
Burroughs~

RELATIVE TO MARK V.O RELEASE

PRICED ITEM

Printed in U.S.A. January, 1976 1089794

/

Printed in U.S.A.

Burroughs {I)

B 1700 Systems
Data Management
System II (DMS II)

REFERENCE MANUAL

RELATIVE TO MARK V.O RELEASE

Copyright © 1975, Burroughs Corporation, Detroit, Michigan 48232

AA698675

PRICED ITEM

January, 1976 1089794

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Publications Department,
Technical Information Organization, TIO-West, Burroughs Corporation, 9451 Telstar
Avenue, El Monte, California 91731.

SECTION

1

2

3

TITLE

PREFACE ·
INTRODUCTION
B 1700 Data Management System II (DMSII) Components .
Data Base Administrator

SYNTAX SPECIFICATIONS AND CONVENTIONS
Syntax Specifications . . .
Syntax Conventions

DMSII STRUCTURE TYPES
Introduction
Data Set Set Structures . .

Set and Subset Structures
Automatic Sets .
Automatic Subsets
Manual Subsets .

Structure Types . . .
Data Set With No Sets.
Data Set With Ordered Set
Data Set With Embedded Data Set (No Sets)
Data Set With Embedded Data Set And Ordering Set
Data Set With No Ordering Set, Retrieval Set and Automatic Subset
Data Set With Multiple Ordered Sets and One Retrieval Set
Two Data Sets, One Referring To A Manual Subset of the other

With No Key
Two Data Sets Each Referencing A Subset Of The Other . .

DATA AND STRUCTURE DEFINITION LANGUAGE (DASDL).
Data Base Description

Data Base Syntax
Disjoint Data Set
VERIFY and REQUIRED ALL
Semantics
Record Description . . .

Data Item
Group Item
Embedded Data Set.
Embedded Set .
Subset ...

Disjoint Set . . .
Key Structure

Condition
Physical Structures

Disjoint Data Set Attributes
Data Set Maintenance Techniques
Index Sequential Attributes
Index Random Attributes
List Attributes .
File Attributes

PAGE

vi
vii
vii
x

1-1
1-1
1-2

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-5
2-6
2-8

2-10

2-12
2-14

3-1
3-1
3-1
3-2
3-2
3-3
3-5
3-5
3-6
3-7
3-8
3-9

3-11
3-11
3-12
3-14
3-15
3-16
3-17
3-20
3-22
3-23

iii

SECTION TITLE PAGE

4 COBOL INTERFACE . 4-1
Introduction 4-1
COBOL Data Division . 4-4

General 4-4
DATA-BASE SECTION. 4-4

Data Set References 4-4
Invoked Data Set . 4-5
Multiply-Invoked Data Set 4-6

COBOL Procedure Division . 4-6
General 4-6
Move And Move Corresponding 4-6
Exception Processing 4-7

ON EXCEPTION Clause 4-7
DMST ATVS Register 4-8

Selection Expression 44-10
Key Condition 4-11
Selection Expression Forms 4-11

COBOL Statements . 4-14
CLOSE 4-15
CREATE. 4-16
DELETE. 4-17
FIND 4-18
FREE. 4-19
INSERT 4-20
MODIFY. 4-21
OPEN. 4-22
RECREATE 4-23
REMOVE 4-24
STORE 4-25

Appendix A- DMSII COMPILATION CUIDE A-1
DASDL Compilation Procedures . A-1
DASDL Compilation Program Name A-3
DASDL File Names . A-3
DASDL Compiler($) Options . A-3
COBOL Compilation Procedures . A-19
Disk File Structures . A-19
DMSII Operation and Console Printer Messages A-21
DMSII Error Messages . A-21
Data Base Integrity . A-22
Library Maintenance of DMSII Files A-23
Memory Dumps A-23

Appendix B- DASDL PHYSICAL STRUCTURES B-1
Disjoint Data Set Example B-1
Index Random Example . B-2
Index Sequential Example B-3
Unordered List-embedded Data Set Example B-4
Unordered List - Subset Example B-6
Ordered List - Embedded Ordered Data Set Example B-6
Ordered List - Subset With A Key Example B_.:_7

iv

SECTION

Appendix C -

Appendix D -

Appendix E-

Appendix F - -

Appendix G -

Appendix H-

FIGURE

1
2

4-1
4-2

A-1
A-2
A-3
H-1
H-2
H-3

TABLE

4-1

TITLE

DASDL GLOSSARY . .

DASDL ERROR MESSAGES AND WARNINGS
Introduction
Warning Messages
Error Messages . .

COBOL EXTENSIONS

QUALIFYING A DATA BASE DESCRIPTION

B 1700 - B 6700/B 7700 DMSII COMPATIBILITY

DATA BASE EXAMPLE . .
Introduction
UNIV Data Base Identifiers .

TITLE

Simplified DMSII Compilation Process
Simplified DMSII Object Program Execution
Current-Record Pointer State
Set or Subset Current-Path Pointer State

Compile for Syntax . . .
Compile for Library
UNIV Data Base Example
UNIV Data Base Diagram
DASDL Program Example
COBOL Program Example

TITLE

DMSTATUS Categories and Description

PAGE

C-1

D-1
D-1
D-1
D-1

E-1

F-1

G-1

H-1
H-2

H-23

viii
ix

4-2
4-3

A-2
A-2
A-5
H-2
H-4

H-13

4-8

v

PREFACE

The B 1700 Data Management System II (DMSll) consists of the following three components: A Data
And Structure Definition Language (DASDL) used to describe a data base, a COBOL interface providing
programmatic access to the data in the data base, and the data access routines contained within the Master
Control Program (MCP) that control data storage and retrieval. These three components form the nucleus
of the B 1700 Data Management S.ystem II.

The information contained in this manual reflects System Software Release Mark V.0.

vi

LIST OF APPLICABLE B 1700 PUBLICATIONS

Publication Title

B 1700 System Software Operational Guide

B 1700 Systems COBOL Reference Manual

Form Number

1068731

1057197

(

INTRODUCTION

B 1700 DATA MANAGEMENT SYSTEM II (DMSII) COMPONENTS

An overview of the B 1700 DMSII, illustrating the operational flow of DASDL, the COBOL interface, and
the data access routines within the MCP, is shown in figures 1 and 2. The descriptions referenced in
figures 1 and 2 are described below.

Reference

A

B

c

D

E

F

G

Description

A DASDL source deck defining the logical and physical specifications of
the data base.

The DASDL compiler.

The DATABASE/LIBRARY created by the DASDL compilation provides
the COBOL compiler with compilation information.

The DASDL dictionary file created by the DASDL compilation containing
all the structural characteristics of the data base.

The data base files created by the DASDL compiler at the time the
INITIALIZE statement is encountered.

The COBOL compiler.

The created object-code file.

vii

viii

COBOL
SOURCE DECK

DASDL

SOURCE DECK

DASDL
COMPILER

DATABASE/
LIBRARY

FILE

COBOL
COMPILER

Figure 1. Simplified DMSII Compilation Process

COBOL
OBJECT

CODE FILE

COBOL PROGRAM RuN STRUCTURE
AND NEEDED CODE SEGMENTS

MASTER CONTROL PROGRAM
(CONTAINS THE DMSII ACCESS

M

ROUTINES) .·.···.·.

illllllll'llllllil!llilll~~llllllllll\ilililllillllilli lll~ll:

Figure 2. Simplified DMSII Object Program Execution

ix

DATA BASE ADMINISTRATOR

DASDL is the programmatic tool used by a person(s), usually referred to as a Data Base Administrator
(DBA). It is one of the functions of the DBA to describe a data base to the B 1700 Data Management
System II. The overall design of the data base is the responsibility of the DBA and includes the following:

a. Understanding the requirements of all users of the data base.

b. Analyzing the various demands to be made on the system.

c. Producing a data description capable of fulfilling the needs of all users of the system.

The DBA must also determine which applications require maximum optimization in order to provide for
overall efficiency. Because DASDL allows the flexibility of many alternative solutions to a given problem,
the DBA is always in a position to monitor and optimize the uses of the data base. The DBA must be
aware of all factors and once the system is designed, must be committed to tailoring its structures.

Typically, the DBA produces a data base design by using the DASDL default options creating the data
base structures. The DBA can then allow users to test the various applications. As experience is gained and
the performance of the system is evaluated, the DBA can experiment with alternative solutions. The end
result, therefore, reflects the decisions of the DBA in determining what is needed to produce the optimum
usage of the data base for the entire organization rather than for any one application.

The types of decisions the DBA makes are based on evaluation of the critical resources. For example, at
the cost of increasing memory used at program execution and increasing secondary storage space, the DBA
may decide that some data should be stored in more than one location so all related information can be
retrieved with one access. The DBA may also decide that the sequencing requirements of one application
are used so rarely that an additional set to maintain that ordering is not worthwhile.

The DBA also evaluates the system requirements in terms of the structures and their physical parameters,
depending on the needs of the installation. Initially, most questions relating to the physical parameters of
the data base are less important than the logical structures required by the application programs. This
makes the task of the DBA twofold: ,

x

a. Selecting structures based on their capabilities for supporting the logical requirements of the
applications.

b. Optimizing the performance of the structures selected.

1. SYNTAX SPECIFICATIONS AND CONVENTIONS

SYNTAX SPECIFICATIONS

The principal means of displaying COBOL and DASDL statements is the syntax diagram. The syntax
diagram technique affords a concise method of syntax illustration involving default options, alternatives,
and iterations. The basic rule is that any path traced along the forward directions of the arrows produces
a syntactically valid expression. The following examples illustrate the syntax diagram techniques.

Example 1:

TI!E OLDr:·LMILL

Valid statements from this example include:

ROW THE BOAT DOWN-STREAM.
ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE STREAM.
ROW, ROW, ROW, ROW THE BOAT DOWN THE OLD STREAM.
ROW YOUR BOAT DOWN THE MILL STREAM.
ROW THE BOAT DOWN THE OLD, MILL STREAM.

Example 2:

The following convention is used to control the number of iterations:

ACROSS THE f ' 1

j

BIG

WIDE

MUDDY

l MISSOURI

1-1

The bridge (__/"_) over the "l" can be crossed only one time in forming a valid expression. Thus, a
maximum of one comma and two adjectives can appear in a statement of this type. Valid expressions for
this example include:

ACROSS THE MISSOURI.
ACROSS THE WIDE MISSOURI.
ACROSS THE BIG, MUDDY MISSOURI.
ACROSS THE MUDDY, WIDE MISSOURI.
ACROSS THE BIG, BIG MISSOURI.

Example 3:

An asterisk (*) associated with a bridged number indicates that the path must be crossed at least one time.
By changing example 2 to the following:

____ _,l * ,__ ___ ' -·-----.

ACROSS THE -------'-----r---BIG -------....-,__-------1 .. -MISSOURI

i-----WIDE-------...:i:-1

...___--MUDDY--_...,

proper syntax is obtained by crossing the bridge at least one time. Valid expressions from this example
include:

ACROSS THE BIG, BIG MISSOURI.
ACROSS THE BIG, BIG, BIG MISSOURI.
ACROSS THE BIG, WIDE, MUDDY MISSOURI.

SYNTAX CONVENTIONS

DASDL and COBOL constructs consist of letters, digits, special characters, and blanks. Letters, digits, and
hyphens are alphanumeric characters. All other non-blanks are delimiters. Alphanumeric characters can be
aggregated into such syntactic items as integers, keywords, and identifiers. Keywords are reserved in
DASDL and cannot be used in constructing identifiers. Rules and restrictions in construction of identifier
names are identical to those for COBOL identifiers, except that no identifier can contain more than 17
characters (for compatibility with B 6700/B 7700 series systems DMSII) and all identifiers within a data
base must be unique.

Keywords

All alphanumeric items appearing in capital letters are keywords and are used literally. Abbreviations are
not allowed. Example: POPULATION

Blanks

Blanks separate syntactic items and can appear freely anywhere except within certain text fields, where
they are significant characters. Blanks are optional on either side of a delimiter. Whenever one alpha
numeric item, keyword, identifier, or integer, for example follows another with no intervening delimiter,
it must be separated by at least one blank.

1-2

\

End-Of-Statement

An end-of-statement is indicated by an arrow followed by a slash. Example:

Syntactic Variables

All alphanumeric items that are not keywords in the syntax diagrams are syntactic variables, and represent
information to be supplied by the user. A particular variable can represent a single character, a simple con
struct such as an integer or text string, or a complex construct. Most variables are defined programmatically
where they are to be used.

BROKEN BRACKETS ()

Left and right broken brackets containing letters, digits, or letters and digits represent a metalinguistic
variable. When a metalinguistic variable appears in the text it is referring to its appearance in the syntax
specification being discussed.

identifier

An identifier is a string of characters used to represent some entity, such as an item name composed of
letters, digits, and hyphen. An identifier can vary in length from one through seventeen characters. The
characters must be adjacent and the first character of an identifier must be a letter.

integer

An integer is specified by a string of adjacent digits representing the decimal value of the integer.

delimiter

A delimiter may generally be any non-alphanumeric character. The hyphen is excluded.

literal

A literal is a data item whose value is identical to the characters contained within the item.

PERCENT SIGN(%) (DASDL Only)

The percent sign is used to designate DASDL documentation or comments, and its presence terminates the
scan of a card. The example below illustrates the usage of a percent sign for in-line coding.

00000100
00000150
00000200
00000300
00000400

:%THIS DASDL PROGRAM GIVES EXAMPLES
:%OF THE VARIOUS CONSTRUCTS USED IN
:%DASDLTO DESCRIBE A DATA BASE.
:PARAMETERS(

BUFFERS = 10) ;

1-3

(

)

2. DMSII STRUCTURE TYPES

INTRODUCTION

A data base is constructed by a DASDL compilation. The contents and format of the data base are usually
the responsibility of the Data Base Administrator (DBA). The DASDL compiler, using a description of the
data base (DASDL source statements), produces a data base dictionary file containing information about
each structure described within the data base.

Data base structures are either disjoint or embedded. A disjoint structure is free standing .. A structure is
considered embedded when it is declared as an item within some other structure. A structure can be one of
three types: data set, set, or subset.

DATA SET STRUCTURES

A data set is similar to a conventional file in that it contains the actual records of information. However,
it is different from a conventional file in that items within the record may themselves be structures, in
which case, these items are considered as embedded structures. A record of a data set which contains an
embedded structure is referred to as the owner record of the embedded structure. If the embedded
structure is a data set, a record of the embedded data set is considered a detail record of the master. The
DBA defines a data set, the items, and their attributes that form data set records, and also the physical
organization of these records. The application programmer must be aware of these record items and
attributes prior to accessing a data base. Knowledge of the physical organization of the data base is not
required in order to access the data base.

Set and Subset Structures

Sets and subsets are structures organizing the records of a data set into some logical sequence. A set pro
vides access to all of the records of a data set. A subset provides access to a limited collection of records of
the data set. Since several sets or subsets can exist for the same data set, the same data can be accessed in
several different sequences. For example, given a data set containing employee records, one set could order
the data ascending order by the last name and another set could order the data in descending order by em
ployee number. Those data items of a data record that are used to control the ordering of a set or subset
are known as the key of the set or subset.

There are two methods of accessing a data set through a set or subset. The first method, accessing of
records based on the value of key fields, is called the random access method. An example of the random
access syntax is:

FIND UNIV-COURSES VIA UNIV-C-SET AT CRS-NO = 1234

The second method, accessing of records sequentially based on the value.of the key fields, is the serial
access method. An example of the serial access syntax is:

FIND UNIV-COURSES VIA NEXT UNIV-C-SET

2-1

Records may also be accessed based on the physical ordering of the records within the data set. The physical
ordering may or may not correspond to the order in which the records were created. An example of access
based on the physical ordering of a data set is:

FIND NEXT UNIV-COURSES

Automatic Sets

All sets are automatic in that as new records are stored, the system automatically creates entries in the set
for those new records of the data set. Deleting records from a data set also automatically removes the entry
from the set. Sets can be either embedded or disjoint structures.

Automatic Subsets

Subsets can be manual or automatic. Automatic subsets specify a condition for membership iri the subset;
the condition is checked each time a record is to be added to the data set. If the condition is met, the sys
tem automatically creates an entry in the subset. Those data records that meet the condition can be
accessed by the automatic subset. Deleting a record from the data set removes the entry from the auto
matic subset if the subset entry exists. During an update, the condition is checked and the subset entry can
be created or deleted. Automatic subsets can be disjoint structures only.

Manual Subsets

A tnariual subset requires the application program to insert the record in the manual subset after creating
and storing a record in a data set. This requirement establishes an entry in the manual subset for the
record in the data set. When deleting a record, it is necessary for the application program to remove the
entry from the manual subset prior to deleting the record from the data set. Manual subsets can be
embedded structures only.

2-2

\
/

STRUCTURE TYPES

Some examples of the structure types that form a data base are illustrated in the following text.

Data Set With No Sets

A data set with no sets might be illustrated using a payroll application, in which every record in the data set
is accessed during the processing of the payroll program.

Coding Example:

PAYROLL DATA SET
(.
. (data set items)

), POPULATION = 1000;

Physical Structure:

DATA SET PAYROLL

Record Access:

Records of PAYROLL

a. New records are stored in the first available location.

b. The records can be accessed based on the physical ordering of the data set. For example:

FIND FIRST, FIND NF:XT ...

c. Records cannot be accessed based on data val~es.

2-3

Data Set With Ordered Set

A data set with an ordered set could be used for an employee file with the last name as the key. The entire
data set could be accessed through the set in alphabetical order by using the last name as the key, or any
individual record could be accessed by using the last name of the individual as the key.

Coding Example:

EMPLOYEE DATA SET
(LAST-NAME ...

),POPULATION = 1000;
L-NAME ORDERED SET OF EMPLOYEE (LAST-NAME);

Physical Structure:

~~
DOE

JONES

Records of EMPLOYEE

•
-- OWENS _:"'. - SMITH _"!"':

:

INDEX TABLE
OF ORDERED
SETL-NAME

DATA SET EMPLOYEE

Record Access:

a. Records can be accessed based on the physical ordering of the data set. For example:

FIND NEXT EMPLOYEE

b. Records can be accessed based on the ordering sequence of the set. For example:

FIND EMPLOYEE VIA NEXT L-NAME

c. Records can be accessed based on the data value of a key. For example:

FIND EMPLOYEE VIAL-NAME AT LAST-NAME = "JONES"

2-4

Data Set With Embedded Data Set (No Sets)

A data set with an embedded data set could be used for an employee file in which an embedded data set
was used to account for each of the employee's dependents.

Coding Example:

EMPLOYEE DATA SET
(.

DEPENDENT UNORDERED DATA SET
(.

),POPULATION = 10
),POPULATION = 1000;

Physical Structure:

DATA SET EMPLOYEE

Record Access:

DATA SET DEPENDENT

a. Records of data set DEPENDENT can be accessed based on the physical ordering of the embed
ded data set. For example:

FIND NEXT DEPENDENT

b. There must be a valid EMPLOYEE current record in order to access a DEPENDENT record.

2-5

Data Set With Embedded Data Set And Ordering Set

This data structure could be used with the employee file as the data set and the employeejob history as the
embedded data set ordered by the job position.

Coding Example:

EMPLOYEE DATA SET
(.

JOB-HISTORY ORDERED DATA SET
(POSITION ALPHA (20)

), POPULATION = 10;
JOB-POSITION ACCESS TO JOB-HISTORY KEY (POSITION)

), POPULATION = 1000;

Physical Structure:

DATA SET EMPLOYEE

DATA SET JOB-HISTORY

Record Access:

2-6

a. Records of data set JOB-HISTORY can be accessed based on the ordering sequence of JOB
POSITION. For example:

FIND JOB-HISTORY VIA NEXT JOB-POSITION

b. Records can be accessed based on the data values of the key. For example:

FIND JOB-HISTORY VIA JOB-POSITION AT POSITION = SYSTEMS-ANALYST

c. There must be a valid EMPLOYEE current record to access any JOB-HISTORY record.

/

2-7

Data Set With No Ordering Set, Retrieval Set, and Automatic Subset

A data set with a retrieval set could be used with an employee file so that given a title and department the
record for the employee who holds that position could be accessed. An automatic subset provides access
to all the records of exempt employe.es.

Coding Example:

EMPLOYEE DATA SET
(TITLE ...
DEPARTMENT ...
EXEMPT-STATUS
NAME

), POPULATION = 1000;
POSITION RETRIEVAL SET OF EMPLOYEE KEY (TITLE,DEPARTMENT) DUPLICATES;
EXEMPT SUBSET OF EMPLOYEE WHERE (EXEMPT-STATUS = 1) KEY IS (NAME);

Physical Structure:

RETRIEVAL SET
POSITION

AUTOMATIC
SUBSET EXEMPT

DATA SET EMPLOYEE

Record Access:

2-8

a. Records can be accessed based on the physical ordering of the data set. For example:

FIND NEXT EMPLOYEE

b. Records can be accessed based on the value of a retrieval key. For example:

FIND EMPLOYEE VIA POSITION AT TITLE = SECRET ARY AND DEPARTMENT =
SYSTEMS-PROGRAMMING

\

/

c. Records that satisfy the automatic subset condition can be accessed based on the physical order
ing of the automatic subset. For example:

FIND EMPLOYEE VIA NEXT EXEMPT

d. Records that satisfy the automatic subset condition can be accessed based on the value of the
subset key. For example:

FIND EMPLOYEE VIA EXEMPT AT NAME =''JOE DOE''

2-9

Data Set With Muitiple Ordered Sets arid One Retrieval Set

This data set could be· an employee file ordered by name and employee number and retrieved by title and
department.

Coding Example:

EMPLOYEE DATA SET
(FIRSTNAME ...
LASTNAME .. ,
EMPLOYEE-NO ...
TITLE ...
DEPARTMENT ...

),POPULATION = iOOO; . . .
NAME ORDERED SET OF EMPLOYEE KEY (LASTNAME,FIRSTNAME);
EMP~NO ORDERED SET OF EMPLOYEE KEY (EMPLOYEE-NO);
POSITION RETRIEVAL SET OF EMPLOYEE KEY (TITLE,DEPARTMENT);

Physical Structure:

2-10

ORDERED
SET NAME

RETRIEVAL
SET POSITION

BAKER 4250

JOHNSON 6184

DATA SET EMPLOYEE

Record Access:

a. Records can be accessed based on the physical ordering of the data set. For example:

FIND NEXT EMPLOYEE

b. Records can be accessed based on any ordering sequence. For example:

FIND EMPLOYEE VIA NEXT EMPLOYEE-NO

The order however, is based on the values within the records, not the physical order of the
records.

c. Records can be accessed based on data values of the order key. For example:

FIND EMPLOYEE VIA NAME AT LASTNAME = "SMITH" AND
FIRSTNAME = "JOHN"

d. Records can be accessed based on data value of a retrieval key. For example:

FIND EMPLOYEE VIA POSITION AT TITLE = MANAGER
AND DEPARTMENT =·FINANCE

2-11

Two Data Sets, One Referring To A Manual Subset of The Other With No Key

This data structure could represent the relationship between departments and employees, with each
department having a manual subset referencing all the employees of that department.

Coding Example:

DEPARTMENT DATA SET
(.

DEPT-EMPLOYEES SUBSET OF EMPLOYEES

), POPULATION = 10;
EMPLOYEES DATA SET

(.

.), POPULATION = 1000;

2-12

Physical Structure:

DATA SET DEPARTMENT

DATA SET EMPLOYEES

SUBSET DEPT-EMPLOYEES

Record Access:

a. Records of data set EMPLOYEES can be accessed based on the physical ordering of a subset for
a data set: For example:

FIND EMPLOYEES VIA NEXT DEPT-EMPLOYEES

b. Records of data set EMPLOYEES can be accessed by the physical ordering of the data set. For
example:

FIND NEXT DEPARTMENT

2-13

Two Data Sets Each Referencing A Subset Of The Other

The preceding example could be expanded to order the employees within a department by their last name.
Also there could be a manual subset within each record of data set EMPLOYEES referencing the depart
ment in which the employee works.

Coding Example:

DEPARTMENT DATA SET
(.

DEPT-EMPLOYEES SUBSET OF EMPLOYEES KEY (LASTNAME)
), POPULATION = 10;

EMPLOYEES DATA SET.

2-'-14

(LASTNAME ...

EMP-DEPT SUBSET OF DEPARTMENT
), POPULATION = 1000;

SUBSET
DEPT

EMPLOYEES

NOTE: EACH EMPLOYEE WORKS
~ IN ONE DEPARTMENT ONLY.

DATA SET
DEPARTMENT

;:;: DATA SET EMPLOYEES

SUBSET
EMP-DEPT

Record Access:

a. The records of data set EMPLOYEES can be accessed based on the physical ordering of a sub
set of a data set. For example:

FIND EMPLOYEES VIA NEXT DEPT-EMPLOYEES

b. The records of data set DEPARTMENT can be accessed based on the data value of a ordered key
of the subset. For example:

FIND EMPLOYEES VIA DEPT-EMPLOYEES AT LASTNAME ="JONES"

c. Records of data set DEPARTMENT can be accessed based on the physical ordering of the data
set. For example:

FIND FIRST DEPARTMENT

d. A master data set must have a current record to access its subset.

2-16

3. DATA AND STRUCTURE DEFINITION LANGUAGE (DASDL)

DATA BASE DESCRIPTION

A data base is described to the system by means of a DASDL compilation. Data sets, sets, and subsets
constitute the data base. Appendix A contains specific information on the DASDL compilation procedure.
This section describes the components and the structuring of a data base.

Data Base Syntax

---.------------.--~- (disjoint-data-set)--1...~---------..---..1..--1----~

(parameters)

5
L(physical-description)=3

Parameters:

(disjoint-set)

(subset) _ __,._,

L (initialize-statement) =mJ

-------------PARAMETERS-------'1- (BUFFERS = (integer))

Initialize Statement:

---------------11- INITIALIZE

Semantics:

a. Data sets and sets on the outermost level of the description are disjoint data sets, and disjoint
sets. A data base must contain at least one disjoint data set.

b. A data set description provides for specification of the logical structure of a file.

... 1

c. Set and subset descriptions provide logical specifications of indexes or index tables (paths) that
are used in storage and retrieval of data contained in a data set.

d. The BUFFERS statement defines the optimum number of data buffers the system should try to
utilize. The system adjusts dynamically to handle peak volumes of DMSII operations. By de
fault, the system will utilize 10 buffers. The range can be from 3 to 100.

3-1

e. The INITIALIZE statement causes the DMSII files to be initialized by DASDL, and must be
performed before there can be any access to a data base. INITIALIZE must be the last statement
in the DASDL source deck.

f. Subset and set specifications cannot precede the specification of the data set that they reference.

DISJOINT DATA SET

A data set consists of a collection of records that constitute a data set. All records in a data set are struc
tured alike, with only the values of the data items differing. Describing the data set is accomplished by
describing the data items within the records of the data set.

The data structure in a data set definition are represented in a COBOL-like format. Disjoint data sets
appear on the outermost level of the description and are referred to as level 1. All data items contained in
a data set are assigned a level thatis one greater than that of the data set itself. All items of a group item
are assigned a level that is one greater than that of the group item itself. DASDL represents data structures
by the use of parentheses, with each set of parentheses representing a level.

VERIFY and REQUIRED ALL

The VERIFY condition and the REQUIRED ALL statement provide the mechanism for specifying the
minimum criteria that a record must meet prior to its being stored in a data base. These specifications are
checked for each record to be stored. The REQUIRED ALL statement specifies that all applicable items
must be assigned a non-null value (where "null" is defined as all bits on). The VERIFY condition provides
the specifications for complex comparisons and operations in determining the validity of a data record.

Syntax

--(disjoint-data-set-identifier) DATA SET -..--------_J-... -..-L--------J-.-~ c " (comment) "· . REQUIRED ALL

5--< (group-item)---...-) J . · I • ; --/
(data-item) IL j~ ,liL-roPULATION= (integer)?
(embedded-data-set) , . ~ VERIFY (condition) __ _J__.
(embedded-set) -...,..-1

(subset)----.....-

3-2

SEMANTICS

a. DASDL recognizes five item types as valid components of disjoint data set record descriptions:

1. Embedded data set.

2. Embedded set.

3. Subset.

4. Group item.

5. Data item.

This record description of a disjoint data set specifies the format of a record of a data set. These
records are stored in a physical file.

b. The record of a data set containing an embedded data set is referred to as being the "owner" of
the records of the embedded data set.

c. The records of an embedded data set are referred to as members of its disjoint data set.

d. A disjoint set relates only to a disjoint data set. An embedded set and the embedded data set to
which it relates must be on the same level description.

e. Files for the data sets and tables built for sets, if there are keys, use the POPULATION statement
as a guide for area size for files and table size unless other specifications are given in the physical
description.

f. The quoted comment ("comment ... "),having a limit of 172 characters, provides a facility for
inclusion of descriptive information in the data set. Continuation of quoted character strings
across card boundaries requires a quote at the beginning of subsequent cards.

g. The REQUIRED ALL statement, if present, is equivalent to the REQUIRED statement on all
items of the data set in that for each data item defined in the data set a value must be present for
the record to be stored.

h. The VERIFY condition specifies a certain condition to be satisfied by the items of a record in
order for it to be stored in a data set. If the condition is not met, the record will not be stored.

3-3

Example:

The following example contains the usage of a disjoint data set.

3-4

00005400
00005500
00005600
00005700
00005800
00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008850
00009000
00009100
00009200

:MSF DATA SET(
SSNO NUMBER(9);
NONAM NUMBER(l);
LNAME ALPHA(30);
MNAME ALPHA(30);
FNAME ALPHA(30);
CAMPUS-ADDRESS GROUP(

DORM ALPHA(6);
ROOM NUMBER(4);
POROX NUMBER(4);
PHONE NUMBER(7));

ND NUMBER(2);

DISJOINT DATA SET

DATA ITEMS

GROUP ITEM

DATA ITEMS

DEGREE ALPHA(4) OCCURS 6 TIMES;
TOTH RS NUMBER(3);
TOTQP NUMBER(3);
GRADE-POINT-AVG NUMBER(3,2);
MJR NUMBER(3);
AMJR ALPHA(18);
SSEX NUMBER(1);
SAGE NUMBER(2);
HOME-ADDRESS SUBSET OF ADR; MANUAL SUBSET
QUARTER ORDERED DATA SET(

QTR ALPHA(4);
QTTRHRS NUMBER(2);
QTRQP NUMBER(2);
CORSES ORDERED DATA SET(

TYPECOURSE NUMBER(l);
YR NUMBER(2);
Q NUMBER(2);
GCRS SUBSET OF UNIV-COURSES;
GGD ALPHA(2);
TITLE-OF-PAPER ALPHA(30);
PPRGD ALPHA(2));
POPULATION = 4;
CSET ACCESS TO CORSES KEY IS

(TYPECOURSE) DUPLICATES)
POPULATION = 5000;
QSEY ACCESS TO QUARTER KEY IS (QTR));

MSFSET ORDERED SET OF MSF KEY IS (SSNO);

EMBEDDED
DATA SET

EMBEDDED
SET

DISJOINT SET

RECORD DESCRIPTION

The five item types comprising the record description of a disjoint data set are the embedded data set,
embedded set, subset, group item, and the data item. All items comprising the record description are
separated by semicolons.

