
8 1 8 0 0 I 8 l 1 0 0

" c p M E M 0 R Y H A N A G E M E N T

CUBE XXXII -- Spring 1978

CUBE XXXII
Mexico City
Spring 1978

---- ·-81800/81700
MC~~eaory Hanageaent

MCP MEMORY MANAGEMENT
•

Page 1

The 81800 and 81700 co•puter systeas were designed to cover a
rather broad range of the co•puter market~' In order to cover
this range with a single 01J1:r'at-ing system. it was necessary to
i•Plement virtual storage capabilities and apply the sa•e
techniques used for normal-state programs to the operating syste•
itself.

The •ain memory requirements for any computer system are high~y
dependent on an installation's a~plications and operating
procedure. This fact is even more true of a variable-length
seg•ent. virtual storage system such as the 81800/81700 which
dynamically allocates memory to user programs as it is required.
This type of system is able to keep many more progra•s in •emery
in order to provide higher processor utilization than are
non-virtual systems or virtual machines with fixed page sizes
("partitions">• Since program segments are [<fa-ded only· as·-
needed • the memory requirements for iYrograms on a machine sue h as
the 81800181700 <and the 87600/8770-0/B6800/B6700 systems as well>

--must b-e--stated -i n-rer~m-s---01--a-- •lirort1 ng -s-et-- r-at-her:._t han -either · -- -----
total program size or minimum memory ~equired to run.

The working set for a program is that amount of memory that it
•ost often needs during its execution to op~rate efficiently.
This working set must. of course. include the aemory required for
the functions requested of the operating syste• by the program•
as well as certain operating system functions- required for
overall system control. The working set for the system as a
whole is simply the sum of _.th.e. Hol'.'~i_ng_se_t_s_ _ _f_Q_r____a_lLp_r_o_grams that __
are executed concurrently. If a program <or the system> is
allocated less memory than its working set• it wil! demand
non-present segments at a rate that will cause excessive segment
overlaying and reduced efficiency. When the performance of the
system degrades appreciably due to memory restrictions• the
phenomenon is known as "thrashing". 1

CUBE XXXII
Mexico City
Spring 1978

MEMORY FRAGMENTATION

81800/81700
HCP Me•ory Management Page 2

frag•entation is the failure to allocate all of memory for useful
purposes. Two varieties of fragmentation,, internal and external•
can occur. The type of fragmentation that will occur depends.
respectively. on whether a system uses a paging or a segmentation
mechanism for memory management.

Jn a paging syste• all of •e•ory is divided into equal-sized
pages or partitions. Therefore. 100% of memory is assigned to
usable pages and external fragmentation does not occur. However•
since memory requests typically are of varying sizes. the last
page assigned to a •e•ory request is usually not full. This is
internal fragmentation.

In a syste• based on segmentation• seg•ent sizes are variable so
that only enough memory to satisfy a request is allocated to it.
Therefore• no internal fragmentation exists in such a system.
However. some memory is required as "overhead" for a memory link
to describe each segment. A more serious problem is that an area
of meMory too small for use may become available between two
segments of lile111ory-whTch-are--beiri-g u-sed·.- This is external
fragmentation.

Neither paging nor segmentation is clearly superior to the other.
Each has its advantages and disadvantages. The primary advantage
of paging is that it is straightforward from the point of view of
the operating system. Seg•entation• on the other hand. provides
a much more reasonable structuring of memory since only the space
logically required for a given function is allocated to that
request. The~efore, programmers need not be concerned with
trying to stru'cture their memory requirements into requests that
are exact multiotes of the system's "page size". And the fewer
unnecessary details that programmers have to think about, the
•ore quickly and accurately they can complete their actual tasks.
Segmentation does. however, cause •geography" proble~s for the
operating system because external fragmentation "checkerboards"
•e•orr.

Burroughs has traditionally opted to use segmentation .in its
approach to •emory management, and the B1800/B1700 systems are no
exception to this rule. Therefore• •emory management on
81800/81700 systems is concerned with the algorithms and problems
of segmentation.

CUBE XXXII
"exico City
Spring 1978

WORKING SET

81800/81700
MC~~eaory Hanage•ent Page J

The ter• •working set• refers to the set of all program segments
which are accessed during a specific time inter~al <of arbitrary
length>. The working set for a specific p~ogram is the set of
data <the Run Structure>• files. and code segments which it uses
during such a time interval• plus the •e•ory requirements of the
operating system necessarr ~, perfor• progra•-requested functions
<READ• WRITE• OP(Nj CLOSE• ani-~o forth). The working set for
the entire syste• is simply the sum of the working sets of all
currently active programs. The working set for a program• and
especially for the system as a whole• can and often does change
drastically over successive ti•e intervals as jobs go from one
phase of execution to another. ·

THRASHING

"Thrashing• is the condition which ·exists when the working set.
for a program or set of programs does not fit in real memory.
Specifically• in order to bring in the next ~ode. segment-for a
progra•• the operating system has to_overlay a currently active
code segment. Then that segment has to be brought back in• and

---ano-t-he-r---avt_-ive:.:-_§ e_g11Eu1~;;_~~.t_t;_g:..::_ov c r l_~·-~d ._a_r._d,-:s_9 __ :_i~ r.t h !I.

