DOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

HOST LANGUAGE INTERFACE .............................. . 
GENERAL ................................................. . 
INTERFACE DIFFERENCES: ................................. . 
COBOL DATA DIVISION .................................... . 

DATA-BASE SECTION of DATA DIVISION ................... . 
Data Set References ...................................... . 

Invoked Data Set ....................................... . 
Multiply-Invoked Data Set ............................... . 
Variable Format Records ................................ . 

COBOL PROCEDURE DIVISION ............................. . 
MOVE and MOVE CORRESPONDING ....................... . 
Exception Processing ....................................... . 

ON EXCEPTION Phrase .................................. . 
USE ON DMERROR Procedure ............................ . 
DMST A TUS Register ..................................... . 

Selection Expression ........................................ . 
Pa.th Name .............................................. . 
Key Condition ........................................... . 
General Selection Expression ............................... . 
Selection Expression Forms ................................. . 

Form 1 ............................................... . 
Form 2 ............................................... . 
Form 3 ............................................... . 

Generalized Selection Expression ............................ . 
Selection Expression Rules ............................... . 
Binary Search Conditions ................................ . 
Linear Search Condition ................................. . 
Index Sequential Sets and Subsets ......................... . 

COBOL68 PROGRAMMING NOTES ........................... . 
CURRENT RECORD POINTER ............................... . 

Internal States .............................................. . 
Undefined State .......................................... . 
Defined State ............................................ . 
Deleted State ............................................ . 
Create and Lock Flags ..................................... . 

Exceptions on FIND ........................................ . 
Deleted Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... . 
Storing Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. . 
Unlocking Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . 
Embedded Datasets ........................................ . 

2-1 
2-1 
2-1 
2-2 
2-2 
2-3 
2-4 
2-4 
2-5 
2-5 
2-5 
2-6 
2-7 
2-7 
2-7 

2-12 
2-13 
2-13 
2-14 
2-14 
2-14 
2-15 
2-16 
2-16 
2-18 
2-18 
2-18 
2-18 
2-20 
2-22 
2-22 
2-22 
2-23 
2-23 
2-23 
2-23 
2-23 
2-23 
2-24 
2-24 

v 



VI 

Section 

3 

4 

A 

B 

c 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

TABLE OF CONTENTS (Cont.) 

Title Page 

ANSI 74 COBOL LANGUAGE STATEMENTS . . . . . . . . . . . . . . . . . . . . 3-1 
BEGIN-TRANSACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
CREATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
END-TRANSACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
FIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 
FREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 
INSERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 
LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 
OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 
RECREATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 
REMOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 
STORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 

STORE Operation after CREATE or RECREATE Operation . . . . 3-15 
STORE Operation after LOCK Operation . . . . . . . . . . . . . . . . . . . . 3-15 

COBOL COMPILATION PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . 3-17 
Library Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 7 
Version Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 7 
Recompiling for a Reorganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 

AUDIT AND RECOVERY RESTART PROCEDURES . . . . . . . . . . . . . 4-1 
INTERNAL PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
EXTERNAL PROCEDURES RELATED TO THE DMS SYSTEM . . . . 4-1 
EXTERNAL PROCEDURES NOT RELATED TO THE DMS 
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
GENERAL PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
RESTART RECORD HANDLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
BATCH PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
DATA COMMUNICATIONS PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . 4-3 
BACKED OUT TRANSACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 

GLOSSARY OF TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 

COBOL QUALIFICATION OF DMS IDENTIFIERS . . . . . . . . . . . . . . . B-1 

DMS OPERATION SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 
DMS VERB SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 
DIFFERENCES BETWEEN COBOL AND RPG DMS . . . . . . . . . . . . . . C-3 

Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3 
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3 
Subscripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4 
Grot1p Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4 
Selection Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4 
Library Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5 
DMS Verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5 



Section 

D 

Index 

5024516 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

TABLE OF CONTENTS (Cont.) 

Title 

NOTATION CONVENTIONS AND SYNTAX SPECIFICATIONS 
NOTATION CONVENTIONS ................................. . 

Left and Right Broken Brackets ( <>) .......................... . 
At Sign(@) ............................................... . 
<identifier> .............................................. . 
<integer> ................................................ . 
<hexadecimal-number> ..................................... . 
<delimiter> .............................................. . 
<literal> ................................................. . 
Percent Sign (DMS/DASDL Only) ............................ . 

SYNTAX CONVENTIONS ................................... . 
Requ1tred Items ............................................. . 
Optional Items ............................................. . 
Loops ..................................................... . 
Bridges .................................................... . 

Page 

D-1 
D-1 
D-1 
D-1 
D-1 
D-1 
D-1 
D-1 
D-2 
D-2 
D-2 
D-3 
D-3 
D-3 
D-4 

vii 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

INTRODUCTION 

This manual provides key concepts regarding the interface between a host language and the B 1000 Data 
Management System (DMS) system. Although it primarily describes the COBOL74 and COBOL proce
dures for interfacing to DMS, RPG conventions are also noted. 

Manual Structure 
Section 1: Introduction 

Section 1 includes a list of the components that form the nucleus of the DMS system, gives informa
tion on the three B 1000 DMS manuals, and includes a list of other B 1000 manuals that are perti
nent to the B 1000 Data Management System. 

Section 2: Host Language Interface 
Section 2 provides general information about the interfaces between DMS and host languages. In
cluded are discussions of the COBOL DAT A DIVISION and the COBOL PROCEDURE DIVI
SION, programming notes pertinent to the COBOL compiler, and information on current record 
pointers. 

Section 3: ANSI 74 COBOL Language Statements 
Section 3 describes all the COBOL verbs used to manipulate data sets. COBOL compilation proce
dures are also included in this section. 

Section 4: Audit and Recovery Restart Procedure 
Section 4 provides information on restart procedures invoked during recovery processes. 

Appendix A: Glossary of Terms 
Appendix A contains a glossary of the DMS terms used in this manual. 

Appendix B: COBOL Qualification of DMS Identifiers 
Appendix B gives examples of COBOL qualification of DMS identifiers. 

Appendix C: DMS Operation Summary 
Appendix C provides summaries of the DMS verbs for RPG, COBOL, and COBOL74, and shows 
the differences between COBOL and RPG implementations of the DMS interface. 

Appendix D: Notation Conventions and Syntax Specifications 
Appendix D contains the standard explanation of notation conventions and syntax specifications. 

Data Management System Components 
The following components form the nucleus of DMS: 

• A DMS Data and Structure Definition Language (DMS/DASDL) that describes a DMS data 
base. 

• An ANSI 68 COBOL, ANSI 74 COBOL, or RPG language interface that provides programmatic 
access to the data in the data base. 

• The DMS access routines, contained within the program DMS/ACR, that control storage and 
retrieval. 

• The DMS/REORGANIZE program that is used in conjunction with the DMS/DASDL compiler 
and redescribes portions of the data base. 

5024516 1-1 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Introduction 

• The DMS/RECOVERDB program that automatically restores the integrity of a data base that 
has been corrupted through a system failure. 

• Security features to protect the operating system and the data bases. 

• Utility programs to assist in debugging the Data Management System and DMS data bases. 

• DMS/INQUIRY, a program product that allows ad hoc query of a DMS data base. 

OMS DOCUMENTATION 

The overall data management system for B 1000 systems is described in the three documents identified 
and outlined in the paragraphs that follow. 

DMS/DASDL Language Manual 
Full title: B 1000 Systems DMSII Data and Structure Definition Language (DMS/DASDL) Language 
Manual. 

The main text includes an exposition of the DMS structure types, identification and descriptions of the 
components of a data base, information on remap data sets and logical data bases, and a description of 
DMS/DASDL compilation. 

The appendixes provide examples of DMS/DASDL physical structures, a DMS/DASDL glossary, the 
DMS/DASDL compiler messages, an example of data base development, and another example that 
shows the use of many of the elements of the DMS/DASDL syntax. 

OMS Functional Description Manual 

Full title: B 1000 Systems Data Management System II (DMSII) Functional Description Manual. 

The main text describes the update and reorganization processes, the audit and recovery system, and 
data base security. Separate sections describe each of the following programs: 

OMS/DECOMPILER 
Reconstructs the original DMS/DASDL source of an existing DMS data base. 

DMS/DASDLANAL Y 
Decodes the contents of the data structures within a D MS data base dictionary. 

DMS/DBLOCK 
Locks the data base dictionary to block updating until this program terminates, thus providing pro
tection against unwanted updating. 

DMS/AUDITANALY 
Decodes a DMS audit file and prints the content of each audit record. 

DMS/DBMAP 
Checks the integrity of a data base and prints structure information from the data base dictionary, 
performs population summaries, and prints data base data. 

The appendixes provide summaries of the functions of the DMS/DASDL generated code, and record de
scriptions for all the DMS data structures referenced in the main text. 

1-2 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Introduction 

OMS Host Language Interface Manual 
Full title: B 1000 Systems Data Management System II (DMSII) Host Language Interface Language 
Manual. 

The main text includes general information on interfaces between the Data Management System and the 
host language (specifically COBOL74, with summaries of COBOL, COBOL74B, and RPG), descriptions 
of all the COBOL 74 and COBOL language statements (verbs), a discussion of COBOL 74 and COBOL 
compilation procedures, and audit and recovery restart procedures as they relate to the host language 
interface. 

The appendixes provide information on qualification of DMS identifiers and a summary of DMS 
operations. 

RELATED DOCUMENTS 
The folllowing manuals include information pertinent to the B 1000 data management system. 

• B 1000 Systems System Software Operation Guide, Volume 1, form number 5024508. 

• B 1000 Systems COBOL Language Manual, form number 1057197. 

• .B 1000 Systems COBOL74 Language Manual, form number 1168622. 

• B 1000 Systems Data Management System II (DMSII) Inquiry Language Manual, form number 
1108875. 

• B 1000 Systems DMSII Data and Structure Definition Language (DMS/DASDL) Language Man
µal, form number 1152089. 

• B 1000 Systems Data Management System II (DMSII) Functional Description Manual, form 
number 5016470. 

• B 1000 Systems Report Program Generator (RPG) Language Manual, form number 1152063. 

• B 1000 Series Generalized Message Control System (GEMCOS) User's Manual, form number 
1093499. 

5024516 1-3 



B 1000 Systems DMSII 
Host Language_ Interface Language Manual 

SECTION 2 

HOST LANGUAGE INTERFACE 

GENERAL 
This section provides general information regarding the interface between a host language and the Data 
Management System (DMS), with specific reference to the COBOL74 language syntax. A summary of 
the differences between the COBOL and COBOL 74 languages is also given. Detailed explanations of the 
RPG language interfaces are included in the B l 000 RPG Language Manual. 

Because interfaces to the three COBOL compilers are so similar, henceforth in this manual, the word 
COBOL is used to identify procedures relevant to any COBOL compiler. The individual compilers are 
specifically referenced, when differences exist, as the COBOL68, COBOL 7 4, or COBOL 7 4B compilers. 

INTERFACE DIFFERENCES 
The interfaces to the COBOL68 and COBOL 7 4 compilers are identical with two exceptions: 

l. The COBOL74 language allows retrieval of records either containing a given key value or con
forming to a general expression composed of key values (the general selection feature). The gen
eral selection feature is not supported in COBOL68. 

2. The COBOL74 verb LOCK is identical to the COBOL68 verb MODIFY. All other verbs are the 
same in both COBOL68 and COBOL74. 

The interfaces to the COBOL74 and COBOL74B compilers are identical with three exceptions: 

l. COBOL74 and COBOL68 compilers obtain information regarding the data base from DMS li
brary files. The COBOL74B compiler, however, obtains its information directly from the DMS 
data base dictionary. Because of this the compiling procedures differ. Refer to Section 3 for addi
tional information. 

2. The COBOL74B compiler makes the DMSTATUS(DMSTRUCTURE) and 
DMSTATUS(DMERRORTYPE) values available when a DMS exception has occurred. 
COBOL74 and COBOL68 do not have this feature. 

3. The COBOL74B compiler allows the definition ofa DMSUSE procedure. The COBOL74B and 
COBOL68 compilers do not include this feature. 

There are two interfaces between the host language and the data base system; one is used during compila
tion and one is used during execution. The compilation interface provides syntax that allows an applica
tion program to use any or all portions of a data base through the use of the INVOKE statement. In the 
INVOKE process, DMS/DASDL-generated library files (or, in the case of the COBOL74B compilers, 
the DMS dictionary itself) supply the language compiler with a description of the program-selected por
tions of the data base. The language compiler then compiles an appropriate execution-time interface 
with the data base. 

The execution interface consists of a number of record areas, one for each data set invoked, and a num
ber of paths, one for each set or subset. 

5024516 2-1 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

Host Language Interface 

COBOL DAT A DIVISION 
A DAT A-BASE SECTION must be inserted within the DAT A DIVISION of a COBOL program supply
ing the COBOL compiler with a description of all or selected portions of a data base. The DAT A-BASE 
SECTION is placed between the FILE SECTION and the WORKING-STORAGE SECTION. 

DATA-BASE SECTION of DATA DIVISION 
In the DAT A-BASE SECTION all disjoint data sets intended for use must be invoked. The compiler in
cludes in the compilation the item names and all path names (sets and subsets) plus all embedded data 
sets and subsets within the invoked data set. The compiler also establishes the necessary user record areas 
and creates the interfaces to be used at run time. 

Syntax: 

-DATA-BASE SECTION.--------------------------,-------1 

- DB -~

1
------------------- <physical-data base-name>. --------->~ 

<logical-data base-name> OF __J 

>.,... ___ f_ 01 <internal-data-set-name > INVOKE <external-data-set-name >. _ ___,...__ ________ _ 

Semantics: 

2-2 

.<DB> 
The level indicator, DB, selects a particular data base. Only one data base can be selected in a 
program. 

<logical-data-base-name> 
The <logical-data-base-name> can be used as a qualifier of data set names. (The < physical-data
base-name> may be used if no < logical-data-base-name> is used.) The data-base-name is the 
family-name of the program-identifier used in the DMS/DASDL compilation (see Section 5 of 
the B 1000 DMSII Data and Structure Definition Language (DMSIDASDL) Language Manual). 
See Appendix B for a discussion of qualification of DMS identifiers in COBOL. 

<logical-data base-name> must either be the name of the physical data base, or the name of a 
valid logical data base as described by a DAT ABASE statement in the DMS/DASDL source for 
<physical-data base-name>. When the physical data base is named, it is for documentation pur
poses only. COBOL68 and COBOL74 (but not COBOL74B) use the< logical-data-base-name> 
to locate the library files. The libraries are generated by the DMS/DASDL compiler when 
$COBOLIB cards are included in the source. 

When using a logical data base, only data sets included in the list given in the DASDL source DA
T ABASE declaration for that data base may be invoked as <internal-data-set-name>s. 

<physical-data-base-name> 
The <physical-data-base-name> is the name of the data base in the DASDL source file. 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

<internal-data-set-name> 
The <internal-data-set-name> is the name of the data set in the COBOL source file. 

<external-data-set-name> 
The < external-data-set-name> is the name of the data set in the DASDL source file. 

Example 1: 

001031 
001032 

Example 2: 

001031 
001032 

DATA-BASE SECTION. 
DB UNIV. 

DATA-BASE SECTION. 
DB LDBl OF UNIV. 

Data Set References 

The referenced data base can be followed by any number of data set references . 

. Syntax: 

_L01 <internal-data-set-name> INVOKE <external-data-set-name>· _....._ ___________ ---' 

Semantics: 

<01> 
The level number 01 selects particular disjoint data sets from a data base. 

Each compilation copies the description of each invoked data set into the program from a library 
file created by the DMS/DASDL compiler (or, for COBOL74B, from the data base dictionary). 
The file-identifier of this library file for each data set has the following format: 

#<data-base-name>/< data-set-name> 

<internal-data-set-name> 
The <internal-data-set-name> allows synonym capability and also allows multiple invokes of 
the same external data set, establishing more than one record area and current record pointer for 
that data set. 

If a disjoint data set is invoked more than once in a program, each invocation of that data set 
must be assigned a unique < internal-data-set-name>. These unique names are necessary to 
allow proper qualification of data items within the data set. 

5024516 2-3 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

Embedded data sets cannot be programmatically invoked. They are automatically invoked when 
the data set to which they belong is invoked. 