Data Item

Each data item in the record is described by an identifier, an optional description, and its data type. A data
item can also have an occurrence (OCCURS) specification or a REQUIRED specification requiring the data
item to be assigned a non-null value prior to its storage in the data set.

Syntax

---~- (data-item-identifier) ----.-----------r------'--------·~~

L " (comment) "=3

f-IALPHA (

LNUMBER

(integer)) ------------r--Er---O-C_C_U_R_S-(z-.n-te-g-er_)_T-IM_E_S_:!--.. -.1/

< LsJL(int:g~)J REQUIRED----_]....,

Semantics

a. Comments enclosed within quotation marks are used for documentation and are stored in the
dictionary file, but comments following the percent sign(%) are not stored.

b. The ALPHA specification handles strings of alphabetic characters, special characters, or digits.
The size of the data item (the number of characters the data item can hold) is specified by an
integer, enclosed within parentheses.

c. The NUMBER specification handles signed and unsigned numeric fields, either decimal or
integer. The maximum size of a NUMBER statement is 23 unsigned digits or 22 signed digits
when not a KEY item; and 12 unsigned digits or 11 signed digits when NUMBER is a KEY item.

d. When two integers are used to specify the size of a NUMBER item, the integer to the left of the
comma specifies the total field width; the integer to the right of the comma is the number of
digits after an implied decimal point.

e. The OCCURS clause of DASDL is identical to the COBOL OCCURS clause. The item must be
subscripted when used. A maximum of three levels of subscripting is allowed. The number of
occurrences is limited to 1023.

f. The maximum record size is 8192 characters.

g. Required items must be present and be non-null to be stored. The REQUIRED ALL option for
a data set makes all items REQUIRED except those for which the REQUIRED statement is an
invalid option.

h. The REQUIRED statement cannot be specified for any items appearing within the scope of an
OCCURS clause. The REQUIRED ALL statement of a data set does not make an occurring
type item required.

3-5

i. COBOL requires that all ALPHA and GROUP items start on byte boundaries. In order to satisfy
this requirement, one-digit fillers are inserted, where necessary, with a warning message given.

Example:

The following example illustrates a record description.

00006500
00006600
00006700
00005800
00006900
00007000
00007100
00007200
00007300

NQNUMBER(2) ;
DEGREE ALPHA(4) OCCURS 6 TIMES;
TOTHRS NUMBER(3);
TOTQP NUMBER(3) ;
GRADE-POINT-AVG NUMBER(3,2) ;
MJR NUMBER(3);
AMJR ALPHA(18) ;
SSEX NUMBER(1) ;
SAGE NUMBER(2) ;

Group Item

Group items are used to establish hierarchical relationships within one record in the same manner that
COBOL uses level numbers. Each group item in the record is described by an identifier followed by the
word GROUP, an optional OCCURS or REQUIRED clause, and a list of data items or group items in any
combination.

Syntax

_ __,_(group-item-identifier) GROUP------------------..------.. ...,~

L OCCURS (integer) TIMES ~
~REQUIRED------~---'_.

..... -----; --------..... (___ ___.__ -c- (group-item) f
(data-item) __ ___,_

•)~-------.J

Semantics

3-6

a. Group items are items that themselves contain items. Items within a group are declared at a
level that is one greater than the level of the group.

b. Items that belong to groups are restricted to data items and further group items. Data sets, sets,
and subsets are not allowed as items within a group.

c. The optional OCCURS clause can be nested to three levels. Each occurrence has a limit of 1023
times.

d. Group items can be REQUIRED if the group item does not appear within the scope of an
OCCURS clause. The effect of this is to make all items within the GROUP required (REQUIRED)
except those items for which the option is invalid.

Example:

The following example illustrates usage of both a group item and the OCCURS clause.

Level 1

Level 2

Level 3

Level 4

Embedded Data Set

GRP A GROUP OCCURS 3 TIMES (
DATAl ALPHA (10) OCCURS 2 TIMES;
DATA2 NUMBER (4) OCCURS 10 TIMES;
GRPB GROUP OCCURS 4 TIMES (

DATA3 ALPHA(S) OCCURS 3 TIMES;
DATA4 NUMBER (5) OCCURS 3 TIMES;
GRPC GROUP OCCURS 5 TIMES (

DATAS ALPHA (10);
DATA6 NUMBER (10))));

An item within a data set can itself be a data set; and is referred to as an embedded data set. A data set is
used as an item in a data set when it is desired to establish a hierarchical relationship between different
types of records. The VERIFY condition and the REQUIRED ALL statements are the mechanism for
specifying the minimum criteria that a record must meet prior to its being stored in a data base. These
specifications are checked for each record to be stored. The REQUIRED ALL statement specifies that all
applicable items must be assigned a non-null value. The VERIFY condition provides the specifications for
complex comparisons in determining the validity of a data record.

Syntax

-- (embedded-data-set-identifier)-,-- ORDERED _j ., DATA SET •(

L._ UNORDERED L" (comment) " j

S· c
LREQUIREDJ

ALL

(group-item)---~-).t

(data-item) IL j fl\- POPULATION= (integer)J
1

(embedded-data-set) , l.f'i\- VERIFY (condition) ~
(embedded-set)----.i

(subset) -----

Semantics

a. It is mandatory that the outer level data sets have current records established before lower levels
of the structure can be accessed.

b. Either an ORDERED or UNORDERED statement must be specified for an embedded data set.

1. The ORDERED statement indicates that the data records are to be maintained in sequence.
There must be exactly one embedded set declaration for an ordered embedded data set.
This declaration specifies the sequence for this data set.

2. The UNORDERED statement indicates that the system assigns the sequence to the records.
No sets are then allowed.

3-7

c. When a POPULATION statement is specified for an'embedded data set, it indicates the number
records per owner. That value is multiplied by the population of the disjoint data set for space
allocation. This calculation indicates that the POPULATION specification for the embedded data
set should be the average population, rather than the maximum.

d. The REQUIRED ALL statement, if present, is equivalent to specifying the REQUIRED statement
for each data item in the data set for which REQUIRED is valid. A value must be present for
each of these data items before the record can be stored.

e. The VERIFY condition specifies a certain condition to be satisfied by the items of a potential
record to be stored in a data set. If the condition is not satisfied, the record will not be stored.

Example:

00002600
00002700
00002800
00002900
00003000
00003100
00003200

00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800

BOOKS UNORDERED DATA SET(
LC NUMBER(9);
TITLES ALPHA(60);
AUTHR ALPHA (30));

STUDENTS SUBSET OF MSF KEY IS
(LNAME,FNAME) DUPLICATES,
POPULATION = 300)

UNORDERED EMBEDDED
DATA SET

CORSES ORDERED DATA SET(ORDERED EMBEDDED
TYPECOURSE NUMBER(l); DATA SET
YR NUMBER(2);
Q NUMBER(2); AND
GCRS SUBSET OF UNIV-COURSES;
GGD ALPHA(2); EMBEDDED SET
TITLE-OF-PAPER ALPHA(30);
PPRGD ALPHA(2)),
POPULATION = 4;
CSET ACCESS TO CORSES KEY IS

(TYPECOURSE) DUPLICATES)

Embedded Set

Embedded sets are used to establish a path of access to embedded, ordered data sets. The embedded set,
based on the key value, provides either serial access to all the records of the data set, or random access to a
specific record also based on the key value. For embedded, unordered data sets, the only access to the data
is based on the physical ordering of the records.

Syntax

----1-(embedded-set-identifier) ACCESS TO (embedded-data-set-identifier) (key-structure) -f

Semantics

3-8

a. The embedded set provides the ability to maintain a logical order for an embedded ordered data
set rather than the physical order associated with an embedded unordered data set.

b. One set only, must be declared for each embedded ordered data set. The ACCESS TO declaration
is required and must be specified only in this instance. This declaration indicates the establish
ment of a path, but does not establish physical index tables. (The records are kept in order.)

c. The embedded set and the embedded data set to which it refers must be on the same level.

d. Data items of the key-structure cannot be modified after the record has been stored in the data
base. For further information on key-structures, see DISJOINT SET in this Section.

Example:

00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008850

Subset

CORSES ORDERED DATA SET(
TYPECOURSE NUMBER(l);
YR NUMBER(2);
Q NUMBER(2);
GCRS SUBSET OF UNIV-COURSES;
GGD ALPHA(2);
TITLE-OF-PAPER ALPHA(30);
PPRGU ALPHA(2)),
POPULATION = 4;
CSET ACCESS TO CORSES KEY IS

(TYPECOURSE) DUPLICATES)

A subset is a path to some of the records of a data set. A subset is not used for holding data values, but
rather it provides a method of accessing some of the records of a disjoint data set.

There are two types of subsets, manual and automatic. The manual subset is maintained by the user. It
establishes inter-record relationship by providing a method of accessing some of the records of a disjoint
data set from records of another data set. The automatic subset is maintained by the system and provides
access to records of the disjoint data set which satisfy the condition specified in a WHERE clause.

Syntax

,--..-------:1- (subset-identifier) SUBSET OF (disjoint-data-set-identifier)--------~

1-----1- WHERE (condition) ----ti--i

------ (key-structure)-----

Semantics

-----..--- POPULATION = (integer)

a. Any subset containing a WHERE clause is an automatic subset.

b. Manual subsets are usually used when the data related to the record is not unique for that record,
or when independent access to the related data is required.

c: Manual subsets must be declared as embedded structures. The data set referenced must be a
disjoint data set.

d. Manual subsets can have a key-structure. If specified, the key-structure provides serial access
based on the key value or random access of a specific record (also based on the key value).

3-9

e. Neither the OCCURS clause nor the REQUIRED clause can appear in a subset.

f. Automatic subsets can only be declared as disjoint structures.

g. Automatic subsets must have a key structure, which provides for serial access based on the key
value or random access of a specific record (also based on the key value).

h. For further information concerning> key structure, see DISJOINT DATA SET in this section.

Example:

00000600 :UNIV-COURSES DATA SET "MAIN FILE"

00002500 PROFESSOR SUBSET OF UNIV-PERSONNEL, POPULATION = 3;

00003900 :UNIV-PERSONNEL DATA SET(

00004900 COURSES SUBSET OF UNIV-COURSES, POPULATION = 8;

The manual subsets in the above example allow access to the professors who teach a particular course and
access to the courses taught by a particular professor. Each professor record could reference all of the
courses for it and each course record could reference all the professors for it without any redundancy of
data stored.

3-10

DISJOINT SET

The use of any set implies the existence of a key. For disjoint data sets, keys can be associated with either
an ordered or retrieval disjoint set.

Syntax

--(disjoint-set-identifier) (ORDERED T (disjoint-data-set-identifier)- (key-structure)-;--!
SET OF

RETRIEVAL
SET OF

Semantics

a. The use of an ORDERED set allows serial access based on the key or random access of a specific
record (also based on the key value). The items within the key structure of an ORDERED set
specify the control from left to right.

b. If only random access is desired and serial access on the key value if not necessary, a RETRIEVAL
set is used rather than an ORDERED set.

c. The DESCENDING clause of the key structure must not be used for items in the key structure
of a RETRIEVAL set.

d. If DUPLICATES is not specified in the key structure, the data items of the key structure must
not be modified after the record has been stored in the data base.

Example:

00005200
00005300
00005350

Key Structure

SS-U-P ORDERED SET OF UNIV-PERSONNEL KEY IS (SSNUM);
U-P-SET ORDERED SET OF UNIV-PERSONNEL KEY IS

(LASTNAME,FIRSTNAME) DUPLICATES;

The key structure allows the user to identify data items in a data record for which access by a data item
value is required.

Syntax

-KEYLrsj .. c (data-item-identifier) -.......---------r -) L J ., I
I

(group-item-identifier) ASCENDING DUPLICATES

DESCENDING

Semantics

a. The key structure consists of a single data item or the concatenation of multiple items.

b. If a group item is used as an item in a key-structure, the COBOL syntax for the random access of
a record using that key requires that all the elementary data items of the group be used. The use
of a group item in DASDL allows documentation clarity.

c. Each data-item-identifier or group-item-identifier following a KEY specification must refer to a
data item or group item of the data set which the set or subset references.

3-11

d. To provide flexibility of serial access, each data item may be specified as ASCENDING or
DESCENDING. This does not affect random access, and is not allowed on retrieval sets. If
neither ASCENDING nor DESCENDING is specified, ASCENDING is assumed by .default.

e. Duplicates are records with identical key values. The DUPLICATES option indicates that
multiple instances of a key with the same value are allowed. For example, a key NAME normally
would allow many John Smiths, but a key of SSUM would not allow any duplicates. A special
syntax is provided in COBOL to allow only the retrieval of duplicates.

f. If DUPLICATES is not declared, the key-structure is considered unique.

CONDITION

A condition expression has two uses:

a. Specifying criteria which must be satisfied by a record prior to storage in a data set (VERIFY
clause).

b. Specifying the condition for inclusion of a record as a member of an automatic subset (WHERE
clause).

Syntax

(----.-------..---.----:-(simple-condition)----...----) ____ ,..,..,/

L NOT_J ~· (~(simple-condition)--)

1------'I--(complex-condition)-----:i..i
(---(complex-condition)-)

(simple-condition)

(data'-item) ------(op)-----...... :- (data-item) f
.__-1-- (literal)----'-

,..1
7

(complex-condition)

:
OR-:1-------~

1------AND--------i

--------------.L.---N-O_T_=3 _____ .. (simple-condition)---__._ ________ .,...,/

3-12

(op)

~

.....

.....

~

=

>
<

EQ L

R GT

LS

LE

GE

s
Q
Q

NEQ

-,

~

_,,,

Condition Semantics

a. Conditions are Boolean-type expressions formed by combining (in a logical and specific manner)
data names, literal constants, and relations.

b. The use of parentheses requires a matching left parenthsis and right parenthesis.

c. In any simple-condition having the format

data-name-] op data-name-2

the data items must be of similar type, for example, ALPHA, ALPHA or NUMBER, NUMBER.
In comparing alpha-numeric data items, the comparison is based on the longest field. The shorter
field is compared as if it were blank-filled to the right. In the example below, A will be equal to
B if the most significant four characters of A and Bare the same and the last two characters of B
are blanks. For example:

A ALPHA (4);
B ALPHA (6);

% "ABCD"
% "ABCDbb" l - 1

C'L?.- C...c... ~·--:-· f • ".)
' c~ .. L c··v" C)

NUMERIC-defined items are compared on the numeric value, independent of the length of the
items.

d. When data items are defined within the scope of an OCCURS clause, all necessary subscripts
must be specified.

.~--- '---1-----.
----- (data-item-name) ___ ___,_ (__ ___.._ ___ ..,_ (integer) ,.) ______ _,,

Example:

simple-condition
STUAD SUBSET OF ADR WHERE (FACULTY-STUDENT EQL 1)

complex-condition
WHERE (SALARY LSS OR SALARY EQL 0)
SEXSET SUBSET OF MSF WHERE (SAGE 21 AND NOT SSEX)
VERIFY ((HOURSCRDT GTR 0 AND CLASS-SIZE LEQ 60) AND NOPROF NEQ 0);

3-13

PHYSICAL STRUCTURES

The data base structures can be directed to system disk or removable user disk. The data base structure
files differ from the standard B 1700 system files as follows:

a. DMSII is responsible for the allocation and maintenance of data space.

b. DMSII control information can be appended to the data in the records.

c. Multiple data base structures can be mapped into one file.

There are four types of DMSII physical structures:

a. Data Set.

b. Index Sequential.

c. Index Random.

d. List.

1. Ordered.

2. Unordered.

Logical structures are mapped into one of the above four types of physical structures, and are mapped
according to the list below.

Logical Structure

Disjoint Data Set

Ordered Set

Retrieval Set

Embedded Data Set

Unordered

Ordered

Manual Subset

No Key

With Key

Automatic Subset

Physical Structure

Data Set

Index Sequential

Index Random (Index Sequential Optional)

Unordered List

Ordered List

Unordered List

Ordered List

Index Sequential

Unless overridden by explicit file attributes, file names are created by using the default-naming conventions
described in appendix A.

3-14

Syntax

l (index-sequential-attributes) 1
(index-random-attributes)

(list-attributes)·

(data-set-attributes)

~ zle-attributes (ft >
Semantics

a. Physical descriptions allow distinction between logical and physical structures in the data base
description.

b. Physical descriptions must be declared at the outer level only.

c. Physical descriptions must refer to ·sets, subsets, or data sets that have been defined previously.

d. By not using a physical description, default values are assigned for the physical properties of the
data base if no explicit specifications are made. If explicit assignment is made, the DASDL com
piler willnot change the assigned value.

Disjoint Data Set Attributes

Each disjoint data set is allowed to have a default physical structure built by not listing any physical
structure attributes. Disjoint data sets can have one or more sets associated with them, but only one
structure can be responsible for the allocation and de-allocation of physical space for the data records.
The structure controlling space is called the PRIME structure; it is eith~r the data set itself or any of the
sets of the data set. When a set is used as PRIME and that set with its data set are stored on a moveable
head storage device is one significant use of the PRIME structure. By making a set the PRIME structure,
it is generally true that with one movement of the read/write head, the system can obtain both the table
and the data when one file is used to hold both structures. Each file area is partitioned into a section for
the index tables, and a section for those data records whose index entries are in the index tables of the
same area. Under all circumstances, PRIME set accessing has been optimized to provide performance
benefits over non-PRIME accessing.

Syntax

Semantics

PRIME-------=3-r-'--•-)--/

BLOCKSIZ~ = (integer)

AREASIZE

POPULATION

a. There is only one PRIME structure per data set and its associated structures.

b. The BLOCKSIZE, AREASIZE, and POPULATION statements are specified in number-of-records.

c. AREASIZE must be greater than 1 and greater than or equal to BLOCKSIZE.

3-15

DEFAULT VALUES

POPULATION

BLOCKSIZE .

AREASIZE.

PRIME

10000

If the record size is less than or
equal to 720 bits, the size is
1440 bits divided by the record
size. If not less than or equal to
720 bits, BLOCKSIZE is equal
to I.

Maximum (POPULATION/20) or 50.

FALSE, if there are no sets.

The system makes the first ordered set of a data set by default PRIME. If there are no ordered sets, the
system selects the first retrieval set. If there are no sets, the data set itself is considered PRIME.

Data Set Maintenance Techniques

If the data set is specified or defaulted as PRIME, space is maintained by a Next Available counter and a
Highest Open counter for all areas of the physical file. If the Next Available counter equals the Highest
Open counter, the record is stored at the record address indicated by Next Available and Highest Open'
counter. Both counters are then incremented by 1. If the Next Available counter is unequal to the Highest
Open counter, the address in which to store the data record is taken from the Next Available counter, which
is then set to the contents of the record at the address. (Available records are linked together.)

If the data set is not specified or defaulted as PRIME, there is a Next Available counter plus a Highest Open
counter for each area of the physical file; the area of the index file in which the key is inserted for the
PRIME set, determines which pair of counters to use.

Example:

AREAO

3-16

REC 0

REC 1

REC 2

REC 3

REC 4

PRIME Data Set

AREA l

Next Available counter = 7
Highest Open counter = 7

REC 5

REC 6

If REC 2 is deleted, Next Available counter = 2
and Highest Open counter remains 7.

AREA 0

REC 0

REC 1

REC 2

REC 3

Index Sequential Attributes

Non-PRIME Data Set

AREA 1

For AREA 0: Next Available counter = 4
Highest Open counter = 4

For AREA 1: Next Available counter = 7
Highest Open counter = 7

REC 5

REC 6

If REC 2 is deleted, then Next Available counter = 2
for AREA 0. Next Available counter and Highest
Open counter for AREA 1 remain the same.

INDEX SEQUENTIAL is the structure used to map disjoint sets and automatic subsets. The algorithm used
maintains multiple levels of tables called coarse and fine tables. A coarse table is split when it becomes full,
resulting in multiple levels of coarse tables. DASDL provides the user with control of the tables using the
following two parameters: LOADFACTOR and SPLITFACTOR.

LOADF ACTOR entries can be placed in an existing fine table before a new fine table is started. This
applies only when the new entries are added at the end of the existing entries.

It is advisable to leave additional space in tables so when records are inserted after the initial load, there is
space for the new entries without having to create new tables. The SPLITF ACTOR determines how many
coarse table entries are moved when it becomes necessary to split a coarse table. The number of entries
specified by SPLITFACTOR are moved to a new coarse table; this new table is a new. level of coarse table,
with a new entry referencing it in the split coarse table.

The loading of this structure should be done in the sequence described by the key structure in order to
optimize the access of entries in the table.

Syntax

-,--(disjoint-data-set-identifier)---i-(

l-(automatic-subset-identifier)_]

PRIME--------............ -)-/

TABLESIZE~ = (integer)
AREASIZE

LOADFACTOR

SPLITF ACTOR

TYPE = INDEX SEQUENTIAL_...__.

3-17

Example:

00003700
00003800

POPULATION = 1000;
UNIV-C-SET ORDERED SET OF UNIV-COURSES KEY IS (CRS-NO);

UNIV-C-SET(
, T ABLESIZE = 12,
AREASIZE = 10,

00011000
00011100
00011150
00011200
00011300

TYPE = INDEX SEQUENTIAL,
LOADF ACTOR = 9);

Semantics

a. The AREASIZE specifies the number of tables per area.

b. The TABLESIZE specifies the number of entries per fine table. Coarse table size is set to the
number of coarse table entries that can fit into the same amount of space.

c. The LOADFACTOR specification is a percentage of entries per fine table and must be greater
than zero.

The SPLITF ACTOR specification is a percentage of entries per coarse table arid inust be greater
than one.

d. The TYPE specification is optional unless the disjoint set-identifier refers to a retrieval set, then
it is required.

DEFAULT VALUES

3-18

PRIME

AREASIZE.

TABLESiZE

LOADFACTOR

SPLITF ACTOR

TRUE (if this is the first, or only, ordered set).

(AREASIZEof data set)+ 2.

The square root of POPULATION.

66% of TABLESIZE (fine).

50% of TABLESIZE (coarse).

Example:

/

Coarse Tables Fine Tables Data Set

~ j
~ • --• - e-

--

) ~
•

~ • ...

7
~

~ --....
--•

...
--i

... --.....
~

NOTE

Coarse tables can only go the three levels; fine tables are limited to one level.
Coarse tables always contain the highest valued key of the next lower table.

3-19

Index Random Attributes

An index random structure is built by default for each disjoint retrieval set in a data base. The algorithm
takes the symbolic key in a hashed format, performs a remainder divide by the number of base tables
(MODULUS), then searches the resulting table. When any of the base tables becomes full, additional
entries for that table are placed in overflow tables. Enough space in the base tables should be allocated to
minimize table overflow.

Syntax

-- (disjoint-set-identifier) - (

Example:

PRIME-------------'---"~) __ ..., • ..,/

TABLES!. ZE~ =
AREASIZE

LOADFACTOR

MODULUS

(integer)

TYPE= INDEX RANDOM---__.

STUSET RETRIEVAL SET OF STUDENT KEY (IDNO);

STUSET (MODULUS= 3, LOADFACTOR = I);

Semantics

a. The MODULUS statement specifiys the number of base tables. The MODULUS specification
must be less than or equal to the AREASIZE specification multiplied by the number of areas but
greater than 1 .

b. The LOADF ACTOR specification is a percentage that controls the distribution of overflow
entries into overflow tables. If the LOADF ACTOR entry implies one entry, only one base table
overflows into any given overflow table. The LOADFACTOR entry must be greater than zero,
and less than or equal to T ABLESIZE.

c. The TABLESIZE specification is the number of entries each table can hold.

d. The AREASIZE specification is the number of tables per area.

e. The TYPE specification is optional.

DEFAULT VALUES

3-20

PRIME

MODULUS

TABLESIZE

LOADFACTOR

AREASIZE ..

True (if this is the first, or only, retrieval
set and there are no ordered sets).

The square root of POPULATION multiplied by 1.1.

MODULUS.

66% of the MODULUS value.

Maximum(MODULUS/15) or 10 if PRIME
is true; otherwise, Maximum (MODULUS/5) or 10.

Example:

BASE TABLE I

OVERFLOW POINTER ----

BASE TABLE 2

BASE TABLE 3

OVERFLOW TABLE 1

OVERFLOW TABLE 2

DATA SET

MODULUS=3
LOADFACTOR = 1

3-21

List Attributes

An ORDERED LIST is built for each ordered embedded data set, and for each manual subset with a key.
An UNORDERED LIST is built for each unordered embedded data set and for each manual subset with
out a key. Each record in a data set containing an embedded data set or a manual subset requires greater
storage space than the data record requires, since control information is appended. The storage required
for records of embedded data sets is also increased due to control information. Additional storage for the
embedded data set can be reduced by placing multiple data records in a table, since control information is
only stored once per table.

An ORDERED LIST is maintained by placing records in physical order. Serial access becomes more effi
cient as the number of entries per table increases.

Syntax

-y-(embedded-data-set-identifier) r-<
L- (manual-subset-identifier) __]

AREASIZE~ = (integer)---....--1-)--f

TABLESIZE

Example:

00002600

00010500
00010600
00010650
00010700

Semantics

BLOCKSIZE

TYPE= I ORDERED J • LIST

l.....;..UNORDERED

BOOKS UNORDERED DATA SET(

: BOOKS(
AREASIZE = 500,
TYPE = UNORDERED LIST,
BLOCKSIZE = 5);

a. The TABLESIZE attribute is the number of records per table.

b. The BLOCKSIZE attribute is the number of tables per block.

c. The AREASIZE attribute is the number of tables per area. AREASIZE must be greater than or
equal to the BLOCKSIZE entry:

d. Each table may contain records from only one owner.

e. The TYPE entry is optional.

3-22

\
)

DEFAULT VALUES

Example:

TABLESIZE

BLOCKSIZE

AREASIZE.

OWNER
RECORD

(Maximum(number of records plus the con
trol information size that fits into one seg
ment, or 1.)

Maximum (number of tables that fit into one
disk segment or 1)

((POPULATION* owner's POPULATION)
/T ABLESIZE) / AREAS

LIST STRUCTURE

LIST
RECORDS

LIST
TABLES

FF = Null value.

= Number of LIST records containing information.

T ABLESIZE = 4.

File Attributes

Storage files can be specified at DASDL compilation time either to alter the title of a file, assign pack
storage, alter areas, or group logical structures into a single physical file.

The structures that can be stored in a single physical file are listed below. However, no structure can be
in more than one structure list. Any one of the following items a. through f. can be stored in a single
physical file.

a. A disjoint data set.

b. An embedded data set.

c. A disjoint data set plus one of its sets.

3-23

d. Up to 16 index sequential sets or automatic subsets.

e. One index random set.

f. A manual subset.

Syntax

-----i-(identifier) STORAGE FOR_....__--.---(disjoint-set-identifier)-------.--1---------,t

s

Example:

00010800
00010850
00010900

Semantics

(disjoint-data-set-identifier) __ ___,

(embedded-data-set-identifier)

(subset-identifier) -------

PACK= (identifier) --------------.--.____.-) -----1•--t/
AREAS = (integer)---------

TITLE= ---r--(identifier) I (identifier)

l--(identifier)-------

:BOOKFILE STORAGE FOR BOOKS(
TITLE - UNIV/LIBRARY,
AREAS = 10);

a. If a PACK entry is specified, it must be a valid user pack identifier.

b. The number of areas assigned by the AREAS specification must be greater than zero, and less
than or equal to 105. AREAS is the maximum number of areas in the disk file.

DEFAULT VALUES

3-24

TITLE.

PACK.

AREAS

The STORAGE identifier.

NULL.

20.

\

4. COBOLINTERFACE

INTRODUCTION

There are two interfaces between the host language, COBOL, and the data base system: one during compila
tion and one during execution. The compilation interface provides syntax allowing an application program,
through the use of the INVOKE statement, to use any or all portions of a data base. The invoke process
consists of utilizing DASDL-generated library files that supply the COBOL compiler a description of the
user-selected portions of the data base. The COBOL compiler then compiles an appropriate execution-time
interface with the data base.

The execution interface consists of a number of record areas, one for each data set invoked, and a number
of paths, one for each set or subset.

Associated with every record area is a current-record pointer. A record is considered to be the current
record of a data set if the appropriate current-record pointer refers to an existing record in the data base.
Usually, the record area contains a copy of that record, at least until the record area is changed by the
program.

) The current-record pointer for a data set is changed by any operation that causes a new record to be placed
in the record area, or placed into the data base from the record area. The establishment of any record as
the current record for a record area, through use of a MODIFY or STORE operation, locks the record,
making that record unavailable to any other user. Changing the current record pointer automatically
unlocks any previously locked record and if required locks the new one.

\
I

_,/

Sets and subsets are represented as paths rather than as records. Their purpose is to locate the records of
the data set with which they are associated. The current-path pointer associated with every set and subset
(but not data set) refers to the last record accessed by way of that set or subset. This current-path pointer
retains its reference until explicitly changed, or until the record referenced by the current-path pointer
is deleted from the data base.

A current-record pointer can be in one of four states:

a. Undefined state - not valid for any purpose. For example, just after a data base OPEN.

b. Created state - indicates a CREATE operation has just been executed for a data set. If a STORE
is the next operation to be executed against the data set, a new record is stored. In all other
instances the created state is the same as the undefined state.

c. Defined state - refers to a valid record. For example, current record pointer is defined after a
successful FIND operation. A record can be locked only if it is in this state.

d. Deleted state - indicates there is no valid current record, but the current-record pointer main
tains a position in the data set. For example, current-record pointers are in the deleted state
following a DELETE operation since the current record has been removed. A current-record
pointer in the deleted state can be used to access the next or prior record but not a current
record.

Figure 4-1 illustrates the current-record pointer states.

4-1

CREATED
STATE

CREATE

OPEN

DEFINED
STATE

Figure 4-1. Current~Record Pointer State

DELETED
STATE

The functional operation of figure 4-1 is explained below:

a. When the data base is opened, the current record pointer is in the undefined state.

b. An unsuccessful FIND or MODIFY operation does not change the current-record-pointer state.

c. A RECREATE operation affects the current-record-pointer state the same as the CREATE
operation.

d. Whenever the current-record pointer of a data set changes, the current-record pointer for all
embedded data sets becomes undefined.

e.. A FREE operation does not affect the state of the current record pointer.

f. A current record pointer can be set to the deleted state due to the actions of some other program
being multiprogrammed against the same data base.

