
Burroughs ________________ ! __________ , ______________________ __

LANGUAGE
MANUAL

Priced Item
Printed in U.S.A
August 1984

1168622

Burroughs cannot accept any financia1 or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/ or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Documentation-West, Burroughs Corporation, 1300 John Reed
Court, City of Industry, California 91745, U.S.A.

1168622

B 1000 Systems COBOL 74 Language Manual

LIST OF EFFECTIVE PAGES

Page

Title
ii
iii
iv
v thru xviii
xix
xx
xxi thru xxiii ·
xxiv
1-1 thru 1-2
2-1 thru 2-23
2-24
3-1 thru 3-5
3-6 ~
4-1 thru 4-3
4-4
5-1 thru 5-27
5-28
6-1 thru 6-77
6-78
7-1 thru 7-153
7-154
8-1 thru 8-16
9-1 thru 9-24
1 0-1 thru 1 0-14
11-1 thru 11-8
A-1 thru A-9
A-10
B-1 thru B-38
C-1 thru C-13
C-14
D-1 thru D-21
D-22
E-1 thru E-71
E,.72
F-1 thru F -16
G-1 thru G-19
G-20
1 thru 13
14

Issue

Original
Original
Original
Blank
Original
Original
Blank
Original
Blank
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Original
Original
Original
Original
Blank
Original
Original
Blank
Original
Blank
Original
Blank
Original
Original
Blank
Original
Blank

iii

Section

2

1168622

B 1000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS

Title

FOREWORD ~ .
Burroughs Extensions to ANSI 74 Cobol
Acknowledgement
INTRODUCTION
COBOL 74 Advantages
COBOL 74 Concepts
Organization
Related Documents
PROGRAM ORGANIZATION
COBOL 74 Source Program Divisions
Required Headers
LANGUAGE CONCEPTS
General
Language Description Notation

Key Words
Optional Words
Generic Terms
Braces
Brackets
Level-Numbers
Ellipsis
Format Punctuation
Special Characters in Formats

Character Set
Characters Used for Words
Punctuation Characters . .
Editing Characters
Characters Used in Arithmetic Expressions
Characters Used in Relation Conditions

Language Structure
Separators
Character-Strings

Definition of Words
Types of Words
Nouns ... ·

File-Name .
Record-Name
Data-Name
Condition-Name
Mnemonic-Name
Index-Name
Paragraph-Name
Section-Name . .
Other Categories

Verbs

Page

xix
xix
xix
xxi
xxi
xxi
xxii
xxiii

1-1
1-1
1-2
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7

v

Section

2 (Cont)

3

4

vi

. B 1000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS (Cont}

Title

Reserved Words
Key Words
Connectives
Optional Words
Figurative Constant
Special Registers
Special-Character Words

Literals
Numeric Literal
Nonnumeric Literal
Hexadecimal Literals .

Logical Record and File Concepts
Physical Aspects of a File~
Conceptual' Characteristics ·of a File
Record Concepts

Concept of Levels
Level-Numbers
Concept of Classes of Data .
Algebraic Signs
Standard Alignment Rules
Uniqueness of Reference .

Identifier
Condition-Name
Qualification . .
Subscripting . . .
Indexing · . .

Explicit and Implicit Specifications
Explicit and Implicit PROCEDURE DIVISION References
Explicit and Implicit Transfers of Control
Explicit and Implicit Attributes

CODING FORM
General
Field Definitions

Sequence Area (Record Positions 1-6) .
Indicator Area (Record Position 7)
Area A (Positions 8 through 11) . . .
Area B (Positions 12 through 72)
Right Margin (Position 72)
Identification (Positions 73 through 80)

Blank Lines
Punctuation
Sample Coding
IDENTIFICATION DIVISION
General
Identification Division Structure

PROGRAM-ID Paragraph
DA TE-COMPILED Paragraph

Coding the Identification Division

Page

. 2-7

. 2-7
. . . . 2-8

. 2-8
. 2-8
. 2-9

. 2-9
2-9

. 2-10
2-lO
2-11
2.;13
2-13

. 2-13

. 2-13

. 2-14

. 2-14
. . 2-15

. 2-15
. . . . 2-16

2-16
. 2-16
. 2-17

2-18
. 2-20
. 2-21
. 2-22

2-22
. 2-22

2-23
. . . . 3-1

3-1
3-1
3-1
3-1
3-3
3-3
3-3
3-4
3-4
3-4
3-4
4-1

. . . . 4-1
4-1
4-1
4-2
4-2

Section

5

6

1168622

B 1000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS {Cont)

Title

ENVIRONMENT DIVISION
General
Environment Division Organization
Environment Division Structure
Configuration Section

SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph

Input-Output Section
File Concepts

Sequential I-0
Relative 1-0
Indexed 1-0
Queue Files
Remote Files
Port Files
Sort-Merge

Relationship with Sequential 1-0
Organization

· Access Mode
Sequential Files .
Relative File
Indexed Files

Current Record Pointer
1-0 Status . .

Status Key 1
Status Key 2
Valid Combinations of Status Keys

Invalid Key
At End
.Linage-Counter

File-Control Paragraph
File Control Entry

1-0-Control Paragraph
Coding the Environment Division
DATA DIVISION
General
Data Division Organization
Data Division Structure
File Section

Record Description
File Description Structure
Sort-Merge File Description Structure

Coding the File Section
BLOCK CONTAINS
CODE-SET

1 and 2

.. '.

Page

5-1
5-1
5-1
5-1
5-1
5-2
5-3
5-5
5-9
5-9
5-9
5-9
5-9

5-10
5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13

5-13
5-14
5-16
5-18
5-18
5-18
5-19
5-19
5-24
5-26

6-1
6-1
6-1
6-2
6-3
6-3
6-3
6-5
6-6
6-8

6-10

vii

Section

6 (Cont)

7

viii

B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

DATA RECORDS
LABEL RECORDS
LINAGE
RECORD CONTAINS .

Title

VALUE OF
DATA DESCRIPTION STRUCTURE .
BLANK WHEN ZERO
DATA-NAME or FILLER
JUSTIFIED
LEVEL-NUMBER
OCCURS .
PICTURE
REDEFINES .
RENAMES
SIGN
SYNCHRONIZED
USAGE
VALUE
Condition-Name Rules
Data Description Entries Other Than Condition-Names

Working-Storage Section
WORKING-STORAGE Structure . .
Noncontiguous WORKING-STORAGE
WORKING-STORAGE Records
Initial Values
Condition-Names

Coding the Working-Storage Section
Linkage Section

LINKAGE SECTION Structure
Noncontiguous LINKAGE Storage
Linkage Records
Initial Values

Coding the Linkage Section
Communication Section

Communication Description Structure
PROCEDURE DIVISION
General
Rules of Procedure Formation . . .
Execution of the Procedure Division
Procedure Division Structure

PROCEDURE DIVISION Header
PROCEDURE DIVISION Body

Statements and Sentences
Conditional Statements . . .
Conditional Sentences
Compiler-Directing Statements
Compiler-Directing Sentences

Page

. 6-11

. 6-12
6-13
6-18
6-20
6-22

. . . . 6-25
6-26
6-27
6-28
6-31
6-35
6-45
6-47
6-49
6-51
6-52
6-54
6-55
6-55
6-57
6-57
6-57
6-58
6-58
6-58
6-58

... 6-60
. . . . 6-60

. . . . 6-61
. 6-61

. . 6-61
6-61
6-65

. 6-66
7-1
7-1
7-1
7-1
7-1
7-2
7-2
7-3
7-3
7-4
7-4
7-4

Section

7 (Cont)

1168622

B 1000 Systems COBOL 7 4 Language Manual

TABLE OF CONTENTS (Cont)

Imperative Statements
Imperative Sentences

Title

Control Relationship Between Procedures
Paragraphs
Sections

Segmentation
Program Segments
Fixed Portion
Independent Segments
Segmentation Classification
Segmentation Control , . . .

Structure of Program Segments
Segment-Numbers ·
SEGMENT-LIMIT
Restrictions on Program Flow .
The ALTER Statement . .

The Procedure Division Header
Declaratives

USE Declarative
USE FOR DEBUGGING Declarative

Arithmetic Expressions .
Arithmetic Operators
Intermediate Data Item

Conditional Expressions
Simple Conditions . .

Relation Condition
Class Condition . .

. ..

Condition-Name Condition (Conditional Variable)
Switch-Status Condition
Sign Condition

Complex Conditions
Negated Simple Conditions
Combined and Negated Combined Conditions .

Abbreviated Combined Relation Conditions .
Condition Evaluation Rules

Common Phrases . . .
ROUNDED Phrase
SIZE ERROR Phrase
CORRESPONDING Phrase

General Rules for Statement Formats .
Arithmetic Statements
Overlapping Operands
Multiple Results in Arithmetic Statements
Incompatible Data
Numeric Functions

OFFSET Function .
Categories of Verbs

Page

7-4
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-7
7-8
7-8
7-9
7-9

7-10
. 7-12

7-12
7-13
7-14

. . . . 7-14
7-14
7-15
7-15
7-17
7-18
7-18
7-18

. 7-20
7-21

. 7-21
. . 7-22

. 7-22
. . . . 7-23

. ... 7-23
. 7-25
. 7-26

7-28
7-28
7-28

..... 7-29
. . 7-30

7-30
7-30

. 7-30
. . 7-31.

. 7-31

. 7-31
.. 7-32

ix

B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont}

Section Title Page

7 (Cont) Specific Verb Formats 7-33
ACCEPT 7-34
ACCEPT MESSAGE COUNT 7-36
ADD 7-37
ALTER 7-40
CALL 7-41
CANCEL .. 7-45
CLOSE 7-46
COMPUTE 7-52
COPY 7-53
DELETE 7-57
DISABLE 7-58
DISPLAY 7-60
DIVIDE 7-61
ENABLE 7-63
EXIT 7-65
EXIT PROGRAM 7-66
GO TO 7-67
IF 7-68
INSPECT 7-69
MERGE 7-77
MOVE 7-81
Valid Move Combinations 7-84
MULTIPLY 7-86
OPEN 7-87
PERFORM 7-93
READ 7-100
RECEIVE 7-106
RELEASE 7-108
RETURN ' . 7-109
REWRITE 7-110
SEARCH 7-112
SEEK 7-116
SEND : 7-117
SET 7-121
SORT . ·. 7-123
START 7-128
STOP 7-130
STRING 7-131
SUBTRACT 7-135
UN STRING 7-138
USE 7-143
WAIT 7-145
WRITE 7-147

Mass and Non-Mass Storage Files 7-148
Non-Mass Storage Files 7-149
Mass Storage Files 7-151

x

Section

8

9

10

1168622

· B 1000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS (Cont)

Title

FILE ATTRIBUTES
General
File Attribute Identifier

CHANGE
VALUE OF

File Attribute-Name Descriptions
DAT A BASE MANAGEMENT
General
Data-Base Section

Data Base Structure . . .
Operations on Data Items
Operations on Structures
Qualification
Selection Expressions
Set Selection Expression
Key Condition

Simple Key Condition
Complex Key Condition
Generalized Selection Expression

Exception Type
BEGIN-TRANSACTION
CLOSE .
CREATE
DELETE
END-TRANSACTION
FIND
FREE
INSERT
LOCK
-OPEN
RECREATE
REMOVE
STORE

DEBUG
General .
Language Concepts

DEBUG-ITEM .
A Compile-Time Switch
An Object-Time Switch
Debugging Lines

Environment Division
WITH DEBUGGING MODE

Procedure Division
USE FOR DEBUGGING . .
Debugging and Diagnostic Facilities.
Compiler Limits

Page

8-1
8-1
8-1
8-5
8-6
8-8
9-1
9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-4
9-5
9-5
9-5
9-5
9-7

9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19

. 9-20
9-21
9-22
9-23
10-1
10-1
10-1
10-1
10-1
10-1
10-2
10-3
10-3
10-4
10-4

. . 10-12

. . 10-13

xi

Section

l1

Appendix
A
B

xii

B I 000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS (Cont)

Title

COBOL74 COMPILER CONTROL
General
Input

Library Files .
Output

New Source Language Files .
Output Listings
Generated Code

Compilation Source File
? COMPILE Record
Label Equation Records
Source Program
Increasing Program Code File Sizes
Compiler Control Images

Boolean Expressions and User Defined Options
CCI Options
Normal Boolean Options
Miscellaneous Compiler Control Options

RESERVED WORDS
COBOL74 SYNTAX SUMMARY
Identification Division

General Format
Environment Division

General Format
SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES . ~

INPUT-OUTPUT SECTION
I-0-CONTROL . .

Data Division
General Format .
File Section . .

FD file-name
SD file-name .

Data Description Entry . .
WORKING-STORAGE SECTION .
LINKAGE SECTION
COMMUNICATION SECTION .

Procedure Division
General Format
DECLARATIVES

Verbs
ACCEPT
ADD
ALTER.
CALL .
CANCEL .

,•

.· ..

Page

11-1
11-1
11-1
11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-3

11-3
11-3
11-3
I 1-4
11-4

. 11-5
11-7
A-1
B-1
B-1
B-1
B-2

. . . . B-2

. . . . B-2
B-2
B-3
B-4
B-5

.. . . B-6
B-6
B-7
B-7
B-8
B-9

. . . B-11
. . . . B-12

. B-13
.. B-14

B-14
.. B-14

. B-15
B-15
B-16
B-17

. . B-17
B-18

Appendix

B (Cont)

1168622

B I 000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS (Cont)

CLOSE
COMPUTE
COPY
DELETE .
DISABLE ..

..... '

DISPLAY ..
DIVIDE ..
ENABLE .
EXIT
EXIT PROGRAM .

. . •, ..

GO TO.
IF
INSPECT
MERGE
MOVE
MULTIPLY
OPEN
PERFORM
READ ...
RECEIVE ..
RELEASE.
RETURN ..
REWRITE ..
SEARCH
SEEK
SEND ..
SET
SORT .
START.
STOP
STRING

t ..

Title

SUBTRACT .
UNSTRING .

. . .' ..

USE AFTER
WAIT UNTIL
WRITE

Data Base Management
Data Division . . .

General Format
Procedure Division

Format for Selection Expression . .
Format for Set Selection Expression

Data Base Management Verbs
BEGIN-TRANSACTION
CLOSE
CREATE
END-TRANSACTION

Page

. B-18
. B-18

. B-19
B-19

. . B-19
. B-19

. B-20
B-20
B-21
B-21
B-21

. B-21

. B-22

. B-23
. B-23

· B-24
. .. B-24

. B-25
. B-26

. B-27
. . B-27
. . B-27

. .. B-27
. B-28
..... B-28

. .. B-29
.......... B-29

B-30
. B-31

. . . B-31

. . . B-31
B-32

. B-33
. . B-34

. B-34
..... B-35

........ B-36
. B-36

..... B-36
.......... B-36
. B-36

. B-36
. . B-37

..... B-37
B-37

. . B-37
B-37

xiii

Appendix

B (Cont)

xiv

c
D

E

B I 000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS (Cont)

FIND
FREE.
INSERT
LOCK.
OPEN.
RECREATE
REMOVE CURRENT FROM ..
STORE

COBOL74 GRAPHICS
GLOSSARY
Introduction
Definitions
COBOL74 S-LANGUAGE
General
S-Language Programs
Container Size . . .
S-Instruction Format

S-Operators
COP and OPND .

Short COP

Title

Long COP with No Segment Number
Long COP with Segment Number

COBOL 74 In-Line Descriptors
Implementation Strategy
MULTIPLE-ENTRY-FLAG
SHARED-DATA-FLAG
LITERAL-FLAG
Data Length
Segment Number .
Displacement . . .
DEPENDING-FLAG
Depending Attributes
SUBSCRIPT-FLAG
Subscripting
Indexing
In-line COP Entry Format

Instruction Set . .
Arithmetic . . .
Data Movement
Branching . . .
Conditional Branching
Miscellaneous
Character String Handling
Interprogram Communication
Optimized Operation Codes

CPA
CPN

Page

....... B-37
B-38
B-38
B-38
B-38
B-38

. B-38
. ... B-38

C-1
D-1
D-1
D-1
E-1
E-1
E-1
E-3
E-3
E-3

. . . . E-3
E-4
E-4
g .. 4
E-5
E-6
E-6
E-6
E-6
E-6
E-6
E-6
E-7
E-7
E-7
E-7
E-8
E-8
E-9
E-9
E-9
E-9

E-10
E-10
E-10
E-10
E-11
E-11
E-11

B 1000 Systems COBOL 74 Language Manual

·.TABLE OF CONTENTS (Cont)

Appendix Title Page

E (Cont) CPZ E-11
INC E-11
IN Cl E-11
MVA E-12
MVZ E-12

Arithmetic Operands and Instructions E-12
ADD THREE ADDRESS . E-14
SUBTRACT THREE ADDRESS E-15
ADD TWO ADDRESS E-16
SUBTRACT TWO ADDRESS E-17
MULTIPLY E-18
DIVIDE E-19
DIVIDE SPECIAL E-20
INCREMENT BY ONE E-21
DECREMENT BY ONE E-22

Data Movement Operands and Instructions . E-23
MOVE ALPHANUMERIC 'E-24
MOVE SPACES E-25
MOVE NUMERIC E-26
MOVE ZEROS . E-27
CONCATENATE E-28

Edit Instructions and Edit Micro-Operators E-29,
EDIT E-30
EDIT WITH EXPLICIT MASK E-31
EDIT MICRO-OPERATORS E-32
MOVE DIGIT E-33
MOVE CHARACTER E-33
MOVE SUPPRESS E-33
FILL SUPPRESS E-34
SKIP REVERSE DESTINATION E-34

. INSERT UNCONDITIONALLY E-34
INSERT ON MINUS E-34
INSERT SUPPRESS E-34
INSERT FLOAT E-35
END FLOAT MODE E-35
END NON-ZERO . E-35
END OF MASK E-35
START ZERO. SUPPRESS E-35
COMPLEMENT CHECK PROTECT E-35

Branching Operands and Instructions E-36
BRANCH UNCONDITIONALLY E-37
BRANCH ON OVERFLOW E-38
SET OVERFLOW TOGGLE E-39
PERFORM ENTER . E-40
PERFORM EXIT . E-41
ENTER . E-42
EXIT E-43

GO TO DEPENDING E-44

1168622 xv

Appendix

E (Cont)

F

G

xvi

B 1000 Systems COBOL 74 Language Manual

TABLE OF CONTENTS (Cont}

Title

ALTERED GO TO PARAGRAPH . .
ALTER

Conditional Branch Operands and Instructions
COMPARE ALPHANUMERIC
COMPARE NUMERIC
COMPARE FOR ZEROS
COMP ARE FOR SP ACES
COMP ARE FOR CLASS
COMP ARE REPEAT
COMPARE COLLATE

Miscellaneous Instruction .
COMMUNICATE ...
LOAD COMMUNICATE REPLY
CONVERT
MAKE PRESENT
FILE ST A TUS . . .