Only disjoint data sets which are actually used within the program need be invoked. Disjoint 
data sets referenced by manual subsets but not explicitly used by the program need not be 
invoked. 

<external-data-set-name> 
The < external-data-set-name> is the name of the data set in the DASDL source file. 

Example: 

001033 01 MASTER INVOKE MSF. 
001034 01 ADDRESS INVOKE ADR. 

Invoked Data Set 

The COBOL compilers print the names of all the paths and data items and also show the structure num
ber, remap number, and version assigned during the DMS/DASDL compilation. The source statements 
supplied by the DMS/DASDL compiler are distinguished from the program source statements by an as
terisk (*) character appearing to the left of the print line, as the coding example below indicates. 

Example: 

001940 I 
001945 01 ADR INVOKE ADR. 

'le ,., 01 ADR DATA SET ( 9 12:59:20 3/ 8/77 ) . ,., SAD SET ( 19 12:59:20 3/ 8/77 , AUTO) OF ADR ( 9 12:59:20 
)'C 3/ 8/77 ) 
>'c KEY IS ZIPC. ,., STUAD SET ( 21 12:59:20 3/ 8/77 ' AUTO) OF ADR ( 9 12:59:20 
-:': 31 8/77 ) ,., KEYS ARE Z 1. PC, SNO. 
"i': FACAD SET ( 22 12:59:20 3/ 8/77 AUTO) OF ADR 9 12:59:20 ,., 31 8/77 ) 
·;': KEYS ARE ZIPC, SNO. 
•;': ADMAD SET ( 24 12:59:20 31 8177 AUTO) OF ADR · ( 9 12:59:20 ,., 31 8177 ) ,·: KEYS ARE ZIPC, SNO. 
-;': 02 FACULTY-STUDENT PIC 9 COMP. ,., 02 SNO PIC 9 (9) COMP. ,., 02 NUMLNS PIC 9 COMP. ,., 02 ADLN OCCURS 9 TIMES PIC x (30) . ,., 02 ZIPC PIC 9 (5) COMP. 
·le 02 PHON PIC 9 ( 12) COMP. 

The structure number, along with an internally assigned invoke number allows the system to update the 
correct record areas. Even when the structure number is the same, the invoke number ensures that the 
correct record area is altered. The level numbers reflect the usage of data items. 

Multiply-Invoked Data Set 

Since one record area can only hold one record at a time, it may be more effective to have more than one 
record area. In the following example, MSF is invoked twice, creating two separate record areas for MSF 
so that two different records of MSF can be used at the same time. This example provides multiple cur
rent records. 

2-4 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

The following example also provides multiple current record pointers for the same set. Each current re
cord pointer is updated only when explicitly used. Either record area can be updated by any of the paths 
to MASTER or FILE 1. 

DATA-BASE SECTION 
DB UNIV. 
01 MASTER INVOKE MSF. 
0 l FI LE 1 INVOKE MSF. 

Variable Format Records 

The mechanism used by the COBOL and RPG compilers to process variable format records results in 
multiple redefinitions of the variable format parts of the data set record. In the COBOL compilers, this 
redefinition is accomplished explicitly through the use of the COBOL REDEFINES clause. Each varia
ble format part is a group item, and each variable format part redefines the same physical area of the data 
set record. In the RPG compiler, the DMS/DASDL-generated library files contain offset and length in
formation for each data item; an implicit redefinition of the variable format part of the data set record 
is easily accomplished by assigning common offsets to items which redefine the same data space. 

When processing a data set that includes a variable format, no attempt is made, by the COBOL or RPG 
compilers, by any of the interpreters, or by the Data Management System, to ensure that only data items 
included in the current variable format part are manipulated or stored. The only checking that is per
formed on data items within the variable format part of a record is that specified by the programmer 
through the REQUIRED, VERIFY, and INITIALVALUE clauses. The programmer must ensure that 
items within a variable format part are only used by a program when the value of the RECORD TYPE 
field is equal to the value required for that item. 

COBOL PROCEDURE DIVISION 
Special extensions to the COBOL language manipulate data sets. Data base retrieval and storage are ac
complished at the record level, with one record being transferred into or out of the record area during 
selected data base operations. 

MOVE and MOVE CORRESPONDING 
The COBOL definition for a data set contains two types of items: one type is control information, the 
other is the data. The po11ion containing data items is similar to a WORKING-STORAGE 01 entry indi
cating that all COBOL data manipulation statements can be utilized in the moving of data items. The 
control information cannot be accessed in any way by COBOL programs. This includes the group MOVE 
operation, as the following example illustrates. 

5024516 2-5 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

Example: 

,., 
,., 
)'( 

)'( 

,., 
,., 

001930 01 MSF INVOKE MSF. 

01 MSF DATA SET ( 13 9:12:54 3/15/77) . 
MSFSET SET ( 18 9:12:54 3/15/77 , AUTO) OF MSF 

3/15/77 ) 
KEY IS SSNO. 

SSNSET SET ( 25 9:12:54 3/15/77 , AUTO) OF MSF 
3/15/77 ) 

KEYS ARE SSNO. 
02 SSNO 
02 NONAM 
02 ~NAME 

PI C 9 (9) COMP. 
PIC 9 COMP. 

13 9:12:54 

13 9:12:54 

02 QUARTER ORDERED DATA 
QSET SET ( 15 9:12:54 

3/15/77 ) 

PI C X (30) . 
SET ( 15 9: 12: 54 3/ 15/77 ) 
3/15/77 ) OF QUARTER ( 15 9:12:5 

KEY IS QTR. 
03 QTR 
03 QTTRHRS 
03 QTRQP 

PI C X (4) • 
PIC 99 COMP. 
PIC 99 COMP. 

The following is a functional description of the preceding example. 

1. MSFSET, QUARTER, and QSET are control items not actually contained in the data set record. 
They are not moved in a MOVE MSF TO ... or a MOVE ... TO MSF operation. 

2. QTR, QTTRHRS, and QTRQP are items of the record in the QUARTER data set and are not 
moved in a MOVE MSF TO ... or a MOVE ... TO MSF operation. 

3. The MSF record area for a group MOVE operation can be considered as the following items: 

01 MSF 
02 SSNO 
02 NONAM 
02 LNAME 

4. Items SSNO, NONAM, and LNAME are the only candidates for a MOVE CORRESPONDING 
operation. 

Exception Processing 

The COBOL PROCEDURE DIVISION has been extended by the addition ofDMS statements that pro
vide an interface between a COBOL program and a data base. Any one of several exception conditions 
can be encountered during the execution of DMS statements that prevent the operation from being per
formed as specified. 

If an exception condition occurs, the program terminates with a DS or DP condition unless the DMS 
statement is followed by an ON EXCEPTION phrase; or a USE ON DMERROR procedure has been de
clared (COBOL 74B only). Therefore, if the program can continue to process in some fashion after an ex
ception condition, an ON EXCEPTION phrase should be included. If the program terminates anyway 
when an exception is encountered, it is best to leave. off the ON EXCEPTION phrase. This allows a dump 
to be taken. 

Also, COBOL programs have access to a special register: DMST A TVS. The DMST ATVS register is set 
by the system at the completion of each DMS operation. 

2-6 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

ON EXCEPTION Phrase 

Each DMS statement yields a Boolean value which is TRUE if the operation resulted in an exception 
condition and FALSE if the operation completed with no exceptions encountered. If the Boolean value 
for the preceding statement is TRUE, <Statement-I> of the ON EXCEPTION phrase is executed; other
wise, the next statement in the sequence is executed. 

Logically, the DMSTATUS register can be used to qualify an ON EXCEPTION clause. 

If an ON EXCEPTION phrase or a USE ON DMERROR procedure is not specified, the occurrence of 
an exception causes the program to be terminated with a DS or DP condition. 

Syntax: 

-ON EXCEPTION <statement-1 >------·----------------------' 

The following example illustrates the ON EXCEPTION programming technique: 

Example: 

STORE COURSES 
ON EXCEPTION 

PERFORM STATUS-BOOLEAN. 

MODIFY MSFSET AT SSNO = C-SSNO 
ON EXCEPTION 

IF DMSTATUS(NOTFOUND) 
DISPLAY C-SSNO "NOT IN MSF" 

ELSE 
PERFORM STATUS-BOOLEAN. 

USE ON DMERROR Procedure 

The COBOL 7 4B compiler allows the declaration of a DMERROR procedure. This procedure is declared 
in the Declaratives Section, along with any other USE procedures. The USE ON DMERROR procedure 
is called each time an exception occurs during execution of a DMS function, unless an ON EXCEPTION 
clause is associated with that function. After execution of the procedure, control is returned to the state
ment following the DMS command. Refer to the COBOL74B appendix of the B 1000 COBOL74 Lan
guage Manual for a morn complete discussion of USE procedures. 

DMSTATUS Registe~r 
The DMST A TUS register is set by the system at the completion of each data management statement. 
When interrogating DMST A TUS, an <attribute name> in parentheses must follow the word 
DMSTATUS. 

Syntax:: 

-DMSTATUS · 

5024516 

(<attribute-name> ) -_,.....-----------------------1~ 

(DMCATEGORY) --

(DMERROR) ---

(DIVISTRUCTURE)--

(DMERRORTYPE)---
2-7 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

Host Language Interface 

Semantics: 

<attribute-name> 
The <attribute-name> yields a TRUE value if the specified exception has occurred. These cate
gories and their meanings are listed in this section. 

DMCATEGORY 
The DMCATEGORY attribute yields a numeric value identifying the exception. These values 
and their meanings are listed in this section. 

DMERROR 
The DMERROR attribute yields a TRUE value if any error has occurred. 

DMSTRUCTURE 
The DMSTRUCTURE attribute contains the number of the structure causing the exception. It 
is allowed only in COBOL74B programs. The structure numbers of all invoked structures are 
shown in the invocation information on the program listing. 

DMERRORTYPE 
The DMERRORTYPE attribute contains a numeric value identifying the subcategory of the ex
ception. It is allowed only in COBOL74B programs. Subcategories are defined only for the 
DEADLOCK and DATAERROR exceptions. The value returned is zero for other exceptions. 
These values and their meanings are listed in this section. 

The following is a list of each attribute-name and its description. Also listed is the DMCA TEGORY 
value and the RPG indicator that can be specified for RPG/DMS programs. 

2-8 

DMERROR (D 1 Indicator) 
This attribute is set whenever any exception occurs. One of the following DMST A TUS excep
tions is also set. Note for COBOL68 and COBOL74 programs that NOT 
DMSTATUS(DMERROR) is TRUE on a successful DMS operation. For RPG programs the D 1 
indicator is OFF on a successful DMS operation. 

NOTFOUND (DA Indicator) 1 
This attribute indicates that the specified record could not be found, locked, or modified. 

FIND LAST or FIRST: The data set is empty. 

FIND NEXT or PRIOR: There are no more records in the specified direction. 

FIND AT KEY or FIND AT <expression>: No record meeting the conditions exists. 

FIND NEXT AT KEY or FIND NEXT AT <expression> : No record meeting the condition is 
found following the current record. 

FIND CURRENT: There is no current record or the current record has been deleted. 

DUPLICATES (DB Indicator) 2 
Duplicate keys not allowed in a set (STORE operation). 

Duplicate keys not allowed in an ordered manual subset (INSERT operation). 

Duplicate keys not allowed in an ordered embedded data set (STORE operation). 



B 1000 Systems DMSII 
I lost Language Interface Language Manual 

I lost Language Interface 

--- . ···---·-·--··-

DEADLOCK (DC Indicator) 3 
DMERRORTYPE 1: A deadly embrace occurred during an attempt to lock a record or do a 
BEGIN-TRANSACTION operation. 

DMERRORTYPE 2: While attempting to lock a record, a program waited for more seconds than 
the value of the MAXWAIT parameter for its desired record to be unlocked (program status 
WAITING CONTENTION). 

In either case, the Data Management System performs a FREE operation on all records locked 
by this program. The DMSTRUCTURE value returned is zero. 

DATAERROR (DD Indicator) 4 
DMERRORTYPE 1: An attempt was made to store a record with a null key, null required item, 
or fields that violated the DASDL-specified VERIFY condition. 

DMERRORTYPE 2: An attempt was made to CREATE a variable format record with an invalid 
record type. 

DMERRORTYPE 3: This value is not returned by B 1000 DMS. It has meaning in Burroughs 
A Series DMS. 

DMERRORTYPE 4: An attempt was made to store a record with a changed value in a DASDL
specified READONLY item or in the variable format record type. 

NOTLOCKED (DE Indicator) 5 
This attribute indicates that a STORE operation was not preceded by a CREA TE, RECREATE, 
or LOCK operation. 

KEYCHANGED (DF Indicator) 6 
This attribute indicates that when updating a disjoint data set record, a key used in an automatic 
set or subset with a NO DUPLICATES clause (the default) was changed or the key was changed 
when updating an ordered embedded data record. 

SYSTEMERROR (DG Indicator) 7 
'fhis attribute indicates that there was a format error in a general selection expression. This at
tribute can also indicate that recovery is incompatible with the access routines (only returned to 
the DMS/RECOVERDB program). 

READONLY (DH Indicator) 8 
A STORE, DELETE, INSERT, or REMOVE operation was attempted on a data base that was 
opened inquiry only. 

An attempt to change the value of a READONL Y data item results in a DAT AERROR (see 
DAT AERROR) rather than a READONL Y exception. 

IOERROR (DJ Indicator) 9 
An I/O error or corrupted index table control information was encountered when trying to read 
data from the data base. I/O errors encountered on a write operation are not returned to the pro
gram since write operations are not done explicitly by any program. An 110 error on a write oper
ation sets a flag in the structure so that any subsequent access to it fails. 

5024516 2-9 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

LIMITERROR (DK Indicator) I 0 
This attribute indicates that there is insufficient file space to add a record to a data set or to add 
a table to a list or set. When storing to a data set, the LIMITERROR might result ifthe data set 
or any of its automatic sets are full. In COBOL 74B the DMSTRUCTURE attribute identifies the 
structure causing the LIMITERROR exception. 

OPENERROR (DL Indicator) 11 
This attribute indicates that a DMS operation has been attempted when the data base is not 
open, or an OPEN operation has been attempted when the data base is already open. 

CLOSEERROR (DM Indicator) 12 
This attribute indicates an attempt has been made to close a data base that is not open. 

NORECORD(DNfuilic~orj 13 
This attribute indicates that, when trying to access an embedded structure, no current record ex
ists for the parent data set. 

INUSE (DO Indicator) 14 
This attribute indicates an attempt was made to delete a parent record for which embedded re
cords still exist. 

AUDITERROR (DP Indicator) 15 
An attempt was made to do an update operation (STORE, DELETE, INSERT, or REMOVE 
verbs in COBOL68 and COBOL 74 programs, and STORE, DELET, INSRT, REMOV operation 
codes in RPG programs) while not in transaction state. · 

An attempt was made to close a data base while in transaction state. 

An attempt was made to perform a BEGIN-TRANSACTION (TRPEB in RPG) operation while 
already in transaction state. 

An attempt was made to perform an END-TRANSACTION (TREND in RPG) operation when 
not in transaction state. 

The AUDITERROR exception is only returned for audited data bases. If BEGIN
TRANSACTION or END-TRANSACTION operations are attempted for an unaudited data 
base, the program is terminated with DS or DP. 

ABORT (DQ Indicator) 16 

2-10 

This attribute indicates that another program aborted or went to end of job (EOJ) while in trans
action state. This error is returned to an update program when it closes the data base, does an 
END-TRANSACTION SYNC operation or a BEGIN-TRANSACTION operation. Refer to Sec
tion 4 of the B 1000 Systems Data Management System (DMS) Functional Description Manual 
for information on program aborts and their implications within other programs. 

SECURITYERROR (DR Indicator) 17 
This attribute indicates that an attempt was made to open a data base and the current. usercode 
is not authorized. The SECURITYERROR exception is only returned for data bases that have 
a SECURITYGUARD file declared. 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

VERSIONERROR (DS Indicator) 18 
This attribute indicates that an attempt has been made to open a data base that has had some 
structures redefined (with a $UPDATE and reorganization) since the program was compiled. 
The program needs to be recompiled. 

