
- I

Burroughs

Burroughs

Functional
Description
Manual

Priced Item
Printed in U.S.A August 1984 · 1152444

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/ or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Documentation-West, Burroughs Corporation, 1300 John Reed
Court, City of Industry, California 91745, U.S.A.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

LIST OF EFFECTIVE PAGES

Page Issue

Title Original
ii Original
iii Original
iv Blank
v thru ix Original
x Blank
1-1 Original
1-2 Blank
2-1 thru 2-2 Original
3-1 thru 3-17 Original
3-18 Blank
4-1 thru 4-11 Original
4-12 Blank
5-1 thru 5-8 Original
6-1 Original
6-2 Blank
7-1 thru 7-3 Original
7-4 Blank
8-1 Original
8-2 Blank
9-1 Original
9-2 Blank
10-1 thru 10-12 Original
11-1 thru 11-29 Original
11-30 Blank
A-1 thru A-2 Original
B-1 thru B-2 Original
C-1 thru C-44 Original
D-1 thru D-5 Original
D-6 Blank
1 thru 4 Original

iii

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

TABLE OF CONTENTS

Section Title

1 INTRODUCTION
2 DMSII DOCUMENTATION

DMS/DASDL Language Manual
Functional Description Manual
Host Language Manual
Related Documents

3 UPDATE AND REORGANIZATION
DMS/DASDL Compile for Update and Reorganization

Update Portion of the Compile
Reorganize Portion of the Compile

PURGE Statement
GENERATE Statement . . .
COPY Statement
INTERNAL FILES Statement

OMS/REORGANIZE Program
Reorganization Capabilities

Reorganization Capabilities: Version Stamp Change Required
Reorganization Capabilities: No Version Stamp Change Required

Data Transformations
Addition and Deletion of Data Items
Item Size Changes
Signed Data
Occurrences
Regrouping of Data Items
Item Type Changes
Data Transformation Rules

Version Checking
File Naming Conventions . .
Index Sequential· Balancing Algorithms
Abnormal Conditions

Non-Restartable Conditions
Restartable Conditions

System Requirements
Purge
Generation of a Data Set or Manual Subset
Balance of an Index Set or Subset

4 AUDIT AND RECOVERY

1152444

Syntax Elements
Audit Trail
Restart Data Set
Transactions
Syncpoint .
Controlpoint

Page

1-1
2-1
2-1
2-1
2-2
2-2
3-1
3-1
3-1
3-2
3-3
3-3
3-4
3-5
3-5
3-8
3-8
3-9

3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-12
3-13
3-13
3-14
3-15
3-15
3-16
3-16
3-16
3-16
3-17

4-1
4-1
4-1
4-2
4-2
4-3
4-4

v

Section

vi

5

6
7
8
9
10

11

B 1000 Systems Data Management SystemII (DMSII)
Functional l)escription Manual

TABLE OF CONTENTS (Cont)

Forms of Recovery .
Program Abort Recovery
Clear /Start Recovery
Dump Recovery

Partial Dump Recovery

Title

Write Errors and Partial Dump Recovery
Throughput Considerations

Audit Media
Audit Block Size ~ .
Logical Transactions
Syncpoints and Controlpoints

DATA BASE SECURITY .
Non-DMS Access Control (Operating System Security)

TITLE Option
SECURITYTYPE Option
SECURITYUSE Option

DMSII Access Control
Structure and Item Protection with Logical Data Bases and Remaps
Physical and Logical Data Base Protection Using SECURITYGUARD Files

Compiling and Executing
OMS/INQUIRY Prograin
Conclusion . . .
OMS/DECOMPILER PROGRAM
DMS/DASDLANALY PROGRAM
DMS/DBLOCK PROGRAM
DMS/DBBACK PROGRAM
DMS/ AUDITANALY PROGRAM
DMS/ AUDITANALY Options
Option Specifications

DATABASE Statement .
FILE Statement·
STRUCTURES Statement
ASNS Statement
TYPES Statement . . . •
OPTIONS Statement
STATISTICS Statements
VERIFY Statement

File Names . .
Switch Settings
DMS/AUDITANALY Examples
DMS/DBMAP PROGRAM .
Data Base Structure Identifiers
Command Syntax . • .
Program Switch Settings
Files
Virtual Disk

r Page

4-4
4-4
4-5
4-5
4-8
4-8
4-9
4-9
4-9

4-10
4-10

5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-7
5-8
5-8
6-1
7-1
8-1
9-1

10-1
10-1
10-3
10-3
10-4
10-5
10-8
10-9

10-10
10-11
10-11
10-11
10-11
10-12

11-1
11-1
11-2
11-3
11-3
11-4

I

\

Section

A
B

c

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

TABLE OF CONTENTS (Cont)

Options .
Option Command Entry Syntax
Performance Information
Option Command Errors
Execution Examples .
Status Information

DMS/DBMAP Program Output
Heading Pages . . .
Static Information .
Data Printing . .

Title

Disjoint Data Set (DDS) Records .
Embedded Structure (ES) Tables
Index Sequential Tables
Index Random Tables .
Population Summary
Disjoint Data Set (DDS) Population
Embedded Structure (ES) Population
Index Sequential (IDXSEQ) Population
Index Random (IDXRND) Population
Error Summary .

Error Messages .
Error Discussion
Error Message List

Abort Messages
Procedures
Abort Message List

DMS GLOSSARY
DMS/DASDL GENERATED CODE
Version and Security Checking
Key-Building Code
WHERE, VERIFY, and REQUIRED Clause Checking
KEYCHANGE Code .
ALL Initialization of Data Items
SELECT Clause Verification
Code Segment Assignments . .
SYSTEM/MARK-SEGS Program and DMS/DASDL Compiler
DMSII DATA STRUCTURES
Subrecords and Constants . . .

Logical Addresses
Additional Subrecords

Dictionary Data Structures Used at Run Time
DMSII Globals
File Table .
File Record
Structure Records

Page

11-4
11-5
11-7
11-8
11-9

11-10
11-11
11-11
11-12
11-12
11-12
11-13
11-13
11-14
11-15
11-15
11-16
11-16
11-16
11-16
11-17
11-17
11-19
11-28
11-28
11-28

A-1
B-1
B-1
B-1
B-1
B-1
B-2
B-2
B-2
B-2
C-1
C-1
C-2
C-3
C-5
C-5
C-8
C-9

C-10

vii

Section

D

B 1000 Systems Data Management Systerrill (DMSII)
Functional Description ·Manual ·

TABLE OF CONTENTS (Cont)

Title

Control Structures Embedded in OMS Data Files
List Tables
Index Tables

Non-dictionary Data Structures Used at Run Time
Locks • ·
DM Globals ...
Structure . . . •
Interface
Buff er Description
Audit Trailer

Dictionary Data Structures Used by DASDL
DMSII Audit File Information

Audit Types
Control Records (Type = @Bx@) . .

. Standard Data Set Updates (Type = @lx@)
Index Entry Updates (Type = @2x@) . . .
Update Index Table Control Fields (type = @3x@)
Update List Tables (Type = @4x@)
List Head Updates (Type = @Sx@) . ;
Space Allocation (Type = @6x@)
Index Splits and Combines (Type = @7x@)

NOTATION CONVENTIONS AND SYNTAX SPECIFICATIONS
Notation Conventions

Left and Right Broken Brackets (< >)
At Sign (@)
<identifier>
<integer>
<hexadecimal-number>
<delimiter> . .
<literal> . . .

Syntax Conventions
Required Items
Optional Items
Loops
Bridges

INDEX

..

Page

C-13
C·l4
C-15
C-16
C-16
C-17
C-21
C-22
C-24
C"'.25
C-25
C-30
0-39
C-40
C-40
C-41
C-41
C-42
C-42
C-43
C-43
C-44

D-1
D-1
D-1
D-1
D-1
D-1
D-2
D-2
D-2
D-3
D-3
D-4
D-4

1

Figure

11-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

LIST OF ILLUSTRATIONS

Title

Sequence of Printing of Index Sequential Tables

LIST OF TABLES

Table Title

3-1 OMS/REORGANIZE Program Switch Settings
3-2 Data Transformations

1152444 .

Page

11-13

Page

3-6
3-12

ix

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 1
INTRODUCTION

The information contained in this manual is relative to the Mark 11.0 System Software Release for
the B 1000 Systems Data Management System II (DMSII).

The following components form the nucleus of DMSII:

• A DMSII Data And Structure Definition Language (DMS/DASDL) that describes a DMSII data
base.

• An ANSI 68 COBOL, ANSI 74 COBOL, or RPGII language interface that provides program
matic access to the data in the data base.

• The DMSII access routines, contained within the program DMS/ ACR, that control storage and
retrieval.

• The DMS/REORGANIZE program that is used in conjunction with the DMS/DASDL compiler
and redescribes portions of the data base.

• The DMS/RECOVERDB program that automatically restores the integrity of a data base that
has been corrupted through a system failure.

• Security features to protect the operating system and the data bases.

• Utility programs to assist in debugging the DMSII system and DMSII data bases.

• DMS/INQUIRY, a program that allows ad hoc query of a DMSII data base.

1152444 1-l

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

, SECTION 2
DMSll DOCUMENTATION

The overall data management system for B 1000 systems is described in the three documents identified
and outlined in the paragraphs that follow.

DMS/DASDL LANGUAGE MANUAL
Full title: B 1000 Systems DMSII Data and Structure Definition Language (DMS/DASDL) Language
Manual.

The main text includes an exposition of the DMSII structure types, identification and descriptions of
the components of a data base, information on remap data sets and logical data bases, and a descrip
tion of DMS/DASDL compilation.

The appendixes provide examples of DMS/DASDL physical structures, a DMS/DASDL glossary, the
DMS/DASDL compiler messages, an example of data base development, and another example that
shows the use of many of the elements of the DMS/DASDL syntax.

FUNCTIONAL DESCRIPTION MANUAL

Full title: B 1000 Systems Data Management System II (DMSII) Functional Description Manual.

The main text describes the update and reorganization processes, the audit and recovery system, and
data base security. Separate sections cover each of the following programs:

OMS/DECOMPILER
Reconstructs the original DMS/DASDL source of an existing DMSII data base.

DMS/DASDLANAL Y
Decodes the contents of the data structures within a DMSII data base dictionary.

DMS/DBLOCK
Locks the data base dictionary to block updating until this program terminates, thus providing
protection against unwanted updating,

DMS/DBBACK
Part of a process to convert ·a data base created under the Mark 11.0 release to a Mark 10.0 re
lease-compatible data base.

DMS/ AUDIT ANAL Y
Decodes a DMSII audit file and prints the contents of each audit record.

DMS/DBMAP
Checks the integrity of a data base and prints structure information from the data base dictionary,
performs population summaries, and prints data base data.

The appendixes provide a glossary, summaries of the functions of the DMS/DASDL generated code,
and record descriptions for all the DMSII data structures referenced in the main text.

1152444 2-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Documentation

HOST LANGUAGE MANUAL
Full title: B 1000 Systems DMSII Host Language Interj ace Language Manual.

The main text includes information on the DMS structure types, general information on interfaces be
tween DMS and the host language (specifically COBOL, with summaries of COBOL, COBOL 74, and
RPGII), descriptions of all the COBOL 68 language statements (verbs), a discussion of COBOL compil
ation procedures, and audit and recovery restart procedures as they relate to the host language inter
face.

The appendixes provide information on qualification of DMSII identifiers and a summary of DMSII
operations.

RELATED DOCUMENTS
The following B 1000 Systems manuals include information pertinent to the B 1000 data management
system:

B I 000 Systems System Software Operation Guide, Volume 1

B 1000 Systems COBOL Language Manual

B 1000 Systems COBOL74 Language Manual

B 1000 Systems Report Program Generator (RPG) Language Manual

B 1000 Systems Data Management System II (DMSII) Inquiry Language Manual

2-2

B 1000 Systems Data Management SystemH (DMSII)
Functional Description Manual

SECTION 3
UPDATE AND REORGANIZATION

The update and reorganization processes change the physical or logical description of an existing data
base or both. The system provides maximum assistance in the actual restructuring, and there is minimal
impact on the application programs that access the data base.

The overall sequence includes a DMS/DASDL compile to incorporate the data base changes that are
specified by the user, and a OMS/REORGANIZE program run to alter the dictionary and structure
files to reflect the changes.

DMS/DASDL COMPILE FOR UPDATE AND REORGANIZATION
General Syntax:

$UPDATE
<altered data base description>
REORGANIZE;
<reorganize commands>

Update Portion of the Compile

To use the update capabilities of the DMS/DASDL compiler, the programmer prepares a description
of the new data base. This description, preceded by a $UPDATE statement to tell the DMS/DASDL
compiler that this is not a new data base, is compiled to produce a reorganization control file. This
is the file that is used by the OMS/REORGANIZE program to create the revised data base.

If there are no changes to the data base description, the $UPDATE and the <altered data base descrip
tion> may be omitted.

1152444 3-1

B· 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

Reorganize Portion of the Compile

The REORGANIZE statement signals the beginning of· the reorganize portion of the compile. Four
functions may be requested: PURGE and GENERATE, which are basic reorganization functions, and
COPY and INTERNAL FILES, which allow the specification of control over the allocation of tempo
rary files during the OMS/REORGANIZE program run. If none of these four functions are desired,
the reorganize portion of the compile may be omitted. ·

REORGANIZE Syntax:

- REORGANIZE; --.;._,.-------------------------~

3-2

PURGE -,-- <data set> :J
. L <manual subset>

GENERATE

COPY----

< disjoint data set >

ORDERED .BY <index set>

<index sequential set> ---------------1
USING <same set>

<embedded structure > -------------

ALL --------.-- TO

< structure >

FINAL MEDIUM ------------------

FAMILYNAME =

< familyname > , COPY BACK

..__ __ TAPE

INTERNAL FILES = (FAMILYNAME DISK

L < familyna~e > J

PURGE Statement

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

PURGE takes precedence over all other reorganize functions. The <data set> and <manual subset>
fields are used to specify the structures to be purged.

PURGE causes all records from a data set to be removed or causes all relationships that have been
established for a manual subset to be broken. A purged structure still exists in the data base and has
the same structure number and version stamp it had before the reorganization, but there are no entries
in the structure.

A PURGE of a structure causes the structure's file to be reinitialized and all data to be removed from
the file. For an embedded structure, the parent is not purged. The structure head of the embedded
structure is set to null in the parent data record.

A PURGE of a data set causes an implicit purge of all its embedded structures and all index sets and
manual subsets that reference it.

GENERATE Statement

As a consequence of the normal updating of a data base, efficiency may deteriorate both in terms of
the amount of 1/0 required to access parts of the data base and· the amount of wasted disk space.
Although all structures return unused disk space to their available storage lists, there is no mechanism
within normal DMS processing for returning unused file areas to the system. Thus, if a structure with
a very large number of records subsequently is reduced to a more typical size, none of its unused
physical areas are returned to the system.

The GENERA TE statement is used to rebuild structures, compressing them and making the excess disk
space (unused file areas) available to the system. This operation also restores a structure to a more
efficient state, possibly eliminating integrity errors. The specific effect depends on the structure type.

Semantics:

<disjoint data set>
Records are read from the old data set and stored in the new one. The order in which the records
are placed in the new data set is guaranteed only if the ORDERED BY keywords are specified.
The <index set> field must specify the name of the set that spans <disjoint data set> . This set
cannot be logically changed (for example, key or ordering change) in the same reorganization.

<index sequential set>
The set is rebuilt either from the object data set (no USING option) or from the existing fine tables
(the USING option). With the USING option, the set is balanced, with SPLITF ACTOR entries
per table, but integrity errors (for example, entries out of order, data mismatch, dead object rec
ords) are carried over to the new data base. Without the USING option, the index is rebuilt by
reading the object data set. This is slower but integrity errors are corrected.

1152444 3-3

B 1000 Systems Data Management Systemll (DMSII)
Functional .Description Manual

Update and Reorganization

<embedded structure>
The name of an embedded structure (an embedded data set or a manual subset) is specified here.
Records belonging to each parent record in the old data base are found and stored into contiguous
tables in the new data base.

A GENERA TE operation on an embedded structure causes a generate of the parent structure to
be performed if the parent structure is also an embedded data set. If the parent structure is a dis
joint data set, it is re-created; that is, all records (including dead ones) are stored at their current
logical address in the new file. Addresses in sets or manual subsets of the disjoint data set parent
do not need fixing after this operation.

COPY Statement

The COPY statement controls file allocation during the reorganization process. By default, the files
created by the OMS/REORGANIZE program as a result of store operations into the temporary new
data base reside on the same pack as the files in the final new data base. The COPY statement over
rides this default and allows temporary files to be built on any pack or tape. At the end of the reorgan
ization process, the temporary file, with an appropriate name change, is copied to its permanent pack.

Semantics:

ALL, <structure>
The ALL keyword causes all temporary files needed during reorganization to be created on the
specified medium. <structure> is used to specify structures. If ALL is used and the data base
has a structure named ALL, only that structure is affected by the COPY statement.

FINAL MEDIUM
With this entry, all temporary files are built on the pack on which the final data base will reside.
This is the default for all generated and recreated structures.

FAMILYNAME

3-4

Entry of this keyword with the DISK option causes the temporary data base to be built on the
system pack. The < familyname> option causes the temporary data base to be built on the <fa
milyname > pack.

If COPY BACK is not included, the files built on the temporary pack are copied to the final medi
um only at the end of the entire reorganization process. With COPY BACK, the files are copied
to the final medium at the end of the reorganization process for each cluster, thus allowing the
temporary pack to be used again for the next cluster. In the latter case, the old copy of the file
is destroyed, which complicates matters if a logical failure occurs because reloading must be done
before the logical error can be resolved, either by redefining the reorganization or fixing the data.
Therefore, COPY BACK is recommended only when space is severely limited.

When COPY BACK is used, the same copy pack may be specified for two different disjoint clus
ters even if that pack is too small to hold both. (A disjoint cluster may be defined as a disjoint
data set and its related embedded structures and automatic sets.)

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

TAPE
This keyword causes the input structures to be read with the DMSII access routines and written
to tape in a special format. The structures are then deleted from disk, read back from tape, and
stored on the final medium. Because this is done on a cluster basis, the tape needs to be only
large enough to hold the largest cluster and may be reused for each succeeding cluster. The TAPE
keyword is intended for systems that do not have enough disk space for two copies of their largest
structure.

If the TAPE option is specified for a data set, it is implied for any embedded structures that are
generated. The TAPE option is not implied for a parent that needs to be generated as the result
of generating an embedded structure. The TAPE option cannot be specified for an index that is
used in an ORDERED BY statement in the generation of its data set.

Pragmatics:

A warning is included in the DMS/DASDL listing when the COPY option is specified on a structure
that is not being generated or recreated. A warning is also included when the TAPE option is implied
for an embedded structure. Address fixups, which are required in sets and manual subsets of generated
disjoint data sets, are done in place and require no additional disk space.

INTERNAL FILES Statement

The INTERNAL FILES statement controls disk file allocation for the XREF cross-reference file used
when the object of a manual subset is generated. By default, the XREF file goes to the system disk
(DISK). The XREF file contains 32 bits for each ordered record in any disjoint data set that is being
generated. Therefore, it can grow quite large when many disjoint data sets are generated in one reor
ganization.

OMS/REORGANIZE PROGRAM

After a successful DMS/DASDL update compile, the OMS/REORGANIZE program must be run to
effect the specified changes. The syntax of the command for executing the OMS/REORGANIZE pro
gram takes two forms:

Syntax (Form 1):

- EXECUTE OMS/REORGANIZE; AX <data base name>

> c ON < familyname > ~
< switch settings >

Syntax (Form 2):

COMPILE

L < familyname > J
<database> - OMS/REORGANIZE------

SYNTAX <switch settings>

.._--SY---

1152444 3-5

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

The entire data base must be backed up both before and after the program execution. The ON < fami
lyname > option is needed only if the data base dictionary resides on a user pack. The <switch set
tings> are optional. All switches default to a value of zero. Table 3-1 gives the possible values and
meanings for the various switches.

Table 3-1. DMS/REORGANIZE Program Switch Settings

Switch Value Description

1 0 Perform the reorganization.

1 Perform table analysis only.

2 Perform complete table analysis only.
This includes hex output of the table
entries, some of .which may seem irrel-
evant. Used for debugging.

2 0 Include table analysis in listing.

1 Exclude table analysis from listing.

3 1 Print· data before and after transform-
ations. Includes additional status in-
formation. May produce a huge listing.
Used to track data transformation
errors.

2 Print the same output as when SW3 = 1,
and print details on the tape creation
phase if COPY TO TAPE is used. Used to
track data transformation errors.

4 0 Print status messages on the line
printer.

1 Print status messages on the line
printer and display them at the ODT.

5 0 Stop at the first DMSII logical error
(for example, duplicates).

1 Continue beyond first logical error,
printing a message for each, but do
not create a usable data base.

6 1 Use the one-data-base mode. This means
only one data base is opened at a
time. All intermediate files are
built on disk before opening the new
data base files (as though TAPE was
specified for all structures and the
tape was file equated to disk). Used
for debugging.

3-6

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

Table 3-1. DMS/REORGANIZE Program Switch Settings (Cont.)

Switch

7

8

9

Value Description

0 The OMS/REORGANIZE program performs
all file copies.

1 The OMS/REORGANIZE program will not
change any files having only name or
pack changes, will not delete any
files that are to be deleted after
the reorganization, and will not per
form any library file name changes.

0 Printed output is in lower case.

1 Printed output is in upper case.

1 Enables pauses. A pause causes the
program to stop and wait for user
input.

One pause is built into the program
at a point following the loading of
the tables but preceding the . opening
of the data base. If enabled, this
provides an opportunity to return the
data base to its original state. The
user enters

<job #> AX RESTORE

This is useful if a prior run of the
OMS/REORGANIZE program aborts with a
restartable error but the user does
not wish to restart the program.

Other pauses, if included in the prog-
ram, are also enabled when switch 9 = 1.
These may be used, for example, to
allow dumps at appropriate points.

3-7

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

Reorganization Capabilities

The following two lists identify the capabilities and limitations of the reorganization. The first list in
cludes capabilities that require a change in the version stamp for the affected structure. The second
list identifies capabilities that do not require a change in the version stamp.

Reorganization Capabilities: Version Stamp Change Required

Ref er also to the subsection entitled Version Checking for a discussion of the changes that can affect
the version stamps for existing structures.

Addition of data items.
Data items may be added to existing data sets. These new items may be added to the fixed format
part as well as to the variable format part. New items within the fixed format part of a data set
may be REQUIRED or used as key items if an INITIAL VALUE clause is included in the descrip
tion of the item. If no INITIAL VALUE appears in an item description, a syntax error is generated
when the item is either declared with the REQUIRED keyword, or appears in a KEY clause. New
items added within a variable format part of a data set record may be REQUIRED if an INITIAL
V ALUE is included in the description of the item.

Movement of data items from fixed to variable format.
An item may be moved from the fixed format part to a variable format part within a data set
record. The data contained in that item is lost in any data set record which does not contain the
proper variable format part. Items cannot be moved from one variable format part to another
variable format part.

Movement of data items from variable to fixed format.
An item may be moved from the variable format part to the fixed format part. For records not
containing that variable format, the item in the fixed format will be initialized.

Deletion of data items.
Data items may be deleted from existing data sets.

Addition and deletion of variable format values.
New variable format parts may be added with new values. Existing variable format parts may be
deleted. During the reorganization, if any record contains that variable format part, the
reorganization will abort with a recovery error.

Changing of data item descriptions.
Field lengths may be increased or decreased, including the fraction and integer parts of numbers.
Key items of ordered manual subsets must not be changed.

Signs may be added to or dropped from numbers. Key items of ordered manual subsets cannot
be changed.

Occurrences may be changed (increased or decreased).

Item types may be changed except for RECORD TYPE items. The length of the RECORD TYPE
field may be changed. No variable format part may exist with a record type value that will not
fit within the shortened length. Key items of ordered manual subsets may not be changed.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

Changing of groupings and levels.
The groupings orlevels or both may be changed. The items must be used within the scope of the
same data sets in the old and the new data base.

Changing of data item ordering.
The ordering of the items may be changed.

Changing of set and automatic subset description.
Sets and automatic subsets may be deleted.

The duplicates clause may be changed.

Data items may be added to, or deleted from, a key specification.

The order of the key items may be changed.

Ascending and descending specifications on key items may be changed.

Index sequential sets may be changed to index random sets or automatic subsets.

Index random sets may be changed to index sequential sets or automatic subsets.

Automatic subsets may be changed to index sequential sets or index random sets.

The WHERE clause may change on an automatic subset.

Changes to embedded data sets and manual subsets.
Embedded data sets and manual subsets may be deleted, changed from ordered to unordered, or
changed from unordered to ordered. Manual data sets may be changed from ordered to unordered
only.

Key specifications may be changed on ordered embedded data sets: (1) Data items may be added
to or deleted from a key specification, (2) the order of the key items may be changed, (3) the
duplicates clause may be changed, and (4) ascending and descending specifications on key items
may be changed.

Changes to WHERE and VERIFY conditions.
WHERE and VERIFY conditions may be changed.

Reorganization Capabilities: No Version Stamp Change Required

Addition of sets and automatic subsets.
Sets and automatic subsets may be added.

Addition of embedded data sets and manual subsets.

Changes to populations.

1152444 3-9

B 1000 Systems Data. Management Systemll (DMSII)
Functional ·Description Manual

Update and Reorganization

Changes to structure attributes.
The following structure attributes may be changed:

AREAS
AREALENGTH
SPLITF ACTOR (reorganization not required)
TABLESIZE
MODULUS
BLOCKSIZE
FAMILYNAME
TITLE
SECURITYTYPE
SECURITYUSE

Garbage collection and purging.
Any structure that exists in both the old and new data base may be garbage collected (generated)
or purged.

Data Transformations

During the reorganization process, data items within a data set may change in size, type, off set, and
number of occurrences, subject to certain restrictions which are discussed later. lnorderto appear as
a change rather than as a deletion and addition, the item must appear in the same data set in the old
and new data bases and it must have the same name.

Addition and Deletion of Data Items

Data items may be added to or deleted from the description of a data set. When a data item i.s deleted,
the data associated with that item is removed from all records in the data set. When a data item is
added, a data field containing high-values (null) or the value specified in the INITIALVALUE clause
is inserted into all records in the data set. ·

Item Size Changes

Data item sizes may be changed. If the new size is greater than the old size,, then a filler is added
to the field in accordance with the rules outlined in table 3-2. Conversely, if the new size is less than
the old size, then data is truncated from the item. This condition is detected by the DMS/DASDL
compiler and a warning message is generated.

Signed Data

Sign fields may be added to or deleted from a numeric data item. Deletion of a sign· field is detected
by the DMS/DASDL compiler and. a warning message is generated. A positive sign is generated for
existing items which have a sign added.

3~10

Occurrences

B 1000 Systems Data Management Systemll (DMSll)
Functional Description Manual

Update and Reorganization

The number of occurrences of a, data item may be changed. If the number of occurrences decreases
in the new data base, only the first n occurrences are moved to the new record, where n is the number
of occurrences of the data item in the new data set record. This condition is detected by the
DMS/DASDL compiler and a warning message is generated. If the number of occurrences increases
in the new data base, only the first m occurrences have data moved into them from the old data set
record, where m is the number of occurrences of the data item in the old data set record. The remain
ing occurrences of the item are set to null.

'
The nesting of occurences can go to three levels in the DMS/DASDL source file. If an item is nested,
its number of occurrences is computed by multiplying the number of occurrences of all its outer levels.
All data items are transformed on an elementary level basis. If a change is made to the number of
occurrences at the group level, this has the effect of changing the number of occurrences of all of the
elementary items within that group, and transformation is done on that basis.

Regrouping of Data Items

The groupings or levels of data items may be changed, subject to the following restrictions:

1. Regrouping of data items cannot cause data to be duplicated.

Example:
Old Grouping

A GROUP
(B ALPHA(l);
C ALPHA(l));

New Grouping

A ALPHA(2);
B ALPHA(l);
C ALPHA(l);

In the example above, the data represented by A is duplicated in the new definition since B
and C both contain data contained in A. Therefore, the above regrouping would not be allowed
by the DMS/DASDL compiler.

2. Regrouping of items cannot cause multiple mapping of information into an item. This regroup
ing would occur if the new definition were transformed into the old definition in the previous
example.

Item Type Changes

Item types may be changed. The only restriction here is that a decimal or signed decimal item may
not be changed to an elementary alpha item (a COBOL rule).

1152444 3-11

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

Data Transformation Rules

When the DMS/DASDL compiler detects that an item must be transformed, it effe~tively generates
a MOVE which conforms to the COBOL conventions. The rules for data transformations are shown
in table . 3-2.

Table 3-2. Data Transformations

...:.. ..:..
· ..

Truncation or
Space Zero Zero

Move Fill Fill Fill Generate
on on on Truncate Positive

From To Right Right Left Sign Sign Tr~nslate

Group Group x
Group Alpha x
Group Signed int. x x x
Group Integer x x
Group Signed dee. x x
Group Decimal x x
Alpha Group x
Alpha Alpha x
Alpha Signed int. x x

'
x

Alpha Integer x x
Alpha Signed dee. x x x
Alpha Decimal x x
Signed int. Group x x x
Signed int. Alpha x x x
Signed int. Signed int. x
Signed int. Integer x x
Signed int. Signed dee. x
Signed int. Decimal x x
Integer Group x x
Integer Alpha . x x .
Integer Signed int. x x
Integer Integer x
Integer Signed dee. x x
Integer Decimal · x

..
Signed dee. Group x x
Signed dee. Alpha *Error*
Signed dee. Signed int. x
Signed . dee. Integer x x
Signed dee. Signed dee. x
Signed dee. Decimal x x
Decimal Group x
Decimal Alpha *Error*
Decimal Signed int. x x
Decimal Integer x
Decimal Signed dee. x x
Decimal Decimal x

int. = integer. dee. = decimal.
3-12

Version Checking

B 1000 Systems Data Management Systemll (OMSII)
Functional Description. Manual

Update and· Reorganization

Each structure and remap has a version associated with it that reflects the last time that a change was
made to the logical description of that structure. For programs containing descriptions of that structure
with an earlier version, a version error results if an attempt is made to use that program to open the
data base .. A recompilation of the program is required to bring it up to date with the current descrip
tion. of'that structure. This recompilation must take place after the successful completion of the reor
ganization process. The version of a structure is contained in both the library files and the data base
dictionary. A OASDL update compile causes a new dictionary and library file to be created, but until
the OMS/REORGANIZE program is run, they have temporary names (and for the dictionary, tempo
rary contents) and will not be used by OMSII or COBOL.

Some of the changes that are allowable with reorganization require that the versions of some of the
structures change. The user must be aware of any changes requiring recompilation of existing programs
and the magnitude of the recompilation effort required before making any changes to the data base.
The OASOL UPDATE listing summarizes the version changes (requires 11.0.8).

The following rules determine version change~.

1. If any of the data or group items in a data set change or the VERIFY clause changes, then
the version of that data set and all sets and subsets that reference it change.

2. If a set or subset logical description changes, that set or subset version must change.
3. If the WHERE condition on an automatic subset changes, that subset version must change.
4. If an embedded data set changes from ordered to unordered, or from unordered to ordered,

if any of the data or group items in the data set change, or if the key items of the access set
change, then the version of the embedded data set must change.

Any user program accessing a structure in which the version has changed must be recompiled. All the
reorganization capabilities that require version changes were listed earlier, under the heading
Reorganization Capabilities: Version Stamp Change Required.

File Naming Conventions

Both OMS/OASOL and OMS/REORGANIZE generate a number of temporary disk files that are used
during the reorganization process of a data base. The user should avoid naming the files in such a
way as to conflict with the names of these temporary files.

A temporary copy of the data base dictionary has the following name:

<data-base-pack>l2<new data base name>/OICTIONARY

<data-base-pack> and <new data base name> come from the COMPILE statement specified
in the DMS/DASOL compilation.

Structures that are rebuilt through OMS are created in files named as follows:

2 <new data base name> /REORG- <structure number>

These files reside by default on the final medium but may be reassigned by means of the COPY
·statement.