Character String S-Ops
DESCRIPTOR SETUP
INSPECT SETUP
INSPECT
STRING
DELIMITER SETUP
UNSTRING

Inter-Program Communication
IPC DICTIONARY

COMMUNICATION CONCEPTS AND EXAMPLES
CO BO L 7 4 Queue Files
COBOL74 Remote Files

Multiple Stations of a Remote File
COBOL 74 CD (Communication Description) Files
Port Files
Inter-Program Communication (IPC)
Role of the Message Control System (MCS)

Supervisory Message Control System (SMCS) . .
Generalized Message Control System (GEMCOS)
COBOL74MCS

COBOL74 ISAM FILE CONCEPTS
Introduction
Organization

Global File Concepts
Data File Concepts

Physical Attributes
Block Control Information (BCI)
Efficient Blocking of the Data File

Index File Concepts
Naming Convention for the ISAM File Structures

File Creation Without a User Code
File Creation Under a User Code

Page

E-45
E-46
E-47
E-48
E-49
E-50
E-51
E-52
E-53
E-54
E-55
E-55
E-56
E-57
E-58
E-59
E-60
E-60
E-61
E-63
E-65
E-66
E-67
E-69
E-69
F-1
F-1
F-4
F-5

F-14
F-15
F-16
F-16
F-16
F-16
F-16
G-1
G-1
G-1
G-2
G-2
G-2
G-4
G-5
G-5
G-6
G.,6
G-7

Appendix

G (Cont)

INDEX

B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

Title

Changing the Name of an ISAM File
ISAM Access Methods
Multiple Users of an ISAM File . . .

The AUDITED File Attribute . . .
System Utility Programs for ISAM File Maintenance . .

CREA TE/ISAM
SYSTEM/ISVERIFY .
SYSTEM/IS-MAINT

RPG Compatibility
Programming Examples

Creating an ISAM File .
Updating an ISAM File
Rebuilding an ISAM File from an ISAM DAT A File

LIST OF ILLUSTRATIONS

Figure Title

3-1 COBOL Coding Form
3-2 Example of Continuation of Words and Literals
4-1 Coding the IDENTIFICATION DIVISION
5-1 Coding the ENVIRONMENT DIVISION
6-1 Coding the FILE SECTION
6-2 Linage Page Relationship
6-3 Level Numbers
6-4 PICTURE Character Precedence Chart
6-5 Coding the WORKING-STORAGE SECTION
6-6 Coding the LINKAGE SECTION
7-1 Valid MOVE Statement Combinations . . .
7-2 PERFORM VARYING with One Condition
7-3 PERFORM VARYING with Two Conditions
7-4 SEARCH with Two WHEN Phrases
11-1 Compilation Control File
E-1 COBOL74 Program Layout
E-2 Memory Layout
F-1 Unidirectional Queue File Message Tran sf er
F-2 Bidirectional Queue File Message Tran sf er .
F-3 COBOL 74 Remote Files
F-4 COBOL 74 Communication Description (CD) Files
F-5 Port/Subport Communication Path across BNA Network
G-1 Relationship of the ISAM File Structures
G-2 The ISAM Index and Data Files
G-3 Relationship of Two Users to the ISAM Structures

1168622

Page

G-8
G-8
G-8
G-9

. G-10
G-10
G-11

. G-11
G-11
G-1·1
G-12

. G-14
G-17

1

Page

3-2
3-5
4-3,

5-27
6-7

6-14
6-30
6-43
6-59
6-62
7-84
7-97
7-98

7-115
I 1-2
E-2

E-71
F-1
F-2
F-5

F-14
F-15
G-1
G-6
G-9

xvii

Table

2-1
5-1
6-1
6-2
6-3
6-4
7-1
7-2
7-3
7-4
7-5
7-6
7-7
9-1
C-1
C-2
C-3
E-1
E-2
G-1
G-2
G-3

xviii

B 1000 Systems COBOL74 Language Manual

LIST OF TABLES

Title

Classes of Data
Status Key Combinations
Editing for Each Item Category
Editing of Sign Control Sypibols
Editing Application of the PICTURE Clause
Communication Status Key Condition
Combination of Symbols in Arithmetic Expressions
Combinations of Conditions, Logical Operators, and Parentheses
Relationship of Categories of Files and Formats of the CLOSE Statement
A Valid MOVE Statement
Permissible Statements
Specifying End Indicators
SET Statement Combinations
Exception Category Names and Values
B 1000 Codes in EBCDIC Sequence
B 1000 Codes in ASCII-7 Sequence
Description of Control and Special Characters
Special Registers
Container Sizes
BCI Statistics For Several Blocking Factors
ISAM Disk Utilization
ISAM File Recovery

Page

2-15
5-17
6-39
6-40
6-44
6-74
7-16
7-24
7-47
7-83
7-88

7-120
7-122

9-8
C-1
C-7

C-11
E-2
E-3
G-4
G-5

G-10

B 1000 Systems COBOL 74 Language Manual

FOREWORD

BURROUGHS EXTENSIONS TO ANSI 74 COBOL

Programming applications are written in the COBOL 74 language as specified in this B 1000 Systems
COBOL 74 Reference Manual. The source language herein described is the USA Standard COBOL,
X3.23-1974, which implements the lowest defined level of the Report Writer Module, and also the high
est defined level of these Modules: Nucleus, Table Handling, Sequential I-0, Relative I-0, Indexed I.~.Q~

~~:!~~~:E?~t ~~R~~~~~~~~~~ ~~~:~:~~ !?~~~g~ I~!~:~~:~~:~~ s~~~~~~s~!~~~~ ~~~ s~~~1:1~~s~~~~~: II
--~~~~~~~c\iil!li!ll-l~~~-

ACKNOWLEDGEMENT

COBOL 74 is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and language.·
Moreover, no responsibility is assumed by any contributor, or by the committee, in connection there
with.

The authors and copyright holders of the copyrighted material used herein,

FLOW-MA TIC (trademark of Sperry Rand Corporation), Programming for the UNIV AC R I. and
II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commer
cial Translator Form Number F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in the COBOL 74 specifications.
Such authorization extends to the reproduction and use of COBOL 74 specifications in programming
manuals or similar publications.

1168622 xix

; B 1000 Systems COBOL 74 Language Manual

INTRODUCTION

This manual provides a complete description of COBOL 74 (COmmon Business Oriented Language) as
implemented for use on the Burroughs B 1000 System. This concept of COBOL 74 is designed along
the guidelines of the American National Standards Institute (ANSI) 1974. This edition contains changes
throughout.

COBOL74 ADVANTAGES

The long list of COBOL74 advantages is derived chiefly from its intrinsic quality of permitting the
programmer to state the problem solution in English prose, and thus provide automatic program and
system documentation. When users adopt in-house standardization of elements within files plus well
chosen data-names before attempting to program a system, maximum documentational advantages of
the language described herein are obtained.

To a computer user, Burroughs COBOL 74 offers the following major advantages:

1. Expeditious means of program implementation.

2. Accelerated programmer training and simplified retraining requirements.

3. Reduced conversion costs when changing from a computer of one manufacturer to that of an
other.

4. Significant ease of program modification.

5. Standardized documentation.

6. Documentation which facilitates nontechnical management participation in data processing ac
tivities.

7. Efficient object program code.

8. Segmentation capability which sets the maximum allowable program size well in excess of any
practical requireme~t.

9. Because of the incorporation of debugging language statements, a high degree of sophistication
in program design is achieved.

10. A comprehensive source program diagnostic capability.

COBOL74 CONCEPTS

A program written in COBOL 74, called a source program, is accepted as input by the COBOL74 com
piler. The compiler verifies that each source statement is syntactically correct, and then converts them
into COBOL 74 S-code.

The executable program can then be executed on the B 1000 System using the COBOL 74 interpreter.
The interpreter causes the system hardware to perform the operations specified by the S-codc and thus
the source program.

1168622 xxi

B 1000 Systems COBOL 74 Language Manual
Introduction

The B 1000 COBOL 74 compiler operates under the control of the Master Control Program (MCP).
Similarly, the S-code generated by the compiler is executed under control of the MCP.

A COBOL program that was compiled with the ANSI 68 COBOL compiler must be recompiled with
the COBOL 74 compiler in order to run with the COBOL 74 interpreter.

ORGANIZATION

This manual consists of 11 sections and 7 appendices:

xx ii

Section Contents

PROGRAM ORGANIZATION

Introduces the four divisions of a COBOL source
program and describes the major functions of each.

2 LANGUAGE CONCEPTS

The rules for creating a COBOL 74 source program are
defined in this section.

3 CODING FORM

The standard format of the COBOL 74 coding form and
the rules for spacing are described in this section.

4 IDENTIFICATION DIVISION

The structure of the IDENTIFICATION DIVISION and
the rules for codiflg are given.

5 ENVIRONMENT DIVISION

The structure of the ENVIRONMENT DIVISION and the
rules for coding are given.

6 . DATA DIVISION

The four sections of the DAT A DIVISION are described.

7 PROCEDURE DIVISION

The rules for coding and structuring the PROCEDURE
DIVISION are given.

8 FILE ATTRIBUTES

The file attribute names and the rules for changing
attributes are given.

9 DAT A BASE MANAGEMENT

This section contains the verbs and constructs of
COBOL 74 that are available for interfacing with DMSII.

10 DEBUG

Contains an explanation of the debug facilities
available.

11 COBOL74 COMPILER CONTROL

Compiler options which are available in the COBOL 74
compiler are explained.

B 1000 Systems COBOL 74 Language Manual
Introduction

Appendix Contents

A RESERVED WORDS

B COBOL74 SYNTAX SUMMARY

C COBOL74 GRAPHICS

D GLOSSARY

E COBOL74 S-LANGUAGE

F COMMUNICATION CONCEPTS AND EXAMPLES

G COBOL74 ISAM FILE CONCEPTS

RELATED DOCUMENTS

The following documents are referenced in this document:

B 1000 Systems System Software Operation Guide, Volume 1, form number 1151982.

B 1000 Systems System Software Operation Guide, Volume 2, form number 1152097.

B 1000 Systems Data Management System II (DMSII) Reference Manual, form number 1152089.

B 1000 Systems Burroughs Network Architecture (BNA) Installation and Operation Manual, form
number 1151974.

B 1000 Systems Network Definition Language (NDL) Reference Manual, form number 1152014.

B 1000 Systems SMCS Installation, Operation and Functional Description Manual, form number
1152279.

1168622 xx iii

B 1000 Systems COBOL 74 Language Manual

SECTION 1
PROGRAM ORGANIZATION

COBOL74 SOURCE PROGRAM DIVISIONS

Every COBOL 74 source program must contain these four divisions in the following order:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition to required information, the
programmer. may include such optional pieces of information as the date compiled and programmer's
name for documentation purposes. This division is completely machine-independent and does not pro
duce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains computer descriptions
and some information about the files the program will use.

The DAT A DIVISION contains not only file and record descriptions describing the data files that the
object program manipulates or creates, but also the individual logical records which comprise these
files. The characteristics 1or properties of the data are described in relation to a standard data format
rather than an equipment-oriented format. Therefore, this division is to a large extent, computer-inde
pendent. While compatibility among computers cannot be absolutely assured, careful planning in the
data layout will permit the same data descriptions, with minor modification, to apply to more than
one computer.

The PROCEDURE DIVISION specifies user-supplied steps for computer execution. These steps are ex
pressed in terms of meaningful English words, statements, sentences, and paragraphs. This division of
a COBOL 74 program is often referred to as the "program." In reality, it is only part of the total pro
gram, and alone is insufficient to describe the entire program. This is true because repeated references
must be made (either explicitly or implicitly) to information appearing in the other divisions. This divi
sion, more than any other, allows the user to express thoughts in meaningful English. Concepts of
verbs to denote actions, and sentences to describe procedures are basic, as is the use of conditional
statements to provide alternative paths of action.

1168622 1-1

B 1000 Systems COBOL 74 Language Manual
Program Organization

REQUIRED HEADERS

The standard for COBOL74 requires that a program consist of certain divisions, sections, and fixed
paragraph names known as headers.

The following elements are the minimum required for a COBOL 74 program:

1-2

IDENTIFICATION DIVISION.
PROGRAM-ID. MINIMUM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. B-1000.
OBJECT-COMPUTER. B-1000.

DATA DIVISION.
PROCEDURE DIVISION.
PARAGRAPH-NAME.

STOP RUN.

GENERAL

· B 1000 Systems COBOL 74 Language Manual

SECTION 2
LANGUAGE CONCEPTS

As stated in section 1, COBOL 74 is a language based on English and is composed of words, state
ments, sentences, and paragraphs. The following paragraphs define the rules to be followed in the
creation of this language. The use of the different constructs formed from the created words is covered
in subsequent sections of this document.

LANGUAGE DESCRIPTION NOTATION

A nearly universal form of notation exists for COBOL reference manuals. This manual uses that nota
tion as described in the paragraphs that follow.

The apostrophe (') is used to delimit characters with specific meanings. Other than its use in this
manual as a delimiter, it has no specific use in the COBOL language.

Key Words

All underlined upper-case words are key words and are required when utilizing related functions. Omis
sions of key words will cause error conditions at compilation time. An example of key words follows:

IF data-name IS [NOT] ALPHABETIC C {NUMERIC }

·-------------'

The key words are IF, NOT, NUMERIC, and ALPHABETIC.

Optional Words

All upper-case words not underlined are optional words included for readability only and may be in
cluded or excluded in the source program. In the preceding example, the optional word is IS.

Generic Terms

All lower-case words represent generic terms which are used to represent COBOL words, literals, PIC
TURE character-strings, comment-entries, or a complete syntactical entry that must be supplied in that
format position by the programmer. Where generic terms are repeated in a general format, a number
or letter appendage to the term serves to identify that term for explanation or discussion. Identifier-
1 and iclentifier-2 are generic terms in the following example:

MOVE identifier-I TO identifier-2

Braces

The following symbols are braces: { } . When words or phrases are enclosed in braces, a choice of
one of the entries must be made. In the previous example in the subsection titled Key Words, either
NUMERIC or ALPHABETIC must be included in the statement.

1168622 2-1

B 1000 Systems COBOL 74 Language Manual
Language Concepts

Brackets

The following symbols are brackets: []. Words and phrases enclosed in brackets represent optional
portions of a statement. A programmer wishing to include the optional feature may do so by including
the entry shown between brackets. Otherwise, the optional portion may be omitted. ([NOT] in the
example titled Key Words, is optional.)

Level-Numbers

When specific level-numbers appear in data description entry formats, those specific level-numbers are
required when such entries are used in a COBOL 74 program. In this document, the form 01, 02, ...
, 09 is used to indicate level-numbers 1 through 9.

Ellipsis

The presence of the ellipsis (three consecutive periods (...)) within any format indicates the position
at which repetition may occur at the programmer's option. The portion of the format that may be
repeated is defined in the following paragraph.

The ellipsis applies to the words between the determined pair of of delimiters. Given the ellipsis in
a clause or statement format, scanning right to left, determine the right bracket or right brace immedi
ately to the left of the ... ; continue scanning right to left and determine the logically matching left
bracket or left brace.

Format Punctuation

The separators comma and semicolon are used to improve the readability of the program. Suggested
uses are shown in General Format subsections throughout this manual, however, use of these separators
is optional. In the source program, the comma, semicolon, and space separators are interchangeable.
If desired, a semicolon or comma may be used between statements in the PROCEDURE DIVISION.

Paragraphs within the IDENTIFICATION and PROCEDURE DIVISIONS and entries within the EN
VIRONMENT and DATA DIVISIONS must be terminated by the separator period. When a single pe
riod is shown in a format, it must appear in the same position whenever the source program. calls for
the use of that particular statement.

Special Characters in Formats

The characters '+ ', '-', '> ', '< ', '= ', when appearing in formats, although not underlined, are
required when such formats are used~

CHARACTER SET
The COBOL 74 character set for the B 1000 System consists of the following 52 characters:

0 through 9 period or decimal point

A through Z semicolon

blank or space " quotation mark

+ plus sign (left parenthesis

minus sign or hyphen) right parenthesis

* asterisk > greater than symbol

I slash < less than symbol

equal sign @ "at" sign

2-2
$ currency sign comma

B 1000 Systems COBOL74 Language Manual
Language Concepts

Characters Used for Words

The character set for words consists of the following 37 characters:

0 through 9

A through Z

- (hyphen)

Punctuation Characters

The following characters may be used for program punctuation:

@ "at" sign space or blank
II quotation mark period

(left parenthesis comma (see following note)

) right parenthesis semicolon

NOTE
For enchanced readability of the source program, commas may be used be
tween statements, at the programmer's discretion. Use of commas implies
that any succeeding statement is to be included as an element of the prior
statement.

Editing Characters

The COBOL 74 compiler accepts the following characters in editing:

$ currency sign + plus

* asterisk (check protect) minus

comma CR credit

I slash DB debit

B space or blank insert z zero suppress

0 zero insert period

Characters Used in Arithmetic Expressions

The COBOL74 compiler. accepts the following characters in arithmetic expressions:

+ addition ** exponentiation

subtraction (left parenthesis.