A set or subset current path pointer can be in one of three states:

a. Undefined.

b. Defined.

c. Deleted.

Figure 4-2 illustrates a set or subset current-path pointer processing state.

4-2

DEFINED
STATE

OPEN

DELETE
REMOVE

Figure 4-2. Set Or Subset Current-Path Pointer State

The functional operation of figure 4-2 is explained below:

DELETED
STATE

a. When a data base is opened, the set or subset current path pointers are in an undefined state.

b. An unsuccessful FIND or MODIFY operation, by way of a current-path pointer of a set or subset,
changes the set or subset current-path pointer.

c. The STORE, CREATE, RECREATE, and FREE operations do not affect a set or subset current
path pointer.

d. An INSERT operation always changes the current-path pointer of a subset to the defined state.

e. Whenever the current-record pointer of a data set changes, the current-path pointer for all of that
data set's embedded sets and subsets become undefined.

f. A set or subset current-path pointer can be set to the deleted state as the result of another pro
gram accessing the same data base.

4-3

COBOL DATA DIVISION

General

A DATA-BASE SECTION must be inserted within the DATA DIVISION of a COBOL program supplying
the COBOL compiler with a description of all or selected portions of a data base. The DATA-BASE
SECTION is placed between the FILE SECTION and the WORKING-STORAGE SECTION.

DATA-BASE SECTION

In the DATA-BASE SECTION all data sets intended for use are invoked. This signals the compiler to
include in the compilation the item names and all path names (sets and subsets), plus all embedded data
sets and subsets within the invoked data set. The compiler also establishes the necessary user record areas.