1152444 3-13

·• B 1000 Systems Pata Management Systemn (DMStl)
Functional Description Manual ·

Update and Reorganization

The tape file is named REORG/<old data base name>.

The libraries that are associated with the new data base after the DMS/DASOL reorganize run are
named according to the conventions described in the following para~raphs. ·

COBOL libraries are named as follows:

<data base pack> /3 <new data base name> I< structure name>

RPG libraries are named as follows:

<data base pack> I 4 <new data base name> l< structure name>

The reorganization control file created by DMS/DASDL describes the reorganization operations to the
OMS/REORGANIZE program. This file is named as follows:

<data base pack>/2<new data base name>/REORG-CNTL

The XREF file, if needed, is named as follows:

2< new data base name> /XREF

The XREF file resides on the system pack by default but may be reassigned by means of the IN
TERNAL FILES statement.

Index Sequential Balancing Algorithms

The OMS Access Routine (OMS/ ACR) is used for most of the file creation performed by the
OMS/REORGANIZE program. However, to increase efficiency, the index sequential balance is per
formed independently of OMS/ ACR.

Balancing is called for when the GENERA TE <set> USING <set> syntax is used, or if only the
block or area size has changed in the new index.

To balance the index sequential set, the OMS/REORGANIZE program reads most of the old and new
file parameters directly from the dictionaries, rather than using the ones in the control file. It first
builds the new fine table level from the old fine tables, loading each table SPLITF ACTOR full. If
the addresses are to be fixed up, then this is done as the fine tables are loaded.

Each higher level is made by reading the previous level and making another level that indexes it, again
filling the tables SPLITF ACTOR full, although the last table in each level may be more or less full.
This is repeated for as many levels as required until one table is created on a level. This table becomes
the new root table, and the next table contains the new NA and HO. These values are placed in the
File Control table and the dictionary fixer puts them in the new dictionary at the end of the reorganize
process.

3-14

------·-~----"--------

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

Abnormal Conditions

The OMS/REORGANIZE program may terminate before completion as the result of external or inter
nal causes. For externally initiated terminations (for example, aborts, clear/starts, and the like), the
reorganization is restartable.

I~tedially initiated terminations may result from any of four categories of abnormal conditions. In all
cases, the program notifies the user whether or not it can be restarted. The four categories and the
particulars of restarting follow.

Data base description errors
The reorganization is not restartable.

System hangs
The reorganization is restartable.

1/0 errors
The reorganization is restartable unless the 1/0 error is on the temporary data base dictionary la
belled 2<data-base-name>/DICTIONARY, or in the control file.

Reorganization program errors
Program errors due to stack overflow and insufficient dynamic memory or overlay disk are restar
table. The MS, MV, or VI, as applicable, should be increased.

Non-Restartable Conditions

The reorganization process has two phases. In the first phase, the new data base is built and no modifi
cation is made to the existing data base unless COPYBACK is used. In the second phase, the
reorgariization removes, modifies, and adds files. If the reorganization terminates in this second phase
and. the reorganization is not restartable, the user will need to reload some data base structures from
the backup copy. The process displays and writes to the line printer file all structures and their required
versions that must be ·reloaded.

If the abnormal condition was a data base description error, the user must also make appropriate
changes to the DMS/DASDL source file before attempting reorganization again. Possible description
errors are:

1. Duplicates occurred but were not specified as allowed in the new data base.
2. A LIMITERROR occurred on a file in the new data base.
3. A DATAERROR occurred because of a failure to meet the REQUIRED, WHERE, or VERIFY

conditions specified in the new data base, or a variable format record type was wrong.

If any of these description errors occur during reorganization, the Data Base Administrator (OBA)
must change and recompile the DMS/DASDL source file, or correct the offending records in the data
base to begin the reorganization process again.

1152444 3-15

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Update and Reorganization

Restartable Conditions

If a restartable exception error occurs during the reorganization process, the listing generated by the
reorganization program should be consulted to determine what phase of the reorganization was in pro
cess at the time of the exception and what actions, if any, need to be taken before re-executing the
OMS/REORGANIZE program. The following paragraphs describe the possible situations which might
arise and any additional action which the user may have to take.

1. If the OMS/REORGANIZE program was in the process of changing the number of areas for
an existing file (the message BUMP AREAS FOR < str# > appears in the listing followed by
one or more file names, and the message END BUMP AREAS FOR < str# > does not appear
in the listing), then the file that was being changed must be reloaded from backup.

2. If the exception condition occurs after the OMS/REORGANIZE program has removed the old
data base dictionary, but before the name of the temporary dictionary has been changed, the
user may change the name, and it is not necessary to restart the reorganization programs.

3. If the exception occurs while REORGANIZE is fixing up an existing file, that file must be re
loaded. REORGANIZE will display the filename and necessary version after it is re-executed.
This state may be recognized from the lineprinter listing (or the ODT log if SW4 = 1) because
the message

** FIXUP OF OLD FILE <number> **

will have been written, but no END FIXUP message will have followed it.

System Requirements

Depending on the specific functions of reorganization being requested, the demands upon the system
in terms of memory, time, and disk space can be extremely high. Users should be aware of these re
quirements before attempting a reorganization which may not be able to complete in a given time frame
or which requires more disk space or memory than is on the system. The requirements for reorganiza
tion, including memory, time, and disk space, are discussed in the following paragraphs, in terms of
the type of reorganization to be done.

Purge_

The impact of purging a structure is minimal. The purge process normally consists of opening the first
area of the file containing the structure and adjusting the Next Available and Highest Open (NAHO)
information for that file within the data base dictionary. For index random structures, all base tables
are initialized. A purge of an embedded structure requires reading, and writing, each parent record
in place in order to NULL the listheads.

Generation of a Data Set or Manual Subset

A structure may be generated either explicitly or implicitly. Before running the reorganize program,
the user should check the DASDL/UPDATE listing to see what will be done. Some of the implicit
generations are not obvious.

Reorganization of a data set, whether caused by a change in its description or by an explicit GENER
A TE, results in the unloading of the data set from the old data base and reloading it into the new
data base. This procedure is used to reorganize both disjoint and embedded data sets. Additionally,
manual subsets are unloaded from the old data base and reloaded into the new data base.

3-16

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Update and Reorganization

The amount of time, disk space, and memory required for this process is approximately the same as
if the user were to write programs to unload and reload the data set, although there are some tools
available to the user to reduce these requirements. These tools are discussed in the following
paragraphs. ·

1. The DMS/REORGANIZE program is very sensitive to dynamic memory and should be
executed with as much memory as possible. The user must consider the amount of memory on
the system, as well as the amount of memory required by the DMSII system to process the
two data bases which are active at the time of the reorganization.

2. There must be two copies of a data set present on disk at the time of the reorganization pro
cess. If there is insufficient disk space available on the disk pack on which the data set file
normally resides, an intermediate work file can be assigned to another disk pack by using the
COPY syntax. If space restrictions are severe, the COPY BACK or COPY TO TAPE syntax
may be used.

The time required for a reorganization of a data set should be slightly longer than that of the original
load, but of the same order of magnitude. The factor that determines how much longer the reorganiza
tion takes is the amount of reorganization required.

Balance of an Index Set or Subset

As in the case of reorganization of a data set, there must be enough disk space available to hold two
copies of each file to be balanced. If there is insufficient disk space available, the COPY statement
may be used to specify an intermediate work pack to the DMS/DASDL compiler.

11524441 3-17

!

'

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 4
AUDIT AND RECOVERY

The DMSII audit and recovery system consists of the following: (1) code within the operating system
(MCPII) to audit all updates to a data base, (2) the DMS/RECOVERDB program, which processes
this audited information to restore the data base integrity that has been compromised by a user pro
gram failure, a system error, or a hardware malfunction, and (3) the DMS/ AUDIT ANAL Y program
that decodes and prints relevent audit information. The audit and recovery process is designed to ac
complish the audit task faster and with much less user effort (programming as well as operational)
than would be required by any user-written recovery procedure.

SVNT AX ELEMENTS

The following DMS/DASDL syntax elements are needed to implement audit and recovery in a DMSII
data base, as described in the B 1000 Systems DMSII Data and Structure Definition (DMS/DASDL)
Language Manual.

1. Audit trail
2. Restart data set
3. Transactions
4. Syncpoint
5. Control point

Audit Trail

The audit trail is a history of all updates performed on a data base. It consists of a file, or series
of files, containing one record for every change to the data base.

In creating the audit trail, there are usually several distinct changes to the data base, and therefore
several audit records for any single DMSII update operation such as STORE or DELETE. For exam
ple, when a new record is stored in a data set, the DMSII system must audit, in addition to the simple
store of the record, such things as the space allocation for that record, the insertion of the key fields
into all of the paths which reference that record, and any index table allocation or table splitting which
is done to complete those inserts.

Operationally, the DMSII system uses two buffers for the audit trail, which are written out
automatically when they are filled.

Additionally, when a syncpoint occurs, any updated audit buffers in memory are written out whether
or not they are full. Refer to the discussion of syncpoints in the subsection entitled SYNCPOINT.
Audit records can overlap physical blocks.

The audit trail can be assigned to either disk or tape. If disk is to be used, then the disk pack or
cartridge on which the audit trail resides should not contain any other data base files since the failure
which corrupted those files could also corrupt the audit trail, making recovery impossible.

1152444 4-1

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Audit and Recovery

Restart Data Set

Every data base which uses audit and recovery must include exactly one restart data set. This data
set is physically the same as any other data set and is treated as a simple data set by both the DMSII
system and the DMS/RECOVERDB program. Logically, this data set is the means by which a user
program can determine if a recovery has occurred and to what point the data base has been recovered.
Additionally, the user data fields within the restart record are to be used to maintain the information
necessary to restore the program's own internal data to the point of the recovery.

Transactions

A transaction is a series of DMSII operations which can or cannot update a data base. Within a user
program, this series of operations must begin with the begin-transaction (BEGIN-TRANSACTION verb
in the COBOL and COBOL74 languages and TRBEG operation code in the RPGII language)
operation. Upon execution of a begin-transaction operation, a program is in transaction state. A pro
gram must perform all of its updates to an audited data base while in transaction state. To leave trans
action state, a program must perform an end-transaction (END-TRANSACTION verb in the COBOL
and COBOL 74 languages and TREND operation code in the RPGII language) operation. Transaction
state is used for the functions described in the following paragraphs.

Completion of a Single Transaction
A program uses the end-transaction operation to notify the DMSII system that all updates that
comprise a single transaction have completed. If a program aborts (goes to EOJ or is DSed or
DPed by the MCPII while it is in transaction state), the DMSII system assumes that a transaction
is incomplete, thereby jeopardizing the status of the data base. The DMSII system must mark such
a data base as requiring recovery. An EOJ or DS of a program not in transaction state does not
affect the status of the data base.

Closing a Data Base
No program can close the data base, either implicitly or explicitly, while another program is in
transaction state.

Program Aborts in Transaction State
If a DMSII program aborts while in transaction state, the DMSII system cannot allow the
DMS/RECOVERDB program to begin while other programs are still in transaction state. Refer
to the subsection entitled Program Abort Recovery for mor information.

Audit Function

4-2

The DMSII system performs a store operation on the restart data set record of the program when
ever the audit function is requested. The audit function is invoked for a begin.:.transaction
operation by specifying the AUDIT option with the BEGIN-TRANSACTION verb for the COBOL
and COBOL74 languages and leaving the FACTOR 2 field blank with the TRBEG operation code
for the RPGII language. The audit function is invoked for an end-transaction operation by specify
ing the AUDIT option with the END-TRANSACTION verb for the COBOL and COBOL74 lan
guages and· leaving the FACTOR 2 field blank with the TREND operation code for RPGII pro
grams. It is the store operation to the restart data record of the program which allows the program
to save any information that is needed to restart itself in the event of a recovery. Because of this
implied store operation, each program must establish a locked record within the restart data set
by performing either a lock, create, or recreate operation prior to the first begin-transaction or
end-transaction operation specifying the audit option.

· B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Audit and Recovery

NOTE
·As stated above~ the restart data set is treated as a simple data set by both
the DMSII system and the DMS/RECOVERDB program. It is through this
implied store operation at either begin-transaction or end-transaction
operation with the AUDIT function set that the contents of the restart record
get audited and can be subsequently restored by the DMS/RECOVERDB
program as part of the overall recovery process.

Counting Transactions and Syncpoints
The DMSII system counts the number of transactions which have occurred in order to perform
syncpoints and controlpoints.

Syncpoint

A syncpoint operation is a quiet point, a time at which no programs are in transaction state and updat
ing the data base. Since there is no update activity occurring at this time, syncpoint operations serve
as reference points for both the DMSII system and the DMS/RECOVERDB program. This insures that
changes on either side of the syncpoint are logically and functionally independent of each other. Refer
to the subsection entitled Forms Of Recovery for a description of the use of both syncpoints and con
trolpoints by the DMS/RECOVERDB program.

A syncpoint operation occurs when the number of transactions specified to the DMS/DASDL compiler
have completed. The number of transactions per syncpoint can also be changed through use of the
SM system command. For more information, see SM system command in section 5 of the B 1000 Sys
tems System Software Operation Guide, Volume 1. When the required number of transactions has oc
curred, the DMSII system writes a syncpoint audit record to the audit trail and forces any updated
audit buffers to be written out; if any programs are in transaction state, the syncpoint cannot occur
until those programs have performed an end-transaction operation. Also, no program can enter trans
action state until the syncpoint operation has completed. After the syncpoint operation has completed,
the DMSII system increments the syncpoint count in order to determine when the next controlpoint
should be performed.

In addition, the DMSII system forces a syncpoint operation whenever a program closes the data base,
or when a program abort occurs. The programmer can also request a syncpoint operation at an end
transaction operation. Each of these types of syncpoint operation is handled in the manner previously
outlined.

Finally, whenever the number of programs in transaction state returns to zero, the DMSII system per
forms a pseudo-syncpoint operation. In this case, the syncpoint record is written to the audit buffer
in memory, but none of the other syncpoint functions occur. The audit buffers are not forced out,
nor are the transaction or syncpoint counts affected. To the DMS/RECOVERDB program, this pseu
do-syncpoint operation is indistinguishable from a true syncpoint operation, so that the amount of data
between syncpoint operations and, therefore, the amount of data which might be backed out by a re
covery operation, can be significantly reduced.

1152444

NOTE
Although the programmer should be aware of the existence of pseudo-sync
point operations and their functions in reducing the amount of data which
might be backed out, the programmmer should not rely on their occurrence
since it is not possible to determine if or when a pseudo-syncpoint operation
has occurred, except in a single programmming environment; it is also not
possible for the programmer to determine when an audit buff er containing
a pseudo-syncpoint record is full, and therefore written out.

4-3

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Audit and Recovery

Controlpoint

A controlpoint operation is a special type of syncpoint operation which only occurs when the syncpoint
count has reached the number specified to the DMS/DASDL compiler. This parameter can also be
modified by the SM system command. After the DMSII system has completed such a syncpoint
operation, it forces to disk the data buffers that were updated prior to the last controlpoint record
but have not yet been written.

Also, the DMSII system maintains a series of fields, called the Next Available and Highest Open
(NAHO) fields, for each file in the data base. These NAHO fields, which are stored within the data
base dictionary, control the allocation and deallocation of disk file space. At a controlpoint operation,
any NAHO field updated prior to the last controlpoint record can also be written out to the dictionary.
These processes insure that no updated buffer or NAHO field will remain in memory for more than
two controlpoint records without being written to disk. After all of these write operations have com
pleted, a controlpoint record is also written to the audit trail.

FORMS OF RECOVERY
The recovery program, named DMS/RECOVERDB, is invoked by the RC system command. For more
information, see RC system command is section 5 of the B 1000 Systems System Software Operation
Guide, Volume 1. At BOJ, this program reads up the data base dictionary and determines from the
information contained in the first segment, called the OMS GLOBALS, which of the following three
main types of recovery operation is to be performed:

1. Program abort recovery
2. Clear/start recovery
3. Dump recovery

The operator can request a form of recovery known as a partial dump recovery by specifying a list
of the files that are to be recovered.

Program Abort Recovery

A program abort recovery operation is required whenever a program is aborted by the operating system
(MCPII) or goes to EOJ while in transaction state. When this occurs, all inquiry programs are sus
pended at their next DMSII operation and marked as waiting recovery; the only exception to. this is
the close operation, which the DMSII system allows to complete. The update programs which are not
in transaction state at the time of the program abort are also suspended at their next DMSII operation.
Any update program which is in transaction state is allowed to complete that transaction before being
suspended. If such a program performs an end-transaction operation with syncpoint at this time, an
ABORT DMSTATUS exception is returned immediately and the syncpoint operation is not performed.
When all programs in transaction state have performed an end-transaction operation, the DMSII sys
tem ·forces a syncpoint operation, performs a pseudo-close operation on the data base, and then gener
ates the RC system command.

Upon recognizing a program abort, the DMS/RECOVERDB program finds the end-of-file (EOF) for
the current audit file and processes backward from that point, backing out all updates which occurred
between the program abort and the last valid syncpoint record.

4-4

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Audit . and Recovery

NOTE
Since the DMSII system forces a syncpoint operation prior to the pseudo
close operation, the DMS/RECOVERDB program expects a syncpoint record
at the end of the file. This syncpoint record is ignored, as is the controlpoint
which could have been generated by this syncpoint operation.

All of the updates must be backed out for two reasons:

1. There is no way to identify the program responsible for a particular audit record or to single
out the records generated by the program that aborted.

2. Another program which was in transaction state at the time of the program abort could have
processed data which was in some way affected by the program abort.

After the updated records have been backed out, the DMS/RECOVERDB program issues a special
communicate to the operating system (MCPII) informing it that all programs waiting for recovery can
be restarted.

An ABORT DMSTATUS exception is returned to every update program which had completed any·
transaction prior to the program abort; this exception is returned at the next begin"'.'transaction
operation, the next END TRANSACTION with sync, or when those programs attempt to close the
data base.

NOTE
Whenever a program receives an exception on any DMSII operation, that op
eration has not been performed. In the case of an ABORT exception, if the
operation was a begin-transaction operation, the program is not in transac
tion state. If the operation was a close operation, the data base is not closed.
The only variation from this is when the operation is an end-transaction oper
ation in which case the DMSII system completes the end-transaction
operation, but the update is subsequently backed out by the
DMS/RECOVERDB program in spite of the requested syncpoint operation.

Upon receipt of an ABORT exception, a program should locate and lock its restart record and take
whatever action is necessary to restart itself, based on the information contained in that restart record.
Programs that opened the data base INQUIRY are not notified of the recovery operation.

When any program attempts to open a data base while a recovery operation is required or in process,
the DMSII system suspends that program either at data base open time if the data base is inactive
or at the first DMSII operation after the open operation if the data base is currently active. Such a
program is reinstated at the completion of the recovery operation.

1152444 4-5

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Audit and Recovery

Clear/Start Recovery

The clear/start recovery operation is required whenever a clear/start operation occurs while a data base
is being updated or a FATALERROR Exception occurs. When a program attempts to open such a
data base, clear/start recovery is initiated automatically. For a clear/start recovery, only those files
which need recovery are accessed.

As in the case of program abort recovery, the DMS/RECOVERDB program must back out all updated
records between the end of the audit trail and the last syncpoint record. However, because of the
clear/start operation, no close operation was performed on the data base, as is done at a program
abort; therefore, the recovery operation must insure that all updated records prior to that last syncpoint
operation have been written to the data base. Since an updated DMSII buffer can remain in memory
as long as two controlpoint operations before being written out to disk, the DMS/RECOVERDB pro
gram must process backward through the audit trail until it has encountered two controlpoint records
or data base open, and then reapplies all changes from that point forward to the last syncpoint record.
After that has been done, the DMS/RECOVERDB program restarts any programs that may be waiting
for the recovery operation to complete.

Dump Recovery

A dump recovery restores a data base to a given state based upon a previous copy of the data base
and all of the audit files which were created between that copy and the desired state. The copy present
at the beginning of the process must represent an inactive data base which was successfully closed. The
copy itself cannot require either program abort or clear-start recovery. A dump recovery operation
might be needed for one of the four reasons described in the following paragraphs.

1. A system failure has occurred which precludes the execution of a clear-start recovery operation.
The failure could be a corruption of the data base dictionary or the entire disk on which it
resides. An I/O error on a write operation to any portion of the data base requires a dump
recovery to recover the data base.

2. Either a clear-start or program abort recovery has been unable to successfully complete. For
example, an I/O read or write error has occurred during the recovery operation, or the audit
trail cannot be read or contains records that are invalid. In the latter two cases, a dump recov
ery operation can only restore the data base up to the last syncpoint record prior to the error
in the audit trail.

3. A hardware failure has occurred, corrupting some or all of the data base. This failure
have occurred at any time, not just while the data base was active.

4. An error in a program has corrupted data, and it is necessary to restore the data base to a
point prior w the execution of that program.

To initia~. a dump recovery operation, the operator must load a backup copy of the entire data base,
including the '.f:i. base dictionary, and then enter the RC system command.

4-6

NOTE
A data base should be backed up, whether to tape or disk, only when the
data base is not opened update. An attempt to copy an updating data base
can cause the backup process to fail, or result in an unusable copy of the
data base after an apparently successful backup.

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Audit and Recovery

The DMS/RECOVERDB program reads forward through the audit traiJ, applying all of the changes
against the old data base. Each time the DMS/RECOVERDB program encounters an end-of-file record
in the audit file, it attempts to open the next sequentially labelled audit file. If this file is not present,
the following message is displayed:

IF <db-name> I AUD ITnnnnn is availabie for recovery, then enter 11 Y", else enter "N"

If the file requested does not exist, the operator enters N, and the recovery process is complete" If
the file does exist, the operator makes it present and enters Y; recovery proceeds at that point. If nei
ther Y nor N is entered, or if Y is entered and the file is still not present, the DMS/RECOVERDB
program repeats the message, looping until the appropriate response is entered or the file is present
or both.

NOTE
Because of the mechanism used by the DMS/RECOVERDB program to de
termine what type of recovery operation to perform, if recovery is ever in
voked unnecessarily, the DMS/RECOVERDB program attempts to perform
a dump recovery operation and the preceding message immediately appears
at the ODT. The proper response by the operator is to enter N, which causes
the DMS/RECOVERDB program to terminate. At no time should the
DMS/RECOVERDB program be DSed or DPed.

If DMS/RECOVERDB aborts with a stack overflow condition or is discon
tinued because Y was erroneously entered when no other audit file existed,
then the data base is marked as irrecoverable. To override this, the
DMS/RECOVERDB program must be re-executed with switch 3 = 1:

RC <data-base-name> ;SWITCH 3=1;

This course of action avoids the need for a dump recovery operation.

If a program abort record is encountered, dump recovery operation is temporarily suspended, and pro
gram abort recovery must be performed. When this is complete, dump recovery operation is resumed
starting with the next audit file. Similarly, when the DMS/RECOVERDB program encounters the end
of-file record in the audit trail, one of three following conditions must be true:

1. The last record in the file was a data base close record.
2. The last record was a program abort record.
3. The first record in the next file represents a continuation of the file just processed; that is, the

next file does not begin with a data base open record.

If none of these are true, it implies that a clear/start operation was the cause of the end-of-file record
in the audit file, and program abort recovery must be performed at this time. Clear-start recovery is
not necessary since the changes between the last syncpoint record and the prior two controlpoint rec
ords have already been applied. After the backing out of the records is complete, the dump recovery
operation is resumed with the next audit file.

If any condition arises which makes it impossible for the DMS/RECOVERDB program to proceed (for
example, a read error on the audit file), then it must. back out aU changes from that point to the last
syncpoint record. The following message is then displayed on the ODT:

INCOMPLETE RECOVERY ON <db-name> - AUDIT FILES WHOSE NUMBERS ARE
GREATER THAN nn SHOULD BE PURGED OR REMOVED NOW

The data base is restored only to the point of the error.

1152444 4-7

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Audit and Recovery

Partial Dump Recovery

The partial dump recovery operation is a special case of the dump recovery operation, which can be
performed when the operator knows that only a subset of the files within the data base, excluding the
data base dictionary, need to be recovered, as in the case of a hardware failure on a single disk drive.
Before initiating the partial dump recovery operation, the operator must load the backup copies of the
files to be recovered. The current data base dictionary must be present, as well as another copy of
the dictionary, labelled <data-base-name>/OLD-DICT, which is of the same version as the files to
be recovered.

To initiate the partial dump recovery operation, the list of files to be recovered is appended to the
RC system command. The user must specify the complete file name to be recovered, including pack
id, if the file resides on a user pack, and data base name. For example, if the user wishes to initiate
a partial dump recovery on two files named FILE! and FILE2 which reside on a user pack named
USER, and the data base is named DB, the following command is used. Assuming the data base dic
tionary resides on the system pack, the user enters:

RC DB USER/DB/FILEl USER/DB/FILE2

Assuming the data base dictionary resides on a user pack named USERl, the user enters:

RC DB ON USERl USER/DB/FILEl USER/DB/FILE2

The DMS/RECOVERDB program only processes changes against the structures stored in those files,
automatically terminating when the specified files have been brought up to the same version as the
remainder of the data base. If either a clear-start recovery or a program-abort recovery operation is
required at the end of the last audit file, it is performed against the entire data base. If any condition
occurs that forces an incomplete recovery, a full dump recovery operation must then be performed.
The data base is unusable at that point.

Write Errors and Partial Dump Recovery

A write error only affects a particular file and its immediate offspring. For example, a write error on
an index prevents updating of its data set. Processing against. the rest of the data base can continue.
The write error can be cleared by running partial dump recovery against the affected structure. Any
attempt to access a structure that has had a write error results in an IOERROR exception being re
turned to the program.

4-8

NOTE
A write error to the data base dictionary still renders the entire data base un
usable and requires a full dump recovery.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Audit and Recovery

THROUGHPUT CONSIDERATIONS

Depending on the amount and types of update activity being performed on a data base, the overhead
involved in auditing updated records can become very substantial. However, by adjusting the settings
of the various physical parameters of the audit system, total amount of overhead required to audit
a given data base may be minimized, with consequent improvement in total sytsem throughput. The
following parameters may be adjusted:

Audit file media
Audit block size
Duration of transactions
Settings for syncpoints and controlpoints

Audit Media

The amount of time spent waiting for audit buffers to be written can comprise a significant amount
of the total audit overhead. It is possible, through the settings for syncpoint records and audit block
size, to reduce the number of write operations which occur. In addition, to minimize the time actually
spent waiting for these 1/0 operations to complete, the audit files can be assigned to the available de
vice with the highest transfer rate and, in the case of disk, the lowest latency rate. If a disk drive with
no other data base files is available, the audit files can be assigned to that disk.

Audit Block Size

One major effect of the size of the audit block is the frequency with which non-syncpoint write
operations of the audit buffers occur. As the size of the audit block decreases, the probability increases
that any given audit operation can fill an audit buffer, forcing it to be written out. If the other audit
buff er is already in the process of being written out when the current buffer fills, the DMSII must
wait for the first 1/0 operation to complete before it can proceed.

For example, assume a restart data set record 200 bytes in length. Since auditing of an update to a
data set record includes a before and after image of the record, the begin-transaction and end-transac
tion operations alone consume over 400 bytes each in the audit trail. Even with a minimum amount
of updating within a transaction operation, the default audit block size of 1800 bytes can be filled by
as few as two transaction operations.

Therefore, in order to minimize the number of physical write operations to the audit trail, the setting
for block size must be no smaller than the default. If the setting is much less than the default, an
audit buff er will be filled by any single transaction.

A second major effect of audit buff er size is on the length of time required for syncpoint I/O
operations. Optimally, syncpoint 1/0 operations generate a small percentage of the total number of
write operations to the audit file. If this is true, the amount of time spent at a syncpoint operation
waiting for a partially-filled audit buffer to be written is insignificant. If syncpoint operations occur
rather frequently, or if the great majority of update operations being performed require very little audit
space, then it is possible for syncpoint 1/0 operations to become a large enough fraction of the total
write operations to the audit file to noticeably affect throughput as a result of the time taken by the
I/O operations. This problem can be corrected by increasing the number of transaction operations per
syncpoint operation.

1152444 4-9

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Audit and Recovery

If the Data Base Administrator (DBA) has reasons for maintaining a relatively low setting for the num
ber of transaction operations per syncpoint, then the size of the audit blocks must not exceed the de
fault setting of 1800 bytes, particularly if the update programs use data comm, because response time
is critical in an on-line environment. If syncpoint operations are not frequent and the update operations
do not need much audit space, then it is possible, in batch environments, to significantly increase
throughput by doubling or even tripling the audit block size.

A third major effect of audit block size is on memory utilization. Each time an audit operation occurs,
the DMSII ·system increments an audit serial number, which is stored within the globals for the data
base. There is another field within the globals, called the unreleased audit serial numb~r; each time
an audit buff er is written, this field is updated to reflect the ending audit serial number for that buffer.
Additionally, there is an audit serial number associated with each DMSII data buff er which is set to
the current audit serial number whenever a buffer is updated. By comparing the audit serial number
of the data buffer with the unreleased audit serial number, the DMSII system can insure that no update
operations are physically written to the data base until the audit records corresponding to those update
operations have been written to the audit trail; hence, if a failure occurs, no portion of the data base
is newer than the audit trail, which would render the data base irrecoverable.

As the size of the audit buffers increases, the frequency with which those buffers are written out de
creases. Because of the unreleased audit serial number mechanism, increasing the length of the audit
buffer also increases the length of time which a data buff er must remain in memory, thereby requiring
more memory to process the data base. Therefore, the DBA should be aware that although larger audit
buffers can improve throughput by minimizing the amount of time spent waiting for audit I/O
operations, there is also a chance that such a gain can be more than off set by memory thrashing. Be
cause of this, extremely large audit buffers (larger than 3500-4000 bytes) must be avoided on all but
the largest systems. Even on these, if a high degree of memory utilization already exists, very large
audit block sizes must be avoided.

Logical Transactions

The concept of a logical transaction is very important in the coding of application programs. The be
gin-transaction and end-transaction operations must occur immediately before and after, respectively,
every update operation to a data base which is the result of a common input, rather than every single
update operation. Each begin-transaction/end-transaction pair also cau~es a store operation to the re
start data set, assuming that the AUDIT option is specified on one or the other of the begin-transaction
or end-transaction operations. Since each store operation is audited, the grouping of logically related
update operations into a single transaction can greatly reduce the total auditing overhead needed, in
terms of both time and audit file space. Also, the use of logical transactions can simplify the coding
effort for the reasons described in the following paragraphs.

4-10

1. The amount of coding needed to perform a restart is minimized, since the DBA does not need
to be concerned with the possibility of partially complete logical transactions and the necessity
to back them out.

2. At the end-transaction operation, the DMSII performs an implicit free operation on all records
currently locked by a program. If a program performs several begin-transaction and end-trans
action operations for a single input, it is possible that records that were modified at the begin
ning of the process have been freed. The programmer must then relock any record before at
tempting to update it or, possibly, receive a NOTLOCKED exception on the store operation.

I,

\

B 1000 Systems Data Manage111ent SystemII (DMSII)
Functional Description Manual

Audit and Recovery

Finally, a program must use as little time as possible in transaction state, especially in a multi-program
ming environment. This tends to minimize the probability of several programs being suspended at the
begin-transaction operation because a syncpoint operation is due while one program is performing an
excessively long transaction. To this end, programs in transaction state must do nothing that could re
sult in lengthy delays, such as opening or closing a file or waiting to receive input from the ODT or
remote terminal. Also, a program must do as much as possible of the processing relative to a transac
tion before entering transaction state, including the non-update OMS functions (find, lock, and create).

Syncpoints and Controlpoints

The number of transactions per syncpoint and the number of syncpoints per controlpoint affect system
throughput while the data base is active and also affect the amount of time necessary to perform a
recovery operation.

For purposes of processing a data base, the greatest throughput can be achieved if syncpoint and con
trolpoint operations occur as infrequently as possible, because this minimizes the time programs might
be suspended at a begin-transaction operation. If syncpoint operations occur too frequently, much time
can be spent waiting for partially-filled audit buffers to be written. By reducing the amount of time
between controlpoint operations, the probability that an updated data buffer can remain in memory
for two controlpoint operations is much greater, resulting in many more I/O operations occurring at
a controlpoint operation. The optimum setting for syncpoints per controlpoint results in updated
NAHO fields being the only items written out at a controlpoint operation.