One of the •ost serious problems conf~onting virtual storage
systems is thrashing. As the amount of memory available for a
constant program•ing task is reduced• the a~ount of degredation
due to thrashing normally appea~s very gradual at first. As the
available memory is further limited <by introducing additional
programs into the system. opening files. requesting additional or
larger code segments• and so forth>• a point will be reached
where the degredation due to overlays increases ~apidly. This is
the point where the procedures- in~h·e- vortin·g set-no-·-longer fit
in •emory and are competing for space. This point• r•ferred to
as the "Thrashing Point"• is shown graphically in figure 1.

Syste• performance suffers drastically when. thrashing occurs.
Throughput degredation of 100% and over is not unusual in such
instances. In fact• in the worst case absolutely nothing gets
done except ~verlays.

CUBE XXXII
Mexico City
Spring 1978 ·

[

•
•
c

u

t

i

0

n

T

i

•
e

.B.18.0Q/B17 0 O._
MC~ Memory Hanage•ent

:rhrashing Point

S y s t e • M e • o r y S i z e

Page 4

--t-UB E-, X X X-1-1
'Mexico City
Spring 1978

GENERAL

-IH~0/81700 ·-
-HCP -Memory Hanage•ent Page 5

No single memory management system is ideal for all situations.
Consequently, the 61800/81700 MCP implements memory manageNent on
three separate levels of sophistication. using two different
algorithms, in order to minimize the impact of •ore complex
•emory management schemes on those installations that do not need
or want it. Installations that are satisfied with lower levels
of the memory management system need not be concerned with the
details of higher levels. This approach also allows users to
ease into the more complex aspects of the •e•ory management
system smoothly, without being forced into an •all-or-nothing"
decision.

LEVEL ONE <FIRST•IN• FIRST-OUT>

The algorithm of Level One is basically a •round robin" Cor
first-in• first-out> memory management scheme. When •available"
•emory space large enough to fulfill a request cannot be found by
the HCP, one or more segments of in-use memory must be

--deal focated-Cover-raye-dr;--uv-erTa-yafiTe memory - is allocated
starting from a "left-off pointer" which is then updated to point
to the next lower segment in memory. Thus• the left-off pointer
sweeps from hi9h to low memory addresses until it reaches the
first memory link, at which time it starts over again from the
last memory link.

"Save" memory space• which cannot be reassigned until explicitly
returned by the program to which it is assigned Cfor example•
FIBS and file Buffers>• is allocated toward the high end of
memory so that it will tend to be pushed together. thereby
reducing the external fragmentation that such "save space"
inherently creates.

t. External fragmentation of memory is minimized since small
available chunks of memory tend to be swept up and used as
the left-off pointer sweeps through aemory.

2. Although a simplistic decision about what segment to
deallocate is made• this decision can be made Quickly.
This is a very important feature• because if enough me•ory
is available to contain the working sets of the currently
active programs• then the first priority of the memory
•anagement system is to get that working set in as quickly
as possible.

CUBE XXXII
Mexico City
Spring 1978

lli.11d1.1n11n1.

JU8..00./Bl 700._
HCP He•ory Hanage•ent Page 6

' -1. The •ost serious flaw of this level is that there is no
straightforward method by which a system user or operator
can deterMine when memory has been overco•mitted
<•thrashing">•

2. The relative activity of a segment ind whether or not it is
currently in use is not considerad Cor even known> when
deciding to overlay that seg•ent. Thereforep code seg•ents
which are no longer in use may be retained while "active"
seg•ents are ov~rlayed.

3. The priority of a progra• using a segment is not considered
when deciding to overlay that segment. ThereforeP code
segments of high-prior;ty jobs are not protected from being
overlayed by segments of lower-priority jobs.
High-priority data comm jobs are a pri•e example of
programs which often suffer because their segments are not
protected from "background" j-0bs.