Syntax

~~~~~~~~~~~---DATA-BASE SECTION.--------------.;-

----DB-----( data-base-name)----

Example: 

001031 
001032 

Semantics 

DATA-BASE SECTION. 
DB UNIV. 

---- (data-set-references )---'-------1~ 

a. The level indicator, DB, is used to select a particular data base. Any particular data base can be 
referenced only once per program, and only one data base can be open at any one time. 

b. The data-base-name identifier can be used as a qualifier of data sets or set names. The data-base
name is the family-name of the program-identifier used in the DASDL compilation (see 
appendix A). 

Data Set References 

The referenced data base can be followed by any number of data set references. 

Syntax 

----01 (internal-data-set-name) INVOKE (external-data-set-name)---

Example: 

4-4 

001033 
001034 

01 MASTER INVOKE MSF. 
01 ADDRESS INVOKE ADR. 



Semantics 

a. The level number 01 is used to select particular data sets from a data base. 

b. Each compilation copies the description of each invoked data set into the program from a library 
file created by DASDL. The file-identifier of this library file for each data set has the following 
format: 

data-base-name / data-set-name 

c. The internal-data-set-name allows synonym capability and can also be used to establish more than 
one record area for a data set. 

d. All references to the data set in the program are by the internal-data-set-name. The internal-data
set-name can be a name assigned by the programmer, or the name of a data set defined in DASDL. 
The internal-data-set-name must be different than the external-data-set-name if the data set is 
invoked more than once within a program. The use of the internal-data-set-name provides a 
unique name for each record area of the data set, and is required only if the data set is invoked 
more than once. 

e. Embedded data sets must not be programmatically invoked. They are automatically invoked 
when the data set to which they belong is invoked. 

f. All disjoint data sets, if used, must be invoked. This method also applies to any disjoint data sets 
referenced by a subset if the subset is used. 

INVOKED DATA SET 

The COBOL compiler prints the names of all the paths and data items, and also shows the structure number 
(DDL-NUMBER) assigned at the DASDL compilation. The source statements supplied by the DASDL com
piler are distinguished from the COBOL source statements by an asterisk (*) appearing to the left of the 
print line, as the coding example below indicates. 

Example: 

001034 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

01 ADDRESS INVOKE ADR. 

01 ADR DATASET DDL-NUMBER 10 20: 0: 4 12/ 5/74 
ORDERING KEY SSAD DDL-NUMBER 19 20: 0: 4 12/ 5/74 

(SNO). 
02 FACULTY-STUDENT 
02SNO 
02 ADLN OCCURS 9 TIMES 
02 ZIPC 
02PHON 

PIC 9 COMP. 
PIC 9(9) COMP. 
PIC X(54). 
PIC 9( 5) COMP. 
PIC 9(10) COMP. 

The structure number, along with an internally assigned invoke number, allows the system to update the 
correct record areas. Even when the structure number is the same, the invoke number ensures that the 
correct record area is altered. The level numbers generated by the COBOL compiler reflect the usage of 
data items by level indicators. The listing also displays the time and date the files were created by the 
DASDL compilation. 

4-5 



MULTIPLY-INVOKED DATA SET 

Since one record area can only hold one record at a time, it may be necessary, for effectiveness, to have 
more than one record area. In the following example, MSF is invoked twice, creating two separate record 
areas for MSF so that two different records of MSF can be used at the same time. This example provides 
multiple current records. 

The following example also provides multiple current path pointers for the same set. Each current path 
pointer is updated only when explicitly used. Either record area can be updated by any of the paths to 
MASTER or FILEl. 

DATA-BASE SECTION 
DB UNIV. 
01 MASTER INVOKE MSF. 
01 FILEl INVOKEMSF. 

COBOL PROCEDURE DIVISION 

General 

The DATA-BASE SECTION allows the invocation of all or part of a data base. As a result of the invoked 
description, the compiler generates the necessary mterfaces, so that at data base open time, the proper data 
set record areas are allocated. 

Special extensions to COBOL are used to manipulate data sets. Data base retrieval and storage are accom
plished at the record level, with one record being transferred into or out of the record area together with 
selected data base operations. 

Move And Move Corresponding 

The record area for a data set contains two types of items: one type is control information, the other is the 
data. The portion containing data items is similar to a WORKING-STORAGE 01 entry indicating that all 
COBOL data manipulation statements can be utilized in the moving of data items. This includes the group 
MOVE and the MOVE CORRESPONDING operations as the following example illustrates. 

* 01 MSF DATASET DDL-NUMBER 6 20: 0: 4 12/ 5/74 

* ORDERING KEY MSFSET DDL-NUMBER 18 20: 0: 4 12/ 5/74 

* (SSNO). 

* 02 SSNO PIC 9(9) COMP. 

* 02 NONAM PIC 9 COMP. 

* 02 LNAME PIC X(30). 

* 02 QUARTER DATASET DDL-NUMBER 15 20: 0: 4 12/ 5/74 

* ORDERING KEY QSET DDL-NUMBER 15 20: 0: 4 12/ 5/74 

* (QTR). 

* 03 QTR PIC X(4). 

* 03 QTTRHRS PIC 99 COMP. 

* 03 QTRQP PIC 99 COMP. 

The functional description of the above example is explained in the following list. 

4-6 

a. MSFSET, QUARTER, and QSET are control items and are not moved in a MOVE MSF TO ... 
or a MOVE ... TO MSF operation. 

b. QTR, QTTRHRS and QTROP are items of the record area for QUARTER and therefore are not 
moved in a MOVE MSF TO ... or a MOVE ... TO MSF operation. 



c. The MSF recofd area for a group MOVE operation can be considered as the following items: 

01 
02 
02 
02 

MSF 
SSNO 
NON AM 
LNAME 

d. Items SSNO, NONAM, and LNAME are the only candidates for a MOVE CORRESPONDING 
operation. 

e. A group MOVE operation is always considered as an alphanumeric MOVE. 

Exception Processing 

The COBOL PROCEDURE DIVISION has been extended by adding DMSII statements, providing an inter
face between a COBOL program and a data base. The system, when executing DMSII statements, can 
encounter any one of several exception conditions that prevents the operation being performed as specified. 

If an exception condition occurs, the program terminates unless the DMSII statement is followed by an ON 
EXCEPTION clause. It is recommended, therefore, that the ON EXCEPTION clause be used following 
DMSII statements. 

To further qualify the nature of an exception, there exists for each COBOL program a special register: 
DMST ATVS. DMSTATUS is set by the system at the completion of each DMSII statement. 

ON EXCEPTION CLAUSE 

) The syntax chart notation indicates that an ON EXCEPTION clause may appear, by the presence of a 
double slash (/ /). The ON EXCEPTION clause syntax that follows a double slash is shown below. 

,/ 

Syntax 

//'"----•-ON EXCEPTION----(statement-1) • · ----7..,' 
L ELSE --- ( statement-2 ) _J 

The following example illustrates the ON EXCEPTION programming technique: 

Example: 

STORE CORSES ON EXCEPTION PERFORM STATUS-BOOLEAN. 

MODIFY MSFSET AT SSNO = C-SSNO ON EXCEPTION 
IF DMSTATUS(NOTFOUND) DISPLAY C-SSNO "NOT IN MSF" ELSE 
PERFORM STATUS-BOOLEAN. 

Semantics 

a. Each DMSII statement yields a true/false value which is true if the operation resulted in an 
exception condition; the value is false if the operation completed with no exceptions encoun
tered. If true, statement-I of the ON EXCEPTION clauses will be executed; otherwise, state
ment-2 will be executed if present. 

b. Logically, DMSTATUS can be used to qualify·an ON EXCEPTION clause. 

c. If the ON EXCEPTION clause is not specified, the occurrence of an exception terminates the 
program. 

4-7 



DMST A TUS Register 

The DMSTATUS register provides the capability to determine the nature of an exception should an 
exception occur. DMSTATUS is set by the system at the completion of each DMSII statement, and is used 
to qualify an ON EXCEPTION clause. To isolate the exception encountered, a number of attributes exist 
for DMST A TUS. Each attribute yields a Boolean value to indicate whether that particular category of 
exception has occurred. The DMSTATUS register, when used, has the following format. 

DMSTATUS Syntax 

---------DMSTATUS--- ( (category-name) ) ------------

The category-name and its descriptions are listed in table 4-1. 

Category Name 

NOTFOUND 

DUPLICATES 

DEADLOCK 

DATAERROR 

NOTLOCKED 

4-8 

Table 4-1. DMSTATUS Categories and Description 

Exception Condition Description 

This record does not satisfy a SELECTION 
expression such as in MODIFY or FIND. 

Key value in record does not match key of a 
manual subset. 

No current record exists (previously deleted). 

Current-record pointer is undefined. 

Either the master record is undefined or the 
embedded structure is empty. 

Duplicates not allowed in set (STORE 
operation). 

Duplicates not allowed in a manual 
subset (INSERT operation). 

A "deadly embrace" condition has occurred 
while trying to lock records. Note that the sys
tem has automatically performed a FREE 
operation of all records for this program. 

An attempt was made to store a record with a 
null key or null required item. 

An attempt was made to store a null record (all 
bits = 1). 
A DASDL verify condition not met. 

A STORE statement not preceded by a CREATE, 
RECREATE, MODIFY, or STORE. 



) 

Table 4-1. DMSTATUS Categories and Description (Cont) 

Category Name 

KEY CHANGED 

SYSTEMERROR 

IOERROR . 

LIMITERROR 

OPENERROR 

CLOSEERROR 

NO RECORD 

INUSE 

DMERROR 

Exception Condition Description 

An attempt was made to store a record when the 
value of an item, used as a key in a set, was 
illegally changed (duplicates not allowed, or 
embedded set). 

Only one data base can be open at a time. 

An 1/0 error was encountered trying to read 
from or write to the data base. 

Data exceeds the size of physical structure. 

Data base not initialized. 

Already open. 

Run-time description of data base does not 
match compile-time description. 

DBM option not set or CLEAR/START required. 

Data base not at proper level. 

Data base not open prior to first operation. 

Data base not open. 

Current-record pointer not valid for an INSERT 
operation. 

Current-record pointer not valid for a FIND 
manual subset-identifier operation. 

Current record of master not valid. 

Attempt made to delete a record with non-null 
embedded structure. 

This attribute is set whenever any exception has 
occurred. One of the preceding attributes is also 
set. 

Note that NOT DMSTATUS (DMERROR) is 
true on a successful operation. 

4-9 



In the example below, no action is taken regardless of whether an exception occurs. The exception condi.., 
tion is reserved for later processing. 

FIND MSFSET .AT SSNO = C-SSNO ON EXCEPTION NEXT SENTENCE. 

Selection Expression 

The selection expression specifies the particular record of a data set that is desired, as well as the record area 
to be loaded with the found record. All record selections are made through paths. Paths are the routes the 
system uses to locate records; the physical order in which records exist in a data set constitutes a path. Any 
ordering keys or retrieval keys are paths, and a subset is a path. 

The verbs used with selection expressions are FIND or MODIFY. Both of these verbs cause the record spec
ified by the selection expression to be located. However, if a record which satisfies the selection expression 
is not found, an exception is returned. If a record is found, it is transferred into the record area. For a 
MODIFY operation, the found record is locked so that a concurrent user cannot access the same record. 
The current-record pointer is updated, and the current-path pointer for the paths is updated. Unused paths 
are unaffected. If a path is used and the desired record is not found, that current-path pointer becomes 
undefined, but the current-record pointer and record area retain the values held prior to the beginning of 
the operation. 

Syntax 

--.-----------r----,-----...--,---- (set-name)-----,.,----~·-( 

(data-set-name) VIA FIRST (subset-name)---' 

LAST 

NEXT 

PRIOR 

{----.------------.-------,--------ir------(data-set-name )-----..., 
' AT (key-condition ) 

Example: 

MODIFY MSFSET AT SSNO = C"'8SNO 

FIRST 

LAST-'---i 

NEXT---i 

PRIOR 

FIND MSF VIA MSFSET AT SSNO = C-SSNO 
FIND MSF VIA FIRST MSFSET 
FIND FIRST MSF 

Semantics 

a. A selection expression is used in FIND and MODIFY statements to identify a particular record in 
a data set. 

b. The optional phrase "data-set-name VIA" at the beginning of some forms of the selection 
expression must be used when the path used is a manual subset. 

4-10 



c. "data-set-name VIA" identifies the record area and current-record pointer that is affected, 
providing the desired record is found. By default, the data set is the data set containing thf 
set used. 

d. Note that a subset-name is interchangeable with set-name in selection expressions. 

KEY CONDITION 

The key condition specifies values used to locate specific records in a data set spanned by a set or referenced 
by a subset. 

Syntax 

-~~~~~~~~~~~~~~-AND~4--~~~~~~~~--; 

___ __._t.....i~- (key-name) ----.--c-- - c (data-name )--.,...J __, ____ ___.,....,,/ 
;QUAL __J (literal)-----

Example: 

FIND S AT A = 50 AND B = 50 

Semantics 

a. The key-name must be a data-name in the key as defined by the DASDL description. 

b. Each key-name in the key must appear only once and to the left side of the equal sign. 

c. The valid item types for literal or data-name are determined by the COBOL MOVE statement 
rules. Therefore it must be legal to perform a MOVE operation on a literal or data-name to the 
key-name in order for the key condition to be valid. 

d. The key-name of a multi-item key must appear in the same order as specified in DASDL. 

SELECTION EXPRESSION FORMS 

For discussion purposes, the following syntax forms are considered separately. Whenever an ordering is 
required but no explicit ordering exists, an implicit physical ordering is used. Whenever a current-record 
pointer or current-path pointer is required but is not in the proper state, the operation terminates with an 
exception. 

Form 1: 

L (data-set-name) VIA=:J LFIRST~ 
LPRIOR_J 

c<set-name) 
. (subset-name) _j 

., I 
I 

In form 1, FIRST specifies that the first record in the specified path is to be selected. The path cannot be a 
retrieval set. The path is maintained in the sequence specified. If a subset is used, the data-set-nam:e VIA 
clause must be used. The record returned is the first in the physical order of the subset if a key was not 
specified for the subset. If a key was specified for the subset, FIND data-set-name VIA FIRST subset-name 
locates the first record in the subset, depending on the specified ordering key. 

4-11 



NEXT is used to find the next record by the path specified. NEXT of a set or subset with a key returns the 
record with the next higher (or lower, if descending) key value; NEXT of a subset without a key locates the 
next physical record. 

LAST locates the last record in the specified path. PRIOR locates the preceding record. NEXT and PRIOR 
are always relative to the current-path pointer. FIND PRIOR of a data set (form 2) can return a different 
record than FIND PRIOR of a set (form 1 ). The current-path pointer is updated to reflect the record 
located. NEXT and PRIOR can be used only if the current-path pointer is defined or deleted; otherwise an 
exception condition is returned. 

Example: 

D DATA SET 
(A NUMBER (3); 
B NUMBER (10)); 
K ORDERED SET OF D KEY (A); 

Since ascending sequence is the default ordering sequence for keys, the path Kin the example below refers 
to members of Din sequence on A. A FIRST K therefore would transfer to the record area for D the re
cord whose value of A was the lowest in the data set. The physical ordering of D might be different from 
the logical ordering represented by K. If another ordering key, Kl, was added with the specification Kl 
ORDERED SET OF KEY (A DESCENDING), the statement FIND FIRST Kl would return the member 
of D with the highest value of A. 

Example: 

D DATA SET 
(A NUMBER (S); 
B ALPHA (4)); 
K ORDERED SET OF D KEY (A); 

Dl DATASET 
X NUMBER (4); 
Y SUBSET OF D; 
Z SUBSET OF D KEY (B); 
Zl ALPHA (2)); 

If D and Dl are both invoked, the statement FIND D VIA FIRST Y can then be used, returning the 
first physical record of Din the table of subset Y. If the statement FIND D VIA FIRST Z is used, the 
record found is that record of D having the lowest value of B which was inserted into Z. 

Form 2: 

(data.-set-name )----------,., 

....... FIRST ~ 

...... NEXT 

LAST ~ 

...... PRIOR 

In form 2, FIRST specifies that the record selected is the "first" physically located record in the file in 
which the data set is stored. 

4-12 



NEXT data-set-name locates the next physical record. 

LAST locates the last physical record in the specified path. 

PRIOR locates the preceding record. 

The current-record pointer is updated to reflect the located record. NEXT and PRIOR are valid only if the 
current-record pointer is in the defined or deleted state; otherwise an exception condition is returned. 

Form 3: 

a. ------,.----------------.f----' .. -(set-name )----------~ 

'-----1-(data-set-name) VIA--~-

b.-------------- (data-set-name) --------~---------

Form 3a of the selection expression recopies the record referenced by the current-path pointer into the 
record area. The current-path pointer must be in the defined state; it remains unchanged. The current
record pointer is updated. 

Form 3b recopies the record referenced by the current-record pointer into the record area. The current
record pointer must be in the defined state; it remains unchanged. 

Form 4: 

[(set-name) .. AT (key-condition) 

L (data-set-name) VIA _J I: NEXT~ (subset-name) J 
PRIOR 

., I 
7 

Form 4 is used to select records of the data set based on some values in the key fields. NEXT is valid only 
if the current-path pointer is in the defined or deleted states. 

If the NEXT expression is used, the system selects the next record in the set that satisfies the key condition. 
If there are no more records that satisfy the key condition, the "NOTFOUND'' exception is given. Form 4 
can be used only where the set-name has a key associated with it. 

Example: 

D DATA SET 
(A ALPHA (2); 
B NUMBER (10); 
C NUMBER (4)); 

K ORDERED SET OF D KEY (A); 
Kl RETRIEVAL SET OF D KEY (C); 
K2 RETRIEVAL SET OF D KEY (C,B); 

In the above example, records of D could be selected based on the value of A, using K, or based on the 
value of C, using Kl, or based on the values of C and B, using K2, as shown below: 

FIND KAT A = "AA" 
FIND Kl AT C = 100 
FIND K2 ATC = AND B = 1001007890 
FIND K 1 AT C = B 1 

4-13 



COBOL Statements 

The COBOL verbs used to manipulate data sets are as follows: 

CREATE 
DELETE 
FIND 
FREE 
INSERT 
MODIFY 
RECREATE 
REMOVE 
STORE 

In addition, syntax has been implemented for the verb OPEN, and additional semantics for the verb CLOSE. 

Each of the above verbs is discussed in alphabetical order in the following paragraphs. 

4-14 



CLOSE 

Syntax: 

------- CLOSE --------1-(data-base-name)-------------...,1/ 

Semantics: 

a. CLOSE can be used to close a data base when further access is no longer required. 

b. CLOSE is optional, since the system closes any open data base when the program terminates. 

c. An implicit FREE is performed on all records locked by the program. 

d. If the data base is not open, the operation terminates with an exception condition. 

) 

4-15 



·I CREATE 

Syntax: 

CREATE----------- (data-set-name)-----------------

Semantics: 

a. CREATE must be performed prior to the addition of a new record in a data set, (optionally 
RECREATE may be used). A CREATE does not add the new record to the data base; that 
is the function of a STORE. The main purpose of a CREATE is to initialize the entire current 
record area of the data set to null (all bits = 1 ). This is used for validity checking of the record 
at the time of the STORE operation~ 

b. An implicit FREE is performed on the prior current record of the data set. 

c. The current-record pointer goes to the created state. 

d. Normally, CREATE is eventually followed by a STORE, placing the new record into the data set. 
However, if a subsequent STORE is not desired, the CREATE can be nullified by a subsequent 
FIND, MODIFY, CREATE, or RECREATE. 

e. A CREATE initializes only a record area. If the record contains embedded structures, the 
master record must be stored before storing entries in the embedded structure. If only entries in 
the embedded structure are added, changed, or deleted the master need not be stored a second 
time. 

4-16 



DELETE 

Syntax: 

------DELETE -------(data-set-name)---------------.,!/ 

Semantics: 

a. The DELETE operation eliminates a specified record from a data set. 

b. The current record area is reloaded with the contents of the record. 

c. If the record contains a non-empty embedded structure, the record is not deleted. 

d. If the record can be deleted, it is removed from all sets and automatic subsets of which it is a 
member. The record is then removed from the data set. The current-record pointer goes to the 
deleted state. The data remains unaltered in the record area. 

e. The user must remove the record from any manual subset that points at the data set record being 
deleted (refer to the REMOVE statement). 

4-17 



I·· FIND 

Syntax: 

-------'l ... FIND-----------'-(selection-expression)-------------1/ 

Semantics: 

a. The FIND operation performs two functions: 

1. Locates the record satisfying the selection-expression and 

2. Transfers the data from the data base to the record area so it can be accessed by the 
program. 

b. If a record satisfying the selection-expression is not found, the operation terminates with an 
exception condition. In this case, the record area and current-record pointer retain their original 
values. However, if a set or subset had been involved, its current-path pointer becomes undefined. 

c. If a record is found, it is transferred to the record area, and the current-record pointeris altered 
to refer to the found record. Also, if a set or automatic subset had been involved, its current
path pointer is altered to refer to the found record. 

d. Prior to the FIND operation, an implicit FREE is performed to unlock the previous current 
record. 

4-18 



FREE 

Syntax: 

------FREE---------(data-set-name )----------------.'/ 

Semantics 

a. A FREE operation unlocks the current record. 

b. A FREE can occur after any operation. If the current-record pointer is not in the defined state 
or the current record is not locked, the FREE is ignored. 

c. A FREE is optional in most situations, since the CREATE, RECREATE (and sometimes the 
FIND or MODIFY operation) perform an implicit FREE prior to their other actions. In general, 
an implicit FREE is performed prior to any operation that establishes a new current-record 
pointer. 

d. The current-record pointer and current-record area are not affected. 

4-19 



INSERT 

Syntax: 

INSERT---... (data-set-name) ----INTO ----(manual-subset-name )-------11•..,// 

Semantics: 

a. The INSERT operation is used to insert a record into a manual subset. 

b. The data-set-name must be the declared source of records for a manual subset. For example, the 
manual subset-name must be a manual subset of data-set-name, as the example below illustrates. 

DASDL: St SUBSET OF D 
COBOL: lNSERT D INTO St 

c. The current~record pointer of data-set-name must be defined; if not, the operation is terminated 
with an exception condition. 

d. The data set in which the manual subset is embedded must have the current-record pointer in the 
defined state, and that record must be locked; if not, the operation is terminated with an 
exception condition. 

e. If duplicates are not allowed for the manual subset, an exception condition occurs if a record 
that has a key identical to that of the source record already exists in the manual subset. 

4-20 



MODIFY 

Syntax: 

-------1-MODIFY------( selection-expression )----------------t...,I/ 

Semantics: 

a. The functions of a MODIFY operation are identical to FIND with one exception: if the record 
is found, it is locked, prohibiting concurrent modification by another user. 

b. A MODIFY operation should be used if there is a possibility that the data set record contents 
will be changed. The MODIFY operation does not physically modify the record, but allows 
modification to be performed subsequently without a concurrent update from another user. 

c. If the found record is already locked by another user, a contention analysis is performed by the 
system. Normally, the present user waits until the record is unlocked. However, if it is deter
mined that waiting would result in a "deadly embrace," all records locked by the present user 
are unlocked; and the operation is terminated with an exception condition. 

d. Since no other user may lock a record once it is locked, it is important to free the record when 
it is no longer necessary to keep it locked. This is accomplished by a FREE operation or 
implicitly by a subsequent MODIFY, FIND, CREATE, or RECREATE on the same data set. A 
subsequent STORE leaves the record locked. 

e. The locking action is maintained on a block level. 

4-21 



OPEN 

Syntax: 

------OPEN ------UPDATE------.... (data-base-name)--------7/ 

Semantics: 

a. The OPEN operation is used to open a data base for subsequent access. 

b. An OPEN must be executed prior to the first access to the data base; otherwise, all data base 
requests will terminate with an exception condition. 

c. If the data base is already open, the operation is terminated with an exception condition. 

d. The system attempts to open an existing data base. The data base dictionary is opened at this 
time. If the data base dictionary is not present, the message: 

4-22 

NO FILE data-base-name /DICTIONARY 

is displayed. 

Each data file is opened on the first operation that uses the data in the file. Files that are not 
needed are not opened. If the files are needed, and they are not present when they are needed, 
the message: 

NO FILE file-identifier 

is displayed. 



RECREATE 

Syntax: 

-----RECREATE------ (data-set-name)-------'"--------1/ 

Semantics: 

RECREATE operation is identical to CREATE, with one exception: the record area for the data set is not 
completely initialized. All data items remain unaltered; however, items such as manual subsets and 
embedded data sets are set to null. 

4-23 



REMOVE I 
Syntax: 

------1-REMOVE---CURRENT---· FROM-----(manual-subset-name) .. I/ 7. 

Semantics: 

4-24 

a. The REMOVE operation is used to remove a record from a manual subset. 

b. The manual subset must have a defined current-path pointer; if not, the operation is terminated 
with an exception condition. 

c. The record referenced by the manul subset cummt-path pointer is removed from the subset but 
not from the data set. 

d. The data set in which the manual subset is embedded must have the current-record pointer in the 
defined state and that record must be locked; if not, the operation is terminated with an excep
tion condition. 

I 



STORE 

Syntax: 

-------11 ... STORE--------(data-set-name)---------------;~ 

Semantics: 

a. The STORE operation is used to return a modified record to a data set, or to place a newly 
created record into a data set. 