When recovering, the opposite is true. More frequent syncpoint operations minimize the amount of
time spent backing transactions out, for both program abort and clear-start recovery. Similarly, fre
quent controlpoint operations reduce the amount of time consumed by the clear-start recovery
operation to reapply the changes between the last syncpoint record and the two prior controlpoint rec
ords. Additionally, frequent syncpoint operations can dramatically reduce the amount of time required
to restart a program, since less time between syncpoint records means that there are fewer lost transac
tions which need to be re-entered.

When setting the syncpoint and controlpoint parameters, the total volume of update activity occurring
in any period of time must be taken into consideration. For low volumes of updates, the settings can
be relatively small. As the volume increases, these settings might be increased such that a syncpoint
operation represents a constant percentage of the work load for a batch job or a constant response
time at remote terminals in a data communications environment. It is possible, through the SM system
command, for the operator to change the settings for syncpoint and controlpoint operations as jobs
change or work loads increase. It is recommended that several settings of these parameters be tried
in order to determine the best settings for any particular work load.

NOTE
The subsection entitled Backed Out Transactions further discusses the settings
for transactions per syncpoint in relation to minimizing the amount of data
which the user can afford to lose in the event of a recovery.

Refer to section 4 of the B 1000 Systems DMS/I Host Language Interface Language Manual for
guidelines and conventions for writing recovery procedures in user programs.

1152444 4-11

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 5
DATA BASE SECURITY

The Data Base Administrator (DBA) can control security of a data base at three levels: item level,
record level, and structure level.

Item level security controls the items within a record that a program can access or modify. Item level
security can be acheived by using the HIDDEN and READONL Y data item options.

Record level security controls the records within a data set that are visible to the user as well as the
records, if any, that the program can alter. Record level security can be achieved by using the SELECT
and VERIFY conditions.

Structure level security controls the structures that a user may invoke.

In short, remaps provide item and record level security, while logical data bases provide structure level
security.

There are several ways to enforce security on a data base, depending on the level of security desired.
Non-OMS access to the DMSII data base may be restricted by means of the TITLE, SECURITYTYPE,
and SECURITYUSE file attributes. DMS access to the data base may be controlled with REMAPS,
LOGICAL DATABASES, and SECURITYGUARD.

NON-OMS ACCESS CONTROL (OPERATING SYSTEM
SECURITY)

Operating System Security protects the OMS data files as files. This type of security allows or prohibits
various types of accesses that may be made by programs other than the DMS/ ACR itself. Such pro
grams include the DMS utilities such as DBMAP and AUDIT ANAL Y as well as user-written programs
that may examine or tamper with the data files as files rather than through OMS syntax.

These types of security are available with the operating system (MCPII) and the DMSII system through
the use of the TITLE, SECURITYTYPE, and SECURITYUSE attributes. Each structure (data set, set,
and audit trail) may be secured. TITLE may not be used with the audit trail. An attribute is required
as part of the physical specification for each physical structure that must be secured.

The dictionary and library files, after being created by the DMS/DASDL compiler, can also be pro
tected from non-privileged users by use of the MH system command.

1152444 5-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Data Base Security

TITLE Option

By using TITLE, it is possible to give any structure (data set, set) a usercode multi-file-id rather than
a data base name. The usercode must be enclosed in parentheses and the parentheses must be enclosed
in quotation marks.

Example:

TITLE = "(USCODE)" I A

Ref er to Compiling The Data Base in this section for restrictions on data base compilation under the
security system.

All files, with or without userc.odes, can be protected using the SECURITYTYPE and SECURITYUSE
options.

SECURITYTYPE Option

SECURITYTYPE has two settings: PRIVATE and PUBLIC.

PRIVATE
The PRIVATE option specifies that only a privileged user or a user with a usercode that matches
the usercode of the file, if any, is allowed to access this file. Therefore, to copy, list, or remove
this file, COPY, DMPALL, or REMOVE must be run under a privileged usercode or the usercode
of the file. It is not possible to access this type of file even from the ODT except by means of
a privileged usercode or the usercode of the file. Thus, the file is protected from accidental
removal.

PUBLIC

5-2

The PUBLIC option specifies that access to the file is unrestricted, depending on the setting of
SECURITYUSE.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Data Base Security

SECURITVUSE Option

SECURITYUSE has three settings: IO, IN, and OUT.

IO
The IO option enables both reading from and writing to the file by any user.

IN
The IN option allows read-only access to the file.

OUT
The OUT option allows write-only access to the file. This setting has no significance for data base
files.

Whenever the SECURITYUSE and SECURITYTYPE attributes are not specified, security defaults to
the security attributes of the first matching usercode in the SYSTEM/USERCODE file. For files with
out usercode TITLES, the default security attributes are PUBLIC/IO.

Example:

1152444

A DATA SET

) ;

B DATA SET (

) ;

S SET OF B

A {SECURITYTYPE = PRIVATE);
B (SECURITYTYPE = PUBLIC, SECURITYUSE = IN);
S (SECURITYTYPE = PUBLIC, SECURITYUSE = IN);

5-3

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Data Base Security

DMSll ACCESS CONTROL
Secured access to data bases may be defined at two levels: (1) the structure and item level, and (2)
the data base (and logical data base) level.

Structure and Item Protection with Logical Data Bases and Remaps

It is possible to inhibit access to any item, record, or data set by the use of remaps and logical data
bases. Remapping enables an item to be hidden, made read-only, or renamed. It also allows records
to be hidden, depending on values of their fields, by the use of SELECT. If a program is using a
remap of a data set and that remap has a SELECT clause attached to it, then the DMSII system de
cides whether that program may access a certain record by validating it against the selection criteria.

Example:

PERSONNEL DATA
PERS-NO
PERS.;.SAL
PERS-AGE

SET (
NUMBER
NUMBER
NUMBER

) ;

(6) ;
(6' 2) ;
(2) ;

PERS-REMAP REMAPS PERSONNEL
PERS-NO;
PERS-SAL READONLY;

SELECT (PERS-SAL < 1000) ;

This example would allow a program invoking the PERS-REMAP data set to access only PERS-NO
and PERS-SAL and to change only PERS-NO for all records where PERS-SAL has a value less than
1000.00.

To inhibit access to PERS-SAL, the following remap could be used:

54

PERS-REMAP REMAPS PERSONNEL
PERS-NO;
PERS-SAL HIDDEN;

SELECT (PERS-SAL < 1000) ;

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Data Base Security

The HIDDEN keyword allows the item to be used in a SELECT statement while remaining hidden
from the program.

Logical data bases can also inhibit access to data sets.

Example:
CUSTOMER DATA SET

) ;

RCUSTOMER REMAPS CUSTOMER

) ;
PRODUCTS DATA SET

) ;

INVOICES DATA SET

) ;

LDBl DATABASE (RCUSTOMER, INVOICES);

The program using the logical data base LDBl cannot access the PRODUCTS data set.

Physical and Logical Data Base Protection Using SECURITVGUARD Files

Judicious use of remapping and logical data bases effectively inhibits access to sensitive data. However,
to specify a logical data base in COBOL or RPGII, the physical data base must be named and, there
fore, because the physical data base name is known, access to it can be gained. This problem can be
solved by the use of SECURITYGUARD files. A SECURITYGUARD file may be applied to a logical
data base or physical data base. Each data base may have a separate SECURITYGUARD file specified
in the DMS/DASDL source. It is necessary to specify the name of the SECURITYGUARD file for
each data base to be protected.

To apply a SECURITYGUARD file protection to the data base in the previous example, the following
statements may be added to the DMS/DASDL source:

Example:

LDB1 lSECURtTYGUARD = LDBlGUARD);
EXDB (SECURlTYGUARD = EXDBGUARD};

EXDB is the name of the physical data base given in the compile statement.

The SECURITYGUARD files are data files containing usercodes positioned between columns 1 and
72 and in free-form coding. A percent sign (%) character at any point in a record terminates the scan
of that record.

1152444 5-5

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Data Base Security

Syntax:

L DEFAULT~ NO=r
RO

AW

~
>

r
USERCOOE • <use•oode> ~ :~ ~

I

Semantics:

DEFAULT
The DEFAULT keyword specifies the access allowed for programs not executing with a usercode,
or for programs running under a usercode not included in the SECURITYGUARD file. The user
codes included in the SECURITYGUARD file are treated a.s exceptions to the DEFAULT state
ment.

<usercode>

NO

RO

RW

The < usercode > field is used to specify the usercode name to be stored in the SECURITY -
GUARD file. This name may be specified with or without enclosing parentheses. The
DMS/DASDL compiler does not verify that any < usercode > specified in a SECURITY GU ARD
file is valid (contained in the SYSTEM/USERCODE file).

The NO keyword specifies that the named < usercode > cannot access the data base.

The RO keysymbol specifies that the named < usercode > can open the data base in a read-only
(inquiry) manner.

The RW keysymbol specifies that the named <usercode> can open the data base in either a
read/write (update) or read-only (inquiry) manner.

Pragmatics:

If no SECURITYGUARD file is specified for a data base, the default access allowed for all users of
that data base is READ/WRITE. This is equivalent to including a SECURITYGUARD file with only
one entry: DEFAULT = RW.

If a SECURITYGUARD file is included for a data base, but no DEFAULT statement is included in
that file, then DEFAULT = NO is assumed.

5-6

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Data Base Security

A SECURITYGUARD file should be created as a private file and need only be available during
DMS/DASDL compilation as the information is transferred to the dictionary. Therefore, to make
changes to this part of security requires changes not only to the relevant SECURITYGUARD file but
also a DMS/DASDL $UPDATE compilation.

Example:

DEFAULT = NO;
USERCODE = USERl RW;
USERCODE = USER2 RO;

COMPILING AND EXECUTING

A data base may be compiled (1) from the ODT with no file security or (2) by a privileged user. A
file with a multi-file-id other than its own usercode cannot be created by a non-privileged user. The
library files and dictionary that result are public and unsecured, with no attached usercode, but these
files may be protected with the MH system command. For more information, see the MH system com
mand in section 5 of the B 1000 Systems System Software Operation Guide, Volume 1.

Example:

MH #DB/DSA SEC PRIVATE;

Data base files are either public or private depending on the status of SECURITYTYPE. See the SE
CURITYPE Option, described previously in this manual.

In compiling programs, no security problems are encountered unless the MH message was used to make
library files private. In this case, the program must then be compiled under a privileged usercode to
access the library.

A program may be executed if both of the following conditions exist:

1. The data base has no SECURITYGUARD file or if the usercode under which the program is
executed is contained within the SECURITYGUARD file for the data base invoked (logical or
physical).

2. Access to the data base is consistent with the setting for that usercode in the SECURITY
GUARD file.

For example, if the entry in the SECURITY GUARD file is USER CODE < usercode > = RO, then
the program can open the data base input-only; open update results in a security error.

1152444 5-7

B 1000 Systems Data Management SystemII (DMSll)
Functional Description Manual

Data Base Security

OMS/INQUIRY PROGRAM
The DMS/INQUIRY program has its own security system. This offers protection in addition to the
file protection provided by SECURITYGUARD.

At execution time, the DMS/BUILDINQ program asks if security is required. A YES response causes
the DMS/BUILDINQ program to request valid usercodes; that is, usercodes valid for the
DMS/INQUIRY program, though not necessarily in the (SYSTEM)/< usercode > file. With this done,
the data base can be accessed only through the DMS/INQUIRY program and only if it is executing
under a usercode valid for that data base. A usercode valid for that data base is one that has been
given to the DMS/BUILDING program and entered in the SECURITYGUARD file.

CONCLUSION
It is possible to inhibit any unauthorized user from accessing the physical data base, any logical data
base, any data set, any record, and any item. These access criteria apply to all programs including
user-written programs and the DMS/INQUIRY program.

Any data base file may be protected against being copied, listed, or removed by non-privileged users,
including a user at the ODT.

5-8

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 6
OMS/DECOMPILER PROGRAM

The function of the OMS/DECOMPILER program is to reconstruct the original DMS/DASDL source
of an existing DMSII data base, based on the information contained in the dictionary of that data
base. The reconstructed source includes all parameter and option settings, non-default physical attri
butes for all structures, and any comments enclosed within quotation marks in the original source.
Comments denoted by the percent sign (%) character are not included, nor are the original dollar sign
($) options to the DMS/DASDL compiler unless switch 7 is used.

Syntax:

- COMPILE <data-base-name> OMS/DECOMPILER -------------------~

>--r- SYNTAX

L LIBRARY _J

Semantics:

SYNTAX

~SWITCH7
[_.f1___ SWITCH 9

<•>=3 <n>

The SYNTAX keyword specifies the generation of a source listing only.

LIBRARY
LIBRARY or LI specifies the generation of a source listing and a copy of the new source file
on disk. The new file is titled:

<data-base-name> /SOURCE

SWITCH
Setting Switch 7 > 0 causes DMS/DASDL compiler dollar sign ($) options to be included in the
new source. The $ options are entered through the ODT by means of AC or AX messages. Setting
Switch 9 = n specifies the number of spaces the source listing is to be indented for each nested
level. If Switch 9 = 0, the default is five spaces.

1152444 6-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 7
DMS/DASDLANAL Y PROGRAM

The DMS/DASDLANAL Y program is a debugging aid for use when dictionary corruption is sus
pected. The program decodes the contents of the data structures within a DMSII data base dictionary.

The types of data structures that are analyzed are defined in the following paragraphs.

DMSII Globals
The DMSII global information is stored in this structure, which contains pointers used by both
the operating system (MCPII) and the DMS/DASDL compiler that point to other areas in the dic
tionary. Data fields used by the DMSII system in the operation of the data base are also contained
in the DMSII globals.

DMS/DASDL Globals
The DMS/DASDL global information is stored in segment three of the dictionary. The
DMS/DASDL global information includes pointers to the various DMS/DASDL tables within the
dictionary, such as the DDL table, name table, path table, key table, attribute table, and Polish
table and are used by the DMS/DASDL compiler during an update compile to reload these tables
into memory.

Audit File Parameter Block (FPB)
The audit file parameter block is a system file parameter block (FPB) that is always contained
in segments 1 and 2 of the dictionary. These are used by the access routines (DMS/ ACR), the
operating system (MCPII), the DMS/RECOVERDB program, and the DMS/ AUDIT ANAL Y pro
gram to process the audit file.

DDL Table
The DDL table contains information about every item described in the DMS/DASDL source, in
cluding structures, data items, and group items. Entries within the path, key, attribute, and literal
tables refer back to the DDL table.

Name Table
The name table contains every identifier used in the data base. Entries within the DDL table point
into the name table. If two or more data items have the same identifier, the respective DDL entries
for those items point to a common name table entry. The Name Table is analyzed as part of the
DDL table analysis.

Path Table
The path table relates the various tables relevant to a given structure.

Key Table
The key table contains information about every data item used in a KEY declaration within the
data base description.

Attribute Table
The attribute table describes every physical attribute explicitly set by the user within the
DMS/DASDL source.

1152444 7-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual
DMS/DASDLANAL Y Program

Polish Table
The Polish table contains encoded versions of every WHERE, VERIFY, ·and SELECT statement
in the DMS/DASDL source.

DFH Table and File Records
The DFH table and file records describe all of the physical files in the data base. The file records
contain the available space information used by the operating system (MCPII) when allocating rec
ords, as well as the version stamps for each file. The DFH table is pointed to by the DMSII global
information, and contains static information about each file, such as number of areas declared
and segments per area. Each entry in/ the DFH table points to a corresponding file record.

Structure Records
The structure records describe the physical attributes of every structure in the data base. Pointed
to by the DMSII globals, the structure records are used by the operating system (MCPII) to pro
cess the data base.

Structure Name Table
The structure name table contains the name of every structure defined for the physical data base.

Invoke Table
The invoke table contains one entry for every physical data set or remap which is invoked in any
logical or physical data base. Every physical data set is implicitly invoked in the physical data base;
all other invokes, of both physical and logical structures, are explicit by means of a DAT ABASE
statement in the DMS/DASDL source. There is only one entry in the invoke table for each in
voked structure; each entry describes all of the data bases in which that structure is invoked.

Literal Table ·

7-2

The literal table contains every literal, numeric, alphanumeric, or hexadecimal that appears in the
data base description. Literal table entries are pointed to by DDL and Polish table entries.

Syntax: ,

B 1000 Systems Data Management. Systemll (DMSII)
Functional Description Manual ·
Dl\.1S/DASDLANALY- Program

~ COMPILE <data base name> DMS/AUDITANALY SYNTAX

Semantics:

<switches>
The following switches can be set to any non-zero value to suppress the analysis of the stated struc
ture:

1152444

Switch
Number Structure

0 OMS Globals .
1 DMS/DASDL Globals
2 Audit FPB
3 DDL Table
4 Path Table
5 Key Table
6 Attribute Table
7 Polish Table
8 Structure Records
9 DFH Table and File Records

NOTE
Because of the interrelation of the DFH table and the file records, these items
are decoded together. The name table and structure name table are used in
the decoding of the DDL table and structure records, respectively. Literal ta
ble entries are used in the decoding of the DDL and Polish tables. The
DMS/DASDLANAL Y program does not decode the invoke table.

7-.3

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 8
DMS/DBLOCK PROGRAM

}:program locks the data base dictionary, thus preventing the dictionary from being
· ·. :<fl!l~js terminated. The program terminates when an AX is entered from the

· ~arY is not locked when opened inquiry. This means that while SYSTEM/COPY
. . ·,, ~'backup the data base, the dictionary is not locked and it is possible to run an update

-·l'togrant against the data base. This is highly undesirable since this can result in version mismatches
in the backup copy of the data base. For this reason, running the DMS/DBLOC.K program just before
the data base is to be backed up is recommended.

Syntax:

__.._ EXECUTE DMS/DBLOCK FILE DICTIONARY ~E

.. ·~ ,·-'''"'~ .. < f1milynarne >I <data bue name> I DICTIONARY -------------------'

f~~:i;:;f K'ti·, base dictibnary resides on the system pack, the < family name> is not necessary .
. · ". ~~.~;.... . ,

The'DMS/DBLOCK program can be used at any time to lock the dictionary file and prevent updating.
It can be used, for example, while troubleshooting a data base problem to prevent users at remote
stations from signing on to ari update program.

1152444 8-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 9
DMS/DBBACK PROGRAM

The DMS/DBBACK program converts the data base dictionary from the Mark 11.0 release back to
the Mark 10.0 release. The DMS/DBBACK program is run against a Mark 11.0 data base dictionary

·and converts it to a halfway point. Once this has been done, an update ($ UPDATE option)
compilation of the data base must be performed against the data base dictionary under the Mark 10.0
operating system. The DMS/DBB{\.CK program is run by file-equating the proper dictionary.

Syntax:

EXECUTE DMS/DBBACK EJ.LE DICTIONARY ~E

>-- <family name> I< data base name> /DICTIONARY

The Mark 11.0 dictionary is changed in place. It is prudent to COPY the dictionary before converting
it. Messages to this effect are displayed on the ODT, and the operation only proceeds when confirma
tion is entered by means of an AX input.

The operator must take the resulting dictionary and perform an update ($ UPDATE option)
compilation of the data base against the dictionary under the Mark 10.0 operating system. This creates
a usable Mark 10.0 dictionary file. The operator must be certain the data base source file is used as
input to the update ($ UPDATE option) compilation of the data base and the source file contains no
other changes to the data base. There can be no PURGE or GENERA TE statements, the data base
description cannot have changed in any way, nor can there be a $REORGANIZE statement in the
source. The dictionary must be the only data base file affected by this procedure. If the <data base
name>/REORG.READ and <data base name>/REORG.WRIT programs are created as a result of
the $UPDATE compile, the procedure was not successful and the dictionary is not usable with the
Mark 10.0 operating system.

11524;44 9-1

B 1000 Systems Data Management Systemll (DMSII)
· . Functional Description Manual

SECTION 10
OMS/AUDIT ANAL Y PROGRAM

The DMS/ AUDIT ANAL Y program decodes a DMSII audit file, printing the contents of each audit
record, including record type, structure number, and control information such as logical addresses, pre
vious audit serial numbers, Next Available/Highest Open (NAHO) fields, and key values. As an op
tion, the contents of data records, both before and after images, are also printed. The operator also
may specify criteria for the inclusion or exclusion of audit records from the printed listing and may
specify a device other than the default device as the location of the audit files.

The printed listing includes the current audit serial number and the buff er audit serial number in
hexadecimal format, and the structure number in decimal. These fields are followed by a description
of the audit record type, including the logical address of the block affected by the update being
audited. Additionally, before the printing of the individual audit records for an audit block, a line of
block information is printed. This includes the block number, the first and last audit serial numbers
in the block, the offset in the block of the last audit record, and an indicator that shows whether the
block is full or not.

The DMS/ AUDIT ANAL Y program can be executed by means of an EXECUTE or COMPILE state
ment.

Compile Syntax:

COMPILE <data base name> DMS/AUDITANALY ~NTAX

Execute Syntax:

- ~ECUTE DMS/AUDITANALY

NOTE
If executed, a DAT ABASE or DB statement must be entered prior to any
other options

DMS/AUDITANALY OPTIONS

After DMS/AUDITANALY program execution has been invoked by the COMPILE or EXECUTE
statement, options may be entered, either by the accept (AX or AC) system command or through a
card reader. Option format is identical in either case.

Syntax:

<option>

Le~o:J

1152444 10-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual
DMS/ AUDIT ANAL Y Program

Semantics:

<option>
The <option> field specifies the option to be used. Refer to Option Specifications for a complete
description of each option.

For ODT entry, several options, separated by commas, may be entered with a single accept (AX
or AC) command, or each option may be entered individually with separate accept commands.
For card entry, options may be entered one or more per ·card. Use commas as separators in the
latter case.

END or
A period character or the END keyword terminates option input.

Pragmatics:

Printer Output
All printed output is directed to a backup print file labeled:

<data base name> I AUDITLIST

Both printed and display output default to lower case but can be changed to upper case by setting
switch 8 to a non-zero value.

The internal file name for print file is LINE. Record size range is 70-132. To make the print file
viewable at a terminal, the record size of the file can be modified as follows:

MODIFY DMS/AUDITANALY FILE LINE RECORD.SIZE 80;

STATUS
Entering the ST A TUS command by means of an accept (AX or AC) system command after all
options have been entered produces a display of how far the program has progressed. The fol
lowing shows the format of the status message:

Block <block number> of Audit file <audit file name> - serial number <audit serial
·number>

If errors exist in the audit file, then the following is also displayed:

<number> errors in the audit file

10-2

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual
DMS/ AUDIT ANAL Y Program

Options and Command Strings
Options and command strings may be split across input lines, but no word may be broken across
input lines. Valid commands to the DMS/AUDITANALY program consist of the following:

DAT ABASE statement
FILE < file options>
ASNS < asn options>
STR < str options>
TYPE <type options>
OPTION <print options>
VERIFY
STATISTICS

Program Switches
If switch 1 is equal to a nonzero value, commands are expected through an unsequenced data file
or card file named CARD. The default hardware type for this file is disk but can be overridden
by a MODIFY system command or a file equate.

OPTION SPECIFICATIONS

The syntax and functions of the various options which may be specified to the DMS/ AUDIT ANAL Y
program follow.

DAT ABASE Statement

The DAT ABASE statement identifies the name of the DMSII data base in which the audit files are
to be analyzed.

When the DMS/ AUDIT ANAL Y program is executed, the DAT ABASE statement must be the first
statement entered prior to any other options. The DAT ABASE statement is not used when the COM
PILE syntax is specified.

Syntax:

gATA§ASE

Semantics:

ON

< data base name >
LON <family name >

DISK

The ON keyword specifies the location of the data base dictionary file.

DISK
The keyword DISK refers to the system pack.

<data base name>
The <data base name> field specifies the name of the data base.

<family name>
The <family name> field specifies the pack name of the DMSII data base dictionary.

1152444 10-3

B 1000 Systems Data Management Systemll (DMSll)
· Functional Description Manual

DMS/AUDITANALY Program

FILE Statement

The FILE statement specifies which audit files are to be. analyzed by the DMS/ AUDIT ANAL Y pro
gram.

Syntax:

FILES

>

<number 1 >
ONLY

EOR'!YARQ
REVERSE -

--- TO <number 2 > --------
ON ------------ DISK

PACK <family name >
TAPE

Semantics:

<numberl>
The <number!> field specifies the starting audit file number. This number must be a decimal
literal.

<number2>
The < number2 > specifies the ending audit file number. This number must be a decimal literal.

FORWARD
The FORWARD keyword specifies that the audit file is to be processed in the forward direction.
If the starting audit file number (< numberl >) is greater than the ending file number
(< number2 >), the files are processed in reverse order starting with the higher audit file number.
The DMS/ AUDIT ANAL Y program processes audit files forward by default.

REVERSE

TO

10-4

The REVERSE keyword specifies that the audit file is to be processed in the reverse direction.
If the starting audit file number (<number!>) is greater than the ending file number
(< number2 >), the files are processed in reverse order starting with the higher audit file number.
The DMS/ AUDIT ANAL Y program processes audit files forward by default. ·

The keyword TO is required when specifying an ending audit file number.

Pragmatics:

B t 000 Systems Data Management Systemll (DMSII}
Functional Description Manual
DMS/ AUDIT ANAL Y Program

If only the starting file number is entered, the DMS/ AUDIT ANAL Y program processes all audit files,
beginning at the specified file number, until there are no more audit files. When this occurs, the fol
lowing message is displayed on the ODT:

"If Audit file <number> (title = <audit file name>) is available, then enter "Y"
else enter "N" 11

If the file exists, it should be made present. Then, the letter Y may be entered through the ODT. If
the letter N is entered, the program terminates.

If the audit files are located on media other than that on which they were created, the ON <DISK,
PACK, or TAPE> option can be specified. DISK refers to the system disk. PACK specifies a user
pack. If TAPE is specified, the audit files on tape must be in the same format as on disk (including
the same block size). This means that SYSTEM/COPY library tapes cannot be processed by the
DMS/ AUDIT ANAL Y program.

If no FILE specifications are entered, the DMS/ AUDITANALY program uses the audit File Parameter
Block (FPB) in the data base dictionary to determine the default device type and the starting audit
file number.

STRUCTURES Statement

The STRUCTURES statement specifies individual structures or types of structures to be analyzed.

If the STRUCTURES statement is not specified, data images are printed for all structures in the audit
file by default. If the operator wishes to print all structures without the data images, the STRUC
TURES ALL keywords must be specified.

1152444 10-5

Syntax:

- STRUCTURES
STRUCTURE
STAS
STA

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual
DMS/ AUDITANAL Y Program

< stru cture type>

ALL

DISJO

EMBE

DDS

OS

EDS

ES

INT -

ODED _J

IDX

IDXR

IDXS

INDE

AN

EQ

x

E DATA a=J
DATASET

1-- SEQUENTIAL -

MANU

MSS

1-- SEQ

....__ RANDOM

AL SUBSET

< str ucture name'>

r r < structu e numbe >

SET

~ -,,

>>---L~~~~~~---yo~~~~~~~~~~__,>

DATA

LIMAGES_J

AREAS
(

_.__ - <number>

STYPES

10-6

TO <number>

BLOCKS <number>

BEFORE

AFTER

SPACE

TO <number>

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

Semantics:

Keywords for structure types

Structure Types

Disjoint data sets
All indexes
Any data set,
disjoint or embedded
Embedded data sets
Manual subsets
Any embedded structure,
EDS or MSS
Index random sets
Index sequential sets

AREAS

DMS/ AUDIT ANAL Y Program

KEYWORDS

DISJOINT DATA SET, DISJOINT DATASET, DDS
DISJOINT SET, IDX

DS
EMBEDDED DATA SET, EMBEDDED DATASET, ED
EMBEDDED SET, MANUAL SUBSET, MSS

ES
IDXRAN
INDEX SEQUENTIAL, IDXSEQ

The AREAS keyword specifies ranges of addresses for a structure. The <number> field can be
either decimal or hexadecimal literals.

BLOCKS
The BLOCKS keyword specifies ranges of addresses for a structure. The <number> field can
be either decimal or hexadecimal literals.

DATA, DATA IMAGES
Either of these entries cause the printing of before and after images. For an index structure, the
individual table entries are printed.

SYTPES
The STYPES keyword specifies that BEFORE, AFTER, or SPACE keywords follow. STYPES
BEFORE causes the before images to be printed, STYPES AFTER causes the after images to be
printed, and STYPES SPACE causes the space allocation records to be printed.

<structure name>
The <structure name> field specifies the name of the structure to be analyzed in the audit file.
If the <structure name> field equals any of the keywords for structure type, the
<structure name> field is used to print the audit records.

<structure number>
The <structure number> field specifies the structure number to be analyzed in the audit file.

1152444 10-7

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual
DMS/AUDITANALY· Program

ASNS Statement

The ASNS statement controls printing by using a range of audit serial numbers within the scope of
the files specified with the FILE statement.

If the ASNS statement is not specified, values for minimum and maximum audit serial numbers are
@0@ and @FFFFFFFF@, respectively.

Syntax:

FROM @<start number>@ TO @ <end number>@

FROM @ <start number >@

TO @ < end number > @

Semantics:

FROM

TO

The FROM keyword causes the analysis to begin with the audit serial number specified by the
<start number> field.

The TO keyword causes the analysis to end with the audit serial number specified by the <end
number> field.

@ < startnumber > @, @ < endnumber > @
Both of these entries are hexadecimal literals.

10-8

TYPES Statement

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual
DMS/ AUDIT ANAL Y Program

The TYPES statement specifies which audit types are to be printed. The operator can specify that spe
cific audit record types be printed or that all audit records relating to a particular structure type be
printed.

Syntax:

TYPES ----- < audit record type > -....,..-1..._ ________________ ~J
l

Semantics:

< audit record type>

AFTER

BEFORE

CONTAOL------1 - - -
SPACE -------1
TABLE -------'

The <audit record type> field must be entered as a two-digit hexadecimal literal enclosed in at
sign (@) characters, and must reference valid audit record types. A list of valid audit record types
can be found under Audit Types in appendix C of this manual.

AFTER
The AFTER keyword prints after images.

BEFORE
The BEFORE keyword prints before images.

CONTROL
The CONTROL keyword prints control records. Control records include data base open and close,
syncpoint, controlpoint, and program abort records.

SPACE
The SPACE keyword prints space allocation records.

TABLE
The TABLE keyword prints records relating to index tables.

1152444 10-9

B 1000 Systems Data Management Systemll (DMSH)
Functional Description Manual
DMS/ AUDIT ANAL Y Program .

OPTIONS Statement

The OPTIONS statement controls the format of the printed output.

Syntax:

OPTIONS

SINGLE UPPER

DOUBLE --- LOWER --

Semantics:

DOUBLE
The DOUBLE keyword causes the line printer listing to be double spaced. The default is single
spacing.

LOWER
·The LOWER keyword allows the line printer output to use lower-case letters. The default is lower
case letters.

SINGLE
The SINGLE keyword causes the line printer listing to be single spaced. The default is single spac
ing.

UPPER
The UPPER keyword causes the line printer output to use upper-case letters only. The default is
lower-case letters. Upper-case letters can be specified permanently only by setting program switch
s· to a non-zero value using the MODIFY (MO) command.

10-10

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual
DMS/AUDITANALY Program

STATISTICS Statements

The STATISTICS command prints certain statistics about each DMSII audit file.

Syntax:

Pragmatics:

The ST A TIS TI CS command causes statistics to be printed for each audit file specified in the FILE
statement. These statistics include the number of each data base structure accessed in the audit file,
as well as the total number of syncpoints, controlpoints, and errors in the audit file. The STATISTICS
capability is set by default if no STRUCTURES or TYPES statement is entered.

VERIFY Statement

The VERIFY statement verifies the integrity of DMSII audit files.

Syntax:

sk - VERIFY

Pragmatics:

When the VERIFY command is specified, no audit records are printed. Instead, each audit file
specified in the FILE statement is read and verified to determine if errors exist. When the VERIFY
command is specified, the STATISTICS capability is set by default.

FILE NAMES

The following are the internal and external file names used by the DMS/ AUDIT ANAL Y program.