* multiplication) right parenthesis

I division

1168622 2-3

B 1000 Systems COBOL 74 Language Manual
Language Concepts

Characters Used in Relation Conditions

The COBOL 74 compiler accepts the following characters in relation conditions:

equal sign

< less than symbol

> greater than symbol

LANGUAGE STRUCTURE
The individual characters of the language are concatenated to form character-strings and separators.
A separator may be concatenated with another separator or with a character-string. A character-string
may only be concatenated with a separator. The concatenation of character-strings and separators
forms the text of a source program.

Separators

A separator is a string of one or more punctuation characters. The rules for formation of separators
are:

2-4

l. The punctuation character space is a separator. Anywhere a space is used as a separator, more
than one space may be used.

2. The punctuation characters comma, semicolon, and period are separators.

3. The punctuation character quotation mark is a separator. An opening quotation mark must be
immediately preceded by one of the separators space, comma, semicolon, or left parenthesis;
a closing quotation mark must be immediately followed by one of the separators space, comma,
semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when
the literal is continued.

4. The punctuation characters right and left parentheses are separators. Parentheses may appear
only in balanced pairs of left and right parentheses delimiting subscripts, indices, arithmetic ex
pressions, or conditions.

5. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be immediately
preceded by a space; a. closing pseudo-text delimiter must be immediately followed by one of
the separators space, comma, semicolon, or period.

Pseudo-text delimiters (-) may appear only in balanced pairs delimiting pseudo-text.

6. The punctuation character @ is a separator. An opening @ character must be preceded immedi
ately by one of the separators space, comma, semicolon, or left parenthesis; a closing @ charac
ter must be immediately followed by one of the separators space, comma, semicolon, period,
or right parenthesis.

At signs (@) may appear only in balanced pairs delimiting hexadecimal literals.

B 1000 Systems COBOL 74 Language Manual
Language Concepts

7. The separator space may optionally immediately follow any separator except the opening quota
tllon mark. In this case, a following space is considered as part of the nonnumeric literal and
not as a separator.

Any punctuation character which appears as part of the specification of a PICTURE character
string or numeric literal is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or numeric literal. PICTURE char
acter-strings are delimited only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters which com
prise the contents of nonnumeric literals, comment-entries, or comment lines.

Character-Strings

A character-string is a character or sequence of contiguous characters which forms a COBOL 74 word,
literal, PICTURE character-string, or comment-entry. A character-string is delimited by separators.

DEFINITION OF WORDS

A COBOL 74 word is created from a combination of not more than 30 characters, selected from the
following:

A through Z

0 through 9

- hyphen

A word is ended by a space, period, comma, or semicolon. A word may not begin or end with a hy
phen. (A literal constitutes an exception to these rules, as explained in a paragraph entitled Literals
in this section.)

A user-defined word is a COBOL 74 word that must be supplied by the user to satisfy the format of
a clause or statement.

Types of Words

COBOL 74 contains the following word types: nouns (user-defined words),. verbs, and reserved words.

Nouns

Nouns are divided into special categories.:

1168622

File-name

Record-name

Data-name

Condition-name

Mnemonic-name

Index-name

Paragraph-name

Family-name

Cd-name

Text-name

Library-name

Program-name

Alphabet-name

Section-name

2-5

B 1000 Systems COBOL 74 Language Manual
Language Concepts

The length of a noun must not exceed 30 characters. For purposes of readability, a noun may contain
one or more hyphens. However, the hyphen must neither begin nor end the noun (this does not apply
to literals).

All nouns within a given category must be unique, either because no other noun in the same source
program has identical spelling or punctuation, or because uniqueness can be insured by qualification.
With the exception of paragraph-name, section-name, text-name, library-name, and family-name, all
user-defined words must contain at least one alphabetic character.

File-Name

A file-name is a noun containing at least one alphabetic character assigned to designate a set of data
items. The contents of a file are divided into logical records made up of any consecutive set of data
items.

Record-Name

A record-name is a noun containing at least one alphabetic character assigned to identify a logical rec
ord. A record can be subdivided into several data items, each distinguishable by a data-name.

Data-Name

A data-name is a noun assigned to identify elements within a record or work area and is used in
COBOL 74 to refer to an element of data, or to a defined data area containing data elements. Each
data-name must contain at least one alphabetical character.

Condition-Name

A condition-name is the name assigned to a specific value, set of values, or range of values within
the complete set of values .that a ·data item may assume. The data item is a conditional variablP.. The
condition-name must contafo at least one alphabetic character and must be unique, or be able to be
referenced uniquely through qualification. A conditional variable may be used as a qualifier for any
of its condition-names. If references to a conditional variable require indexing, subscripting, or qualifi
cation, then references to any of its condition-names also require the same combination of indexing,
subscripting, or qualification. A condition-name is used in conditions as an abbreviation for the rela
tion condition; its value is TRUE if the associated conditional variable is equal to one of the set values
to which that condition-name is assigned.

Condition-names may be defined in the DATA DIVISION, or in a SPECIAL-NAMES paragraph
within the ENVIRONMENT DIVISION where a condition-name must be assigned to the ON STATUS
or OFF STATUS, or both, of defined switches.

Mnemonic-Name

The use of mnemonic-names provides a means of relating certain hardware equipment names to prob
lem-oriented names the programmer may wish to use. These associations are established in the SPE
CIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Index-Name

An index-name is a word with at least one alphabetic character that names an index associated with
a specific table (refer to Indexing in this section). An index is a register, the contents of which represent
the 11 1e_rt_g position of the first character of an element of a table with respect to the beginning of

the t~~t>.J-k"" ,...\ ~~ i (- i 1 J~Vi ,<Js1
2

-
6 t'15 A ~t~ · ~~~61-

Paragraph-Name

B 1000 Systems COBOL 74 Language Manual
Language Concepts

A paragraph-name is a word which names a paragraph in the PROCEDURE DIVISION. Paragraph
names are equivalent only if composed of the same sequence of the same number of digits and/ or char
acters.

Section-Name

A section-name is a word which names a section in the PROCEDURE DIVISION. Section-names are
equivalent only if composed of the same sequence of the same number of digits and/or characters.

Other Categories

See the glossary in appendix D for definitions of all other types of user-defined words.

Verbs

A verb in COBOL74 is a single word that denotes action, such as ADD, WRITE, or MOVE. All allow
able verbs in COBOL 74, with the exception of the word IF, are English verbs. The usage of the
COBOL 74 verbs takes place primarily within the PROCEDURE DIVISION.

Reserved Words

A reserved word is a COBOL 74 word that is one of a specified list of words which may be used in
COBOL 74 source programs, but must not appear in the programs as user-defined words. Refer to ap
pendix A, Reserved Words.

These rules apply to the entire COBOL 74 source program; no exceptions exist for specific divisions,
sections, or statements.

There are six types of reserved words:

Key words
Connectives
Optional words

Figurative constants
Special registers
Special-character words

Key \/\lords

A key word is a word whose presence is required in a source program. Within each format, such words
are upper-case and underlined.

Key words are of three types:

1. Verbs such as ADD and READ.

2. Required words which appear in statement and entry formats.

3. Words which have a specific functional meaning such as NEGATIVE and SECTION.

1168622 2-7

Connectives

B 1000 Systems COBOL74 Language Manual
Language Concepts

Connectives are used to indicate the presence of a qualifier or to form compound conditional state
ments. The connectives OF and IN are used for qualification. The connectives AND, AND NOT, OR,
or NOT are used as logical connectives. in conditional statements. The comma is used as a series con
nective to separate two or more operands.

Optional Words

Optional words are included in the COBOL 74 language to improve the readability of the statement
formats. These optional words may be included or omitted. For example, IF A IS GREATER THAN
B ... is equivalent to IF A GREATER B... ; the inclusion or omission of the words IS and THEN.·
does not influence the logic of the statement.

Figurative Constant

A figurative constant is a reserved word used to reference specific constant values and must never be
enclosed in quotation marks except when the word, rather than the value, is desired. The figurative
constant names and meanings are:

2-8

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL< literal>

Represents the value 0, or one or more of the
character '0' , depending on the context.

Represents one or more spaces (blanks).

Represents one or more occurrences of the character that
has the highest ordinal position in the program collating
sequence, except in the alphabet-name clause of the
SPECIAL-NAMES paragraph, where it represents the highest
ordinal position in the native collating sequence.

Represents one or more occurrences of the character that
has the lowest ordinal position in the program collating
sequence, except in the alphabet-name clause of the
SPECIAL-NAMES paragraph, where it represents the lowest
ordinal position in the native collating sequence.

Represents one or more occurrences of the character ' 11
' •

The word QUOTE or QUOTES cannot be used in place of a
quotation mark in a source program to bound a nonnumeric
literal. Thus, QUOTE ABD QUOTE is incorrect as a way of
stating the nonnumeric literal 11 ABD 11

• If, however, the full
11 ABD" is desired in a DISPLAY statement, it can be
achieved by writing QUOTE 11 ABD 11 QUOTE, in which case
the object progr~ will display 11 ABD 11

•

When followed by a hexadecimal literal, a nonnumeric literal,
or a figurative constant, the word ALL represents a series of
that literal. For example, if the COBOL 74 statement is MOVE
ALL literal TO ERROR-CODE, then the resultant ERROR
CODE would take on the following values:

B 1000 Systems COBOL 74 Language Manual
Language Concepts

ALL literal

ALL "ABC"
ALL "2" or ALL 2
ALL QUOTE
ALL SPACES

Size of ERROR-CODE

7 characters
5 characters
3 characters
8 characters

NOTE

ERROR-CODE

ABCABCA
22222

"""
(eight spaces)

The use of ALL with figurative constants, as illustrated in the last two in
stances, is redundant. MOVE ALL SPACES and MOVE SPACES yields the
same result.

When a figurative constant represents a string of one or more characters, the length of the string is
determined by the compiler from context, according to the following rules:

1. When a figurative constant is associated with another data item, the string of characters
specified· by the figurative constant is repeated character by character on the right until the size
of the resultant string is equal to the size in characters of the associated data item. This is done
prior to and independent of the application of any JUSTIFIED clause that may be associated
with the data item"

2. When a figurative constant is not associated with another data item, as when the figurative con
stant appears in a DISPLAY, STRING, STOP, or UNSTRING statement, the length of the
string is one character.

A figurative constant may be used wherever a literal appears in a format, except that whenever the
literal is restricted to numeric characters only, the only figurative constant permitted is ZERO (ZEROS,
ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program,
the actual character associated with each figurative constant depends upon the program collating se
quence specified. Refer to OBJECT-COMPUTER and SPECIAL-NAMES in Section. 5 for additional
information.

Special Registers

Certain reserved words are used to name and reference special registers. Special registers are certain
compiler generated storage areas whose primary use is to store information produced in conjunction
with the use of specific COBOL 74 features. These special registers include the following: LINAGE
COUNTER, LINE-COUNTER, PAGE-COUNTER, and DEBUG-ITEM.

Special-Character Words

The arithmetic operators and relation characters are reserved words. Refer to the glossary in appendix
D for additional information.

Literals

A literal is an item of data whose value is implied by an ordered set of characters of which the literal
is composed, or by specification of a reserved word which references a figurative constant. There are
three classes of a literal: numeric, nonnumeric, and hexadecimal.

1168622 2-9

B 1000 Systems COBOL 74 Language Manual
Language Concepts

Numeric Literal

A numeric literal is a character-string whose characters are selected from the digits 'o through 9, the
plus sign (+), the minus sign (-), and/or the decimal point. Numeric literals may be from 11 to 18
digits in length. The rules for the formation of numeric literals are as follows:

1. A numeric literal must contain at least one digit.

2. A numeric literal must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, the literal is positive.

3. A numeric literal must not contain more than one decimal point. The decimal point is treated
as an assumed decimal point, and may appear anywhere within the literal except as the right
most character. If the literal contains no decimal point, the literal is an integer. An integer is
a numeric literal which contains no decimal point.

If a literal conforms to the rules of the formation of numeric literals, but is enclosed in quota
tion marks, it is a nonnumeric literal and is treated as such by the compiler.

4. The value of a numeric literal is the algebraic quantity represented by the characters in the nu
meric literal. Every numeric literal belongs to category numeric. Refer to the PICTURE clause
in section 6 for additional information. The size of a numeric literal in standard data format
characters is equal to the number of digits specified by the user. The following ar~ examples
of numeric literals:

51679
.005
+2.629
-.8479
6287.92

Nonnumeric Literal

A nonnumeric literal may be composed of any allowable character. The beginning and ending of a
nonnumeric literal are both denoted by a quotation mark. Any character enclosed within quotation
marks is part of the nonnumeric literal. Subsequently, all spaces enclosed within the quotation marks
are considered part of the literal. Two consecutive quotation marks within a nonnumeric literal cause
a single quotation mark to be inserted into the literal string. Four consecutive quotation marks result
in a single " literal.

All other punctuation characters are part of the value of the nonnumeric literal rather than separators;
all nonnumeric literals belong to category alphanumeric. Refer to the PICTURE clause in section 6.

A nonnumeric literal cannot exceed 160 characters. Examples of nonnumeric literals are:

2-10

Literal on Source Program Level

"THE TOTAL PRICE"
If -2080.479"
"""LIMITATIONS""" ,,,,,,,,
"A""B"

Literal Stored by Compiler

THE TOTAL PRICE
-2080.479
"LIMITATIONS"
If

A"B

B 1000 Systems COBOL 74 Language Manual
Language Concepts

NOTE
Literals that are used for arithmetic computation must be expressed as nu
meric literals and must not be enclosed in quotation marks as nonnumeric
literals. For example, "4.4" and 4.4 are not equivalent. The compiler stores
the nonnumeric literal as 4.4, whereas the mimeric literal would be stored as
0044 if the PICTURE were 999V9 DISPLAY, with the assumed decimal
point located between the two fours.

Hexadecimal Literals

A hexadecimal literal is a character-string consisting of characters selected from the hexadecimal digits
'0' through '9' and 'A' through 'F' . The beginning and ending of a hexadecimal literal are each
denoted 1by an @ sign. For example, a binary 12 would be expressed @C@.

The category of a hexadecimal literal (4-bit numeric or 8-bit alphanumeric) is determined by the catego
ry of the data item with which it is associated in a COBOL 74 statement. A hexadecimal literal is han
dled as a 4-bit numeric when the category of the associated data item is numeric whether USAGE is
COMPUTATIONAL or DISPLAY.

A hexadecimal literal is handled as if it were numeric if:

1. In the VALUE clause, the category of the associated data item is numeric.

2. In the MOVE statement, the category of the receiving data item is numeric or numeric edited.

3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of
the other relational operand is numeric.

A hexadecimal literal is handled as 8-bit alphanumeric when the category of the associated data item
is nonnumeric. Each character is represented by two hexadecimal digits. This requires an even number
of digits in the hexadecimal literal. A hexadecimal literal is handled as if it were alphanumeric if:

1. In the VALUE clause, the category of the associated data item is not numeric.

2. In the MOVE statement, the category of the receiving data item is alphanumeric, alphabetic,
or alphanumeric edited.

3. In the conditional expression of an IF) PERFORM, or SEARCH statement, the category of
the other relational operand is not numeric.

4. It appears in an INSPECT, STRING, UNSTRING, DISPLAY, STOP, DISABLE, or ENABLE
statement.

5. It appears in the ALL figurative constant.

A hexadecimal literal may also appear in a COPY statement, in which case the hexadecimal literal does
not have a type associated with it.

The following restrictions apply to hexadecimal literals:

1. A hexadecimal literal is not allowed as an arithmetic operand in an ADD, SUBTRACT, MUL
TIPLY, or DIVIDE statement, nor in an arithmetic expression in a COMPUTE statement or
conditional expression.

1168622 2-11

2-12

B I 000 Systems COBOL 7 4 Language Manual
Language Concepts

2. A hexadecimal literal is not allowed as a subscript or index.

3. A hexadecimal literal is not allowed as a program name in a CALL or CANCEL statement.

4. An identifier assigned a hexadecimal literal will not, in most cases, compare as either numeric
or alphabetic in a class condition test.

5. When a hexadecimal literal is handled as if its category were computational, then the length
of the literal must be from 1 to 18 digits. When a hexadecimal literal is handled as if it were
nonnumeric, the length of the literal must be from 2 to 320 digits.

B 1000 Systems COBOL 74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

LOGICAL RECORD AND FILE CONCEPTS

The purpose of defining file information is to distinguish between the physical aspects of the file and
the conceptual characteristics of the data contained within the file.

Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or output media and include
such features as:

1. The grouping of logical records within the physical limitations of the file medium.

2. The means by which the file can be identified.

Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each logical entity within the file
itself. In a COBOL74 program, the input or output statements refer to one logical record.

It is important to distinguish between a physical record and a logical record. A COBOL 74 logical rec
ord is a group of related information, uniquely identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and recording mode are adapted to a
particular computer for the storage of data on an input or output device. The size of a physical record
is hardware dependent and has no direct relationship to the size of the file of information contained
on a device.

A logical record may be contained within a single physical unit; several logical records may be con
tained within a single physical unit; or, in the case of mass storage files, a logical record may require
more than one physical unit. There are several source language methods available for describing the
relationship of logical records and physical units. When a permissible relationship has been established,
control of the accessibility of logical records as related to the physical unit must be provided by the
interaction of the object program on the hardware and/ or software system. In this manual, references
to records indicate records, unless the phrase 'physical record' is specifically used.

The concept of a logical record is not restricted to file data but is carried over into the definition of
working storage. Working storage may be grouped into logical records and defined by a series of rec
ord description entries.

Record Concepts

·The record description consists of a set of data des'cription entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-name,
if required, followed by a series of independent clauses, as required.

1168622 2-13

B 1000 Systems COBOL 74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record. This concept arises from the need to
specify subdivisions of a record for the purpose of data reference. Once a subdivision has been
specified, it may be further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, those not further subdivided, are called elementary items; con
sequently, a record is said to consist of a sequence of elementary items, or the record itself may be
an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into groups. Each
group consists of a named sequence of one or more elementary items. Grol}ps, in turn, may be com
bined into groups of two or more groups. An elementary item may belong to more than one group.