b. The data to be stored is in the record area of the data set. Prior to the storing of a record, the 
data is checked for validity (VERIFY, REQUIRED, non-null keys) as specified by DASDL. A 
validity failure terminates the STORE operation with an exception condition. 

c. If the current-record pointer is in the defined state and the current record is locked, the data 
replaces the current record in the data set remains locked. If the current-record pointer is 
in a defined state but unlocked, or in an undefined state or deleted state, the operation terminates 
with an exception condition. 

d. If the current-record pointer is in the created state, the data becomes a new record in the data set 
and is locked. The current-record pointer is then in the defined state and refers to the new record. 

e. Set current-path-pointer is not affected by a STORE operation. 

f. All fields which are, or form, part of a key or are REQUIRED must contain a value other than a 
null value before a STORE operation can be completed successfully. If any of these fields are 
null, the operation terminates with an exception condition. 

g. The following additional actions are performed depending on the prior operation. 

STORE After CREATE or RECREATE 

1. The condition is evaluated for each automatic subset (subset containing a WHERE condi
tion). The subset is marked for insertion if the condition and validity checks are satisfied. 

2. If a data record cannot be inserted into any set (but not automatic subsets) for some reason, 
the operation is terminated with an exception condition. In this case, the record is not 
inserted into the data set nor is it inserted into any set. If no reason does exist, the STORE 
operation is successful and all necessary set and automatic subset insertions are made. 

3. For each set that spans the data set, the record is tested for validity. After the STORE 
operation, any data item not containing a value will be null (all bits = 1 ). Care should be 
taken in the COBOL program if it is necessary to check the contents of such a field, because 
the contents will be hexadecimal F's. 

STORE After MODIFY 

1. In this operation, the record already exists in all sets. 

2. Conditions must be re-evaluated if any items involved in the automatic subsets condition 
have changed. The record is removed from the automatic subsets containing the record if a 
condition is not satisfied. The record is inserted into automatic subsets not already contain
ing the record if the condition is satisfied. 

4-25 



STOR,E 
Continued 

4-26 

3. If a key used in the ordering of a set is modified, and the record must be moved in that set, 
the record is deleted from the set and reinserted in the proper position. It is illegal to 
modify a key if duplicates are not allowed, or if the set is an embedded set. 

4. If the ordering of a manual subset is affected, the STORE operation will occur, but no reorder
ing of that manual subset will be performed. It is tl).e responsibility of the user to maintain 
manual subsets. A subsequent reforence to the record through that subset causes the operation 
to be terminated with an exceptiQn 9ondition (DMSTATUS (KEYCHANGED). 



Appelldix A. DMSII COMPILATION GUIDE 

DASDL COMPILATION PROCEDURES 

The following procedures must be observed to create a data base: 

a. Compilation of a DASDL source deck defines the logical and, optionally, the physical structure 
of the data to be entered into the data base. The DASDL compilation types are as follows: 

1. Compile for syntax: Causes a syntax check of the DASDL input. Neither a dictionary file 
nor library files are generated: 

2. Compile for library: Causes a data base dictionary file to be created and removes any exist
ing dictionary file having the same name. 

NOTE 

The compile-and-go operation is not recommended for use, as it 
implies the production of object code. Since there is no object 
code produced, the MCP displays a warning message. 

b. The data base dictionary created by a successful compilation is titled: 

(data-base-identifier) /DICTIONARY 

The data-base-identifier is the "family-name" of the program identifier used for the DASDL 
compilation. 

The data base dictionary file is a disk file containing a description of all the structural character
istics of the data base. This description is used during execution by the MCP access routines to 
control all access to the data base. 

c. The INITIALIZE statement is required prior to the execution of any program accessing the data 
base. Its function is to create initialized disk files for storing data records and index tables. This 
function is not performed on a compile for syntax, or a compilation where there are syntax errors. 
Once INITIALIZE has been executed, a permanent data base is created. No further changes can 
be made without recreating the data base by a recompilation of the DASDL source deck. 

d. The following examples provide illustrations of a DASDL compilation source deck. 

A-1 



{_(?)END 

/_DASDL SOURCE CARDS 

{_(?) DATA CARDS 

I(?) COMPILE UNIV WITH DASDL SYNTAX 

Figure A-1. Compile for Syntax 

{_ DASDL SOURCE CARDS 

{_(?)DATA CARDS 

/(?)COMPILE UNIV WITH DASDL LIBRARY 

Figure A-2. Compile for Library 

A-2 



DASDL COMPILATION PROGRAM NAME 

A program name consists of either one, two, or three identifiers, with each identifier able to be a maximum 
of 10 characters in length. The following example illustrates the four possible program name formats: 

family-name I (file-identifier) if amily-name~ 

(disk-pack-identifier } family-name I 
(disk-pack-identifierS /< family-name /(file-identifier) 

The family-name is synonymous with the data-base-name. For further information regarding program name 
formulation, refer to the B 1700 System Software Operational Guide, Form No. 1068731. 

DASDL FILE NAMES 

The following file names are produced by a successful DASDL compilation. 

a. Dictionary file: (data-base-name) /DICTIONARY 

b. COBOL library file: (data-base-name)/ (disjoint-data-set-name) 

c. Data files: (data-base-name) /~data-set-name) 
(data-base-name)/ subset-name) 
(data-base-name)/ set-name) 

(Data sets) 
(Subsets) 
(Disjoint sets) 

If a set is stored in a file with a data set, the data-set naming convention takes precedence. If multiple sets 
\ are stored together, the name of the first set has precedence. Embedded sets are stored with their data sets. 

) 

If the program name of a DASDL compilation has a disk-pack-id, all data files will have that disk-pack-id 
appended to them. Both the dictionary file, at program execution, and the COBOL library file, at compila
tion time, are expected to reside on system disk. 

DASDL COMPILER($) OPTIONS 

The following compiler options can appear either at the beginning or within the source deck. The format of 
the $option card is below. 

$ [NO] option-I [NO] option-2 

A-3 



Option 

$COBOL 

$ DOUBLE 

$ FILE 

$ LIST 

$NO 

$ SINGLE 

$ SOURCE 

$ SOURCEONL Y 

$ STRUCTURE 

$ SUPPRESS 

$ VERSIONCHECK 

Description 

Checks for COBOL reserved words, and must appear before any 
source cards. 

Causes listing to be double spaced. 

Causes the printing of the file attributes. 

Causes a printout of the listing. Automatically set by compiler. 

Negates the option directly following the word NO. 

Causes the listing to be single spaced. 

Causes the generated COBOL library files to be printed. The 
SOURCE option is usually placed prior to the source deck physical 
description. 

Regenerates the COBOL copy files by using an existing data base 
dictionary. This option is the only input for this DASDL run. 

Causes the printing of structure attributes. If STRUCTURE is placed 
before the physical description; both the default and revised structure 
attributes will be printed. If it is placed after the first physical 
attribute, only the revised structure attributes will be printed. 

Causes warning messages to be suppressed. 

Automatically set by the compiler. When the option is in a reset con
dition ($ NO VERSIONCHECK) the compiler provides the mechanism 
to ignore the program dictionary checking performed at execution. 
This action eliminates the requirement of program recompilation with 
each new DASDL recompilation. 

NOTE 

$ VERSIONCHECK should be set for all non-testing executions. 

Figure A-3 contains a DASDL program with the $ FILE and $ STRUCTURE options specified. The 
$ STRUCTURE option causes each structure to be printed with all of its parameters. The $ FILE option 
causes the file parameters to be printed following the structures with which it contains. Thus, UNIV
PERSONNEL and SS-U-P are contained in file number 1, named UNIV/UNIV-PERSO. 

A-4 



) 

c UNIV DATA BASE 
1SLIST SINGLE 

I SSUPPRESS 
s!FILE STRUCTURE 

00000100 IXTHIS DASDL PROGRAM GIVES EXAMPLES 
0000~150 =xoF THE VARIOUS CONSTRUCTS USED IN 
00000200 XDASOL TO DESCRIBE A OATA BASE 
00000300 PARAMFTERS( 
OOOOOUOO BUFFERS • 10 )J 
00000&00 UN?V·~OURSES DATA SET "MAIN FILE" 
00000700 CRS•NAME GROUP ( 
OOOOOAOO DEPARTMENT ALPHA(2)J. 
oooooqoo LEVEL NUMBER(3)J 
00001000 CRS•NO NUMBER(U))J 
00001100 NOPPOF NU~BERC2)1 
00001200 DAYS•OF•W£EK GROUP C 
ooon 1300 MON ,NUMBER c 1), 
00001uoo TUES NUM~ERC1)1 
00001soo WEDS NUMBER(l)J 
00001600 TMURS NU~BERC1)1 
0 0 0 0 1 7 0 0 F R I N U.t<4B E R C 1 ) J 
00001800 SAT NUMBERC1))J 
00001QOO BUILDING NUMBE~(l)I 
00002000 ROOMNUMBER ALPHA(2)1 
00002100 COURSENAME ALPMAC24)1 
00002iOO FLAG•BITS ALPHA(12)J 
00002300 HOURSCROT NUMBER~U)J 
00002aoo CLASS•SIZE NU~BER(2)1 
00002500 P~OFESSOR SUBSE~ OF UNIV•PERSO~NEL1POPULATlON • 31 
00002b00 BOOKS UNORDERED DATA SET( 
00002700 LC NUMBER(9).J 
oono2eoo TITLES ALPMA(&O)I 
00002qoo AUTHR ALPHA(30))J 
OOOOJOOO STUDENTS ~UBSET OF MSF KEV IS 
000~3100 CLNA~E,FNA~E)OUPLICATES, 
on003200 POPULATION • 300) 
000~3700 POPULATION • 1000 
00003750 VER!FYCCHOURSCROT GTR 0 ANO CLASS•SIZE LEQ 60) ANO NQPqOF NEQ 0)7 
00-003eoo UNIV•C•SET ORDERED SET o~ UNIV•COURSES KEY IS (CRS•NO)J 
00003qoo UNIV•PEPSONNEL DATA S!T( 
OOOOUOOO I NAME GROUP( 
00004100 I LASTNAME ALPHAC.15)1 
oooou200 : FIRSTNAM! ALPHA(10))1 
0000~300 s~x NUMBER(t)J 
00004400 AGE NUMBER(2)J 
00004500 I SSNUM NUM8ER(9j• 
00004600 DPT ALPHA(U)J 
00004700 ~. RANK ALPHA(l)J 
00004800 SALARY NUMBERCS712)J 
oooouqoo COURSES SUBSET OF UNIV•COU~SES1POPULAT10N • 81 
00005000 ADORES SUBSET OF AORI 
ooonstoo SUP~ SUBSET OF UNIV•PE~SDNNEl)I 
0~005200 SS•U•P ORDE~ED SET OF UNfV•PERSONNEL KEV rs CSSNUM)I 
00005300 U•P•SET ORDERED SET OF UNIV•PEP50NNEL K!Y IS 
00005350 CLASTNAME,FIRSTNAME) OUPLtCAfESJ 
00005400 MSF DATA SETC 
00005500 SSNO NUM8E~1~)1 
OOOOSbOO NONAM fliUMBER ( 1) I 
0000570a LNAME AL~~AC30)1 
00005800 MN1ME ALP~ACJ~)J 

Figure A-3. UNIV Data Base Example (Sheet 1) 

A-5 

I 
l 

t 



~~005~00 FNAME ALPHl()Q~I 
0000&00-0 eAMPUS•A00RE$$·G~OUPC 
OOOOblOO DORM ALPHA(6)J 
0000~!00 ROOM NUMBERC4)J 
00006300 POBOX NUMBER(4)1 
00006400 PHONE NUMBE~(7))J 
00006500 N~ NUM8ERC2)J 
00006600 DEGREE ALPHAC4) OCCURS 6 TIMESI 
00006700 TnTHRS NUM8ERC3)1 
OOOO&AOO TOTQP NUMBER(3)J 
00006900 GQAOE•POINT•AVG NUMBERC3,ZJI 
00007no~ MJR NUMBER(3)J 
00007100 A~JR ALPHAC18)J 
00007200 SSEX NUMBER(1)1 
00007300 SAGE NUMBERC2)1 
00007400 HOME•AOORESS SUBSET OF AORJ 
00007500 ~UARTER ORDERED CATA SET( 
00007600 QTR ALPHA(4)J 
0~007700 QTTRHRS NUMBER(2)1 
00007800 QTRQP NUMBERC2)1 
00001qoo COASES ORDERED DATA SET( 
00008000 TYPECOURSE NUMBERC1) REQUIREDI 
00008033 GRADE ALPHA(2) REQU?REOI 
000080~6 CRS SUBSET OF UN?V•COURSESJ 
00008100 YR NUMBERC2)J 
00008200 Q NUMBERC~)I 
00008300 G'RS SUBSET OF UNIV•COUPSESI 
00008400 GGO ALPHAC2)J 
00008500 T?TLE•OF•PAPER ALPHAC30)J 
00008600 ~PRGD ALPHA(i)), 
ooooe100 PbPULATION • 41 
00008800 CSET ACCESS TO COPSES KEV rs 
~0008850 CTYPECOURSE) DUPLICATES) 
0000•000 POPULATION Iii 50001 
OOOO•too QSET ACCESS TO QUARTER KEY IS (QTR))I 
ooooq200 MSFSET OROER€0 SET OF MSF KEY.IS CSSNO)J 
00009lt0 AOR OATA SET( 
00009400 · FACULTY•STUDENT NUMBERCt)J 
6oooqsoo SNO NUMBERC9) REQUIRED• 
0000,600 AOLN ALPHA(54) OCCURS.• TIMESJ 
0~009100 ZIPC NUMBER(!) REQUIREOJ 
0000,~00 PHON NUMBER(10))J 
00009850 SAD ORDERED S!T OF AOR KEY IS CZIPC) OUPLICATESJ 
00009900 $SAO ORDERED SE' OF AOR KEY IS ($NO)• 
0000•910 fTUAO SUBSET OF ADR WHERE CFACULTV•STUOENT EGL 1) KEV 
00009CJ20 
00009CJJO tFACAD SUBSET OF ADR WHERE CFACULTV•STUOENT EQL 2) KEV 
00009'40 I 
oooo••SO lADMAO SUBSET OF ADR WHER!CFACULTV•STUOENT EQL 3) KEY 
000094'60 I 
00010900 IBOOKSt 

A-6 

UNIV•COURS!S DATA 
n~uCTURE NUMBER 

SET I 
1 

PRIME a 0 .. 
9L.OCl<UU • 
ARUUZ! • 
PQPUl,.~TJON • 
DAUUZI • 
JtCOROIUi! I 

2 R!CORDSllL.OCI< 
2•2 RECORDS PER •REA 

10d0 RECORDS 
"'" ens •u ens 

Figure A-3. UNIV Data Base Example (Sheet 2) 

IS CZ?PC,SNO) 
OUPL?CATESI 
U CZIF'C1SNO) 
OUPLICATF.SJ 

U CZIPC, SNO) 
OUPL;ICATESJ 

l 
I 
I 
I 
t 

t 
I 
I 
t 

' 



\ 
) 

B!TI PER BLOtK • 1231 

UNIV•C•SET INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 1 
PRIME • 1 
TABLES?ZE (COUSE) • 7'0 ENTRIES 
TABLES?ZECFINE) • 58 ENTRIES 
AREAS?Z! • 1 TA&LES-PER AREA 
LOADFACTOR • b5 PERCENT 
SPL?TFACTOR • 50 PERCENT 
ENTRYSIZECCOARSE) • 40 B?TS 
~NTRYSIZE(FINE) • 41 BITS 
BIT! PER BLOCK(COARSE) • 281b 
BITS PER BLOCKCFINE) • l80~ 

PROFESSOR UNORDERED LIST I 
STRUCTURE NUMBER 2 
AREASIZE • 50 R~CORDS PER AREA 
TA8LESIZE • 42 ENTRIES 
BLOC~SIZE • 8 RECORDS/BLOCK 
DATASIZ! • 12 BITS 
RECORDSIZE • 1416 arTs 
!NTRYSIZE • 32 BITS 
BITS PER BLOCK • 11360 

STUDENTS ORDERED LIST I 
STRUCTURE NUMBER S 
AREASIZ! • 1500 RECORDS PER AREA 
TABLESIZE • 2 ENTRIES 
BLoCKSIZE • 1 RECORDS/BLOCK 
OATASIZE = 32 BITS 
RECOROSIZE • 109~ BITS 
ENTRYStzE • 512 ens 
BITS PER BLOCK • 1128 

BOOKS UNORDERED LIST I 
ST~UCTURE NUMBER 4 
AREASIZE • 500 RECORDS PER AREA 
TABLESIZE • 1 ENTRIES 
BLOCKSIZE • 1 R£COR0S/8LOC~ 
O•TASIZE • 760 BITS 
RECOROSIZE • 832 BITS 
ENTRYS?ZE • 760 BITS 
SITS PER BLOCK • 864 

UNIV•PERSONNEL D•TA SET I 
STRUCTURE NUMBER 3 
PRI~E • 0 
BLOCKSIZE • 2 ~ECDRDS/BLOCK 
AREASIZE • 1)~2 RECORDS PER AREA 
POPUL•TION • 10000 RECORDS 
DATASIZE • 320 BITS 

.RECOROSIZE • 512 BITS 
BITS PER BLOC~ • 1024 

Figure A-3. UNIV Data Base Example (Sheet 3) 

A-7 



A-8 

Sl•U•P tND!X SEQUENTIAL SET t 
ITrlUCTU,_E NUMSIR 12 
PRIME • 1 
TABL~SIZE(COARSI) ~ 143 ENT~IES 
Tl8LEl~ZECFIN!) • 119 lNTRiES 
AAEAS%ZE,• 12 TABLES PER AREA 
LOADFACTOR • 6• PERCENT 
SPLIT,ACTOR • 4• PERCENT 
INTRVS?Z!CCOARSE) • 60 BITS 
E~T~Y,IZECFlNE) • 72 BtTS 
8ITS PER BLOCKCCOARSE) • 8'96 
81TS PER BLOCKCFIN!) 1 8584 

U•P•S!T INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 13 
PR?ME • 0 
T•B~!SIZECCOARSE) • lO• ENTRIES 
TABLfSIZE(FINE) • 105 ENTRIES 
AREASIZE a 13 TABLES PER AREA 
LOAOFACTO~ • 66 PERCENT 
SPLITFACTOR • 49 PERCE~T 
!NTRYSIZE(COARSE) 1 224 BITS 
EN~RVS?ZECF?N!) • 232 BITS 
BITS PER BLOCKCCOARSE) • 24432 
BITS PER BLOCKCFINE) • 24376 

COURSES UNORDERED LIST I 
STRUCTURE NUMBER 8 
APEA~IZE • 125 RECORDS PER AREA 
TABLiSIZE • 42 ENTRIES 

.BLOCKSIZE • 4 RECORO~IBLOtK 
OATAS?ZE • 32 BITS 
RECORDSIZE • 141~ BITS 
ENTRVSIZE • 32 BITS 
8%TS PER BLOCK • 5~q~ 

ADORES UNORDERED Ll$T I 
STRUCTURE NUMBER q 
AREASfZE • 125 RECORDS PER AREA 
TABLESIZ! • 42 ENTRIES 
BLOCKSIZE • 4 RECORDS/BLOCK 
OATASIZE • 32 BITS 
RECOROS?ZE • 1416 BITS 
ENTRYSIZE • 32 BITS 
BITS PEA BLOCK • 56q6 

SUPR UNOPOERED LI8T I 
STRUCTURE NUMBER 11 
AREASIZE ~ 125 RECORDS PER AREA 
TABl,.ESIZE • 42 ENTRIES 
8LO~KSIZE 1 4 R~COROS/BLOC~ 
OATAS?ZE • 32 BITS 
RECORD$?ZE a 1416 BITS 
ENTRYSIZE • 32 etTS 
BITS PER BLOCK • S6Q6 

Figure A-3. UNIV Data Base Example (Sheet 4) 



\ 
) 

MSF DATA SET I 
STRUCTURE NUMBER & 
PRIME • 0 
BLOCKSIZE • 1 RECORDS/BLOCK 
A~EAS?ZE ~ 11•1 RECORDS PE~ AREA 
POPULATION • 10000 RECORDS 
OATAStZ~ • 127& BITS 
RECORDSIZ! • 1404 BITS 
BITS PER BLOCK • 1404 

MSFStT INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 1q 
PRlME -. 1 
TABL!SIZ!CCOARSE) • 143 ENtRJiS 
TABLES?Z!CFINE) • 11~ ENTRIES 
AREASIZE • 12 TABLES PER AREA 
LOAOFACTOR • U PERCENt 
SPLITFACTOR • 4q PERCENT 
!NTRVSIZECCOARSEl • 60 BITS 
ENTRVSt2!(F~N!) • 72 B?Ti 
BITS PER BLOCK(COARSE) • es•• 
BITS PER BLOCKC~INE) • 8584 

~OME•A00RES8 UNORDERED LIST .I 
STRUCTURE NUMBER 14 
AREA$IZE • 12! RECORDS PE~ AREA 
TABLESIZE • 42 ENTRtES 
BLOCKS?Z! • 4 RECnADS/BLOCK 
OATAStZ! • 32 BlTS 
R!CORDSIZE • 141& BITS 
ENTRVS?ZE • 32 BITS 
BITS PE~ BLOCK ~ 5&96 

CRS UNORD!RED LIST I 
STRUCTURE NUMBER 17 
AREAS?ZE • 9632 RECORDS P!~ AREi 
TjBLESIZE • 42 !NTRI!I 
BLOCK8IZE • 4 RECORDS/BlOtK 
OATASIZl • 32 BITS 
RECORDS!Z! • lA1& BITS 
ENTRYSIZ! • 32 BITS 
B?TS P!R BLOCK • St•• 

QCRI UNOR~ERED LIST I 
STRUCTURE NUMB!R 11 
AR!AStZ! ~ ••32 R!COROt P!R AR!l 
TABL!S?Z! ~ 12 !NTRttl 
BLOCKS?%! 1 • RICORDl/IL~CM 
DATASitf • 32 8%TI 
R!CORDSIZ! • 141• ~ffl 
ENTRVSIZI • 32 l!TS 
B!TS P!,_ BLOCK • s-&t• 

Figure A-3. UNIV Data Base Example (Sheet 5) 

A-9 



A-10 

AR~ASIZE • 14339 RECORDS PE~ AREA 
TABLISiiE • 3 ENTRIES 
BLOCKSIZE • 1 RECORDS/BLOCK 
DATASlZ! • 31a BITS 
RECOROStZ! • 13q2 BlTS 
!NTRYSIZ! • 440 8ITS 
81TS PER BLOCK • 1424 

QUARTER ORDERED LIST I 
STRUCTU~E NUMBER 15 
ARE•tlZ! • 20850 RECORDS PER ARE4 
TA8LESIZE • 12 ENTRIES 
BLOCKSIZE • 1 RECORO~/BLOCK 
DATASIZ! ~ 48 BITS 
R!CORDSlZI • 141& BITS 
ENTRVSIZE • 112 BtTS 
BITS PER BLOCK • 1448 

ADR D'A TA sn ' 
STRUCTURE ~0MBER lft 
Pl:UMI • 0 
BLOCKS%Z! • 1 •!CORDS/BLOCK 
ARIAelZE • q19 RECORDS PER AREA 
POPULATION • 10000 RECORDS 
DATAtIZ! • 3qee BITS 
A!COADIIZ! a 3q9~ BllS 

. ens PER BLOCK • HH 

Figure A-3. UNIV Data Base Example (Sheet 6) 



) 

00010b00 
00010b50 
00010700 
00010800 
00010850 
0001oqoo 
00011000 
00011100 
00011150 
000 lt 200 
00011300 
000111.100 
000111.1$0 
00011500 
0001 uoo 

~ACAD !ND!X SEQUENTIAL SET I 
STRUCfURE NUM9ER 2S 
PR?ME -. C 
TlBL!l?Z!CCOARS!l • 12~ INTRl!S 
TABl.UUE<-'JNE) • 1 U !NTFUEI 
AR!AlkZ! I 10 TABLES PER AREA 
LOADFACTOR. • && PERCENT 
SPL?TFACTOR 1 4q PERCENT 
ENTRYS~ZECCOARS!) • 80 BITS 
ENTRVSIZ!tFIN!) ~- 88 BITI 
BITS PER BLOCKtCOARSE) 1 10016 
BITS PER Bl.OCKCFINE) 1 qq&o 

ADMAD INDEX SEQUENTI)L SET t 
STRUCTURE NUMBER 24 
PR1"1! • 0 
TABLESJZ!CCOARS!) • 125 ENTRl!$ 
TABL!SIZECFINE) • 113 ENTRIES 
AREASJZE • 10 TABLES PER AREA 
LOADFACTOR • && PERCENT 
SPLITFACTOR • 1.1q PERCENT 
ENTRYSIZECCOARSE) 1 80 BITS 
ENTRYStZECFtNE) • 88 BITS 
BITS PER BLOCKCCOARSE) • 1001& 
BITS PER BLOCKCFINE) • qq&o 

AREASIZE • 5001 
TYPE • UNORDERED LIST, 
8\..0CKSIZE • 5) J 

BOOKF!LE STORAGE FOR BOOKS( 
TITLE • UNIV/LIBRARY, 
AREAS • 10)1 

UNIV•C•SETC . 
UBl.ESlZE, I U, 
OEASlZE • 10, 
TYPE • INDEX SEQUENTIAL• 
LOADFACTOR • q)I 

UNIV•PERSONNE.LC 
PRIME, 
POPULATION • qq7)J 

!NIT IAI. IZE J 

UNIV•COURSES DATA SET 1 
STRUCTURE NUMBER 1 
PRIME • 0 
BLOCKStZ! • 2 ~!CORDS/BLOCK 
ARtA~lZE • 292 RECORDS PER AREA 
POPULATION • 1~00 RECORDS 

Figure A-3. UNIV Data Base Example (Sheet 7) 

A-11 



A-12 

UN%V•C•SET INDEX ~!QUENTtAL SET I 
ST~UtTUR! NUMB!~ 1 
Plll%MC !! 1 
TA8L~StZ!CCOARS!) • 14 ENTRIES 
TA8L!SIZECFIN!J • 1l ENTRIES 
AR!AS?ZE • 10 TABLES ~ER AREA 
LOADFACTOR 1 8 PERCENT 
SPLIT,ACTOR I 50 PERCENT 
ENTRYSIZ!(~OARS!) • 40 BITS 
!NTRVSiZ! (FINE) • 48 BITS , 
BITS PER 8LOCl<(COARSE) • 57~ . 
B!TS PER BLOCl<CFIN!) • 592 

F!LE I.NFCRMATION I 
'11.E NUMBER 2 
AREAS Ii 20 
A~EASIZ! • 156 SEGMENTS 
PACI< • 
TITLE • UNIV /UNIV•COURS 

PROFESSOR UNORDERED LIST I 
STRUCTURE NUMBER 2 
AREASIZE • 50 RECORDS PEA AREA 
TABLESIZE • 42 E.NTRl!S 
BL.OC~SJZE • 8 RECORDS/BLOCK 
DATA8I%E • 32 BITS 
RECOROSIZ! • 1416 BtTS 
ENTRVSIZE • 32 BITS 
BtTS PEA BLOCK • 113~0 

FILE INFORMATION I 
FIL.! NUMBER J 
AREAS • 20 
AAEASIZE • 50 SEGMENTS 
PACI< • 
TITLE • UNIV /PROFE&SOR 

STUDENT~ ORDERED L.IST I 
STRUCTURE NUMBER 5 
AREASIZE • 7!~0 RECORDS PER AREA 
TABLESIZE • 2 ENTRIES 
BLOCl<SIZ! • 1 RECORDS/BLOCK 
OATA$IZE • 32 BITS 
RECOROSIZE • 10~6 BITS 
ENTRVSIZl • St2 BITS 
BITS PER BLOCK • 1128 

FILE INFORMATION I 
FIL.E NUMBER 4 
AREAS • 20 
AR!ASlZ! • 7500 SEGMENTS 

Figure A-'-3. UNIV Data Base Example (Sheet 8) 

( 



PACK • 
TITLE • UNIV /STUDENTS 

UNIV•PERSONNEL D•TA SET S 
STRUCTURE NUMBER 3 
PRIME : 1 
BLOCKSIZE • 2 RECORDS/BLOCK 
AREASlZE a 11q2 RECORDS PER AREA 
POPULATION • qq7 RECOROS 
DATASIZE a 320 BITS 
RECOPOSIZE a 512 BITS 
BITS PER BLOC!< : 1024 

FILE INFORMATION I 
FILE NUMBER S 
AREAS 11 20 
AREAS?ZE • sq& SEGMENTS 
PACI< • 
TITLE • UNIV /UNIV•PERSO 

COURSES UNORDERE.D LIU I 
STRUCTURE NUMBER 8 
AREASIZE • 125 RECORDS PER AREA 
TABLESIZE • 42 ENTRIES 
8LOCKSIZE • 'I RECORDS/BLOCK 
OATASXZE • 32 BITS 
RECORDSIZE • 141& BITS 
ENTRYS!ZE • 3a BITS 
SITS PER BLOCK • 5&96 

FILE INFORMATION I 
FILE NUMBFO o 
AREAS • 20 
AREASIZE • 125 SeGMENTS 
PACI< • 
TITLE : UNIV /COURSES 

ADORES UNOROEREO LIST I 
STRUCTURE NUMBER q 
AREASIZE • 125 RECORDS PER A~EA 
TABL.ESHE • 42 ENTRIES 
BL.OCKSIZ! • 4 RECOROS/BL.OCK 
OATASIZ! • 32 BITS 
R!CORDSIZE • 1416 BITS 
ENTRYSIZE • 32 BITS 
BITS PER BLOCK • 56~6 

FILE INFORMATION I 
FILE NUMBER 1 
OEAS a 20 
AREAS!ZI • 125 S!GM!NTS 
PACK • 
T?TL! • UN!V /ADDREI 

Figure A-3. UNIV Data Base Example (Sheet 9) 

A-13 



A-14 

SUPR UNORDERED LIST I 
STRUCTURE NUMBER 11 
AREASIZE • 125 RECORDS PER AREA 
TASL!SIZE • 42 ENTRIES 
BLOCl<8IZE • 4 RECORDS/BLOCK 
OATASIZ! • 32 BITS 
RECOROSIZE • 141& BITS 
ENTRVSIZE • 32 BITS 
BITS PER BLOCK • 5&q6 

FILE INFOR~ATION t 
FILE NUMBER 8 
AREAS a 20 
AR!ASIZE • 125 SEGMENTS 
PACI< • 
TITLE • UNIV /SUPR 

MSP' DA TA SET I 
STRUCTURE NUMBER 6 
PFUM! • 0 
BLOCl<SIZE • l RECORDS/BLOCK 
AREA.IZ! • 1191 RECORDS PER AREA 
POPULATION • 10000 RECORDS 
DATASIZ! • l276 BITS . 
RECORDS?ZE • 1404 BITS 
BITS PER BLOCK • 1404 

MSFSET INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 1• 
PRIM! a l 
TABLESIZECCOARSE) • 143 ENTRIES 
TABLESIZECFINE) • 119 ENTRIES 
AR!AS?Z! • 12 TABLES P!R AREA 

,LOADFACTOR • 66 PERCENT 
SPLtTFACTOR • 49 PERCENT 
ENTRVSIZ!CCOARS!) • •o BITS 
!NTRVSIZ!CFINE) • 7~ BITS 
BITS P~R BLOCl<CCOARSE) • &!•• 
BITS P!R BLOCKCFJN!) • 8584 

FILE IN~ORMATI~N I 
FILE NUMBER 9 
AR!U • 20 
AR!ASIZ! • 12•3 SEGMENTS 
ltACI< • 
TITLE • UNtV /MSF 

HOME•ADDR!SS UNORDERED LIST I 
ST~UCTUR! NU~B!R 14 
ARIAIXZC a t2S R!CO~DS PER AR!A 
TAILIHZ! • 41 INTRIU 
ILOCklXtl 1 4 ~!CORDS/BLOCK 
OATAllZI • 12.B!Tf . 
~tco~o•tzl • 1•1~ 1111 
fNT~Y•tit I ll IXTt air• ..... lt.OCIC • .. .. 

FigureA-3. UNIV Data Base Example (Sheet 10) 



FILE INFORMATION I 
FILE NUMBER 10 
ARUI •· 20 
AAE.llZ! a 12S SEGMENTS 
PACI< Ii 
TITLE • UNIV /MOME•ADOR! 

CRS UNORDERED ~llT t 
STRUCTURE NUMBER 17 
AR!ASIZ! • ••32 RECORD9 PEA AREA 
TABLEIIZ! 1 Q2 ENTRIES 
BLOCl<SIZ! 1 4 RECORDS/BLOCK 
OATlllZ! • 32 BITS 
RECORDSIZ! • 140 ens 
ENTRYSlZE 1 32 BITS 
BITS PER BLOCI< • 56•6 

FILE INFORMATION I 
1'?1.E NUMBU 11 
ARUS • 20 
AR!ASIZE • •o32 SEGMENTS 
PACI< • 
TITLE • UNIV /CRS 

GCRS UNORDERED 1.lST I 
STRUCTURE NUMBER 18 
AREAS!ZE 1 ·~32 RECORDS PER AREA 
TABl.ESIZE • Q2 .ENTRIES 
BLOCKSIZ! • 4 RECOROS/Bt.OCI< 
OATASIZE • 32 BITS 
RECOROSlZE • 1416 alTS 
ENTRVSIZE • 32 SITS 
~ITS PER BLOt~ • 56q6 

FILE INFORMATION I 
FILE NU"1BER 12 
AREAS • 20 
AREASIZE • •632 SEGMENTS 
PACI< • . 
TITLE • UNIV /GCRS 

CORSES OROEREO LIST I 
STRUCTURE NUMBER to 
AREASIZE • 1431• RECORDS PER AREA 
TABl.ESIZE • 3 ENTRIES 
81.0CKSIZE • 1 RECORDS/BLOCK 
OATASIZE • 312 BITS 
RECORDSIZE • 13•2 BITS 
ENTRYSIZE • 440 BITS 
BITS PER BLOCK • 142~ 

FILE INFORMATION I 
FILE NUMBER 13 

Figure A-3. UNIV Data Base Example (Sheet 11) 

A-15 



A-16 

ARIU • IO 
ARIAllZ! • t4SJ• l!GM!NTI 
PACK • 
TITLE • UNIV ICORS!S 

QUARTER ORDERED LIST I 
ITRtiCTUR! NUMBER 1! 
A~!AllZE • 20850 ~!CORDS PER AREA 
TAIL!llZ! • 12 ENTRIES 
BLOCICllZI • 1 RECORDS/BLOCK 
DATAl!ZS • 48 BITI 
RECORDllZ! • 141• BITS 
!NTRVaiz1 • 1l2 BITS 
BITS ~!R BLOCK • 1448 

'IL! IN,ORMATtON I 
l'IL.E NUMBER U 
AREAS 1 20 
AREASIZ! • 41100 SEGMENTS 
PACI< • 
TITLE • UNIV /QUARTER 

ADR DAU SET I 
STRtiCTUR! NUMBER 10 
PRIME 1 0 
BLO~KllZE • 1 RECORDS/BLOCK 
AREASIZ! • •10 RECORDS PE~ AREA 
POPULATION • 10000 RECORDS 
OATASIZE 1 3•88 BITS 
RECORDS!?! • 3•88 SITS 
BITS PER BLOCK • 3•88 

SAD INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 20 
P~IM! • 1 
TABL!SIZECCOARSE) • 129 ENT~IES 
TABL!S!Z!~FIN!) • 101 ENTRIES 
AREAStZ! • 11 TABLES PER AREA 
LOADFACTOR • 66 PERCENT . 
'PLITFACTOR m 4• PERCENT 
ENTRVSIZ!CCOARS!) • 44 B?TS 
tNTRVS?ZECFtNE) • 16 BITS 
B!TS PER BLOCK CCOOSE) • 5692 
BIT$ ~ER BLOCKCFIN~) • 5672 

FILE INFOPMAT?ON I 
FILE NU"4B!R l5 
AREAS • 1 20 
AREAStZE • 2174 SEGMENTS 
l'ACI< • 
T?TLE a UNIV /AOR 

SSAO INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 21 
FFUM! • 0 

Figure A-3. UNlV Data Base .Example (Sheet 12) 



TABLESIZECCOARSEJ • 11.13 ENTRIES 
T•BLESIZECFINE) • 119 ENTRIES 
AREASIZE • 9 TABkES PER AREA 
LOADFACTOR • && PERCENT 
SPLITFACTOR • 4~ PERCENT 
ENTRVSIZECCOARSE) • &O BITS 
ENTRYSIZECFINE) • 72 errs 
errs PER BLOCt<CCOARSE) • S59& 
B IT S PE ~ BL. 0 C t< C F I NE ) 1 8 5 8'1.1 

FILE INFORMATION I 
FIL.E NUMBER l& 
AREAS • 20 
AREASIZ£ •. SI.I SEGMENTS 
PACI< • 
TITLE • U~IV ISSAO 

STUAO INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER. 22 
PRIME 11 0 
TABLESIZ~CCOARSE) • 125 ENTRIES 
TABLESIZECFINE) • 113 ENTRIES 
ARFASIZE • 10 TABLES PER AREA 
LOADFACTOR • && PERCENT 
SPLITFACTOR • 49 PERCENT 
ENTRVSIZECCOARSE) • eo atTS 
ENTRVSIZECFINE) • ee BITS 
BITS PER BLOCl<CCOARSE) • 10-01·& 
errs PER BLOCt<CFINE) • qq&o 

FILE INFORMATION I 
FILE !'.!UMBER Ht 
Al'~EAS • 20 
AREAS!ZE • 124 SEGMENTS 
PACI< • 
TITLE • UNIV ISSAO 

FACAO ?NOEX SEQUENTIAL SET I 
STRUCTURE NUMBER 23 . 
PRIME • 0 
UBLESIZE (COAIU!) • 12'5 ENT~I!S 
TABLESIZECl'INE) • 113 ENTRIES 
AREASiZE • 10 TABLES PER AREA 
LOADFACTOR • &• PERCENT . 
SPL?TFACTOR • 49 PERCENT 
ENTRYSIZE(COARS!) 1 80 BITS 
!NTRYSIZ!(FIN!) • ee BITS 
BITS PER.BLOCkCCOARS!) • 1601• 
BITS PER 9LOCl<(FlN!) • 996~ 

F!L! INFORMATION I 
FILE NUMBER U 
Aff!AS • 20 
AR!ASIZ! • 194 s!GM!NTI 
PACI< • 
f!TL~ • UNIV ISS•C 

Figure A-3. UNIV Data Base Example (Sheet 13) 

A-17 



A-18 

AOMAO INDEX SEQUENTIAL SET I 
STRUCTURE NUMBER 24 
PRIME • 0 
TASLES!ZE<COARSE) a 125 ENTRIES 
TABLES!ZECFIN!) • 113 ENT~IES 
AR!AS!ZE • 10 TABLES PER AREA 
LOADFACTOR • 66 PERCENT 
$PLITFACTOR • 49 PERCENT 
ENTRYSIZECCOARSE) • 80 BITS 
ENTRYSIZECFINE) • 88 BITS 
BITS PER BLOCKCCOARSE) • 10016 
BITS PER BLOCK(FlN!) • 9960 

FILE INFORMAT?ON I 
FILE NUMBER 16 
AREAS • 20 
AREASIZE • 264 SEGMENTS 
PACK • 
TITLE • UNIV /SSAD 

BOOKS UNORDERED LIST I 
STRUCTURE NUMBER 4 
AR!ASIZE • 500 RECORDS PER AREA 
TABLE$!%! • 1 ENTRIES 
BLOCKSIZ! • S RECORDS/BLOCK 
DATAS!Z! • 760 SITS 
AECORDS!ZE a 812 SITS 
ENTRYS!Z! • 760 BITS 
8ITS PER BLOCK • 4184 

FlL! INFORMAl!ON I 
nL! NUMBER 1 
ous· • 10 
AREAS?ZE • JOO SEGMENTS 
PACK 111 

TITLE a UNIV /BOOKS 

Figure A-3. UNIV Data Base Example (Sheet 14) 



COBOL COMPILATION PROCEDURES 

The COBOL compilation process requires a program written according to the normal COBOL syntactic 
conventions, incorporating data set INVOKE statements and the appropriate DMSII statement extensions 
to COBOL as defined in section 4. During each compilation, upon recognition of an INVOKE statement of 
a data set, the compiler includes (by copy) into the source program the library file generated by DASDL. 
The library file contains a complete description of the data set, its sets, automatic subsets, and all of its 
embedded items, data sets, subsets, and sets. The library files must reside on system disk during compila
tion. The compiler uses this information to establish the record areas necessary for communication between 
this program and DMSII. T}J.e compilation also provides the information needed for verifying the syntactic 
correctness of the DMSII statements used in the PROCEDURE DIVISION of the COBOL program. 

The COBOL compiler always accesses the library files that have the appropriate identifiers at the time of 