Internal

AUDITFILE
LINE
DICTIONARY
CARD

External

AUDITFILE
<data base name>/AUDITLIST
<data base name>/DICTIONARY
CARD

SWITCH SETTINGS

Following are the valid switch settings for the DMS/ AUDIT ANAL Y program.

1152444

Switch

1
1
8
8

Value Result

0 Input is expected from the ODT.
non-zero Input is expected from the file CARD.

0 All output is in lower case.
non-zero All output is translated to upper case.

NOTE
An AX system command overrides switch 1 and input is expected from the
ODT.

10-11

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual
DMS/ AUDIT ANAL Y Program

DMS/AUDITANALY EXAMPLES

The following paragraphs include examples of various ways to run the DMS/ AUDIT ANAL Y program.
Note that a period (.) character following an option string terminates the entry of options to the
OMS/ AUDIT ANAL Y program. The key word END can also be used to terminate the entry of options.

To print the contents of audit files 1 through 5, the following commands may be used:

EXECUTE DMS/AUDITANALY;AX DB <data base name> FILE 1 TO 5.

EXECUTE DMS/AUDITANALY;AX DB <data base name> ON <pack name>· FILE 1 TO
5.

EXECUTE DMS/AUDITANLY;AX DB <data base name>; AX FILE 1 TO 5; AX END

COMPILE <data base name> DMS/AUDITANALY FOR SYNTAX

<job #> AX FILE 1 TO 5, END

To process audit files 1 through 5 but print only entries for disjoint data sets with their before and
after images, the following commands may be used:

EXECUTE DMS/AUDITANALY;AX DB <data base name>;AX FILE 1 TO 5; AX STR DIS
JOINT DATA SET DATA IMAGES; AX END

EXECUTE DMS/AUDITANALY;AX DB <data base name> FILE 1 TO 5 ON PACK <pack>
STR DDS DATA.

COMPILE <data base name> OMS/ AUDIT ANAL Y FOR SYNTAX

<job #> AX FILE I TO 5 ON PACK <pack name>
<job #> AX STR DDS DATA IMAGES
<job #> AX END

To analyze only audit file 4 and print only audit records for structure 7 with statistics and no data
images, the following commands may be used:

10-12

EXECUTE DMS/AUDITANLY;AX DB <data base name>;AX FILE 4 ONLY; AX STR 7;
AX STATISTICS; AX.

EXECUTE DMS/AUDITANALY;AX DB <data base name>, FILE 4 ONLY, STR 7
STATS.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

SECTION 11
DMS/DBMAP PROGRAM

When an integrity error is recovered, or when data base corruption is suspected for any other reason,
the DMS/DBMAP program should be run to identify the problem.

The DMS/DBMAP program checks the integrity of a data base. It can be run against a DMSII data
base when that data base is not currently open update. Additionally, the DMS/DBMAP program prints
structure information from the data base dictionary (in a more readable form than that given by the
DMS/DASDLANALY program), performs population summaries, and prints data from the data base
in hexadecimal. The various options possible are given to the DMS/DBMAP program by means of
accept (AX or AC) system commands, or by means of a control file.

DATA BASE STRUCTURE IDENTIFIERS

The following symbols are used by the DMS/DBMAP program to refer to the various data base struc
tures:

1152444

Symbol

DDS
DS
EDS
ES
IDX
IDXRND
IDXSEQ
MSS

Structure Type

Disjoint data set
Any data set, DDS or EDS
Embedded data set
Any embedded structure, EDS or MSS
Index sequential set or subset or an index random set
Index random set
Index sequential set or subset
Manual subset

11-1

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual
. DMS/DBMAP Program

COMMAND SYNTAX
Either a COMPILE statement or an EXECUTE statement may be used to initiate the DMS/DBMAP
program. If the COMPILE statement is used, the data base name is supplied as part of the statement;
with EXECUTE, the data base name must be supplied through accept statements (AC or AX system
commands) or by means of a control file. In both cases, the program-directing commands are entered
either with accept statements or as part of a control file. ·

Syntax:

COMPILE <data-base-name> DMS/DBMAP FOR SYNTAX --.------------~)

EXECUTE DMS/DBMAP -------------~

<AC or AX command> -~ 1----------------------tJ I
<file equates> -----i

< switches> ------1
< virtual disk >

Semantics:

<data-base-name>
The name supplied here is used to automatically locate the data base dictionary. If the dictionary
resides on a user pack, the name supplied must be of the form

<pack-id> I< db-name> I

<AX or AC command>
Accept (AC or AX) commands may be used through the ODT for input to the DMS/DBMAP
program. With the COMPILE statement, AC or AX is used to supply commands; with the
EXECUTE statement, the data base name is supplied as well the commands. A period(.) character
must be used to conclude a command string entered by means of accept commands; if it is omit
ted, the program continues to prompt for more input.

<file equates>
The names of three files (LINE, CARD, FIDX) used by the DMS/DBMAP program may be file
equated. See Files, later in this section.

<switch settings>
Valid switch numbers are 1, 8, and 9. Each has two positions only: set (1) or reset (0). See Switch
Settings, later in this section.

< virtual disk >

11-2

Virtual disk is required to save paged arrays. The amount of virtual disk that is assigned to a
program is controlled through the program attribute VIRTUAL_DISK. See Virtual Disk, later in
this section.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

PROGRAM SWITCH SETTINGS

FILES

Switch

8

9

Value

0
1
0
1
0

Result

Commands are expected from the ODT.
Commands are expected from the file CARD.
Output is in lower case.
Output is in upper case.
All blank lines and page skips are included
in the output listing.
Blank lines and page skips are suppressed.

NOTES
If switch 1 is reset (0), commands are expected by means of accept (AX or
AC) system commands and are prompted for if necessary. However, if the
COMPILE statement is entered without an early accept message,
DMS/DBMAP performs a default run against the data base and does not al
low any commands to be entered to it. The presence of an early accept mes
sage overrides any setting of switch 1.

When using the COMPILE syntax under a usercode, the MCP automatically
sets switch 1 to 1. In this situation, the operator must explicitly set switch
1 to 0 if so desired.

Three files are used by the DMS/DBMAP program. Each may be modified by means of a file equate.

LINE
This is the output printer file. It has an external name of

<data-base-name> /MAP-LIST ON <data-base-pack>

The name may be changed by a file equate at run time.

CARD
When the DMS/DBMAP program is run with switch 1 = l, commands are read from this file
(along with the data base name if the EXECUTE statement is used). The default external name
of the file is

DMS/DBMAP-COM

This name may be file-equated to any disk file that does not include sequence numbers.

FIDX
File FIDX reads index tables when performing validity checking. For speed and optimization, the
number of file buffers should be one more than the number of levels in the deepest index sequen
tial set in the data base. Because index tables can be very large, however, this could prove to be
too much space for some systems. Therefore, five buffers is the default value and this may be
modified with a file equate.

1152444 11-3

VIRTUAL DISK

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

Virtual disk is required to save paged arrays. The amount of virtual disk assigned to a program can
be controlled by the VI (virtual disk) program attribute.

It is not normally necessary to alter virtual disk, but when doing an extended validity check on a large
disjoint data set, the value of the VI program attribute may need to be increased.

During extended validity checking of a disjoint data set (DDS), a bit map of the available chain is
built. The virtual disk required for this is

(number of open records) I 1440.

The number of open records can be determined with a prior run of the DMS/DBMAP program, using
the NAHO COUNT option on the relevant DDS.

OPTIONS

The DMS/DBMAP program commands control the level of checking applied to each structure or group
of structures. These commands are entered through the ODT by means of accept commands, or from
the CARD file. For more information, see Switch Settings in this manual. Syntax is identical in either
case except for an optional comma or semicolon following the last command in any accept message.

Command terms may be upper case or lower case and may be arbitrarily split across lines. Words may
not be split. If the commands are entered from a control file, the end-of-file record terminates com
mand input. If accept messages are used, the program prompts for more commands until a period char
acter is entered. All commands entered are printed on the first page of the output listing along with
any errors that have occurred.

11-4

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

Option Command Entry Syntax

Because options may be specified on groups of structures that intersect, it is important to note that
the commands are applied in the order they are specified. Therefore, a command can override options
set by a preceding command, and indentical sets of commands may produce different results if entered
in different sequences. It helps to enter the more inclusive commands first, followed by single-structure
commands, if any.

Complex options take more time and space than simpler ones. Therefore, care should be taken not
to specify more options than needed. (See Performance Information in this manual.)

Syntax:

< data-base-name > • --1

Semantics:

ON < pack name>

ALL sXTENDED VALIDITY

DDS EXTENDED VALIDITY PRINT - -
ES ~A

IDX t:!AHO COUNT -------1
<strid> §TATIC INFO ______ __,

CLUSTER VALIDITY ---------11
YALIDITY f:RINT------1

<data-base-name>
This field must appear as the first command entered if the EXECUTE statement is specified.

ALL
Causes all data base structures to be included.

ALL DDS
Causes all disjoint data sets to be included.

ALL ES
Causes all embedded structures (embedded data sets and manual subsets) to be included. When
the VALIDITY keyword is specified for an embedded structure, validity checking is also applied
to the parents and grandparents of that structure; thus, such an operation can have far-reaching
effects.

1152444 11-5

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

ALLIDX
Causes all index sets and subsets, both index sequential and index random, to be included.

<str id>
Structure name or structure number of any structure.

CLUSTER
Causes all the descend en ts for < str id> to be included. < str id> must identify a data set. The
descendents of a structure include all embedded structures for that data set as well as their em
bedded structures. Also, any index structure with < str id> as its object is included.

KA or K
Causes the structure to be included in the KA summmary at the beginning of the listing. File exis
tence and version are checked, and the NAHO and root addresses are checked for validity. There
is no way to exclude a structure from the KA summary, but specifying this option assures that
no greater amount of checking or printing is performed. This is the default for any structures not
referenced by any command.

STATIC INFO or S
Causes the static information from the dictionary structure record to be printed. This is the default
when no commands are entered. KA is implied for any structure on which STA TIC INFO is re
quested.

NAHO COUNT or N
Causes the NAHO chain of available space to be examined. Integrity errors within the chain are
reported, including 4, 6, 19, 37, and 38. (See Error List in this manual.) KA and S implied for
any structure for which NAHO COUNT is requested.

VALIDITY or V
Causes a check to be made of the integrity of the structure. All errors listed in the error section
are flagged except the few that are available only when the EXTENDED VALIDITY CHECKING
option is specified.

If this option is requested on an embedded structure, checking is also performed on the parents
of the structure and so on, up to the disjoint data set. If it is requested on an index, the NAHO
COUNT option is automatically invoked for its object disjoint data set.

KA, ST, and N are implied for any structure for which VALIDITY is requested.

VALIDITY PRINT or VP

11-6

Identical to V but augmented by the inclusion of printing of all data for the structure. Printing
is in hexadecimal, but keys, where they exist, are decoded and printed in alphanumeric format.
This option may be requested on an embedded structure, whether or not it was requested on the
parent, but the results may be confusing, with the embedded tables out of context.

Without this option, data is only printed preceding a reported error; then, as many as 60 preceding
lines are printed exactly as they would have appeared had the VP option been requested.

The error message includes the structure number of the erroneous structure.

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

EXTENDED VALIDITY or E
Reports all errors as does V, and includes the following:

Error 41

Error 42

Error 8

Error 41

Error 42

The object disjoint data set record pointed to by an
index set entry is dead.

·The key in the object disjoint data set record pointed
to by an index set entry does not match the key in
the entry itself.
A disjoint data set record containing a dead flag is
not in the NAHO chain.
The object disjoint data set record pointed to by a
manual subset entry is dead (warning only).
The key in the object disjoint data set record pointed
to by an ordered manaul subset entry does not match
the key in the entry itself (warning only).

KA, S, N, and V are implied for any structure for which EXTENDED VALIDITY is requested.

EXTENDED VALIDITY PRINT or EP
Identical to VP but augmented by inclusion of printing.

Performance Information

For a data base that contains no embedded structures (a "flat" data base), a quick and complete
validity check may be accomplished with the following command:

ALL IDX:EXTENDED VALIDITY.

The only check that is omitted from this map is the population check for disjoint data set structures,
but problems with disjoint data set populations may still be seen when their index structures are
checked. This command is fast because it avoids an extra read of the disjoint data set structures.

A similar, though lesser, ·advantage may be gained for data bases that are mostly flat (contain only
a few embedded structures) with the following command:

ALL IDX:EXTENDED VALIDITY, ALL ES:EXTENDED VALIDITY

In this case, only the disjoint data set structures that contain embedded structures are read; thus, time
is saved in proportion to the flatness of the data base.

In any case, extended validity checking on disjoint data set structures only provides one additional
check beyond simple validity checking: extended validity checking identifies those records that contain
dead flags but are not in the available chain, while simple validity checking on a disjoint data set struc
ture discovers the fact that such records exist but does not identify the specific records.

1152444 11-7

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

Option Command Errors

If an error is encountered while reading commands from the CARD file, the DMS/DBMAP program
is aborted. If an error other than TEXT FOLLOWS PERIOD occurs while commands are being ac
cepted from the ODT, a message is displayed, the command is skipped, and the remaining commands
are processed. An additional prompt is then given, even if the terminating period character has been
encountered, to allow correction of the error. The TEXT FOLLOWS PERIOD message always causes
the DMS/DBMAP program to abort.

The error messages are in the form:

ERROR IN COMMAND INPUT. <error msg >, SEEING: <last command read>

Possible command errors and their meanings follow:

CLUSTER EXPECTED
Neither the CLUSTER keyword nor a colon (:) character was found following a known structure
name.

MISSING COLON
No colon (:) character was found following a legal grouping.

MISSING COMMA
No comma(,), semicolon(;), or period (.) character followed an otherwise valid command.

TEXT FOLLOWS PERIOD
All commands were valid, but additional command text was found on the last line after the period
(.) character.

UNKNOWN ALL VARIANT
The word following ALL was not IDX, DDS, E or a colon (:) character.

UNKNOWN STRUCTURE
No legal grouping or known structure name began a command.

UNRECOGNIZED OPTION
Following a valid grouping and colon (:) character, no valid option was found.

11-8

Execution Examples

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

The following syntax is used to produce a default map of the data base TESTDB on the DBPACK:

COMPILE TESTDB ON DBPACK WITH DMS/DBMAP FOR SYNTAX

Since switch 1 is not set and there is no accept (AX or AC) system command, a default run is per
formed. This prints the KA listing of each structure and the static information contained in the data
base dictionary for each structure. The same thing could also be accomplished with the statement:

EXECUTE DMS/DBMAP;AX TESTDB ON DBP ACK.

The following command may be used to perform validity checking on a data set and all its related
structures:

COMPILE TESTDB ON DBPACK WITH DMS/DBMAP FOR SYNTAX; AX ALL:KA, DSl
CLUSTER: VALIDITY.

This accepts the commands with the accept (AX) system command. The KA option is invoked for all
structures, and data set DSl and its related structures are checked for validity.

The following command may be used to perform extended validity checking on all structures in the
data base:

EXECUTE DMS/DBMAP;AX TESTDB ON DBPACK, ALL:E.

The following command performs extended validity checking on all disjoint data sets and increases vir
tual disk for this run of the DMS/DBMAP program to 2500 segments:

EXECUTE DMS/DBMAP; VIRTUAL_DISK 2500; AC DEMODB; ALL DDS:E.

The following command causes the DMS/DBMAP program to look for a disk file named
DMS/DBMAP-COM (by default) fr,. the options in order to analyze the data base TESTDB on pack
DBPACK:

COMPILE DBPACK/TESTDB/ WITH DMS/DBMAP FOR SYNTAX; SWITCH 1 1; SWITCH
8 1; FILE FIDX BUFFERS = 3

This command also causes the output to be printed in upper-case letters only and changes the number
of buffers for file FIDX to 3.

1152444 11-9

Status Information

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

Because the DMS/DBMAP program may take a considerable amount of time to perform its tasks, fa
cilities are included to determine its current status. Enter either of the following:

<job number>AX STATUS

<job number >AX ST

The response to the STATUS command is in the following format:

MAPPING < str name>. SEEN <number records read> OF <total non-dead> OVERALL ER
RORS: <total errors seen> , WARNINGS <total warnings given>

< str name> is the name of the current disjoint data set or index set that is being checked. The <total
non-dead> records is determined from the next-available, highest open (NAHO) chain.

If an error has occurred in the NAHO chain, the response to the STATUS command is in the following
format:

MAPPING < str name> . SEEN <number of records read> OF OPENED <max records>

In this case, <max records> is determined from highest open (HO) and gives an upper bound to the
number of records that are examined. For indexes, the number of records is equal to the number of
tables.

The DMS/DBMAP program performs its tasks in a sequence that is unaffected by the selectfon of
particular options. When using the STATUS command to estimate time towards completion, it is useful
to know this sequence:

The disjoint data set structures are examined in numerical order. After each disjoint data set has
been examined, all of its index set structures are examined in numerical order.

Presence of the STATUS command is queried each time the DMS/DBMAP program reads a record
(or table) from a structure file. During the loading and summary (KA) phases of the DMS/DBMAP
program, the STATUS command is not seen and no response is given. After that, however, the re
sponse is usually quite rapid.

11-10

\

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

DMS/DBMAP PROGRAM OUTPUT

The line printer output always consists of three heading pages (page skips may be suppressed with
switch 1 = 1) followed by the data base map. In the map portion, a new page is used for each disjoint
cluster and each index structure. Each disjoint cluster is mapped in numerical order, followed by the
index set applying to that cluster, also in numerical order. The end of the listing includes an error
summary showing each structure, the number of errors detected per structure, and the number of warn
ings per structure.

Within the disjoint cluster map, the static information for the disjoint data set and its embedded struc
tures (in numerical order), and their embedded structures are printed first. After each structure head
ing, any errors found in the NAHO chain are reported. Following this, any errors occurring in the
data of the disjoint data set or its embedded sets are reported, and the data is printed for those struc
tures which have their print flags set. Finally, the population summaries for the disjoint data set and
its embedded sets are printed in the same order in which their headings appeared, and any population
consistency errors are reported.

Within the map for an index set structure, the order is similar but less complex, since only one struc
ture is involved. Again, the static information is printed first, followed by any NAHO chain errors,
and by the integrity errors and optional table data. Finally, population summaries and any population
inconsistency errors are printed. ·

Where validity chacks have not been requested for some structures, gaps will occur in this overall se
quence. No mention at all is made of structures t,hat have only their KA options set. Structures that
have only their static information options set have only their static information reported; no NAHO
errors, data errors, or population summary are printed. Structures which have only their NAHO count
option set have NAHO errors and a shortened form of the population summary printed. No other in
tegrity errors are reported for these structures.

A complete alphabetical listing of the errors and their meanings is given under Error, Warning, and
Abort Messages, later in this section. The error messages are· numbered for ease of reference in this
manual, but these numbers do not appear in the program output.

Heading Pages

Three heading pages always appear for the DMS/DBMAP program output.

Page 1
The commands are listed exactly as they were read, interspersed with any error messages they gen
erated.

Page 2
The data base header consists of up to three boxes. The first box contains the data base name,
structure count and switch settings. The second box appears only if any abnormal status flags are
set in the DM globals section of the dictionary and contains these status flags. The third box ap
pears only if any options were set in the DM globals, and contains these options in addition to
the. audit serial number.

1152444 11-11

B 1000 Systems Data Management Systemll (DMSJI)
Functional Description Manual

DMS/DBMAP Program

Page 3 •. ·• · ·,": . ·
The summary (KA) of data base structures is listed. This includes the DMS/DBMAP progt*n OP"'
tion in effect for each structure, the structure type and file information. A warning message (14)·
is given for any data base file that is missing. An error (45) is reported for any version mismatch.
The area addresses are not printed but they are checked to make sure none are zero (46). The
next available (NA), highest open (HO), and root table addresses are also validated (17, 18). Warn
ings are given for any flags set in the status field of the file records (48, 49, 50, 51, 52).

Static Information

The static information for a structure is found in the structure record of the data base dictionary and
is printed in a readable format by the DMS/DBMAP . program. For data sets, the static information
includes a list of embedded structures as well as a list of the embedments. For disjoint data sets, the
static information includes a list of index set and manual subset structures which point to that disjoint
data set. ·

If any errors are found while processing the NAHO chain, they are printed immmediately after the
static information. Possible error messages occurring here are numbers 4, 6, 19, 37, and 38. Also, if
a disjoint data set file needed to perform an extended validity check for an index set or manual subset
cannot be opened, then a warning message (5) is reported here and the extended validity option is con'."•'.
verted to a validity check option.

Data Printing

Data is printed for any structure which has its print option set in addition to a validity option. If the
print option is not set, then data is printed only preceding an error. As many as 60 lines can be printed
in such a case. Fewer can be printed if a preceding error has already caused data to be printed or
if the print option is alternatively turned on and off on various embedded structures within a disjoint
cluster. All data set data is printed in hexadecimal, using as many lines as required. All keys are con
verted to readable format and parts of complex keys are concatenated together. All addresses are
printed in hexadecimal notation.

Disjoint Data Set (DDS) Records

The printout of disjoint data set (DDS) records consists of a line with the hexadecimal address (new
format) followed by one or more lines containing the data (in hexadecimal). For deleted records, only
the address and the message ** DELETED ** are printed, along with the NEXT address contained
in the record (in both old and new format). If error 8 is reported, the record containing the dead flag
is printed. The data lines do not contain the listheads. The only error that might be reported for DDS
data is number 8. Following the data lines, the listhead for each embedment is printed; it consists of
the embedded structure name and the head and tail addresses found in the parent. The listheads are
considered part of the parent record for both printing and validity check purposes. If the list head
or tail is invalid, it is reported here with error 17.

11-12

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

Embedded Structure (ES) Tables

For each embedded structure (ES) with a valid list head for which validity checking is required, the
chains of tables are printed. For each table, its address (old format) is printed in hexadecimal followed
by its next and prior pointers and its entry count. Any errors concerning these values are reported here
including error numbers 11, 22, 34, 36, and 17. If the entry count is too large, the maximum is used
for purposes of printing and checking. Each entry of the table is printed. For an embedded structure,
the data is printed in hexadecimal preceded by the key (on a separate line) if it is ordered. The key
is identified as coming from the data if it is simple or, if it is complex, from the table. For a manual
subset, the object address is printed in both olJ and new forms, followed on the same line by the key
if the manual subset is ordered. Following each embedded structure entry, any relevant errors are re
ported. These include object record warnings for manual subsets if the EXTENDED VALIDITY option
is set (41 or 42), and key ordering and duplicate errors if the structure is ordered (30 or 32). For em
bedded structures with complex keys, an error is reported if the key does not match the data (43).
Any embedded structures with an embdedded structure are mapped following the data line in the same
manner as embedded structures within disjoint data sets.

Index Sequential Tables

For index sequential (IXSEQ) structures, the tables are printed in depth-first order. The root table is
printed first, followed by the leftmost table within it (Table 1), followed by the leftmost table within
it (Table 1-1), and so on, until the fine table is reached. This can be seen in figure 11-1.

TABLE H

(FINE)

G 1861 B

TABLE 1

TABLE 1-2

(FINE)

ROOT
TABLE

TABLE 2

TABLE 2-1

(FINE)

TABLE 3-1

(FINE)

TABLE 3

Figure 11-1. Sequence of Printing of Index Sequential Tables

TABLE 3-2

(FINE)

The tables are named as shown and are printed in the order: Root Table, Table 1, Table 1-1, Table
1-2, Table 2, Table 2-1, Table 3, Table 3-1, Table 3-2.

A heading, in a box, precedes each table. The information in the heading includes the table name,
address, prior and next pointers, table type, entry count, and audit serial number. If the address is
invalid, then only the name and address, along with a message, appear in the box. The invalid address
that caused this error has been reported earlier.

1152444 11-13

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

Errors concerning information in the table header and trailer are reported after the heading box. These
include entry count checks (error numbers 11 and 22) and checks on the trailer information (error num
bers 3, 25, 26 and 54). If the data base is auditing and audit is currently set, the audit number is
checked (error number 3). The flag field is checked to make sure it is zero (error number 55). Errors
are given if the prior and next pointers are not the addresses appearing in the adjacent parent entries
(error numbers 21 and 24). If a prior or next pointer of a parent was bad, then these checks cannot
be made for the first and last tables belonging to that parent. A message is printed whenever the check
is not made. The table type is checked to make sure that it is the one indicated by the parent table
type (error number 23). If the type is wrong, no lower level tables for this parent are checked. A mes
sage is printed when this happens.

The table data follows the heading box. As many entries as fit are printed on each line, and following
each line, any errors relating to these entries are printed. Each error is preceded by a line pointing
out the offending entry. Entries are printed in key/address pairs, with the address enclosed in square
brackets. For fine tables, the addresses are 32-bit addresses in the object disjoint data set. For other
tables, the addresses are 24-bit addresses in the index set.

The last entry on each level of the tree must have a null key (all @F@s). Error number 34 is reported
if this is not so. The last fine table entry must also have a null address, and therefore must be entirely
null. If this is not true, error number 35 is reported. These null keys appear as question marks in the
printout. Errors in key ordering (error number 32) and duplicates (error number 30) are reported. Also,
each key is compared to the key in the parent entry pointing to this table. No key in the table must
be greater than this parent key (error number 31). If extended validity checks are being performed,
then the object record is read, and errors concerning its existence (error number 41) and key (error
number 42) are reported.

If, while processing tables, an attempt is made to read more tables then there are, then a circular table
pointers error (error number 7) is reported, and processing of the structure ceases. Usually there are
quantities of other errors by the time this is discovered. It is more an escape for the DMS/DBMAP
program than a useful error by itself.

Index Random Tables

For index random (IDXRND) structures, the tables are printed in base-table order. Each non-empty
base table is printed, followed by any overflow tables it can have. An empty base table actually con
tains one entry, the omega entry (all @F@s). Error number 10 is reported if it is missing.

For all non-empty tables and for empty base tables that have errors, a heading, in a box, precedes
each table. The information in the heading includes the table name, address, prior and next pointers,
and entry count. The base table for hash value n is named Table BASE-n :O; its overflow tables are
named Table BASE-n :1, Table BASE-n :2, and so forth. If the address is invalid, then only the name
and address, along with a message, appear in the box. The invalid next address causing this is reported
earlier.

11-14

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

Errors concerning information in the table header and trailer are reported after the heading box. These
include entry count checks (error numbers 11 and 22) and checks on the trailer information (error num
bers 3, 25, 26, and 54). If the data base is auditing and audit is currently set, the audit number is
checked (error number 3). The flag field is checked to make sure it is zero (error number 55). The
prior pointer must be the address of the base table (error number 24) as well as a valid address (error
number 17). If the next pointer is invalid (error number 17), an invalid next address error (error num
ber 20) is also reported. The type must always be zero for index random structures (error number 28).
Where there is more than one table in the base chain, a line summarizing the total number of entries
in the chain follows the last table of the chain. This sum includes the final omega entry.

The table data printout is similar to that for index sequential structures and consists of as many
key/address pairs as will fit on a line. The last entry of each base chain should be an omega entry
(all @F@s), and an error is reported if it is missing (error number 33). This entry is also printed,
appearing as [[-omega-]]. A null entry in any other place shows as question marks. Following each
line of entries, any errors occurring in the entries are reported. These include errors concerning the
keys (error numbers 29, 30, and 32), and errors concerning the addresses (error number 17). Extended
validity errors (error numbers 41 and 42) and circular table pointers (error number 7) are reported as
for index sequential structures.

Population Summary

The population summary consists of two parts. The first part is printed for structures with the NAHO
COUNT option set. The second part is printed only for structures that have the VALIDITY option
set.

The first part reports how many tables or records have been opened, determined from the highest open
(HO). (If the HO is bad, zero records are considered open.) The count of tables or records on the
NAHO chain is also reported. The resulting population is computed from these two numbers and
printed. If an error was encountered in processing the NAHO chain, the population is reported as
meaningless. If the file was missing, no population can be reported.

The second part contains statistics accumulated while processing the structure during validity checking,
and is different for each structure.

Disjoint Data Set (DDS) Population

Counts of dead and active records encountered while reading sequentially through a disjoint data set
are maintained. These counts are printed in the population summary. The total dead records seen
should be the same as the number on the available chain. If this is not true, error number 9 is reported.
If the extended validity checking is performed on the disjoint data set, the actual records which ap
peared dead but were not on the available chain are printed. The total active records seen should be
the same as the population computed from the next-available and highest-open (NAHO). Error number
1 is reported if this is not true. If the NAHO chain was bad, this check cannot be made and an appro
priate message is printed to inform the operator.

1152444 11-15

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

Embedded Structure (ES) Population

The number of active tables encountered, and the total nilmber of entries they contained, is printed.
The total number of tables must equal the expected population (error number 1). The number of tables
that are required after a generate operation (GENERA TE DMS/DASDL. compiler statement) is also
printed. This is determined by considering the minimum space required to house all the entries of each
parent. Summaries by parent record include the following items: · ·

Number of parents with null lists.

Number of entries for the parent that had the most entries.

Number of entries for the parent that had the fewest entries,
excluding fast ,subsets and null lists.

'

Number of tables for the parent that had the most tables.

For unordered manual subsets, the number of parents with fast. subsets.

If the parent data set file was missing, this summary cannot be given.

Index Sequential (IDXSEQ) Population

The total number of active tables and entries is printed and checked, as is done for embedded struc
tures. The table and entry counts are then broken down by index level. The last (null) fine table entry
is not counted as an entry here, so for sets, the total number of fine table entries should equal the
object disjoint data set population (error number 15). For subsets, the fine table entry count should
not be greater than the disjoint data set population (error number 16). Checks cannot be made against
the object disjoint data set population if its NAHO chain was bad. In such a case, a message is printed
telling of the omission of this check.

Index Random (IDXRND) Population

The total number of tables and entries is printed and checked, as is done for index sequential struc
tures. Then the table and entry counts are broken down by base table and overflow tables. The omega
entries are not included in these entry counts. The total number of entries should be equal to the object
disjoint data set population (error number 15). As for index sequential (IDXSEQ) structures, no check
can be made against the object disjoint data set population if it is unavailable.

Error Summary

An error summary containing the data base name and the total number of errors and warnings is pro
duced at the end of all DMS/DBMAP listing. Because some errors may be encountered in the KA
summary, any DMS/DBMAP run may have some errors. Additional errors are encountered in the
NAHO count operation. The majority of errors, of course, are encountered in the validity checking
operation. Following the totals, a breakdown is made by structure. For each structure having any errors
or warnings, the structure number, name counts, error counts, and warning counts are printed. Key
comparison errors for manual subset or index structures are attributed to the manual subset or index
and not to the object disjoint data set. Errors in a listhead are attributed to the parent record contain
ing the listhead, and not to the embedded structure to which the listhead refers.

11-16

I
\j

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

ERROR MESnAGES

Error messages denote situations that must not occur. Such situations are the result of corruption, with
varying effects on the system; most either produce integrity errors from OMS or result in the fetching
of wrong records. Warning messages are error messages given in situations that may be allowed to oc
cur but must be brought to the user's attention.

The DMS/DBMAP program does not report certain integrity errors that are detected through
DMS/DASDL-generated code. These include (1) data not meeting a verify condition, (2) a required
but missing field, (3) a record belonging in an automatic subset but missing, (4) a record erroneously
included in an automatic subset, and (5) a wrong variable format record type.

Error Discussion

The errors reported by DBMAP are exception conditions; they should not occur. Obviously, if there
were clear-cut remedies, these errors could be corrected automatically. These errors should be reported
in an FCF, along with the supporting evidence (the "before" data base, the audit trails for the relevant
period, and the "after" data base). Correctio11 :-:::quires knowledge of the application and of DMS struc
tures and is best handled through cooperation between the Burroughs representative and an expert on
the particular application.

An error in a structure may be eliminated by purging that structure, which then must be reloaded pro
grammatically. Whether this is feasible or even possible depends on the application. An error in a dis
joint set or subset often can be made to "go away" by generating the offending structure, but this
might not be a proper solution because data could be lost. Hence, there is no general answer to the
question, "What is the remedy for this error?" However, some guidelines are available and are pres
ented in the following paragraphs.