LEVEL-NUMBERS

A system of level-numbers shows the organization of elementary items and group items. Since records
are the most inclusive data items, level-numbers for records start at 01. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater in value than 49. There are special
level-numbers 66, 77, and 88, which are exceptions to this rule. Separate entries are written in the
source program for each level-number used.

A group includes all group and elementary items following it until a level-number less than or equal
to the level-number of that group is encountered. All items which are immediately subordinate to a
given group item must be described using identical level-numbers greater than the level-number used
to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

1. Entries that specify elementary items or groups introduced by a RENAMES clause.

2. Entries that specify noncontiguous working storage and linkage data items.

3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of regrouping data items have
been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other items, and are not
subdivided, have been assigned the special level-number 77.

Entries that specify condition-names, to be associated with particular values of a conditional variable,
have been assigned the special level-number 88.

2-14

B 1000 Systems COBOL 74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

CONCEPT Of ,CLASSES OF DATA
The five categories of data items (refer to the PICTURE clause in section 6) are grouped into three
classes: alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the classes and categories
are synonymous. The alphanumeric class includes the categories of alphanumeric edited, numeric ed
ited, and alphanumeric (without editing). Every elementary item, except for an index data item, belongs
to one of the classes and also to one of the categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of elementary items subordinate to that group item. Table
2-1 shows the relationship of the class and categories of data items.

Table 2-1. Classes of Data

Level of Item Class Category

Alphabetic: Alphabetic

Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric.

N onekmentary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited

Alphanumeric

ALGEBRAIC SIGNS
Algebraic signs fall into two categories: operational signs, which are associated with signed numeric
data items and signed numeric literals to indicate algebraic properties; and editing signs, which appear
on edited reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. The
clause is optional; if it is not used, operational signs are represented as defined under symbol 'S' of
the PICTURE clause. Refer to the PICTURE clause, General Rule 8, the 'S' symbol in section 6.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE
clause.

1168622 2-15

B 1000 Systems COBOL74.Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

STANDARD ALIGNMENT RULES

The standard rules for positioning data within an elementary item depend on the category of the receiv-
ing item. These rules are: ·

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character positions with
zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item i~ treated as if
it had an assumed decimal point immediately following the rightmost character and is
aligned as in step la above.

2. If the receiving data item is a numeric edited data item, the data moved to the edited data item
is aligned by decimal point with zero fill or truncation at either end as required within the re
ceiving character positions of the data item, except where editing requirements cause replace
ment of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric
edited or alphabetic, the sending data is moved to the receiving character positions and aligned
at the leftmost character position in the data item with space fill or truncation to the right,
as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified as de
scribed in the JUSTIFIED clause description in section 6.

UNIQUENESS OF REFERENCE

Uniqueness of reference for identifiers and condition-names, if not unique in the program, can be ac
complished through the use of qualification, subscripting, or indexing.

Identifier

An identifier is a term used to reflect that ·a data-name, if not unique in a program, must be followed
by a syntactically correct combination of qualifiers, subscripts, or indices necessary to. ensure unique
ness.

General Formats:

Format 1:

{
data-name-1 }
condition-name [{ ~} data-name-2]

2-16

B 1000 Systems COBOL 74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

Format 2:

data-name-I [{?J}

[({

index-name-I

literal-I

[

) index-name-2

' t literal-3

[

, { index-name-3

literal-5

data-name-2] ... [r } literal-2] }

r { : } literal4] }

[{: } literal-6 J } J J)]

Restrictions on qualification, subscripting, and indexing are:

1. A data-name must not be subscripted or indexed when that data-name is being used as an in
dex, subscript, or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM statements. Data items
described by the USAGE IS INDEX clause permit storage of the values associated with index
names as data. Refer to the USAGE clause in section 6. Such data items are called index data
items.

4. Literal-I, literal-3, literal-5, ... in the previous format example, must be positive numeric inte
gers. Literal-2, literal-4, literal-6, ... must be unsigned numeric integers.

Condition-Name

Each condition-name must lbe unique, or made unique through qualification and/ or indexing, or subs
cripting.

ff qualification is used to make a condition-name unique, the associated conditional variable may be
used as thie first qualifier. If qualification is used, the hierarchy of names associated with the condition
al variable, or the conditional variable itself, must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then references to any of its
condition-names also require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and indexing of condi
tion-names is exactly that of 'identifier' except that data-name-I is replaced by 'condition-name-I '.

In the general formats, 'condition-name' refers to a condition-name qualified, indexed or subscripted,
as necessary.
1168622 2-17

Qualification

B 1000 Systems COBOL74 Language Manual
Language Concepts

Every user-specified name that defines an element in a COBOL 74 source program must be unique, ei
ther because no other name has the identical spelling and hyphenation, or because the name exists
within a hierarchy of names such that references to the name can be made unique by mentioning one
or more of the higher levels of the hierarchy. The higher levels are called qualifiers and the process
that spe~ifies uniqueness is called qualification. Enough qualification must be mentioned to make the
name unique; however, it may not be necessary to mention all levels of the hierarchy. Within the
DAT A DIVISION, all data-names used for qualification must be associated with a level indicator or
a level-number. Therefore, two identical data-names must not appear as entries subordinate to a group
item unless they are capable of being made unique through qualification. In the PROCEDURE DIVI
SION, two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are the most significant, fol
lowed by those names associated with level-number 01, and finally the names associated with level
number 02, ... , 49. A section-name is the highest and only qualifier available for a paragraph-name.
The most significant name in the hierarchy must be unique and cannot be qualified. Subscripted or
indexed data-names and conditional variables, as well as procedure-names and data-names, may be
made unique by qualification. The name of a conditional variable can be used as a qualifier for any
of its condition-names. Regardless of the available qualification, no name can be both a data-name
and procedure-name.

Qualification is performed by following a data-name, a condition-name, a paragraph-name, or a text
name by one or more phrases composed of a qualifier preceded by IN or OF. IN and OF are logically
equivalent.

General Format:

Format 1:

{
data-name-I }
condition-name [rnn data-name-2]

Format 2:

paragraph-name [{ gf} section-name]

Format 3:

text-name
library-name]

General Rules:

B 1000 Systems COBOL 74 Language Manual
Language Concepts

QUALIFICATiON

1. Each qualifier must be of a successively higher level and within the same hierarchy as the name
it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item in a source pro
gram, the data-name or condition-name must be qualified each time it is referenced in the PRO
CEDURE, ENVIRONMENT, and DATA DIVISIONS (except in the REDEFINES clause where
qualification is unnecessary and must not be used.)

4. A paragraph-name must not be duplicated within a section. When a paragraph-name is quali
fied by a section-name, the word SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same section.

5. A data-name cannot be subscripted when used as a qualifier.

6. A name can be qualified even though it does not need qualification; if there is more than one
combination of qualifiers that ensures uniqueness, then any such set can be used. The complete
set of qualifiers for a data-name must not be the same as any partial set of qualifiers for an
other data-name. Qualified data-names may have any number of qualifiers up to and including
49.

7. If more than one COBOL 74 library is available to the compiler during compilatfon, text-name
must be qualified each time it is referenced.

Examples:

In the following file descriptions all items are unique except the data-name TECH. In order to refer
to either TECH item, qualification must be used. Otherwise, if reference is made to TECH only, the
compiler would not know which of the two is desired. Therefore, in order to move the contents of·
one TECH into the other TECH, the PROCEDURE DIVISION must be coded with one of the fol
lowing sentences:

MOVE TECH IN CITY-NO TO TECH OF STATE-NO.

MOVE TECH OF CITY-NO TO TECH IN STATE-NO.

MOVE TECH IN AREA-NO TO TECH OF RADIUS-NO.

MOVE TECH OF AREA-NO TO TECH IN RADIUS-NO.

01 AREA-NO •..
03 CITY-NO .

05 TECH .

1168622

05 BRANCH
03 DISTRICT •..

01 RADIUS-NO ...
03 STATE-NO . . .

05 TECH . . .
05 DIST-BR .

03 REGION ...

2-19

Subscripting

B 1000 Systems COBOL74 Language Manual
Language Concepts

Subscripts can be used only when reference is made to an individual element within a list or table of
like elements that have not been assigned individual data-names (refer to the OCCURS clause in section
6).

The subscript can be represented either by a numeric literal that is an integer or by a data-name. The
data-name must be a numeric elementary item that represents an integer. When the subscript is repre
sented by a data-name, the data-name may be qualified but not subscripted.

The subscript may be signed and, if signed, must be positive. The lowest possible subscript value is
1. This value points to the first element of the table. The next sequential elements of the table are
pointed to by subscripts whose values are 2, 3, and so forth. The highest permissible subscript value,
in any particular case, is the maximum number of occurrences of the item as specified in the OCCURS
clause.

At the time of execution of a statement which refers to a subscripted table element, each subscript
specified is validated. That is, its value must not be less than one or more than the maximum number
of occurrences as specified by the corresponding OCCURS clause (as modified by the DEPENDING
ON clause, if any). If the subscript value is not within this range, an abnormal termination of the
program occurs.

The subscript or set of subscripts that identifies the table element is delimited by the balanced pair
of separators, left parenthesis and right parenthesis, following the table element data-name. The table
element data-name appended with a subscript is called a subscripted data-name or an identifier.

When more than one subscript is required, they are written in the order of successively less inclusive
dimensions of the data organization.

General Format:

t data-name }

) condition-name (
subscript-! [, subscript-2 [, subscript-3]])

Example:

In the following file description, to reference the first department, DEPT (1) is written. If data-name
X contains the number of the department desired, DEPT (X) is written. If the data item GROUP con
tains the specific group desired, then POSITION (X, GROUP) would reference the exact employee.

2-20

01 EMPLOYEE-JOBS.
05 DEPT

10 DEPT-NAME
10 ALL-JOBS

·15 PCS IT I ON

OCCURS 50 TIMES.
PIC X(lO).

OCCURS 20 TIMES.
PI C X (15) •

Indexing

B 1000 Systems COBOL 74 Language Manual
Language Concepts

INDEXING

References can be made to individual elements within a table of like elements by specifying indexing
for that reference. An index is assigned to that level of the table by using the INDEXED BY phrase
in the definition of a table. A name given in the INDEXED BY phrase is known as an index-name
and is used to refer to the assigned index. The value of an index corresponds to the occurrence number
of an element in the associated table. An index-name can be given a value by the execution of a SET
statement, a SEARCH ALL statement, or a Format 4 PERFORM statement.

An indc~x-name has the same internal representation as an index data item. Refer to General Rule 9,
the USAGE clause, in section 6. If a value to be stored in an index-name or in an index data name
exceeds the largest value that can be held in that index-name or index data name, the value is truncated
according to the rules for the occurrence of a size error condition in an arithmetic statement without
a SIZE ERROR phrase.

An index-name assigned to one table may not be used to index another table.

Direct indexing is specified by using an index-name in the form of a subscript. Relative indexing is
specified when the index-name is followed by the operator + or -, followed by an unsigned integer
numeric literal, all of which is delimited by the matching pair of separators, left parenthesis and right
parenthesis, following the table element data-name. The occurrence number resulting from relative in
dexing is determined by incrementing (where the operator + is used) or decrementing (when the
operator - is used), by the value of the literal, the occurrence number represented by the value of
the index. When more than one index-name is required, they are written in the order of successively
less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table element, the value of each
direct or relative index must not be less than a value which corresponds to the beginning of the first
occurrence of the table element. Also, the index must not be greater than a value which corresponds
to the beginning of the last occurrence of the table element as specified by the corresponding OCCURS
clause. H the index value is not within this range, the execution of the program is terminated. The
index *value need not precisely address the beginning of a table element in order to pass the range
check. This may occur when an index-name is set to the value of an index data item which has been
set to the value of another index-name, as such assignments are made without conversion.

Subscripting is permitted where indexing is permitted.

General Format:

) data-name t () index-name- I [I + l
(condition-name) (literal- I t - ~ -

[{ index-name-2

literal-3 [{:}

literal-2 J
}

literal-4 J
~

[) index-name-3
[{ : } literal-6] }]

' ,(literal-5

1168622

...] l
2-21

B 1000 Systems COBOL 7 4 Language Manual
Language Concepts

EXPLICIT AND IMPLICIT SPECIFICATIONS

There are three types of explicit and implicit specifications that occur in COBOL 74 source programs:

1. Explicit and implicit PROCEDURE DIVISION references.

2. Explicit and implicit transfers of control.

3. Explicit and implicit attributes.

Explicit and Implicit PROCEDURE DIVISION References

A COBOL 74 source program can reference data items either explicitly or implicitly in PROCEDURE
DIVISION statements. An explicit reference occurs when the name of the referenced item is written
in a PROCEDURE DIVISION statement or when the name of the referenced item is copied into the
PROCEDURE DIVISION by the processing of a COPY statement. An implicit reference occurs when
the item is referenced by a PROCEDURE DIVISION statement without the name of the referenced
item being written in the source statement. An implicit reference also occurs, during the execution of
a PERFORM statement, when the index or data item referenced by the index-name or identifier
specified in the VARYING, AFTER, or UNTIL phrase is initialized,, modified, or evaluated by the
control mechanism associated with that PERFORM statement. Such an implicit reference occurs if the
data item contributes to the execution of the statement.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to statement in the se
quence in which the statements were· written in the source program, unless an explicit transfer of con
trol overrides this sequence or there is no next executable statement to which control can be passed.
The transfer of control from statement to statement occurs without the writing of an explicit PROCE
DURE DIVISION statement, and therefore, is an implicit transfer of control.

COBOL 74 provides both explicit and implicit means of altering the implicit control .transfer
mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer of con
trol also occurs when the normal flow is altered without the execution of a procedure branching state
ment. COBOL 74 provides the following types of implicit control flow alterations which override the
statement-to-statement transfers of control:

2-22

1. If a paragraph is being executed under control of another COBOL 74 statement (for example,
PERFORM, USE, SORT, and MERGE) and the paragraph is the last paragraph in the range
of the controlling statement, then an implied transfer of control occurs from the last statement
in the paragraph to the control mechanism of the last executed controlling statement. Further,
if a paragraph is being executed under the control of a PERFORM statement which causes iter
ative execution and that paragraph is the first paragraph in the range of that PERFORM state
ment, an implicit transfer of control occurs between the control mechanism associated with that
PERFORM statement and the first statement in that paragraph for each iterative execution of
the paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control occurs to any
associated input or output procedures.

B 1000 Systems COBOL 74 Language Manual
Language Cofl:cepts

EXPLICIT AND IMPLICIT SPECIFICATIONS

3. When any COBOL 74 statement is executed which results in the execution of a declarative sec
tion, an implicit transfer of control to the declarative section occurs. Another implicit transfer
of control occurs after execution of the declarative section, as described in step 1 above.

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by
the execution of a procedure branching or conditional statement. An explicit transfer of control can
be cause:d only by the execution of a procedure branching or conditional statement. The execution of
the procedure branching statement ALTER does not constitute an explicit transfer of control, but af
fects the explicit transfer of control that occurs when the associated GO TO statement is executed. The
procedure branching statement EXIT PROGRAM causes an explicit transfer of control when the state
ment is executed in a called program.

In this manual, the term 'next executable statement' is used to refer to the next COBOL 74 statement
to which control is transferred according to the rules above and the rules associated with each language
element in the PROCEDURE DIVISION.

There is no next executable statement following:

1. The last statement in a declarative section when the paragraph in which it appears is not being
executed under the: control of. some other COBOL 74 statement.

2. The last statement in a program when the paragraph in which it appears is not being executed
under the control of some other COBOL 74 statement.

Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified
is called an explicit attribute. If an attribute has not been specified explicitly, then the attribute. assumes
the default specification. Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case, a data item's usage is
DISPLAY.

1168622 2-23

GENERAL

B 1000 Systems COBOL 74 Language Manual

SECTION 3
CODING FORM

The format of the COBOL 74 coding form (figure 3-1) has been defined by CODASYL and ANSI,
and by common usage. The B 1000 .COBOL 74 Compiler accepts this standard format. Should program
interchange be a major consideration, the user is directed to the ANSI standard.

The rules for spacing given in the following description of the reference format take precedence over
all other rules for spacing.

I FIELD DEFINITIONS

The same coding form is used for all four divisions of a COBOL 74 program. These divisions must
appear in proper order: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The fol
lowing paragraphs describe the various fields of this coding form.

Sequence Area (Record Positions 1-6)

A sequence number, consisting of six digits in the sequence area, may be used to label a source pro
gram line.

Indicator Area (Record Position 7)

Column 7 has the following functions:

1. A $ symbol in column 7 indicates that the record is used to specify options for compiler
operation. Refer to Section 11 for additional information.

2. If column 7 contains an asterisk (*), the remainder of the record is considered to be a comment
and, is not "compiled" to produce object code.

3. If column 7 contains a slash (/), the listing is advanced to channel 1 before printing, and the
record is considered to be a comment record.

4. The presence .of a hyphen (-) indicates that the last word or literal on the previous record is
not complete and is continued on this record beginning in Area B (positions 12 through 72).

Words and numeric literals may be split at any point by placing a hyphen in column 7 of the
following record. Any rightmost blank spaces on a record are ignored as are the leftmost blank
spaces on the continuation record.

Nonnumeric literals are split in a slightly differept fashion than words and numeric literals. On
the initial record starting from the quotation mark, all information through position 72 is taken
as part of the literal, and on the next record a quotation mark must be used to indicate the
start of the second part of the literal.

If there is no hyphen in column 7 of a coding line, it is assumed that the last character in
the preceding line is followed by a space.

l 168622 3-1

w
I

N

PROGRAM

PROGRA.MMER

PAGE LINE A B
NO. NO.