FATALERROR (DT Indicator) 19 
A fatal error is detected when either the access routines the data base is in serious trouble and 
cannot continue to process. Prior to the Mark 11.0 release, fatal error conditions halted the sys
tem. With the Mark 11.0 release, the use of access routines external to the MCP allowed fatal er
rors to be handled in a more user friendly way. Provided that memory corruption seems to be 
restricted to the data base itself, a DMS fatal error can be given rather than a system halt. In this 
case, the data base is closed for all programs and each receives a FATALERROR exception on 
their next DMS operation. Non-DMS jobs, or DMS jobs running on other data bases continue 
as normal. Application programs can be coded to detect a FAT ALERROR exception, re-open 
the data base, and go into recovery logic, without operator intervention. 

From the point of view of the data base, a fatal error is treated like a Clear/Start operation; that 
is, no data buffers are written to disk, no disk file headers are updated and the data base requires 
Clear/Start recovery. The memory in use by DMS is properly returned to the system so that oper
ation of the system as a whole is not aff e:cted. 

The following actions occur when a FAT ALERROR exception is encountered: 

1. The fatal error message is displayed on the ODT. The job detecting the fatal error is 
aborted (DS or DP). 

2. Until the job is actually discontinued (DS or DP) other jobs can continue to run, unless 
they also detect a fatal error. This allows the operator to choose the best time for the fatal 
error. 

3. When the job is discontinued (DS or DP) a system memory dump is automatically taken. 
This dump should be packaged and saved for analysis. 

4. The data base is then closed. Any other job having the data base open receives a 
FATALERROR exception on its next DMS operation. Any other DMS operation after 
that (except for open) receives an OPEN exception, since at that time, no data base is 
open for the job. 

5. The next data base OPEN operation initiates a Clear/Start recovery. 

INTEGRITYERROR (DU Indicator) 20 
This attribute indicates that there is corruption in the data base. When an integrity error first oc
curs on a structure, the access routines pause and a request is made for a system dump (DM sys
tem command) to be taken. The dump output should be packaged and saved for further analysis, 
along with the audit trails preceding the error. Following the dump, the program may be resumed 
with the OK system command. It then receives an INTEGRITYERROR exception, which it 
handles in whatever way has been programmed. Other programs are not affected by the integrity 
error if it does not impact their operation. Subsequent integrity errors on the same structure are 
returned to the program but do not cause the pause or request for a dump. 

It is wise to bring the data base down shortly after an integrity error in order to examine it with 
the DMS/DBMAP program and repair it with a reorganization if necessary. 

5024516 2-11 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

The following conditions may cause integrity errors: 

• A key and data mismatch occurred on an automatic set or subset, but only if the 
KEYCOMPARE option is set. 

• The automatic set or subset entry is missing during a DELETE operation. 

• The automatic set or subset points to a deleted record. 

• The program attempted to read an invalid logical address. 

• A record on the "available" list is not marked as "dead." 

• Addresses associated with the "available" list in the dictionary are bad. 

• The Data Management System encountered invalid control information in an index table 
or list table. 

• The Data Management System encountered missing areas in a data base file. 

Selection Expression 
The selection expression specifies the desired record in a data set and also the record area into which the 
record is to be loaded. All record selections are made through paths. Paths are routes the system uses to 
locate records. The physical order of the records in a data set constitutes a path. Similarly, subsets, order
ing keys, and retrieval keys are paths. 

The verbs used with selection expressions are FIND and LOCK (FIND and MODIFY in COBOL68). 
Either of these verbs causes the record specified by the selection expression to be located and placed into 
the record area. If no record that satisfies the selection expression is found, a NOT FOUND exception 
is returned to the application program that made the request. 

For a LOCK operation, the found record is locked so that a concurrent program cannot LOCK (MODI
FY in COBOL68) or DELETE the same record. The current record pointer for the data set is updated 
and, if a set or subset is used, the current record pointer for the path is updated. Unused paths are unaf
fected. If an exception condition occurs, the current record pointers are not affected unless the exception 
returned was a NOTFOUND exception on a FIND AT KEY operation for an index sequential structure. 
Refer to Current Record Pointer in this section. 

Syntax: 

Form 1: 

----w-------------..---.------~----< path-name> ----------t 
L <data-set-name > VI A _J 

2-12 

FIRST----1 

LAST--

NEXT---

-PRIOR _ ___. 



Form 2: 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

-----.--------r--- <data-set-name> 

t-·- FIRST---1 

- LAST---t 

1--- NEXT ---~ 

-PRIOR---~ 

Form 3: 

--i- _J L _J -< path-name >I AT < key-condition> ~ I 
I_ ·-data-set-name> VIA - NEXT . LAT <general-selection-expression>_J 

A selection expression is used in FIND and LOCK statements to identify a particular record in a data 
set. 

The optional phrase <data-set-name> VIA at the beginning of some forms of the selection expression 
is required when the path used is a manual subset and may also be required to qualify a multiply-invoked 
data set. 

The phrase <data-set-name> VIA identifies the affected record area and current record pointer, provid
ed that the desired record is found. By default, the data set is the data set referred to by the path used. 

Examples: 

·FIND MSF VIA FIRST MSFSET 
FIND FIRST MSF 
LOCK MSFSET AT SSNO = C-SSNO 
FIND MSF VIA MSFSET AT SSNO = C-SSNO 

Path Name 

The path name retrieves a record by way of the path. The path may be an automatic set or subset, a manu
al subset, or an access declared for an embedded ordered data set. 

Key Condition 

The key condition locates specific records in a data set spanned by a set or referenced by a subset. A key 
condition can be used by any COBOL compiler. 

Syntax: 

~ AND 

___ L_<key-name>--r- = _J L<data-name> 

L_ EQUAL <literal>--~ 

5024516 2-13 



B I 000 Systems D MSII 
Host Language Interface Language Manual 

Host Language Interface 

Semantics: 

The key-name must be a data-name in the key as defined by the DMS/DASDL description. 

Each key-name in the key must appear only once and to the left side of the equal sign. 

The valid item types for literal or data-name are determined by the COBOL MOVE rules. Therefore, it 
must be valid to perform a MOVE operation on a literal or data-name to the key-name in order for the 
key condition to be valid. 

The key-names of a multi-item key must appear in the same order as specified in the DMS/DASDL 
source file. 

Example: 

FIND S AT A = 50 AND B = 50 

General Selection Expression 
COBOL68 programs cannot use general selection expressions. The general selection expression is a more 
general form of the key condition. The expression may be more general than that given for a < key
condition> -- any relational operator can be used, not all keys need be mentioned, any logical connective 
may be used. Refer to the definition of Condition in the B 1000 COBOL 7 4 Language Manual. Refer to 
the heading entitled Generalized Selection Expression in this section for performance considerations. 

Selection Expression Forms 
The three forms of selection expressions are considered separately for discussion purposes. 

Whenever an ordering is required but no explicit ordering exists, an implicit physical ordering is used. 
Whenever a current record pointer is required but is not in the proper state, the operation terminates 
with an exception. 

Form 1 

Ifno keyword is specified then the current record is found. This is the only mode of Form 1 in which the 
path may be an index random (retrieval) set. 

The keyword FIRST specifies that the first record accessible by way of the specified path is to be selected. 
The path must not be an index random set. If a manual subset is used, the < data-set-name> VIA clause 
must be used. The record returned is the first in the physical order of the manual subset. If the manual 
subset is ordered, the entries are physically stored in key order so the physical and logical ordering are 
the same. Thus, a FIND FIRST finds the record with the lowest (or highest, for descending keys) key 
value. 

The keyword NEXT specifies the next record to find by the path specified. The path must not be an index 
random set. Specifying this keyword for an ordered set or subset returns the record with the next higher 
(lower, if descending) key value. For ordered sets and automatic subsets, NEXT defaults to FIRST if this 
is the initial access of that set or subset since the data base was opened. For manual subsets and embed
ded data sets, NEXT defaults to FIRST if this is the first access since the current parent record was 
established. 

The keyword LAST locates the last record in the specified path. The path must not be an index random 
set. 

2-14 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

The keyword PRIOR locates the preceding record. The path must not be an index random set. NEXT 
and PRIOR are always relative to the current record pointer of the set. FIND PRIOR ofa data set (Form 
2) can return a different record than FIND PRIOR of a set (Form 1 ). The current record pointer of the 
set is updated to reflect the record located. 

Example: 

D DATA SET 
(A NUMBER (3) ; 
B NUMBER ( l 0)) ; 

K SET OF D KEY (A) ; 

Since ascending sequence is the default ordering sequence for keys, the path Kin the following example 
refers to members of D in sequence on A. A FIRST K therefore transfers to the record area for D the re
cord whose value of A was the lowest in the data set. The physical ordering of D might be different from 
the logical ordering presented by K. If another ordering key, Kl, was added with the specification Kl 
SET OF D KEY (A DESCENDING), the statement FIND FIRST Kl returns the member ofD with the 
highest value of A. 

Example: 

DS DATA SET 
(A NUMBER (3) ; 
B NUMBER (10)); 

K SET OF D KEY (A) ; 
DS l DATA SET 

(X NUMBER (4) ; 
Y SUBSET OF D; 
Z SUBSET OF D KEY (B) ; 
Zl ALPHA (2)); 

If DS and DS 1 are both invoked, the statement FIND DS VIA FIRST Y can then be used, returning the 
first physical record of DS in the table of subset Y for the current record of DS 1. If the statement FIND 
DS VIA FIRST Z is used, the record found is that record of DS having the lowest value of B which was 
inserted into Z for the current record of DS 1. 

Form 2 

If no keyword is specified, .. then the current record is found. 

The FIRST keyword specifies that the record selected is the first physically located record in the file in 
which the data set is stored. 

The NEXT keyword locates the record that physically follows the current record. 

The LAST keyword locates the last physical record in the data set. 

The PRIOR keyword locates the record that physically precedes the current record. The PRIOR keyword 
is valid only if the data set has already been accessed; otherwise, an exception condition is returned. 

5024516 2-15 



Form 3 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

If the NEXT keyword is omitted, the first record that satisfies the key condition is returned. If no record 
satisfies the key condition, a NOT FOUND exception is returned. 

If the NEXT keyword is included, the access routines search forward from the current record pointer of 
the path, seeking a record to satisfy the condition. If the desired key follows the current record pointer, 
this is an implicit FIND FIRST operation. If the current record pointer follows the desired key, a 
NOTFOUND exception is returned. 

The NEXT keyword in Form 3 finds all records with duplicate keys. 

The path name in Form 3 may not be an unordered manual subset. 

Example: 

D DATA SET 
(A ALPHA (2) ; 
B NUMBER (10); 
C NUMBER (4)) ; 

K SET OF D KEY (A) ; 
K 1 SET OF D KEY (C) , INDEX RANDOM; 
K2 SET OF D KEY (C,B), INDEX RANDOM; 

In the previous example, records of D could be selected based on the value of A using K, based on the 
value of C using Kl, or based on the values of C and B using K2, as shown below: 

FIND KAT A= 11 AA 11 

FIND Kl ATC= 100 
FIND K2 ATC= 100 AND B = 1001007890 
FIND Kl ATC= Bl 
FIND D VIA KAT A= Al 

Generalized Selection Expression 

The generalized selection expression feature may be used by COBOL74, COBOL74B, and RPG DMS 
programs as well as the DMS/INQUIR Y program. This feature allows application programs to select re
cords based upon incomplete key information, and is explicitly limited to these four software products. 

Although COBOL68 lacks this feature, it can achieve similar results programmatically. Refer to 
COBOL68 Programming Notes in this section. 

For RPG programs, the DMKEY option to the FIND and LOCK operation codes in the Calculation 
Specifications is used for this function. This is done by specifying successive D MKEY options connected 
by AND or OR lines according to the normal RPG rules for the Calculation Specifications. Refer to the 
B I 000 Systems Report Program Generator (RPG) Language Manual for the complete syntax of DMS 
selection expressions in the RPG language. 

No special action is needed to invoke the generalized selection expression. Whenever any sekction ex
pression is encountered by the COBOL 74, COBOL 74B, or RPG compilers, or the DMS/INQUIRY pro
gram, the Data Management System determines whether a simple DMS FIND/MODIFY operation sat
isfies the request or whether the expression qualifies as a generalized selection expression. If the 

2-16 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

expression is a generalized selection expression and the structure being used for the request is an index 
sequential set or subset, further analysis is performed to determine whether lower and/or upper bounds 
can be established for each field in the key. The Data Management System automatically positions to the 
lower bound for a FIND NEXT < generalized-selection-expression> operation if the current record 
pointer is less than the lower bound. If the current record pointer is greater than the upper bound, a FIND 
NEXT < generalized-selection-expression> operation returns a NOTFOUND exception condition .. 

The following example demonstrates the use of the generalized selection expression, using the CUST
SET set which references a CUSTOMERS data set. The example includes COBOL74 code which can be 
used to find all members of the CUST-SET set for which the CUSTOMER-TYPE key item (an alphanu
meric item) is equal to the letter D. 

Example: 

DMS/DASDL Source: 

CUSTOMERS DATA SET( 
CUSTOMER-TYPE ALPHA(l); 
CUSTOMER-NUMBER NUMBER(8); 

) ; 
CUST-SET SET OF CUSTOMERS KEY(CUSTOMER-TYPE,CUSTOMER-NUMBER); 

CO BO L 7 4 Source: 

FIND CUST-SET AT CUSTOMER-TYPIE = "D" ON EXCEPTION ... 

FIND-LOOP • 

. 
FIND NEXT CUST-SET AT CUSTOMER-TYPE= "D" 

ON EXCEPTION .... 

For index sequential structures, when the Data Management System actually encounters the communi
cate, the search is in two stages: ( 1) a binary search of the index tables for the entry which satisfies the 
lower bound and (2) a linear search of the tables, starting at the lower bound and continuing until either 
an entry is found which satisfies the request, or the upper bound is reached. For index random sets and 
ordered lists, only the linear search can be performed. For ordered lists, this search processes only the 
list tables pointed to by the current parent data set record for the list. For index random sets, all of the 
index tables for the index must be scanned. 

Since any linear search is performed by the Data Management System, it can be costly in terms of proces
sor utilization, though no more so than the same operations performed by an application program. The 
cost is a function of the following two factors: ( 1) the complexity of the selection expression, and (2) the 
physical length of the index tables being scanned. 

As the logic within the selection expression becomes more and more complex, the likelihood decreases 
that a lower bound can be determined for the key items. Ifno lower bound can be determined for an item, 
zeroes are supplied. A lower bound of zero for a high-order key item results in a linear search which starts 
at or near the beginning of the index. 

5024516 2-17 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

With regard to the physical length of the index tables being scanned, since the access routines must per
form the linear search on an entry-by-entry basis, more entries cause longer searches. 

Optimum performance can be derived from the generalized selection expression by stipulating a key 
condition in FIND or LOCK operations for which most of the work can be accomplished by a binary 
search, with as little work as possible being done by a linear search. The rules given below enable the anal
ysis of a given selection expression. The rules determine whether the expression qualifies as a generalized 
selection expression and, if it does, whether a lower bound exists for the expression. 

Even a complicated general selection expression runs more quickly than an application program that 
must perform the same work by reading each record and making tests on the relevant fields. This is be
cause there is less need for communication between the application program and the access routines and 
also because the access routines need not read each record but must only scan the tables of the set. 

Selection Expression Rules 

Study the rules that follow.If a frequently-used selection expression requires linear search of all the tables 
of a large set, it is recommended that another set or, possibly, an automatic subset be added to the data 
base. 

NOTE 
In the rules that follow, the selection expressions do not conform in syntax 
to any of the user languages but are, rather, general representations of the 
conditions that can be coded in those languages. 

Binary Search Conditions 

If the following conditions are true, the expression can be satisfied by a FIND operation, using a binary 
search within the table to locate the exact entry requested: 

1. The path specified is either an index random set, or an index sequential set or subset. 
2. Each key item appears in the expression once. 
3. Simple equality is specified between each key item and the value supplied. 
4. All subconditions are connected by the AND logical operator. 

All other selection expressions are generalized selection expressions. 

Linear Search Condition 

If the specified path is an index random set and any binary search condition is not met, a complete linear 
search must be performed on the entire index. 

If the path specified is an ordered list, a linear search of the tables is always performed, regardless of the 
form of the selection expression. 