.CUBE XXXII
Mextco City
Sprtng 1978

81800/81700
MCP Memory Management

LEVEL TWO <FIRST•ll• FIRST•OUT WITH THRASHING DETECTJON>

Page 1

The second level of the •e•ory management system i•ple~ents
detection for the "thrashing" condition. The same mechanism for
deter•ination of what segment to overlay <the "victi• selector">
is used for level Two as for level One. Thrashing detection is
tnvoked following the next CLEAR/START operation by setting the
•THR• MCP option• when SYSTEMIINIT incorporates the thrashing
detection code into GISHO.

When GISH01 which is •onitoring overlay activity, determines that
thrashing is occurring and that it is not a temporary phenomenon.
it notifies the HCP. The HCP then performs the following two
functions:

t. Stops •ore progra•s from being automatically started. This
can be overridden by the system operator by using the "PS"
input •essage to "prod" the schedule. Otherwise the
schedule will not be automatically restarted until some
progra• goes to EOJ.

z. Sends the following •essage to the SPO:

This •essage may be repeated either every time a program
enters or leaves the HIX~ or at every N.SECONO interval• as
long as thrashing continues• depending upon the setting of
the "THRASH" option of the "HH" input aessage.

When the system is shifting from one working set to another <as
programs go to BOJ or EOJ• OPEN or CLOSE files• or move from one
phase of execution to another>• •emory is often overcommitted for
a short period of time. This condition is acceptable provided it
does not persist for too long. One installation may, however, be
willing to tolerate an overcommittment of memory for longer time
intervals than another. for this reason. a means is provided
(through the "THRASHING.SENSITIVITY" option of the "HM" input
•essage> to adjust the sensitivity of the memory management
system's thrashing detection •echanis••

In addition. the •aximum overlay rate that can be tolerated is
highly dependent upon the speed of the disk from whic~ the
overlays are being done. since more overlays can be performed
efficiently during a fixed time interval from "fast" disk than
fro• a •slow" disk. fo~ this reason. a •eans is provided
<through the "QVERLAY.RATE" option of the "HH" input message> to
adjust this maxi•u• allowable value.

_c.uer IXXI I .
. Mexico- City

Spring 1978 ·

.8.1aOG/Bl 700·
·Mc~ Me•ory Manage•ent Page 8

The reco••ended value for the OVERLAY.RATE has been deter•ined
for the various disk types using th&ir average access times
<allowing for fixed MCP overhead required to obtain •e•ory space
and initiate the disk read>, as shown in the following table:

JUll lll.! Ai..t.t.19!. Attu.t D.ll!U!&.Alt

89480 cartridge 80 •S• ·;' 6
89481 cartridge 100- •s .- 5
89482 cartridge 55 •s• 7
89484 pack 3].5 •S• 10
89499 pack 42.5 11s. 8
89371 head-per-track 20 •S• 12
89371 head•per~track 40 •s. 8
89470 head-per-track 5 llS• 15

The default value for OVERLAY.RATE assigned by the HCP following
a COLDSTART operation is ten ClO>.

lslll!lllJUl!.

The advantage of this level ts that system users and operators
will know when their memory is overcommitted and will• therefore•
be able to do a much better job of 11aintainin9 a •ix of programs

-vh;ch at i t;-reTll·O"Sr-oreremory-Ou-r-does n·ot c-ause thrashing to
occur.

llil.ld~ADll!Ull.

The only disadvantage of this level is that approximately 140
•ore bytes of non-overtayable memory are required beyond that of
the Level One •echanism.

CUBE XXXJI
Mexico City
Spring 1978

-a1aoo1e1100
MC~~e•ory Manage•ent

LEVEL THREE <MEMORY PRIORITY WITH THRASHING DETECTIO~> ..

Page 9

This level of the •••ory •anage•ent syste• includes the thrashing
detection of Level Two. but a different •victi• selec~or• based
on Job priority and seg•ent usage. The Pri~rity Me•ory
Manage•ent algorith• is invoked following the next CLEAR/START
operation by setting the "MPRI• HCP optio~• when SYSTEM/INIT
incorporates the new •victi• selector• into GISMO.

In this level• requests for sagmen~s of ••mory are alsigned
priorities which are separate and diltinct from processor usage
priorities <refer to the MEMORY.PRIORITY control instruction
attribute and the MP input message>. No request for memory •ay
cause a seg•ent having a higher •~•ory priority to be overlayed.