1 3 4 6 7 8 11 12 16 20 24

Burroughs COBOL CODING FORM

REQUESTED BY

DATE

28 32 36 40 44 48 52 56

PAGE OF

IOENT. 73 BO
l_ 1- l. .1 l_ Ll l

z

60 64 68 J72

.. 1.1 01
1

.l.1..l J_J_.l J_J_J_ j_J_J. ..11...l l..l.l .ll..l ..11..l l..Ll ..1.l..L ..L..L..L lll .l..ll ll..L lll lll..l
T

l..L 0 2 1 ..111 l.ll ll..L ..Lll. .lLl ..Lll l..l.l l..il l..L..L .ill lll lLl l..Ll l..ll 111 llll

..1 l o3 I .l l l l l l l l l l ..L .1 l l l l l l ..1 l l l .1.1 l ..l l l
T

..l..L 04_1 .. 11..L lll JlJ Jl.J ill 111 11-1 lJJ 111 111 ..L..Ll l..Ll 1-ll lll lll l..lll

l l o 5 ~-;- -+-J.......LL. l l l l l l ..L ..L .1 ..1 .1 l l l ..1 l l l .l l l l ..1 l l .1 l l I l l l l J l l l l 1 1- l _l ..1 ..1 I l

l J 0 5 .. l l l ..1 l. ..l l l l ..L l .1 ..1 l l l l l ..1 ..1 l ..1 ..1 ..11 l ..l l 1.11 l 1 l J 11 L l 1- .1 l. ..L l l l l l l l

i-1-J 0 7 ~ J 1 j_ ..1 J. J ..l ..1 1 l. I I I I I I I I l I ..1 J l J .. ~J__,J~J~ J__,1_1'-+--....... l__,1~1"'"--+__,J_..l~l~ J_-_l~l~~l-l.............._l --t--'l _ _l.___l~-~.1__,..l_l.__J--'---i
!-L-L-- 0 8 I J__l_l 11-J. ..1..1..L 1-.Ll ..ill l.l.l ..l.ll lll 1-ll l.ll lll l..Ll J..11 111 1-1..l .1..l..ll

I
l ..l 0 9 + .. 1 l .l l J_ ..1 ..L ..L J_ ..L ..1 .1 ..l l l ..L l ..1 ..1 J_ l ..1 .1 l ..L l l .1 J_ l l l l ..1 J_ ..L J_ ..l l J_ l l l ..1 J_ ..1 l J_ l

l l 1 o I l J. l J l l l l l J. l ..L ..1 l l J ..1 1 ..1 i 1-+--1 1l-+-..L..___._l1--+-l lL -+----"l..._l.............._l. -+-1 1 J. -+---'"l_l l.L-t--....... l-l..._l-'-+-....... 11_.1'--t--..l~l l__.l--1

_LI 11 I 1..11 111 1 li l ll ..lll lll ..l..ll l..ll ll..l lll 111 J 11 Lll ll..l lll llll r
1-L-L--- ...!2__L l ..l ..l l l l ..l l ..l J l ..l l l l ..l l .1 ..l l l l l .1 l .1 l.-4--J-.1__.l__.l-+-l~l _.__l -+---'l-l l'""--+-l..___._..l l--+---'l-l l.<......+-_._I_lL.L--f---'L__.l__.L'---1'----1

.l ..1 1 3 I J. ..1 ..1 l l ..1 l ..1 l J. ..1 J. ..1 l ..1 ..1 ..1 J. ..1 ..1 l l ..L ..1 1- _1 ..1 ..L ..L ..L ..L ..L ..l ..1 ..L J. ..1 ..1 ..1 l l ..t ..1 l l 1- J. 1 l
I

.l .1 1 4 l .. r---!-L .. LJ.. .1 l. ..1 _LLl J .l _I I l. I ..1 ..l ..1 ..1 ..1 l ~+--'-l.---1.l i--+-__,___i__,__L_._..L----1-_,_l.__,_L-..1'--+-__._J_l...._J'---+-........ l lc.....L'-+--'-L-..l..._l-'-+-__,_l__,.1..._l-'---+-....... J.__,_..L........,lc.....l~

..ll 15 I ..1..1..l ..L..1..1 ..l...LJ .1.1.1 ill ..1..1.1 1..11 l..LL l..Ll .ll..L 11..l ..111 ..1 ..L..l .1.1..l ..L..L..L l..L..L..L T +-~......__.-t-__,___,___.__t---'-_._.__,.....__.___,~-+--'-__._'--t-........___.~___..__._-'---+-............... __...._..__.

l ..1 1 6 ..L l l ..l ..L ..1 l ...J....J...... l J_ .1 _L l l ..1 .1 .1 l _l 1 .1 ..L l--+-J,_..l....__._..L-+---1..._J~_l-'---t--l..._l.__..l-"--t.-..l J. 1-'---t-__,_..l_..L..._1.L..-j--Ll-1..._..l-'-+-....... ..L l-1'--t--~1 __.__l l__.l--t

..1 l 1 7 I l ..L l l ..l ..l 1 i 1. l. 1. .1 l l _ L L L .1 I ..1 I 1 l l.. ,_....LLL'---+-__,_..L__,J,_..L'---+-__,_J__,L..._..l-<--+ J_l.L....l-'---+__..l_..L.L....J-'--+-......... l-..l.....__,__..L--+---'.1..._1-..._.._l --+---'l-l.__~ll
I

l .1 l 8 J_ l l ..l l l J_ 111 111 l l l l ..11 11 l _l 11 ~_L_Lr--'-..L ~l .. .l~-+---'l~l~l'---t-~l~..L~l-+-'..l_l~l-'---t-~l~l~l-t---l~l~l~~l~l l~l--1

1..1 l9 I 111 11..l lll l..Ll. lll l..L..L ..L..l..L 11..l lll lll lll l..Ll l ll l 'l ..Lll llll T -~~~__.__~.......__.----1-............... __...._+--'-......__.--+-__,___,___.__t---'-_._.__,.....__.___,~-+--'-__...._'--t-·~~-+-'-__._-'---+-............... __...._~

J_ ..1 2 0 J l l l J_ l ..1 ..L .1 ..L ..i l .1 l l J_ ' ..L .l J_ J__l_L.-+---'l_..L.__..l-'--+-....... l-1..._l~l__,l_l'-+--....... J.l_..1'--+-....... l--'l-..i'--+-1 ll-+-..L~..l__,..l-+-l~l l--+-l 1 l~..l

~--r---,-1-r--~1__,_..L_..L'-i-~..ll-..l'-i-__.__l_~.1-..i'--+-_,_..i1__,.1'-+--_,_J__,_J___,_l_~-~L l.__,..L'--+-_,_.1__,_..l_..L'-+--_,_..l........,J_.l'-+--_,_l__..l_..l'-+--~1 L 1'-+-....... 1 l_.l>--+-~..l-..1~1~~-L-..L~l.L..-j _ __..l_l_._._..L___.J_l~l~__..1 1_1.__1~
I

J_ ..l ..L .l ..L ..1 ..1 ..1 ..1 ..L ..l J ..1 ..1 J . .I _LI ..L LL.____,.....~1-..l-..L~-+-1 l-l-+-1-~..l-..l--._1 l~l----l l~l--+-l~..L~..i--+--'.l-l l~~l-l~..L--+---'-..L-.l~l ~l~l l_l...__.
I

l_ ..1 l 1 ..L ..1 ..L ..11 l .l l ~ I 1 I l l ..L _L~l~ll_l~..l.........-. .. -l-l-l--+-l~l~l-+--'l-l~l~-l-l-l-+-l~.l~l--+--'l_l~l.............--l-l~l--l~l~-l l

l..l I .11..l .111 1..1..i 1-J..1 _Ll_l ..L..l..L ..Lll .lll l.ll .lJ..L lll l..1..L J..Ll lll. 1-1-l ..Lll .. L
Tl

l.l J_J.J ..L.11 l.ll l...L..L ..ll.J 111 lll ll..l lll 111 lll l..Ll lll lll lll ..111-f
4 8 12 16 20 24 28 3 36 40 44 48 52 56 60 64 68 72

G12326

Figure 3-1. COBOL Coding Form

B I 000 Systems COBOL 74 Language Manual
Coding Form

5. The letter D in column 7 specifies a debugging line. Any debugging line that consists solely
of spaces from positions 8 through 72 is considered the same as a blank line.

A debugging line is considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph. There
fore, the contents of a debugging line must be such that a syntactically correct program is
formed with or without the debugging lines being considered as comment lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except
that each continuation line must contain the letter D in position 7, and character-strings may
not be broken across two lines.

Area ,A (Positions 8 through 11)

DIVISION, SECTION, and PARA GRAPH headers must begin in Area A. A division header consists
of the division name (IDENTIFICATION, ENVIRONMENT, DATA, or PROCEDURE), followed by
a space~ then the word DIVISION followed by a period.

In the ENVIRONMENT and DAT A DIVISIONS, a section header consists of the section-name, fol
lowed by a space, and then the word SECTION followed by a period.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a segment-number (optional), followed by a period.

A paragraph header consists of, the paragraph-name followed by a period. The first sentence of the
paragraph may appear on the same line as the paragraph header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph headers are
fixed and only the headers shown in this manual are permitted. Within the PROCEDURE DIVISION,
the section and paragraph headers are defined by the user.

Within the DATA DIVISION, the level indicators (FD, CD, SD) and the level numbers 01 and 77 must
each begin in Area A, followed by the associated name and appropriate descriptive information.

The key words DECLARATIVES and END DECLARATIVES that precede and follow the declaratives
portion of the PROCEDURE DIVISION, must appear on separate lines. Each must begin in Area A
and must be followed by a period and a space.

Area B (Positions 12 through 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers; level numbers 01 and 77,
or level indicators (FD, SD, CD), must start in Area B.

When level-numbers are to be indented, each new level-number may begin any number of spaces to
the right of Area A. The extent of indentation to the right is determined only by the width of the
physical medium.

Right Margin (Position 72)

The text of the program must appear between positions 8 and 72, inclusive. A word or statement may
end in position 72. ·

1168622 3-3

B 1000 Systems COBOL 74 Language Manual
Coding Form

Identification (Positions 7 3 through 80)

The identification field may contain any information desired by the user. The field is ignored but is
reproduced on the output listing by the compiler. This field is normally used for the program name.

BLANK LINES

A blank line is one that contains no entries in the Indicator Area, Area A, and Area B. A blank line
may appear anywhere in the source program except immediately preceding a continuation line.

PUNCTUATION

The following rules of punctuation apply to COBOL 74 source programs for the B 1000 system .
.

1. A sentence must be terminated by a period followed by a space. A period must not appear
within a sentence unless it is within a nonnumeric literal or is a decimal point in a numeric
liJ:eral or PICTURE string.

2. Two or more names in a series must be separated by a space or by a comma. If used, commas
must appear only where allowed.

3. Semicolons (;) are used only for readability and are never required.

4. A space must never be embedded in a name; hyphens are to be used instead. A hyphen must
not start or terminate a name. For example:

PAY-DAY (correct)

-PAYDAY (wrong)

SAMPLE CODING

An extract sample from a source program, showing the continuation of both words and nonnumeric
literals, is illustrated in figure 3-2. ~

3-4

--0\
00
0\

r;ROGRAM
N
N

Burroughs COBOL CODING FORM

I REQUESTED BY I PAGE

PROGRAMMER DATE IDENT.

PAGE LINE A

NO. NO.
3 4

01

02

03

04

05

06

07

08

09

10

11

1 2

13

1 4

1 5

16

1 7

18

1 9

20

G12327

Figure 3-2. Example of Continuation of Words and Literals

GENERAL

B 1000 Systems COBOL 74 Language Manual

SECTION 4
IDENTIFICATION DIVISION

The first division of the COBOL 74 source program is the IDENTIFICATION DIVISION whose func
tion is to identify the source program and the resultant output of compilation. In addition, the date
the program was written, the date the source program was compiled, and other pertinent information
can be included in the IDENTIFICATION DIVISION.

~ IDENTIFICATION DIVISION STRUCTURE

The structure of this division follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment-entry] ...]
[DATE-COMPILED. [comment-entry] ...]
[SECURITY. [comment-entry] ...]

The following rules must be observed in the formation of the IDENTIFICATION DIVISION:

1. The IDENTIFICATION DIVISION must begin_ with the reserved words IDENTIFICATION
DIVISION followed by a period and a space.

2. All paragraph-names must begin in positions 8 through 11 (Area A) of the coding form.

3. The comment-entry can consist of any combination of the characters from the B character set.
The continuation of the comment-entry by the use of the hyphen in the indicator area is not
permitted; however, the comment-entry may be contained on one or more lines. A period must
be present to denote the end of the comment entry.

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is identified.

PROGRAM-ID. program-name.

The following rules must be observed to form PROGRAM-ID paragraphs.

1. The program-name must conform to the rules for formation of a user-defined word.

2. The PROGRAM-ID paragraph contains the name of the program and must be present in every
program.

3. The program-name identifies the source program and all listings pertaining to a particular pro
gram.

1168622 4-1

B 1000 Systems COBOL 74 Language Manual
Identification Division

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date in the IDENTIFICATION DIVI
SION source program listing.

DATE-COMPILED. [comment-entry] ...

The paragraph-name DATE-COMPILED causes the current date to be inserted during program compil
ation. If a DATE-COMPILED paragraph is present, it is replaced during compilation with a one-line
paragraph of the form:

DATE-COMPILED. current date.

Current date is composed of the elements year, month, day of month, hour, and minute and represents
the date and time at which the compilation of the source program started.

Year is presented as four digits, starting in the position on the printed line corresponding to column
25 of a source line.

Month is presented as the name of the month in English, starting in the position on the printed line
corresponding to column 30 of a source line.

Day of month is presented as two digits, starting in the position on the printed line two places to the
right of the last character of the month entry.

Time is presented as four digits, with a colon between the second and third digits, and represents the
time on a 24-hour clock. Time is presented in the position on the printed line five places to the right
of the second digit of day of month.

Any leading zeros in the numeric fields are presented as the character '0' (zero).

If a compilation commences at 11:03 p.m., February 3, 2001, the current date would be presented as:

2001 FEBRUARY 03 23:03

CODING THE IDENTIFICATION DIVISION
Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be coded in the source
program. Continued lines must begin in Area B and must not include a hyphen in the indicator area.

4-2

O'\
00
O'\
N
N

PROGRAM

PROGRAMMER

PAGE LINE
NO. NO.

3 4

1 0

11

L 12

1 3

14

1 5

1 6

1 7

18

19

20

G12328

A

Burroughs COBOL CODING FORM

~ . . . / I REQUESTED BY I PAGE
~ \ \J' ~ \IL(\ +-----------+------------'-~--.3<------1

DATE !DENT.

l

32 36 40 56 60 64 72

Figure 4-1. Coding the IDENTIFICATION DIVISION

GENERAL

B 1000 Systems COBOL 74 Language Manual

SECTION 5
ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION is the second division of a COBOL74 source program. Its function
.is to specify the computer being used for the program compilation, specify the computer to be used
for object program execution, a.ssociate files with the computer hardware devices, and provide the com
piler with pertinent information about disk storage files defined within the program. Furthermore, this
division is also used to specify input-output areas to be utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION con
tains the overall specifications of the computer. The INPUT-OUTPUT SECTION deals with files to
be used in the object program. .

ENVllRONMENT DIVISION STRUCTURE

The structure of this division follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry
OBJECT-COMPUTER. object-computer-entry
[SPECIAL-NAMES. special-names-entry]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. { fik-control-entry} ...

[I-0-CONTROL. input-output-control-entry]

The folllowing rules must be observed in the formulation of the ENVIRONMENT DIVISION.

1. The ENVIRONMENT DIVISION must begin with the reserved words ENVIRONMENT DIVI
SION followed by a period and a space.

2. All entries must begin in Area A (columns 8 through 11) of the coding form.

CONIFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be used for pro
gram compilation (SOURCE-COMPUTER), the system to be used for program execution (OBJECT
COMPUTER), and the SPECIAL-NAMES paragraph. The SPECIAL-NAMES paragraph relates hard
ware names used by the B 1000 COBOL 74 Compiler to the mnemonic-names in the source program,
and alphabet-names to character sets and/or collating sequences.

1168622 5-1

B 1000 Systems COBOL 74 Language Manual
Environment Division

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to be com
piled. It also contains an optional clause for use in debugging COBOL 74 programs. Refer to section
10 in this manual for further information on the compile-time debugging switch.

General Format:

SOURCE-COMPUTER. computer-name [with DEBUGGING MODE] .

Syntax Rule:

1. The computer-name is any COBOL 74 word and is handled as a comment entry which describes
the computer upon which the source program is to be compiled. This computer name is for
documentation only.

General Rule:

5-2

1. The computer-name is treated as a comment and ignored.

2. If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER paragraph
of the CONFIGURATION SECTION of a program, all USE FOR DEBUGGING statements
and all debugging lines are compiled.

3. If the WITI-{ DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph of the CONFIGURATION SECTION of a program, any USE FOR DEBUGGING
statements and all associated debugging sections, and any debugging lines are compiled as com
ment lines.

B 1000 Systems COBOL 74 Language Manual
Environment Division

OBJECT-COMPUTERt Paragraph

OBJECT-COMPUTER

The OBJECT-COMPUTER paragraph identifies the computer on which the program is to be executed.

General Format:

QBJECT-COMPUTER. computer-name [,MEMORY SIZE integer

[, PROGRAM COLLA TING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT .!§. segment-number]

Syntax Rule:

1. Computer-name is a system name.

{
WORDS }]
CHARACTERS
MODULES

2. Segment-number must be an integer whose value is within the range of 1 through 49.

General Rules:

1. The computer-name is .any COBOL 74 word and is handled as a comment entry which describes
the computer upon which the object program is to be executed. This computer name is for doc
umentation only.

2. If the PROGRAM COLLA TING SEQUENCE clause is specified, the collating sequence associ
ated with alphabet-name is used to determine the truth value of any nonnumeric comparisons:

a. Explicitly specified in relation conditions. Refer to Relation Condition in section 7 for addi
tional information.

b. Explicitly specified in condition-name conditions. Refer to Condition-Name Condition
(Conditional Variable) in section 7 for additional information.

3. If the PROGRAM COLLATING SEQUENCE clause is not specified, the EBCDIC collating
sequence is used.

4. If the PROGRAM COLLA TING SEQUENCE clause is specified, the program collating se
quence is the collating sequence associated with the alphabet-name specified in that clause.

5. The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric merge
or sort keys unless the COLLATING SEQUENCE phrase of the. respective MERGE or SORT
statement is specified. Refer to the MERGE and SORT statement in section 7.