Index Sequential Sets and Subsets 

The following rules apply only to index sequential sets and subsets. 

2-18 

1. If the key items specified in the expression do not appear more than once but at least one item 
does not appear at all and all other binary conditions are met, then a lower bound of zero is sup
plied for each of the unspecified key values. There is one lower and one upper bound for each key. 
Starting from the left and proceeding right (as keys are declared in the DMS/DASDL source), the 
first key that is missing either an upper or lower bound causes the start of a linear search. 



Example: 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

DMS/DASDL Source: 

INVENTORY DATA SET ( 
WAREHOUSE NUMBER{2); 
PART-NO ALPHA(6); 
BIN-NUMBER NUMBER(4); 

) ; 
PART-SET SET OF INVENTORY 

KEY (WAREHOUSE, PART-NO, BIN-NUMBER) 

Selection Expressions 

1) FIND PART-SET AT WAREHOUSE= 1 AND PART-NO= "A-123" 
2) FIND PART-SET AT WAREHOUSE= 3 AND BIN-NUMBER= 15 
3) FIND PART-·SET AT PART-NUMBER= "A-123" AND BIN-NUMBER= 7 

All three expressions are generalized selection expressions. Expression 1 results in a brief lin
ear search, since the only unspecified key item is the BIN-NUMBER field, which is the least 
significant field. The result of this search is the first part number that is numbered A-123 in 
WAREHOUSE 1, regardless of bin number. Expression 2 results in a binary search that finds 
WAREHOUSE 3, then a linear search is made for BIN-NUMBER 15 on all paths in WARE
HOUSE 3. Finally, selection expression 3 specifies only lower-order key items and leaves the 
major key item, WAREHOUSE, unspecified. The linear search for this expression includes 
the entire set. 

2. If, instead of simple equality, the relational operators GREATER THAN (>) or GREATER 
THAN OR EQUAL(> =)appear in the expression, and all other conditions named by rule 1 re
main true, then the lower bound generated for the expression is the same as in rule 1. Once that 
lower bound is found, the linear search may be, or need not be, more extensive. 

If any of the key items were declared to the DMS/DASDL compiler as DESCENDING, then the 
specification for that item can only contain the EQUAL ( = ), LESS THAN ( <), or LESS THAN 
OR EQUAL ( <==) operators for a non-zero lower bound to be established. 

3. If the specification contains either of the LESS THAN or LESS THAN OR EQUAL operators for 
an ascending key item, or either of the GREATER THAN or GREATER THAN OR EQUAL op
erators for a descending key item, then the lower bound for any such item is zero. If all other con
ditions specified by rules 1 and 2 are true, then the linear search for such an expression is analo
gous to the types of linear searches described above with the exception that the LESS THAN 
operator establishes an upper bound, which, when met, serves to terminate the linear search at 
an earlier point than if no upper bound is specified. 

4. If a NOT EQUAL(/=) operator is specified in a subcondition, zero is used as the lower bound 
for that key. 

5. If, in addition to the conditions specified by rules 1 through 3, more than one subcondition is 
specified for a single key item, then both a lower bound and upper bound can be established for 
that item. Using the set described in rule 1, the following selection expressions illustrate this 
condition. 

5024516 2-19 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

Selection Expressions: 

1) FIND PART-SET AT 
WAREHOUSE= 4 AND PART-NO>= "Bl5" AND PART-NO< "C" 

2) FIND PART-SET AT 
WAREHOUSE= 4 AND PART-NO>= "Bl5" AND PART-NO I= "B75" 

3) FIND PART-SET AT 
WAREHOUSE= 4 AND PART-NO>= "Bl5" AND PART-NO< "C" 
AND PART-NO I= "B75". 

All three expressions have the same lower bound. In addition, expressions 1 and 3 have the same upper 
bound. Expression 2 has an upper bound for WAREHOUSE only. 

If no upper bound is specified for any item, there is always an implied upper bound with all bits on; that 
is, each digit contains the hexadecimal value @F@. Explicit upper bounds on other key items normally 
serve to terminate the linear search before any of the implied upper bounds are reached. 

When using the generalized selection expression, follow the preceding rules to specify the desired expres
sion. Ideally, the stated expression makes the most efficient use of the Data Management System and sys
tem resources. For example, the Data Management System returns the desired records if an expression 
which generates no lower bound is specified. However, the same results can often be obtained in less 
time, and with less impact on the rest of the system, by specifying several different expressions, each of 
which has a valid, non-zero, lower bound. 

COBOL68 PROGRAMMING NOTES 
This section is for those programmers using the COBOL68 compiler rather than the COBOL74 compil
er. Although the methods given here may be used in COBOL74, the generalized selection feature in 
COBOL74 makes these methods unnecessary. The methods discussed here are not applicable for users 
of the RPG compiler. 

A COBOL68 program that is using a path (set, subset, or access) to retrieve a data set record is required 
to specify all of the key items for that path. In addition, the only relationship that can be specified be
tween the key items and the values supplied in a selection expression is simple equality. Also, all 
subconditions have to be logically connected by the AND operator. A single operation cannot specify re
lationships such as LESS THAN, GREATER THAN, or NOT EQUAL, or compound relationships. The 
OR operator cannot appear in a selection expression, and it is not possible to specify values for just a sub
set of the items that comprise a key. 

Because of these restrictions, an extension to index sequential (ordered sets and automatic subsets) is 
available in the Data Management System. This extension, called the Partial Key Search, stipulates that 
the current record pointers for an index sequential structure be updated after FIND AT KEY and FIND 
NEXT AT KEY operations only, whether successful or not. The current record pointers for all other 
structure types, data sets, index random sets, and lists are updated only after a successful operation. Pro
grams can perform a FIND NEXT operation on an index sequential structure, after a NOTFOUND 
DMST A TUS exception condition was returned on a FIND AT KEY operation on that same: structure. 
The result is that the unsuccessful FIND AT KEY operation establishes a position within the index (at 
the point the key would have been}, and the FIND NEXT operation can then retrieve records immedi
ately after that position. 

The following example demonstrates the use of the Partial Key Search technique, using the CU ST-SET 
set which refecences the CUSTOMERS data set. The example includes COBOL68 source code, which 
finds all the members of the CU ST-SET set for which the key item CUSTOMER-TYPE (an alphanumer
ic item) is equal to the letter D. 

2-20 



Example: 

B 1000 Systems D MSII 
Host Language Interface Language Manual 

Host Language Interface 

DMS/DASDL Source: 

CUSTOMERS DATA SET( 
CUSTOMER-TYPE ALPHA(l); 
CUSTOMER-NUMBER NUMBER(8); 

) ; 
GUST-SET SET OF CUSTOMERS KEY(CUSTOMER-TYPE,CUSTOMER-NUMBER); 

COBOL68 Source: 

FIND CUST-SET AT CUSTOMER-TYPE = 11 D11 AND CUSTOMER-NUMBER= 0 
ON EXCEPTION IF DMSTATUS(NOTFOUND) FIND NEXT CUST-SET 
ELSE 

FIND-LOOP • 

. 
FIND NEXT CUST-SET ON EXCEPTION ••. 
IF CUSTOMER.-TYPE = 11 D11 GO TO FI ND-LOOP. 

Compare the above with the following B 1000 COBOL74 source. 

COBOL 7 4 Source: 

FIND CUST-SET. AT CUSTOMER-TYPE= 11 D11 

ON EXCEPTION 

FIND-LOOP . 

. 
FI ND NEXT CUST-SET AT CUSTOMER-·TYPE = "D" 

ON EXCEPTION 

GO TO FIND-LOOP. 

In the preceding example, the desired value is specified for the CUSTOMER-TYPE field, and zero is 
specified for the CUSTOMER-NUMBER field. By doing so, the programmer guarantees that the FIND 
AT KEY operation leaves the index pointing either at, or just before, the entry within the index that has 
the lowest possible value for the CUSTOMER-NUMBER field, as well as CUSTOMER-TYPE = D. 

5024516 2-21 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

Host Language Interface 

In general, partial keys can be used if a COBOL68 application program specifies values for the highe~
order items within the key. The lower-order items have to be specified as low-values (zeroes for numeric 
items, @00@ for alpha). The limitations of the partial key are described as follows: 

1. Partial keys can be used only for index sequential sets. No such capabilities exist for either index 
random sets or ordered lists. 

2. No conditions can be described that ignore the high-order key items but give specific values for 
the low-order key items. 

3. No compound expressions can be easily described. The following example of a generalized selec
tion expression requires two different program loops to find the same record with the Partial Key 
Search technique: 

FIND CUST-SET AT 
(CUSTOMER-TYPE = 11 D11 AND CUSTOMER-NUMBER < 1500 ) OR 

I 

(CUSTOMER-TYPE = 11 E11 AND CUSTOMER-NUMBER < 300) • 

For these reasons, the generalized selection expression features available with the COBOL74 and RPG 
compilers are recommended. 

CURRENT RECORD POINTER 
Internally, the Data Management System maintains a current record pointer for each path (that is, for 
every set, subset, and for the data set itself) to each data set. The current record pointer points to a data 
set record and gives the Data Management System a reference point from which to move on subsequent 
FIND operations (for example, NEXT, PRIOR, NEXT AT KEY). Each invocation ofa structure, in ad
dition to providing another record area in the program, provides another current record pointer. 

Here are the two typical cases: 

• A FIND (or LOCK or MODIFY) operation of a data set by way of a path (including the data set 
itself) causes the current record pointer for that path to be changed to point to the newly found re
cord, and also causes the current record pointer for the data set itself to be changed. Additionally, 
the data in the newly found record is put into the record area in the program. 

• A STORE operation of a new record into a data set causes the current record pointer for the data 
set to be changed to point to the newly stored record, but does not update any current record point
ers for sets or subsets. 

Exceptions to these typical cases can best be understood if some background is gained concerning the in
ternal workings of current record pointers. 

Internal States 

Internally, in the DMS/ACR (access routines) program, a current record pointer may be in one of three 
states: undefined, defined, or deleted. 

Undefined State 

The undefined state is its initial condition, and the condition into which a current record pointer of an 
embedded structure is placed each time a new record is found or stored in its parent structure. If a FIND 
NEXT operation is performed when the current record pointer is in this state, an implicit FIND FIRST 
operation is performed. 

2-22 



Defim~d State 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Host Language Interface 

The defined state is the normal condition of a current record pointer. In this state, operations such as DE
LETE may be performed on the current record as well as operations such as FIND NEXT, FIND 
PRIOR, and the like. 

Deleted State 

The deleted state is the state into which a current recotd pointer is moved when the record to which it 
referred is deleted. (See Deleted Records, later in this section.) When in this state, any operation (for ex
ample, DELETE) on the current record returns a NOTFOUND exception, but FIND NEXT, FIND 
PRIOR, and similar operations are still valid. 

Create and Lock Flags 
Each current record pointer for a data set has a create flag and a lock flag. The create flag is set if the last 
operation on the data set was CREA TE or RECREATE. The lock flag is set if the last operation on the 
data set, by way ofany path, was LOCK or MODIFY. Both flags are cleared by any other successful OMS 
operation on that data set, by way of any path, and are left unchanged by unsuccessful OMS operations. 

Exceptions on FIND 
If the FIND operation results in an exception, then the current record pointer for the path and the data 
set are not altered, with the following exception: 

The FIND operation was a FIND AT KEY operation, and the path was an index sequential set or 
subset, and the exception was a NOTFOUND. 

In this one circumstance~ the current record pointer for the path (but not the one for the data set) is updat
ed to point to the position the record would occupy if it were there. This condition allows a subsequent 
FIND NEXT through that path to get the next key higher than the first specified value and enables the 
COBOL68 Partial Key Search operation. Refer to the partial key search information under the heading 
COBOL68 Programming Notes in this section. This exception applies only to the programs produced by 
the three COBOL compilers. It does not apply to RPG programs. 

Deleted Records 
When a record is deleted from a data set, any current record pointer (both path pointers and data set 
pointers) pointing to it in any program (including, of course, the one doing the DELETE operation) is 
changed to the deleted state. 

Storing Records 

In order to store a data set record, the current record for that data set must be either locked (lock flag is 
ON) state or created (create flag is ON) state. Ifit is in neither of these states, the STORE operation termi
nates with a NOTLOCKED exception. The state of the current record determines the kind of STORE 
that is done: 

If the create flag is ON, a new record is stored (create-store) and, if the STORE operation is success
ful, the current record pointer is moved to the newly stored record. That new record is locked and 
the create flag is turned OFF. 

If the lock flag is ON, the STORE operation updates the existing current record (update-store), the 
current record pointer is not moved, and the lock flag remains ON. 

5024516 2-23 



Unlocking Records 

B 1000 Systems D MSII 
Host Language Interface Language Manual 

Host Language Interface 

A data set record that is locked may not be locked (hence, may not be updated) nor deleted by any other 
program. The record is automatically unlocked when another DMS operation is done on the data set (dis
cussed earlier). Records may also be explicitly unlocked with the FREE verb. In addition, all records ex
cept the restart data set record are unlocked at each END-TRANSACTION operation, and all records 
are unlocked when a DEADLOCK exception is reported. If a program abort occurs, all records for other 
programs are not only unlocked but are set to the undefined state. 

After an abort occurs, the program may do additional LOCK operations before being notified of the 
ABORT exception on its next BEGIN-TRANSACTION operation. Therefore, it is possible for the pro
gram to have records locked at the time it first detects the ABORT exception. 

Embedded Datasets 
Current record pointers for embedded data sets follow the rules used for current record pointers of dis
joint data sets, except that the state of the embedded data set current record pointer is dependent upon 
the state of the parent data set current record pointer. It is not possible to do any operation other than 
a CREA TE operation on an embedded data set unless the current record pointer for its parent is in a de
fined state. Any such attempt results in a NORECORD exception. 

Similarly, current record pointers for manual subsets follow the rules for current record pointers for au
tomatic sets and subsets, except that the manual subset current record pointers are dependent upon the 
state of the parent data set current record pointer. Any attempt to use a manual subset when the current 
record pointer of the parent record is not defined results in a NORECORD exception. 

Each time an operation capable of changing current record pointers is done on the parent data set, the 
current record pointers for all embedded structures are cleared, that is, the state is changed to undefined 
and the lock flag is cleared. The create flag is not cleared. Any FIND, LOCK, or MODIFY operation on 
the parent data set clears current record pointers for all embedded data sets even if the parent current 
record does not actually change (for example, FIND CURRENT). 

2-24 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

SECTION 3 

ANSI 74 COBOL LANGUAGE STATEMENTS 

The following verbs are used by the COBOL compilers to manipulate data sets. 

BEGIN-TRANSACTION 
CREATE 
DELETE 
END-TRANSACTION 
FIND 
FREE 
INSERT 
LOCK (MODIFY nn COBOL68) 
RECREATE 
REMOVE 
STORE 

In addition, syntax is implemented for the OPEN verb and additional semantics are given for the 
CLOSE verb. 

The COBOL verbs, in alphabetical order, are described next along with the exceptions they can generate. 
Refer to the descriptions of exceptions in the DMST A TUS Register portion of section 2 for explanations 
of the exceptions. 

5024516 3-1 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

BEGIN-TRANSACTION 
The BEGIN-TRANSACTION verb causes the program to enter transaction state. If an audited data base 
is in use, a program must be in transaction state before it performs any OMS operation that changes a 
record. Examples of such operations are STORE, DELETE, INSERT, and REMOVE. Afterthe data base 
is opened or after the program has left transaction state by means of an END-TRANSACTION opera
tion, the BEGIN-TRANSACTION verb must be specified before the first update operation. 

If a program attempts a BEGIN-TRANSACTION operation while a Data Management System 
syncpoint or control point operation or a program abort recovery is in process, the program is suspended 
at the BEGIN-TRANSACTION operation until the in-process operation completes. 

The state of the program is unchanged if any exception condition occurs on a BEGIN-TRANSACTION 
operation. That is, if an AUDITERROR exception condition occurs because the program was already 
in transaction state, then the program remains in transaction state after encountering the exception. If 
any other exception occurs, transaction state was not entered; therefore, the program remains out of 
transaction state after encountering the exception. 

Syntax: 

---BEGIN-TRANSACTION---..---------- <restart·data-set·name>-----------t 

LAUDIT----

L NO-AUDIT _ ____. 