In a •fx with varying •e•ory priorities. ~egments of
high•priority jobs which are actively in use are protected from
seg•ents of lower-priority jobs. At fixed time intervals.Cknown
as the SAMPLING.INTERVAL>, GISMO •sweeps• through all memory
lin~s on the·syste• and exaaines a ·"usage" bit in each. This bit
is set by a prograe~s interpreter when the code segment is ·
accessed <f .e • .- code in the segment is -executed-). ,1t'·a··5e-gm-ent
has not been accessed since the previou·s·"'sweep• thou.gti memory•
its ptlo.r:_[t.y_Js __ .lowered by GI~t40 to the _next l_owef'.' 11emory
priority . a"ctive--onthe-sy-stelil-;.·--nie"--se_g_11en"t--r5 .-fhtfo --protected at
that priority for another. SAMPLIN·G.IN·.TERVAL. lf a segment is
accessed at any time before being overlayed• it is restored to
its original 11emory priority. In this way~ seg-ents of
high•oriority jobs are ~rotect~d from those of low-priority jobs•
and unused segments of any job tend to degrade to lower
priorities and get overlayed.

In a •flat mix• <i.e •• a •ix with all memory priorities equal>•
those seg11ents which .are ...ac.ti..v..e.l..yJn use tend to star.--in_atemory
while those segments which are no longer being used tend to be
overlayed. This cannot be made an absolute policy in a memory
aanage•ent scheme based-on seg11entation due to •geography"
proble•s· For eKample• a very small inactive segment which has
been allocated between two active segments •ay remain in memory
longer than it otherwise would because of its location.

A •flat •ix~ has the additional advantage that it approaches the
sf•pficity and efficiency of th_e level T.wo algorithm as the
srste• approaches thrashing.

The HCP sets the SAMPLING.INTERVAL value based upon the Yte1
ae•ory size, as shown in the following table:

!•1ocx 1.11.t

0•261 KB
262-523 KB

524 KB

· jA!!fLl.fili.1.lf.i.llRVAL

8 C0.8 seconds>
10 (1.0 seconds>
12 <1.2 seconds>

CUBE XXXII
"ext co City
Spring 1978

81800/81700
MC,~8e•ory H•nagement Page 10

A •eans is provided <through the •SAMPLING.INTERVAL" option of
the •HM" input •essage> to change t~e rate at which the sweeper
is executed~ although changes fro• the default value should not
be necessary and are not reco••ended.

1. Varying •e•ory priorities will pro~'ct active segaents of
higher-•prtority Job':. atcttt-being ·overlayed by those of
lower-priority jobs.

2. As in ·Level Two~ the syste• operator will know when memory
ts overcommitted and will be ~ble to do a •uch better job
of •aintaining a mix of programs which utiliz~s most of
•eaory but does not cause thrashing to occur.

· 3. Running with equal •e•ory priorities tends to make the
systea run in a •anner approaching that of Level Two• with
the added advantage that unused seg•ents will degrade in
priority and hence tend to ~e overlayed. whi.le •active•
seg•ents will tend to stay in •emory.

lll.1ad.1n1aua
1. APPN>i::-Hi'at-HY:-:.-150-u~e-iiyte·s oT-rron·-over~t-a:yit>'le ·memory are

required beyond that of the Level -two •echanism.

z. If Jobs are run at varying me•ory priorities• external
fragaentation of memory can be increased.

~E .XXXII
Mexico Ctty
Spring 1978

"BU"00781700 '
· MCP Memory Hanage•ent

EXTENDED SEGMENT DECAY .

Page 11

level Three of the •emory management system also allows
protection of specified segments fro• overlay by lower-priority
seg•ents for an extended period of time <gr~ater than the
SAMPLING.INTERVAL> after they were last accessed. This
capability is designed pri•arily to aid data c~•• installations
which have no way of insuring that key sejments of network
-c~ntrollers and other remote applic~tfohs re•ain in •••ory. This
proble• can result in poor response time when low-priority
•background• jobs cause data comm program segments to be
overlayed. It is not .~dvisable to permit such important segments
to be ear ked as •save• < non•ov er layab le.H however• Ex tended
Seg•ent Decay is only a little short of that capability.

There are two aspects to protecting key program segments:

1. Those segments which are to be protected for an extended
--p-erlcfd ·must b·e ident if-ied and marked. ·The •eans for
accoaplishing this is a utility program called
•SYSTEH/HARK.SEGS•.

2. Specification •ust be made of how l~n~ such segments are to
..b..eJ..e..Lain..e .. d.......__I_bj_s__j_s _d_oJ'l.e._b.y.JJLt..t i.ng__.t be pro gr am at tribute
•SECONDS.BEFORE.DECAY" to some value between ~ and 600,
inctusive <refer to the SECO~OS.BEFORE.OECAY attribute>.