When the error is in an automatic index set or subset, a GENERA TE of the set will eliminate the
problem by rebuilding the set from the key information in the data set. When the error is confined
entirely within the set (for example, invalid next or prior pointers, missing omega entry), a GENER
A TE is a safe solution. However, if the error involves a mismatch between the set and its data set
(for example, a dead object record, a key mismatch, or a population mismatch), a GENERA TE of
the set, although it removes the problem, may not be the correct solution.

When a set and its data set differ, the differences must be examined to determine which represents
a correct picture of the application. If the data set is correct, the set can be GENERATEd.. If the
set is correct, the data set must be corrected programmatically (or with DMS/DBFIX) to match the
set; this is necessary for a key mismatch or dead object record. If the error is a population mismatch
(and the set rather than the data set is determined to be correct), the extra data set records can be
eliminated by a GENERATE of the data set, ordered by the set.

If a data set record is marked as dead but is not on the available chain, a GENERATE of the data
set will remove the problem by removing the record. However, since the record might really belong
in the data set, the actual data must be examined from the standpoint of the requirements of the appli
cation. If the record does belong in the data set, it must be marked un-dead (programmatically or with
DMS/DBFIX) and filled with its correct data. Similarly, if a record is on the available chain but is
not dead, it is necessary to decide whether it truly should be dead: If not, it can be removed from
the available chain by a GENERATE; if so, it must be killed (programmatically or with DMS/DBFIX).

1152444 11-17

B 1000 Syste~ns Data Management Systemll {DMSH)
· Functional Description Manual

DMS/DBMAP Program .

Problems (for example, circular pointers or· bad addresses) occurring in the available chain may be re
moved by generating the offending structure. Again, it is wise to examine the tables involved in the
error situation. If the NA or HO itself is bad, it might not be possible to generate the structure. Before
generation is attempted, the NA and HO should both be set (with DMS/DBFIX) to the DMS logical
address associated with the true end-of-file. If this is done for a disjoint data set, the data set should
be GENERA TED ordered by a correct spanning set in order to avoid adding more garbage records
to the data set.

If errors occur in listheads, in pointers between embedded tables, or in the entry counts of emoedded
tables, there is no remedy short of purging the structure and reloading it from your own audit, if any.
This is because these structures, unlike index sets, are not maintained automatically. The linkage was
effected manually; if it is broken, the system cannot know how to put it. back together. With an inti
mate knowledge of your application, an intimate knowledge of OMS structure formats, and a lot of
work, the damage could possibly be repaired. Whether this is feasible or not depends on the nature
of the problem and the forethought that went into the design of the use of these structures. This is
one reason embedded structures are not recommended.

Errors that occur in file versions or exception flags usually signal "normal" exception conditions in
the data base. Recovery might be needed. As with most errors, DMS/DBFIX can be used to simply
turn off the flag or to cause the versions to match, but these are seldom true solutions; the history
that led up to the problem must be examined. '.~'·':;~"'·; .. ·. ·

Messages are displayed for the first error and warning, to let the operator know that the listing must
be examined. The total number of errors, but not warnings, is included in the end-of-job (EOJ) state
ment.

In the printer listing, if the print option is set, error and warning messages appear as follows:

** ERROR ** <text> or * WARNING * <text>

or, if the print option is not set, as follows:

** ERROR ** (Str# <number>) <text> or
* WARNING * (Str# <number>) <text>

For some errors, those in index tables for example, the error line is preceded by a line containing a
string of ### characters beneath the field causing the problem.

11-18

Error Message List

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

In the pages that follow, the messages are listed in alphabetic, not numeric, order. The number to the
left of each error message identifies the error in the previous sections; it does not appear with the error
in the DMS/DBMAP line printer output.

The code in parentheses leading off the line below the message indicates when the error is reported,
which may be during the KA (K), NAHO COUNT (N), VALIDITY (V), or POPULATION SUMMA
RY (P) operations. V and P errors are reported only if the VALIDITY option is set for the relevant
structure.

The terms in square brackets denote the structure type for which the error is reported.

Warnings are specifically identified.

1152444

53 ABNORMAL STATUS IN DATA BASE GLOBALS

(K) [ALL] (warning)

One or more of the abnormal status flags is set in the data base globals.
This warning follows the heading box that prints the flags. Often, when
one of these flags is set, integrity errors can be expected in the data base,
but the DMS/DBMAP program maps all structures anyway.

ACTIVE RECORD COUNT DIFFERS FROM NAHO POPULATION

(P) [DDS]

The NAHO population, determined by subtracting the number of records
found on the available chain from the number of open records, differs
from the actual number of live records seen when reading the disjoint
data set sequentially. This difference can occur if there is a live record on
the available chain, which is reported with error number 37, or if there is
a dead record not on the available chain, which is to be reported with
error 8 if the extended validity option is set for the disjoint data set.

2 ACTIVE TABLE COUNT DIFFERS FROM NAHO POPULATION

(P) [IDX, EDS, MSS]

Error number 2 is similar to error number 1, except it refers to index
and embedded structures. The number of tables actually encountered while
reading the structure differs from the NAHO population. This difference
can occur in two situations: (1) there is a live table (entry count greater
than zero) on the available chain, which is reported with error number
38, or (2) chains of tables intersect, which is likely to cause errors in
ordering.

3 AUDIT NUMBER: < numberl > > GLOBAL AUDIT NUMBER:
<number2>

(V) [IDX, ES]

For an audited data base, an index or embedded structure block was
found in which the audit number < numberl > was greater than the audit
number in the DMS globals < number2 > . For embedded structures, this
is reported every time a table from the bad block is read.

11-19

11-20

B 1000 Systems Data Management SystemlI (DMSII)
Functional Description Manual

DMS/DBMAP Program

4 AVAILABLE CHAIN IS CIRCULAR

(N) [ALL]

More records have been found on the available chain than have ever been
opened. There is no indication of the point at which the chain went bad.
When this error occurs, no NAHO population can be computed and some
population checks cannot be made.

5 CAN'T OPEN FILE FOR <str name> FOR EXTENDED VALIDITY
CHECK

(V) [MSS, IDX] (warning)

The file for the object disjoint data set < str name> could not be
opened. This file is needed in the performance of extended validity
checking for a manual subset or index structure. Therefore, the extended
validity check could not be made and a regular validity check is made
instead.

6 CAN'T OPEN FILE FOR < str name> FOR NAHO COUNT

(N) [DDS, EDS, MSS, IDX] (warning)

The file for structure < str name> could not be opened and so the
requested NAHO COUNT option, as well as any validity checking, could
not be performed on this structure.

7 CIRCULAR TABLE POINTERS

(V) [EDS, MSS, IDXSEQ, IDXRND]

While processing an index or manual subset structure, more tables were
seen than were ever opened. No indication is given of where the table
pointers went circular. Usually, quantities of other errors (key ordering,
wrong next pointers, and so forth) are reported before this error occurs.
This error is more an escape for the DMS/DBMAP program than an
integrity error in itself.

8 DEAD RECORD NOT IN AVAILABLE CHAIN

(V) [DDS]

A disjoint data set record containing a dead flag was not in the available
chain for this disjoint data set structure. The record is written out
preceding this error; dead records normally are not written out. This error
is reported only if the extended validity option is requested on this
disjoint data set. Making this check can require extra virtual disk. Refer
to Execution Examples in this section for additional information.

9 <number> DEAD RECORDS NOT FOUND ON AVAILABLE CHAIN

(P) [DDS]

When reading a disjoint data set sequentially, <number> more dead
records were read than were found on the available chain. If the extended
validity option is requested on this disjoint data set, then error number 8
is reported for each such record.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

10 EMPTY BASE TABLE DOES NOT CONTAIN NULL ENTRY

(V) [IDXRND]

Index random files are initialized with an omega (all @F@s) entry in
each base table. Error number 10 occurs if the base table has only one
entry and no overflow tables, and that one entry is not the omega entry.
This does not hinder the use of the data base.

11 ENTRY COUNT = 0 IS INVALID

(V) [EDS, MSS, IDX]

An active table has an entry count of zero. This is an error because
empty tables should be put back on the available chain, but this error
does not affect proper use of the data base.

12 ENTRY COUNT DIFFERS FROM OBJECT DDS POPULATION:
<number>

(P) [IDXRND]

The sum of all non-omega entries in an index random (IDXRND)
structure must be equal to the population of the disjoint data set it
spans. The disjoint data set population that is compared is <number>
and is the NAHO population for that structure. For more information,
refer to error numbers 15 and 16 in this section.

13 ENTRY OUT OF ORDER IN TABLE: <address>. LAST KEY: <key>

(V) [EDS(simple) 61129000]

In an ordered embedded data set, an entry in the table at <address> is
out of order with respect to the prior key <key> . The key in error is
printed just above this error. The address is included here only to help
locate the key in error in case the print option was not set and 60 lines
was not sufficient to include the table header. For more information,
refer to error number 32 in this section.

14 FILE MISSING

(K) [ALL] (warning)

The file for a data base structure is not present when the data base is
mapped. Possibly, the disk pack for the file is not on line. If the file is
also required for the NAHO COUNTS option, or as an object structure
needed for an extended validity check, then warning numbers 5 or 6 are
generated.

15 FINE TABLE ENTRY COUNT DIFFERS FROM OBJECT
DDS population: <number>

(P) [IDXSEQ set]

With the exception of the final null entry, which is excluded, the sum of
all fine table entries of a spanning index sequential set should equal the
population of the· disjoint data set that the index sequential set spawns.
The disjoint data set population <number> used for comparison is the
NAHO population. For more information, refer to error numbers 12 and
16 in this section.

11-21

11-22

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

16 FINE TABLE ENTRY COUNT GREATER THAN OBJECT
DDS population: <number>

(P) [IDXSEQ subset]

For an index sequential (IDXSEQ) subset, the sum of fine table entries
must not be larger than the NAHO population <number> of its object
disjoint data set. For more information, refer to error numbers 12 and 15
in this manual.

17 IN ADDRESS: <address> (INVALID DISK AREA NUMBER)
(BEYOND HIGHEST OPEN) (INVALID RECORD NUMBER)
(INVALID BLOCK OFFSET)

(everywhere) [ALL]

This error can occur in many places whenever a new format address
appears in a structure. Sometimes an additional error message, for
example, INVALID NEXT POINTER, is generated. Addresses are checked
in several ways. If the address fails any of the checks, then this error
occurs and the appropriate parenthesized message(s) is printed. For more
information, refer to error numbers 18 and 47 in this manual.

(Invalid disk area number): the area number in the address is greater than
the number of areas allocated to the file.

(Beyond highest open): although the area number is within the file, the
address is beyond or equal to the highest opened address maintained in
the dictionary.

(Invalid record number): the record number in the ·address is greater than
or equal to the maximum number of records per block for this structure.

(Invalid block offset): the block off set in the address is greater than or
equal to the maximum number of blocks per area times the number of
segments per block; or the block offset is not a multiple of segments per
block.

18 IN NAHO: <address> (ADDRESS IS NULL)
(INVALID DISK AREA NUMBER) (BEYOUND HIGHEST OPEN)
(INVALID RECORD NUMBER) (INVALID BLOCK OFFSET)

(K) [ALL]

This error is very much like error number 17, except it can only be
reported when checking the next available (NA) and highest open (HO)
field in the KA phase. The restrictions on the NA and HO fields are
slightly different than the restrictions on normal addresses. The NA or
HO fields can be equal to the highest open. In an HO field, or in an
NA field that is equal to the HO field of any of the fields, record,
block, or area, may be equal to but must not exceed the maximum.

(ADDRESS IS NULL): for an NA pr HO field, a null address (all
@F@s) is not valid.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

47 IN OLD ADDRESS: <address> (FILLER BIT SET)
(INVALID DISK AREA NUMBER) (BEYOND HIGHEST OPEN)
(INVALID RECORD NUMBER) (INVALID BLOCK OFFSET)

(K)

This error is similar to error number 17, except the address being checked
is an old format address. The restrictions are the same as for a new
address, with the addition of the filler bit check:

(FILLER BIT SET): the filler bit (high-order bit of the block offset
portion) is set. It must be zero.

52 INTEGRITY-ERROR FLAG IS SET

(K) [ALL] (warning)

An integrity error has occurred in this structure. The DMSII system
processes the structure anyway and the DMS/DBMAP program maps it as
usual.

54 INVALID CHECKSUM: <number> SHOULD BE ZERO

(V) [IDX]

The checksum in index trailers is not used but it must be zero on the
structure when the buffer is read.

55 INVALID FLAGS FIELD: <number> SHOULD BE ZERO

(V) [IDX]

The invalid flags field in index trailers is not used but it must be zero on
the structure when the buffer is read.

19 INVALID NAHO LINK IN <address>, ABORTING NAHO SEARCH

(N) [ALL 60471000)

In the available table at <address> , the next available pointer is an
invalid address. An address error (error number 17) precedes this error.
The NAHO population cannot be obtained for this structure; therefore,
some population checks cannot be made.

20 INVALID NEXT ADDRESS

(V) [IDXRND]

The next address pointer in an index random (IDXRND) table is an
invalid address. This error follows an address error (error number 17).

21 INVALID NEXT POINTER. EXPECTED <address>

(V) [IDXSEQ]

The next pointer in an index random (IDXSEQ) table is not the same as
the address in the adjacent parent entry <address> . When this occurs,
the rightmost coarse or fine address in this table cannot have its next
pointer checkeq, and a message is given stating this error.

11-23

ll-24

. , . ' .. ;

n· 1000 Systems . Data Management Systemfl ·· (DMSln ··
Functional Description Manual

DMS/DBMAP. Program

..
22 INVALID NUMBER OF ENTRIES --USES <number>

(V) [EDS, MSS, IDX]
The entry count in an index or embedded structure table is greater than
the maximum entries per table. For printing and checking purposes, this
maximum <number> is used.

23 INVALID PARENT TYPE: <number>
(V) [IDXSEQ]

The type table encountered in an index sequential (IDXSEQ) table was
not valid.

24 INVALID PRIOR POINTER. EXPECTED <address>
(V) [EDS, MSS, IDXSEQ, IDXRND]

Embedded structure tables are processed by following next pointers.
Therefore, the prior pointer in a table must be the <address > of the
table just read; if it is not, this error is generated.

An index sequential (IDXSEQ) prior pointer must be the same as the
address in the entry just prior to the parent entry for this table (similar
to error number 21). When this error occurs for an index sequential
(IDXSEQ) structure, the first key of the table cannot be checked for
duplicates or ordering, nor can the table reached by the first entry have
its prior pointer checked. ·

For an index random (IDXRND) structure, the prior pointer of any table
must be the base table of that chain; if it is not, . this error is ·generated.

25 INVALID SELF ADDRESS IN TAIL: <address>

(V) [IDX}

The tail of each index (IDX) table contains the address of that table.
This error occurs when the <address> in the tail differs from the actual
address of the table.

26 INVALID STRUCTURE NUMBER IN TAIL: <number>

(V) [IDX]

The tail of each IDX table contains the structure number of that IDX
structure. This error occurs when the structure <number> in the tail is
wrong.

27 INVALID TAIL <addrl > FOR EMBEDDED <str name> IN RECORD
<addr2>
EXPECTED <address>

(V) [EDS, MSS}

In the structure head for embedded < str name> in the parent record at
<addr2>, the tail <addrl> differed from the actual address of the last
table in the chain. The last table is recognized by having a null next
pointer. Because this error follows the printout of all entries in the chain
for this embedded structure, the parent record and table .bead cannot be
included in the last 60 lines when no print option is set, and so the
parent address and offending tail address are repeated in the error text.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

28 INVALID TYPE <number 1 > . EXPECTED <number 2 >

(V) [IDXSEQ, IDXRND]

For an index sequential (IDXSEQ) table, the allowable types, <number
2 > , are determined by the type of the parent table <number I > . The
table heading giving the bad type immediately precedes this error. When
the type for an IXSEQ table is bad, no attempt is made to access tables
pointed to by the IXSEQ table entries. This is because the structure (that
is, the index or its disjoint data set) referred to by the IXSEQ table
entries is unknown. A message is given stating this error. For an index
random (IDXRND) structure, all tables must have a type of zero.

29 KEY IN WRONG BASE TABLE. SHOULD BE IN <address>

(V) [IDXRND]

The value of the key pointed out with ### characters places it in a
different base table or overflow table than the one it belongs in. It must
be in the table at < address> .

30 KEY IS INVALID DUPLICATE

(V) [EDS, MSS, IDXSEQ, IDXRND]

In an ordered structure where duplicates are not allowed, a duplicate key
has been found. For index (IDX) structures the key in the preceding line
is pointed out with a string of ### characters. For embedded structures,
the duplicate key is the one in the immediately preceding entry.

31 KEY IS TOO HIGH FOR THIS TABLE. MAX IS <key>

(V) [IDXSEQ]

In an index sequential (IDXSEQ) table, no key must be greater than the
key in the parent entry that pointed to this table. The parent key is
<key> and the offending key in this table is identified in the preceding
line with ### characters

32 KEY OUT OF ORDER IN TABLE: <address>. PRIOR KEY: <key>

(V) [EDS(complex), MSS, IDXSEQ, IDXRND]

Within the table of an ordered structure, a key is not in order. In
embedded structures, the entries are maintained in key order within each
chain of tables of each parent record. In an index sequential (IDXSEQ)
structure, all keys at one level must be in order. In an index random
(IDXRND) structure, all keys in the base table chain must be in order.
The preceding key to which this key is compared is <key> . For index
(IDX) structures the key in the preceding line is identified with ###
characters. For embedded structures, the key is the one in the immediately
preceding entry. This error is related to error number 13 for embedded
structures.

33 LAST ENTRY OF CHAIN SHOULD BE A NULL

(V) [IDXRND]

The last entry of a base table chain must be a null omega entry (all
@F@s).

11-25

11-26

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

34 LAST ENTRY ON LEVEL SHOULD HAVE NULL KEY

(V) [IDXSEQ]

The last entry on each level of an index sequential (IDXSEQ) structure
must have a null (all @F@s) key.

35 LAST FINE TABLE ENTRY SHOULD BE NULL

(V) [IDXSEQ]

The last entry in the last fine table must be entirely null with all @F@s
for both its key and address.

36 NEXT LINK IS SELF [EDS, MSS]

(V) [EDS, MSS]

The next pointer in an embedded structure table is the same as the ·
address of the table, making a short circular list.

37 NON-DEAD RECORD IN NEXT AVAILABLE CHAIN AT <address>

(N) [DDS]

All records in the available chain of a disjoint data set must have dead
flags. This error message is generated if the available record at
<address> is not dead. The actual record can be seen if the data for
the structure is printed out.

38 NON-EMPTY TABLE IN NEXT AVAILABLE CHAIN AT <address>

(N) [EDS, MSS, IDX]

All tables on the available chain for an index (!DX) or embedded
structure must have zero entry counts. This error occurs when the
available table at <address> is not dead.

41 OBJECT RECORD IS DEAD

(V) MSS (warning), IDXSEQ, IDXRND)

This error message is only generated if the manual subset or index (IDX)
structure has the EXTENDED VALIDITY option set. The error message
occurs when the disjoint data set record pointed to from the index (!DX)
or manual subset has a dead flag set. For index structures this is an
integrity error, but for manual subsets it is only a warning, as nothing
prevents a program from deleting a record pointed to from a manual
subset.

49 RECOVERY-IN-PROCESS FLAG IS SET

(K) [ALL] (warning)

The RECOVERY-IN-PROCESS flag is set in the file record. This is
normally only set in memory during recovery and should not be set in the
dictionary.

51 REORGANIZATION-IN-PROCESS FLAG IS SET

(K) [ALL] (warning)

The REORGANIZATION-IN-PROCESS flag is erroneously set in the file
record. This flag must not be set.

1152444

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

42 TABLE KEY - OBJECT KEY MISMATCH. OBJECT RECORD
CONTAINS : <key>

(V) [MSS (warning), IDXSEQ, IDXRND]

This error message is generated if the manual subset or index (IDX)
structure has the EXTENDED VALIDITY option set. The error message
occurs when the <key> in the disjoint data set record at an address
pointed to from a manual subset or index {IDX) structure differs from
the key with that address in the manual subset or index (IDX) table. For
index (IDX) structures this is an integrity error but for manual subsets it
is only a warning message. Nothing prevents a program from changing
data in a record pointed to by an MSS entry. For more information,
refer to error number 43 in this section.

43 TABLE KEY - TABLE DATA MISMATCH. DATA CONTAINS:
<key>

(V) [EDS]

In an ordered embedded data set with a complex key, the key composed
from the data is stored separately in the table. This error occurs if the
separately stored key differs from the <key> within the data. The keys
in the data and in the table are printed with the previously printed entry.
For more information, refer to error number 42 in this section.

48 UPDATE FLAG IS SET

(K) [ALL] (warning)

The updating flag is set in the file record for a structure. This file was
being updated when the system halted. Recovery is required.

45 VERSION MISMATCH. VERSION ON DISK IS <version>

(K) [ALL]

The file version in the dictionary differs from the <version> in the disk
file header for a DMSII structure file. This prevents the structure from
being used by a program. The DMS/DBMAP program opens the file for
validity checking anyway.

50 WRITE-ERROR FLAG IS SET

(K) [All] (warning)

The WRITE-ERROR flag is set in the file record, indicating that an
output error has occurred on the file. The DMSII system does not allow
use of this file. The DMS/DBMAP program maps it anyway.

46 ZERO ADDRESS FOR AREA <number>

(V) [ALL]

Area <number> for the file has a zero address in the disk file header.
When this occurs, the file is marked as missing internally within the
DMS/DBMAP program so that no attempt is made to read it. Subsequent
CAN'T OPEN FILE warning messages result.

11-27

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS/DBMAP Program

ABORT MESSAGES

An abort message does not indicate a data base integrity error; it is produced when erroneous condi
tions make it impossible for the DMS/DBMAP program to continue operation. Abort messages are
flagged in the output printer listing and are also displayed at the ODT. An abort error forces a memory
dump to be taken, and the DMS/DBMAP program goes to EOJ.

Procedures

There are two general DMS/DBMAP abort types:

1. The program has encountered some internal error. Example: an attempt has been made to read
a file that has been opened successfully but is now missing. For this type, unless the reason
is apparent, the user should contact the Burroughs representative. (Submit a Field Communica
tion Form, the dump, relevant portions of the data base, and the line printer file.)

2. An attempt has been made to run the program under conditions in which it cannot be run.
Example: the data base has been opened update. This is correctable by the user.

The types are identified in the messages listed in the following paragraphs.

Abort Message list

CAN ONLY MAP 11.0 DATABASES
The data base specified is not a Mark 11.0 data base. The DMS/DBMAP program maps Mark
11.0 data bases only. If the data base is to be used with the Mark 11.0 operating system, it must
be converted using the $CONVERT option. This is a type 2 abort.

CANNOT MAP ACTIVE DATABASE
The dictionary file is locked, indicating that it is currently opened update, presumably by the
DMSII system. The DMS/DBMAP program can access this data base when the data base is not
open update. This is a type 2 abort.

CANNOT MAP DATABASE WITH ACTIVE FILE: <filename>
Although the dictionary was not locked, some file required for a NAHO count or validity check
is open update. The DMS/DBMAP program cannot run until any programs updating the diction
ary files are finished. This is a type 2 abort.

CAN'T OPEN FILE FOR < str# >: < str name>
The file for <str name> has successfully been opened once, but later, when trying to read it,
it is found to be missing. Because the DMS/DBMAP program may need to switch between files,
tht- file for a structure can be opened, closed, and reopened. If it has been opened successfully
once, the DMS/DBMAP program expects it to remain present, although it is possible for someone
to remove it during its closed period. If this has been done, this is a type 2 abort. However, if
the file is present, this is a type 1 abort.

CAN'T READ DICTIONARY FILE HEADER
Although the dictionary file has already been opened and read, its file header cannot be read later.
This is a type 1 abort.

11-28

\

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMS/DBMAP Program

DATABASE DICTIONARY: <title> IS MISSING
The dictionary for the data base named by the user, either in the command string or in a compile
statement, is not present. If the <title> is the one specified by the user and if the file actually
is missing, then this is a type 2 abort. If the <title> is not the one specified by the user, then
this is a type 1 abort.

ERROR IN COMMAND FILE. < msg >, SEEING: <last thing read>
If the commands are read from a file, then any command error causes an abort. The acceptable
syntax and possible error messages are described in Program Commands and Options. This is ordi
narily a type 2 abort; however, if the complaint in < msg > seems invalid, it should be considered
type 1.

ERROR IN SET OPTION
This is an internal error in the command parsing routines. Theoretically, it should not be possible.
In order to continue processing, try altering the syntax of the commands or using different com
mands. This is a type 1 abort.

ILLEGAL V ALID_NAHO CALL <string>
This is an internal error in the address checking routines. Theoretically, it should not be possible.
It is a type 1 abort.

READ EOF OF FILE F < # >: <filename> AT ADDRESS <address>
An attempt has been made to read a DMS file <filename> , which is switch file number < # > .
<address> is the new format DMS logical address causing the error. Because all addresses are
checked for validity before use by the read routine, this is an internal error. This is a type 1 abort.

1152444 11-29

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

APPENDIX A
OMS GLOSSARY

The following definitions are intended to give a working description of the terms used in this manual.

ACCESS
A method to reach a desired record of a data set.

CONTENTION
A condition in which a program is attempting to access a table entry or logical record within a physical
block which has already been locked by another user. If the program waits on contention for more
than MAXW AIT seconds, it receives a DEADLOCK exception. Refer to DEADLY EMBRACE for
additional information.

DEADLY EMBRACE
A condition in which a chain of programs exists, each of which is waiting for CONTENTION to be
resolved on a block while simultaneously having locked a block for which another program in the chain
is waiting. Upon recognizing a DEADLY EMBRACE, the DMSII system returns a DEADLOCK excep
tion to the lowest priority program in the chain and unlocks all records locked by that program.

DISJOINT
The condition of non-reliance of data sets on the highest level, that is, a data set which is not an item
within a data set. Standard data sets, sets, and automatic subsets are the only structures that are dis
joint. Disjoint sets can only refer to disjoint data sets.

EMBEDDED
The condition of being dependent on a data set that is on a higher level; that is, the condition of a
data set that is an item within a data set.

INDEX
A table of pointers to a data sci. used to provide specified access to a data set.

INNER LEVEL OR LOWER LEVEL
See EMBEDDED.

MASTER
A data set record which has dependent data sets is referred to as either the master, parent, or owner
of the records of the dependent data set. A master may itself be a record in an embedded data set.
An embedded data set cannot be accessed without accessing the master.

MEMBER
An occurrence of a record of a data set is a member of that data set.

ORDERED
Maintai:ped in a sequence depending on the value of user specified fields based on a collating sequence.

OWNER
See MASTER.

1152444 A-1

PARENT
See MASTER.

PATH

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMS Glossary

An access to a data set record. A single instance is a path; a set of instances is an index of paths.

POPULATION
The number of records in a data set. For an embedded data set, the population is the number of rec
ords in the embedded data set per occurrence of the master data set.

PROPERTIES
The physical structure and parameters of a data set, set, or subset, such as storage requirements or
structure type.

RECORD
A record contains all the information that pertains to an entity.

SCOPE
The range of influence of a data set, set, or subset.

SET
An index of paths to a data set with a pointer to each record of that data set.

SPAN
An index, whether ordered or retrieval, which references every record in a data set is said to span the
data set. Subsets, whether automatic or manual, may span a data set, although typically they are not
spanning sets.

SPLITTING
The method of inserting a new table into an index sequential set. When filled, DMSII splits an index
sequential table into two tables rather than using overflow techniques.

SUBSET
A collection of paths ~o some or all of the records of a data set. The criterion for membership in
the subset can be specified to the DMS/DASDL compiler through a WHERE clause, in which case
the subset is automatic and maintained through an index structure. Alternatively, records can be pro
grammatically inserted into the subset, in which case it is a manual subset and is maintained by means
of a list structure.

UNORDERED
Not maintained in a user specified order.

A-2

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

APPENDIX B
DMS/DASDL GENERATED CODE

The DMS/DASDL compiler generates code to perform the functions described in the paragraphs that
follow. The code is executed from the access routines (OMS/ ACR) on behalf of a DMS communicate
from a user program.

VERSION AND SECURITY CHECKING

This code is executed when the data base is opened. It validates any logical data base name included
in the open operation, checks the version stamps of all structures included in the path dictionary of
the program (all the INVOKEd structures), and ensures that the user program meets any security re
quirements that are specified through use of a SECURITYGUARD file.

KEY-BUILDING CODE

This code is called whenever the DMSII system needs to construct the key for any structure which has
key items declared (indexed set or subset, or ordered list).

WHERE~ VERIFY, AND REQUIRED CLAUSE CHECKING

Each time an update operation is performed on a data set record (store operation after either a lock
or create operation), the DMS/DASDL-generated code is executed to first evaluate any VERIFY, RE
QUIRED, or READONLY clauses for both the fixed and variable format parts. If any of these checks
fail, a DAT AERROR DMST A TUS exception condition is generated. The VERIFY code also moves
the data from the user work area into an internal buffer which, if a remap is being used, may be for
matted differently from the user work area. If a store operation was attempted after a lock operation,
the DMS/DASDL-generated code is then used to determine if any critical fields have changed. Critical
fields are data items that are used in KEY or WHERE clauses. If none have changed, the STORE
is trivial. If any have changed, or this is a STORE following a CREA TE, each set and automatic subset
must be examined in tum.

For a store operation following a create operation, the DMS/DASDL code evaluates all of the
WHERE clauses on automatic subsets. If the record satisfies any of these clauses, the record is inserted
into the appropriate subsets in addition to all of the sets declared for the data set. The DMS/DASDL
generated key building code is called during the insertion of the data set record into these sets and
subsets.

KEYCHANGE CODE

For a store operation following a lock operation, all sets and subsets are examined to determine if
the key has changed. If it has, and the change is valid, the old key is removed from the index and
the new key is inserted. If the key has changed and DUPLICATES was not specified, a KEY
CHANGED DMST ATUS exception condition is generated. In addition to checking for key changes,
the WHERE clause for each automatic subset is re-evaluated. If the value of that condition has
changed, then the record is inserted into or removed from the subset.

For embedded data sets, the process is identical for both the store operation after a create operation
and the store operation after a lock operation, with two exceptions:

1. A WHERE clause cannot reference an embedded data set.
2. Key fields for an ordered embedded data set cannot be changed.

1152444 B-1

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual
DMS/DASDL Generated Code

All INITIALIZATION Of DATA ITEMS

This code is executed each time a create operation is requested by a user. Any item for which an INI
TIAL VALUE clause was specified receives that value. The RECORD TYPE field, if present, is initial
ized to the value supplied with the create operation. All other items are initialized to nulls. If the
variable format value supplied with the CREA TE (COBOL and COBOL 74 only) verb does not match
any of the values allowed for the RECORD TYPE field, the DMS/DASDL-generated code returns a
DATAERROR DMSTATUS exception condition.

For a recreate operation, no initialization is performed, but the RECORD TYPE field is verified.

SELECT CLAUSE VERIFICATION

Any checking needed to screen data set records from a remap is specified by a SELECT clause. This
code is functionally identical to that used for the WHERE and VERIFY clauses. If a record fails to
meet the specified condition, the DMSII system reprocesses the find operation until a record can be
found which satisfies the request. The select code also moves and, possibly, reformats the data from
the user work area into an internal buffer.

CODE SEGMENT ASSIGNMENTS

The operating system (MCPII) assigns an entire code page to each open DMSII data base. Each page
can contain up to 64 individual segments; there are 16 such pages reserved for each copy of
DMS/ ACR. When generating code, the DMS/DASDL compiler attempts to limit each code segment
to a length of 10240 bits (1280 bytes). If the amount of code required for the data base cannot fit
into 64 segments of this size, then the size of each segment is incremented by 1024 bits until 64 seg
ments can accommodate all of the code.

SYSTEM/MARK-SEGS PROGRAM AND DMS/DASDL COMPILER

If the CODE dollar option has been set in the DMS/DASDL compiler, then the DMS/DASDL listing
describes the type and location by segment number of the code generated for each structure. The
SYSTEM/MARK-SEGS program allows the code segments within a data base dictionary to be marked
as important, for use with the Priority Memory Management routines in the MCP. To use the
SYSTEM/MARK-SEGS program for this purpose, the key word DMS must be the first option
specified to the program, followed by the numbered list of segments to be marked.