Semantics: 

AUDIT 
If the AUDIT dause is specified, the Data Management System stores the current restart record 
of the program. This requires the user to have established a locked record in the restart data set 
by the time of the BEGIN-TRANSACTION operation. The programmer can lock a restart data 
set record by specifying the CREATE, RECREATE, or MODIFY verb. 

The AUDIT clause is set TRUE by default. 

NO-AUDIT 
If the NO-AUDIT clause is specified, the STORE operation on the restart record is suppressed. 

Exception Conditions: 

ABORT 
AUDITERROR 
DEADLOCK 
FATALERROR 
INTEGRITYERROR 
OPENERROR 

If the AUDIT clause was specified, either implicitly or explicitly, any of the exception conditions which 
are possible on a STORE operation are also possible on a BEGIN-TRANSACTION operation. 

3-2 



CLOSE 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The CLOSE verb closes a data base when further access is no longer required. 

The CLOSE verb is optional because the system closes any open data base when the program terminates. 
However, an explicit close is recommended so that exception conditions can be returned. 

An implicit FREE operation is performed on all records locked by the program. 

If the data base is not open, the CLOSE operation terminates with a CLOSERROR exception condition. 

If the ]program is currently in transaction state, an AUDITERROR exception is returned and the in
process transaction is roHed out by the DMS/RECOVERDB program, as though the program had been 
discontinued. 

Syntax: 

-- CLOSE <data-base-niame >-----------------------------t 

Exception Conditions: 

ABORT 
AUDITERROR 
CLOSEERROR 
FATALERROR 
IO ERROR 

5024516 3-3 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

CREATE 
The CREA TE verb causes space to be set up for adding a data set record. The CREA TE verb must be 
performed prior to the addition of a new record in a data set (optionally the RECREATE verb can be 
used). A CREA TE operation does not add the new record to the data base; that is the function of the 
STORE verb. The CREA TE verb initializes the entire current record area of the data set according to 
the value of the INITIALV ALUE clause in the data base description. Any data item in the data base de
scription which does not have an INITIALV ALUE clause is initialized to null (all bits ON). This initiali
zation is used for validity checking of the record at the time of the STORE operation. 

A CREA TE operation causes an implicit FREE operation to be performed on the prior current record 
of the data set. The current record pointer goes to the created state. 

Normally, the CREATE operation is eventually followed by a STORE operation, which places the new 
record into the data set. However, if a subsequent STORE operation is not desired, the CREA TE opera
tion can be nullified by a subsequent FIND, MODIFY, CREATE, RECREATE, DELETE, FREE, or 
CLOSE operation. A BEGIN-TRANSACTION audit or END-TRANSACTION audit nullifies a CRE
A TE operation on the restart data set. 

A CREATE operation initializes only a record area. If the record contains embedded structures, the par
ent record must be stored before storing entries in the embedded structure. If only entries in the embed
ded structure are added, changed, or deleted, then the parent need not be stored a second time. 

A current parent record must exist if the data set is an embedded data set. 

The CREA TE operation is automatically performed for RPG programs that are adding records to a data 
set. 

Syntax: 

--CREATE <data-set-name> --..~---------r-------------------1 

L (<expression >) __J 

Semantics: 

<expression> 
<expression> is valid only if the data set description includes a variable-format part. 

<expression> can be any of a literal, a simple data name, or an arithmetic expression. It cannot 
be a subscripted or indexed data name. 

If the data set description referenced by the CREA TE verb incJudes a variable-format part, an 
<expression> must be included in the CREA TE verb of that data set. 

If the value of <expression> does not match any of the values for the RECORD TYPE field de
clared to the DMS/DASDL compiler, then a DAT AERROR exception condition is returned. 

Exception Conditions: 

3-4 

DATAERROR 
FATALERROR 
OPENERROR 



DELETE 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The DELETE operation eliminates the current record from a data set. 

A DELETE operation causes the current record area to be reloaded with the contents of the record. 

If the record contains a non-empty embedded stmcture, an INUSE exception is returned. The record is 
not delieted. 

If the record can be deleted, it is removed from all sets and automatic subsets of which it is a member. 
The record is then removed from the data set. The current record pointer goes to the deleted state. 

The programmer must remove the record from any manual subset that points to the data set record being 
deleted before deleting the record. (Refer to the REMOVE verb.) 

Syntax: 

--!DELETE <data-set-name>----------------------------1 

Exception Conditions: 

AUDITERROR 
DEADLOCK 
FATALERROR 
INTEGRITYERROR 
INUSE 
IOERROR 
READONLY 
NO RECORD 
NOTFOUND 
OPENERROR 

5024516 3-5 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

END-TRANSACTION 
The END-TRANSACTION operation causes the program to leave transaction state. This operation is 
normally executed at the end of any series of logically related updates to a data base. If a program is in 
transaction state immediately prior to closing the data base, an END-TRANSACTION operation must 
be performed before attempting to close the data base. 

Except for an ABORT exception condition, the transaction state of the program is unchanged if an ex
ception occurs on an END-TRANSACTION operation. If a program encounters an OPENERROR or 

. AUDITERROR exception condition, the program remains out of transaction state. If any other excep
tion condition occurs, the program remains in transaction state. If the program receives a 
FAT ALERROR exception, it is removed from transaction state and the data base is closed. 

Syntax: 

---END-TRANSACTION ---c.----A-U_D_IT __ ~-- <restart-data-set-name> --c--SY_N_C_~-...------t 

LNO-AUDIT~ 

Semantics: 

AUDIT 
The AUDIT clause serves the same function as it does in the BEGIN-TRANSACTION verb. 

NO-AUDIT 
The NO-AUDIT clause serves the same function as it does in the BEGIN-TRANSACTION verb. 
The NO-AUDIT clause is set TRUE by default. 

SYNC 
The SYNC clause specifies that a syncpoint operation is performed after completing the END
TRANSACTION operation regardless of the actual number of transactions which have occurred 
since the last syncpoint operation. If a program attempts to perform an END-TRANSACTION 
operation with syncpoint after a program abort occurred, then the program is suspended at the 
END-TRANSACTION operation until the data base has been recovered. After the data base is 
recovered an ABORT exception condition is returned. When an ABORT exception condition is 
returned to a program that has attempted END-TRANSACTION operation with syncpoint, that 
last transaction of the program is backed out, and the syncpoint operation is not performed; how
ever, the program is no longer in transaction state. 

If the END-TRANSACTION operation is performed without a syncpoint and if another pro
gram aborts, then the last transaction of the program (and, possibly, previous ones) is backed out, 
but the program is not notified until the next BEGIN-TRANSACTION or CLOSE operation. 

Exception Conditions: 

ABORT 
AUDITERROR 
FATALERROR 
OPENERROR 

If the A,UDIT clause was specified, any of the exception conditions that are possible on a STORE opera
tion are also possible on an END-TRANSACTION operation. 

3-6 



FIND 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The FIND operation performs two functions: 

1. Locates the record satisfying < selection-expression>. 
2. Transfers the data from the data base to the record area so it can be accessed by the program. 

If the FIND operation results in an exception, then the current record pointer for the path and the data 
set are not altered, with the following exception: 

The FIND operation was a FIND AT KEY operation, and the path was an index sequential set or 
subset, and the exception was a NOTFOUND. 

In this one circumstance, the current record pointer for the path (but not the one for the data set) is updat
ed to point to the position the record would occupy if it were there. This condition allows a subsequent 
FIND NEXT operation through that path to get the next key higher than the first specified value and ena
bles the COBOL68 Partial Key Search operation. Refer to the partial key search information under the 
heading COBOL68 Programming Notes in this section. This exception applies only to the three COBOL 
compilers. It does not apply to RPG. 

If a record is found, the record is transferred to the record area of the program and the current record 
pointer is altered to refer to the found record. Also, if a set or automatic subset is involved, the current 
record pointer of the set or subset is altered to refer to the found record. 

When performing a FIND operation by way of an embedded data set or manual subset, the current re
cord pointer for the parent data set must be in a defined state. 

Syntax: 

-- FIND <selection-expression>------·-------------------------i 

Exception Conditions: 

FATALERROR 
INTEGRITYERROR 
IO ERROR 
NO RECORD 
NOTFOUND 
OPENERROR 
SYSTEMERROR 

5024516 3-7 



FREE 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

A FREE operation unlocks the current record. 

A FREE operation can occur after any operation. If the current record pointer is not in the defined state 
or the current record is not locked, then the FREE operation is ignored. 

A FREE operation is optional in most situations, since the CREA TE, RECREATE, and sometimes the 
FIND or MODIFY operations perform an implicit FREE operation prior to their other actions. An im
plicit FREE operation is performed when any DMS operation that establishes a new current record 
pointer succeeds. Also, the END-TRANSACTION operation performs an implicit FREE op<~ration on 
every record locked by this program, except for the restart data set. 

The current record pointer and current record area are not affected by a FREE operation. If the current 
record pointer has just been created by way of the CREA TE operation, it is changed back to its state be
fore the previous CREA TE operation; otherwise, it is not affected. 

Syntax: 

-- FREE <data-set-name>--------------------------------4 

Exception Conditions: 

3-8 

FATALERROR 
OPENERROR 



INSERT 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The INSERT operation places a record into a manual subset. 

The current record pointer of the data set must be defined. Ifit is not, the INSERT operation is terminat
ed with a NOTFOUND exception condition. 

The data set in which the manual subset is embedded must have the current record pointer in the defined 
state. If it is not, the operation is terminated with a NORECORD exception condition. 

If duplicate keys are not allowed for an ordered manual subset and a record that has a key identical to 
that of the source record already exists in the manual subset, then a DUPLICATES exception condition 
occurs. 

Syntax: 

--- INSERT <data-set-name> INTO <manual-subset-name >------------------1 

Semantics: 

<data-set-name> 
<data-set-name> must be the declared object of records for a manual subset. 

<manual-subset-name> 
<manual-subset-name> must be a manual subset of <data-set-name>, as ·the example below 
illustrates: 

DMS/DASDL: Sl SUBSET OF D 
COBOL: INSERT D INTO Sl 

Exception Conditions: 

AUDITERROR 
DATAERROR 
DEADLOCK 
DUPLICATES 
FATALERROR 
INTEGRITYERROR 
IOERROR 
LIMITERROR 
NO RECORD 
NOTFOUND 
OPENERROR 
READONLY 

5024516 3-9 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

LOCK 

The functions of the LOCK verb are identical to those of the FIND verb with one exception: if the record 
is found, it is locked, prohibiting other programs from performing a concurrent LOCK operation on the 
same record. However, other programs can perform FIND operations on locked records. 

Since a record must be locked before it can be updated, a LOCK verb should be specified ifthereis a pos
sibility that the data set record content is to be changed. The LOCK operation does not physically change 
the record but allows changes to be performed subsequently without a concurrent update from another 
program. 

If the requested record is already locked by another program, a contention analysis is performed by the 
Data Management System. When performing a contention analysis, the Data Management System must 
examine the status of the program that has locked the requested record; if that program is waiting for an
other record to be unlocked, the Data Management System must repeat the process by examining the sta
tus of the program that has that next record locked. This process continues until one of the following 
occurs: 

1. A program is encountered which is not waiting for a record to be unlocked. In this case, the pro
gram that was originally responsible for the contention analysis being performed is suspended by 
the Data Management System until either the recorcl is nnlocked or MAXW AIT seconds have 
elapsed. In the former case, the record is returned to the program; in the latter case, the program 
receives a DEADLOCK exception condition. 

2. A program is encountered that is waiting for a record to be unlocked, and that record is locked 
by the program originally responsible for the contention analysis. This circular chain of programs 
is termed a Deadly Embrace. Upon recognizing this condition, the Data Management System re
turns a DEADLOCK exception condition to the lowest priority program in the chain and rein
states any programs that have been waiting for a record locked by that program. 

Since no other program can lock a record once it is locked, it is important to free the record when it is 
no longer necessary to keep it locked. Unlocking a record is accomplished by a FREE operatjon or im
plicitly by a subsequent LOCK, FIND, CREA TE, or RECREATE operation on the same data set. A sub
sequent STORE operation leaves the record locked. An END-TRANSACTION operation frees all re
cords except the restart data set record. 

Locking is maintained on a record level; other records within a block with a locked record are unaffected 
by the LOCK operation. 

If the data set is embedded, or if the selection expression involves a manual subset, there must be a valid 
current parent record. 

Syntax: 

- LOCK <selection-expression>---------------·--------·--____, 

3-10 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

NOTE 
The LOCK verb is used in COBOL74 and RPG programs. The MODIFY 
verb is used in COBOL68 programs. The functions of LOCK and MODI
FY are identical. 

Exception Conditions: 

DEADLOCK 
FATALERROR 
INTEGRITYERROR 
IO ERROR 
NO RECORD 
NOTFOUND 
OPENERROR 
SYSTEMERROR 

5024516 3-11 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

OPEN 
The OPEN verb opens the data base. 

An OPEN operation must be executed prior to the first access to the data base; otherwise, all data base 
requests terminate with an OPENERROR exception condition. 

If the data base is already open, the OPEN operation is terminated with an OPENERROR exception 
condition. 

The Data Management System attempts to open an existing data base. The data base dictionary is 
opened at this time. If the data base dictionary is not present, the following message is displayed: 

NO FILE <data-base-name>/DICTIONARY 

In addition, if the access routines (DMS/ACR files) are not present or are of an incompatible version, 
or ifthere is insufficient memory to open the data base, an appropriate message is displayed and the pro
gram hangs, waiting for an operator to correct the situation. 

Syntax: 

---OPEN --- UPDATE <data-base-name >-----·--------·-----1 
LINOUIRY__J 

Semantics: 

INQUIRY 
The INQUIRY clause specifies that any DMS operation (STORE, REMOVE, INSERT, and DE
LETE verbs) that changes the data base is not to be performed. Any such operation attempted 
on a data base opened with INQUIRY returns a READONLY exception. 

UPDATE 
The UPDATE clause specifies that OMS operations (STORE, REMOVE, INSERT, and DE
LETE verbs) that change the data base can be performed. 

Exception Conditions: 

3-12 

FATALERROR 
OPENERROR 
SECURITYERROR 
SYSTEMERROR 
VERSIONERROR 



RECREATE 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The RECREATE verb is identical to the CREA TE verb with one exception: the record area for the data 
set is not completely initialized. All data items remain unaltered; however, items such as current record 
pointers for manual subsets and embedded data sets are set to the deleted state. 

When a RECREATE operation is being performed, the Data Management System does not check to de
termine if the value of< expression> matches the contents of the RECORD TYPE field. If the values 
do not match, unpredictable results can occur when the program attempts to access data within the new 
current variable-format part after the RECREATE operation. 

Syntax: 

--- FlECREATE < data-set-name>--...-----------.-----------------1 

L ( <expression >) __J 

Semantics: 

<expression> 
<expression> can be a literal, a simple data name, or an arithmetic expression and is only valid 
if the data description includes a variable format part. 

Exception Conditions: 

DATAERROR 
FATALERROR 
OPENERROR 

5024516 3-13 



REMOVE 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The REMOVE verb causes a record to be discarded from a manual subset. The manual subset must have 
a defined current record pointer. If it does not, the REMOVE operation is terminated with a 
NOTFOUND exception condition. The record referenced by the manual subset current record pointer 
is removed from the subset but not from the data set. 

The data set in which the manual subset is embedded must have the current record pointer in the defined 
state. If it does not,the REMOVE operation is terminated with a NO RECORD exception condition. 

Syntax: 

---REMOVE CURRENT FROM <manual-subset-name >-----·--------·-----1 

Exception Conditions: 

AUDITERROR 
DEADLOCK 
FATALERROR 
IOERROR 
NO RECORD 
NOTFOUND 
OPENERROR 
READONLY 

3-14 



STORE 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

The STORE verb returns a modified record to a data set or places a newly created record into a data set. 

The data to be stored is in the record area of the data set. Prior to storing a record, the data is checked 
for validity (VERIFY, REQUIRED, non-null keys) as specified by the DMS/DASDL source. A validity 
failure terminates the STORE operation with a DATAERROR exception condition. 

If the current record pointer is in the defined state and the current record is locked, the data replaces the 
current record in the data set and remains locked. If the current record pointer is in the defined state but 
unlocked or in an undefined state or deleted state, then the STORE operation terminates with a 
NOTLOCKED exception condition. 