The priority of segments which have been marked as important will
not be degraded until and unless those segments are not accessed
for the number of seconds specified by the SECONDS.BEFORE.DECAY
attribute. It should be noted that if SECONDS.BEFORE.DECAY is
set to zero for a particular program. then all of its code
seg•ents <both those marked as important and unimportant> will be
treated as unimportant. Furthermore, SECONDS.BEFORE.DECAY is
coapletely subserviant to memory priority. A segment with a
higher •e•ory priority can overlay a segment with a lower
priority no •atter what the value of SECONDS.BEFORE.DECAY for the
lower-priority job. SECONDS.BEFORE.DECAY sim~ly determines how
long _after a segment was last accessed it will be able to retain
a given priority.

Note that specifying a SECONDS.BEFORE.DECAY value for a program
that has no segments •arked as •iaportant" by SYSTEM/HARK.SEGS
has no effect.

cu•E lXXll.
Me xi co- City
Sprt ng 1978

.81.8-0 Q/ 817 0 o ••
MCP· Me•ory Hanage•ent Page 12

Extended Seg•ent Decay allows data co•• users to guarantee that
key segeents of network controllers and other programs will not
be overlayed by lower-priority jobs for any .fixed period of time
(between O and 600 seconds> after.they are last accessed.

Users of Extended Seg•ent Decay can lock up more •emory than they
really need and the,eby degrade the performance of background
jobs •ore than necess~ry.

CUBE XXXll .
Next co Cfty
Soring 1978

THRASHllG DETECTION

·11aoo1e1100
MCP; >He•ory Manage•ent Page 13

When thrashing detection has been requested <by setting either
the •rHR· or ·HPRI· HCP options and perfo~•ing a CLEAR/START>
SYSTEM/INIT retains in GISMO the code necessary to •onitor .
o~etlay •cti~ity. · -

The logic flowchart presented in Figu~e 2 depicts the general
nature of th~ thrashin~ detection c~de. Certain data names have
been used• so•~ of which actually exist in the HCP and GISHO
code. Other data names are fictitious- merely being used in the
flowchart to represent a specific functio~. Their defi~itions
are as follows:

SAMPLING.INTERVAL A value <in tenths of seconds> computed by
the MCP fro• the system aemory size which
specifies how often GtSHO checks to deter•ine

__ .~h.ethf)r_ thrashing is occ~~!'.i_ng. !~i~ .. ~alue __ .
also specifies how often tbe •sweeper• is
executed <if the-HP.RI .. ootion is set>.

OVERLAY.TARGET -The valtie <in numb-er -o-,-ov-er·Ta-Ys--per ___ .·- -
SAHPLJNG.INTERVAL> computed by the HCP from
the specified OVERLAY.RATE and the
SAMPLING.INTERVAL.

MAX.SWEEP.INTERVAL A value (in tenths of seconds> combuted by
the HCP fro• the THRASHING.SENSITIVITY
specified• eoual to on~-third of
THRASHING.SENSITIVITY. This value also
spec i-f ies-h.o.w-0 f ten t be •sweeper"--i.s...-exe..cut ed
once GISMO determines that the OVERLAY.RATE
has_been exceeded tif the HPRI option is
set>.

OVERLAY.COUNTER A count of the number of overlays that have
occurred. Reset to zero at the end of each
SAMPLING.INTERVAL.

SAMPLING.CLOCK A field th~t is intremented at each TIHER
INTERRUPT until it reaches the ~alue of the
SAMPLING.INTERVAL.

MEM.EXTENO.CLOCK A field that is incremented by the
SAMPllNG.CLOCK at the .end of each
SAMPLING.INTERVAL <if the OVERLAY.COUNTER
exceed~ the OVERLAY.TARGET> until it rea~hes
the va~tue of the MAX.SWEEP.iNTERVAL.

CUBE XXXII
Mexico City
Spring 1978

MEN.EXTEND.COUNT

81800/81700
MCP Me•ory Management Page 14

A counter that is bumped each time the
MEM.EXTENO.CLOC~ exceeds the value of
MAX.SWEEP.INTERVAL. If this counter reaches
a value of three <3>, thrashing has continued
for the length of time specified by the
THRASHING.SENSITIVITY• and GISHO notifies the
HCP of this condition.

References to the •sweeper" are applicable only if the HPRI
option is set <refer to the following section on PRIORITY MEMORY
MANAGEMENT>•

CUBE XXXII
·Mexico City
Spring 1978

81800/81700
MCP~~,·~ry Hanage•ent Page 15

NO

NO

..