compilation. If multiple versions of the library files have been produced, it is important that the versions 
that correspond to the data base versions are the library files loaded at compile time. The versions are 
checked at execution; if the versions are incompatible, the execution of operations against the data base 
are disallowed. 

The object code produced by the compiler includes a communicate to the MCP for each of the DMSII 
statements encountered. All DMSII statements are executed by the DMSII access routines within the MCP. 
Local manipulation of data base items by COBOL statements are handled directly by object code produced 
by the compiler. The object code produced by the COBOL compiler is ready for execution. 

For additional information on COBOL syntax, semantics, options, or compiler operation, refer to the 
B 1700 Systems COBOL Reference Manual, Form No. 1057197. 

DISK FILE STRUCTURES 

All disk files used for DMSII data storage are declared as unblocked, 180-byte records. If it is necessary or 
desirable to print any portion of the data base, an explanation of the file structure is necessary. 

Normal blocking conventions are used. In diagram 1, below, n equals records per block, m equals blocks 
per area, and k equals tables per area. 

Diagram 1: 

n = RECORDS PER BLOCK 
r~--.,,A-.. ... - ........... 

m =BLOCKS 
PER AREA 

k =TABLE~ 
PER AREA 

There are two uncommon disk file structure possibilities. The first of these is that the prime index resides 
in the same file as the data set. Each area is divided into two parts; the first part contains the data set, and 
the second contains tables as in diagram 2. 

A-19 



Diagram 2: 

n 

m 

k 

The second possibility is that multiple index sequential structures reside in the same disk file. All first-level 
coarse tables are allocated at the front of the file. Additional coarse tables and all fine tables are allocated 
as required. The results constitute a mixture of coarse and fine tables, as diagram 3 illustrates. 

Diagram 3: 

FINE TABLE B 
COARSE TABLE A 

FINE TABLE B 

COARSE TABLE B FINE TABLE B 

FINE TABLE C 

COARSE TABLE C 
COARSE TABLE B 

FINE TABLE A 

FINE TABLE C 
AVAILABLE SPACE 

AREA 1 AREA2 

A-20 

( 



) 
,/ 

DMSII OPERATION AND CONSOLE PRINTER MESSAGES 

DMSII is part of the standard MCP. The only special requirement for execution of a DMSII program is that 
the Data Base Management (DBM) option be set and a Clear/Start performed establishing the DBM environ
ment. This option binds special segments into the Central Service Module (CSM) and is required for DMSII 
operation. If the option is not present at the time the data base is opened, an appropriate message is dis
played. 

The data base dictionary must be resident on the system disk at execution. If not, a request for its loading 
is displayed. Any attempt to open the data base prior to executing the DASDL INITIALIZE statement 
produces an OPEN operation exception. This exception and most of the other exceptions are returned to 
the user program for appropriate handling. However, if the user program does not have an On-Exception 
branch on the DMSII statement producing the exception, the exception results in the termination of the 
program with an appropriate message displayed. 

When the data base disk files are required, DMSII searches the disk directories for the correct files. If the 
files are not available, a request for the required files is displayed. It is extremely important that the cor
rect version of the data files be loaded. When all processing against a data base has terminated, that is, all 
programs have closed the data base or gone to EOJ, a message is displayed containing the identifying num
ber of DMSII operations, the number of physical disk reads, the number of physical disk writes, the number 
of exceptions, and the processor time spent within the DMSII routines. 

In the format of DMSII console printer messages, job-specifier is simply used to identify the job for which 
the message is intended. 

A terminal-reference indicates that a termination message will be printed. Any time this is indicated, the 
program must be discontinued; except when the MCP TERM option is set causing the program to terminate 
automatically. The terminal-reference format is: 

(mix-index): S = (integer), D = (integer) 
(@ ... @, @ ... @) OS or DP 

S indicates the segment number and D indicates the displacement number. 

For further information refer to the B 1700 System Software Operational Guide, Form No. 1068731. 

DMSII ERROR MESSAGES 

DMERROR - DFH STILL IN CHAIN (system malfunction at close-time) 

OMS END- - - (integer) OPERATIONS (integer) READS (integer) WRITES and (integer) 
EXCEPTIONS IN (time) 

IO ERROR - OMS WRITE ON STRUCTURE NUMBER (integer) 

(job-specifier) - BAD FILE NUMBER (incorrect data base DICTIONARY) 

(job-specifier) - PROGRAM DATA BASE VERSION MISMATCH - - - RECOMPILATION OR 
CORRECT DICTIONARY REQUIRED 

(job-specifier) OMS FILE VERSION MISMATCH ON (data-file-name) - - VERSION ON DISK 
IS data, time) - - VERSION REQUIRED IS (date, time) 

(job-specifier) (data-base-name) DATA BASE IS ACTIVE - - - (data-base-name) DATA BASE 
MAY NOT BE OPENED 

(job-specifier) (data-base-name) DATA BASE IS NOT INITIALIZED 

(job-specifier) (data-base-name) DATA BASE IS NOT AT V.0 LEVEL 

A-21 



(job-specifier) (data-base-name) /DICTIONARY lNUSERECOVERY REQUIRED ON DATA 
BASE (data-base-name) 

(job~specifier) 

(job-specifier) 

(job-specifier) 

(job-specifier) 

(job-specifier) 

(job-specifier) 

(job-specifier) 

DBM OPTION NOT SET OR CLEAR SJART REQUIRED 

FILE (data-file-name) IN USE 

INSUFFICIENT DISK SPACE FOR DATA MANAGEMENT 

INVALID STRUCTURE NUMBER (incorrect data base DICTIONARY) 
$ 

NO FILE (data-base-name) /DICTIONARY 

NO FILE (data-file-name) 

NO PROVISION FOR DMS (DMSTATUS category) EXCEPTION 
(terminal-reference) 

DATA BASE INTEGRITY 

DMSII provides several integrity checks to assist the user in protection of a data base. Each COBOL pro
gram accessing a data base is compiled with a specific data base description (referred to as a version) 
associated with the data base. The version is checked by the system at each execution to ensure the data 
base dic.tionary version is the same version as the program. If the versions do not agree, the program is not 
allowed access to the data base. A version check is made for each structure at the first request to access 
that structure. 

NOTE 

Version checking can be omitted by inserting at DASDL compilation time 
the$ NO VERSIONCHECK option card. This is usually done while testing 
the data base, and then only if multiple DASDL executions do not change 
the data base structure numbers or data sizes. Physical parameters, however, 
can still be changed when verison checking has been' suspended. 

The version of a data base file corresponds to the last time the data base was updated. The version informa
tion is maintained by DMSII both in the disk file header and the data base dictionary. The disk file header 
version is updated at the first file update and at the close of an updated file. The data base dictionary ver
sion is updated at the close of an updated file. The data base dictionary contains a flag that is set when an 
update occurs, and is reset when all files having been updated are legitimately closed. This allows DMSII 
the ability to prevent the use of a data base dictionary if a system failure or a Clear/Start occurs during the 
updating of any files of the data base. When a system failure is recognized by DMSII, a message requesting 
the recovery of the data base is displayed on the console printer. This is accomplished by reloading the last 
version of all updated files, including the data base dictionary. Also, if the version contained in the disk file 
header does not match the data base dictionary version of the file, the file is not opened and a message is 
displayed on the console printer requesting the correct version of the file. The DMSII assumes, fo:r checking 
purposes, that the data base dictionary contains the correct versions. Therefore the data base dictionary file 
is the central file of the data base and should be saved prior to any update attempt. 

A-22 



LIBRARY MAINTENANCE OF DMSII FILES 

In order to protect against the loss of a data base, it is necessary to periodically save a copy of the data base. 
If system failure occurs during execution of a program that updates the data base or if the disk files are lost 
or suspected of containing invalid information, the data base must be recovered. 

All DMSII files are declared as unblocked, 180-byte records to facilitate the utilization of the standard 
utilities on these files. SYSTEM/LOADDUMP can be used to save and restore copies of the data base when 
needed. 

Whenever updates to the data base are performed, the data base dictionary file can also be updated. As a 
consequence it is important to save the dictionary file when any data base files are saved. The dictionary 
file is the central file in the data base. 

At all times the data files must be the same update level as the dictionary file. If, however, a data file has 
not been updated since it was last saved, it is not necessary to save it again. Care must be used in making 
this decision as some of the control fields for lists reside in the owner data set. 

MEMORY DUMPS 

MCPII/ ANALYZER has been expanded to list DMSII information whenever memory is dumped while a 
data base is open. There are two sections of DMSII information in a system dump. The first is the global 
information maintained by DMSII which includes the following: 

a. Pointers to DMS tables and linked lists. 

b. Statistics for data base activity. 

c. Data base file-identifier. 

d. All DMSII disk file headers in use. 

e. All in-use structures. 

f. Current records and paths for each structure. 

g. Lock descriptor table (buffer descriptors). 

h. All buffers in memory. 

The second section is associated with user programs in the mix. Each program using the data base has a 
description of a temporary storage area called the DMSII work area. This work area contains the DMSII 
state information while it executes a data base operation for this program. The record areas associated with 
each invoked data set are contained within the base and limit register of the program. 

A-23 



Appendix B. DASDL PHYSICAL STRUCTURES 

The following DASDL physical structures are examples containing coding syntax, diagrams, and semantics. 

DISJOINT DATA SET EXAMPLE 

Coding Syntax: 

STANDATASET DATA SET ( 
KEY-FIELD NUMBER (10); 
DATA-FIELD ALPHA (18) 
); 

Diagram: 

STANDATASET DATA SET 

I t ....,r---_::~~: ~ t-BLOCK 1 

-~-~-RECORD 3 } 

RECORD4} 
RECORD 5 -BLOCK 2 

RECORD 6 ---1: 
Semantics: 

a. Records are not ordered. 

b. Blocks are not linked together. 

c. Available space list maintained in records within the data set. 

d. In this example, there are three records per block. 

B-1 



INDEX RANDOM EXAMPLE 

Syntax: 

D DATA SET ( 
KEY-FIELD NUMBER (10); 
DATA-FIELD (18) 
); 

S RETRIEVAL SET OF D KEY (KEY-FIELD); 

Diagram: 

TABLE 
ENTRY 

COUNT DATA RECORDS 1 
KEY ADDRESS~--------------~1--~~~~~~ 

SETS DATASETD 

2 

3 

4 

s 

6 

Semantics: 

B-2 

a. MODULUS represents the number of basic tables in the set S. 

b. Each table entry contains a symbolic key and an address pointing to the corresponding record in 
the data set D. 

c. Empty entries always reside at the end of the table. 

d. LOADF ACTOR indicates the degree of sharing of overflow tables that is allowed. When 
LOADF ACTOR equals SO, it indicates that SO percent of an overflow table is filled by any base 
tables which overflow, before another overflow table is allocated. 

e. COUNT is comprised of 16 bits, OFLO POINTER is comprised of 24 bits, and each ADDRESS is 
comprised of 32 bits. 



INDEX SEQUENTIAL EXAMPLE 

Coding Syntax: 

D DATA SET ( 
KEY-FIELD NUMBER (10); 
DATA-FIELD ALPHA (18) 
); 

S ORDERED SET OF D KEY (KEY-FIELD); 

Diagram: 

COARSE 
TABLE 

,.....__ 

SETS 

COUNT 1 
ADDRESS/KEY 

I RESERVED 

l / 
L._. 

FINE 
TABLE 

COARSE 
TABLE 

FINE 
TABLE 

FINE 
TABLE 

r---. 

L...._ 

1 RESERVED 

] 

T RESERVED 

l 

1 RESERVED 

I ~ 
. 

1 RESERVED 

DATA SET D 

DATA RECORD 

B-3 



Semantics: 

a. Coarse table entries point to a lower level of coarse tables or to fine tables. Fine table entries 
point to data records in the associated data set. 

b. Entries within both tables are in sequence on key value. 

c. Table entries consist of addresses and keys. 

d. LOADFACTOR specifies the percentage of entries of a fine table which will be filled before 
another fine table is allocated. For example, if the LOADF ACTOR is 50 percent, half of the fine 
table will be left empty on an initial load for new insertions into the table. Thus, splits may be 
reduced or eliminated. 

e. If a coarse table is full when an attempt is made to add another entry, the coarse table is split into 
two coarse tables, based on the SPLITF ACTOR. For example, given a SPLITF ACTOR of 60 per
cent, 60 percent of the entries of the original coarse table will be moved to the new coarse table, 
leaving 40 percent in the original coarse table. The normal coarse table split separates duplicate 
key entries. The split is adjusted so all duplicates remain in the same table. Overflow techniques 
are not used. 

f. COUNT is comprised of 16 bits, addresses for coarse tables are 24 bits, and addresses for fine 
tables are 32 bits. 

g. The key (KEY-FIELD) may be in modified form if it is in descending sequence or a signed number 

h. AUDIT SERIAL is 32 bits in length and is required. 

UNORDERED LIST-EMBEDDED DATA SET EXAMPLE 

Coding Syntax: 

B-4 

D DATA SET ( 
KEY-FIELD NUMBER (10); 
DATA-FIELD ALPHA (18); 
E UNORDERED DATA SET 

) 
); 

DATA-E ALPHA (18) 



Diagram: 

DATASETE 
D DATA SET TABLE 

FIRST LAST 

E-< ~ E-< RESERVED 

Semantics: 

TABLE 

RECORD 1} 
RECORD 2 BLOCK 

RECORD 3 

DATA-E ELEMENT 1 

ELEMENT 2 

ELEMENT 3 

ELEMENT4 

a. The above diagram, which shows an example of an embedded data set as an unordered list, is 
composed of a collection of tables. Entries within the tables are not ordered. 

b. Table entries consist of data records for DATA SET E. 

c. Tables are linked together using NEXT and PRIOR fields. 

d. All entries within a table belong to the same owner. 

e. FIRST and LAST point at tables for an owner. 

f. When a table becomes full a new table will be linked in. 

g. FIRST, LAST, NEXT, PRIOR are comprised of 32 bits and COUNT is comprised of 8 bits. 

h. In this example there are three records per block and four elements per table. 

B-5 



UNORDERED LIST ~ SUBSET EXAMPLE 

Syntax: 

D DATA SET ( 

); 

KEY-FIELD NUMBER (10); 
DATA-FIELD ALPHA (18); 
S SUBSET OF D 

Diagram: 

This diagram is the same as the preceding diagram except for the following change to TABLE 

TABLE 

RECORD ADDRESS 

Semantics: 

a. The semantics for a subset, as an unordered list, are the same as the semantics for an embedded 
data set, as an unordered list, except for table entries, which consist of an address only. 

ORDERED LIST - EMBEDDED ORDERED DATA SET EXAMPLE 

Coding Syntax: 

D DATASET ( 
KEY-FIELD NUMBER (10); 
DATA-FIELD ALPHA (18); 
E ORDERED DATA SET ( 

) 

KEY-E NUMBER (10); 
DATA-E ALPHA (18); 

SET-E ACCESS TO E KEY (KEY-E) 
); 

Diagram: 

This diagram is the same as the preceding two diagrams except for the following change to TABLE: 

TABLE 

DATA-E KEY-E 

B-6 



Semantics: 

a. Entries within the table are ordered by key value. 

b. Table entries contain DATA-E. There will be a separate key entry for KEY-E if: (a), the key 
consists of multiple non-contiguous items; (b), any item is in descending sequence; (c), any item 
is a signed number. Otherwise, the key item in the record is used. 

c. Semantic items c, d, e, f, g, h, and i for an embedded data set as an unordered list also apply for 
an embedded ordered data set as an ordered list. 

d. Full tables can be split in order to maintain ordering. 

ORDERED LIST - SUBSET WITH A KEY EXAMPLE 

Coding Syntax: 

D DATA SET ( 
KEY-FIELD NUMBER (10); 
DATA-FIELD ALPHA (18); 
S SUBSET OF D KEY (KEY-FIELD) 

); 

Diagram: 

This diagram is the saine as the preceding three diagrams except for the following change to TABLE: 

TABLE 

KEY-FIELD RECORD ADDRESS 

Semantics: 

a. Entries within the table are ordered by key value. 

b. Table entries contain KEY-FIELD and an address. 

c. The key (KEY-FIELD) may be in modified form if any items of the key are in descending 
sequence or a signed number. 

d. For a subset with a key, semantic items c, d, e, f, g, h, and i for an embedded data set as an 
unordered list also apply. 

e. Full tables can be split in order to maintain ordering. 

B-7 



Appendix C. DASDL GLOSSARY 

The following definitions are intended to give a working description of the terms used in the DASDL sec
tion of this manual. 

TERM 

ACCESS 

DATA SET 

DEADLY EMBRACE 

DISJOINT 

EMBEDDED 
(INNER LEVEL) 

INDEX 

MASTER, PARENT, 
or OWNER 

MEMBER 

ORDERED 

PATH 

POPULATION 

PROPERTIES 

DEFINITION 

A method to reach a desired record of a data set. 

A collection of related records. Only data sets have records. 

A programmatic condition where two or more programs are 
simultaneously attempting to lock (prohibit access to) a data 
record. 

The condition of non-reliance of data sets on the highest level, that 
is, a data set which is not an item within a data set. Data sets and 
sets are the only structures that are disjoint. Disjoint sets can only 
refer to disjoint data sets. 

The condition of being dependent on a data set that is on a higher 
level; that is, a data set which is an item within a data set. An 
embedded data set can only be referenced by an embedded set on 
the same level. 

A table of pointers to a data set used to provide specified access 
to a data set. 

A data set record which has dependent data sets is referred to as 
either the master, parent, or owner of the records of the dependent 
data set. A "master" may itself be a record in an embedded data 
set. An embedded data set cannot be accessed without accessing 
the master. 

An occurrence of a record of a data set is a member of that data 
set. 

Maintained in a sequence depending on the value of user-specified 
fields based on a collating sequence. 

An access to a data set record. One instance is a path. A set is an 
index of paths. 

The number of records in a data set. If it is an embedded data set, 
population is the number of records in the embedded data set per 
occurrence of its master. 

The physical structure and parameters of a data set, set, or subset, 
such as storage requirements or structure type. 

C-1 



C-2 

TERM 

RECORD 

SCOPE 

SET 

SPAN 

SPLITTING 

SUBSET 

UNORDERED 

DEFINITION 

A record contains all the information that pertains to an entity. 

The range of influence of a data set, set, or subset. 

An index of paths to a data set, with a pointer to each record of 
that data set. 

A set points to all records of a data set. A subset need not point 
to all records of a data set. A subset may only point to some of the 
records of a data set. 

The method of inserting a new path into a set. The index table is 
split into two tables rather than through the use of overflow 
techniques. 

A list of paths to records of a data set. The specified records of the 
data set to be referenced must be programmatically inserted into 
the subset. 

Not maintained in a user-specified order. 



Appendix D. DASDL ERROR MESSAGES AND WARNINGS 

INTRODUCTION 

The following are lists of error messages and warning messages that can appear on a DASDL output listing. 

The bracketed word, (integer) , is replaced by the structure number. The structure number is assigned 
automatically by the compiler fo each structure. This number is printed on the DASDL output listing if 
$STRUCTURE is specified, and it always appears on the COBOL listing. 

The bracketed word,( string), is replaced by a reserved word. 

NOTE 

If the delimiters such as commas, parentheses, or semicolons are 
misplaced or omitted, the error message can be misleading, and might 
not indicate the actual error. 

WARNING MESSAGES 

ATTRIBUTE CHANGED AFTER BEING SET ONCE 

FILLER ADDED TO PREVIOUS ITEM 

POPULATION OVERFLOWED ON STRUCTURE NUMBER integer 1,000,000 USED INSTEAD 

SEQUENCE ERROR 

ERROR MESSAGES 

ILLEGAL SPECIAL CHARACTER 

UNEXPECTED TOKEN IN CONDITIONAL EXPRESSION 

INVALID ORDERING KEY FIELD 

OPERANDS ARE NOT OF THE SAME TYPE 

VERSION MISMATCH, UPDATE NOT DONE 

AREASIZE EXCEEDS 2 EXP 16 - 1 

BLOCKSIZE EXCEEDS 2 EXP 7 - 1 

TABLESIZE EXCEEDS 2 EXP 16 - 1 

MAXIMUM SIZE FOR NUMERIC KEY EXCEEDED 

DECLARED NUMBER SIZE TOO LARGE 

POPULATION EXCEEDS 2 EXP 20 - 1 

MORE THAN 16 INDEXES IN ONE FILE 

D-1 



D-2 

TABLESIZE EXCEEDS 255 

COBOL KEY WORD ENCOUNTERED 

EOF DDL/DICT - READ 

EOF DDL/DICT - WRITE 

PARITY ERROR DDL/DICT - WRITE 

DATA NAME DICTIONARY OVERFLOW 

DUPLICATE FILE NAME-COMPILE ABORTED 

DUPLICATE IDENTIFIER FOUND 

ONLY ONE VERIFY CLAUSE PER DATA SET 

DELIMITERS")",";" OR KEY WORD DUPLICATES REQUIRED HERE 

EQUATE SYMBOL EXPECTED NOT FOUND 

ITEM TYPE KEY WORD EXPECTED 

MISSING KEY NAME 

NUMBER EXPECTED NOT FOUND 

ATTRIBUTE KEY WORD REQUIRED HERE 

SIZE OF IDENTIFIER EXCEEDS 17 CHARACTERS 

INCORRECT ATTRIBUTE FOR THIS DECLARATION 

NUMBER OF BUFFERS MUST BE GEQ 3 AND LEQ 100 

ILLEGAL DECLARATION FOR SUBSET KEY NAME 

THIS ITEM NOT ALLOWED IN GROUP ITEM 

SUBSET MAY NOT REFERENCE EMBEDDED DATA SETS 

NUMBER OF IODESCRIPTORS MUST BE GEQ 2 AND LEQ 20 

THIS NAME IS ILLEGAL AS A KEY NAME 

REQUIRED DATA ITEM MAY NOT BE SUBSCRIPTED 

ILLEGAL $CARD OPTION ENCOUNTERED 

SUBSCRIPTED DATA ITEM MAY NOT BE REQUIRED 

UNEXPECTED KEY WORD 

VERIFY NOT ALLOWED ON SUBSET 

RESTART DATA SET MAY NOT BE EMBEDDED 

STRUCTURE NUMBER (integer) MAY NOT BE IN A DATA SET FILE UNLESS IT IS MADE THE 
PRIME INDEX 

INDEX SEQUENTIAL TABLE SIZE EXCEEDS AREA SIZE FOR FILE 

DATA ITEM NAMES AND GROUP ITEM NAMES ARE ILLEGAL HERE 

NO OTHER STATEMENTS MAY FOLLOW INITIALIZE STATEMENT 



LITERAL IS LARGER THAN OPERAND 

DECLARATION FOR KEY NAME IN SUBSET DECLARATION NOT FOUND 

DATA SET REFERENCED BY SUBSET NOT FOUND 

MISSING ORDERING KEY 

ACCESS PATH CANNOT BE CHANGED 

MISSING COMMA 

COMMENT NOT ALLOWED IN THIS CONTEXT 

DATA SET NAME NEEDED HERE 

IDENTIFIER EXPECTED NOT FOUND 

IDENTIFIER NOT FOUND OR UNDEFINED 

EMBEDDED DATA SETS AND SUBSETS NOT ALLOW IN RESTART DATA SET 

TYPE ON EMBEDDED DATA SET MISSING ORDERED OR UNORDERED REQUIRED HERE 

KEY TYPE MAY BE MISSING OR MISSPELLED 

LISTS AND DATA SETS MAY NOT BE MIXED 

MISSING LEFT PARENTHESIS 

ORDERING KEY NAME NEEDED HERE 

MISSING OPERATOR IN CONDITIONAL CLAUSE 

KEY WORD ORDERED OR UNORDERED REQUIRED 

RETRIEVAL KEY NAME NEEDED HERE 

MISSING RIGHT PARENTHESIS 

KEY WORD ALL REQUIRED HERE 

KEY WORD DATA REQUIRED HERE OR KEY WORDS ORDERED OR RETRIEVAL REQUIRED 

KEY WORD FOR REQUIRED HERE 

MISSING KEY WORD KEY 

KEY WORD OF REQUIRED HERE 

KEY WORD ORDERED REQUIRED HERE 

KEY WORD SET REQUIRED HERE 

KEY WORD TIMES REQUIRED HERE 

KEY WORD TO REQUIRED HERE 

KEY WORD TRAIL REQUIRED HERE 

KEY WORD UNORDERED REQUIRED HERE 

RESERVED WORD WHERE REQUIRED HERE 

MISSING SEMICOLON 

SLASH REQUIRED BETWEEN FILE NAMES 

D-3 



D-4 

AREASIZE FOR STRUCTURE NUMBER (integer) EXCEEDS 65,535 

SUBSCRIPTED DATA ITEMS MAY NOT BE USED AS KEYS 

ILLEGAL TOKEN IN OPTION STATEMENT 

ILLEGAL ITEM IN PARAMETER LIST 

NUMBER TOO LARGE - MAX 8 CHARACTERS 

VALUE IN OCCURS EXCEEDS 1023 

ATTEMPTED TO ASSIGN NEW VALUE TO POPULATION 

ONLY ONE DATA SET IS ALLOWED IN A FILE· 

ONLY ONE KEY ALLOWED IN AN EMBEDDED SET 

ONLY ONE INDEX IS ALLOWED WITH A DATA SET 

THIS INDEX MUST BE IN A FILE BY ITSELF 

THIS LIST MUST BE IN A FILE BY ITSELF 

ORDERED DATA SET MUST HAVE AN ACCESS PATH 

ORDERING TYPE AND/OR ITEM NAME LIST MISSING 

" REQUIRED ON CONTINUATION CARD 

AREASIZE MAY NOT BE LESS THAN BLOCKSIZE 

AUDIT FILE AREASIZE MUST BE 2 OR MORE 

A STRUCTURE IDENTIFIER MAY ONLY APPEAR IN ONE FILE STRUCTURE LIST 

DESCRIPTION TOO LONG - MAX 172 CHAR 

NUMBER OF AREAS EXCEEDS 105 

BITS PER BLOCK EXCEEDS 65,535 IN STRUCTURE NUMBER (integer) 

UNDEFINED IDENTIFIER 

UNEXPECTED PARENTHESIS ENCOUNTERED 

UNEXPECTED KEY WORD TOKEN SYMBOL ENCOUNTERED 

UNEXPECTED SEMICOLON ENCOUNTERED 

SET MUST APPEAR IMMEDIATELY AFTER DATA SET DESCRIPTION 

UNORDERED EMBEDDED DATA SET MAY NOT HAVE AN ACCESS PATH 



/ 

Appendix E. COBOL EXTENSIONS 

The COBOL Procedure Division has been extended to provide an interface between a COBOL program and 
a data base. A brief synopsis of these extensions is given in table E-1. 

Table E-1. COBOL Extensions 

Extension Definition 

OPEN Used to open a data base for subsequent access and to 
specify access mode. A data base can not be accessed until 
it has been opened. 

FIND Used to read a record from a data set. 

MODIFY Same as FIND, except the record is locked against 
concurrent modification by another user. 

STORE Used to write a new record into a data set or to replace an 
existing record in a data set with a modified copy of that 
record. 

DELETE Used to remove a record from a data set. 

FREE Used to unlock a record. 

CLOSE Used to close a data base when further access is no longer 
required. 

CREATE Used to initialize the record area of a data set. 

RECREATE Used to initialize the data set, set, and subset items of the 
record area of a data set. All data items remain unaltered. 

INSERT Used to insert a record into a manual subset. 

REMOVE Used to remove a record from a manual subset. 

E-1 



·~ 

/ 

Appendix F. QUALIFYING A DATA BASE DESCRIPTION 

Unique identifiers are required in COBOL programs. If a data set is invoked more than once, different 
internal names must be used in order that items within the data set can be appropriately qualified. 

A variable declaration with the same name as a data base item can be used only if the item is able to be 
uniquely qualified. 

In a selection expression, sets and subsets require qualification if they are not unique identifiers. Data base 
items in a selection expression need not be qualified. 

Example: 

DASDL 

Dl DATA SET ( 
A NUMBER (S); 
B NUMBER (3)); 

Sl ORDERING SET OF Dl KEY (A); 

COBOL 

DB DBASE. 
01 Dl INVOKE Dl. 
01 DA INVOKE Dl. 

WORKING-STORAGE SECTION. 
77 A FIC 99. (Invalid because it can not be uniquely qualified.) 
01 Q. 

03 A PIC 99. (Valid because it can be qualified.) 

PROCEDURE DIVISION. 

MOVE A OF Dl TO L. (Valid.) 
FIND Sl OF Dl AT A = L. (Valid.) 
MOVE A TO L. (Insufficient qualification of A.) 
FIND St AT A = L. (Insufficient qualification of Sl.) 
FIND Sl OF DA AT A OF DA = L. (Valid but A need not be qualified in a selection expression.) 

F-1 



Appendix G. B 1700 - B 6700/B 7700 DMSII COMPATIBILITY 

The relationship of B 1700 DMSII to B 6700/B 7700 DMSII is as follows: 

a. B 1700 DMSII is a logical subset of B 6700/B 7700 DMSII. 

b. Any COBOL constructs used to access B 1700 DMSII are syntactically and semantically com
patible with B 6700/B 7700 DMSII. 

c. Any physical data bases developed on the B 1700 DMSII are not compatible with B 6700/B 7700 
formats. 

d. The ordered embedded data set, together with its access set of B 1700 DMSII, is not supported 
by B 6700/B 7700 DMSII. However, the identical COBOL capability is provided by making an 
ordered embedded data set an unordered embedded data set together with a set on B 6700/B 7700 
DMSII. 

e. The physical mapping algorithms on the two systems differ significantly and the physical mapping 
parameters should be reviewed carefully prior to transfer from B 1700 DMSII to B 6700/B 7700 