If the current record pointer is in the created state, the data becomes a new record in the data set and the 
record is locked. The current record pointer is then in the defined state and refers to the new record. 

Current record pointers for sets are not affected by a STORE operation. 

All fields that are, or form, part of a key or are specified with the REQUIRED clause in the DMS/DASDL 
source must contain a value other than a null value before a STORE operation can be completed success
fully. If any of these fields are null, the STORE operation terminates with a DATAERROR exception_ 
condition. 

Syntax: 

--- STORE <data-set-name>----------------------------. 

Pragmatics: 

The following additional actions are performed depending on the prior DMS operation: 

STORE Operation after CREATE or RECREATE Operation 

The condition is evaluated for each automatic subset (subset containing a WHERE condition). The sub
set is marked for insertion if the condition and validity checks are satisfied. 

If an exception condition occurs that prevents the data record from being inserted into any of its sets, 
or into any automatic subset for which the WHERE condition is satisfied, then the STORE operation 
is terminated and the exception condition is returned to the program. In this case, the record is not insert
ed into the data set or into any of the sets or subsets. During the insertion of a key into a set or automatic 
subset, the DUPLICATES and LIMITERROR exception conditions can occur. 

STORE Operation after LOCK Operation 

If a STORE operation follows a LOCK operation, the record already exists in all sets. 

If any terms involved i:n an automatic subset condition have changed, the condition must be re
evaluated. The record is removed from the automatic subsets containing the record if the condition is 
not satisfied. The record is inserted into automatic subsets not already containing the record ifthe condi
tion is satisfied. 

5024516 3-15 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

If a key used in the ordering of a set is modified, and the record must be moved in that set, then the record 
is deleted from the set and reinserted in the proper position. A key must not be modified if duplicate re
cords are not allowed or if the set is an embedded data set. 

If a field used as a key field of a manual subset is changed, the STORE operation occurs, but no reorder
ing of that manual subset is performed. It is the responsibility of the programmer to maintain manual 
subsets. On a FIND operation by way of a manual subset, ifthe object record key does not match the key 
in the manual subset, the object record is not found. The next record or, possibly, a NOTFOUND excep
tion is returned. 

Exception Conditions: 

AUDITERROR 
DATAERROR 
DEADLOCK 
DUPLICATES 
FATALERROR 
INTEGRITYERROR 
IOERROR 
KEY CHANGED 
LIMITERROR 
NO RECORD 
NOTLOCKED 
OPENERROR 
READONLY 

3-16 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

COBOL COMPILATION PROCEDURES 
Each COBOL compiler, when compiling a program containing DMS syntax, requires information about 
the structure of the data base. It uses this information to perform syntax checks, set up the program re
cord areas, and to obtain internal identifications necessary to generate the code that communicates to 
the Data Management System at run time. The COBOL68 and COBOL74 compilers obtain this infor
mation from library files. The COBOL 7 4B compiler obtains the information directly from the data base 
dictionary. 

If the data base does not reside on system disk, then the compiler must be notified at compile time. For 
the COBOL68 and COBOL74 compilers this is done by equating the pack id of the internal LIBRARY 
file: 

CO <myprog> COBOL74 LI;FI LIBRARY PID <dbpack>; ... 

For the COBOL 74B compiler this is done by equating the pack id of the internal DICTIONARY file: 

CO <myprog> COBOL74B LI;FI DICTIONARY PID <dbpack>; ... 

Library Files 
Because the COBOL68 and COBOL 7 4 compilers require library files, these must be present at the time 
of compilation. The library files are created at DASDL compile time if a $COBO LIB card is contained 
in the DASDL source. When logical data bases are used, a $COBOLIB <data base name> card must be 
included for each logical data base requiring COBOL libraries. The library files reside on the same disk 
pack as the data base dictionary and are named: 

#<dlata base name>/ <disjoint dataset name> 

There is one library for each disjoint data set of each data base that contained a library request 
($COBOLIB). Each library contains information about the disjoint data set and any embedded struc
tures or sets it may have. 

When DASDL $UPDATE compile is executed, new library files may be made. They also reside on the 
same disk pack as the directory and are named: 

3«lata base name>/<disjoint dataset name> 

When the OMS/REORGANIZE program completes, it renames these files, replacing the "3" with a"#," 
so that subsequent COBOL compiles finds library files matching the current data base. 

Version Timestamps 
The libraries and the dictionary contain version timestamps for each structure. The version changes 
when the logical makeup of the structure is changed by a reorganization and is used to protect a program 
from viewing data according to an old format. The COBOL compilers include the version in the code 
file and, at data base open time, the version in the code file is checked against the version in the current 
dictionary. If the versions are different, then a change has been made to the format of the data base since 
the program was compiled. In this case, a VERSIONERROR exception is returned to indicate that the 
program needs to be recompiled. The program may also need to be recoded, depending on the nature of 
the changes. When compiling with the COBOL74 or COBOL68 compiler, it is important to be certain 
that the libraries resident on disk are the correct ones for the current data base. If the libraries are not 
the correct ones, spurious version errors may occur. With the COBOL74B compiler this problem cannot 
arise, as it gets its version timestamps directly from the current dictionary. 

5024516 3-17 



B I 000 Systems DMSII 
Host Language Interface Language Manual 

ANSI 74 COBOL Language Statements 

Recompiling for a Reorganization 
It is possible to reduce the total time needed to do a reorganization and get the system running again. The 
only down time required is the time for the execution of the OMS/REORGANIZE program, as the data 
base may be up during the DASDL $UPDATE compile, and program recompilations. As soon as the re
organization is run, newly-compiled programs can begin execution immediately. 

In order to take advantage of this method when using the COBOL68 or COBOL 7 4 compilers, the library 
files generated by the DASDL $UPDATE compile must be manually changed to the correct name (see 
Library Files above). It is prudent to back up the current copy of the libraries first. To take advantage 
of this method when using the COBOL74B compiler, it is necessary to equate the internal DICTIONA
RY file to the temporary dictionary that resides on the data base pack and is named: 

2<new data base name>/DICTIONARY 

Normally, <new data base name> is the data base name. It differs only when the data base has been re
named in the DASDL $UPDATE compile. 

3-18 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

SECTION 4 

AUDIT AND RECOVERY REST ART PROCEDURES 

The DMS audit and recovery system consists of: 

1. Code, in the operating system and DMS/ ACR files, that audits all data base updates to a disk or 
tape. 

2. The DMS/RECOVERDB program that processes audit information to restore the integrity of a 
data base that has been compromised by an application programming failure, system error, or 
hardware malfunction. 

Additionally, the audit and recovery system is designed to accomplish this task in much less time, and 
with much less programming or operational effort than recovery procedures written in a program. The 
audit and recovery system is described in the B 1000 Systems Data Management System II (DMSII) 
Functional Description Manual. 

There are a few restart procedures that apply to all environments. One set, ordered or retrieval, must be 
declared for the restart set. For batch programs, the key field for this index might typically be the 
program-id. For data communication programs, the key might identify the station responsible for the 
input. 

Since a STORE operation is performed on the restart data set at either the BEGIN-TRANSACTION or 
END-TRANSACTION operation, the program must update all of the relevant fields in its restart record 
immediately before executing that operation. There must be sufficient data stored within the restart re
cord to enable a program to restart itself in each of the areas discussed in the paragraphs that follow. 

INTERNAL PROCEDURES 
Items which are required to maintain consistency and reproducibility of results, such as control totals 
or preprinted form numbers for checks or invoices, must be accessible through the restart record. 

EXTERNAL PROCEDURES RELATED TO THE OMS SYSTEM 
The program must be abk'! to restore any critical record or path pointers to their state at the point of the 
recovery. This is usually more important for batch programs than data communication programs, since 
successive data communication transactions are typically unrelated, whereas batch programs may proc
ess sequentially through an entire structure. 

EXTERNAL PROCEDURES NOT RELATED TO THE OMS SYSTEM 
Input and output files and non-OMS managed files, such as COBOL74 ISAM files, must be present so 
that they c~n be repositioned. 

GENERAL PROCEDURES 
Interaction among the areas previously described must also be taken into consideration. For example, 
it may be necessary to reprocess the payroll for several employees, repeating the update operations to 
all of the relevant data sets within the data base and possibly creating or adding to other tape or disk files 
which are used by another application program; however, if paychecks were physically created prior to 

5024516 4-1 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

Audit and Recovery Restart Procedures 

the failure, then the program, while in restart mode, must either not produce any new checks or automat
ically void any duplicate checks. The restart procedures for such an application program must allow for 
the entry of the last form number physically assigned. By comparing the numbers being assigned to the 
last number actually issued prior to the failure, the application program determines when to start issuing 
Ii ve checks. 

NOTE 
This example assumes a stand-alone mix. In designing the procedures re
quired to restart such a program when several programs are updating the 
data base, the interaction among all programs must be considered in order 
to guarantee reproducibility of results. 

REST ART RECORD HANDLING 
Immediately after opening the data base, a program must locate and lock its restart record. If the opera
tion is successful, the program can examine that record to determine if a recovery has occurred, and if 
so, the restart procedures can be executed. If the LOCK operation is unsuccessful, a CREA TE or REC
REATE operation must be performed at this time to establish a locked record for this program and pre
vent the program from getting a NOTLOCKED exception when it attempts its first BEGIN
TRANSACTION or END-TRANSACTION with audit operation. 

Just before closing the data base, the following COBOL or COBOL74 code can be performed to delete 
the restart record of a program, assuming that the one restart record used by the program is still locked. 
(In the syntax, <exc> refers to exception-handling code.) 

BEGIN-TRANSACTION NO-AUDIT < restart-data-set-name> <exc>. 

DELETE <restart-data-set-name> < exc>. 

END-TRANSACTION NO-AUDIT < restart-data-set-name> SYNC <exc> . 

By deleting its restart record, the program insures that its restart procedures need to be executed after 
data base open only when the initial LOCK operation on the restart set is successful. Note that AUDIT 
is suppressed on both BEGIN-TRANSACTION and END-TRANSACTION operations since there is no 
need to restart this operation. Also, the specification of SYNC insures that, if another program aborts 
after this END-TRANSACTION operation but before this program can close the data base, the ABORT 
exception at the close can be ignored. 

Another method that can be used, rather than the deletion of the restart record, is to maintain a batch 
number within the restart record. The current batch number is given to the program either from the ODT 
or an external file, and compared to the number within the restart record. If the two numbers match, this 
run is a continuation of an interrupted batch and the program must perform its restart routines. If the 
two numbers do not match, this is a new batch and no restart is necessary. 

BATCH PROGRAMS 
Batch programs are much easier to restart than data communications programs, since they usually deal 
with one easily retrievable input source, and it is relatively simple to maintain information concerning 
the position of that input file as well as any output or secondary input files. 

4-2 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Audit and Recovery Restart Procedures 

A physical count of the number of input records processed can be used to reposition an input file. On 
restart, the record count is the number of records that are to be passed over. For ordered DMS structures 
or any other non-DMS ordered files, a key field accomplishes repositioning. However, output files other 
than disk cannot be physically repositioned. Therefore, multiple output card or tape files must be 
merged, and line printer files, especially in the case of preprinted forms, may require operator 
intervention. 

A stand--alone batch program that can be readily restarted or rerun can eliminate overhead by using large 
transactions. Additionally, the syncpoint and control point values may be raised temporarily with the SM 
system command. Batch programs which do not run in the stand-alone mode should not use large trans
actions because all jobs must wait for long transactions to complete when a syncpoint occurs. 

DATA COMMUNICATIONS PROGRAMS 
Restart procedures for on-line Data Management Systems are much more complicated to design and to 
code than those for batch systems. Not only is the input difficult to retrieve but many programs may in
teract in complex ways and each program may handle a number of users. No general rules can be given 
for on-line recovery because it is site and application dependent. The generalized message-control sys
tem (GEMCOS) provides recovery for on-line environments. (See the section titled Recovery in the 
B 1000 Series Generalized Message Control System (GEMCOS) User's Manual.) 

BACKED OUT TRANSACTIONS 
All forms of recovery result in some transactions being backed out. Although this loss is seldom critical 
in a batch environment, it is usually vital in an on-line environment. The syncpoint DMS/DASDL pa
rameter controls the number of transactions that can be lost. Because no program can do a BEGIN
TRANSACTION if the syncpoint count has been reached with the syncpoint not yet done, setting the 
syncpoint parameter too low may cause programs to await syncpoint too frequently. 

One guideline is to set syncpoint to the number of jobs which concurrently update the data base. The 
syncpoint parameters can be set with the SM system command as well as with a DMS/DASDL update. 

The controlpoint parameter controls the amount of time a CLEAR/START recovery takes and is unre
lated to the number of lost transactions. 

5024516 4-3 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

APPENDIX A 
GLOSSARY OF TERMS 

The following definitions are intended to give a working description of the terms used in this manual. 

access 
A method to reach a desired record of an ordered embedded data set. 

access routines 
The system program that supplies DMS services to application programs. It is normally named OMS/ 
ACR. 

application program 
A user written COBOL or RPG program making use of OMS features. 

automatic subset 
An index sequential structure declared in the DASDL source with a WHERE clause. An automatic sub
set can be used to find a subset of data records chosen by some values they contain. 

COBOL 
In this manual, the term COBOL is used in a broad sense to include the COBOL68, COBOL74, and 
COBOL 7 4B languages. 

COBOL68 
In this manual, the term COBOL68 is used to specify the B 1000 COBOL compiler. 

COBOL74 
In this manual, the term COBOL74 is used to specify the B 1000 COBOL 74 Compiler. 

COBO:L74B 
In this manual, the term COBOL 74B is used to specify the B 1000 COBOL 74B Compiler. 

communicate 
The method by which a user program requests system services. The compiler generates an appropriate 
communicate for each DMS verb. 

contention 
A condition in which a program is attempting to access a table entry or logical record within a physical 
block which has already been locked by another user. If the program waits on contention for more than 
MAXW AIT seconds, it receives a DEADLOCK exception. Refer to deadly embrace for additional infor
mation. 

current record 
The data record referenced by a current record pionter. 

current record pointer 
The Data Management System maintains a current record pointer for each path (that is, for every set, 
subset, and data set itself) to each data set. The current record pointer points to a data set record and 
gives the Data Management System a reference point from which to move on a subsequent FIND opera
tion (for example, NEXT and PRIOR). 

data set 
A data set is similar to a conventional file in that it contains the actual records of information. However, 
it is different from a conventional file in that items within the record may themselves be structures, in 
which case these items are considered embedded structures. 

5024516 A-1 



deadly embrace 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Glossary of Terms 

A condition in which a chain of programs exists, each of which is waiting for contention to be resolved 
on a record while simultaneously having locked a record for which another program inthe chain is wait
ing. Upon recognizing a deadly embrace, the Data Management System returns a DEADLOCK excep
tion to the lowest priority program in the chain and unlocks all records locked by that program. 

disjoint 
The condition of non-reliance of data sets on the highest level, that is, a data set which is not an item with
in a data set. Standard data sets, sets, and automatic subsets are the only structures that are disjoint. Dis
joint sets can only refer to disjoint data sets. 

embedded 
The condition of being dependent on a data set that is on a higher level; that is, the condition of a data 
set that is an item within a data set. 

index 
A table of pointers to a data set used to provide specified access to a data set. 

index random sets 
An index may be specified as index random in the DASDL source. Such a set may be used to retrieve 
records with specified key values but not in any particular order. 

list tables 
Manual subsets and embedded data sets are maintained in list form. Several entries may appear in each 
list table. 

manual subset 
A da,ta set record can only be inserted into or removed from a manual subset by an application program. 
No automatic maintenance is done on manual subsets. Manual subsets may only be embedded structures 
and may only refer to disjoint data sets. 

member 
An occurrence of a record of a data set is a member of that data set. 

ordered Maintained in a sequence depending on the value of user specified keys. 

ordered lists 
Ordered embedded structures, manual subsets and data sets, are maintained in ordered lists. 

parent 
A data set record that has dependent data sets is referred to as parent of the records of the dependent data 
set. A parent may itself be a record in an embedded data set. An embedded data set cannot be accessed 
without accessing the parent. 

path 
A structure to be used for retrieval of data set records. 

path name 
A path name specifies the path to be used to retrieve records. The path may be an automatic set or subset, 
a manual subset, or an access declared for a embedded ordered data set. 

population 
The number of records in a data set. 

record 
A record contains all the information that pertains to an entity. 