6. The PROGRAM COLLA TING SEQUENCE clause applies only to the program in which it is
specified.

1168622 5-3

B 1000 Systems COBOL 7 4 Language Manual
Environment Division

OBJECT-COMPUTER

5-4

I

8. The SEGMENT-LIMIT clause specifies the limit of the fixed segment for sections numbered
from 0 to 49. Refer to Segmentation in section 7 for further discussion.

9. The MEMORY SIZE clause is used to increase the amount of dynamic memory.

10. WORDS and MODULES are equivalent to CHARACTERS.

B 1000 Systems COBOL 74 Language Manual
Environment Division

SPECIJ!~L-NAMES Parngraph

SPECIAL-NAMES

The SPECIAL-NAMES paragraph provides a means of relating names to user-specified mnemonic
names and of relating alphabet-names to character sets and/or collating sequences.

General Format:

1168622

SPECIAL-NAMES .

IS mnemonic-name

(, ON STATUS .!.§. condition-name-I

[,OFF STATUS IS condition-name-2]]

IS mnemonic-name

(, OFF STATUS IS condition-name-2

[, ON STATUS lli_ condition-name-I]]

ON STATUS IS condition-name-I
[, OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2
[, ON STATUSIS condition-·name-1 1

, alphabet-name IS

STANDARD-I
NATIVE
ASCII
EBCDIC

[
{

THROUGH } literal-2 J
literal-I THRU

ALSO literal-3 [, ALSO literal-4] .. .

[H1era1-s [~~~1~::J [1'.1~fS~ literai-s 1 ... J]
(, CURRENCY SIGN IS literal-9]

(, DECIMAL-POINT IS COMMA].

5-5

B I 000 Systems COBOL 74 Language Manual
Environment Division

SPECIAL-NAM ES

Syntax Rules:

1. The literals specified in the literal phrase of the alphabet-name clause:

a. If numeric, must be unsigned integers and must have a value within the range of 1 through
the maximum number of characters in the EBCDIC character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one char
acter in length.

2. If the literal phrase of the alphabet-name clause is specified, a given character must not be spec
ified more than once in an alphabet-name clause.

3. The words THRU and THROUGH are equivalent.

General Rules:

5-6

1. If switch-name is not specified, the associated mnemonic-name may be used in the ACCEPT,
DISPLAY, SEND, and WRITE statements.

5. The alphabet-name clause provides a means for relating a name· to a specified character code
set and/or collating sequence. When alphabet-name is referenced in the PROGRAM COLLAT
ING SEQUENCE clause (refer to OBJECT-COMPUTER Paragraph in this section) or the
COLLATING SEQUENCE phrase of a SORT or MERGE statement (refer to MERGE and
SORT in section 7), the alphabet-name clause specifies a collating sequence. When alphabet
name is referenced in a CODE-SET clause in a file description entry (refer to the File Descrip
tion Structure in section 6), the alphabet-name clause specifies a character code set.

a. ASCII is a synonym for ST ANDARD-1. If the ST ANDARD-1 or ASCII phrase is
specified, the character code set and collating sequence identified is that defined in the
American National Standard Code for Information Interchange, X3.4-1968.

b. If the NATIVE phrase is specified, the native character code set and native collating se
quence will be identified with the alphabet-name. The native character code set is EBCDIC
and is the character code set associated with DISPLAY usage.

B 1000 Systems COBOL74 Language Manual,
Environment Division

SPECIAL-NAM ES

c. The correspondence between characters of the ASCII character code set and characters of
the EBCDIC character code set is determined by standard translation tables for EBCDIC
to ASCII and ASCII to EBCDIC translation. Refer to appendix C.

d. If the literal phrase is specified, the alphabet-name may not be referenced in a CODE-SET
clause. Refer to the CODE-SET clause in section .6. The collating sequence identified is
that defined according to the following rules:

Rule I: The value of each literal specifies:

I). The ordinal number of a character within the native character set, if the literal is nu
meric. This value must not exceed the value which represents the number of characters
in the native character set.

2). The actual character within the native character set, if the literal is nonnumeric. If the ,
value of the nonnumeric literal contains multiple characters, each character in the liter
al, starting with the leftmost character, is assigned successive ascending positions in the
collating sequence being specified.

Rule 2: The order in which the literals appear in the alphabet-name clause specifies, in
ascending sequence, the ordinal number of the character within the collating sequence be
ing specified.

Rule 3: Any characters within the native collating sequence, which are not explicitly
specified in the literal phrase, assume a position, in the collating sequence being specified,
greater than any of the explicitly specified characters. The relative order within the set of
these unspecified characters is unchanged from the native collating sequence.

Rule 4: If the THROUGH phrase is specified, the set of contiguous characters in the native
character set beginning with the character specified by the value of literal-I, and ending
with the character specified by the value of literal-2, is assigned a successive ascending po
sition in the collating sequence being specified. In addition, the set of contiguous charac
ters specified by a given THROUGH phrase may specify characters of the native character
set in either ascending or descending sequence.

Rule 5: If the ALSO phrase is specified, the characters of the native character set specified
by the value of literal-I, literal-3, literal-4, ... , are assigned to the same position in the
collating sequence being specified.

6. The character that has the highest ordinal position in the program collating sequence specified
is associated with the figurative constant HIGH-VALUE. If more than one character has the
highest position in the program collating sequence, the last character specified is associated with
the figurative constant HIGH-VALUE.

7. The character that has the lowest ordinal position in the program collating sequence specified
is associated with the figurative constant LOW-VALUE. If more than one character has the
lowest position in the program collating sequence, the first character specified is associated with
the figurative constant LOW-VALUE.

1168622 5-7

. B 1000 Systems COBOL 74 Language Manual
Environment Division

SPECIAL-NAMES

5-8

8. The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE
clause to represent the currency symbol. The literal is limited to a single character and must
not be one of the following characters:

a. Digits 0 through 9.

b. Alphabetic characters:

A D R x
B L s z
c p v space

c. Special characters:

* (I

+)

"

If the CURRENCY SIGN IS clause is not present, the default value dollar sign ($) is used
in the PICTURE clause.

9. The clause DECIMAL-POINT IS COMMA means that the functions of the comma and period
are exchanged in the character-string of the PICTURE clause and in numeric literals.

B 1000 Systems COBOL 74 Language Manual
Environment Division

----------------·--·-------··--·----------·--·-----------·--·-----·----------

INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION
Fl LE CONCEPTS

The INPUT-OUTPUT section contains information concerning files to be used by the object program,
the manner of recording used or to be used, and the presence of any multiple-file tape or disk.

FILE CONCEPTS

In the following paragraphs, concepts of File Types, Organization, Access Mode, Current Record
Pointer, I-0 Status, INVALID KEY, AT END, and LINAGE-COUNTER are discussed pertaining to
Sequential, Indexed, Relative, and Sort-Merge files.

Sequential 1-0

Sequential I-0 provides a capability to access records of a file in established sequence. The sequence
is established as a result of writing the records to the file. It also provides for the sharing of memory
areas among files.

Sequential I-0 provides full facilities for the FILE-CONTROL, I-0-CONTROL, and FD entries as
specified in the formats of this manual. Within the PROCEDURE DIVISION, Sequential I-0 provides
full capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements . Additional
features available include: OPTIONAL files, the RESERVE clause, SAME RECORD AREA, RE
VERSED, and EXTEND options.

RelativH 1-0

Relative I-0 provides the capability to acces~ records of a mass storage file in either a random or se
quential manner. Each· record in a relative file is uniquely identified by an integer value greater than
zero which specifies the record's -logical ordinal position in the file.

Relative l-0 has full facilities for the FILE-CONTROL, 1-0-CONTROL, and FD entries as specified
in the formats of this manual. Within the PROCEDURE DIVISION, the Relative 1-0 provides full
capabilities for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE state
ments. Additional features available include: the RESERVE clause, DYNAMIC accessing, SAME REC
ORD AREA, READ NEXT, and the START statement.

For more information on the structure of the Relative file, see appendix G in this manual.

Indexed 1-0

Indexed I-0 provides a capability to access records of a mass storage file in either a random or sequen
tial manner. Each record in an indexed file is uniquely identified by the value of one or more keys
within that record.

Indexed 1-0 provides full facilities for the FILE-CONTROL, 1-0-CONTROL, and FD entries as
specified in the formats for this manual. Within the PROCEDURE DIVISION, the Indexed 1-0 pro
vides full capabilities for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and
WRITE statemen.ts as specified in the formats for this manual. Additional features include: the RE
SERVE clause, DYNAMIC accessing, ALTERNATE KEYS, SAME RECORD AREA, READ NEXT,
and the ST ART statement.

Appendix G in this manual includes information on the structure and concepts of Indexed Sequential
Access Method files, as well as efficient use and maintenance of the ISAM file.

1168622 5-9

INPUT-OUTPUT SECTION
FILE CONCEPTS

5-10

B 1000 Systems COBOL 74 Language Manual
Environment Division

Sort-Merge

B 1000 Systems COBOL 74 Language Manual
Environment Division

,\.•

······•···

....

INPUT-OUTPUT SECTION
FILE CONCEPTS

.. ····· .. t > .·:···.·

..• f <~ {

>•····· :
•····· ..•..

<·<
.... ~···

·······

·/

..... ·:.< ::;.:;

< < (
· .. ··•··· •:.:•·.··. < ?

·~" · .. :. ~ ...
:'?. •····.:··: · ..•

.........
.::':•

·.····•···· :<:

/ \ f >>
. ... :·:<:··.: ··:·

The Sort-Merge module provides the capability to order one or more files of records, or to combine
two or more identically ordered files of records, according to a set of user-specified keys contained
within each record. Optionally, a user may apply some special processing to each of the individual rec
ords by input or output procedures. This special processing may be applied before and/or after the
records are ordered by the SORT or after the records have been combined by the MERGE.

Sort-Merge provides the facility for sorting one or more files, or combining two or more files, one
or more times within a given execution of a COBOL 74 program.

Relationship with Sequential 1-0

The files specified in the USING phrase of the SORT and MERGE statements must be described impli
citly or explicitly in the FILE-CONTROL paragraph as having sequential organization.

The file specified in the GIVING phrase of the SORT and MERGE statements must be described impli
citly or explicitly in the FILE-CONTROL paragraph as having sequential organization.

No input-output statement may be executed for the file named in the Sort-Merge file description.

Organization

Sequential Files are organized such that each record in the file except the first has a unique predecessor
record, and each record except the last has a unique successor record. These predecessor-successor rela
tionships are established by the order of WRITE statements when the file is created. Once established,
the predecessor-successor relationships do not change except in the case where records are added to
the end of the file.

Relative File organization is permitted only on mass storage devices. A Relative File consists of records
which are identified by relative record numbers. The file may be thought of as composed of a serial
string of areas, each capable of holding a logical record. Each of these areas is denominated by a
relative record number. Records are stored and retrieved based on this number. For example, the tenth
record is the one addressed by relative record number 10 and is in the tenth record area, whether or
not records have been written in the first through the ninth record areas.

A file whose organization is Indexed is a mass storage file in which data records may be accessed by
the value of a key. A record description may include one or more key data items, each associated with
an index. Each index provides a logical path to the dat,a records according to the contents of a data
item within each record which is the record key for that index.

1168622 5-11

INPUT-OUTPUT SECTION
FILE CONCEPTS

B 1000 Systems COBOL 74 Language Manual
Environment Division

The data item named in the RECORD KEY clause of the file control entry for an Indexed File is the
prime record key for that file. For purposes of inserting, updating, and deleting records in a file, each
record is identified solely by the value of its prime record key. This value must, therefore, be unique
and must not be changed when updating the record.

A data item named in the AL TERNA TE RECORD KEY clause of the file control entry for an Indexed
File, is an alternate record key for that file. The value of an alternate record key may be nonunique
if the DUPLICATES phrase is specified. These keys provide alternate access paths for retrieval of rec
ords from the file.

Access Mode

The ACCESS MODE clause specifies the manner in which records are accessed in a file. There are
three access modes: sequential, random, and dynamic. The allowable access modes, based upon the
specified organization of the file, are discussed in the following paragraphs.

Sequential Files

In the sequential access mode, the sequence in which records are accessed is by the ascending order
of ordinal location within the file. This order is established when the records are originally written to
the file.

In the random access mode, the sequence in which records are accessed is specified by the contents
of the ACTUAL KEY data item at the time the READ or WRITE statement is executed. The value
of the ACTUAL KEY data item supplies the ordinal record number of the record to be accessed.

Relative File

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the relative record numbers of all records which currently exist within the file.

In the random access mode, the sequence in which records are retrieved is controlled by the program
mer. The desired record is accessed by placing its relative record number in a relative key data item.

In the dynamic access mode, the programmer may change at will from sequentfal access to random
access using appropriate forms of input-01;1tput statements.

Indexed Files

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the record key values. The order of retrieval of records within a set of records having duplicate record
key values is the order in which the records were written into the set.

In the random access mode, the sequence in which records are accessed is controlled by the program
mer. The desired record is accessed by placing the value of the record key in a record key data item.

In the dynamic access mode, the programmer may change at will from sequential access to random
access using appropriate forms of input-output statements.

5-12

B 1000 Systems COBOL 74 Language Manual
Environment Division

Current Record Pointer

INPUT-OUTPUT SECTION
FILE CONCEPTS

For all file types, and for each user, the current record pointer is a conceptual entity used in selection
of the next record to be accessed within a given file. The setting of the current record pointer is af
fected only by the OPEN, START, and READ statements. The WRITE statement for a sequentially
organized file may also affect the setting of the current record pointer.

1-0 Status

If the FILE ST A TUS clause is specified in a file control entry, a value is placed into the specified
two-character data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DE
LETE, or ST ART statement and before any applicable USE procedure is executed, to indicate to the
COBOL 74 program the status of that input-output operation. The specification of the FILE STATUS
clause (or a USE procedure) for a file indicates that the program is capable of determining and correct
ing any errors encountered during an I-0 operation on that file.

Interrogation and proper interpretation of the FILE ST A TUS data item after an I-0 operation on a
file helps to insure the integrity of that file aQd can be an aid when debugging the program.

Status Key 1

The leftmost character position of the FILE ST A TUS data item is known as status key 1 and is set
to a value which indicates one of the following conditions upon completion of the input-output
operation.

Value

0
I
2
3
8
9

Condition

Successful Completion
At End
Invalid Key
Permanent Error
Burroughs-Defined Condition
Burroughs-Defined Condition

The above conditions are defined in following text.

Successful Completion

The input-output statement was successfully executed.

At End

The sequential READ statement was unsuccessfully executed as a result of:

1. An attempt to read other than a queue or port file record when no next logical record exists
in the file.

2. The first READ statement being executed for a file described with the OPTIONAL clause,
when that file was not available to the program at the time its associated OPEN statement was
executed.

1168622 5-13

B 1000 Systems COBOL 74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

Invalid Key

The input-output statement was unsuccessfully executed as a resu1t of one of the following:

1. For a Format 2 READ statement, on other than a queue or port file, the contents of the AC
TUAL KEY data item were less than 1 or greater than the original number of the last record
ever written to the file.

2. For a Format 2 WRITE statement, on other than a queue or port file, the contents of the AC
TUAL KEY data item were less than 1 or greater than the last record allowed to be written
because of the specification of a maximum file size.

Permanent Error

The input-output statement was unsuccessfully executed as the result of a boundary violation for a se
quential file or as the result of an input-output error, such as data check parity error, or transmission
error. When there is no FI.LE ST A TUS clause and no USE procedure specified for a file, detection
of a Permanent Error condition will cause the program to terminate abnormally.

Burroughs-Defined Condition

The input-output statement encountered conditions other than those already defined and may have been
unsuccessfully executed, depending on the value of status key 2.

Status Key 2

The rightmost character position of the FILE ST A TUS data item is known as status key 2 and is used
to further describe the results of the input-output operation. This character contains a value as follows:

5-14

1. If no further information is available concerning the input-output operation, then status key
2 contains a value of 0.

2. When status key 1 contains a value of 0 indicating a successful completion, status key 2 may
contain a value of 2 indicating a duplicate key. This condition indicates:

a. For a READ statement, the key value for the current key of reference is equal to the value
of that same key in the next record within the current key of reference.

B 1000 Systems COBOL 74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
Fl LE CONCEPTS

b. For a WRITE or REWRITE statement, the record just written created a duplicate key val
ue for at least one alternate record key for which duplicates are allowed.

3. When status key 1 contains a value of 2 indicating an INV AUD KEY condition, status key
2 is used to designate the case of that condition as follows:

a. A value of 1 in status key 2 indicates a sequence error for a sequentially accessed indexed
file. The ascending sequence requirements of successive record key values have been
violated (refer to WRITE in section 7), or the prime record key value has been changed
by the COBOL74 program between the successful execution of a READ statement and the
execution of the next REWRITE statement for that file.

b. A value of 2 in status key 2 indicates a duplicate key value. An attempt was made to write
or rewrite a record that would create a duplicate key in an indexed file.

c. A value of 3 in status key 2 indicates no record found. An attempt is made to access a
record, identified by a key, but that record does not exist in the file.

d. A value of 4 in status key 2 indicates a boundary violation. An attempt was made to write
beyond the externally defined boundaries of an indexed file. The compiler specifies the
manner in which these boundaries are defined.

4. When status key 1 contains a value of 3 indicating a permanent error condition, status key 2
may contain a value of 4 indicating a boundary violation. This condition indicates that an at
tempt was made to write beyond the externally defined boundaries of a sequential file. The
compiler specifies the manner in which these boundaries are defined.

6. When status key 1 contains a value of 9 indicating a Burroughs-defined condition, the value
of status key 2 indicates the condition as follows:

Status Key 2
Value

1
2
4
5
6
7
9,

Short Block

Condition

Short Block
Data Error
Q-Empty or No Data
Q-Full or No Buffer
Timeout
Break on Output
Unexpected I-0 Error

Because of the limitation of the physical recording medium, the system is unable to determine whether
the logical record returned had been written to the file. Determination of the validity of the data record
is the responsibility of the programmer.