DMSII. For example, B 1700 DMSII SPLIT FACTOR, STORAGE, and PRIME generate warning 
messages, and are then ignored on the B 6700/B 7700 series systems. 

f. Ordered and retrieval set types are not meaningful on B 6700/B 7700 DMSII. They produce a 
regular B 6700/B 7700 DMSII set. 

g. DASDL Parameters differ significantly, and there is no direct correspondence between B 1 700 
DMSII and B 6700/B 7700 DMSII. 

Data bases should be remapped and must be reloaded at the time of transfer to B 6700/B 7700 DMSII. 
However, any DMSII statements in COBOL programs developed for B 1700 DMSII are valid on B 6700/ 
B 7700 DMSII. 

G-1 



\ 
/ 

Appendix H. DATA BASE EXAMPLE 

INTRODUCTION 

The development of this example follows the same process used in the development of any data base. The 
first step is to become thoroughly acquainted with the problem, the input and data available, and the output 
or information required. What other information might be desired? What are the processing requirements? 
Are there any time critical or volume critical demands? What are the primary requests? What are the 
entities and their relationships? Identify the major properties of each entity. 

The data base example is concerned with the business administration department of a small university. The 
major elements of this example are students (MSF), courses (UNIV-COURSES), and personnel (UNIV
PERSONNEL). The major component of MSF is achievement by quarter (QUARTER). The achievement 
consists of the courses (CORSES) taken in a given quarter (QUARTER). The students (STUDENTS) 
attending, the books (BOOKS) required, and the professor (PROFESSOR) teaching are the major attributes 
of university courses (UNIV-COURSES). University personnel (UNIV-PERSONNEL) are of interest due to 
the courses (CORSES) taught. The supervisor (SUPR) is also of interest. 

The next step is to draw a diagram of the data base similar to the one illustrated in Figure H-1. All major 
entities are shown as boxes, MSF, UNIV-PERSONNEL, and UNIV-COURSES. It is then possible to deter
mine for each major property of these items whether it is a new entity or a relationship between existing 
entities. All new entities become boxes (QUARTER, CORSES, and BOOKS). CORSES is a particular 
student achievement in a particular class in a particular quarter. Thus, it is an entity, not a relationship to 
UNIV-COURSES. 

These entities which have just been added to the data base are connected to their major entities by means 
of a broken line. This indicates that they have meaning only when taken in context of a major entity. For 
example, it is only meaningful to examine BOOKS in context of a particular UNIV-COURSES. 

The output of DASDL code is the final step. Remaining, is the optimization of the data base. There are 
two parts to this: one, optimizing the logical structures, and two, optimizing the physical mapping. The 
addition of ADR is an example of logical optimization. This type of optimization may continue through 
testing of the data base. However, these changes may require changes to any programs which have been 
developed to interface to that part of the data base. 

Modifications to the physical mapping should not begin until after the default mapping has'been reviewed. 
Testing and performance measurement also indicates where optimization is required. However, a permanent 
data base does not exist until all modifications have been made. COBOL programs do not require changes 
for physical optimization, although recompilation can be required. 

Figure H-2 contains a DASDL listing of the UNIV data base; Figure H-3 is a COBOL program intended to 
access the UNIV data base. Also included is an explanation of the identifiers used in the UNIV data base 
example. 

H-1 



SNO 

I 

TYPECOURSE 

H-2 

STUAD (STUDENTS ONLY) 

FACAD_(_FACULTY ONLY) 

ADMAD (ADMINISTRATION ONLY) 

l 
ADDRESS 

ADR 

SSNO 
~ 

MSF 
STUDENTS 

r------
J ~Hl.l L 

I ~~ 
L---, :s~ 

I 
I ti) 

~ 

QUA;rnR 
u 
C) 

I· QTR 

I 
LI 

I 
l 

-- CO RS ES 

UNIV

PERSONNEL 

UNIV-
COURSES 

l 
L_l 

I 
I 

I BOOKS 

Figure H-1. UNIV Data Base Diagram 

SSNUM 

NAME 

CRS-NO 

I 



All the relationships are represented by solid arrows connecting two entities. Thus, STUDENTS, PROFES
SOR, COURSES, and SUPR are added to the data base. GCRS (a pointer to UNIV-COURSES) is also added 
for access to common information about the UNIV-COURSES from a particular CORSES record. 

The address of a student (MSF) or UNIV-PERSONNEL would usually be thought of as a group item with 
the record of MSF or UNIV-PERSONNEL. However, by reviewing the volume of information and the 
infrequent use of the information, the data base may be optimized. All addresses (ADR) are stored in a 
separate data set, with pointers from MSF and UNIV-PERSONNEL to the appropriate ADR. 

The last addition to the diagram is to indicate for each entity and relationship the keys which are of interest. 
These keys allow access to the records in order of key value. The keys of interest are added to the diagram 
by means of short arrows. The new additions are SNO of ADR, SSNUM and NAME of UNIV-PERSONNEL, 
CRS-NO of UNIV-COURSES, SSNO of MSF, LNAME and FNAME of STUDENTS, QTR of QUARTER, 
and TYPECOURSE of CORSES. Of special note is the requirement to access addresses by type of person. 
This leads to the definition of three different access paths to ADR: one for students only, one for faculty, 
and one for administration. These paths are referenced as STUAD, FACUD, and ADMAD of ADR. 

When the data base diagram is completed, the next task is to translate it into DASDL. The mapping is as 
follows: 

a. All.boxes (entities) are data sets; those that are connected by broken lines become embedded data 
sets. Thus, CORSES is an embedded data set of QUARTER which in turn is an embedded data 
set of MSF. 

b. All arrows (relationships) between two entities become manual subsets. For example, PROFES
SOR is a manual subset of UNIV-PERSONNEL. 

c. All short arrows on disjoint data sets having conditions for inclusion become automatic subsets. 
For example, STUAD is the address of only the students. 

d. All other arrows on disjoint data sets are subdivided into those. on which access of the records in 
order of the key value is required, and those which have no ordering requirements. All of the 
former map into ordered sets; the latter become retrieval sets. For example, MSFSET is an 
ordered set providing access to MSF in SSNO sequence. An ordered set also allows access by key 
value. Thus, for example, it is valid to retrieve a MSF record where SSNO = 123456789. 

e. All arrows on embedded data sets are mapped as access sets. For example, TYPECOURSE is 
mapped by CSET of CORSES. 

f. All arrows on subsets add a key structure to that manual subset. 

g. A further requirementadded to the DASDL input is that all courses must have a positive number 
of credits assigned to them, have a class size less than or equal to 60, and have some professors 
assigned to teach the class. This is expressed by the VERIFY clause. The requirement that 
TYPECOURSE and GRADE be known for all students (MSF) CORSES is indicated by the 
REQUIRED option. This is an indication of the validity-checking options available for usage in 
the example. 

H-3 



I UNIV DATA BAii 
1SLUT SXNGL.! 

1U.UPPRU8 
ISFI\,.E STRUCTUR! 

00000100 IXTH?S OASOL. P~OGRAM GIVES !XAMPL.ES 
·00000150 tXOF TH! VARIOUS CONSTRueTs usro IN 
00000260 1XOASDL-TO DESCR?Bl A DATA BAS! 
00000300 1PARAMETERSC 
00000400 BUFFERS a 10 )I 
00000600 UNIV•COURS!~ DATA SET OMAIN FILE" C 
00000700 , CRS•NAM! GROUP ( 
oooooe40 DEPARTMENT ALPHA(2)1 
000009.00 LEVEL NUMB!R(J)1 
00001000 CRS•NO NUMB!R(4))1 
06GOl100 NOPROF NUM8ERC2)1 
00001200 DAVS•OF•WEEK GROUP ( 
00001300 MON NUMBERCt)I 
00001400 TUES NU~BERCt)J 
01001500 WEDS NUMBER(l)J 
00001600 THURS NUMBERCt)J 
00001700 FRI NUMBER(t)I 
00001800 SAT NUMBERC1))J 
00001QOO BUILDING NUMBER(J)J 
00002000 ROOMNUMBER ALPHA(l)J 
00002100 COURSENAME ALPHA(24)J 
00002200 FLAG•8ITS ALPHAC12)J 
000~2300 HOURSCRDT NUMBERC4)J 
0000?.400 C~ASS•SIZE NUM8ERC2)J 
00002500 P?OFESSOR SUBSET OF UNIV•PERSONNEL1POPULATION a 3J 
00002600 BOOKS UNORDER!O DATA SETC 
00002700 LC NUMBERC•)J 
0000?800 TlTLES ALPMA(60)J 
00002900 AUTMR A~PHAC30))1 
00003000 STUOENTS SUSSET OF M8F KEV IS 
00003100 CLNAME,FNAME)OUPLICATES, 
00003200 POPULATION c 300) 
00003700 POPULATION • 1000 
00003750 VER?FV((~OURSCRDT GTR 0 ANO CLASS•S!ZE LEQ 60) AN~ NOPROF NEQ O)J 
00003800 UNIV•C•SEf ORDERED SET OF UNIV•COURSES KfV IS CCRS•NO)J 
0000390-0 UNIV•PERSONNEL DATA SET( 
00004000 NAME GROUP( . 
0~004100 LA8TNAME ALPHA(15)J 
00004200 FIRSTNAME ALPHA(tO))J 
OOOOU300 SEX NUMB!R(t)J 
00004400 A~E ~uMeER(2)J 
00004SOO SSNUM NUMBER(9)1 
00004b00 OPT ALPHA(4)J 
00004700 ~ANK ALPMA(t)J 
00004800 ~ALARY NUMBER(S71l)J 
00004•00 COURSES SUBSET OF UNIV•COURSES1POPULATION • 8, 
00005000 ADORES SUBSET OF AO~J 
00005100 SUPR SUBSET OF UN?V•PERSONNEL)J 
00005200 SS•U•P ORDERED SEt OF UNIY•PER$0NNEL KEV IS CSSN~M)J 
00005300 U•P•SET ORDERED SET OF UNIV•PERSONNEL KEY IS 
00005350 CLASTNA~!,FIRSTNAME) OUPLICAT!SJ 
00005400 MSF DATA SETC 
00005500 SSNO NUMBER(q)J 
00005600 NONAM NUMBERCt)I 
00005700 LNAME ALPHA(JO)I 
ooo~seoo MNAME ALPHAC30)J 

Figure H-2. DASDL Program Example (Sheet 1) 

H-4 

i 

( 
• I 
I 

' .f 
• 
• ' 
'-.. 

I 
I 
I 

I 

.• 
I 
I 
I 



J 

0000"900 
0000000 
0000•100 
oooouoo 
oooo•:ioo 
00006400 
00006'00 
00006600 
oooonoo 
OOOOHOO 
0000000 
00001000 
00001100 
00001200 
00007300 
00001uoo 
0()007!500 
00007600 
00007700 
ll.Oot11eoo 
oooonoo 
00008000 
ooooeon 
000080U 
00008100 
00008200 
00008300 
00008400 
00008500 
ooocie&oo 
00008700 
0000'8800 
0000&850 
00009000 
OOOO'flOO 
OOOO'f200 
0000000 
00009400 
00009500 
00009600 
OOOO'f700 
00009800 
0000050 
OQ009900 
00009910 
00009'f20 
00009930 
00009940 
00009950 
000099bQ 
OM i O!§no 
00010600 
00010650 
00010700 
00010800 
00010850 
00010900 
00011000 
00011100 
00011150 
00011200 

'NAME. ALeHUJOU 
CAMPU$•ADDR!•8 GROUP( 

DQRM ALPHA(t)I 
ROOM .NUMHR C 4) J 
POBO~ NUMHR C 4)' 
PHONt N~M~!R~7))1 

NO NUMHAC2U 
D!GR!! ALPHA(~) OCCURS 6 TIMESJ 
TOTM~S NUM8!RCJ)J . 
TOTQP NU~B!R(J)J . 
GRADl•POtNT•AVG NUMB!R(J,2)1 
MJR NUMBEl'H:S> f 
AMJR Al.PHACUU 
tSEX NUMB!AC1)1 
UG! NUMU:AC2U 
HOME•AODRESS SUBSET OF ADRI 
QU•RTER . ORDERED DATA SETC 

QTR Al.PIO (10 I 
QTTRHRS NUMBER(2)J 
~TRQP NUMBERC2)t ~ 
CQRSIS ORDER!D OAU S!TC) 

TVPECCURS~ NUM8ERC1) REQUIREDJ 
GRAD~ ALPHAC2) REQUlR!OJ. 
CRS SU8$!T OF UNIV•COURSESI 
YR NUMBER(i!)J 
Q NUM$!RC2)1 
GCRS SUBSET OF UNIV•COURSESJ 
GGD Al.PHAC2)1 
TITLE•OF•PAPER ALPHA(30)1 
PPRGrj AL.PHld!l~~ 
POPULATION • 'I) 
CSET ACCESS TO CORSE! KEY 18 

CTYPECOURS!) DUPl.ICATES)
POPULATION a 50001 . 
QS!T ACCESS TO QUARTER KEY IS CQTR))I 

MSFSET ORDERED SET OF MSF KEY IS (SSNO)J 
A 0.R 0 AT A SET ( 

FACULTV•STUOENT NUMBER(\)J 
SNO NUMBERCq) REQU?R!OJ 
AOLN ALPHAC54) OCCURS q TIMESJ 
ZIPC NUM8ER(5) REQU?REOI 
PHON NUMBERCtO))J 

SAO ORDERED SET OF AOR KEY IS CZIPC) DUPLICATESJ 
SSAO ORO!REO SET OF ADA KEY IS (SNO)J 

STUAO SUBSET OF AOR WHERE CFACULTV•STUOENT F.QL 1) KEY IS CZIPC,SNO) 
OUPLICATESI 

FACAO SUBSET OF AOR WHERE C,ACULTV•STUOENT EQL 2) KEY IS CZIPCrSNO) 
OUPLICHESI 

AOMAO SUBStT OF AOR WHER!(FACULTY•STuoENT EQL 3) KEV IS CZlPC1S~O) 
OUPLICATESJ 

BOOKSC 
ARE.SIZE • SOO, 
TYPE a UNORDERED LIST, 
BLOCl<SU! • 5)' 

BOOKFILE STORAGE FOR BOOKS( 
TITLE • UNIV/1.IBRAAY, 
.ARE.AS • tO)J 

UNIV•C•SETC 
TABLESIZE • 12. 
ARUSIZE •• 101 
TVP! • INDEX SEQUENTIAL, 

Figure H-2. DASDL Program Example (Sheet 2) 

H-5 



00011300 I LOADFACTOR • 9), 
00011400 IUNIV•PERSONNELC 
00011450 I PRIME, 
00011500 I POPUL~TION • 997)1 
00011~00 IINITIALIZEI 

H-6 

UNIV•COURS!S DATA SET I 
ST~UCTURE NUMBER l 
PRIM! • O 
BLOCKSIZE • 2 RECORDS/BLOCK 
ARUUZ! •- 292 RECORDS PE~ AREA 
POPULATION • 1000 RECORDS 
DATA&IZ! • 424 SITS 
~lCOADSIZE • .61~ SITS 
BITS PtA'8LOCK • t232 

UNIV•C•SET INO!X sEQu!NTJAL SET r 
STRUCTURE NU"l!R 7 
PRIM! • -1 
TABl,.EUZ! CCOAASt!) • 14 ENTRIES 
TABLESlZEC'fNE) • 12 ENTRIES 
AAEASIZ! • 10 TABLES PER,AR!A 
LOADFACTOR • 8 PERCENT 
SPLITFACTOR • 50 PE~CENt 
ENTRYSUECC,OARS!). 4·0 ens 
ENTRYSIZ!(FINt) • 48 8%TI 
BITS P!~ S~OCKCCOAR$!) ~ !76 
BITS PER BLOC~CFIN!) ·~ sq2 

FtL! INFORMATION I 
Ftl,,;! ~MHR 2 
U!U Ii· 20 
AR!AS?Zt • 1~6 SEGMENTS 
PAC·1< • 
TtTL! •' UNtV /UNJV•COURI 

PAOFUSOi:t UNORO!R!Q L.UTI 
ITRUCT~R! NUMB!R l 
AR!At!Z! • 50 R!CORDI P!~ AR!A 
TABLfl!~I • 41.!NfRill. 
&LOCK8I%1 t .8 R!COROS/ILOCK 
DtTAStZ! • 32 8!Tt 
~!COROSIZ! • · l41t Jl'I 
ENT~YS1Z! • . JI BXTI 
BITS ~!" BlOCK • llS•o 

Figure H-2. DASDL Program Example (Sheet 3) 



AREASIZE • 7500 RECORDS PER A~EA 
TABLESlZE • 2 ENTRIES 
BLOCKSIZE • 1 RECORDS/BLOCK 
DATAS?ZE • 32 BITS 
RECORDSIZE • 1oq~ SITS 
ENTRVSIZE • 512 BITS 
BITS ?ER BLOCK = 1128 

FILE INFORMATION I 
FIL.E NUMBER 4 
AREAS • 20 
AREASIZE • 7500 SEGMENTS 
PACI< • 
TITLE • UNIV /STUDENTS 

UNIV•?ERSONNF.L DATA SET I 
STRUCTURE NUMBER l 
PRIME • 1 
BLOCKSIZ£ • 2 RECORDS/BLOC~ 
AREASIZE • 11q2 RECORDS P!R AREA 
POPULATION • qq7 R£CdRDS 
OATASIZ~ • 320 BITS 
RECORDSt~E • 512 BITS 
BITS PER BLOCK • 1024 

FILE tNFOR~ATION I 
FJl.E NUMB!R 5 
ARUS • 20 
AREASIZE • 5'6 SEGMENTS 
PACI< • 
TITLE • UNIV IUNIV•PERSO 

COURSES UNORDERED LIST t 
STRUCTURE NUMBER 8 
AR!ASIZ! • 125 RECORDS PER AREA 
TABLESIZE • 42 ENTRI~S 
BLOCl<SIZE • 4 RECORDS/BLOCK 
OATASIZ! • 32 BITS 
RECOROSIZ! • 1416 BITS 
ENTRVSIZE • 32 BITS 
BITS PER BLOCK • S6q6 

FILE INFORMATION I 
nl.E NUMBER· 6 
l!l!AS. • lO 
AREASIZE • 125 S!GM!NTS 
PACI< • 
TITLE • UNIV /COURSES 

l0DR!8 UNORDERED LIST t 
STRUC1UR! NUM8!R • 
AROSU! • U$. RECOR~I PER. AREA 
TAl~!SlZ( 1 42 !NTRlES 
l~OCl<SlZ! • 4 RECORDllBLOCI< 
~•TA81ZI • JI BtTI 

Figure H-2. DASDL Program Example (Sheet 4) 

H-7 



H-8 

'%LE INFORMATION I 
FILE NUMB!R 1 
OUI • 20 . 
•RUSIZ! :• 125 S!G!iol!NTI 
PACI< • 
TITLE • UNIV IADDR!I 

IUPR UNOADEREO LIST f 
STRUCTURE NUMBE'R tl 
AREASIZ! • 125 RECORPS PER •REA 
TABLE$1ZE • 42 ENTRIES 
8LOCKSIZ! • 4 RECORDS/BLOCK 
OAtAIXZE • 32 BITS 
RECOROSIZ! • 1416 BIT$ 
!NTRYSIU: • . :s.I ens 
BITS PER BLOCK • 56q6 

FILE ?~FORMATION I 
Fii.! NUMBER 8 
AREAS ii 20 
•REASIZE • 1Z5 SEGMENTS 
PACK • 
TITLE • UNIV ISUPR 

MSF OATA SET I 
STRUCTURE NUMBER 6 

=~~~:S~~= • 1 RECORDS/BLOCK 
AREASIZE • 11q1 RECORDS PER AREA 
POPULATION • 10000 RECORDS 
DATASIZE • 1216 BITS 
RECORDSIZE • 14t4 BITS 
etTS PER BLOCK • 1404 

MSFSET INDEX SEQU'.NTIAL SET t 
STRUCTURE NUMBER 1q 
PRIME • 1 
TABLESIZECCOARSE) • 143 ENTRIES 
TABLES?ZECFINE) • 1lq ENTRIES 
AREASIZE a 12 TABLES PER AREA 
LOADFACTOR • 66 PERCENT 
SPLITFACTOR • 4q PERCENT 
ENTRVSIZECCOARSE) • &O BITS 
ENTRVSIZECF?NE) • 12 B!TS 
BITS PER SLOCKlCOARS!) • 8596 
BITS PER Bl.OCKCFIN!) • 8584 

FIL! INFORMATION I 
FILE NUMBER 9 
AREAS • 20 
AREASIZ! • 1263 SEGMENTS 

Figure H-2. DASDL Program Example (Sheet 5) 



) 

PACK ·• 
TITt.1.111 UNIV 11-iS, 

HOM!•ADDUH UNORO!RED l.UT I 
tTAUCTUR!' NUMB!~ 14 
AR!At!Jt • . 121 RECORDS PER A.REA 
hBLUIZ! • 42' ENTAUS 
BLOtl<SIZ! • 4 RECOAOSIBLOCK 
DATAS!ZJ • J2 BITS 
R!CORDSIZt • 14te BITS 
!NTRYSIZ! 1 32 BITS 
BITS PER BLOCK • 5•qe 

'IL! INFORMATION I 
Ftl.! NUMBiR 10 
ARUS 1 20 
AR!ASIZ! ~ 125 S!GM!NTS 
PACI< • 
TITLE • UNIV /HOM!•ADOR! 

CRS UNORO!R!O LIST I 
STRUCTURE NUMBER 17 
AR!AIIZ! • ••32 RECORDS PER AREA 
TABL.ESXZE • 42 ENTRIES 
BLOCl<SIZE • 4 RECOROSIBL.OCI< 
OA.TASIZE • 32 BITS 
RECORDSlZE • 141b BITS 
ENTRVS!ZI • 32 BITS 
BITS PER BLOCK • 5eq6 

FILE INFORMATlpN 1 
,-IL.! NUMBER 11 
AREAS • 20 
AREA.SIZE • •632 SEGMENTS 
PACK • 
TtTLE 1 UNIV /CRS 

GCRS UNORDERED LIST I 
STRUCTURE NUMBER 18 
AREASlZ! 1 q632 RECORDS PER AREA 
TABLESlZE • 42 ENTRIES 
BL.OCl<UZ! • 'I R£COR0S/Bl.-OCI< 
DATA.SIZE • 32 BITS 
RECOROSIZE • 1416 BITS 
~NTRV8l%! • . 32 BITS 
BITS PER BL.CCI< • 56q6 

FIL! tNFORMATION I 
'1L! NU"1!!R 12 
A.REAS • 20 
AAEASIZ! • 9&32 S!GM!NTS 
PACK. • 
TITLE • UNIV /GCRS 

Figure H-2. DASDL Program Example (Sheet 6) 

H-9 



H-10 

eoR••• ORO!REO LlST I 
STRUCTURE NUMB!R 16 
AREAS?!! • 1433• RECORDS PER AREA 
TABLEIU! • 3 ENTfU!S 
81,.0Cl<UZ! • . . 1 R!COADSIBLOCI< 
OATASIZ! • 3t2 BITS 
R!~ORDUZ! • 131J2 BITS 
!NTR,S?Z~ • 440 8ITS 
BITS. PER BLOCK • 1424 

'ILE-IN,OR~ATION I 
'ILE NUMBER U 
AREAS.• 20 
AA!ASlZ! • 1433• SEGMENTS 
PACI< ·• 
THI..! • UNIV /COIUES 

QUARTER OROEAED LIST I 
STRUCTUR~ NUMBER 15 
AREAtIZE • 20850 RECORDS PER AREA 
TJ•LESIZE • 12 ENTRIES 
BLOCl<SttE • 1 RECORDS/BLOCK 
OATUUE • 48 BITS 
RECORO!IZE • 1416 BITS 
EN.TRVUZE • 112 BITS 
BITS PER BLOCK ~ 1448 

'!LE INFORMATION I 
'IL! NUMBER U 
AREAS • 20 
AR!ASlZ! • 0700 S!GM!NTS 
ltACI< • 
TITLE • UNIV /QUARTER 

AOR DATA S!T I 
STRUCTURE NUMHR 10 
l'RlM!'• 0 
&LOCKl11! a l R!CORDSIBLOCK 
ARUUZ! • •to REC.OROS ·Ph AR!A 
POPULATION • toooe RECORDS 
OATAS!ZE • s•ee BITS 
RECORDStlE • l•&e BlTS 
ens PER BLOC!< • nee 

SAO lNO!X S!QUENT?AL S!T I 
STRUCTUR! NaMBER 20 
FtAIME • ti 
TABL!llZE (C()ARt!) • 12• !NTR!U 
TABt..EllZ!C,tNE) ·a 101 ENUJU 
ARIA!ll! '.Ill . U TABl.!9 P!R AR!A 
1.0AQP' ACTOR • . . U P!RChtT 
SPL.?Tf'ACTOR • 4' P!RiC!NT 
!NYR.Y9JUJ.eo.•Rt!) • ·. 44, l?TS 
tti'fR.'f:•ltZ!'<f'tN!) • .... ·.·•. t• It TS . ans ftc!JI ILOCl<CCOAR.tf);.. :9•'2 
IJT:S Pf~;;l~OtK(,lNll ·•· •<l.72 

Figure H-2. DASDL Program Example (Sheet 7) 



it'll..! NUMH:R U 
•RU$ • 20 
ARUUZ! •• 2714 · 9!GMENT8 
PACK • 
TtTL.£ • UNtV IAOR 

SSAD lND!X t!~U!NTtAL 8!T I 
STRUCTURE NUMBER 21 
PRIM! • 0 
TASl..ES!ZECCOARS!) • 14J !NTR!!S 
tu1..ntU:H'INE> • u• !NTRtU 
4lltEUU! • 9 UBL!S. P!R ARU 
LO•DFACTOR ,. 66 PERCENT 
SPL.!Tfl'ACTOR • 4'J PERCENT . 
ENTRfSIZ!tCOARS!l • 60 8%TS 
!NTRVSlZ!(FfN!) • 72 BtTS 
BITS P!R 81.0C.l<(COARS!) • 89fl6 
ens PER a1.oc1<t,1NE> • esu 

FIL! lNFORMATf ON I 
nL.E NUMBER 1.6 
ARUS • 20 
OUUZ! • · '94 S!GM!NTS 
PACI< •• 
T?TL! • UNfV ·ISSAD 

STUAO !NOtX.S!QUENTtAL SET I 
STRUCfUR! NUMBER 2i 
PR!M! • 0 
U:81..!8U! CC OARS!) • . ti! !NTR?!S 
TASL!S?Z!Cfl'?N!) • 113 !NlR!!S 
AR!AUZ!· • · 10 lABL!S P!R A!lU 
LOADFACTQR • . 66 P!~C!NT . . 
SPl.!TFACTOR a 4t P!RC!~T 
!NTRV!lZ!(C0AR8!) ' 80 etTa 
!NTRVSU!CF.fN!) • •, 88 ans 
BITS PER BLOCl<ttOARS!) • 10016 
ens PER BL.OCJ<ll'·tN!) • •••o 

F!L.E tMFORMATfON I 
F? LE NUM!!R Ut . 
AR·EU • 20 
U!ASU! •· 124 sEGM!NTS 
PACI< • 
T!TL! a UNlV llUD 

FAC'~ fND!X $!QU!NTlAL t!T I 
STRUtTU~! NU~BE~ 23 
P'f'?M! • 0 
TA!Lt9!%!(COA•SI~>~. . . ttt'"·'.INT•Ht·. 
TABL!SU!l,!N!J··~14},; t>U UlTIU!t 
AR!ASfZ!!~. .l,~r:*t;•B\,;l·l:fi!tJt•.A0~!.A. 
L.0AD1ACT01t • •& ll>!RC!NT 

Figure H-2. DASDL Program Example (Sheet 8) 

H-11 



H-12 

'ILf: lNFORMUtO~ t 
'IL.! NVMBER 16 
AFtEU • ·la: 
l~!ASIZ! • . 1•4 S!GM!NTS 
I' ACI< ·• 
1?TL! • UNIV /9SAD 

AOlitAD !ND!IC S!QU!NTiAL HT t 
STFWCTUflt! NUMB!lt 24 
PRIM! • 0 
TABL!SIZECCOAFtS!) •. 1!1 iNTFtlEI 
TA8L.!$?Z!CFlN!) • 11l !NTFtI!S 
APtUUZE • Hl U8L!.S ·PER· AFt!A 
LOAOFACTOFt -~ '' ~EFtC!NT 
SPL.tTFACTOFt • 4~ P!Ft~!NT . 
!NTFtVSIZ!CCOAfltS!) • 80 8lTS 
ENTFtVl?Z!CFIN!) • 8~ B~TS 
BITS P!R BLOCl<(COA~S!) • 10016 
BITS P!Ft BLOCl<CFlNE) • •••o 
FIL! lNFOFtMATI~N I 
'11.E NUMBER U1 
AREAS • 20 
A~!ASlZ! • J•4 SEGMENTS 
PACI< a 
TITLE 1 UNIV ISSAO 

BOOKS UNOROEFt!D LIST I 
STRUCTUFtl NUM8!Ft .. 4 
AR!AIIZ! • !00 FttCOFt~S P!Ft·AFttA 
TABl.1!$U! • l !NTRlU. 
Bl.OCl<SIZE • 5 ~!COFt~SIBLOCK 
DATASIZ! • t60 !?TS 

. R!CORDUU .• 8'2 ens 
ENTFtVIIZ! • 1•0 &ITS 
BtTS P!Ft lLOC~ • · A18A 

'!rt'."'' 

ll'tL! .!Nl'ORMAUON I 
l'?L.E. NUMB!Ft J 
AREAS.• 10 . 
AR!UIH • Soo 9H'M!ii1TI 
PA.Cl< • 
TITL.! • UNlV IBOOtCS 

Figure H-2. DASDL Program Example (Sheet 9) 



. 001001 
b01002 
001 OOJ 
0010041 
001005 
OOH Ob 
00100., 
001008 
OoH10• 
001010 
001011 
001012 
OOiOU 
0010141 
001015 
OOtOU 
00101'7 
001018 
OOlOU 
001020 
001021 
0010U 
0-0100 
0010!41 
001025 
0010H 
001021 
001028 
0()10211 
001030 
001031 
001032 
QO! O!l 

~ 

• 
'* • • • • • • • • • • • • • • • • 

::i:=' 
I -"JJ 

n:rElrr? F I c A T ro N o-rvn1 ON • 
PROGRAM•ID, D~SCOBOLSAMPLE. 
ENVIRONMENT DIVISION, 
INPUT•OUTPUT SECTION, 
FILE•CONTROL 1 

SElECT CARO ASStGN TO ~EADER, 
SELECT MO~lTOR•OMS ASSI~N TO PRINTER, 

DUA DIVISION, 
FILE SECTION, 
FD CARO, 
01 CARD•.REC, 

03 C•TYPE PIC 
03 C•SSNd PIC 
03 C•GRO•PT•AVG PIC 
03 C•SEX PIC 
03 C·AG! PIC 
03 C•QTR PIC 
03 C•TYPECOURSE PIC 
03 C•~RAO! Pit 
03 C•T!TL!•PAP!R P!C 
OJ C•NAME PIC 

FD MON ITOR•OMS, 
O 1 MON ITOR•REC, 

03 MONITOR•EXCEPT?ON 
Ol MONITOR•STATUS•B 
03 MONJTOR•STATUS 
o:J MONITOR•IJERB 
03 MONITOlll•SET 
03 MONITOR•STRUCTURE 
03 FJl.LER 

OATA•BASE SECTION, 
08 UNIV, 
01 MASTER INVOKE MSF, 

9. 
9(9), 
1'111111/911, 
x~ 
99, 
X(4), 
9, 
xx, 
XC30l, 
X(24), 

PI C X(4) 1 

PIC XC20), 
PIC ZZZl1BS, 
PIC XC20), 
PIC xc1n. 
PIC 9(3), 
PIC XC&41l, 

01 MSF DATASET DOL•NUM8ER b 11143t4b 4/ 1/75 
ORDERING KEY MS~SET ODL.•NUMBER 1q 1114314b 41/ 1175 

CSSNO), 
02 SSNO 
02 NONAM 
02 L.l'JAME 
02 MNAME 
02 FNAME 
02 CAMPUS•A~ORESS • 

03 OOFIM 
03 ROOM 
03 POBOX 
03 PHONE 

02 NO 
02 OEGREE OCCURS & TIMES 
02 TOTH~S 
02 TOTQP 
02 GRADE•POINT•AVG 

PIC 
PIC 
PIC 
PIC 
PIC 

11(9) COMP, 
9 COMP, 
x 00). 
XC30), 
X(30), 

PIC X(6), 
PIC Q(4) COMP, 
PIC 9(4l COMP, 
?IC q(7) COMP, 

?IC 911 COM?, 
PIC X(4), 

?IC 999 COll1P, 
FIIC 999 COMP, 
PIC 9V99 COMP, 

Figure H-3. COBOL Program Example (Sheet 1) 

ooo,ooooobb 
[0001 l 000,00000&& 
[0002l ooo,ooooou 
[G003] 000,000008& 

ooo,ooooo9ti 
ooo,000009e 

[00043 000.0000102 
000,0000110 
000,0000112 
ooo,00001u 

[0005] 000,0000171:1 

[000bl 000,00002211 
000,0000224 

[0007] 000,0000212 
000, 0000272 

[0008] 000,0000284 
000,0000324 
000.0000358 
ooo,oonn·H·"' 

cooo9J ooo,oooou9a 

[0010] 000,000~492 
ooo,ooooso1 

coo11i ooo .. ooooso2 
000,0000562 
000,0000&22 
ooo,ooooce2 
ooo,ooooea2 
000,0000094 
00010000&98 
000,0000102 
000,0000110 
000.0000112 
000,0000760 
000.00007&3 

[0012] 000,000076& 



::i:: * I * ..... 
.j::>.. * • 

* 
* 
* 
* 
* • 
* 
* * 
* • 
* 
* 
* 
* 
* • 
* • 
" • • 0010311 
• 
* • 
* 
* 
* 
* 
* 
* 
* 
* * * 
* 
* • 
* 
* 001035 

001036 
ooion 
001038 
0010114 
001045 
001046 
001047 

02 MJR ?IC qqq COMP. 
02 AMJR PIC XC18], 
02 SSEX PIC q COMP. 
02 SAGE ?IC qo COMP, 
02 HOME•ADDRESS SUBSET DOL.•NUMBER 11.1 1114311.!6 4/ 1175 TO 40R 

DOL.•NUMBER 10 11tl.l31116 41 1175 • 
02 QUARTER DATASET OOL.•NUMBER 15 1111.13146 

ORDERING KEY QSET OOL.•NUMBER 15 11J4311.16 
/,II 1175 
I.II 1115 

(QTR). 
03 OTR 
03 QTTRrtRS 
03 QTRQP 
03 CORS!S DATASET DOL.•NUMBER 

ORDERING KEY CSET DDL.•NUMBER 
CTYPECOURSE), 

01.1 TYPECOURSE 
oil GRADE 
04 CRS SUBSET OOL.•NUMBER 17 

UNIV•COURSES OOL.•NUMBER 1 
04 YR 

?IC X(4). 
PJC qq COMP. 
PIC qq COMP, 

16 11143146 Ill 1175 
16 111411116 41 117.5 

PIC 
PIC 

1114314"& 
11til310 

PIC 

q COM?, 
xx. 
41 117S TO 
1.11 117S , 
qq COMP, 

01.1 Q 
011 GCRS SUBSET DDL.•NUMBER 

UNIV•COURSES ODL.•NUMBER 
04 GGD 

PIC 
lB 111ti31Llb 
1 111431110 

p Ir. 

qq C:CIMP, 
Ill 1115 TO 

IJ.I 1175 , 
xx. 

01.1 TITL.E•OF•PAPER 
04.PPR-GD 

nt ADDRESS INVOKE AOR, 

PtC 
?IC 

x (30'. 
)( )( . 

01 AO~ DATASET ODL.•NUMBER 10 
ORDERING KEY SAO DOL.•NUMBER 

<ZIPC) 

11t4311.ib I.II 1175 
20 11'43146 41 1175 

O~OERING KEf !SAO OOL.•NUMBER 
tSNO) . 

ORDERING KEY STUAO OOL•NUMBER 
CZlPC, SNO) 

ORDERING KEY FACAO DOL.•NUMBER 
(ZIPC, SNO) 

ORDERING KEY ADMAD OOL•NUMBER 
CZIPC, SNO), 

02 FACUL.TY•STUOENT 
02 SNO 
02 ADL.N OCCURS q TIMES 
02 ZIPC 
02 PHON 

21 

22 

23 

211 

111431ilb 41 1175 

1111.13140 4/ 1175 

1trt13:4e 4 I 117'i 

111il3t4b 41 1175 

PIC q COM?, 
P!C q(q) COMP. 

P IC X t 5 4) , 
PIC 9(5) CO~P. 
PIC Cl(10) COMP. 

WORKING•STORAGE SECTION, 
77 TOOMANYFXCEPTIONS 
7'1 TRUE 

PIC 9(2) COMP. 

PROCEDURE DIVISION, 
BEGIN•SEC~ION SECTION, 
BEGIN, 

PIC q COMP VALUE »1•, 

OPEN OUTPUT MONITOR•OMS, 
MOVE SPACES TO MONITOR•REC, 

Figure H-3. COBOL Program Example (Sheet 2) 

CO('),coon769 
01iO, 0000772 
001'.0000808 
ooo,ooooeoq 

con131 ono,ooooa12 

coo14l ooo,ooooe12 
-000, or1ooe20 
000,0006822 

coo1s1 oco,ooooe21J. 

ooo,ooooe24 
000,000082(1 

000,0000830 
coo,ooooel2 

ooo,ooooela 
000,0000838 
nor>,ooooeqe 

[001fll OOO,QOOoqo2 

0011,ooooqo2 
00¢, 0000903 
000,0000912 
OOC110001B84 
ooo,oo.01esq 

coo11i ooo,0001qoo 
ooc,0001qoz 

OOCl.10000000 
000.0000000 
000,0000000 
oon,cooooe4 



::c: 
I 

00101.18 
0020&0 
0020b7 
0020(!!8 
0020.&• 
002070 
002071 
002072 
002073 
002071.1 
002075 
00207b 
002077 
002078 
00207• 
002080 
002081 
00208i: 
002083 
002081.1 
00208$ 
00208b 
002087 
002088 
002089 
0020•0 
0020•1 
0020•2 
00200 
0020•1.1 
0020•5 
0020'P6 
0020•7 
002na 
0020•• 
002100 
003101 
003102 
OOJ10.3 
003104 
oonos 

*'ARNING ••• (2!54) 

003108 
003110 
00311\ 
oouu 
003113 
003114 
0031l5 
003116 

IJIARN?NG 0 • • (254) 

OPEN UPDAtE UNIV ON EXCEPTION PERFORM STA1US•ROOLEAN, 
BUILD•MSF. 

OPEN INPUT CARD, 
READ•CARO•LOOP 0 

READ CARO AT END GO EOJ. 
WRITE MONITOR•REC FROM CARD•REC. 
IF C•TVPE a 1 GO 100•CREATE•MSf, 
IF C•TYPE • 2 GO 200•CREATE•QUARTER, 
IF C•TYPE a 3 GO 300•CREATE•CORS!S. 

I~ C•TVPE • I.I GO 400•DELETE•ADR. 
IF C•TVPE • 5 GO SOO•CHANGE•MSF•NAME, 
IF C•TVPE • b GO &OO•CHANGE•GRADE: 
DISPLAY C•TYPE "INVALID CARDTYPE" STOP RUN, 

100•CR~ATE•MSF, 
IF C•SSNO LESS THAN 1 OR GREATER THAN 10 
MOVE "C•SSNO COLS 2•10 MUST BE BETWEE~ 0 AND 11" TO 
MONITOR•REC 
WRITE MONITOR~REC GO READ•CARD•LOOP, 
CREATE MASTER ON EXCEPTION PERFORM STATUS•BOOLEAN, 
MOVE C•SSNO TC SSNO, 
MOVE C•GRD•PT•AVG TO GRADE•POINT•AVG. 
IF C·SEX • "M" COMPUTE ~SEX • TRUE. 
MOVE C•AGE TC SAGE. 
MOVE CwNAME TO LNAME. 
STORE MASTER ON EXCEPTION PERFORM STATUS•600LEAN 
GO EOJ, 
GO TO REAO•CARD•LOOP, 

200•CREATE•QUARTER 1 

MODIFY MSFSET AT SSNO • C•SSNO ON EXCEPTION 
IF DMSTATUSCNOTFOUNO) DISPLAY C•SSNO ttNOT IN MSF" ELSE 
PERFORM STATUS•BOOLEAN, 
CREATE QUARTER ON EXCEPTION PERFORM STATUS•BOOLEAN, 
MOVE C•QTR TO QTR, 
STORE QUARTER. 
GO TO REAO•CARO•LOOP, 

3QO•CREATE•CCRSES, 
MODIFY MSFSET AT SSNO • C•SSNO ON EXCEPTION 
IF DMSTATUSCNOTFOUNO) DISPLAY C•SSNO " NOT IN MSFq ELS~ 
PERFORM STATUS•BOOl.EAN, 
MODIFY QSET AT QTR • C•QTR. 

SEQUENCE ERROR 
CREATE CORSES, 
MOV! C•TYPECOURSE TO TYPECOURSE. 
MOVE ·c·GRAOE TO GGD, 
STORE CORSES ON EXCEPTION PERFORM STATUS•BOOLfAN, 
GO TO REAO•CARO•LOOP, 

'I 0 O•DELE TE:• A"OR, 
MOVE "MODIFY MSFSET " TO MONJTOR•VERB 
MODIFY MSFSET AT JSNO • C•SSNO ON EXCEPTION 
PERFORM STATUS•BOOl.EAN STOP RUN, 

SEQUENCE ERROR 
MODIFY ADDRESS VIA FIRST HOME•AOORESS ON EXCEPTION 

Figure H-3. COBOL Program Example (Sheet 3) 

ooo,uvoooqs 
ooo,oooot1Sll 
ooo,ooco4Sll 
ooo,oooos38 
ooc,cooosle 
ooo,00001ee 
000,00001182 
00(1.-0001018 
000~0001051.i 
000,00010•0 
ooo,0001olfo 
ooo,000112b 
oor,0001u12 
000,0001198 
000,1)001560 
00<',00015b0 
ooo,0001s9& 
ooo,0001b3t. 
oco,0001n3b 
ooo,o-0021eo 
ooo,00021.11.1ti 
ooo,0002t1t10 
00(1,00021.174 
ooo,0002eoo 
coo, 0002602 
ooo,0002b7b 
000,0002930 
000,0002980 
000,0002998 
!'00i00029•8 
ooo, 00033'1ll 
(•00,0003700 
000, 000372b 
000,0001.1012 
00(1,000ll02b 
ooo,ooou230 
ooo,0001.121.1e 
000,000112118 
000,0004591.i 
ooo,ooou11sa 
000,0004981.1 

ooo, 00052"71.i 
000,0005478 
000,0005540 
ooo,ooostio2 
ooo,ooo5eae 
000,0005906 
ooo,OOOS90b 
000,0005906 
000,0000410 

ooo,ooot11.176 



::t 
I 

IF DMSTATUSCNOTFOUNO) GO TO 
PERFORM 8TATU8•BOOLEAN ELSE 

003117 MOVE "DELETE AOR " TO 

REAO•CARO•LOOP ELSE 
PERFORM REMOVE•AODRESS, 
MONITOR•VERS 

003118 DELETE AOCRESS ON EXCEPTION PERFORM STATUS•800LEAN STOP RUN. 
OQ111q GO TO REAO•CARO•LOOP, 

WARNING, 00 (254) SEQUENCE ERROR 

003120 
003121 
003122 
003123 
00312'1 
003125 
OOJlU 
003127 
003128 
oo3uq 
003130 
003131 
003132 
003133 
003134 
003135 
onu·u, 
003137 
003138 
00313q 
0031/.10 
003141 
0031'12 
G03143 
00311.14 
003145 
003146 
003147 
003148 
003149 
003150 
003151 
003152 
003153 
00311$1.1 
003155 
00315& 
003157 
003158 
003159 
0031&0 
OOl.lleil 
001.1162 
0041&3 