A-2 



set 

B 1000 Systems DMSII 
Host Language Int(~rface Language Manual 

Glossary of Terms 

A disjoint path to a data set, also called in index. 

span 
An index, whether ordered or retrieval, that references every record in a data set is said to span the data 
set. Subsets, whether automatic or manual, may span a data set, although typically they are not spanning 
sets. 

subset 
A path to some or all of the records of a data set. The criterion for membership in the subset can be speci
fied to the DMS/DASDL compiler through a WHERE clause, in which case the subset is automatic and 
maintained through an index structure. Alternatively, records can be programmatically inserted into the 
subset, in which case it is a manual subset and is maintained by means of a list structure. 

unordered 
Not maintained in a user specified order. 

5024516 A-3 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

APPENDIX B 

COBOL QUALIFICATION OF OMS IDENTIFIERS 

Unique identifiers are required in COBOL programs. If a data set is invoked more than once, separate 
internal names must be used so that items within the data set can be appropriately qualified. 

A variable declaration with the same name as a data base item can be used only if the item is able to be 
uniquely qualified. 

In a selection expression, sets and subsets require qualification if they are not unique identifiers. Data 
base items in a selection expression need not b(~ qualified. 

Example: 

DASDL source: 

Dl DATA SET( 
A NUMBER (5) ; 
B NUMBER (3)) ; 

Sl SET OF Dl KEY (A), INDEX SEQUENTIAL; 

Example: 

COBOL source: 

DB DBASE. 
01 Dl INVOKE Dl. 
01 DA INVOKE 01. 

WORKING-STORAGE SECTION. 
77 A PIC 99. (Invalid because it cannot be uniquely qualified.) 
0 l Q. 

03 A PIC 99. (Valid because it can be qualified.) 

PROCEDURE DIVISION. 

MOVE A OF Dl TO L. (Valid.) 
FIND Sl OF Dl AT A== L. (Valid.) 
MOVE A TO L. (Insufficient qualification of A.) 
FIND 51 AT A= L. (Insufficient qualification of Sl.) 
FIND 51 OF DA AT A OF DA= L. (Valid --

but A need not be qualified in a selection expression.) 

5024516 B-1 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

APPENDIX C 

OMS OPERATION SUMMARY 

Descriptions of the DMS verbs and the differences between COBOL and RPG DMS are given in this 
appendix. 

OMS VERB SUMMARY 
In the following summary, DMS verbs are listed in alphabetic order along with a brief description. In 
most cases, the verb as presented applies to RPG as well as to the three COBOL compilers (COBOL68, 
COBOL 74 and COBOL74B) which are grouped together here and referred to as COBOL. Where the 
forms differ, the alternate forms and other differences are noted. 

BEGIN-TRANSACTION (COBOL) 
TRBEG (RPG) 

The BEGIN-TRANSACTION operation notifies the Data Management System that updates are 
to be performed. on an audited data base. After execution of this operation, the program is in 
transaction state. All updates to an audited data base must be performed while the program is 
in transaction stat~. The BEGIN-TRANSACTION verb is used in COBOL programs; the 
TRBEG verb is used in RPG program .. 

CLOSE (COBOL only) 
The CLOSE operation closes a data base. If no CLOSE operation is executed by a program, an 
implicit CLOSE operation is performed by the Data Management System when the program 
goes to end of job (EOJ). The RPG compiler generates a CLOSE operation for RPG programs 
at end of job. 

CREA TE (COBOL only) 
The CREA TE operation initializes all data items in a data set record to values specified in the 
DMS/DASDL source, or to nulls (all bits on). A STORE operation after a CREA TE operation 
adds a new record to a data set. RPG programs perform an implicit CREATE operation prior 
to any STORE operation code if the letters ADD are specified in the Output-Format Specifica
tions for the data set. 

DELETE (COBOL) 
DELET (RPG) 

The DELETE operation discards a data set record. The record being deleted could have been lo
. cated by either a FIND or a LOCK operation. 

DMKEY (RPG only) 
The DMKEY option of the FIND and LOCK operation codes in describes the selection criteria 
to be used to locate a record. The equivalent function in COBOL programs is performed by syn
tax contained in the FIND or LOCK operations. 

END-TRANSACTION (COBOL) 
TREND (RPG) 

The END-TRANSACTION operation notifies the Data Management System that the current 
set of updates has completed. After execution of this operation, the program is no longer in trans
action state. The data base cannot be closed by a program while in transaction state. The END
TRANSACTION verb is used in COBOL programs; TREND is used in RPG. 

5024516 C-1 



C-2 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

DMS Operation Summary 

FIND 
A FIND operation locates a record in a data set and the data in that record is transferred into the 
memory area of the program for processing. A FIND operation is implicitly performed in RPG 
programs for all primary and secondary disjoint data sets declared as input-only, indicated by the 
letter I coded in column 15 of the File Description Specifications for the data set. 

FREE 
The FREE operation unlocks a record. The FREE operation is implicitly performed whenever 
another FIND operation is performed on the same data set. A FREE operation is implicitly per
formed for all locked records except the restart data set whenever a program executes an END
TRANSACTI ON operation (COBOL) or TREND operation (RPG), or when a DEADLOCK ex
ception is returned. 

INSERT (COBOL) 
INSRT (RPG) 

The INSERT operation enters a data set record into a manual subset. 

LOCK (COBOL74, COBOL74B, RPG) 
MODIFY (COBOL68) 

The LOCK (MODIFY) operation is the same as the FIND operation, but the requested record 
is to be locked in preparation for subsequent updating. No program can perform a LOCK (MOD
IFY) operation on a record that is already locked by another program; however, a FIND opera
tion can be performed on a locked record. A record must be locked before it can be updated in 
the data base. A LOCK operation is implicitly performed in RPG programs for all primary and 
secondary disjoint data sets for which updating is allowed, indicated by the letter U coded in col
umn 15 of the File Description Specifications for the data set. 

MODIFY (COBOL68 only) 
See LOCK. 

OPEN (COBOL only) 
The OPEN operation must be performed prior to any attempted access of a data base. No explicit 
OPEN operation code exists in RPG programs. The RPG compiler generates an OPEN opera
tion for the RPG program at beginning of job. 

RECREATE (COBOL only) 
The RECREATE operation is similar to the CREA TE operation. A subsequent STORE opera
tion adds a record to a data set. The values of the items within the data set record are not 
initialized as in a CREA TE operation; any value contained within an item prior to a RECREATE 
operation is maintained after the RECREATE operation. No form of this operation exists in 
RPG programs .. 

REMOVE (COBOL) 
REMOV (RPG) 

The REMOVE operation discards an entry from a manual subset. The entry that is removed is 
the one most recently found (FIND, LOCK or MODIFY via the manual subset). 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

DMS Operation Summary 

STORE 
The STORE operation adds or updates a record in the data base. The STORE operation updates 
an existing record when it is used after a LOCK (MODIFY) operation. The STORE operation 
adds a record by specifying the CREATE operation in COBOL programs, or STORE with ADD 
in RPG programs. A STORE operation is implicitly performed in RPG programs for disjoint 
data sets declared as output, indicated by the letter 0 in column 15 of the File Description Speci
fications for the data set. 

TRBEG (RPG only) 
See BEGIN-TRANSACTION. 

TREND (RPG only) 
See END-TRANSACTION. 

DIFFERENCES BETWEEN COBOL AND RPG OMS 

The differences in the implementations of the COBOL-OMS and RPG-DMS interfaces are described in 
the following paragraphs. Unless noted, COBOL refers to the COBOL68, COBOL74, and COBOL74B 
compilers. 

Data Storage 

COBOL 

RPG 

All data items are maintained directly within the record area that the Data Manage
ment System uses as its source and destination for STORE and FIND operations. 
Changes made to an item within this record area are automatically reflected in the 
data base after a successful STORE operation. 

The programmer has no access to the record area used by the Data Management 
System. The data items referenced in the Input Specifications are filled from the re
cord area. by RPG after a FIND or LOCK operation code. On output, only those 
items explicitly coded in the Output-Format Specifications are moved back into the 
record area; thus, an item can be modified in memory, but the data base copy of 
that item need not be changed. 

Data Types 

COBOL 

RPG 

5024516 

All data types permitted in the DMS/DASDL syntax are valid in the COBOL language. 

The RPG compiler does not allow unsigned numeric data items. Any numeric item 
described to the DMS/DASDL compiler as unsigned has a positive sign appended 
when the: item is moved out of the DMS record area; this sign is removed when the 
item is moved back into the record area immediately prior to a STORE" operation. 
These operations are performed automatically at the time the data is moved into or 
out of the OMS record area, and these operations do not add appreciable overhead 
to the execution of the program. However, if the value of the item becomes negative 
during the normal execution of the RPG program, no error is detected at the time 
the sign is stripped away from the item. The programmer must ensure that RPG 
programs that process unsigned numeric data items are not allowed to change the 
signs of such items. 

C-3 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

DMS Operation Summary 

Subscripting 

COBOL 

RPG 

A maximum of three levels of subscripts are allowed. Each subscript must be less 
than or equal to 1023 (this is a DMS/DASDL restriction, not a COBOL restriction). 

Only one subscript is allowed. As in the case of COBOL subscripts, the maximum 
value of a subscript has a DMS/DASDL-enforced limit of 1023. The method for 
remapping a multiply-subscripted item as an RPG-compatible, singly-subscripted 
item is described in Section 4 of the B 1000 Systems DMS Data and Structure Defi
nition Language (DMS/DASDL) Language Manual. 

Group Items 

COBOL 

RPG 

COBOL 

RPG 

COBOL 

RPG 

The subitems within a group constitute an implicit redefinition of the group item. 
Therefore, changes at the group level are reflected within the subitems of the group, 
and changes to the subitems are similarly reflected within the group item. 

The concept of a group item does not exist in RPG programs. If a group item is ref
erenced in an RPG program, and the individual items in that group are also refer
enced, then the group item and all of its subitems are maintained separately. Each of 
the items is filled separately from the DMS record area after a FIND or LOCK oper
ation. Changes to the group item do not affect any of the subitems, and changes to 
the subitems do not affect the group item. When the record containing the group is 
stored back into its data set, the order in which the group item and its subitems are 
coded in the Output-Format Specifications determines the final contents of the data 
set record. 

Group items can be subscripted. 

Group items that are subscripted cannot be used in an RPG program. 

Group items can be nested; that is, a subitem within a group can also be a group. 

Nested group items cannot be used in an RPG program. 

Selection Expressions 

COBOL68 All key items must be included, and the only relationship that can be specified be
tween a key item and the value supplied is simple equality. The partial-key search 
function is allowed only on index sequential structures (ordered sets and automatic 
subsets). 

COBOL74B The COBOL74 and COBOL74B compilers allow generalized selection expression. 
The partial-key search function is also available. 

RPG The generalized selection expression is allowed. The partial-key search function is 
not allowed for RPG programs. 

C-4 



B 1000 Systems D MSII 
Host Language Interface Language Manual 

DMS Operation Summary 

Library Files 

COBOL68 & These compilers include COBOL source library files describing the data base. Refer 
COBOL74 to COBOL Compilation Procedures in Section 3 for more detail. 

COBOL74B This compiler obtains its data base information directly from the dictionary. The re
cord description included in the listing is produced by the compiler from the infor
mation encoded in the dictionary. Refer to COBOL Compilation Procedures in Sec
tion 3 for more detail. 

RPG The RPG library files contain encoded information about each of the items in the 
disjoint data sets, including sets, subsets, embedded data sets, and data items. These 
library files are not added to the RPG program source as COBOL library files are; 
rather, the RPG compiler locates these files when a data set is named on a File De
scription Specification and uses the information contained therein when processing 
the Input, Calculation, and Output-Format Specifications. The listing of the COBOL
type record description, included by the RPG compiler at the end of the compile 
listing, is generated by the RPG compiler from the encoded information in the RPG 
library file. 

OMS Verbs 

COBOL 

RPG 

COBOL 

RPG 

5024516 

All DMS operations must be explicitly performed by the application program; the 
COBOL compiler does not generate any hidden code for the Data Management System. 

The following operations are implicitly performed by code generated by the RPG 
compiler: 

Data base OPEN and CLOSE. 

All FIND/LOCK and STORE operations on cycle-driven data sets. 

Any CREA TE operation required for storing an added record. 

TRBEG and TREND, if a noncycle-driven data set in an audited data base is 
being updated. 

When adding records to data sets, either the CREA TE or RECREATE operation 
must be explicitly specified prior to the STORE operation. 

An implicit CREA TE operation is generated by the RPG compiler immediately prior 
to every STORE operation of an added record. No explicit CREA TE operation code 
exists in RPG programs, nor does any RECREATE operation, whether explicit or 
implicit. 

C-5 



COBOL 

RPG 

C-6 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

DMS Operation Summary 

The audit operation is performed by default for the BEGIN-TRANSACTION opera
tion; no audit operation is performed by default for the END-TRANSACTION oper
ation. The programmer can override either of these defaults, as well as request a 
syncpoint with the END-TRANSACTION operation. 

The default for the TRBEG operation code is no audit, for both implicit and explicit 
executions of this operation. For explicit executions of the TREND operation code, 
the default is audit; this can be overridden by the programmer. A syncpoint can be 
requested with an explicit TREND operation code. For implicit executions of the 
END-TRANSACTION (TREND) operation, if the LR indicator is ON, ther1 by de
fault no audit and syncpoint are performed by the RPG compiler-generated code. If 
the LR indicator is OFF, audit is set by default. Only the defaults for the explicit 
TREND operation codes can be overridden by the programmer; the defaults for the 
implicit BEGIN-TRANSACTION (TRBEG) and END-TRANSACTION (TREND) 
operations cannot be overridden, nor can the defaults for the explicit execution of 
the TRBEG operation code. 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

APPENDIX D 

NOTATION CONVENTIONS AND SYNTAX SPECIFICATIONS 

NOTATION CONVENTIONS 
The following paragraphs describe the notation conventions used in this manual. 

Left and Right Broken Brackets ( < >) 

Left and right broken bracket characters are used to enclose letters and digits which are supplied by the 
user. The letters and digits can represent a variable, a number, a file name, or a command. 

Example: 

<job #>AX<command> 

At Sign(@) 
The at sign (@) character is used to enclose hexadecimal information. 

Example: 

@F3@ is the hexadecimal representation of the EBCDIC character 3. 

The at sign(@) character is-also used to enclose binary or hexadecimal information when the initial@ 
character is followed by a (1) or (4), respectively. 

Examples: 

@( 1) 11110011@ is the binary representation of the EBCDIC character 3. 

@(4)F3@ is the hexadecimal representation of the EBCDIC character 3. 

<identifier> 
An identifier is a string of characters used to represent some entity, such as an item name composed of 
letters, digits, and hyphens. An identifier can vary in length from 1 to l 7 characters. The characters must 
be adjacent, the first character of an identifier must be a letter, and the last character cannot be a hyphen. 

<integer> 
An integer js specified by a string of adjacent numeric digits representing the decimal value of the 
integer. 

<hexadecimal-number> 
A hexadecimal number is specified by a string of numeric digits and/or the characters A through F; this 
string is enclosed within the at sign (@) characters. 

<delimiter> 
A delimiter can be any non-alphanumeric character. The hyphen is excluded. 

5024516 D-1 



<literal> 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Notation Conventions and Syntax Specifications 

A literal is a data item whose value is identical to the characters contained within the item. A literal can 
be either an alphanumeric (or simply alpha) literal, or a numeric literal. Alpha literals can contain any 
combination of valid printable characters, or spaces, and must be enclosed by quotation (") characters; 
a quotation character within an alpha literal is represented by two successive quotation characters within 
the character string. 

Example: 

ABC""DEF 

The preceding alpha literal could be used to represent the character string ABC"DEF. 

Numeric literals can contain only the decimal digits 0 through 9 and are not enclosed within any 
delimiters. 

Percent Sign (DMS/DASDL Only) 
The percent sign(%) character designates DMS/DASDL documentation or comments, and its presence 
terminates the scan of a source record. The example below illustrates the use of a percent sign for in-line 
coding. 