IF HPRl OPTION
IS SET, THEN

ENABLE SWEEPER

RESET ME"·EXTEND.CLO~~
AMO HEH.EXTEND.COUNT

RESET OVERL.AV.CQUNTER
AND SAMPLING.CLOCK

IF OVERLAY OCCURS1
THEN 8UKP

OYERLA Y .COUNTER

lF TIMER INTERRUPT
OCCURS, THEN SUMP

SAMPLING.CLOCK

IF SWEEPER IS
ENABLED, THEN

RUN SWEEPE~ ONCE

NO

DISABLE SWEEPER

BUMP HEM.EXTEND.CLOCK
BY SAMPL1NG.CLOCK

NO

RESET
MEM.EXTENO.CLOCK

BUMP
HEM. E XTENO. COUNT

SEND MTHRASHING"
INTERRUPT TO SKCP

IF MPRI OPTION
IS SETr THEN

RUN SWEcPER ONCE

-CU8E-X.X·X-l l
Mexico· City.
Spring 1978.

-tH·800l81700·-
MCP He•ory Management Page 16

PRIORITY MEMORY MANAGEMENT
•

The Priority He•ory Hanage•ent •echanis•• in addition to
providing the thrashing detection capability described earlier.
allows "active" code seg•ents to be protected from overlay by
lower-priority code. In order to prevent the total takeover of
aemory by high-priority code• however~ GI~HO periodically
•sweeps" through •emory and towers the priority of those code

. seg•ents which have not been accessed-since the last time the
sweep was perfor•ed. In this manner• segments which are not
actively used by high-priority programs will be "decayed" until
they reach a point where they can be overlayed by lower-priority
sag•ents.

The logic flowchart presented in figure 3 graphically depicts the
process by which the SWEEPER in GISHO examines each memory link
and decays the priorities of unused segments. Certain data names
have been used• some of which actually exist in the GISHO code.

-Other data names are fictitious• merely being used in the
flowchart to represent a specific function. Their definitions
are as follows:

DECAY.INTERVAL

MEMORY.PRIORITY

CST and PST

A value computed fro• the SAMPLING.INTERVAL
and the SECONDS.BEFORE.DECAY specification
wh1ch spe-c-fffe-s-th-en-umber. of memory sweeps
during which an unused segment will not be
decayed in priority. for example• if the
SAMPLING.INTERVAL is 8 C0.8 seconds> and the
SECONDS.BEFORE.DECAY attribute for a program
is set to zo. the DECAY.INTERVAL for all
"i•portant" code segments is set to 25. In
other words, the code segment is protected
from decay for 25 "sweeps" through memory
<25 * .8 = ZO>. Code segments which have not
been marked as "important~ will always be
•arked with a DECAY.INTERVAL of zero CO>.

The value specified by the MEMORY.PRIORITY
control instruction attribute or the HP input
message.

Two bits in the memory link adjacent to a
seg•ent of me~ory that indicate its "in use"
status. The CST <CURRENT.SCAN.TOUCH) bit is
set by an interpreter whenever progra•
control is passed to the adjacent code
seg•ent. The CST bit is reset only by the
SWEEPER in GISHO. The PST
<PREVIOUS.SCAN.TOUCH> bit contains the
setting of the CST bit from the previous
execution of the SWEEPER.

81800/81700 CUBE XXXIl
Mexico City
Sprf ng 1978

MCP Me•ory Manage•ent

..

l~ITIALIZE ADDRESS
Tn FIRST MEMO~V LlNK

$ET ADDRESS TO
NEXT MEMORY LINK

STORf csr SIT INTO
PST 8IT1 THE~
RESET CST BtT

-
SE1 KE MORY.PRIORI TY1

TO ORIGXNAl VALUE

SET oecA~.lNTERVAL
TO OR~G~NAL VAL~£

Page 17.

SUBTRACT t fROH
DECAY. INTERVAL

NO

LO~ER HEKORY.PRXOR1T1
TO NEXT VALUE

ACTIVE ON SYSTEM

-CVBE-X-X-X-1-1-
"• • ico· city
Spring 1978

·Bt-800-/81700·-
-~CP Memory Management

MM INPUT MESSAGE <He•ory Management>

The MM input •essage allows the system operator to control
certaf n attributes of the HCP He•ory Management System.

The for•at of the HM message is:

OVERLAY.RATE

O.R -
THRASHING.SENSITIVITY

[integer']
T.S

MM -- SAMPLING.INTERVAL

s.1 -
ON

THRASH

Off

Page 18

The MH input message is not allowed if Level One <first-in•
First•out> of the HCP Memory Hanage~ent system is in use Ci.e ••
neither the THR nor the HPRI option is set>.

The OVERLAY.RATE <abbreviated O.R> option is specified in
overlays per second• and may be set to any value between 1 and
ZO• inclusive. The default value following a COLOSTART operation
is 10.

The THRASHING.SENSITIVITY <abbreviated T.S> option is specified
in seconds• and may be set to any value between 10 and &o.
inclusive. The default value following a COLOSTART op~ration is
20.