REMOVE•AOORESS. 
REMOVE CURRENT FROM HOME•ADORESS ON EXCEPTION 
PERFORM STATUS•BOOLEAN. 

SOO•CHANGE•MSF•NAME. 
MODIFY MSFSET AT SSNO • C•SSNO, 
MOVE LNAME: TO MONITOR•REC. WRITE MONITOR•REC, 
MOVE nNAME IN MSF WAS CHANGED TO" TO MONITOR•REC. 
WRITE MONITOR~REC, 
MOVE C•NAMf TO LNAME, 
STORE MASTER, 
MOVE LNAME TO MONITOR•REC. WRITE MONlTOR•REC, 
GO TO REAO•CARO•LOOP 0 

&OO•CHANGE•GRAO~. 
MOVE "MOOI~Y MSFSET " TO MONITOR•VERB. 
MODIFY MSFSET AT SSNO • C•SSNO ON EXCEPTION 
PERFORM STATUS•~OOLEAN. 
MOVE C•GRO•PT•AVG TO GRADE•POINT•AVG, 
MOVE "STORE MSF " TO MONITO~·VER~. 
STORE MASTER ON EXCEPTION PERFORM STATUS•BOOLEAN, 
GO TO REAO•CARD•LOOP 0 

STATUS•800LEAN, 
ADO 1 TO TOOMANYEXCEPTIONS, 
IF TOOMANYEXCEPTIONS GREATER THAN 10 
DISPLAY TOOMANYEXCEPTIONS "IS TOO MANY EXCEPT!DNS" STOP RUN, 
MOVE ALL "•" TO MONITOR•EXCEPTIO~. 
IF ~MSTATUS (NOTFOUNO ) THEN MOVE "NOT FOUND 
TO HONITOR•STATUS•B, 
IF DMSTATUS (OUFLICATES 
TO MQNITOR•STATUS•B. 
IF DMSTATUS COEAOLOCK 
TO MONITOR•STATUS•B. 
IF DMSTATUS COATAERROR 
TO MONITOR•STATUS•B, 
IF DMSTATUS (NOTLOCKEO 
TO MONITOR•STATUS•B, 
IF DMSTATUS (KEYCHANGED 
TQ MON!TDR•STATUS•B. 

THEN ~OVE "DUPLICATES 

THEN MOVE "DEAOLDCK 

THEN MOVE "DATA ERROR 

THEN MOVE "NOT LOCMEO 

THEN MOVE "KEV CHANGED 

II 

II 

II 

II 

II 

IF OMSTATUS CSVSTEMERROR) THEN MOVE "SYSTEM ERROR " 
TO MONITOP•STATUS•B, 
IF DMSTATUS (IOERROR 
TO MONITOR•STATUS•B. 
IF DHSTATUS CLIMITERROR 
TO ~'ON ITO'" •STATUS •B • 
IF DMSTATUS COPENERROR 
TO MONITO~·STATUS•B. 
IF DMSTATUS CCLOSEERROR 
TO MONITOR•STATUS•B, 

THEN MOVE "IO ERROR 

THEN MOVE 11 Ll~IT ERROR II 

THEN MOVE "0?EN ERROR 

THEN MOVE "CLOSE FRROR 

Figure H-3. COBOL Program Example (Sheet 4) 

ooo,00C1&784 
000,000&848 
000,0000918 
ooo, 0006918 
000,0007402 

000•00074120 
000,0001'120 
000,0007728 
000,0007754 
000,0001111 
ooo,oooeou 
000,0008231 
000, 0008£161 
ooo, 0008&17 
000, 0008&31 
ono,oooee3s 
ono,ooo9oos 
ooo, 0009023 
ooo,oooqo23 
000,0009181 
00(1,0009527 
000,0009553 
ooo, oooqso 
00(•, 0009725 
00(1,00100~1 
000, 001 ()(ljf~ 
000, (;(11 C02tf 
noo, oo 1 ociq3 
oc.o,001oot13 
ooo,001ouc;3 
Ot1(1,C010o17 
ooo.001oee1 
r,00,0010807 
0oc,,on1ot111 
!100, 0010997 
Ol'IO,OC110b1 
\)00,0011187 
!)('1(1,0011251 
OOQ,0011377 
000,0011441 
ooo.00115b7 
OC•C,0011631 
00(1,G0117S7 
OllC:,C011"21 
noo,co11c;47 
01'0 1 CC1201! 
OOP,OCJ!?.137 
(:(>!'\,0012i!'.1'11 
00(1,00123<!7 
:)(• r, • 0 0 1 2 3 c; l 
il (l (, , 0 (; 1 2 5 l 7 
ll<i(l,0012581 



:::r: 
I 

IF OMSTATUS (NORECORD THEN MOVE "NO ~ECOR~ 
TO ~O~JTCO•STATUS•B, 

IF DMSTATUS CINUSE THEN MOVE "IN USE 
TO MQNJTOR·STATUS•B, 
WRITE MQNITOR•REC, 
MOVE SPACES TO MQNITOR•REC. 

~OJ. 

00111 bll 
00'1165 
001.1166 
OOtl 1&7 
00t1168 
0011169 
004170 
00t1171 
00t1172 
004173 
qqqqqq 

IF TOCMANYEXCEPTIONS : 0 DISPLAY "NO OM !XCEPT!ON". 

c 0 0 
BYTE 

e: 

CLOSE U~IV O~ EXCEPTION STOP RUN, 
STOP RUN, 
END•OF'•JOB, 

D I c T I 0 N A R y 
LF.i'\IGTH CODEFILE RELATIVE DI SI< AOR ......... ' . ............................ 

000 00001752 000011 
00001752 TOTAL CODE 

0 A T A 0 I c T I 0 N • R y 

BYTE LE"lGTH CODEFILE RELATIVE 0151< .ADR 

••••••••••• I t I I t I I I I I I I t I I I I t I ,- t I I I I I 

000 00001211 000003 

p A T H 0 I c T I 0 N A R y 
INVOKED STRIJCTUREll HH MM1SS MM/DD/VY 
I I I I I I I I I I I I I t I fl a .. . . . ·-. ...... ' . 

000 FALS! 0000 00 00100 00100100 
001 TRUE OOOb 11 4314b 04/01175 
ooz I" AL.SE 001q 11 4314b 04101175 
003 FAl.SE 0014 11 431tlb ()tl/O 1175 
004 TRUE 0010 11 t1314b ()'1101175 
005 l"ALSE 0015 11 4314b Otl/01175 
OOb l"ALSE 001e 11 4314& 04/01175 
001 ,-Al.SE 0017 11 4314& 04/01175 
ooe TRUE 0001 11 4314& 04101175 
OOIJ !"Al.SE 0018 11 431t19 04/01175 
010 I' Al.SE 0020 11 43146 Oli/01/75 
011 FAl.SE 0021 11 43149 OLllO 1175 
OU jr Al.SE 0022 11 43149 Otl/01175 
013 ll'Al.S! 0023 l 1 4310 04/01175 
014 I" AL.St 0024 11 o 1t1e 04101175 

s • !'1 • c H I N E p A 
"' 

A M E T E R s ( s 

LENe.q, SEGBaO, DISPB•11, COPXB•S, COPB•,4~ O,E.F•3S4, BDlSPB•14 
BAS! R!l.ATIVE ADDRESSES1 

DATA•SEGMENT•O•e1&, COP•TABLE•/.10, STACK•8e81 (BIT 1.ENGTH•lOOO) 

c R A T c H 

Figure H-3. COBOL Program Example (Sheet 5) 

p I\ 0 ) 

O•'O,CCl2707 
nn!'l,C012771 
ou,, oc 12e97 
O<C,0012961 
oor,cr113o87 
c0n,co132u3 
c· o o , o o 13 es 1 
00(),00132711 
Ollli,0013604 
OCCuC'Cl3974 
() (• () , (i () 1 4 (\ 1 4 



:::c: P R 0 G R A M P A R A M E T E R B L 0 C I< 
I 
~ ,!RST•EX!CUTABLE•tNSTRUCTION•O,O 

!NTERPRETER•NAME•COBOL /lNTERP 
STATtC•CORE•~&88 BtTS 
DYNAMIC•CORE•O BITS 
DATA O!CTIONARY STARTS AT CODEFILE SEGMENT 2, 1 ENTRY 
COD! DICTIONARY STARTS AT COO!FILE SEGMENT 10, 1 ENTRY 
FILE PARAMETER BLOCKS START 1T CODEFILE SEGMENT 211 2 E~T?IES 
PATH DICTIONARY STARTS AT COOEFILE SEGMENT 23, is ENTRIES 

LAST ERROR AT SEQUENCE NUMBER • 3 ~ARNINGS 3 SEQUENCE ER~ORSo 
***** COMPILATION COMPLtTE 
!LAPSED TIME I 01 MINUTE, 4& SECONDS 
P•OGRAM ~!QUIRES 23 O)SK SEGMENTS OF 180 BYTES EACH, 
MEMORY REQUIREMENTS 

0001792 BYTES • LARGEST CODE SEGMENT 
0001111 BYTES • BASE•TO•LIM!T AREA 
0000315 BYTES ~ DICTIONARIES AND RUN STRUCTURE 
0000505 BYTES • FILE BUFFERS & FILE INFO'AREAS • INCLUDES 1~q BYTES C+72 10 !40 IF DIS~) FOR EACH FILE 
000378} BYTES • ESTIMATED MEMORY REQUIRED TO RUN IF ALL FILES OPEN 

i2S SYMBOLIC RECOROS.COMPILEO AT 125.040 RECORDS PER MINUTE. 

001001 
001002 
001003 
001001.! 
001005 
00100b 
001007 
001008 
001ooq 
001010 
00 l 0 l1 
001012 
001013 
001014 
001015 
00101e 
001017 
001018 
00101q 
00101!0 
001ou 
001022 
001023 
001021.! 
001025 
00102b 
0010?.7 
001 t:1;Hl 

IDENTIFICATION DIVISION. 
PROGRAM•IO, O~SCOBOLSAMPLE, 
ENVfRONMENT DIVISION, 
INPUT•OUTPUT SECTION, 
FILE•CONTROL, 

SELECT CARD ASSIGN TO READER, 
SELECT MCNITOR•OMS ASSIGN TO PRINTER, 

DATA OI\llSIOl\io 
FILE SECTION, 
FD CARO, 
01 CA>iO•REC. 

03 C•TYPE 
03 C•SSNO 
03 c .. c;QO•PT•AVG 
03 C•SEX 
03 C·AGE 
03 C•QTR 
03 c .. rVPECOURSE 
03 C•GRAOE 
03 C•TITLE•PAPER 
03 C•NAME 

FD "10NITOR .. 0)14S, 
01 "10NITOR•?EC, 

PIC 
P?C 
PIC 
PIC 
PIC 
PIC 
FIC 
PIC 
PIC 
PIC 

03 M0NITOR•EXCEFTION 
03 ,..,~NITOR•STATUS•B 
03 ~ONITOR•STATUS 
03 MOt-.•TTOR•vERe 
03 M('.11\i!TOR•SET 

x, 
Ciiio 
l( c I.I) • 
9, 
l( l(. 

X(30), 
XC214), 

P!C 
?IC 
PIC 
PIC 
PIC 

x c 4) • 
lt(20), 

zzzcisa. 
XC20l. 
xcp>. 

Figure H-3. COBOL Program Example (Sheet 6) 

t0001l 
[0002l 
[00031 

too 01.11 

[OOOSl 

COOO&l 

[0007] 

[0008] 

000.0000001> 
00(;, OOOOOE:ib 
000,00000&8 
ono,oooooeo 
000, 01)000Q& 
r100, O!'!Ot)OQ8 
\I00,0000102 
ooo, 001io11.p 
000,0000112 
ooo.00001u.1 
000,0000110 

lll){'l,Ci'IOr.?.i4 
t)()(j, 0000221.1 
(l00,0000232 
000' {10011272 
001),00(1026<.I 
oon,0000321.1 



00102q 
001030 
001031 
001032 
001033 .. 

• 
* * 
* * 
* * 
* 
* 
* 
* 
* 
* • 
* • 
* 
* 
* • 
* 
* 
* 
* 
* • 
* • 
* • • 
* 
* 
* 
* 
* • 
* 
* 
* * • 
* * • 

::c: 001034 

I * 
"° 

03 MO~ITOR•STRUCTURE 
03 FILLER 

PIC q('3), 
PIC XCoiO, 

0ATA•8ASE SECTION, 
oa UNIV. 
01 MASTER INVOKE MSF, 

01 MSF DATASET OOL•NUMBER 6 1111.1311.lo 4/ 1175 
ORDERING KEY MSFS!T OOL•NUMBER 1q 1111.1311.le 4/ 1175 

CSSNC), 
02 SSNO 
02 NONAM 
02 LMAME 
02 lo'NAME 
02 FNAME 
02 CAMPU$•ADORESS, 

?IC 
PIC 
PIC 
P?C 
FIC 

9C9l COMI), 
9 CQ"1P, 

X C30). 
XC!O), 
XCJO), 

03 OORM PIC X(o), 
OJ ROOM PIC q(4) COMP, 
03 Poeox PIC 9(1.1) COMP, 
03 PHONE PIC 9(7) COMP, 

02 ND PIC qq COMP, 
02 DEGREE OCCURS 6 TIMES P!C XCl.I), 
02 TOTMRS PIC qqq COMP, 
02 TOTQ~ PIC qqq CO~P. 
02 GRADE•PO!NT•AVG ?IC 9v99 COMP, 
Q2 MJR PIC qqq COMP, 
02 AMJR PIC XC16), 
02 SSEX PJC q COMP, 
02 SAGE PlC qq COMP, 
02 HOME•ADORESS SUBSET OOL•NUMBER 11.1 11t43tl.l6 I.I/ 1/75 TO ADR 

OOL•NUMBER 10 1111.13106 I.I/ 1/75 , 
02 QUARTER DATASET OOL•NUMBER 15 1111.13146 I.I/ 1175 
U~D~RlN~ KEV QSET OOL•NUMBER 1~ 11143146 I.I/ 117~ 

(QTR), 
03 QTR 
03 QTTRHRS 
Ol QTRQP 
Ol CORSES DATASET ODL•NUMBER 
OROERI~G K!V CSET ODL•NUMBER 

C TVPECOURSE), 
04 TVPECOURSE 
04 GRADE 

PIC XCll), 
PIC qq COMP, 
PIC 99 COf'IP, 

lb 11•41146 4/ 1175 
1b 1114311.16 I.II 1/75 

q COMP, 
)(X • 

OM CRS SUBSET DOL•NUMSEP 17 

PIC 
PIC 

11t1.13tl.lb 
1114111.16 

PIC 

4/ 1/75 TO 
I.I/ 1175 I 

qq COMP, 
UNIV•COURSES DOL•NUMBER 1 

04 VR 
04 Q 
01.1 GCRS SUBSET OCL•NUMB!R 

UNIV•COURSES DCL•NUMBER 
01.1 GGD 
01.i TITLE•OF•PAPER 
04 PPRGO 

01 ADDRESS INVOKE ADR, 

PIC 
18 1114311.16 
l 1114311.ib 

PIC 
PIC 
PIC 

qq COMP, 
I.II 1175 TO 

4/ 117'3 • 
)()(. 
X(30), 
)( x • 

Figure H-3. COBOL Program Example (Sheet 7) 

1)00 ,C11)0()3!;8 
000.0000301.1 

100101 ooo.00004qz 
000' 000051'1 

coo111 ooo,ooooso2 
ooo.oooosfl2 
ooo,OOOOb22 
ooo,oooob82 
000,0000082 
ooo,oooofl94 
ooo.o!looo98 
000,0000102 
000,0000110 
ooo, 0000712 
oon, 0000160 
ooo,ooooH3 

too121 ooo,oooo7cc 
ooo,oooo7b9 
000,0000772 
ooo,ooooaoe 
ooo,oooo8oq 

I001ll 000;0000812 

10011.11 ooo, 0000812 
ooo.ooooe20 
000,0000822 

[00151 000,0000824 

000,0000824 
000,0000820 

000,0000830 
00010000812 

ooo,ooooe11.1 
ooo .• 0000838 
ooo,ooooaCJa 



::i:: * I * N • 0 

* • 
* • • 
'* • 
* • • • 
* * * oo l o:n 

00103fi 
001037 
001038 
001044 
001045 
00t046 
001047 
001048 
002066 
0020"'7 
~02068 
00206«> 
002070 
002071 
002072 
002073 
002074 
002075 
002076 
0020'77 
00207(4 
co2on 
002080 
002081 
002082 
002083 
00201'4 
002085 
002086 
002087 
002088 
002oaq 
0020«>0 
0020,2 

01 ~OR DATAStT ODL.•NUMBER 10''11143146 41 117'5 
ORDE~ING K!Y SAD DOL.•NUM!ER 20 11t•3t46 41 1175 

(UPC) 
ORO(RlNG KEY'SSAO OOL•NUMSE~ 21 11143146 41 1175 

C'SNO) 
ORDERING KEV STUAD ClbL.•NUMBER 22 11143i46 4/ 1175 

CZIPC, SNO) 
OFIDERI°NG KEY FACAD OOl•NUt"BEP 23 11143146 4/ 1175 

(UPC, SNO) 
ORDERING KEY AOMAO DOL.!"J\JUMB!R 24 .111"3t4lt 4/ 1175 

<UPC, SNO) I 

02 ~ACUL.TV~~TUDEN' 
'02 SNO 
02 ADLN OCCUR~ q TIMES 
02 UPC 
02 P1'10N 

INORl<ING•-STOFIAGE SECTION 0 
77 TOOMANYEXCEPHONS 
77 TRUE 

PROCEDURE DIVtSION 1 

BEGIN•SECTION SECTION, 
BEGIN, , 

PlC CJ CO'MP, 
lllC CJ(«>) CCIMP,, 

Pre x cso. 
PIC CJ(S) COMF, 
PIC CJ(10) COM!D, 

?JC CJC2) COMP. 
FIC q COMP VALUE TI1", 

OPEN OUTPUT MONITOR•OMS, 
MOVE SPACES TC'! MONlTOR•REC, 
CFEN UFOATE UNIV Olil !!:Xtt:PTION PEFIFOR~ STATUS•BOOLEAN, 

BtJILD•MSF, 
OFEN INPUT CAPO, 

REAP•CARD•L.OOP, 
READ CARO AT ENO GO ~OJ. 
~RITE ~ONITOFl•Fl£C FRO~ C•RD•REC. 
IF C•TYPE • 1 GO 1oo~cREATE•MSF. 
IF C•TYPE • 2 GO 200•CREATE•GUART~~. 
IF C•TYPE • 3 GO lOO•CREATE•CORS!S, 

IF C•TYPE a 4 GO 400•0ElETE••OR. 
IF C•TYll'E • S GO SOO•CHANGE•MSF•NA~E. 
IF t•TYPE a 6 GO eOO•CHANGE•GRAOE, 
DISPLAY C•TYPE "INVALID C4Fl0TYPE" STOP ~UN. 

1 OO•CREATE•t-ISF ~, 
IF C·~SNO LESS THAN 1 OR GREATER THAN 10 
~OVE "~·SSNO COLS 2•10 MUST BE BETWEEN 0 AND 11" TO 
MONITOR•REC , 
WRITE MONlTOR•REC GO REAO•CARD•LOOP. 
CR!ATE ~ASTER CN EXCEPTION PERFORM STATU~·~DrLEAN, 
~DVE C•!SNO TC SSNO, 
~OVE C•GRO•PT•AVG TO GRADE•POINT•AVG, 
IF C•SEX • "M" COMPUTE SSEX • TRUE, 
MOVE C•AGE TO SAGE, 
~CVE t·~iME TO LNAME, 
STORE ~ASTER ON !XC!PTION PERFORM ST•TUS•SODLEAN 
GO TO REAO•CARO•LOO~. 

Figure H-3. COBOL Program Example (Sheet 8) 

coo u,1 ooo, ooooqo2 

ooo,oooo"qo2, 
, 0 0 0 I 0 0 0 0 9'.0 3 

ooo,ooooq12 
-ooo,0001ae41 
0'00.000188CJ 

[0017] ooo.ooouoo 
00-0,00.01902 

000,0000000 
000,00-00000 
000,0000000 
000,00000'81.1 
ouo,oooooqa 
0-001 OOOOl.f54 
00·0,00001454 
ooo,oooosu 
000,0000538 
000,0000788 
ooo,ooooqet' 
000,0001018 
000,00010'54 
ot:10.0001oq11 
0 0 0 • 0 0 0 11) CIQ 
000,0001120 
0 0 O, Q,O 0 11 e2 
00(J,00011qe
ooo,o-001st.o 
ooo,00015f'lo 
000,oooisqb 
oo.o,0001e3e 
i')(j(l, 0001b3b 
00!1,000?lH 
00,),00021.!4b 
ooo.00021.1eo 
,,00, 000211,7£1 
000.0002000 
1100, OOOit.be 
000.0002076 
1)00 I 00029'.\o 



::r: 
I 

N 

002oq3 cOO•CP~ATE•QUARTEA, 
002oqu MODIFY MSFSET AT $SNO • C•SS~O nN EXCEPTION 
002oq5 IF DMSTATUSCNOTFOUNO) DISPLAV C•SSNO "NOT IN MSF~ ELSE 
0020qb PERFORM STAfUS•BOOLfAN, 
0020q7 CREATE GWARTER ON EXCEPTION PERFORM STATUS•SOOLEAN, 
0020Q8 MCVE C•QTR TO QTR, 
002oqq STCRE QUARTER, 
002100 GO TO REAO•tARO•LOOP, 
003101 300•CPEATE•COR!fS, 
0~3102 MODIFV MSFSET ~T SlNO • C•SSNO ON EXCEPTION 
001103 IF DMSTATUSCNOT,OUNO) DISPLAY ~·SSNO " NOT I~ MSF" EL.SF 
00310U PERFORM STATUS•800LEAN, 
003105 MbDJFY ~SET AT QTR • C•QTR, 

WARNING.~,(254) ~EQUENCE. ERROR 
CREATE CCJASES, 

003108 ~OVE C•TYP!COURSE TO TVPECOURSE, 
003110 MOV£ C~GRAOE TO GGO, 
003111 STORE CORS!S ON EXCEPTION PERFORM STATUS•BOOLEAN, 
00311a GO TO REAO•CARO•LO~P. . 
Q03113 400•0£~£TF•AOR, 
003114 MOVE "MOOIFV MSFSET " TO MON!TOR•VERB 
ci03115 ~ODIFY MSFSET AT SSNO • C•SSN~ ON EXCEPTION 
003116 PERFORM STATUS•BOOLEAN STOP RUN, 

WARNING,,,(251.1) SEQUE-t.ICE EPROR 
MoOIFV ADDRESS VI~ FIRST Ho~E-AOORESS ON EXCEPTION 
IF DMSTATUS(NOTFOUNO) GO TO REAO•CARO•LOOP EL8E 
PEPFOR~ STATUS•BOOLEAN ELSE PERFORM REMOVE•A~DRESS, 

003117 MOVE "DELETE ADR " TO MONITOR•VERB 
003(18 D£LET! A~DR!SS ON EXCEPTION PERFORM STATUS•BOOLEAN STOP RUN. 
OQ}ll' ~O TO R!AO•CARD•LOOP, 

WARNING.,,C!~4) SEQUENCE ERROR 
REMOVE'•AODRESS~ 

REMOVf CURRENT PROM MOME•ADDRESS ON EXCEPTION 
PERFORM STATUs•eo~LEAN. 

00l120 SOO•CHANG!•MSF•NAME~ 
003121 MOOlFV "1Sfl'SET AT UNO • C•SSNO. 
003122 MOVE LNAME TO MONITOR•REC, WRIT! MONITOR•REC. 
0031!3 MOVE "NAME ifll MSF WU C!o!ANG!O TO" TD MONJTOR .. REC, 
QUU4 WRUE MO:NltO..!i•fU;c.. . 
003&2! MnvE C•NAM! TO LNAM!, 
00)126 STORE MASTER. 
003127 MOVE LNAME TO MONITnR•R!C, WRITE MONITOR•REC, 
003128 GO TO REAO•CARD•LOOP, 
00312q bOO•tHANGE•~RAD!, . 
003130 MOVE itMOOlFY "1SF8ET 11 TO MON?TOR•V!RB... 
003131 MODIFY MSFSET AT SINO ~ C•SSNO ON !XC!PTION 
003132 P!FtFORt-4 STUUS•B:OOL!UI, 
003133 MOVE C•GRD•PT•AVG TO GRAOE•~OlNf•AVG, 
00313'1 MOVE ''STOA! M8' " ro MONITOR•VERB. 
001135 STO~E ~~STER ON EXC£PTION PER,ORM STATUS•BOOLEANo 
~0313~ GO TO REAO•CARD•LOOP, 
003137 STATUS•BO~LEAN. 
OOSUI ~0'() 1 TO TOOMANV!XC~PUPN._h 

Figure H-3. COBOL Program Example (Sheet 9) 

ooo,0002qao 
ooo,0002q80 
000, 000332& 
ooo,ooo3b!2 
000,0003708 
ooo.onoJ11q4 
00,1, ooouooe 
000, 0004212 
000,0001.1230 
000,0004,?30 
ooo,000L157& 
000.0004940 
000,000490& 

000,00()525& 
ooo,ooos1.1&0 
ooo,oooss2c 
ooo,ooosss4 
ooo,ooose10 
ooo,ooos888 
000,0005888 
ooo,oooss8s 
000,000&392 

000,000&1.158 
ooo,ooo&Hb 
000.000&830 
000,0006900 
000,00011900 
000,0007384 

00010007402 
000,0007402 
000,0007710 
ooo,ooo773b 
ooo, 0007753 
ooo,oooeoo 
000.0008213 
000.0008443 
000,0008$99 
ooo, 0008013 
000,0008811 
ooo.oooso1 
ooo,ooo•oos 
000,0009005 
000,000•10 
ooo,oooqso• 
000, 00.09535 
ooo,ooo9S4ct 
ooo,oooq707 
000,000990 
000,0010011 
ooo,001oou 



::i:: 00313q IF JOOMANYEXCEPTIONS GREATER THAN 10 000,001,,ozs 
I 0031'10 CI SPLAY TOOMANYEXCEPTIONS "ts TOO MANY EltCEPTtONS 11 STOP RUN, ooo,001002s 

N 0031'11 MOVE ALL "*" TO MONITOR•EXCEPTlON, 000,00101.175 
N 00311.12 IF OMSTATUS (NOTFOUNO ) THEN MOVE "NOT FOUN!'> " 000,0010511111 

00311.13 TO MONITOR•STATUS•B, 000,0010&&3 
00311.11.1 IF OMS TA Tue UWP L I C.A TES THEN MOVE "DUeL.ICA!JS " ooo,00101eCJ 
00311.15 TO MONITOR•STATUS•B, ooo,001oes3 
003146 IF DMSHTUS CDUOL.OCI< THE"'I 1<10vE 1'0!ADLOCI< II ooo,0010CJ7CJ 
0 0.311.1 '7 TO MONITOR•STATUS•B, 000,001101.13 
00311.18 IF D~STATUS CDATAUROR Tl'!EN MOVE 1'0ATA ERRO~ II ooo,0011uq 
00314CJ TO MONITOR•STATUS•Bo ooo,001ian 
003150 IF DMSH TUS (NOTLOCl<ED THEN MOVE "NOT LOCKED II ooo,00113sq 

. 0_03151 TO MONIT6R•STATUS•B• 000,00111.121 
003152 IF OMSUTUS (l<EYCHAlvGEO ) TMEN MOVE "l<EY CHHJGEO " ooo,0011s1.1q 
003153 TO MONlTOR•STATUS•B, 000, 0011613 
003151.1 IF OMS THUS CSYSTEMERROR) THEN MOVE "SYSTEM ERROR II ooo,01'117H 
003155 TO MONITOR•STATUS•B, ooo,0011eo3 
003156 IP' l">MSTHUS CIOERROR THEN MOVE "IO ERRO~ u 000' 0011CJ2t; 
00315'1 TO MONITDR•STATUS•B, ooo,0011CJ'll 
003158 IF OMSUTUS CLIMITl!RROR THEN MOVE 11 LIMIT ERROFI II ooo.001211CJ 
00315CJ TO MONITOR•STATUS•B, 1100, 0012183 
0031ft0 JF CMSTATUS COPENERROR TMEN MOVE "OPEN EFIROFI II OOO,Ot'J1230CJ 
OOl.llftl TO MONITOR•ST•TUS•Bo 1)00' 0012373 
001.1162 IF DMSHTUS CCLOSEERROR TMEN MOVE "CLOSE ERFIOR II ooo.00121.1CJCJ 
00/.1163 TO MONITCR•ST•TUS•B, ooo,0012su 
004164 IF DMSTHUS (NORECORO THEN MOVE 111\10 RECOFIO fl ooo,0012&e9 
001.1165 TO MONITOR•ST•TUS•B. 00010012753 
0041&6 IF OMST•TUS !!NUSE THEN MOVE II IN USE II ooo,0012eH 
004167 TO MONITOR•ST•TUS•B, ooo,lloU943 
OOl.IH8 WRITE ¥DNITOR•REC. OOQ10013069 
OOl.IUCJ MOVE SP•CES TO Mr>NITOR•REC, 000,0013225 
004170 EOJ. OOOr001323CJ 
001.11'71 IF TOOMANYEXCEPTIONS • 0 DISPLAY "NO OM EXCEPTION", ooo,oou2s& 
001.11'72 CLOSE UNIV ON EXCEPTION STOP RUN, ooo,oo1358b 
00/.1173 STOP RUN, ooo,001HS& 
qoooqq V~D·OF•JOB, ooo.oo13CJ9& 

C. 0 D E D I C T I 0 N A Fl Y 
BYTE LENGTH CODEFILE RELATIV~ DISK •DR 

........... ·····-······················ 000 00001750 000011 
00001750 TOT•L CODE 

0 A T - D I C T t 0 l\l A R Y 
BYTE LENGTH CODEFlLE RELATIVE DISK ADR ....... , ... t t • ill • • I • I. I I I I I I t e I I a I t I I t I 

000 00001211 00()003 

Figure H-3. COBOL Program Example (Sheet 10) 



p A T ., D I c T I 0 N ,. p v 
INVOKED STRUCTUREli "'M MM SS MM/OD/VY 
I I e I I • • . . . . . . . . . . • • •• • • • ti •••••• 

000 FALSE OO-<iO 00 00 00 00100100 
001 TRUE 0006 11 43 4b 04/01175 
002 FALSE 0019 11 43 4b 04/C1175 
003 FALSE 0014 11 43 4b 04/01175 
004 TRUE 0010 11 43 "" 04/0117'5 
005 FALSE 00 !:5 11 43 46 04/01175 
OOb FALSE I) 0 1 b 11 43 Ab 04/01175 
001 FALSE 0017 11 113 l.ib 04/01175 
ooe TRUE 0001 11 43 4b 04/01115 
ooq l'ALSE OC\ 18 11 43 "" 04/0!/75 
010 FAl.SE 0020 11 t13 "b 04/0.1175 
011 FALSE 01121 11 "3 tlb 04/01175 
012 FALSE l'!022 11 413 4b 04101175 
013 l'ALSE 0023 11 ti 3141" 04/01175 
014 FALSE 0024 ! 1 43146 011101175 

S • M ,. c H x N e: p A i:i A (IA E T E R s c s 

1.Ellle.q, 5EGB:a0, lJISPF.'.:11, COPXB•'51 COF'Ba24, O,E.F•3541 ~OISP!31114 
BASE ~ELATIVE ADORESSES1 

DATA•SEGMENT•011&tb, COF•UBLf11t.10, sr•c1oe&et cen LENGTH•1000) 

p R 0 G R A "'1 p A R A 

FIRST•EXECUT•BLE•INSTRUCTlON•O,O 
INTERPRET~R•NAME=COBOL /INTERP 
STATIC•CORE•9&88 BITS 
OYNAMIC•CORE•O 8ITS 

"' 
E T .E R 

DATA D?CTI04ARY ST•RTS AT CODE,ILE SEGMENT 2, 1 E~TRV 
CODE OICTIONARV RTARTS AT COOEFILE SEGMENT 10, 1 ENTRY 

B L 0 

FILE PARAMETEP 6LOCKS START AT COOEFI~E SEGMENT 21, 2 ENTRIES 
PATH DICTIONARY STARTS AT COOEFILE SEGMENT 231 15 ENTRIES 

c 

LAST ERROR AT SEQUENCE NUMBER 0 3 WARNINGS 3 S!QUENCE ERRORS, 
***** COMPILAT!O~ COMPLETE 
!LAPSED TIME I 01 MI~UTE, 58 SECONDS 
PROGRAM REQUIRES 23 DIRK SEGMENTS OF 180 BYTES EACH, 
MEMORY REQUIREMENTS . 

0001750 BYTES • LARGEST CODE SfG~ENT 
0001211 BYTES • BASE•TO•LIMIT AREA 

c R ,. T c jo1 p fl 0 ) 

K 

0000315 ~YTES : DICTIONARIES AND RUN STRUCTURE 
0000505 BYTES • FILE SUFFERS & Fll.E INFO AREAS • IlllCLUOES 12q BYTES (+72 TO 540 IF DIS~) FO~ EACH FILE 
0003781 ~VTES :a ESTI~•YED MEMORY RF.QUIRED TO RUN IF ALL FILES OPEN 

220 SYMBOL!C RECORDS COMPILED AT 111,840 RECORDS PER MINUTE, 

Figure H-3. COBOL Program Example (Sheet 11) 



UNIV DATA BASE IDENTIFIERS 

ADD RES 

ADLN 

ADMAD 

ADR 

AGE 

AMJR 

AUTHR 

BOOKS 

BUILDING 

CAMPUS-ADDRESS 

CLASS-SIZE 

CORSES 

COURSENAME 

COURSES 

CRS-NAME 

CRS-NO 

H-24 

Points to the ADR data set which contains the address of a 
PROFESSOR. 

A record (ALPHA data item) in ADR data set which may contain 
up to nine lines of addresses. 

A subset pointing to the records in ADR that are administrators, 
and are arranged by zip code, social security number sequence. 

A common address file containing address records of students, 
professors, and administrators. 

A NUMERIC data item which contains the age of university 
personnel. 

An ALPHA data item which contains the name of the subject a 
student is taking as a major. 

An ALPHA data item that contains the name of an author of a book 
which is used in a course. 

An embedded data set. Since the quantity of books used in a 
course may vary, an embedded set is defined to avoid specifying 
one occurrence of a field that occurs several times. An embedded 
UNORDERED data set is useful when the number of records per 
parent record is small. In this case, the parent record is a record in 
UNIV-COURSES. Most courses never use more than two or three 
books. An exception to this would be an English literature course. 

A NUMERIC data item which identifies the building on campus 
where a specific course is taught. 

A GROUP data item containing both ALPHA and NUMERIC 
information of a student's address. 

A NUMERIC data item with a field length of two digits which 
specifies the number of students currently enrolled in.a course. 

An embedded data set within QUARTER data set. Refer to 
QUARTER. Contains records of courses completed during any 
given quarter by a student. 

The name of a course. 

COURSES points to UNIV-COURSES data set, and indicates the 
courses that are taught by a professor. A professor normally 
teaches a maximum of eight different courses. 

A GROUP level item which identifies a record of the UNIV
COURSES data set. 

The symbolic key used to retrieve a record in the UNIV-COURSES 
data set. CRS-NO contains the number that has been arbitrarily 
assigned to a course. 



CSET 

DAYS-OF-WEEK 

DEGREE 

DEPARTMENT 

DORM 

DPT 

FACAD 

FACULTY-STUDENT 

FIRSTNAME 

FLAG-BITS 

FNAME 

FRI 

GCRS 

GGD 

GRADE-POINT-AVG 

HOME-ADDRESS 

HOURSCRDT 

LASTNAME 

Enables the retrieval of a record from the CORSES data set. 

A string of digits indicating the days of the week a course is being 
taught. Each digit in the string has a unique name that can be 
referenced as a single-digit number. 

An ALPHA data item indicating the number of degrees (maximum 
limit is 6) a student may have previously earned. Refer to the 
NUMERIC data item ND. 

An ALPHA data item indicating the department within the university 
in the UNIV-COURSES data set. 

An ALPHA data item which is part of a student's campus address. 

A data item within the UNIV-PERSONNEL data set. This data 
item defines the department of which university personnel are a 
part (Science, Mathematics, or Foreign Language). 

A subset pointing to the records in ADR that are professors, 
and are arranged by zip code, social security number sequence. 

Denotes the type of address record in the ADR data set as follows: 

1. Indicates a student. 

2. Indicates a professor. 

3. Indicates an administrative person. 

An ALPHA data item in the UNIV-PERSONNEL data set which 
contains the first name of a professor. This data item can have a 
maximum length of 10 characters. 

A string of digits that is currently undefined within the data base. 
In the future, the university may want to establish some FLAG 
FIELDS and, at that time, this space could be used . 

• 
An ALPHA data item containing the first name of a student, and 
which is specified to be not greater than 30 characters in length. 

Indicates the course is offered on Friday. 

Points to a record in the UNIV-COURSES data set. 

Grade received for an Undergraduate course. 

Self-explanatory. 

Points to a record in the ADR data set. See ADR. 

The number of hours of credit that can be earned by successfully 
completing this course. 

The last name of a professor, and is an ALPHA data item which is 
in the UNIV-PERSONNEL data set. 

H-25 



LC 

LEVEL 

LNAME 

MON 

MSF 

MSFSET 

NAME 

ND 

NON AM 

NOPROF 

PHON 

PHONE 

PO BOX 

PPR GD 

PROFESSOR 

Q 

QSET 

QTR 

QTRQP 

QTTRHRS 

QUARTER 

RANK 

ROOM 

H-26 

Libra:ryof Congress number for a book used in a course. 

A numeric item indicating the level of a course, e.g., Graduate, 
Undergraduate, Advflllced, or Elementary. 

Last name of a student. 

Indicates the course is offered on Monday. 

A master file of students. 

Retrieve a record from the MSF data set, using symbolic key of 
SSNO (Social Security Number). See SSNO. 

This is a GROUP item. It is the name of a person working for the 
university. It is also a key of retrieval. See U-P-SET. 

Number of degrees previously earned by a student. See DEGREE. 

Number of middle names for a student. (Only the first one is 
carried in the data base.) 

The number of different professors that teach a given course. 

Phone number at HOME-ADDRESS. 

Phone number at student's CAMPUS-ADDRESS. 

Post office box (mail box) of student's CAMPUS-ADDRESS. 

The grade the student earned on a paper written for a graduate 
course. 

This points to the professor who teaches this course. There will 
typically be a maximum of three professors teaching this course. 

Quality points which are assigned to graduate course. Quality 
points may be different depending on the student. 

Retrieve a record from QUARTER data set. 

Identifies the quarter. For example, SU72 would be summer of 
1972. 

The total quality points earned by formula=grade X HOURSCRDT. 
Grade must be converted to numeric value first. 

The total credit hours successfully completed by student during a 
particular quarter. 

An embedded data set embedded within MSF. Contains a record 
for each quarter that a student has attended the university. 

Associate professor, full professor, or department head. 

Part of student's CAMPUS-ADDRESS. 



ROOM NUMBER 

SAGE 

SALARY 

SAT 

SEX 

SNO 

SSAD 

SSEX 

SSNO 

SSNUM 

SS-U-P 

STU AD 

SUPR 

THURS 

TITLES 

TITLE-OF-PAPER 

TOTH RS 

TOTQP 

TUES 

TYPECOURSE 

UNIV-COURSES 

UNIV-C-SET 

UNIV-PERSONNEL 

-
U-P-SET 

This gives the location of where a course is taught (e.g., which 
room in a building). See BUILDING. 

Student's age. 

Normal remuneration. 

Indicates course is offered on Saturday. 

Male or female. 

Social Security of student administration or faculty number. 

Retrieve a record in ADR data set using symbolic key of SNO. 
See SNO. 

Male or female student. 1 if male student; 0 if female. 

Social Security Number of a student. 

Social Security Number. See also SS-U-P. 

Retrieve a record from UNIV-PERSONNEL using symbolic key of 
SSNUM (Social Security Number). See SSNUM. 

A subset pointing to the records in ADR that are students, and are 
arranged by zip code, social security number sequence. 

Points to supervisor (who is also a professor) of this professor. 

Indicates course is offered on Thursday. 

The title of a book used in a course. 

Descriptive title of paper written by a student for a graduate course. 

The total credit hours student has attended. 

The total quality points earned by a student. 

Indicates course is offered on Tuesday. 

Symbolic key of CORSES data set. See CSET. 

The courses offered by this university. 

Retrieve a record from UNIV-COURSES using CRS-NO as a 
symbolic key. 

Data set containing a record for each person working for the 
university. 

Retrieve a record from UNIV-PERSONNEL using symbolic key 
of NAME. See NAME. 

H-27 



H-28 

WEDS 

YR 

ZIPC 

Indicates the· course is offered on Wednesday. 

The year a particular graduate course was taken. 

Zip code for ADR. 



(I) 
c: 

]• .... .... 
0 

-0 
C> 
c: 
0 
c 

(I) 
c: 

-0 
(I) .... .... 
0 

-0 

C> c: 
0 
c .... 
::i 
u 

BURROUGHS CORPORATION 
DATA PROCESSING PUBLICATIONS 

REMARKS FORM 

TITLE: B 1700 SYSTEMS D_A_T_A_. ___ _ 
MANAGEMENT SYSTEM 11 
( DIV!S 11) Reference ·Manual 

--------------·- ·--------

CHECK TYPE OF SUGGESTION: 

0ADDITION 0DELETION 0REVISION 

FORM: 1089_7_9_4 ____ _ 
DA TE : January, 1976 

0ERROR 

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: 

FROM: NAME 
TITLE 

COMPANY----------
ADDRESS 

DATE _____ _ 



STAPLE 

FOLD DOWN SECOND FOLD DOWN 

------------------------~-----------------------------------------------------------------

attn: Publications Department 

BUSI NE SS REPLY MAIL 
First Class Perm it No. 1009; EI Monte, CA. 91731 

Burroughs Corporation 
P. 0. Box 142 
El Monte, CA. 91734 

Technical Information Organization, TIO - West 

FOLD UP FIRST FOLD UP 



, 

Printed in U.S.A. January, 1976 1089794 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	F-01
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	replyA
	replyB
	xBack