Example: 

00000100 
00000150 
00000200 
00000300 
00000400 

:%THIS DMS/DASDL PROGRAM GIVES EXAMPLES 
:%OF THE VARIOUS CONSTRUCTS USED IN 
:%DASDL TO DESCRIBE A DATA BASE. 
: PARAMETERS ( 

SYNCPOINT = 10 ) ; 

SYNTAX CONVENTIONS 

Railroad diagrams show how syntactically valid statements can be constructed. 

Traversing a railroad diagram from left to right, or in the direction of the arrowheads, and adhering to 
the limits illustrated by bridges produces a syntactically valid statement. Continuation from one line of 
a diagram to another is represented by a right arrow (--.) appearing at the end of the current line and the 
beginning of the next line. The complete syntax diagram is terminated by a vertical bar (I). 

Items contained in broken brackets ( < >) are syntactic variables which are further defined or require the 
user to supply the requested information. 

Upper-case items must appear literally. Minimum abbreviations of upper-case items are underlined. 

--A RAILROAD DIAGRAM CONSISTS OF _ ___. __ <bridges>------..-]...___ _____ , ___ __,.> 

<loops>------

<optional items> ---

<required items> __ __. 

>--AND IS TERMINATED BY A VERTICAL BAR.-----------------------

050051 

D-2 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Notation Conventions and Syntax Specifications 

The following syntactically valid statements can be constructed from the preceding diagram: 

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED 
BY A VERTICAL BAR 

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS 
TERMINATED BY A VERTICAL BAR. 

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS 
TERMINATED BY A VERTICAL BAR. 

A RAILROAD DIAGRAM CONSISTS OF <optional items>, <required items>, 
<bridges>,< loops> AND IS TERMINATED BY A VERTICAL BAR. 

Required Items 
No alternate path through the railroad diagram exists for required items or required punctuation. 

Example: 

-REQUIRED ITEM 

G50052 

Optional Items 
Items shown as a vertical list indicate that the user must make a choice of the items specified. An empty 
path through the list allows the optional item to be absent. 

Example: 

- REQUIRED ITEM 1 
- <optional item-1 > --} 

- <optional item-2 > --~__, 
G50053 

The following valid statements can be constructed from the preceding diagram: 

REQUIRED ITEM 

REQUIRED ITEM <optional item-1> 

REQUIRED ITEM <optional item-2> 

Loops 
A loop is a recurrent path through a railroad diagram and has the following general format: 

F--<bridge > <return character> 

__ j___<object oif the loop>-------'--------------------! 

G50054 

5024516 D-3 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Notation Conventions and Syntax Specifications 

Example: 

The following statements can be constructed from the railroad diagram in the example: 

<Optional item-1 > 

<Optional item-2> 

<Optional item-1 >,<Optional item-1 > 

<Optional item-1 >,<optional item-2> 

<Optional item-2>,<optional item-1 > 

<Optional item-2>,<optional item-2> 

A <loop> must be traversed in the direction of the arrowheads, and the limits specified by bridges can
not be exceeded. 

Bridges 

A bridge indicates the minimum or maximum number of times a path can be traversed in a railroad 
diagram. 

There are two forms of <bridges>. 

__t;\___ n is an integer which specifies the maximum 
n number of times the path can be traversed. 

____t;;;\__ n* is an integer which specifies the minimum 

950056 
number of times the path must be traversed. 

Example: 

2 

-------<optional item·;> -=------.----'----------------------1 
<optional item-2 >---

G50057 

D-4 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Notation Conventions and Syntax Specifications 

The loop can be traversed a maximum of two times; however, the path for <Optional item-2> must be 
traversed at least once. 

The following statements can be constructed from the railroad diagram in the example: 

<optional item-2> 

<optional item-1 >,<optional item-2> 

<optional item-2>,<0ptional item-2>,<optional item-1 > 

<optional item-2>,«>ptional item-2>,<0ptional item-2> 

5024516 D-5 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

<delimiter> D-1 
<hexadecimal-number> D-1 
<identifier> D-1 
<integer> D-1 
<literal> D-2 

ABORT 2-10, 2-24, 3-2, 3-3, 3-6 
DQ indicator 2-10 

access A-1 
access routines A-1 
AND 2-13, 2-18 
application program A-1 
asterisk (*) 2-4 
AT 2-13 
at sign (@) character D-1 
attribute names, DMSTA TUS 2-8 
AUDIT 3-2, 3-6 
audit 4-1 
AUDITERROR 2-10, 3-2, 3-3, 3-5, 3-6, 3-9, 

3-14, 3-16 
DP indicator 2-10 

automatic subset 2-20, 3-15, A-1 
partial key search extension 2-20 

BEGIN-TRANSACTION 3-2, C-1 
binary search 2-18 
binary value D-1 
bridges DA 
broken bracket characters D-1 

CLOSE 3 .. 3, C-1 
CLOSEERROR 2-10, 3-3 

DM indicator 2-10 
CLOSERROR 3-3 
COBOL 2-1, 2-2, 2-5, 3-1, 3-17, A-1, B-1, C-3 

compilation procedures 3-17 
DAT A DIVISION 2-2 
data sets 2-5 
data storage C-3 
data types C-3 
DAT A-BASE SECTION 2-2 
DMS vs. RPG-DMS C-3 
group items C-4 
identifiers, DMS B-1 
MOVE 2-5 
MOVE CORRESPONDING 2-·5 
PROCEDURE DIVISION 2-5 
qualification of DMS identifiers B-1 
source file 2-3 
subscripting C-4 
verbs 3-1, C-5 

COBOL68 2-1, 2-12, 2-14, 2-20, 3-17, A-I 
DMS interface differences 2-1 
key searches 2-20 
library files C-5 
programming notes 2-20 
selection expressions C-4 

5024516 

INDEX 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Index 

COBOL74 2-1, 2-8, 2-16, 2-17, 3-17, 4-1, A-I 
ISAM files 4-1 
library files C-5 
logical data bases 3-1 7 
selection expressions C-4 

COBOL74B 2-1, 2-3, 2-7, 2-16, A-1 
OMS interface differences 2-1 
selection expressions C-4 
USE ON OM ERROR Procedure 2-7 

communicate A-I 
compilation interface 2-1 
compiling, COBOL 3-17, 3-18 

before reorganization 3-18 
contention A-1 
controlpoint 4-3 
CREATE 3-4, 3-8, 3-13, 4-2. C-1 
create flag 2-23 
current record A-I 
current record pointer 2-3, 2-22, 3-13, A-1 

create flag 2-23 
defined state 2-23 
deleted state 2-23 
internal states 2-22 
lock flag 2-23 
undefined state 2-22 

DA indicator 2-8 
DASDL source file 2-2, 2-4 
data base 2-1, 2-2, 2-3, 2-5, 3-3, 3-17 
data base dictionary 2-3, 3-12 
data items 2-4 
data management system components 1-1 
data set 2-1, 2-2, 2-3, 2-4, 2-5, 2-12, 2-22, 3-1, A-I 

invoked 2-4 
multiply-invoked 2-4 
record 2-22 
references 2-3 

# data storage C-3 
data types C-3 
DA TA-BASE SECTION 2-2 
DATAERROR 2-9, 3-4, 3-9. 3-13, 3-16 

DD indicator 2-9 
DB indicator 2-8 
DC indicator 2-9 
DD indicator 2-9 
DE indicator 2-9 
DEADLOCK 2-9, 2-24. 3-2. 3-5, 3-9. 3-11, 3-14, 3-16 

DC indicator 2-9 
deadly embrace A-2 
DELET C-1 
DELETE 2-23, 3-5. C-1 
deleted records 2-23 
DF indicator 2-9 
DG indicator 2-9 
DH indicator 2-9 
DICTIONARY file 3-18 
disjoint A-2 
disjoint data sets 2-2. 2-3 
DJ indicator 2-9 
DK indicator 2-10 
DL indicator 2-10 

2 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Index 

DM indicator 2-10 
DMCATEGORY 2-8 
DMERROR 2-8 

D 1 indicator 2-8 
DMERRORTYPE 2-8 
DMKEY 2-16, C-1 
DMS components 1-1 
DMS documentation 1-2 
DMS Functional Description Manual 1-2 
DMS Host Language Interface Manual 1-3 
DMS operations C-1 
DMS verbs C-1, C-5 

differences C-5 
DMS/AUDITANALY 1-2 
DMS/DASDL Language Manual 1-2 
DMS/DASDLANALY 1-2 
DMS/DBLOCK 1-2 
DMS/DBMAP 1-2 
OMS/DECOMPILER 1-2 
OMS/INQUIRY 2-16 
DMS/RECOVERDB 4-1 

batch programs 4-1 
data communication programs 4-1 

OMS/REORGANIZE 3-17 
library files 3-1 7 

DMSTATUS register 2-7 
DMSTRUCTURE 2-8 
DN indicator 2-10 
DO Indicator 2-10 
DP indicator 2-10 
DQ indicator 2-10 
DR indicator 2-10 
DS indicator 2-11 
DT indicator 2-11 
DU indicator 2-11 
DUPLICATES 2-8, 3-9, 3-16 

DB indicator 2-8 
D 1 indicator 2-8 

embedded A-2 
embedded data sets 2-2, 2-4, 2-24 
END-TRANSACTION 3-6, C-1 
EQUAL 2-13 
error conditions 2-12 
exception 2-6, 2-7 

condition 2-6 
indicators 2-8 
ON EXCEPTION 2-7 
processing 2-6 

execution interface 2-1 
expression 2-14 

selection 2-14 

FATALERROR 2-11, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 
3-9, 3-11, 3-12,, 3-13, 3-14, 3-16 

DT indicator 2-11 
FIND 2-22, 2-23, 3-7, C-2 
FIRST 2-12, 2-14, 2-15 
flags, create and lock 2-23 
FREE 3-3, 3-4, 3-8, 3-10, C-2 

5024516 3 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Index 

general selection expression 2-1, 2-14, 2-16, 
COBOL68, feature unavailable 2-1, 2-16 

group item 2-5, C-4 

hexadecimal value D-1 
host language interface 2-1 

identifiers, OMS B-1 
index A-2 
index random sets A-2 
indexed sequential sets 2-18 
indexed sequential subsets 2-18 
INITIAL VALUE 2-5 
INQUIRY 3-12 
INSERT 3-9, C-2 
INSRT C-2 
INTEGRITYERROR 2-11, 3-2, 3-5, 3-7, 3-9, 3-11, 3-16 

DU indicator 2-11 
interface differences 2-1 
INUSE 2-10, 3-5 

DO Indicator 2-10 
INVOKE 2-1, 2-3 
IOERROR 2-9, 3-3, 3-5, 3-7, 3-9, 3-11, 3-14, 3-16 

DJ indicator 2-9 
item names 2-2 

key 2-13, 3-16 
condition 2-13 
field 3-16 
modification 3-16 

key search, partial 2-20 
key-name 2-14 
KEYCHANGED 2-9, 3-16 

DF indicator 2-9 

LAST 2-12, 2-14, 2-15 
library files 3-17, 3-18, C-5 

differences C-5 
LIMITERROR 2-10, 3-9, 3-16 

DK indicator 2-10 
linear search 2-18 
list tables A-2 
LOCK 2-12, 3-10, C-2 
lock flag 2-23 
logical data base 2-2 
loops D-3 

manual structure 1-1 
manual subset 3-14, A-2 
member A-2 
MODIFY 2-12, C-2 
MOVE CORRESPONDING verb, COBOL 2-5 
MOVE verb, COBOL 2-5 
multiple current records 2-4 

NEXT 2-12, 2-14, 2-15 
NO-AUDIT 3-2, 3-6 
NORECORD 2-10, 3-5, 3-7, 3-9, 3-11, 3-14, 3-16 

DN indicator 2-10 
notation conventions D-1 

4 



B 1000 Systems DMSII 
Host Language Interface Language Manual 

Index 

NOTFOUND 2-8, 3-.S, 3-7, 3-9, 3-11, 3-14 
DA indicator 2-8 

NOTLOCKED 2-9, 3-16 
DE indicator 2-9 

ON EXCEPTION 2-7 
OPEN 3-12, C-2 
OPENERROR 2-10, 3-2, 3-4, 3-5, 3-6, 3-7, 3-8, 

3-9, 3-11, 3-12, 3-13, 3-14, 3-16 
DL indicator 2-10 

operations C-1 
optional items D-3 
ordered A-2 

lists A-2 
sets 2-20 
keys 2-12 

parent A-2 
partial key search 2-20 
path 2-1, 2-4, 2-12, 2-13 A-2 
Path 2-13, 2-16 

manual subset 2-13, 2-16 
path name 2-2, 2-13, 2-13, A-2 

access 2-13 
manual subset 2-13 

percent sign D-2 
physical data base 2-2 
pointer, current record 2-22 
population A-2 
PRIOR 2-12, 2-15 

qualification of OMS identifiers B-1 

railroad syntax diagrams D-2 
READONLY 2-9, 3-5, 3-9, 3-14, 3-16 

DH indicator 2-9 
recompiling 3-18 
record 2-5, A-2 

variable-format 2~5 
record area 2-1, 2-4, 2-5, 2-12, 3-7, 3-13 
record pointer, current 2-22 
RECORD TYPE 2-5 
recovery 4-1 

external procedures 4-1 
internal procedures 4-1 

RECREATE 3-13, 4-2, C-2 
REDEFINES 2-5 
register 2-7 

DMSTATUS 2-7 
related documents 1-3 
remap number 2-4 
REMOV C-2 
REMOVE 3-14, C-2 
REQUIRED 2-5 
required items D-3 

5024516 5 



restart 4-1, 4-2, 4-3 
backed-out transactions 4-3 
batch programs 4-2 
data communications programs 4-3 
data set 4-l 
general procedures 4-1 
record 4-1, 4-2 
record handling 4-2 
set 4-1 

retrieval keys 2-12 
RPG 2-1, 2-5, 2-8, 2-16, 3-4 

data storage C-3 
data types C-3 
exception indicators 2-8 
library files C-5 
selection expressions C-4 
subscripting C-4 
verbs C-5 

RPG OMS vs. COBOL OMS C-3 

SECURITYERROR 2-10, 3-12 
DR indicator 2-10 

B 1000 Systems DMSII 
Host Language Interface Language Manual 

Index 

selection expression 2-12, 2-14, 2-15, 2-16, 2-17, 2-18 
complexity 2-17 
differences C-4 
form 1 2-14 
form 2 2-15 
form 3 2-16 
forms 2-14 
general 2-16 
generalization 2-14 
rules 2-18 

set 2-1, A-3 
names 2-2 

span A-3 
STORE 2-22, 2-23, 3-2, 3-15, C-3 

after CREA TE, RECREATE 3-15 
after LOCK 3-15 

storing records 2-23 
structure number 2-4 
subscripting C-4 
subset 2-l. 2-12, A-3 
SYNC 3-6, 4-2 
syncpoint 4-3 
syntax conventions D-2 
SYSTEMERROR 2-9, 3-7, 3-11, 3-12 

DO indicator 2-9 

TRBEG C-1 
TREND C-1 
unlocked records 2-24 
unordered A-3 

UPDATE 3-12 
USE ON DMERROR 2-6, 2-7 

variable format records 2-5 
verbs 3-1. C-1 
VERIFY 2-5 
version 2-4, 3-1 7 

error 3-17 
VERSIONERROR 2-11, 3-12, 3-17 

OS indicator 2-11 
VIA 2-13. 2-14 

6 



Docurnentation Evaluation Form 

Title: .D 1000 Systems Pata Management System II <DMSIJ) Form No: .-:5::;.:;0-.=2:...:.4.::o.5.tM.:l 6~· -----

Date:. October 1986 Host Languag¢ Interface Langua@_M ............ a .... n ..... ua.....,l ___ _ 

Burroughs Corporation is interested in receiving your comments 
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual. 

Please check type of ~uggestion: 

D Addition 0 Deletion D Revision D Error 

Comments:. 

From: 

Name ------------~------~~~-----------------------------------
Title 

Company -----------------------------------------------------------

Address ----·~--------~~-----------------------------------------

Phone Number ··--------------

Remove form and mail to: 

Bunoughs Corporation 
Documentation Dept., TIO • West 

1300 John Reed Court 
City of Industry, CA 91745 

. U.S.A. 

Date __________________ _ 


	001
	002
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	replyA