1168622 5-1 s

INPUT-OUTPUT SECTION
FILE CONCEPTS

Data Error

B 1000 Systems COBOL 74 Language Manual
Environment Division

When logical records are declared variable in length and the logical record length is supplied by the
programmer (by means of the RECORD CONTAINS clause), a data error occurs on a READ,
WRITE, or REWRITE statement if the logical record length supplied is less than the minimum record
size or greater than the maximum record size declared for the file. This condition initiates no input
output operation nor does it cause data to be transferred to or from the record area.

Timeout

A time limit has elapsed prior to the transfer of data to or from the hardware device.

Break on Output

For an output or input-output file, this condition occurs if the physical hardware device is equipped
with a break such that an operator can halt the transfer of data in process.

Unexpected 1-0 Error

An error may have occurred in the input-output operation but its nature cannot be determined.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in table
5-1. The letter I (Indexed), P (Port), R (Relative), S (Sequential), or Q (Queue) at an intersection indi
cates a valid permissible combination.

5-16

B 1000 Systems COBOL 74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FI LE CONCEPTS

Table 5-1. Status Key Combinations

STATUS KEY 2

No Record Found -

Duplicate Key or (-''Data Error)----.

Sequence Error or (~~Short Bl ock)l

No I nformat i on--i

0 l

Su cc~:ss fu l I
Completion R

0 s

s
T
A
T
u
s 2

K
E
y

At
End

lnva lid
Key

Permanent
Error

I
R
s

2

I
R

Burroughs
-Defined .,., s -,•,5

9

3

I
R

Boundary

4

I
R

6

s

!Break on Output

+ rl-0 Error

7 9

s s

The (*) distinguishes which error occurred when there are
two with the same value.

1168622 5-17

B 1000 Systems COBOL 74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
Fl LE CONCEPTS

Invalid Key

The INVALID KEY condition can occur as a result of the execution of a ST ART, READ, WRITE,
REWRITE, or DELETE statement. For details of the causes of the condition, refer to the START,
READ, WRITE, REWRITE, and DELETE statements in section 7.

When the INVALID KEY condition is recognized, these actions are taken in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an
INVALID KEY condition. Refer to I-0 Status in this section for additional information.

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is
transferred to the INVALID KEY imperative statement. Any USE procedure specified for this
file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for this file,
either explicitly or implicitly, that procedure is execute~.

When the INVALID KEY condition occurs, execution of the input-output statement which recognized
the condition is unsuccessful and the file is not affected.

At End

The AT END condition can occur as a result of the execution of a READ statement. For details of
the causes of the condition refer to the READ statement in section 7.

Linage-Counter

For Sequential Files only, the reserved word LINAGE-COUNTER is a name for a special register gen
erated by the presence of a LINAGE clause in a file description entry. The implicit description is that
of an unsigned integer whose size is equal to the size of integer-1 or the data item referenced by data- ·
name-1 in the LINAGE clause. Refer to the LINAGE clause in section 6 for the rules governing the
LINAGE-COUNTER.

5-18

B 1000 Systems COBOL 74 Language Manual
Environment Division

FILE-CONTROL PARAGRAPH

FILE-CONTROL

The FILE-CONTROL paragraph names each file and allows specification of other file-related informa
tion.

General Format:

[FILE-CONTROL. {file-control-entry f ...
·----------______.

File Control Entry

The file control entry names a file and may specify other file-related information. If using the sort
merge features, the file control entry names a sort or merge file and specifies the association of the
file to a storage medium.

1168622 5-19

B 1000 Systems COBOL 74 Language Manual
Environment Division

Fl LE-CONTROL

General Format:

5-20

SELECT file-name

; ORGANIZATION IS RELATIVE

l I
SE UENTIAL [, RELATIVE KEY IS data-name-3] l]

; ACCESS MODE IS RANDOM l , RELATIVE KEY IS data-name-3 (
,DYNAMIC f J

; ORGANIZATION IS INDEXED

[ACCESS MODE IS {
SEQUENTIAL}]
RANDOM
DYNAMIC

; RECORD KEY IS data-name-4

[; ALTERNATE RECORD KEY IS data-name-5 [WITH DUPLICATES]] ...

[; FILE STATUS IS data-name- I] .

Syntax Rules:

B 1000 Systems COBOL 74 Language Manual
Environment Division

FILE-CONTROL

1. The SELECT clause must be specified first in the file control entry. The clauses which follow
the SELECT clause may appear in any order.

2. Each file described in the DATA DIVISION must be named only once with a file-name in the
FILE-CONTROL paragraph. Each file specified in the file control entry must have a file de
scription entry in the DAT A DIVISION. For an Indexed File, the first eight letters of the file
name must be unique.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause
without the ACTUAL KEY phrase is implied.

4. Data-name-1 must be defined in the DATA DIVISION as a two-character data item of the
category alphanumeric and must not be defined in the FILE SECTION or the COMMUNICA
TION SECTION.

9. The ORGANIZATION IS SEQUENTIAL clause applies only to the program in which it is
specified.

10. The OPTIONAL phrase may only be specified for sequential input files. Its specification is re
quired for input files that are not necessarily present each time the object program is executed.

11. The ACTUAL KEY phrase may be specified only for mass storage files, port files, and queue
files.

13. If a relative file is to be referenced by a START statement, the RELATIVE KEY phrase must
be specified for that file.

14. Data-name-3 must not be defined in a record description entry associated with that file-name.

15. The data item referenced by data-name-3 must be defined as an unsigned integer.

16. The data items referenced by data-name-4 and data-name-5 must each be defined as a data item
of the category alphanumeric within a record description entry associated with that file-name.

1168622 5-21

B I 000 Systems COBOL74 Language Manual
Environment Division

FILE-CONTROL

17. Neither data-name-4 nor data-name-5 can describe an item whose size is variable. Refer to the
OCCURS clause in section 6 for more information.

18. Data-name-5 cannot reference an item whose leftmost character position corresponds to the left
most character position of an item referenced by data-name-4 or by any other data-name-5 as
sociated with this file.

General Rules:

1. The ASSIGN clause specifies the associat10n of the file referenced by file-name to a storage
medium. For Relative and Indexed Files, the storage medium must be DISK.

4. The ORGANIZATION clause specifies the logical structure of a file. The file organization is
established at the time a file is created and cannot subsequently be changed.

6. When the access mode of a Relative File is sequential, records in the file are accessed in the
order of ascending relative record numbers of existing records in the file.

7. When the access mode of an Indexed File is sequential, records in the file are accessed in the
order of ascending record key values within a given key of reference.

8. When the FILE ST A TUS clause is specified, a value is moved by the operating system into
the data item specified by data-name-1 after the execution of every statement that references
that file either explicitly or implicitly. This value indicates the status of execution of the state
ment. Refer to I-0 Status in this section for additional information.

9. If the access mode of a Relative File is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

10. If the access mode of an Indexed File is random, the value of the RECORD KEY data item
indicates the record to be accessed.

11. When the access mode is dynamic, records in the file may be accessed sequentially and/ or ran
domly. Refer to General Rules 5 and 8, or 6 and 9 under the FILE-CONTROL statement.

5-22

B 1000 Systems COBOL 74 Language Manual
Environment Division

Fl LE-CONTROL

12. All records stored in a Relative File are uniquely identified by relative record numbers. The
relative record number of a given record specifies the record's logical ordinal position in the
file. The first logical record has a relative record number of 1, and subsequent logical records
have relative record numbers of 2, 3, 4, and so forth.

13. In a Relative File, the data item specified by data-name-3 is used to communicate a relative
record number between the program and the MCP.

14. The RECORD KEY clause specifies the prime record key for the file. The values must be
unique among records of the file. The prime record key provides an access path to records in
an Indexed File.

15. An ALTERNATE RECORD KEY clause specifies an alternate record key for the file and pro
vides an alternate access path to records in an Indexed File.

16. In an Indexed File, the data descriptions of data-name-4 and data-name-5 as well as the relative
locations within a record must be the same as that used when the file was created. The number
of alternate keys for the file must also be the same as that used when the file was created.

17. The DUPLICATES phrase specifies that the value of the associated alternate record key may
be duplicated within any of the records in the file. If the DUPLICATES phrase is not specified,
the value of the associated alternate record key must not be duplicated among any of the rec
ords in the file.

18. DISK specifies that mass storage is the storage medi'um of the file. A more precise specification
of the medium may be made in the VALUE OF clause in the File Description entry or by means
external to the language.

1168622 5-23

B 1000 Systems COBOL 74 Language Manual
Environment Division

1-0-CONTROL PARAGRAPH

The 1-0-CONTROL paragraph specifies the memory area which is to be shared by different files, and
the location of files on a multiple file reel.

General Format:

1-0-CONTRO L.

[

RECORD]
SORT
SORT-MERGE

AREA FOR file-name-3 j, file-name-4 } ...]

Syntax Rules:

1. The 1-0-CONTROL paragraph is optional.

2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of
the file-names must represent a sort or merge file. Files that do not represent sort or merge
files may also be named in the clause.

4. The four formats of the SAME clause (SAME AREA, SAME RECORD AREA, SAME SORT
AREA, SAME SORT-MERGE AREA) are considered separately in the following description.

More than one SAME clause may be included in a program; however, the following restrictions apply:

5-24

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA
clause, all of the file-names in that SAME AREA clause must appear in the SAME REC-·
ORD AREA clause. However, additional file-names not appearing in that SAME AREA
clause may also appear in that SAME RECORD AREA clause. The rule that only one
of the files mentioned in a SAME AREA clause can be open at any given time takes pre
cedence over the rule that all files mentioned in a SAME RECORD AREA clause can be
open at any given time.

d. A file-name that represents a sort or merge file must .not appear in more than one SAME
SORT AREA or SAME SORT-MERGE AREA clause.

B 1000 Systems COBOL 74 Language Manual
Environment Division

1-0-CONTROL

e. If a file-name that does not represent a sort or merge file appears in a SAME AREA clause
and one or more SAME SORT AREA or SAME SORT-MERGE AREA clauses, all of
the files named in that SAME AREA clause must be named in that SAME SORT AREA
or SAME SORT-MERGE AREA clause(s).

5. The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT AREA, or
SAME SORT-MERGE AREA clause need not all have the same organization or access type.

General Rules:

1. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of
the file-names must represent a sort or merge file. Files that do not represent sort or merge
files may also be named in the clause. This clause specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory area
which is made available for use in sorting or merging each sort or merge file named. Thus,
any memory area allocated for the sorting or merging of a sort or merge file is available
for reuse in sorting or merging any of the other sort or merge files.

b. In addition, storage areas assigned to files that do not represent sort or merge files may
be allocated as needed for sorting or merging the sort or merge files named in the' SAME
SORT AREA or SAME SORT-·MERGE AREA clause. The extent of such allocation is
specified by the MCP.

c. Files other than sort or merge files do not share the same storage area with each other.
If the user wishes these files to share the same storage area with each other, a SAME
AREA or SAME RECORD AREA clause naming these files must also be included in the
program.

d. During the execution of a SORT or MERGE statement that refers to a sort or merge file
named in this clause, any files named in this clause that are not sort-merge files must not
be open.

2. The SAME AREA clause specifies that two or more files that do not represent sort or merge
files are to use the same memory area during processing. The area being shared includes. all
storage area assigned to the files specified. It is not valid to have more than one of the files
open at the same time. Refer to syntax rule 4c under the I-0-CONTROL paragraph.

3. The SAME RECORD AREA clause specifies that two or more files are to use the same memory
area for processing of the current logical record. All of the files may be open at the same time.·
A logical record in the SAME RECORD AREA is considered as a logical record of each opened
output file whose file-name appears in this SAME RECORD AREA clause and. of the most
recently read input file whose file-name appears in this SAME RECORD AREA clause. This
is equivalent to an implicit redefinition of the area; records are aligned on the leftmost character
position.

1168622 5-25

B 1000 Systems COBOL 7 4 Language Manual
Environment Division

ENVIRONMENT DIVISION CODING

CODING THE ENVIRONMENT DIVISION

Figure 5-1 provides an example of how the ENVIRONMENT DIVISION may be coded in the source
program.

5-26

.........

.........
Burroughs COBOL CODING FORM O"I

00
O"I I PROGRAM E_ ~\j ~ 'l.. pr-()~~~ \:)';, '-.)-~~~~:Dr--__) I REQUESTED BY I PAGE l.. 7.o N C V>~SS ,....___-; (-:\ OF
N

--.-.G~- I !DENT. PROGRAMMER '(_n~~ '-----' A,.. .y._J . \

PAGE LINE A B z
NO. NO.

3 4 6 7 8 11 12 16 20 24 28 32 36 40

44 ~"
I": : : 1: : : loo:

I.. I.. :,,1 ~I:::: : : : : : : : : : :

t::c

0
0
0
en
'<

m~
::::3 (D

<: s
::;· iJJ

0 (j
::::3 r"'I

3 ~
(!) 0
gt"'""

-..J
O+::.
<" t"'""
~:~
0 (Jq
::::3 s::

~
(Jq
(D

m ~
2 ~

< :::l c
JJ E..
0
2
s:
m
2
-I
0
<
en
0

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 2
G12329

(")

0
0

VI Figure 5-1. Coding the ENVIRONMENT DIVISION N 2
-..J G)

GENERAL

B 1000 Systems COBOL 74 Language Manual

SECTION 6
DAT A DIVISION

The DAT A DIVISION describes the data that the object program is to accept as input, to manipulate,
to create, or to produce as output. Data to be processed belongs to these three categories:

1. That which is contained in files and enters or leaves the internal memory of the computer from
a specified area or areas.

2. That which is developed internally and placed into intermediate or working storage, or placed
ilnto specific format for output reporting purposes.

3. Constants which are defined by the user.

DATA DIVISION ORGANIZATION

The DATA DIVISION, which is one of the required divisions in a program, is subdivided into sections.
These are FILE, WORKING-STORAGE, LINKAGE, and COMMUNICATION SECTIONS.

The FILE SECTION defines the structure of data files. Each file is defined by a file description entry
and one or more record descriptions. Record descriptions are written immediately following the file
description entry.

The WORKING-STORAGE SECTION describes records and noncontiguous data items which are not
part of external data files but are developed and processed internally. It also describes data items whose
values are preassigned in the source program.·

The LINKAGE SECTION appears in the called program and describes data items that are to be refer
red to by the calling program and the called program. The structure is the same as the WORKING
STORAGE SECTION.

The COMMUNICATION SECTION describes the data items in the source program that serve as the
interface between the Data Communication Subsystem and the program.

1168622 6-1

B 1000 Systems COBOL 74 Language Manual
Data Division

DATA DIVISION STRUCTURE

The following structure shows the general format of the sections of the DAT A DIVISION, and defines
the order of presentation in the source program.

6-2

DATA DIVISION.

[

FILE SECTION.

[
file-description-entry [record-description-entry] . . .]
sort-merge-file-description-entry (record-description-entry) ...

[

WORKING-STORAGE SECTION.]

[
77-level-description-entry]
record-description-entry

[

LINKAGE SECTION.]

[
77-level-description-entry]
record-description-entry

[

COMMUNICATION SECTION.

[communication-description-entry r record-description-entry]

. ..]

. ..] ...]

FILE SECTION

B 1000 Systems COBOL 74 Language Manual
Data Division

FILE DESCRIPTION

In a COBOL 74 program, the file description entry (FD) represents the highest level of organization
in the FILE SECTION. The FILE SECTION header is followed by a file description entry consisting
of a level indicator (FD), a file-name, and a series of independent clauses. The FD clauses specify the
size of the logical and physical records, the presence or absence of label records, the value of label
items, the names of the data records which comprise the file, and the number of lines to be written
on a logical printer page. The entry is terminated by a period.

The Sort-Merge file description (SD) gives information about the size and the name of the data records
associated with the file to be sorted or merged. There are no label procedures which the user can con
trol, and the rules for blocking and internal storage are peculiar to the SORT and MERGE statements.

Record Description

A record description consists of a set of data description entries which describe the characteristics of
a particular record. Each data description entry consists of a level-number followed by a data-name
(if required), followed by a series of independent clauses as required.

Examples:

01 DATA-ITEM-ONE
03 LINE-COUNT

PICTURE X(IO).
PICTURE 999 VALUE ZEROES. ,

A record description has a hierarchical structure and, therefore, the clauses used with an entry may
vary considerably, depending upon whether or not it is followed by subordinate entries. The structure
of a record description is defined in Concepts of Levels, section 2, while the elements allowed in a
record description are shown in the data description structure.

File Description Structure

The file description entry furnishes information concerning the physical structure, identification, and
record names pertaining to a given file.

1168622 6-3

B 1000 Systems COBOL 74 Language Manual
Data Division

FILE DESCRIPTION

General Format:

[FD file-name

[; BLOCK CONTAINS [integer-I TO] {
RECORDS }]

integer-2

(; RECORD CONTAINS [integer-3 TO] integer-4

CHARACTERS

CHARACTERS

[DEPENDING ON data-name-I]]

[; LABEL {

RECORD IS t
RECORDS ARE (

{
STANDARD} J
OMITTED

[; {

, data-name-2}
VALUE OF attribute-name-I IS

literal-I

[{
data-name-3 }]]

, attribute-name-2 IS
hteral-2

[
;DATA {RECORDIS }

RECORDS ARE
data-name-4 [, data-name-5] ... J

[

; LINAGE IS { data-name-6 }

integer-5 [
' data-name-7 }]

LINES , WITH FOOTING AT) .
~ mteger-6 ·

[{
data-name-9 ~ J]

, LINES AT BOTTOM . l
mteger-8 ' [{

data-name-8} J
, LINES AT TOP

-- integer-7

[; CODE-SET IS alphabet-name] .

{record-description-entry } . . . J

Syntax Rules:

6-4

I. The level indicator FD identifies the beginning of a file description and must precede the file
name.

2. The clauses which follow the name of the file are optional in many cases, and order of appear
ance is immaterial.

3. One or more record description entries must follow the file description entry.

B 1000 Systems COBOL 74 Language Manual
Data Division

Sort-Merge File Description Structure

FILE DESCRIPTION

The Sort-Merge file description entry furnishes information concerning the physical structure, identifi
cation, and record names of the file to be sorted or merged.