User discretion is advised when marking segments. A code segment which is used infrequently, such
as the version checking code, should never be marked. Code segments to be marked should only in
clude those that are related to highly volatile data sets and are related to the sets and subsets which
reference those data sets.

B-2

\

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

APPENDIX C
DMSll DAT A STRUCTURES

This appendix contains record descriptions for each of the DMS data structures referenced in this
document. A list of these structures follows.

1. Subrecords and constants used in the definition of other structures.
2. Dictionary data structures used at run time.
3. Non-dictionary data structures used at run time.
4. Control structures embedded in DMS data files.
5. Dictionary data structures used only at DASDL compile time.
6. Audit file and audit trail formats.

SUBRECORDS AND CONSTANTS

The following constants, field type definitions, and subrecords are used throughout the remainder of
this appendix.

1152444

CONSTANT

TYPE

MAX STR NBR = 255,
MAX-STR-BOUND MAX STR NBR + l,
LG2-MAX-STR NBR = 8, -
MAX-STR-DIGTTS = 4,
LG2-MAX-RMP NBR 8,
MAX-VFP~ - = 255,
MAX-OCCURS = 3,
BLK-AREA LGTH = 24,
DM GLOBALS DISK SIZE = 1145,
OM-GLOBALS-MEMORY SIZE = 1222,
DM=GLOBALS=TOTAL_~IZE = DM GLOBALS DISK SIZE +

OM-GLOBALS-MEMORY SIZE,
HASHTABLE_SIZE

DOL PTR
STR-PTR
DDL-OCCURS CNT
DDL-SIZE ENTRY
DDL-OFFSET ENTRY
KEY-TBL PTR
MEMORY ADDRESS
NAME -
BYTE
DICTIONARY_OFFSET
AUDIT SERIAL NUMBER
ADDRE~S -
WORD

=
=
=
=
=

=
=
=
=
=
=
=

64;- - -

BIT(l6),
BIT(LG2 MAX STR NBR),
BIT(10)7 -
BIT(l6),
BIT(16),
BIT(16),
BIT(24),
CHARACTER (10),
BIT (8) ,
BIT(l6),
8 IT (32) ,
BIT(24},
BIT(24);

CONSTANT
RELEASE V 1 = 3,
RELEASE-VT 0 = 4,
RELEASE-Vl-1 = 5,
RELEASE-VII 0 = 6,
RELEASCVI I-OX ---- 7 ',
RELEASE-VI IT 0 8
RELEASE-X OX- = 9, %set by ll.O dbback
RELEASE-XI 0 = 10,
RELEASE-XI-OX = 11, %set by 12.0 dbback
RELEASE-XIT 0 = 12,
CURRENT=RELEASE_LEVEL = RELEASE_Xl_O;

C-1

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Logical Addresses

The DMSII system maintains no absolute disk addresses in the processing of a data base. Instead, all
addresses are maintained in relation to the disk file area in which a given record is located. These
relative (or LOGICAL) addresses may be 24-bit, 32-bit new-format, or 32-bit old-format addresses.

24-bit addresses
Used within index sequential and random structures to point to other index tables.

32-bit new-format addresses
Used throughout the dictionary an in index sets and subsets where a data set record is referenced
in a fine table.

32-bit old-format addresses
Used throughout all other DMS structures on disk as list-head and list-tail addresses in data set
records, as fast-subset addresses in data set records, as next and prior pointers between tables of
embedded structures, and as next links in dead data set records.

The subsection titled Control Structures Embedded in DMS Data Files shows which address forms are
used where.

C-2

RELEASE VI 11 0
% 24-BIT ADDRESS -

RECORD AREA BLOCK TEMPLATE
AREA -
BLOCK

% 32-BIT NEW FORMAT ADDRESS
RECORD DISK LOGICAL ADDRESS

[AREA BLOCK ,-
AREA
BLOCK

] ,
RECORD_NUMBER

% 32-BIT OLD FORMAT ADDRESS
RECORD OLD LOGICAL ADDRESS

AREA -
RECORD NUMBER
STUPID:FILLER

BLOCK

= 8,

BIT (8) ,
BIT(16);

AREA_BLOCK_TEMPLATE

BIT (8) ,
BIT(16)

BIT (8) ;

BIT (8) ,
BIT (7) ,
BOOLEAN, % Must be zero except in

% nu 11 1 ink
BIT(16);

B 1000 Systems Data Management Systemll (DMSll)
Functional Description Manual
· DMSII Data Structures

Additional Subrecords

Following are additional subrecords that may be included in subsequent record formats.

RECORD NORMAL DESCRIPTOR
ND DK FACTOR
FILLER
ND CORE
ND-TYPE
ND-LENGTH
FILLER

RECORD OMS FILE TITLE
ASTERTSK
USER CODE

[THIRiY CHAR TITLE
! PACK ID -

MULTT FILE ID
FILE TD -

]; -
RECORD DDL VERSION_RECORD

FILLER-
HOUR
MINUTES
SECONDS
MONTH
DAY
YEAR

RECORD CODE ADDRESS RECORD
SEGMENT NUMBER
PAGE NUMBER
DISPLACEMENT

RECORD OMS SOFTWARE VERSION

BIT (3) ,
BIT(6),
BIT(24),
BIT (3) ,
BIT(24),
BIT(4);

BIT (3) ,
BIT (5) ,
BIT(6),
BIT{6),
BIT(4),
BIT (5) ,
BIT (7) ;

BOOLEAN,
NAME,
CHARACTER (30)
NAME,
NAME,
NAME

BIT(6),
BIT(6),
BIT(20);

- % Used to identify the software versions of programs
% that have updated the data base in any way.
% When converting the data base from pre-11.0 levels,
% DASDL will initialize its own versions and clear all
% other software versions.

RELEASE VERSION BIT(6),
% eg.-11, 12, etc.

RELEASE LEVEL BIT(2),
% eg. -o, 1, 2

PATCH LEVEL BIT(8),
COMPIIE DATA OMS VERSION RECORD,

% date/time this program was compTled
LAST UPDATE OMS VERSION RECORD;

% aate/time this program Tast updited the data base

1152444 C-3

C-4

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

RECORD PATH DICTIONARY ENTRY

RECORD

RECORD

RECORD

FllltR BIT(l6 --LG2 MAX STR NBR),
S NUM STR PTR, - - -
[VERS BIT {33) I

HR BIT (5) ,
MIN BIT{6),
SEC BIT(6),
M BIT(4),
0 BIT (5) ,
Y BIT(7)

], % Zero if DB compiled with no versioncheck
REMAP NUM BIT(6),
FILLE'R' BIT(9);

DMS_job_statistics.
Dmcp_processor_t1me BIT (24) , %from Esn.Es_time
Update_op_count BIT (24) ,
Non update op count BIT{24),
Exception count BIT (24) ,
Transaction count BIT (24) ,% counted at Begin trans
Transaction-state time BIT(24),% elapsed
Contention count - BIT(24~,
Contention-wait time BIT ~24 ,% not sure how to get
lo wait count - BIT 24) ,% these times yet
I o: w a i t: t i me BIT(24);

OMS VERSION_RECORD
[DATE BIT(l6)

YEAR BIT(7),
JULIAN_DAY BIT (9)

] .
TIME BIT (20) ;

Disk address
[pcu BIT(l2)

[port channel BIT (7)
port BIT (3) ,
channel BIT (4)

],
serial number flag BIT (1) ,
unit - - BIT (4)

],
sector BIT (24) ;

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

DICTIONARY DATA STRUCTURES USED AT RUN TIME

The structures described next reside in the data base dictionary on disk. They are initialized by DASDL
and referenced at run time. A few of them, the globals and file records, may be changed at run time,
but most remain constant.

DMSll Globals

The DMSII Globals are originally initialized by the DMS/DASDL compiler and always reside in seg
ment zero of the data base dictionary. The DMSII Globals are first brought into memory when the
data base is opened and remain in memory until the last user closes the data base. Additional informa
tion is appended to them at run time (see Non-dictionary Data Structures Used at Run Time), but is
not written back out to disk. Only the DM_GLOBALS_STA TVS field may be changed at run time
and written the DM_WAIT_LENGTH, DM_OPTION_FLAGS, DM_SYNCPOINTS,
DM_CONTROLPOINTS and DM_ACR_NAME.

% D M S G L 0 B A L S

RECORD OM GLOBALS DISK RECORD
- %-Identifies the portion of the global record that

% is stored in the dictionary
OM DASDL VERSION BIT(8),

% Indicates the version and format of the dictionary
% file. Incremented for format changes.
% Vl!.O = 6, Vlll.O - X.O =], Xl.O = 8
% MUST remain the first field in the globals

OM MAX STR STR PTR,
% Highest structure number in the data base.

[OM GLOBAL STATUS BIT(l6) I
-% Note: Many of these flags are also available at the

% structure level. In the future, this may allow
% continued access to unaffected parts
% of the data base in the event of corruption.

OM UPDATING BOOLEAN,
%-Set to true if the data base has been updated
% during this data base processing period. Helps
% provide Clear/Start integrity: Recovery required
% if true at initial data base open following
% Clear/Start.
% Used as an event by the Dmcp to recognise that
% an Smcp communicate is required.

OM WRITE ERROR BOOLEAN,
%-Set true if an unrecoverable write 10 error has
% occurred on the dictionary. All programs using the
% data base will be OS-ED. Dump recovery will be
% forced.

OM PROGRAMS OK BOOLEAN,
%-Set false if a program has aborted while in
% transaction state. Recovery is required. OMS waits
% for all transactions of the other programs to
% complete, forces a pseudo close to flush buffers,
% Nahas, disk file headers and the globals to disk,
% closes the audit file and prevents any new
% operations from starting until recovery is
% complete.

OM RECOVERY IN PROCESS BOOLEAN,
%-Recovery-program has been executed, but not
% successfully terminated. OMS will not run until
% cleared by a good recovery.

1152444 C-5

:-6

] '

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

OM REORGANIZATION BOOLEAN,
%-True if reorganization is being run against this
% data base. Must be the only user. This flag is set
% by Reorganization in both old and new data bases,
% before it opens the data base.

OM AUTO CS RECOVERY INITIATED BOOLEAN,
%-Set -when we automatically initiate clear/start
% recovery, and written to disk. Will be cleared
% as soon as recoverdb has opened the data base.
% Used by SMCP only, to avoid multiple initiation

% of clearstart recovery.
OM STRUCTURE WRITE ERROR BOOLEAN,
%-Means that at least one structure
% write error.

FILLER
% for future expansion

BIT (9)

has a

OM VERSION CODE ADDRESS CODE ADDRESS RECORD,
- % Version-checking code address - -

OM ARCHITECTURE BITS BIT(80),
- % This fieTd tells what version of SDL2 interp

% is needed in oder to run the generated code
OM DASDL COMPILER INFO OMS SOFTWARE VERSION,
DM-DBFIX-INFO - OMS-SOFTWARE-VERSION,
DM-DMCP TNFO OMS-SOFTWARE-VERSION,
DM-REORG INFO OMS-SOFTWARE-VERSION,
OM-RECOVERY INFO OMS-SOFTWARE-VERSION,
OM-DATA BASE NAME NAME, -
~Data base name; also the multifile id of the data base
% dictionary. Passed to OMS by open.

OM STR OFFSET DICTIONARY OFFSET,
i Offset in segments of the structure table-in the
% data base dictionary. Structure number + Dm_str_offset
% = segment offset of a given structure record.

DM FILE TABLE OFFSET DICTIONARY OFFSET,
~Offset in-segments of the file table in the data base
% dictionary. The file table contains the file name and
% a pointer to the file record for each file.

OM WAIT LENGTH BIT(16),
~Length of time (tenths of second) that we will wait on
% contention before forcing a deadlock. Default= 1800.

[DM OPT I ON FLAGS Bl T (8) I
- [OM AUD IT BIT (2) !

OM-AUDITED OB BOOLEAN,
%-0 =No audit option

OM AUDIT FLAG
%-o =Audit option reset

OM KEYCOMPARE
%-o = No keycompare option
% 1 = Keycompare set

BOOLEAN],

BOOLEAN,

OM STATISTICS BOOLEAN,
%-If set, statistics will be kept and reported.
% For possible future implementation

FILLER BIT(4)
% for future expansion

], % end dm options

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

OM AUDIT StRIAL NMBR AUDIT SERIAL NUMBER,
t Count of the audited updates to the-data base since
% the data base was initialized. Incremented every time
% the audit routines are called. Placed in every table
% and list block to indicate the last update to that
% table or list block. Also placed in the buffer
% descriptors to indicate the last update to that block.
% This is used to ensure that no writes to disk are

% done until the audit 10 for that update is complete.
% Recovery uses it to verify the integrity of the
% audit records and to ensure that updates to tables
% and list blocks are not done more than once.

OM DICTIONARY SIZE BIT(l6),
t Set up by-DASDL during 11.0 Convert. Checked by the
% Mcp during data base open.
% Used to check that offsets to other areas of the
% dictionary (such as structure and file records) are
% va 1 id.
% Also provides the offset of the duplicate copy of
% the globals at the end of the dictionary.

OM SEG DICT DESC NORMAL DESCRIPTOR,
t A normaT descriptor which points to the code segment
% dictionary in the data base dictionary.

OM SEG DICT OFFSET DICTIONARY OFFSET,
t Relative segment displacement in the data-base
% dictionary of the disk space for the working copy
% of the OMS code segment dictionary.

OM SYNCPOINTS a1T(12),
t The number of transactions required to make a
% syncpoint. These are counted at End-transaction.

OM CONTROLPOINTS BIT(12},
t The number of syncpoints required to make a
% controlpoint.

OM STR_NAME~OFFSET DICTIONARY OFFSET,
i Segment offset in the dictionary of the structure
% name table

OM DB NAME OFFSET DICTIONARY OFFSET,
t Segment offset in the dictionary to the logical
% data base name table. Entry zero is the physical DB.

OM ACR NAME OMS FILE TITLE
t Name of the Dmcp for this data base. Established by
% DASDL via the Accessroutines =<file-title>
% syntax, or by a default name. May be changed by
% an SM ACCESSROUTINES =<file-title> command while
% the data base is not open.

File Table

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

There is one file table entry for each structure and three file table entries per sector. The first sector
containing file table entries is at offset DM_FILE_TABLE_OFFSET within the dictionary. The en
tries are conceptually numbered 0 - DM_MAX_STR and are subscripted by structure number. The
zeroth entry is not used. There is a blank entry for structures that have been removed from the data
base with a Reorganization. Thus, the subscripting remains reliable. The file table is used by the MCP
only to locate the File Record and to determine the name of the external file for the structure.

C-8

% F I L E T A B L E

RECORD FT RECORD
FT FILE NMBR STR PTR,

- % same as structure number -- no longer relevant
FT RECORD PTR DICTIONARY OFFSET,

- % points to offset of file record within the dictionary
FILLER BIT(3),
FT TITLE DMS FILE TITLE,

- % Default is <data base-name>/<structure name>. The user may
% overwrite it by using the verb "TITLE" in the physical
% attribute specifications.

FT AREAS BIT(8), %used by
FT-AREALENGTH BIT(l6}, % DASDL
FT-SECURITYTYPE BIT(2), % when
FT-SECURITYUSE BIT(2), % creating
FT-INIT EOF PTR BIT(24), % file

- % ST2e of the initialized file. Usually, one area
% is allocated. The exception is the index random file which
% has str record modulus numbers of records initialized.

F I LL ER - -B IT (7 8) ;

File Record

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

There is one file record for each structure currently existing in the data base. A file record is accessed
through the FT_RECORD_PTR for the same structure. (File Table, preceding, includes a definition
of FT_RECORD_PTR.) File records contain the information that changes under normal conditions:
the file versions, next-available and highest-open addresses, and root pointers. Each record starts on
a sector boundary.

R E C 0 R D % F I L E

RECORD OMS FILE RECORD

1152444

ADDRE~S BIT(16),
% The offset of the file record in the dictionary

SIZE BIT(16),
% The size of the file record (obsolete)

VERSION OMS VERSION_RECORD,
% The version of the physical Tile
% Matched with Dfh dms version

NA - - DISK LOGICAL ADDRESS,
% The start of the next availabTe chain-in the file

HO DISK LOGICAL ADDRESS,
ROOT PTR AREA-BLOCK TrMPLATE,

%-Logical address of the root table for index sequential
% Not used for other structure types

[STATUS BIT{8) I

],

% gives thE logical status of the file
UPDATING BOOLEAN,

% Set to true if the file has been updated and
% a full close has not been performed.

WRITE ERROR BOOLEAN,
% ~et true if an unrecoverable write 10 error has
% occurred on this file. The file may not be re-opened
% until this situation is cleared. Partial dump
% recovery may be used to correct the problem.

RECOVERY IN PROCESS BOOLEAN,
% Recovery program has started processing this
% file but has not successfully terminated. The
% file may not be accessed until the flag is cleared.
% Partial dump recovery may be required.
% For possible future use.

REORGANIZATION BOOLEAN,
% True if reorganization is being run against this
% structure. Must be the only user.
% For possible future use.

INTEGRITY ERROR BOOLEAN,
% If set, an integrity error has been encountered
% on this structure.
% Will not prevent attempts to access the structure,
% but serves as an indicator that problems exist.
% Will be cleared by a generate or purge of the
% structure.
% Note: Can we implement a way of telling reorg to
% override integrity errors for catastrophic
% recovery situations?

FILLER BIT(3)
% for future expansion

TITLE ~MS_~ILE_TITLE,
% The title of the actual file in-use.

POPULATION BIT(32),
% If St_population is set, then this field contains
% tot•l number of valid entries in this structure.
% For possible future implementation.

the

C-9

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

I S LEVELS BIT (4) ,
- t If St_population is set and this is an index s•c:iu.entLal

% structure, then this field contains the number';fOf.:table
% levels.
% For possible future implementation.

TABLE COUNT BIT(32);
% Tf St_population is set, this indicates the number of
% active tables in the structure. Applies to index
% and list structures only.
% For possible future implementation.

Structure Records

The structure records are one sector in length, and each structure record is at an offset of
(DM_STR_OFFSET + STR_NMBR) within the data base dictionary. A blank structure record is
left for any structure that has been deleted from the data base with a Reorganization; hence, the subs
cripting remains correct. Although the dictionary structure record is accessed at run time, no changes
are made to it. There is an additional, run time-only, portion of the structure record that exists only
in memory while the data base is open. (See Dictionary Data Structures Used at Run Time.)

C-10

% S T R U C T U R E R E C 0 R D

RECORD STRUCTURE DISK RECORD
% Identifies the portion of the structure record that
% is stored in the dictionary

NMBR STR PTR,
% Structure number assigned by-DASDL

TIPE BIT(4),
% 1 = Standard data set
% 2 = Index random
% 3 = Index sequential
% 4 = List

TABLE ENTRIES BIT(12),
%-For indexes and lists

RCDS BLK BIT (8),
~For standard data sets, Tables per block for lists

SEGS BLK BIT(8f, -
RECORD SIZE BIT(l6),

% ~ize in bits of the record including control info.
BUFFER SIZE BIT (16),

% ~ize in bits of the buffer for this structure
% Excludes the first part of the buffer descriptor

BLKS AREA BIT (16),
SEGS-AREA BIT(l6),
SPLITFACTOR BIT(l2),

% Number of entries to split off in indexes
ENTRY SIZE BIT(16),

%-Bit size per table entry - lists and indexes
MODULUS BIT(l6),

% Index random number of base tables
EMBEDDED INFO SIZE BIT(l6),

% Size in-bits of embedded structures' list heads
% Keeping this as well as St embedded count is an
% ~ttempted optimisation whi~h we may-dispense with
% in the future.

EMBEDDED COUNT STR_PTR,
% Count of the number of embedded structures directly
% nested in this one. Note: does not included structures
% further down the tree.
% Used to allocate space for the embedded structure table.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

[FLAGS BIT(l6)

],

ORDER FLAG BOOLEAN,
% ThTs structure is ordered, ie. index sequential,
% index random or ordered list

RESTART DATA SET BOOLEAN,
% This-is the restart data set structure

MANUAL SUBSET BOOLEAN,
% 0 =-Embedded data set
% 1 =Manual subset (only applies for lists)

NEW FORMAT BOOLEAN,
% ihis structure has new block format, header and own
% address for addresscheck. Also new address format

% and space for checksum.
EMBEDDED . BOOLEAN,
% This structure is embedded

DUPLICATES BOOLEAN,
% 1 =Duplicates ~re allowed

SIMPLE KEY BOOLEAN,
% 0 =~OMS must combine items to build the key
% 1 = Keys are ~ontiguous in order of key specification,
% and if not index random, no element of the key is
% signed ascending, or unsigned or alpha descending.

CHECKSUM BOOLEAN,
% If set, provide checksum protection for this structure.
% for possible future implementation.

SENSITIVEDATA BOOLEAN,
% If set, obliterate the data when deleting.
% For possible future implementation.

POPULATION VALID BOOLEAN,
% If set,-Fr_population is a real count of the total
% number of entries in this structure.
% For possible future implementation.

LOCK TO MODIFY BOOLEAN,
% for embedded structures only. If set, then the
% parent record must be locked in order to make
% any changes to its embedded records.
% For possible future implementation.

AUTO SUBSET BOOLEAN,
% For IDX structures only: 0 - spanning set
% 1 - subset

FILLER BIT(4)

DATA SIZE BIT(l6),
i St record size - control info size (le. list heads,
% key fields, audit numbers, entry counts, etc.)

HEAD OFFSET BIT(16),
i Offset within the data record of the list head for this
% structure

PARENT
% St number

OBJECT -

STR PTR,
for the parent structure

STR PTR,
% St number for the object structure (self for data sets)

C-11

C-12

B lQOO Systems .Data Management Systemll (DMSII)
· fun~tional Description Manu,al

DMSII Qata · ~~tuctures ····

NEXT STR STR PTR,
next structure in linked 1 i st of
automatic.sets and subsets of a

t St number for the
% structures. Links

. % standard data set
TOTAL KEY SIZE BIT(12),

.. %-Bit-size of the key for this structure
LIST KEY OfFSET BIT(16),
. t Offset to the key, simple or complex. Lists only-·

[CODE PTR(8) . CODE ADDRESS RECORD
f - - -
SELECT CODE CODE ADDRESS RECORD,
WHERE t'ODE CODE-ADDRESS-RECORD·,
VERIFY CODE CODE-ADDRESS-RECORD,
INITIAtlZE_CODE . CODE:ADDRESS:RECORD,

KEYCHANGE CODE
BUILDKEY t"ODE
COMPLEME'RTKEY CODE
COMPAREKEY cone .

], -
HIDDEN BUFFER NEEDED (64) BOOLEAN;

% if set~ the remap requires a hidden buffer

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

CONTROL STRUCTURES EMBEDDED IN OMS DATA FILES
Each disjoint data set record is composed of user data and control information.

Th.e user data contains all the data items defined in the DMS/DASDL source. If the record has variable
formats, then all the fixed format fields precede the fields contained in the variable format part. The
length of the user data is equal to the STR_DA T ~SIZE field in the Structure Record of the data
set.

The control information is only present if there are any lists embedded within the data set. Each em
bedded list requires 64 bits of control information.

The field STR_RECORD_SIZE in the Structure Record is normally equal to the sum of
STR_DAT~SIZE and (64 x number of embedded lists). However, if this sum is less than 80 bits,
the DMS/DASDL compiler increases the size to 80 bits. This is done because the DMSII system re
quires 80 bits at the beginning of each record to maintain the Next Available (NA) links and a dead
flag. The dead flag is a special bit pattern, 48 bits in length, which identifies a record that has been
deleted from the data set. Such a record will be on the available chain for the structure and is available
to be reused by a future create-store. The format of a ·dead flag, and of the 80 bits of control informa
tion at the beginning of a disjoint data set record is as follows:

1152444

RECORD DEAD FLAG RECORD
DF_f>ART_T . BIT(23} %all but highorder bit are on
DF STRUCTURE NMBR BIT(B) ,%1oworder 8 bits of str number
DF:PART_2 - BIT(17); %all but low order bit are on

RECORD DDS CONTROL INFO RECORD
% this information exists at the front of each DEAD DDS record.
% it overwrites any data that might be in that space

NA LINK OLD LOGICAL ADDRESS,
- % points to the next record on the available chain

% if this is the last record on the available chain
% then this will be same value as HO

DEAD_FLAG DEAD_FLAG_RECORD;

C-13

List Tables

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

Each list table is a logical record, containing control information (the Next List and Prior List fields
and a count of active entries), enough space for STR_TABLE_ENTRIES, and a 32-bit audit serial
number. The audit serial number represents the current ASN when this table was last updated (or zero
if the data base does not use Audit and Recovery). It is the last 32 bits in the buffer.

If a table is deleted, the space occupied by that table is placed into the NA chain for the list. Only
a Next Available link is present. Since lists are never accessed in the physical sequence of the file.con
taining the list, there is no need for a dead flag. The following is the format for the list control infor
mation at the beginning of each list table:

C-14

RECORD LIST CONTROL INFO RECORD
% An ordered or unordered list is a collection of tables. All
% tables for one parent are 1 inked together with the next and prior
% pointers, the last pointer in the chain being all @F@s.

NEXT TABLE OLD LOGICAL ADDRESS,
PRIO~ TABLE OLD-LOGICAL-ADDRESS,
ENTRIES BIT\8); -

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Index Tables

The same format is used for both index sequential and index random tables. Each table begins with
an Index Head, followed by the actual index entries (address-key pairs), followed by an Index Tail.
The addresses in the entries are all new-format addresses. There is space in the table for
T ABLEJNTRIES entries, but the current number in use is contained in ENTRIES. The key field
is TOT Al;...-KEY-'-SIZE long and, if the key is not simple, contains the key in its concatenated and
inverted form.. The formats for the head and tail follow:

1152444

RECORD INDEX HEAD RECORD
% describes the control information at the start of each
% index sequential or index random table on disk. The head is the
% first portion of each table

FLAGS BIT{2), %not used

%

AUDIT SERIAL NMBR AUDIT SERIAL NUMBER,
i audit-number for last change made to this table

TIPE BIT{2),
% O= IDXRND or IDXSEQ fine table
% 1= IDXSEQ coarse table that points to a fine table
% 2= IDXSEQ coarse table that .points to a coarse table
% 3 is not used

ENTRIES BIT{12),
% number entries actually in use in this table

NEXT TABLE AREA BLOCK TEMPLATE,
-% next table on this level @FFfFFF@ if first on level

PRIOR TABLE AREA BLOCK TEMPLATE;
i for IDXSEQ this is prior table on this level
% @FFFFFF@ if first table on level
% for IDXRND this is the base table

RECORD INDEX TAIL RECORD
% this information is stored at the end of each index sequential
% or index random table. for structure# S, its offset from the start
% of the table is 96 + str{S) .table entries* str{S) .entry size

STRUCTURE NMBR BIT{8), - -
% For compatibility with pre 12.0 databaes only the
% loworder 8 bits of the structure number is used.
% This field is for integrity checks only

SELF ADDRESS AREA BLOCK TEMPLATE,
-% Address of this table -=for integrity checks

CHECKSUM BIT{24);
% not used yet

C-15

B 1000 Systems Data Management SystemII (DMSU)
Functional Description Manual

OMSil Data Structures

NON-DICTIONARY DATA STRUCTURES USED AT RUN TIME
The following structures exist only in memory during the period that a data base is open; Since they
cannot be examined by a user, they are included here only for consistency. Unlike the other structures
defined in this ~ppendix, these structures may change during the course of a release. Although changes
are likely to be minimal, these formats cannot be relied on for absolute accuracy. The formats given
here are current as of MCP - ACR compatability level # 16.

Locks

DMS uses two types of locks on memory structures, as opposed to user locks on data base records.
These are Simple locks and Multi locks. The Simple locks are intended for cases where only one user
at a time can have access to the data controlled by the lock. The Multi locks allow for multiple users
to have read access to the lock, with provision for a single user to gain exclusive access. In order to
protect the count field in the Multi lock, it contains a built-in temporary processor lock. The locking
algorithms are documented in the DMCP/control module with the procedures that manipulate the
locks.

The primitive operations allowed on Simple locks are:

Get simple lock
Release simple lock - -

The primitive operations allowed on Multi locks are:

C-16

Get access lock
Release access lock
Get excTusive Tock
Release_exclusive_lock

RECORD DMS_simple_lock
event
Tock
owner

RECORD OMS multi lock
user count
exclusive Jock
exclusive-request
event -

allows multiple users

this is implemented by the same
procedure as Release_access_lock

Boolean,
Boolean,
BIT(l6);

% 0 if owned exclusively

processor Jock
processor:lock_event
owner

BIT(6),
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
BIT(l6); % set by whoever set the

% exclusive flag

(

\

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

OM Globals

1152444

RECORD 1 lo descriptor BIT(272),
2 ACTUAL END
2 Result-

%

3 BIT 1 2
4 COMPLETE
4 EXCEPTION

3 F!LLER
3 INT BITS

4 INTERRUPT
4 HI I NT

2 LINK
2 OP

3 FILLER
3 UNIT

2 Begin
2 END ADDR
2 DISK ADDRESS
2 M events

3-M EVENT~ IOC
3 M-events-sioc
3 FILLER -
3 M EVENTS INT M
3 M-EVENTS-S INT SENT
3 M-EVENTS-M-INT-SENT
3 FILLER - - -
3 M EVENTS I NT S

2 Mcp:io - -
2 Fib
2 Fib 1 ink
2 BACK LINK
2 Port-chan

3 PORT
3 CHANNEL

2 Been thru error

%
RECORD System_descriptor

SY IN USE
sy:media
SY LOCK
SY=IN_PROCESS

SY_INITIAL

SY_FILE

BIT(l),
BIT(1),
BIT(1),
BIT(l),

BIT(1),

BIT(l),

BIT(24),
BIT(24),

BIT(2),
BIT(l),
BIT(l),

BIT (13),
BIT(2),

BIT(l),
BIT(l),

BIT(24),
BIT (24) ,

BIT (20) ,
BIT(4),

BIT(24),
BIT(24),
BIT(24),
BIT (8) ,

BIT(l),
BIT(l),
BIT(1),
BIT(l),
BIT(l),
BIT(l),
BIT(l),
BIT(l),

BIT(l6),
BIT (24) , % OMS buffer address
BIT(24),
BIT(24),
BIT (7) , %

BIT (3) , %
BIT (4) ,

BIT(l);

% TO HELP MEMORY MANAGEMENT
% O=DISK, l=S-MEMORY
%
% TRUE IF THERE IS AN 1/0 IN
% PROCESS FOR THE INFORMATION
% REPRESENTED BY THIS DESCRIPTOR.
% IF TRUE, "SY.CORE" CONTAINS A
% POINTER TO THE 1/0 DESCRIPTOR.
% "ADDRESS" IS READ-ONLY MOTHER
% COPY, HENCE IF 11 WRITE 11 THEN GET
% NEW DISK AND REPLACE ADDRESS.
% THE OBJECT OF THIS DESCRIPTOR
% IS A FILE WHOSE USERCOUNT MUST

C-17

C-18

%
%
%
%

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

SY DK FACTOR
SY-SEG PG
sY:::TYPI

[SY ADDRESS ,-
FILLER
Sy core

] ' -
SY LENGTH

BIT (3) ,
BIT(]),
BIT(4),

BIT (36)

BIT (12) ,
BIT(24)

BIT(24);

Auditfi le status values

% BE DECREMENTED WHEN THIS
% DESCRIPTOR IS RETIRED.
% MEMORY DECAY FACTOR
% MCP MEMORY ACTIVITY AUDITING
% UNITS FOR SY.LENGTH.
% 0 = BITS
% 1 = DIGITS (4 BIT)
% 2 = CHARACTERS (8 BIT)
% 3 =NORMAL DESCRIPTORS
% 4 = DISK SEGMENTS
% 5 = SYSTEM DESCRIPTORS
% 6 = SYSTEM INTRINSIC
% 7 INDIRECT REFERENCE
% ADDRESS GIVES RELATIVE
% DISPLACEMENT IN BITS
% (SI GNEO NUMBER) .
% 8 =MICROS

% IF SY MEDIA FALSE

%
% IF SY MEDIA TRUE

% NUMBER OF UNITS, AS DETERMINED
% BY SY.TYPE.