The SAMPLING.INTERVAL <abbreviated S.t> option is specified in
tenths of seconds• and may be set to any value between 1 and 50•
inclusive. The default value i~ set by the HCP during
CLEAR/START• and is dependent upon the system memory size. This
default value may not be changed by the HM inout message unless
the DBUG option is set <changes to the default value are not
reco•mended>. ,

-euee--x Jt-X-ti·
Mexico City
Spring 1978

. 1tff-QO/Bl700
MCP Me•ory Hanage•ent Page 19

The THRASH option specifies the frequency that the HCP will
display the •SYSTEM IS THRASHING• ~e~sage when the "thrashing•
condition has been detected by GISHO. "ON" specifies that the
•essage will be displayed at each N.SECOND interval Ca variable
period of ti•e determined by the nu•ber of programs in the mix>
as long as thrashing continues. •orr• <the default setting>
specifies that the message will be displayed by the HCP as long
as thrashing continues• but only when a piogra• enters or leaves

·the •tx.

The values assigned to all options <except for the
SAMPLING.INTERVAL> are· retained by the HCP when a CLEAR/START is
perfor•ed• and need not be specified again.

O•itting the value of any option <the integer or "ON"/"OFF">
causes the current value of the option to be displayed by the
HCP •

.t&.uui1Jt.t!

MM O.R
OVERLAY.RATE = 10

MM TRASH ON
THRASHING.MESSAGE ON

"" r.s 15
THRASHING.SENSITIVITY = 15

CUBE XXXII
Mexico City
Spring 1978

llEMORY.PRIORITY

81800/81700
MCP Me•ory Manage~ent Page ZO

The HEHORY.PRIORITY attribute allows specification of the
priority to be assigned to seg•ents of •e•ory occupied by program
code.

The foraat of the MEMORY.PRIORITY state•ent is:

[?] [OBJ] integer_ -
The HEHORY.PRIORITY control word •ay be abbreviated as HP.

The MEMORY.PRIORITY attribute is only allowed when the "Priority
Memory Hanagementw algoritha is being used by the MCP CHPRI
option is set>.

The integer may be assigned a value from zero to fifteen C0-15>•
where zero is the--lowest---;>rior-ity--and fifteen is the highest.

Nhen a program code segment is wmade present" (read into memory>
by the HCP• the me•ory space it occupies is given an initial
priority equal to the MEMORY.PRIORITY of the program. Code
segments of one program may not overlay those of another prograM
which have a higher memory priority. thus allowing more important
program code to b~ protected~ However, code segments that are
not referenced by a program for a period of time <equal to 1.5
times the SAMPLING.INTERVAL on the average, unless the
SECONDS.BEFORE.DECAY attribute specifies a different interval for
segments marked as "importantw> wdecay" to lower memory
priorities• thus eventually allowing them to be overlayed. If a
segment is accessed by a program at any time before being
overlayed• its priority is restored to the original value.

A HEHORY.PRIORITY value of nine <9> or greater is referred to as
a "crashoutw priority• and has a number of additional effects•
If insufficient overlayable memory space for a request having a
crashout priority is available. the HCP will attempt t~
deallocate •save• memory space having a lower me•ory priority.
Such a deallocation is performed on the RUN STRUCTURE <BASE-LIMIT
space> of a lower-priority progra•• and results in an abbreviated
ROLLOUT of the prograe selected as the wvictimw~ This action by
the HCP• termed "crashout•• suspends the •victimw, and writes out
to te•porary disk storage only the program's BASE-LIMIT soace
<not any file or code space>• then makes the space occupied by
the RUN STRUCTURE available to satisfy the mem-0ry request. The
HCP periodically <at each N.SECOND interval> attempts to
reinstate any "victi•w programs that were crashed out.

CUBE XXXII
.Mexico City
Spring 1978

81800/81700
MCP Me•ory Manage•ent Page 21

Note that entering a progra• having e crashout priority in the
ACTIVE SCHEDULE will not cause any crBshout actions to be taken
on running progra•s in order to begin the high-priority job.
Crashout can only be caused by an executing program having a
aemory priority of nine or greater• and whose memory priority is
higher than that of the progra• which is to be crashed out <for
exa•ple. a program with a •e•ory priority.~of 12 cannot cause
crashout on any other progra• with a •emory priority of 12 or
above. but can caus~ any progra• with a •e~ory priorit~ of less
than 12 to be crashed out>.

t&it21~1

EXECUTE A/B MP=8
A/B =3702 BOJ. PP=4• HP=8 TIME = 12:25:37.2

CUBE XXXII
Mexico City
Spring 1978

PROCESSOR.PRIORITY

- 81800/Bl 700
MCPLMe•ory Manage•ent Page 22

The PROCESSOR.PRIORITY attribute allows the syste• operator to
specify the priority to be assigned to processor usage by a
progra•.