SET Dm_aud_status_set = Aud
Aud
Aud
Aud
Aud
Aud
Aud
Aud

tf le closed,
tf le:::open,

%
RECORD

tf le_no_disk_space,
tf le full,
tf le-closing,
tf le:::opening,
tf le io error,
tf i I e:::not_r eady;

Dm_globals_memory_record
Om unreleased audit serial nmbr Audit serial number,

% Buffers wTth serial numbers >= to thTs may not be
% written to disk. The audit blocks for these serial
% numbers are still in memory. Updated by 10 complete.

Dm user count BIT(6),
% Number of programs that have this data base open

Om update user count BIT(6),
% Count-of tfie users who have updated the data base
% so that close will know when to turn off the
% Dm_open update flag, write out all buffers,
% update file versions in the dictionary and disk
% file headers, and close the audit trail if it
% is in use.

Om inquiry_ops_event
% Used as an event
% in the middle of

Boolean,
to prevent a programs from hanging
a inquiry operation

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Om chained writes ok Boolean,
l If reset, Mcp-may not automatically chain writes.
% Reset during controlpoint and close.

Om dictionary disk address Disk address,
l Disk address o1 the data base dictionary. Points at
% the file itself, not at the disk file header.

Om data base link Memory address,
l Linked lTst of globals to support multTple data bases.

Om reorg link Memory address,
l Link-to the globals for the new data base being
% created during reorganisation. This is required
% because reorganisation will have both data bases
% open at the same time.

Om lookahead iod lo_descriptor,
l lo descrTptor used for lookahead reads to the
% data base.

Om write iod lo descriptor,
l lo descriptor used for lookahead ~rites to the
% data base.

%%%%%%% L 0 C K S
% these are the locks used to control concurrent
% access and update to global dms structures by
% the Smcp and multiple copies of the Dmcp.
Om globals lock OMS simple lock,

l Used for simple, rare updates to the globals by
% the Dmcp, such as bumping the update user count.

Om audit lock OMS simple lock,
l Used-to control concurrent access to the audit
% Fib, and audit-related control fields in the
% globals by the SMCP and multiple copies of the DMCP.

Om transaction lock OMS multi lock,
~ Used to control transactions and syncpoints.
% Note: The control for this lock is handled
% somewhat differently than for normal
% OMS locks, due to the peculiarities of
% syncpoint processing.
% It may be useful to think or the various lock
% fields in terms of equivalent, more meaningful
% names:
% user_count - transactions_in_process
% exclusive request
% exclusive-lock

%%%%% End of-Locks

- syncpoint pending
syncpoint:in_process

Om to be written Boolean,
- %-Set if we need to write the globals. out to disk.

% Usually, this is due to a write error on a file,
% when we need to delay writing the globals and the
% file record to avoid nasty recursion due to overlays
% In this case, the file record must also be written.

Om code bound Boolean,
- % Set when the tailored code for this data base has

% been bound into the accessroutines
Om sync io Boolean,

- % Indicates that there is a write in process for
% block 'A' of the auditfile. Usually used in
% conjunction with syncpint processing, but
% also used for the last io at close.

C-19

C-20

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Dm_reinitiate audit io Boolean,
% Used onTy when switching audit files.
% If set, then the current audit block must be
% reinitiated when the new audit file is avai !able.
% If Dm_sync_io is set, then reinitiate block 1 A1 ,

% otherwise block 1 B1 •

Om auditing Boolean,
- % Used to control whether we are currently auditing.

% See remarks under Om audit flag.
Om audit fib allocated - - Boolean,

- % Set true if audit FIB space has been allocated and
% the FIB is in main memory. We need this mechanism
% because most of the FIB jnformation needs to be
% preserved across physical audit file boundaries,
% so the FIB itself is preserved while switching
% aud i t f i I es.

Om audit file switched Boolean,
- % As-soon-as possible after switching audit files,

% we will force a syncpoint and two controlpoints to
% minimise the probability of requiring more than
% one audit file in the event of a clear/start
% recovery. When the switch is complete, this flag
% will be set, Om transaction count wi 11 be set
% to Om syncpoints and Om sync_count will be set to
% Om controlpoints. During the controlpoint, this
% flag will be used to enable a single pass through
% the structures and buffers instead of two. It will
% be reset at the end of the controlpoint.

Dm_ignore recovery_in_process Boolean,
% Used to remember the setting of
% Om recovery in process, so Smcp can set
% Int.Di ignore recovery in process.
% This flag will be reset after the access routines
% for recovery have completed compatibility checking.

Om auditfile ok Boolean,
- % Used as a lock/event to hang programs when the

% audit file is being switched.
Om auditfile status MEMBER OF Om aud status set,

- % Status-of the audit file - - -
Om audit descriptor System descriptor,

% System descriptor which references the FIB for the
% audit file. Used by open and close.

Om transaction count BIT(12),
% Number of transactions since the last syncpoint.

Om sync count BIT(12),
% Number of syncpoints since the last controlpoint.

Om control point count BIT(24),
% A count of the number of controlpoints since the
% data base was first updated during this processing
% period.

Dm_dictionary_header BIT(24),
% The offset of the dictionary header in the Dfh diet

Om dictionary_title DMS_file_title,
% Decoded TLTLE of the data base dictionary.

Om str dictionary(256) System descriptor;
%NOTE: not yet converted to 1023 str -
%THIS MUST BE REPLACED BY DIFFERENT MECHANISM
% Really occurs (Om max structure number+ 1) times.
% One system descriptor-is allocated for each entry in
% the data base, indicating its presence or absence in
% memory.

RECORD Om globals record
-Dmd - Dm_globals_disk_record,

Dmm Dm_globals_memory_record;

Structure

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

RECORD Structure memory record
St globals ptr -

1152444

%

- % Run time memory address
St_audit_flag

% Used to optimise memory
% from Om_audit_flag when
% brought into memory.

Memory address,
of the OMS globals

Boolean,
management. This flag is
the structure is first

set

St memory lock Boolean,
- % Protects buffer list against the memory manager

St user count BIT(l2),
- % Run time count of the number of active invokes of this

% structure. Each of the possible 63 jobs may have
% 63 invokes, hence max usercount is 3969

St update user count BIT(l2),
- ~ Run-time-count of the number of invokes that have caused

% writes to the data base.
St buffer lock OMS simple lock,

- % Must be obtained before any access to the buffer list
% is attempted.

St_buffer_list_pointer Memory_address,
% Pointer to the head of the buffer list for this structure

St buffer list tail Memory address,
- % Pointer to the tail of the buffer list for this structure

St dfh ptr Memory_address,
- % Run time memory address of the disk file header and file

% record for this structure
St file record address Memory address,

- % Run time-memory address of the file record for this
% structure. Allocated following the structure record.

St current link Memory address,
- % Run time pointer to the linked list of currents for

% this structure.
St cur 1 ink lock OMS simple lock,

- % must be got before searching: allocating or deallocating
% currents.

[St fr write control -, - - BIT (2)

],

Boolean,
changed and needs to be written

Boolean

St fr to be written
%-File record has been

St fr controlpoint
%-File record must be written out at next controlpoint

St current lock OMS_multi_lock,
% This Jock protects fields in the Currents and the
% File record against concurrent update/access.
% Updates to disjoint sets require exclusive control
% of this Jock until the entire operation is completed.
% Finds on disjoint sets require access control only
% during the course of suboperations. It will be
% normal to release the Jock between tables in this
% case.
% For disjoint data sets and embedded structures, the
% Jock is used only to ensure that the current status
% and address fields are consistent. Hence it is only
% obtained for short periods. Protection of individual
% records is obtained from Cu working lock.

St embedded table (MAX STR BOUND)- STR PTR;
%%% Only space for St_embedded_count entries is allocated

RECORD Structure record
Std Structure disk record,
Stm Structure=memory_record;

C-2

Interface

C-22

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

RECORD OMS interface record
OT fath diet address Memory_address,

-;:g during open, contains the absolute address of the
% path dictionary

Di open update Boolean,
-% program opened the data base update

Di updating Boolean,
-% program has done at least one update operation

Di in transaction Boolean,
-% may use Rs in transaction instead - same meaning

Di backing out - - Boolean,
~% an exception occurred while performing an update on

% multiple structures (ie. a data set and its indexes).
% it is necessary to backout operations performed so far.
% an exception during this phase becomes a fatalerror
% requiring an abort of all data base programs and a
% simulated clear/start recovery.

Di aborted Boolean,
-% another program has aborted while in transaction state.

% Program abort recovery wi 11 be performed, and th1s
% program must receive an abort exception on the next
% begin-transaction.

Di i am aborting Boolean,
-%-1 am causing a program abort recovery.

Di deadlock Boolean,
-% set by Smcp when giving deadlock to a program. Smcp will
% unlock all the records.

Di general selection Boolean,
-% program was compiled by a compiler capable of

% generating general selection expressions.
% dont update currents after unsuccessful partial key
% operations.

Di fatalerror Boolean,
-% Error flag indicating dmcp has a fatal or debug error.

Di recovery Boolean,
-% This program is DMS/Recoverdb - allows special operations

Di_reorganization Boolean,
% This program is OMS/Reorganization

Di_closing Boolean,
% This program is performing data base close

Di waiting recovery Boolean,
-% This program is waiting for recovery to complete

Di end trans sync Boolean,
-% This program is waiting for End trans sync - may be

% aborted early.
Di dump recovery Boolean, % These booleans are
Di-clear start recovery Boolean, % used by
Di:program_abort_recovery Boolean, % DMS/RECOVERDB
Di partial dump recovery Boolean, %
Di:recovery_backwards Boolean, %
Di_ignore_recovery_in_process Boolean,%
Di dont ds me BIT(l6),

-% used by Dmcp to count the number of resources it has
% locked. If zero, then Smcp can OS the program
% immediately, otherwise Rs_abort must be set, which Dmcp
% will check at appropriate points.

Di contention job number BIT(l6),
-% if this program is waiting contention, this field will

% contain the job number of the program holding the
% required lock.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Di contention invoke BIT (6) ,
-% similar to Di contention_job number, but is used to
% identify the current for the-locked record. This is
% necessary in case the current table is moved by the
% Smcp during allocation and deallocation.

Di path die count BIT(8),
-~used only during open to tell Dmcp how many invokes

% must be version-checked.
Di usercode CHARACTER(lO),

-% used only during open for security checking by
% DASDL-generated code

Di max contention wait BIT(l6),
-% number of seconds to wait for contention before giving

% deadlock
Di str mask ptr ADDRESS,

-% pointer to the str mask in acr local data. This is
% to ease access by ISSA

Di dms status BIT(8),
-% stores the OMS status which caused the Dmcp to Hang.
% In general, this will be the same as Rs status, but
% is not subject to change in the case of-ST or rollout
% (if we allow these during an operation).

Di stats OMS job statistics;
-% stores statistics for this-program. These will be placed

% in the log at data base close. We may also allow
% interrogation of these via the DB message (maybe if the
% DBUG option is on) •

C-23

B 1000 Systems Data Management Systenill (DMSII)
Functional Description Manual

DMSII Data Structures

Buffer Description

RECORD

C-24

Buffer descriptor
[Bd dms ansi common
Bd-index table control ,- - -
Bd dms old format
! - - -
Bd area block
Bd-user-count
Bd::::in_memory

Bd io error
[Bd write.control

-Bd to-be written
Bd::::controlpoint

] '
Bd next

BIT (80) ,
BIT (96)

BIT(l14)

Area block template,
BIT(li), -
Boolean,% really a reverse

% in-process bit
Boolean,

. BIT (2) I
Boolean,
Boolean

Bd-prior
%%% Start
Bd_flags

Memory address,
Memory-address,

of index table control -

Bd audit serial nmbr
%%% End of old format
Bd type
Bd-entry count
Bd-next table
Bd-prior table

], - -
Bd_first_entry

- BIT(2), % One reserved for
% checksum (future)

Audit serial number,
buffer desc. riptor -

BIT (2) ,
BIT(12),
Area block template,
Area::::block::::template

Boolean; % dummy for data_address

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Audit Trailer

1152444

RECORD Audit buffer trailer
Last record

%

%-Displacement
First serial
Last serial
Ful 1-block
Block_number

BIT(l6),
from front of block to start of last record

Audit serial number,
Audit-serial-number,
Boo I ean, -
BIT (23);

%
CONSTANT

%
%
%
%
%

%

%

%

%

%

%

%

%
%
%
%

Dmcp_smcp_level_v

Audit types

lX - Data set
After data set

= 16'

Before data set
Before-and after_data_set

2X - Indexes -
Audit index store
Audit-index-delete
Audi t-i s root
Audit:i:s:key_change

3X - Block control info
Audit block type
Audit-table-next
Audit-table-prior
Audit-table-next prior

4X - Li sC -
L audit old control info
L-audit-new-control-info
L-audit-new-brother
L-audit-delete brother
L-audit-record-delete
L-audit-new record
New 1 i st modify

5X - List head changes
L audit new list head
L-audit-old-list-head

6X - ~pace allocation
Audit new record
Audit-old-record
Audit-return record
Audit-new area
Audit-clear naho

7X - Index splits & combines
Audit Tnsert front of table
Audit-insert-rear of table
Audit-remove-front of table
Audit-remove-rear ~f table

BX - Control types - -
Audit syncpoint
Audit-controlpoint
Audit-close
Audit-open
Audit:prog_abort

Dmcp communicate types

= @10@,
= @l l@,
= @12@,

= @20@,
= @21@,
= @22@,
= @23@.

= @30@,
= @31@,
= @32@,
= @33@,

= @40@,
= @41@,
= @42@,
= @43@.
= @44@,
= @45@.
= @46@,

= @50@,
= @51@,

@60@,
= @61@,
= @62@,
= @63@,
= @64@, % new for 11.0

= @70@,
= @71@.
= @72@,
= @73@,

= @Bl@,
= @82@,
= @83@.
= @84@,
= @B5@:

C-25

C-26

SET

%
TYPE

%
%
%
%

SET

%

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

Omcp_comm_type_set =
Get buffer comm,
Lock structure comm,
Allocate str cur comm,
Dmcp suicide-comm,
OMS exception comm,
Lock contention comm,
Sync-contention-comm,
Audit exception-comm,
Recovery_complete_comm,
Update dfh version comm,
Update:file_record:comm,
Update dms globals comm,
New disk area comm~
Close audit file comm,
Close-structure comm,
Update_close_structure_comm,
Final close comm,
Finish open-comm,
Get rid of dmcp comm,
Switch_env:and_stop_comm;

Omcp_comm_type = MEMBER OF Dmcp_comm_type_set;

Suicide communicate variants

Dmcp_suicide_set =
Fatal error,
Invalid communicate,
Debug_error,
Write error,
Backout error,
Aborted7
User_exception,
Transaction_when_audit reset;

RECORD Dmcp communicate
Ct-dms verb BIT(12),

BIT(24)
-% Always = 76

[Ct dms object -, -
Ct_remap_invoke Remap_invoke_layout,
% Relevant only for allocate current.
% Specifies the remap/invoke to use for the allocation.

Ct_data base_number BIT(2), % for reorg, new db = 1
% Relevant for all variants.
% Identifies which d.ata base the communicate is for.

FILLER BIT(2),
Ct str number STR PTR

-% Relevent for most variants.
% Identifies the appropriate structure number.

tct_1ms adverb BIT(l2)

Ct lookahead Boolean,
-% Relevant only for Get buffer variant.
% Spe~if ies that this buffer is for a lookahead read.

1152444

%

J •

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

Ct update Boolean,
-% Relevant for several variants, including First_update,

% Get structure, Get current and Get buffer.
% If set, then this Ts an update communicate, and
% semantics may be different (eg. Get buffer will get
% a buffer from a higher memory priorTty window if
% necessary, in order to prevent locks from being
% kept indefinitely due to an update being held up).

Ct val id Boolean
-% Re l e van t on l y f o r a l 1 o ca t e cu r r en t. I f r es e t , then

% al locate a dummy current. If set, then a real current
% must be allocated, and any preexisting dummy must
% also be deallocated.

Ct_ type Dmcp_comm_type,
% The main variant specifier. See declaration of
% Dmcp_comm_type for 1 ist of possible variants.

Ct suicide type MEMBER OF Dmcp suicide set,
-% For Suicide variant only - specifies what type of
% suicide is involved. Note: not all suicides are
% immediately fatal to the accessroutines - if a
% fatalerror is not required, then the accessroutines
% will be used for closing the data base.

Ct Jock address Memory address,
-% Relevant for contention variants (lock and sync)
% Identifies the address of the lock bit involved
% (comment: is this obsolete'?)

Ct event address Memory address,
-% Relevant for several variants --identifies the event
% address on which to hang the job.
% Note: wi 11 be set by Smcp in some cases (eg. no mem
% for Get buffer, and then used later for an independent
% Hang by-the accessroutines - see Saved_event_address).

[Ct auditfile number BIT(24)
-% used in-recovery complete variant.

! -
Ct area block Area block template

-% for Get_buffer variant - specTfies The area_block

Ct area number BIT(16)
-% for New disk area variant

J •
Ct sequence number CHARACTER(8),

-% for SuTcides - identifies the sequence number at which
% the suicide was detected.

Ct_exception_category BIT(8),
Ct_exception_str STR PTR,
Ct_exception_subcategory BIT\8);

% above three are primarily used for the user exception
% variant, to tell the smcp the exception parameters.
% For a few other variants, Smcp may store an exception
% category which is then picked up by the accessroutines.

RECORD DMS statistics record
Random finds BIT(24),

BIT (24) ,
BIT(24),
BIT(24),
BIT(24),
BIT(24),
BIT(24),
BIT(24),
BIT(24),
BIT(24),
BIT(24);

Sequential_f inds
Inserts
Updates
Deletes
System changes
Except Tons
Logical reads
Logical-writes
PhysicaT_reads
Physical_writes

% Table splits, combines, etc

C-27

C-28

%

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

SET Current_status_set = Pointing at nothing,
Pointing-at-next,
Pointing-at-prior,
Pointing:at:current;

%
TYPE Current_status = MEMBER OF Current_status_set;
%

RECORD

%
RECORD

Current state record
dla - - Disk logical address,

[entry number
FILLER

BIT (T2) ! -
BIT(4),

list_entry_number BIT (8)
],
create flag
status-

Boolean,
Current_status;

Current declaration
Cu link Memory_address,

i Currents are linked together in a one-way linked
% Must get St cur I ink lock before searching.

1 i st.

[Cu_job invoke - - BIT(22) !
-; Used to identify the owner of this Current

Cu_job number BIT(16),
cu_invoke BIT(6)

],
Cu remap BIT(6),

-% Remap number for this current - we keep it here mainly
% for debugging, and integrity checks against communicate

[Cu I ock bi ts BIT f2) !
-Cu record lock Boolean,

],

%-If set7 the record in Cu_working is locked.
% Prevents concurrent access during the course of an
% operation only.

Cu user lock Boolean
%-If set, the record in Cu current is locked.
% User lock always indicates that the user has locked
% the record explicitly.
% At End-transaction, OMS will automatically unlock
% all records for this user unless Cu restart lock
% is set. - -

Cu lock event Boolean,
-% Usid to hang a job waiting contention. We use this event

% when the calling program needs an exclusive lock.
Cu lock find event Boolean,

-% Used to-hang a job waiting contention. We use this event
% when the calling program is doing a Find (no lock).

Cu restart lock Boolean,
-% Set when a Begin-transaction with Audit is done, or

% an End-transaction, and Cu user lock is set.
% If set, then this record wTll not be unlocked
% automatically at End-transaction.
% It is perfectly valid to have multiple invokes of a
% the restart data set (possibly with different remaps).
% This flag will be reset whenever a Find, Free, Delete
% or Create is done on this invoke.

1152444

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Cu lookahead Boolean,
-% If set, then a lookahead has been attempted for the
% next block from Cu current.dla

Cu check embeddeds -Boolean,
-% If set, then at least one embedded structure has been
% referenced. It will be necessary to clear the currents
% of all embedded structures when the parent current is
% changed.

Cu updating Boolean,
-% The structure has been updated via this invoke

Cu fast subset Boolean,
-% WiTl be true only for unordered manual subsets where

% the address in Cu current is a fast subset reference
% (ie. refers directly to the object structure instead
% of a table in the subset structure).

Cu vfn BIT(8),
-% Used to remember the Variable format number used
% in the last Create.

Cu current Current state record,
-% Holds the current logical address and status that is

% visible to the user.
Cu;.,..working Current_state_r~cord,

% Used to hold a working copy of logical addresses and
% status during the course of an operation. This is
% required in order to avoid updating the user-visible
% current in the event of an exception.

Cu access Current state record,
-% If an Access has been declared on an embedded data set,

% then no physical structure existst in the data base to
% to represent it. For this reason, it is necessary to
% store the relevant information as part of the current
% information for the embedded data set.

Cu statistics OMS statistics record,
-% Holds statistics about-accesses to a structure using

% this invoke. If the LOG option is set, the information
% will be put in the system log when the program closes
% the data base.

Cu_hidden_buffer_address · Memory address,
% The absolute address of the hidden buffer if there is
% one - St hidden buffer(Cu remap) True.

Cu_key_address - Memory-address,
% The absolute address of the key space for this Current
% is stored here. Each key entry is St total key size
% bits long. - - -
% The key entry will only exist if St ordered is set.
% If it does not exist, this entry wiTl be initialised
% to -1.
% Note: it would be possible to eliminate the key
% entry if St simple key was set. However,
% remember i ng-,the key a 11 ows us to see the
% last explicit key accessed for this structure,
% which may be useful both for debugging, and for
% certain algorithmic reasons.

Cu valid Boolean;
-% When first referencing a structure (ie. Str mask reset),
% a dummy current will also be allocated - with Cu valid
% false. This dummy current simply serves to protect the
% structure from being deallocated by another process
% between our first reference and allocation of our first
% real current. When getting structures we do not know
% the real Re~ap_invoke to use, so we will simply allocate
% the dummy with Invoke= 0. .
% When allocating the first real current, the dummy will
% be deallocated. All real currents have Cu_valid set.

C-29

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

DICTIONARY DAT A STRUCTURES USED BY DASDL

The formats of all the dictionary tables that are not used at run time are presented in the listing that
follows. The others are described in Dictionary Data Structures Used at Run Time. Within the listing,
the formats are presented in the same order as they appear in the dictionary. Those that ai'e described
elsewhere are noted.

C-30

% D M S G L 0 B A L S
%
%%%%
%RECORD OM GLOBALS RECORD
% Described elsewhere in this section.
%%%%
%
% D A S D L G L 0 B A L S
%
%%%%
%

RECORD
02
02
02
02
02

01 DASDL GLOBALS RECORD BIT(ll,'c 1440),
DASDL DATE TIME - BIT(36),
CREATE DATE TIME BIT(36),
OR I GI NAL DA'S°DL VERSION BIT (8) ,
DICT EOF-PTR - DICTIONARY OFFSET,
HIGHEST ~TR STR PTR, -

% number of structures for this data base.
%maximum=255 (11.0) 1023 (13.0)

02 DDL OSK PTR DICTIONARY OFFSET,
02 DDL-TBL-CNT DDL PTR, -

-% number of entries in the DDL table. Each identifier
% encountered during the compile has an entry in
% the DDL and in the name table.

02 NAME OSK PTR DICTIONARY OFFSET,
02 NAME-TBL-CNT BIT(16), -
02 PTH OSK PTR DICTIONARY OFFSET,

-% each structure has an entry in the path table
% and in the structure table. Refer to the str record
% ant to the path table record for more infos.

02 DATABASE PTR DDL PTR,
% The name of the data base 1name specified in the
% compile card) has an entry in the DDL table.
% This field points to it.

02 KEY OSK PTR DICTIONARY OFFSET,
02 KEY-TBL-CNT BIT(16), -

-% Here are stored all the keys specified by the user.
% Keys must be specified for SETs, SUBSETs or
% ACCESSes.

02 POL OSK PTR DICTIONARY OFFSET,
02 POL-TBL-CNT BIT(16), -

-% VERIFY, WHERE and SELECT verbs require a logical
% condition. All these conditions are stored in
% polish notation in the dictionary's polish table.
% Each entry in the polish table corresponds to
% either an identifer or an operator.

02 ATT OSK PTR DICTIONARY OFFSET,
02 ATT-TBL-CNT BIT(l6), -

-% Here are stored all the physical attributes
% specified by the user.

02 FT OSK PTR
02 FT-TBL-CNT

- % Iach entry in the File

DICTIONARY OFFSET,
BIT(l6), -
Table represents a structure

%%%%
%

B 1000 Systems Data Management Systemll (DMSll)
Functional Description Manual

DMSII Data Structures

02 STR OSK PTR DICTIONARY OFFSET,
-% Here are stored the structure records used by

% the ACcess Routines. The maximum nbr of entries
% is HIGHEST STR.

02 INV OSK PTR - BIT(l6),
-% An entry corresponds to either a structure or
% a remap of a structure.

02 LIT OSK PTR DICTIONARY OFFSET,
02 LIT-TBL-CNT BIT(l6), -

-% Each literal specified by the user (initial
% values for instance) is sotred in the literal table
% Each entry of the literal table may contain
% more than one literal. See literal table record
% definition. -

02 SNT OSK PTR DICTIONARY OFFSET,
-% Here are all the structures' names.

02 DBN OSK PTR DICTIONARY OFFSET,
02 DBN-TBL-CNT BIT(l6), -

-% Here are all the names of the logical data bases
% plus the name of the physical data base (it is the
% name specified in the compile card). Entry# 0 is
% for the physical data base.

02 INV TBL CNT BIT(l6),
02 FILLER - BIT(6),

% This fil !er makes the dASDL_global_record filled
% 11 sectors even.

02 HASH TABLE (HASHTABLE SIZE) DDL PTR;
% The hash table-is for fast-access to the DDL table

% F I L E
%

R E C 0 R 0

%%%%
% RECORD OMS FILE RECORD
% Described elsewhere in this section.
%
%%%%
%
% F I L E
%
%%%%

T A B L E

% RECORD FT RECORD
% Described-elsewhere in this section.
%
%%%%
%
% S T R U C T U R E
%
%%%%

R E C 0 R 0

%
%
%
%
%
%
%

RECORD STRUCTURE DISK RECORD
Described elsewhere in this section.

On disk, the structure record has the key info appended. That is
defined here, along with the composite record consisting of the
disk portion and the key portion.

CONSTANT MAX STR KEYS = 18;
% - -

RECORD KEY INFO RECORD
OFFSET- BIT(l6),

%
1152444

% In bits from start of structure.
SIZE

% In bits.
SIGNED
DESCENDING

BIT (12) ,

BOOLEAN,
BOOLEAN;

C-31

C-32

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

RECORD STRUCTURE KEY RECORD
NMBR KEYS -

%
KEY (MAX_STR_KEYS)

BIT(8),
KEY_INFO_RECORD;

RECORD OASDL STRUCTURE RECORD
STD- STRUCTURr DISK RECORD,

%
%%%%

STK STRUCTURE:KEY_'R'ECORD;

%
% S T R U C T U R E
%

N A M E T A B L E

%%%%
% Each entry in this table is 18 characters wide. There is no special
% layout.
%%%%
%
% D A T A B A S E
%
%%%%

N A M E T A B L E

% Each entry in this tabl.e is 10 characters wide. The first entry
% contains the name of the physical data base. All other e~tries
% are for the logical data bases.
%%%%
%
% D D L
%
%%%% % .

T A B L E

RECORD GIV INFOS RECORD

%
%%%%
%

[NMBR -
NMBR ZERO
NMBR-HIGH V
NMBR-LOW V

tALFA- -
ALFA BLANKS
ALFA-HIGH V
ALFA-LOW V

]; - -

BIT .. !3) !
BIT ll,
BIT 1 ,
BIT (1

BIT (3} I
BIT(l),·
BIT(l),
BIT(l)

% Here are the possible values of DDL_TYPE:
%
%%%%
CONSTANT

OT DATABASE
OT-DATASET
OT-SET
OT-SUBSET
OT-ACCESS
OT-ITEM
OT-INVOKE
OT-FILENAME
oT:VARIABLE

%
%%%%%

= @1@.
= @2@, ... @,@ • .. @ @ •
= @g@. .. @ @ •
• @~@ • = @ @.
= @9@;

1152444

%

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

% Here are the possible va1ues of DDL SUBTYPE. The type determines
% which subtype values are relevant. -% . .
.%%%%
%
CONSTANT

DST FORWARD = @]@,
- % This is a temporary subtype. It means that this item has

% been referenced (with the corresponding type) and has not
% been declared yet.

DST STANDARD = @4@~
DST-ORDERED = @2@,
DST-UNORDERED = @3@,
osT:RESTART = @l@,
OST IDX SEQ = @l@,
DST-IDX-RAN . = @3@,
DST-GROUP = @1@,
DST~ALPHA = @2@,
DST-NUMBER = @3@,
DST-MF ID = @2@,
DsT:F10 = @3@.
DST_PIO = @4@;

%
RECORD DDL TABLE RECORD [ID . - . .

NAME. PTR
-% This

NAME LENGTH
] ' . -
[QUALIFIER

BIT(24) !
BIT (16) ,

is an entry# of the NAME table.
BIT (8)

STR NMBR
. RMP-NMBR

VRB-NMBR
- % variable form.at #

] .
[TYPE FIELD
TIPE-

% See values above.
SUBTYPE

J.

BIT(LG2 MAX STR NBR + 16)
STR PTR7 - -
BI T\8) ,
BIT (8)

BIT (8) !
BIT(4),

BIT (4)

HASH LINK DDL PTR,
VERSION DDL-VERSION RECORD,
COMMENT PTR BIT\24), -

% Here is the comment that may be displayed by OMS/INQUIRY
% This field is a pointer to the literal table.

LEVEL BIT(8),
% Outermost (an disjoint) level = 0.

PARENT DDL PTR,
[PREV SAME DDL-PTR

-% Points to the last one of the same kind.
!REC TYPE PTR DDL PTR],

- % Each variable format part has an entry in the DDL table.
% {DDL_type = OT_VARLABLE). REC_TYPE_PTR is only for
% such a ddl entry.

NEXT SAME DDL PTR,
-% points to the next one

[SON
!OBJECT

of the same kind.
DDL PTR

· % For subsets or sets
% associated with the

DDL-PTR},
only. l'oints to the
set or subset.

SIZE D.DL SIZE ENTRY,
% Size in bits. Same convention as COBOL,
% one number = 4 bits.

data set

that is.

C-33

C-34

· ,. :B io6o ·systems· Data· ·Management Systemu (DMSII)
Functional Description Manual

DMSII Data Structures

OFFSET
%

[OCCURS

DDL OFFSET ENTRY,
Offset within the parent data set:

% For arrays only.
DDL OCCURS CNT,

Maximum number =-1023.
BIT (6) . . FRACTION ·

· ·' % Size
!VERIFY PTR

of th~ fraction part in bits. For data items only.
BIT (16)

%-Points to the Polish table. For structure identifier
% only.

!WHERE PTR BIT(l6)],
i For automatic subsets only.

RMP CNT BIT(8},
- % Number of times this data set or data base has been

% remapped.
RMP PTR DDL PTR,

- % For data sets or the physical data base. It is a
% pointer to a chain of DDL entries. Each ddl is a
% remap of the data set or of the data base.

VRB CNT BIT(8},
- % Number of variable format parts this data set has.

[VRB PTR DDL PTR I
- % Each variable format has a~ entry in the DDL table.

% (DDL type= OT VARIABLE}. All entries associated with
% a data set are-linked together. This field points
% either to the beginin9 of the chain_ (if this entry
% represents a data set) or to another member of the chain

GIV INFOS GIV_INFOS_RECORD
], -

% Here are stored the informations about the global
% initial values.

SELECT PTR BIT(l6),
%-For remaps of disjoint data sets only. This points to
% the polish table.

[FLAGS BIT(l6) I
[REQUIRED BOOL[AN
!REQUIRED ALL BOOLEAN

% required all is for data set records only.
!ALL SETS - BOOLEAN],

-% this field is valid for remap of data sets only
[KEY BOOLEAN

% If this entry belongs to a data item, then this data
% item is a key.