The format of the PROCESSOR.PRIORITY stati•ent is:

[?] · C OBJ] ~ROCESSO~PRIORITY~ [=) integer -
The PROCESSOR.PRIORITY control word •ay be abbreviated as PP.

The PROCESSOR.PRIORITY attribute i~ only allowed when the
"Priority He•ory Management" algorithm is being used by the HCP
<HPRI option is set>.

The integer may be assigned a vatu~ fro• zero t~ fifteen <0-15>~
where zero is the lowest priority and fifteen is the highest.

If the PROCESSOR.PRIORITY of a program is set to nine <9> or
greater. the following ac~ions take ~lace:

1. The SCHEDULE.PRIORITY is set to the same value as the
PROCESSOR.PRIORIY <up to a •aximu• of 14>• unless
explicitly set to some other value in the COMPILE or
EXECUTE control instruction Cusing the SCHEDULE.PRIORITY
control instruction attribute>.

z. The program is not considered by the HCP in determining.
whether or not the HIX LIMIT has been reached. The MIX
LIMIT controls only those programs having a
PROCESSOR.PRIORITY less than nine C9>.

3. If the Priority Memory Management algorithm is not being
used <i.e., the MPRI option is reset>• the "crashout~
capabilities provided by a memory priority of nine <9> or

- greater are associated instead with the processor priority
<assigned using the PRIOR1TY control instruction attribute

-or the PR input message>.

t.1. .. 121.t..:.

EXECUTE A/8 PP=8
A/8 =3702 BOJ. PP=8• KP~4 TIME = 12:25:37.2

CUBE XXXII
Mexico City
Spring 1978

SECONDS.BEfORE.OECAY

81800/81700
MC~~emory Hanagemeni: Page 23

The SECONDS.BEFORE.DECAY attribute allows specification of the
length of tiee to protect unreferenced code segments marked as
•i•portant• from being degraded in priority by the HCP.

The foreat of the SECONOS~RF~ORE.OECAY attribute is:

-
{ SECONOS.~fORE .DECAY} [=] integer t ? l [OBJ 1

The SECONDS.BEFORE.DECAY control word may be abbreviated as SB.

The SECONDS.BEFORE.DECAY attribute-is only allo~ed when the
•Priority Memory Hanage•ent" algorithm is being used by the HCP
<MPRI option is set>.

The i n t e g er • a y s p e c if y any v a l u e b et w e-e n --0 a ·n d 6 0 0 • i n c l u s i v e ,.
--an-d-de-signates-the.tength of time (in "econds)_ that an

unre fer e need co-d e--s egm-eni:--\,f"tiich--ha s-be_e_n -mar·k-ed--a 5· "important" is
to be retained at its cu~rent memory priority before being
degraded ("decayed"> to a lower priority. If the value of
SECONOS.aEFORE.OECAY is zero,. all code segments of a program•
whether marked as "important" 6r not• are treated as
•unieportant• <that is• Extended Segment Decay is not applied>.

A special system utility program• SYSTEM/HARK.SEGSr must be used
to mark specific code segments as •important• for use with the
SE CO NOS.BEFORE. DECAY at tr i b-u t~.- Spe-ei-fy i-n-g-a--JHHt--Z-fH'O-
SECONDS. BEFORE. O EC A Y on a program which has no code segments
•arked as "important" by SYSTEM/HARK.SEGS has no effect.

t!.~!10.1.Al

EXECUTE A/B HP=15 SB=250

S H I F T I N W 0 R K I N G S E T

-

20

0
v
e 15
r
l
a
'f
s

p
e
r

10 ----- ------ .. ---
s '

I
e r 1 I

I I r I c I I I I
0 I I I I

·n I I t I
d I I I I

I I I I
I ' I
I I -I T

5 ~ ~ t- ~ I I I I I I ' I
I I I • I I I
I I I I
I • ' I
I I 1 I
I I I I

5 10 15 . zo 25 30 35 40

T i • e (s e c o n d s)

OVERLAY.RATE :: 10

THRASHING.SENSITIVITY = zo

20

0

" e 15
r
l
a
y
s

p
e
r

10
s
e
c
0

n
d

5

THRASH I N.G

------------------ --------~------------------r--------1 I

5 10 15

I
l
I
I
I
I
I
I

14

zo Z5 30

T i a e < S e c o n d s >

.OVERLAY.RATE = 10

THRASHING.SENSITIVITY = 20

I
• I
I
I
I
l
I
~

. 35 It 0