!VERIFY BOOLEAN
% For data sets or for remap of disjoint data sets.

I WHERE BOOLEAN
% For subsets only. The flag is on if it is an automatic
% subset.

!NONE BOOLEAN],
% This field is valid for remap of embedded data sets.
% If both NONE and ALL SETS are set, this means that
% only some sets and subsets are included in the remap.

[KEY ITEM BOOLEAN
-% Only for data items which are keys. This flag means

% that the data item is implicitly 11 required 11 (should be
% <>@FF@ during a store). This flag is set for all keys
% pertaining to a set or to an automatic subset. This
% flag is reset for keys pertaining to accesses and manual
% subsets.

!LOCK TO MODIFY
i No longer used.

BOOLEAN],

(

1152444

B 1000 Systems Data Management SystemII (DMSII)
Functional Description Manual

DMSII Data Structures

[RESTRICTED KEY BOOLEAN
% For keys only. It means that no duplicates are allowed
% for this key.

!LINKED BOOLEAN],
% For standard data sets only. The flag means that at
% least one manual subset has been associated with it.

[SIGNED BOOLEAN
% For data items only. Obvious meaning.

!ACCESS PRESENT BOOLEAN],
% For ordered and embedded data sets only.

[DECIMAL BOOLEAN
% For data items only. Data items are either decimal or
% alpha.

!MANUAL BOOLEAN],
% For subsets only. The flag means that no WHERE clause
% has been specified.

[FILLER ADDED BOOLEAN
% Cobol requires groups to be byte boundary (starting
% address and length must be multiple of 8 bits). So,
% fillers may be added to data items.

!SELECT BOOLEAN],
% For remaps of disjoint data sets only. The flag means
% that a SELECT clause has been specified. Likewise,
% a VERIFY clause may be specified.

[SUBSCRIPT CNT BIT(2)
% For-data items only. This field is the number of
% nested arrays encountered by the parser before
% it encounters this data item. The maximun number
% of nested arrays is 3.

!EMBEDDED BOOLEAN,
% For structure identifiers only.

OLD STRUCTURE BOOLEAN],
-% For structure identifiers and for update compiles only.

% This flag means that the structure was present in the
% old data base.

INIT SIGNED BOOLEAN,
~Means negative for literals.

RECORD_ TYPE BOOLEAN,
% For data items only. If this flag is set, this data item
% is the record type. It controls the variable format part

HIDDEN BOOLEAN,
% For remaps of data items only. The flag means that
% the user doesn't want to see this item.

[READONLY BIT(2)
% If this field is not zero, it means that the user
% doesn't want to change the vaue of this field.
% If he does, and if EXCEPTION is set, then he will
% get an error.

!FILLER BIT(]),

] .

EXCEPTION BOOLEAN],
% This flag may b.e reset for remaps of data items only.
% If this is a physical item (i .e pertaining to a physical
% data set) and if this item is a 11 READONLY 11 item (i .e
% a record type) then EXCEPTION wi 11 be set. In such a
% case, the user is not able to reset the EXCEPTION flag.

FILLER BIT(2)

C-35

C-36

%
%%%%
%

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

ANALOG DDL PTR,
% For any structures or logi~al data bases only. It is
% a pointer to the physical analog.

INITVAL PTR BIT(24),
% For data items. This field is a pointer to the
% literal table. This field does 1 nt always correspond
% to a full entry into the literal table, in fact, it
% depends on the length of the string.

FILLER BIT(2),
INIT FRACTION BIT(6);

-% Length in bits of the initial value's fractional part

% N A M E
%

T A B L E

%%%%
% Every identifer enconutered during the parsing goes in this table.
% Each entry is 17 characters wide.
%%%%
%
% P A T H
%

T A B L E

%%%%
RECORD PTH TABLE RECORD
% There Ts one-entry per structure. This table is used to reference
% the other tables relevant to the structure.

TIPE BIT~),
% 1: standard
% 2: index sequentt i a 1
% 3: index random
% 4: ordred embedded
% 5: unordered embedded

STR NUMBER STR PTR,
DDL-POINTER DDL=PTR,

% Points to the structure identifier.
OBJ STR NUMBER STR PTR,

- % Useful for sets or subsets. In such cases, this field
% contains the data set's str#.

OBJ DDL POINTER DDL PTR,
NEXT POINTER BIT116),
% In-order to 1 ink all structures associated to a data set

KEY POINTER BIT(l6),
- % This is a pointer to the key table. It points to

% a chain of key descriptions combining to form the key
% for this structure.

FILE NUMBER STR PTR,
DUP FLAG BOOLEAN,

- % If the flag is set it means duplicates allowed.
DUP TYPE BOOLEAN;

- % No longer used.

1152444

%%%%
%

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

% K E Y T A B L E
%
%%%%

RECORD KEY TABLE RECORD
% The key table is reached via the key pointer in the path table.
% Each key-part necessary to make up-a complex key is described
% in a separate key table entry and linked together with
% NEXT POINTER.

%%%%
%
% p 0
%
%%%%

RECORD

TTPE BIT(4),
% 1: ascending
% 2: descending
% (3: data)

DDL POINTER DDL PTR,
- % Points to the key identifier.

NEXT POINTER BIT(l6);
-% In order to link all keys associated to a structure.

L I S H T A B L E

POLISH TABLE RECORD
OPERAND FLAG BOOLEAN,

% Means
LITERAL FLAG
NUMERIC-FLAG

identifier.

DEC I MAL-FLAG
SIGNED FLAG

%-Means negative
FRACTION SIZE
OPERAND 'S°IZE

[OPERAND-PTR

BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,

if LITERAL FLAG
BIT (5) , -
BIT(lO),
BIT(24)

is set.

% Tndex in DDL
!

table if OPERAND_FLAG is set.

OPERAND INDEX
% Pointer

OPERAND OFFSET
! -
OPERATOR

] '

% @40@ <=>
% @41@ <=>
% @42@ <=>
% @43@ <=>
% @44@ <=>
% @45@ <=>
% @50@ <=>
% @60@ <=>
% @70@ <=>
% @00@ <=>
% @80@ <=>
% @FF@ <=>

BIT(ll),
to the 1 iteral table if LITERAL_FLAG is set.

BIT (13)

BIT (8)
less than
less or equal to
equal to
non equal to
greater or equal to
greater than
NOT
AND
OR
left parenthesis
right parenthesis
end of logical condition

DATA OFFSET BIT(l6);
-% Used if DDL SUBSCRIPT CNT <> 0. In such a case

% DATA_OFFSET-is the difference between the right
% address of the operand and the address the operand
% would have if all subscripts were zero.

C-37

%%%%
%

B 1000 Systell}S Data Management Systemll (DMSll)
Functional DescriptiQn ,Manual

DMSII Data Structures

% A T T R I B U T E
%

T A B L E

%%%%
REC.ORD

%%%%
%

ATTRIBUTE RECORD
[IDENT -

FILE FLAG

] ,
ID_NUMBER

Tl PE
DDL POINTER

- % Points
ATTRIBUTE

BIT(LG2 MAX STR NBR + 4)
BIT(4) ,- - -
STR_PTR

BIT (8) ,
DDL PTR,

to a structure identifer.
BIT(24);

% L I T E R A L
%

T A B L E

%%%%·
% Each entry is 180*8 bits wide. Usually a pointer to the literal
% table has the following layout·
% 01 pointer layout .
% 02 literal table entry nmbr

bit (24)
bit(ll)
bit Cl3) % 02 offset within that entry

% Each lit~ral is stored as
%
%
%
%%%%
%

01 1itera1 length
01 1 iteral itself

~------- literal table pointer
bit(16) points here
bit(literal length)

% I N V 0 K E
%

T A B L E

%%%%
RECORD STR-REMAP. PAIR

- STR-NUMBER STR PTR,
REMAP_NUMBER BIT18);

%
RECORD INVOKE TABLE RECORD

ID -- - STR REMAP PAIR,
% This is the remapped structure.

PARENT STR REMAP PAIR,
% This is the parent of the remapping structure.

DDL POINTER OOL PTR,
- % This entry defines the remapping structure.

[INVOKES BIT (64) I
% One bit for each logical data bases. (Maximum nbr of
% logical data base~= 64). If one bit is ~et, it means
% tJ'lat the remapping structure (see DDL POINTER) is
% contained in the corresponding logicaT data base.

INVOKE (64) BOOLEAN
].

NOT LAST BOOLEAN,
- % If set, it means that if one continues to scan the

% invoke table, one will find at least another remap
% of the current remapped structure.

TIPE
%

FILLER . %

BIT (3) ,
DDL type of the remapped structure.

B IT(28);
For future expansion.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

DMSll AUDIT FILE INFORMATION

DMSll audit records are va,riable in length. However, they are not the same type of variable-length
records tha,t can be created by a user program. Every user-created variabl~-length record has, as the
first field fo each record, a description of the length· of the record. For DMSII audit records, the length
of each record is a function of the type of audit information which the record contains. Each DMSII
audit record contains a preamble, and usually a postamble, which identifies the audit record type. and
the structure number affected by the audit. The preamble and postamble determine the total length
of the audit record. The preamble and postamble contain the same information, allowing the
DMS/RECOVERDB program to process these variable length records either forward or backward.

The DMSII system writes audit records into each physical audit block until either the block is full or
a syncpoint operation occurs. In either case, the DMSII system initiates a write 1/0 operation on the
buffer containing the block. If tape is used as the audit media, the DMSII system switches audit buffers
automatically at a syncpoint operation (the DMSII system allocates two audit buffers at audit file
open). If disk is being used, the DMSII system continues to use an audit buff er after the syncpoint
1/0 has completed, rewriting the buff er when the buffer fills or another syncpoint operation occurs.
Following is the format of the audit buff er: .

1152444

RECORD AUDIT BLOCK RECORD
l [AUDIT BLOCK BTT(FPB RECORD SIZE) % From the AUDIT FPB

l AUITIT DATA BIT(FPB RECO~D SIZE-104), %
[AUDIT-BUFFER TRAILER BIT(T04) %

l AB-LAST RECORD BIT(l6)' %
% Offset Tnto the audit block for the last record. If= @FFFF@,
% no audit records begin or end in this block; the entire
% block contains a continuation of a record from a previous
% block. See also AB FULL BLOCK below.

],
] ;

AB FIRST ASN BIT(32), i -
% ASN associated with the first audit record in this block

AB LAST ASN BIT(32), %
% ASN associated with the first audit record in the next block

AB FULL BLOCK BIT(l), %
% If-= 1,-AB_LAST_RECORD points to the starting position of the
% last record.
% If= 0, AB_LAST_RECORD points to unused portion of the
% block.

AB BLOCK NUMBER BIT(23) %
% Current block number within this audit file; 0 relative.

C-39

Audit Types

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

.. . . '·

The first eight bits. ofeach audit tecoid co~tain the ~udii type field, which is used to describe the type
of information contained within, the audit record; There are two general classes of audit records:

1. Control records. These audit records are used for events which affect the entire data base. Each
control record consists .. of just .the eight bit audit type field.

2. Update records. These au(fit records are used to describe changes to specific structures within
the data base. The update records contain the information necessary .to· either reapply, ·or back
out, an update. · · · ' · ·

The following is the format of the update records:

<preamble> : <variable,.data> : <postamble::> ·

The <preamble:> consists of, in order, the audit record type and the structure number. Each of these
fields is eight bits inlength. The <:postamble> contains the same two fields, but the order of the
fields is· reversed, allowing the DMS/RECOVERDB program: to read backwards through an audit file.

. .

With the· exception of audit record type @63@, the beginning of the <variable-data> portion of each
upd.ate record always contains the following two · fiel(fs:

1~ Previous audit serial ~umber (ASN). This field is 32 bits in length, and is the ASN which was
contained in the updated ·block prior. to the· Update being currently audited. This field is used
by the DMS/R~COVERDB program to determine if a particular audit record should or should
not be applied against a physical record· on disk. ·Since disjoint set record formats do not in
clude an ASN field, the previous ASN is normally zero for audits of data set records. However,
if a data set block is updated more than once while in memory, the audits of all updates other
than the first update contain valid previous ASN fields.

2. Logical address. This is always a 24-bit address, regardless of the structure type being audited.
For data sets and lists, the record·or .table rturriber appears immediately after this 24-bit address
in the audit record. · ·

All audit record types which share a common function are grouped .. This grouping is indicated by the
first four bits of the aµdit record type field. · · ·

Control Records (Type · == . @Bx@)

C-40

@Bl@
@B2@. :
@83@

@84@
@BS@

Syncpoint ..
Contro lpo int
Data Base Close

% Us~d for physical Clos~ only, and should be the
% !ast;record. in the auditfile. A Syncpoint is generated
% L·f a program closes the data base Wh1le other ~sers
% still have the data base open.

Data B~se Open% tnit1al open only.
Program Abort ·

t Same as d~ta base close, but used to ind1cate that
%.~nabort ~as forc~d th~ data base to be ~hut down.

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Standard Data Set Updates (Type = @1 x@)

In all of the audit record descriptions in the remainder of this document, the previous ASN and logical
address fields are omitted; the presence of these fields is implied in all cases, except for audit record
type @63@.

@10@

@l l@

@12@

Data Set After Image (STORE after CREATE)
Format:

Record number : BIT(8)
New record : BIT(STR RECORD SIZE)

Data Set Before Image (DELtTE) -
Format:

Record number : BIT(8)
Old record : BIT(STR RECORD SIZE)

Data Set Before and After Tmage (~TORE after MODIFY)
Format:

Record number
Old record
New record

: BIT (8)
: BIT(STR DATA SIZE)
: BIT(STR=DATA=SIZE)

Index Entry Updates (Type = @2x@)

1152444

@ll@: Data Set Before Image (DELETE)
Index Entry Updates (Type= @2x@)
Index Entry Updates (Type= @2x@)
Index Entry Updates (Type= @2x@)

@20@ :

@21@

@22@

@23@

Insert Table Entry
Format:

Table entry number
New entry

Remove Table Entry
Format:

Table entry number
Old entry :

Change Index Sequential
Format:

BIT(12)
BIT(STR_RECORD_SIZE)

BIT (12)
BIT(STR RECORD SIZE)
Root Table -

Old root table address : BIT(32)
New root table address : BIT(32)

Index Sequential Key Change
% Used if the highest key in a lower level index
% table changes

Format:
Entry number
Old key
New key

BIT(l2)
BIT(STR KEY SIZE)
BIT(STR=KEY=SIZE)

C-41

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Update Index Table Control Fields· (Type = @3x@)

@30@ :

@31@

@32@

@33@

Set Block Type
Format:

Old block type
New block type

Change Table Next
Format:

: B IT{2)
: BIT (2)
Pointer

Old next pointer. : BIT(24)
New next pointer : BIT(24)

Change Table Prior Poi~ter
Format:

Old prior
New prior

Change Table
Format:

Old Next
Old Prior
New Next
New Prior

pointer : BIT(24)
pointer : BIT(24)
Next and Prior Pointers

BIT(24)
BIT(24)
BIT (24)
BIT(24)

Update List Tables (Type = @4x@)

C-42

@40@ : Before Image of List Contro 1 Info
Format:

List table number : BIT(8)
Old control info : BIT(72)

@41@ After Image of List Control Info
Format:

List table number : BIT(8)
New control info : BIT(72)

@42@ Insert list Record Into List Table

@43@

@44@

@45@

@46@

Format:
list tab 1 e number : BIT (8)
List record number : BIT(8)
New list record BIT(STR_ENTRY_SIZE)

Remove Li$t Record From List Table
Format:

List table number : BIT(8}
List record number : BIT(8)
Old record : BIT(STR ENTRY SIZE)

Remove List Record and Delete LTst Table
Format:

List table number
Old control info
Old record

Store List Table and
Format:

List table number
New control info
New record

Change List Record
List table number
List record number
Old record
New record

: BIT (8)
: BIT (72)
: BIT(STR ENTRY SIZE)
Insert List Record

: BIT (8)
: BIT(72)
: BIT(STR_ENTRY_SIZE}

BIT(l2)
BIT (8)
BIT(STR DATA SIZE)
BIT(STR=DATA=SIZE)

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

List Head Updates (Type = @5x@)

In all cases, the parent data set record is being audited. The audit records have the same format wheth
er the parent data set is a disjoint data set or an embedded data set. However, two of the fields in
each audit record have different meanings, depending on the structure type of the parent data set. The
names of these fields, and their meanings, are:

l. Parent record number. If the parent is a disjoint data set, this is the record number of the
parent data set record. If the parent is a list, this is the table number of the parent data set
number.

2. Table entry number. If the parent data set is a disjoint data set, this field is always zero. If
the parent is a list, this is the entry number of the parent record, within the list table already
described.

@50@ : List Head After Image
Format:

Parent record number
List head offset
Table entry number
New 1 i st head

@51@ List Head Before Image
Format:

Parent record number
List head offset
Table entry number
Old list head

BIT(l2)
BIT(16)
BIT (8)
BIT(64)

BIT (1 2)
BIT(16)
BIT (8)
BIT(64)

Space Allocation (Type = @6x@)

@60@ :

@61@

@62@

@63@

1152444

Update Next Available and Highest Opened
Format:

Old Next Available: BIT(32) % HO= NA
New Next Available : BIT(32)

Update Next Available Only
Format:

Old Next Available: BIT(32)
New Next Available: BIT(32)

Return Space to Next Available
Format:

New Next Available: BIT(32)
Old Next Available: BIT(32)

Open New Area
% The format of the <variable-data> for this record
% only includes the following field; there are no
% fields in this audit record for previous ASN or
% logical address

Format:
New area number : BIT(8)

C-43

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

DMSII Data Structures

Index Splits and Combines (Type = @7x@)

When DMSII splits or combines index tables, entries are removed from an existing table and inserted
into a new table; these actions require, in addition to the two records for the insertion and deletion,
records which reflect the space allocation for the new table, and require the modification of the next
and prior pointers in the affected tables.

Since the actual size of the audit record depends on the number of entries to be moved, the Number
of Entries Moved field appears twice in each audit record to allow the audit file to be read in reverse.

Each of the four types of audit records have exactly the same format; this format is listed only for
the first of these.

C-44

@70@ :

@71@

@72@

@73@

Insert Entries Into Front of Table
Format:

Number of entries to be moved
Entries moved
Number of entries to be moved

BIT (12)
(*)
BIT (12)

(*) The total length, in bits, of the entries to be moved is
equal to:

(entries to be moved) x STR_RECORD_SIZE

Insert Entries Into Back of Table
Format: same as for @70@
Remove Entries From Front of Table
Format: same as for @70@
Remove Entries From Back of Table
Format: same as for @70@

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

APPENDIX D
NOTATION CONVENTIONS AND SYNTAX SPECIFICATIONS

The following paragraphs describe the notation and syntax conventions used in this manual.

NOTATION CONVENTIONS

The following paragraphs describe the notation conventions.

Left and Right Broken Brackets (< >)

Left and right broken bracket characters are used to enclose letters and digits which are supplied by
the user. The letters and digits can represent a variable, a number, a file name, or a command.

Example:

<job #>AX<command>

At Sign (@)

The at sign (@) character is used to enclose hexadecimal information.

Example:

@F3@ is the hexadecimal representation of the EBCDIC character 3.

The at sign (@) character is also used to enclose binary or hexadecimal information when the initial
@ character is followed by a (1) or (4), respectively.

Examples:

@(1)11110011@ is the binary representation of the EBCDIC character 3.

@(4)F3@ is the hexadecimal representation of the EBCDIC character 3.

< identifier>

An identifier is a string of characters used to represent some entity, such as an item name composed
of letters, digits, and hyphen. An identifier can vary in length from 1 to 17 characters. The characters
must be adjacent, the first character of an identifier must be a letter, and the last character cannot
be a hyphen.

<integer>

An integer is specified by a string of adjacent numeric digits representing the decimal value of the inte
ger.

< hexadecimal-number>

A hexadecimal number is specified by a string of numeric digits and/or the characters A through F;
this string is enclosed within the at sign (@) characters.

1152444 D-1

<delimiter>

B 1000 Systems Data Management. SystemH (DMSU)
Functional Description Manual

Notation Conventions and Syntax Specifications

A delimiter can be any non-alphanumeric character. The hyphen is excluded.

<literal>

A literal is a data item whose value is identical to the characters contained within the item. A literal
can be either an alphanumeric (or simply alpha) literal, or a numeric literal. Alpha literals can contain
any combination of valid printable characters, or spaces, and must be enclosed by quotation (")
characters; a quotation character within an alpha literal is represented by two successive quotation char
acters within the character string.

Example:

ABC""DEF

The preceding alpha literal could be used to represent the character string ABC"DEF.

Numeric literals can contain only the decimal digits 0 through 9 and are not enclosed within any delim
iters.

SYNTAX CONVENTIONS

Railroad diagrams show how syntactically valid statements can be constructed.

Traversing a railroad diagram from left to right, or in the direction of the arrowheads, and adhering
to the limits illustrated by bridges produces a syntactically valid statement. Continuation from one line
of a diagram to another is represented by a right arrow (-+) appearing at the end of the current line
and the beginning of the next line. The complete syntax diagram is terminated by a vertical bar (!).

Items contained in broken brackets (< >) are syntactic variables which are further defined or require
the user to supply the requested information.

Upper-case items must appear literally. Minimum abbreviations of upper-case items are underlined.

--A RAILROAD DIAGRAM CONSISTSOF--'"-r--<bridges>-------,......J.1---------~-+
<1oops>------

<optional items> ----i

<required items> ---

>--AND IS TERMINATED BY A VERTICAL BAR.------------------------1

G600!51

D-2

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Notation Conventions and Syntax Specifications

The. following syntactically valid statements can be constructed from the preceding diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTI
CAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS TERMINATED BY A
VERTICAL BAR .

. A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS TERMINATED BY
A .VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items>, <required items>, <bridges>,
<loops> AND IS TERMINATED BY A VERTICAL BAR.

Required Items

No alternate path through the railroad diagram exists for required items or required punctuation.

Example:

~REQUIRED ITEM~~~--~~--------~~-------~-~~~~~

G50062

Optional Items

Items shown as a vertical list indicate that the user must make a choice of the items specified. An
empty path through the list allows the optional item to be absent.

Example:

~REOUIREDITEM-....~~-~~------r--~~---~~------~~~~

L <optional item·1 > ---l
L <optional item-2 > ----

G50063

The following valid statements can be constructed from the preceding diagram:

REQUIRED ITEM

REQUIRED ITEM <optional item-1 >

REQUIRED ITEM <optional item-2 >

1152444 D-3

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

Notation Conventions and. Syntax Specifications

Loops

A loop is a recurrent path through a railroad diagram and has the following general format:

•r<--_ --<bridge>-------- <return character> -----.

__ ___.L..__ __ <object of the loop> --,.----------------'----'-----------1
G50054

Example:

<optional item-1 > ~
<optional item-2 >

G60065

The following statements cari be constructed from the railroad diagram· in the example:

<optional item-1 >

<optional item-2 >

<optional item-1 >,<optional item-1 >

<optional item-1 > , <optional item-2 >

<optional item-2 > , <optional item-1 >

<optional item-2 > , <optional item-2 >

A <loop> must be traversed in the direction of the arrowheads, and the · umits specified by bridges
cannot be exceeded.

Bridges

A bridge indicates the minimum or maximum number of times a path can be traversed in a railroad
diagram.

There are two forms of <bridges> .

D-4

n is an integer which specifies the maximum number of times the path can be tra
versed.

n* is an integer which specifies the minimum number of times the path must be tra
versed.

Example:

2

B 1000 Systems Data Management Systemll (DMSll)
Functional Description Manual

Notation Conventions and Syntax Specifications

--.L------ <optional item-1 > ----....-....&.-----------------------!
<optional item-2 >----'

G50067

The loop can be traversed a maximum of two times; however, the path for <optional item-2 > must
be traversed at least once.

The following statements can be constructed from the railroad diagram in the example:

<optional item-2 >

<optional item-1 > , <optional item-2 >

<optional item-2 > , <optional item-2 > , <optional item-1 >

<optional item-2 >,<optional item-2 >,<optional item-2 >

1152444 D-5

B 1000 Systems Data Management System II (DMSII)
Functional Description Manual

INDEX

< >, Le ft. and Right Broken Brackets D-1
<delimiter> D-2
< hexddecimal-nwnber> D-1
<identifier> D-1
<integer> D-1
<literal> D-2
~, At Si.gn Character D-1
Abnormal Condit ions 3-15
Abort Message Li st 11-28
Abort. Messages 11-28
Addition and De let.ion of Data Items 3-10
Aclditional Subrecords C-3
ALL Initialization of Data Items B-2
Analyzing, DMS/DASDLl\NALY 7-1
ASNS Statement 10-8
Assigrnnent of Code Segments B-2
At Sign (@) D-1
Audit and Recovery 4-1
Audit Block Size 4-9
Audit Media 4-9
Audit Trail 4-1
Audit Trailer C-25
Audit Types C-40
Balance of an Index Set or Subset 3-17
Bridges D-4
Broken Brackets (< >) , Le ft and Right D-1
Buffer Description C-24
Clear/Start Recovery 4-6
Code Segment Assigrunents B-2
Command Syntax 11-2
Compiling and Executing 5-7
Control Records (Type = @Bx@) C-40
Control Structures Bnbedded in DMS Data Files C-13
Controlpoint 4-4
controlpoints 4-11
Conventions, File Naming 3-13
Conventions, Notations D-1
Conventions, Syntax Description D-2
COPY semantics 3-4
COPY Statement 3-4
Data Base Structure Identifiers 11-1
Data Items, ALL Initialization D-2
Data Printing 11-12
Data Transfonnation Rules 3-12
Data Transformations 3-10
DATABASE Statement 10-3
Decompiling, OMS/DECOMPILER Program 6-1
Dictionary Data Structures Used at Run Time c-5
Dictionary Data Structures Used by DASDL C-30

'
1152444 1

B 1000 Sy&tems Data Management Systemll (DMSII) ·
Functional Description Manual

INDEX (Cont)

Disjoint Data Set (DDS) Population 11-15
Disjoint Data Set (DDS) Records 11-12
OM Globals C-17
OMS/ AUDI'rANALY Examples 10-12
DMS/AUDITANALYOptions 10-1
DMS/DASDL Compile for Update and Reorganizati.on 3-1
DMS/DASDL Compiler 13-2
DMS/DASDL Language Manual 2-1
DMS/DASDLYANALY Program 7-1
DMS/DBBACK Program 9-1
DMS/DBLOCK program 8-1
DMS/DBMAP Program 11-1
DMS/DBMAP Program Execution Examples 11-9
DMS/DBMAP Program Output 11-11
DMS/DBMAP Program VIRTUAL DISK 11-4
OMS/DECOMPILER Program 6-l
OMS/INQUIRY Program 5-8
OMS/REORGANIZE Progr~n 3-5
OMS/REORGANIZE syntax 3-5
DMSII Access Control 5-4
DMSII Audit File Information C-39
DMSII Globals C-5
Dump Recovery 4-6
Embedded Structure (ES) Population 11-16
Embedded Structure {ES) Tables 11-13
Error Discussion 11-17
Error Message List 11-19
Error Messages 11-17
Error Summary 11-16
Execution Examples 11-9
Execution Examples, DMS/DBMAP Program 11-9
File Names 10-11
File Naming Conventions 3-13
File Record C-9
FILE Statement 10-4
File Table C-8
Files 11-3
Forms of Recovery 4-4
Functional Description Manual 2-1
GENERATE semantics 3-3
GENERATE Statement 3-3
Generation of a Data Set or Manual Subset 3-16
Heading Pages 11-11
Host Language Manual 2-2
Index Entry Updates (Type = @2x@) C-41
Index Random (IDXRND) Population 11-16
Index Random Tables 11-14
Index Sequential (IDXSEQ) Population 11-16
Index Sequential Balancing Algorithms 3-14

2

B 1000 Systems Data Management Systemll (DMSII)
Functional Description Manual

INDEX {Cont}

Index Sequential Tables 11-13
Index Splits and Combines (Type = @7x@) C-44
Index Tables C-15
Interface C-22
IN'l'ERNAL FILES Statement 3-5
Item Size Changes 3-10
Item Type Changes 3-11
Key-Building Code B-1
KEYCHANGE Code B-1
Left and Right Broken Brackets (<>) D-1
List Head Updates (Type = @Sx@) C-43
List Tables C-14
Locks C-16
Logical Addresses C-2
Logical Transactions 4-10
Loops D-4
Non-dictionary Data Structures Used at Run Time C-16
Non-DMS Access Control (Operating System Security) 5-1
Non-Restartable Conditions 3-15
Notation Conventions D-1
Occurrences 3-11
Option Command Entry Syntax 11-5
Option Command Errors 11-8
Option Specifications 10-3
Optional Items D-3
Options 11-4
OPTIONS Statement 10-10
Partial Dump Recovery 4-8
Performance Information 11-7
Physical and Logical Data Base Protection Using SECURITYGUARD

Files 5-5
Population Summary 11-15
Procedures 11-28
Program Abort Recovery 4-4
Program Switch Settings 11-3
Program, DMS/DASDLANALY 7-1
Program, DMS/DBBACK 9-1
Program, OMS/ DBLOCK 8-1
Program, OMS/DECOMPILER 6-1
Purge 3-16
PURGE Statement 3-3
Regrouping of Data Items 3-11
Related D:>curnents 2-2
Reorganization Capabilities 3-8
Reorganization Capabilities: No Version Stamp Change Required 3-9
Reorganization Capabilities: Version Stamp Change Required 3-8
Reorganize Portion of the compile 3-2
RWUIRED Clause Checking B-1
Requj.red I terns D-3
Restart Data Set 4-2

1152444 3

4

B 1000 ·Systems Data Management Systemll (DMSII)
Functional . Description Manual

INDEX (Cont}

Restartable Conditions 3-16
Security Checking B-1
SECURITYGUARD files s~s
SECURITYTYPB Option 5-2
SECURITYUSE Option 5-3
SELECT Clause Verification B-2
Signed Data 3-10
Space Al location {Type = @6x@) C-43
Standard Data Set Updates {Type = @lx@) C-41
Static Infonnation 11-12
STATISTICS Statements 10-11
Status Information 11-10
Structure C-21
Structure and Item Protection with Logical Data Bases

and Remaps 5-4
Structure Records C-10
STRUCTURES Statement 10-5
Subrecords and Constants C-1
Switch Settings 10-11
Syncpoint 4-3

. syncpoints 4-11
Syncpoints and Controlpoints 4-11
Syntax Convention·s D-2.
Syntax Elements 4-1
System Requirements 3-16
SYSTEM/MARK~SEGS Program B-2
SYSTEM/MARK-SEGS Program and DMS/DASDL Compiler B-2
Throughput Considerations 4-9
TITLE Option 5-2
Transactions 4-2
transformations of data 3-10
TYPES Statement 10-9
Update Index Table Control Fields {Type = @3x@) c-42
Update List Tables {Type = @4x@) C-42
Update Portion of the Compile 3-1
Verification, SELEC'r Clause B-2
VERIFY Clause Checking B-1
VERIFY Statement 10-11
Version and Security Checking B-1
Version Checking 3-13, B-1
Virtual Disk 11-4
VIR'rUAL DISK, DMS/DBMAP Program 11-4'
WHERE Clause Checking B-1
WHERE, VERIFY, and REQUIRED Clause Checking B-1
Write Errors and Partial Dump Recovery 4-8

Documentatien Evaluation Form

Title: B 1000 Systems Data Management System II (DMSII)

Functional Description Manual

Form No: .:;.1.:;.;15:;..:2::;..44;..;...;4:.---____ _

Date: August 1984

Burroughs Corporation is interested in receiving your comments
and suggestions. regarding this manual. Comments will be util
ized in ensuing revisions to improve this.manual.

Please check type of Suggestion:

0 Addition 0 Deletion 0 Revision 0 Error

Comments:

From:

Name --

Title -------------------------------

Company ---~-
Address

Phone Number -----------------

Remove form and mail to:

Burroughs Corporation
Corporate Documentation - West

1300 John Reed Court
City oflndustry, CA 91745

U.S.A.

Date-----------

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	D-01
	D-02
	D-03
	D-04
	D-05
	X-01
	X-02
	X-03
	X-04
	replyA