General Format:

[SD file-name

(; RECORD CONTAINS [integer-I TO] integer-2 CHARACTERS

[DEPENDING ON data-name-I]]

... J {

RECORD IS }
DAT A d.ata-name-2 f , data-name-3,]

ARE

·liiillJ·

{ record-description-entry } ... J ...

Syntax Rules:

1. The level indicator SD identifies the beginning of the Sort-Merge file description entry and must
precede the file-name.

2. The clauses which follow the name of the file are optional and their order of appearance is
immaterial.

3. One or more record description entries must follow the Sort-Merge file description entry; how
ever, no input-output statements may be executed for this file.

1168622 6-5

FILE SECTION CODING

B 1000 Systems COBOL 74 Language Manual
Data Division

CODING THE FILE SECTION

Figure 6-1 illustrates the coding of the FILE SECTION and shows a File Description and a Sort-Merge
File Description.

6-6

Burroughs COBOL CODING FORM
0\
~ PROGRAM~"°S..~ ~~C"\"S,(J..._:) ~~~_~ REQUESTED BY

~ PROGRAMMER <:_ '"'-'t.-S...S "5-t.J~ DATE

PAGE I LINE
NO. NO.

3 4

A B

01

04

05

06

07

08

09

10

11

_LLr
13

14

1 5

16

1 7

1 8

1 9

20

4

G12330

0\
~ Figure 6-1. Coding the FILE SECTION

PAGE -s
IDENT. 80

,,
r
m
(./)
m
C1
-I
0
2
C1
0
c
2
(;)

o:i

0
0
0
en
'<
[/)
..-+
(!)

s
o~
~ (")
=7" 0
...., o:i

uO
':tr --...)

~-~
or
:::i ~

:::i
(JQ

c
~

(J'Q
(l)

~
~
:::i
c
~ -

B 1000 Systems COBOL 74 Language Manual
Data Division

BLOCK CONTAINS

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format:

{

RECORDS }
BLOCK CONTAINS [integer- I TO] integer-2

CHARACTERS

Syntax Rules:

1. When the word RECORDS is not specified, the value of integer-2 must not be less than the
largest record specified for the file.

General Rules:

6-8

1. This clause is required when the physical record contains more than one logical record. If this
clause is not specified, the physical record is presumed to contain one logical record that is as
large as the largest record specified for this file.

2. When the word RECORDS is specified, the physical record size is considered to be integer-2
times the largest record specified for this file.

3. When the word CHARACTERS is specified, the physical record size is considered to be integer-
2 characters. If integer-2 is not a multiple of the largest record specified for this file, the
physical record size is adjusted so that it is a multiple of the largest record specified, but must
not exceed the value of integer-2.

4. Integer-2 represents the exact number of records or characters in the physical record unless the
size is adjusted as stated in General Rule 3.

5. If logical records of differing sizes are grouped into one physical record, the amount of data
transferred from the record area to the physical record depends on the size of the record named
in the WRITE or REWRITE statement. In this case, the logical records are aligned on
maximum record-size boundaries. If the size of the record named is not equal to the maximum
record size specified for the file, the data is transferred to the physical record according to the
rules specified for the MOVE statement without the CORRESPONDING phrase, with the send
ing area considered to be a group item.

1168622

B 1000 Systems COBOL74 Language Manual
Data Division

BLOCK CONTAINS

6-9

B I 000 Systems COBOL 7 4 Language Manual
Data Division

CODE-SET

The CODE-SET clause specifies the character code set used to represent data on the external media.

General Format:

CODE-SET IS alphabet-name

Syntax Rules:

1. When the CODE-SET clause is specified for a file, all data in that file must be described as
USAGE IS DISPLAY and any signed numeric data must be described with the. SIGN IS
SEP ARA TE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not ·specify the literal
phrase, and must be declared in the SPECIAL-NAMES Paragraph.

General Rules:

1. If the CODE-SET clause is specified, alphabet-name specifies the charact.er code convention
used to represent data on the external media. It also specifics the algorithm for converting the
character codes on the external media from/to the native character codes. This code conversion
occurs during the execution of an input or output operation. Refer to the SPECIAL-NAMES"
paragraph in section 5.

2. If the CODE-SET clause is not specified, the native character code set, EBCDIC, is assumed
for data on the external media.

3. For the creation of the translate table to be used by the COBOL74 compiler, refer to the
CREATE/TABLE utility. For example, when ASCII is the character code set, the COBOL 74
compiler requires a file called TRANSLATE/ ASCII to perform the translation. The file,
TRANS LA TE/ ASCII, is created by using the CREATE/TAB LE utility.

EXAMPLE:

The following example shows how the character code set desired is declared in the SPECIAL-NAMES
paragraph and then used in the CODE-SET clause.

6-10

SPECIAL-NAMES.
ODT IS SPO
SWl ON STATUS IS SWITCH-1-0N
MY-REC-MODE IS ASC 11.

FD IN-FILE
BLOCK CONTAINS 5 RECORDS
CODE-SET IS MY-REC-MODE.

01 DATA-ITEM-ONE PI C X (80) •

DATA RECORDS

B 1000 Systems COBOL 74 Language Manual
Data Division

DATA RECORDS

The DAT A RECORDS clause serves only as documentation for the names of data records with their
associated file.

General Format:

[

p_A_T_A {RECORD IS (

~~~~~~RE_c_o_R_n_s_A_R_E_) 

Syntax Rules: 

data-name-I [, data-name-2 ] 

1. Data-name-I and data-name-2 are the names of data records and must have 01 level-number 
record descriptions, with these same names, associated with them. 

General Rules: 

1. The presence of more than one data-name indicates that the file contains more than one type 
of data record. These records may be of different sizes, different formats, and so forth. The 
order in which they are listed is not significant. 

2. Conceptually, all data records within a file share the same area. This is in no way altered by 
the presence of more than one type of data record within the file. 

1168622 6-11 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

LABEL RECORDS 

The LABEL RECORDS clause specifies whether labels are present. 

General Format: 

LABEL 
f RECORD IS l j STANDARD} 

t RECORDS ARE ' ~ OMITTED 

Syntax Rules: 

1. When this clause is not specified, the STANDARD option is assumed. 

General Rules: 

6-12 

1. OMITTED specifies that no explicit labels exist for the file or the device to which the file is 
assigned. For Indexed and Relative Files, OMITTED is documentation only. 

2. In a Sequential File, ST AND ARD specifies that labels exist for the file or the device to which 
the file is assigned and the labels conform to the label specifications. · 

3. The LABEL RECORDS clause is ignored for mass storage files. All mass storage files are la
beled. 



LINAGE 

B 1000 Systems COBOL 7 4 Language Manual 
Data Division 

LINAGE 

The LINAGE clause provides a means· for specifying the depth of a logical page in terms of number 
of lines. It also provides for specifying the size of the top and bottom margins on the logical page, 
and the line number, within the page body, at which the footing area begins. 

General Format: 

LINAGE IS { 
data-name~l } 
integer-I . LINES 

[ { data-name-3 } ] 
, LINES AT. TOP integer-3 . 

1168622 

[ 
·, { ?ata-name-2 } ] 

WITH FOOTING AT mteger-2 

[ , LINES AT BOTTOM { 
?ata-name-4 } ] 
mteger-4 

6-13 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

LINAGE 

The relationship of the page components is shown in figure 6-2. 

LOGICAL PAGE 

G12331 

Figure 6-2. Linage Page Relationship 

Syntax Rules: 

I. Data names must be elementary unsigned numeric items. 

2. The value of integer-I must be greater than zero. 

3. The value of integer-2 must not be greater than integer-I. 

4. Integer-3 and integer-4 may be equal to zero. 

6-14 

l TOP MARGIN 
(In teger-3 I 

PAGE BODY 
Onteger-1) 

FOOTING 
(lnteger-2) 

BOTTOM MARGIN 
(I nteger-4) 



B 1000 Systems COBOL74 Language Manual 
Data Division 

'LINAGE 

General Rules: 

1. The LINAGE clause provides a means for specifying the size of a logical page in terms of the 
number of lines.' 

Example: 

Logical page = LINAGE LINES + LINES AT TOP + LINES AT BOTTOM 

If LINES AT TOP or LINES AT BOTTOM are not specified, the values for these functions 
are 0. 

If the FOOTING phrase is not specified, the assumed value is equal to integer-I (or data-name-
1 ). 

Th~re is not necessarily any relationship between the size of the logical page and the size of 
a physical page. 

2. The value of integer-I (data-name-I) specifies the number of lines that can be written and/or 
spaced· on the logical page. That part of the logical page in which these lines can be written 
and/ or spaced is called the page body. 

3. The value of integer-3 (data-name-3) specifies the number of lines that comprise the top margin 
on the logical page. 

4. The value of integer-4 (data-name-4) specifies the number of lines that comprise the bottom 
margin on the logical page. 

5. The value of integer-2 (data-name-2) specifies the line number within the page body at which 
the 'fqotfog area begins, where 0 < integer-2, < integer-I. 

6. The values of integer-I, integer-2, and integer-4, if specified, are used at the time the file is 
.8P.eµ,ed with the: OUTPUT phrase, to specify the number of lines that comprise each of the 
ln,diCated sections of a logical page. 

The value of integer-2, if specified, is used at that time to define the footing area. 

These values are used for all logical pages written for the file during a given execution of the 
program. 

7. The values of the data items referenced by data-name-I, data-name-3, and data-name-4, if spec
ified, are used as folJows: 

1168622 

a. The values of the data items, at the time:, an OPEN statement with the OUTPUT phrase 
is executed for the file, are used to specify the number of lines that are to comprise each 
of the indicated sections of the FIRST logical page. 

b. The values of the data items, at the time a WRITE statement with the ADVANCING 
PAGE phrase is executed or page overflow condition occurs, are used to specify the num
ber of lines that are to comprise 'each of the indicated sections for the next logical page. 

6-15 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

LINAGE 

8. The value of data-name-2, if specifi~d at the time an OPEN statement with the OUTPUT 
phrase is executed for the file, is used to define the footing area for the first logical page. At 
the time a WRITE statement with the ADVANCING PAGE phrase is executed or a page over
flow condition occurs, data-name-2 is used to define the footing area for the next logical page. 

LINAGE-COUNTER 

A LINAGE-COUNTER is generated by the presence of a LINAGE clause The value in the LINAGE
COUNTER at any given time represents the line number at which the logical device is positioned within 
the current page body. The rules governing the LINAGE-COUNTER are as follows: 

1. A separate LINAGE-COUNTER is supplied for each file described in the FILE SECTION 
whose file description entry contains a LINAGE clause. 

2. LINAGE-COUNTER may be referenced but not modified by PROCEDURE DIVISION state
ments. 

Since more than one LINAGE-COUNTER may exist m a program, the user must qualify 
LINAGE-COUNTER by file name when necessary. 

3. LINAGE-COUNTER is automatically modified, according to the following rules, during the ex
ecution of a WRITE statement: 

a. When the ADVANCING PAGE phrase of the WRITE statement is specified, the 
LINAGE-COUNTER is automatically reset to 1. 

b. When the ADVANCING identifier-2 or the integer phrase of the WRITE statement is spec
ified, the LINAGE-COUNTER is incremented by integer or the value of identifier-2. 

c. When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE
COUNTER is incremented by the value of 1. 

d. The value of LINAGE-COUNTER is automatically reset to 1 when the device is reposi
tioned to the first line that can be written on for each of the succeeding logical pages. 

4. The value of LINAGE-COUNTER is automatically set to 1 at the time an OPEN statement 
is executed for the associated file. 

Example: 

The following example shows the LINAGE clause used to define a logical printer page (standard 11-
inch form). Vertical height is made up of a top margin, a page body, and a bottom margin. All actual 
printing is done in the page body, including a commonly required footing area of five lines near the 
bottom of the page body. 

6-16 



Now equate: 

B 1000 Systems COBOL 74 Language Manual 
~ · Data Division 

page body to integer-1 
footing to integer-2 

top margin to integer-3 
bottom margin to integer-4 

the statement would be 

1168622 

LINAGE IS 50 LINES, 
WITH FOOTING AT 45, 
LINES AT TOP 6, 
LINES AT BOTTOM 10. 

LINAGE_ 

6-17 



B 1000 Systems COBOL 74 Language Manual 
Data Division . ' 

RECORD CONTAINS 

The RECORD CONTAINS clause specifies the size of the data records. 

General Format: 

RECORD CONTAINS 

[DEPENDING ON 

[ integer-I TO 

data-name-1 ] ] 

integer-2 · CHARACTERS. 

Syntax Rules: 

1. Data-name-I must reference an elementary unsigned numeric Integer four characters in length. 

General Rules: 

I. The size of each data record is completely defined within the record description entry; therefore, 
this clause is never required unless variable length records are desired. If this clause is not in
cluded, the size of the data record will be defined as the maximum number of characters in 
the largest size data record that has been included in the record description entries for the file. 

When present, the following items apply: 

6-18 

a. Integer-2 may not be used by itself unless all the data records in the file have the same 
size. In this case, integer-2 represents the exact number of characters in the data record. 
If integer-I and integer-2 are both shown, they refer to the minimum number of characters 
in the smallest size data record and the maximum number of characters in the largest size 
data record, respectively. 

b. The size is specified in terms of the number of character pos1t10ns required to store the 
logical record, regardless of the types of characters used to represent the items within the 
logical record. The size of a record is determined by the sum of the number of characters 
in all fixed length elementary items plus the sum of the maximum number of characters 
in any variable length item subordinate to the record. 

2. For an Indexed File integer-2 cannot be less than four. 

3. If integer-I and integer-2 are both shown, it is implied that the logical records are variable in 
length, in which case, the following notes apply: 

a. If the DEPENDING clause is not specified, the logical record length is automatically de
rived by the compiler and supplied as the first four characters of the record when it is · 
written and may not be referenced. 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

RECORD CONTAINS 

b. If the DEPENDING clause is specified, the logical record length is supplied by the pro
grammer in data-name-1 at the time the record is written and the following notes apply: 

1) Data-name-1. must occupy the first four characters of each record of the file. 

2) The logical record length includes the four characters needed to contain the length. 

4. Variable length records are only implemented in files that are described (explicitly or implicitly) 
with sequential organization. In B 1000 Mark 11.0, remote files may be variable in length. 

1168622 6-I 9 



6·20 

B 1000 Systems COBOL 74 Language Manual 
Data Division 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

VALUE OF 

DATA-NAME-1 is defined as an alphanumeric data item in the DATA DIVISION. The programmer 
builds the literal string in the data item (DATA-NAME-1) prior to the OPEN of the file. 

01 DATA-NAME-1 PIC X(35). 

The following are examples of statements which may be used in the PROCEDURE DIVISION to create 
the literal string. 

MOVE "MYFILE" TO DATA-NAME-1. 
MOVE "FAMILY/MYFILE" TO DATA-NAME-1. 
MOVE "FAMILY/MYFILE ON MYPACK" TO DATA-NAME-1. 

STRING "FAMILY", 11 
/", "MYFILE", DELIMITED BY SIZE 

INTO DATA-NAME-1. 

STRING "MYFILE", " ON ", "MYPACK" DELIMITED BY SIZE 
INTO DATA-NAME-1. 

Use of the STRING statement satisfies the requirement that there are no spaces either side of the slash 
(/) when creating the title of the file. 

1168622 6-21 



B 1000 Systems COBOL 7 4 Language Manual 
Data Division 

DATA DESCRIPTION STRUCTURE 

A data description entry specifies the characteristics of a particular item of data,. 

General Format: 

Format 1: 

6-22 

level-number { data-name-I } 

FILLER 

[ ; REDEFINES data-name-2 ] 

[ { ::~TURE} IS characteMtring 1 

[ {COMPUTATIONAL ) ] 
(USAGE IS] ,) COMP ( 

) DISPLAY ( 
l INDEX ) 

; OCCURS [integer-I TO] integer-2 TIMES 

(DEPENDING ON data-name-3 ] 

[ {
ASCENDING } KEY IS data-name-4 [, data-name-5] ... J ... 
DESCENDING 

[ 
[ 
[ 
t 

[INDEXED BY index-name-I l, index-name-2] ... ] 

{

LEADING } 
(SIGN IS] 

TRAILING 
(SEPARATE CHARACTER] J 

{ 
SYNCHRONIZED } [ LEFT 1 l 
SYNC . RIGHT J 

{ 
JUSTIFIED } J 

RIGHT 
JUST 

BLANK WHEN ZERO ] 
VALUE IS litera~ 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

DATA DESCRIPTION STRUCTURE 

Format 2: 

[ ______ 6_-6_d_a_t_a_-n_a_m_e_-_l; - _R_E_,N_A_M_E_·s-da_· t-a--n-a_m_e_-·_2 __ [_{_~_:_:_~_r_U_G_H_}_d_at_a_-n_a_m_e_·-_3] __ · _____ ___. 

Format 3: 

88 condition-name: 
{VALUE IS } 

VALUES ARE 
literal-I [{THROUGH} 

THRU literal-2] 

[. literal-3 [ { TllROUGll} 
THRU 

literal-4 l ] ... 
Syntax Rules: 

I. The level-number in Format 1 may be any number from 01 through 49 or 77. 

2. The clauses may be written in any order with two exceptions: the data-name-I or FILLER 
clause must immediately follow the level-number; the REDEFINES clause, when used, must im
mediately follow the data-name-I clause . ... 

3. The PICTURE clause must be specified for every elementary item except an index data item, 
in which case, use of this clause is prohibited. 

4. The words THRU and THROUGH are equivalent. 

General Rules: 

I. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses must not 
be specified except for an elementary data item. 

1168622 6-23 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

DATA DESCRIPTION STRUCTURE 

6-24 

2. Format 3 is used for each condition-name. Each condition-name requires a separate entry with 
level-number 88. Format 3 contains the name of the condition and the value, values, or range 
of values associated with the condition-name. The condition-name entries for a particular condi
tional variable must follow the entry describing the item with which the condition-name is asso
ciated. A condition-name can be associated with any data description entry which contains a 
level-number except the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group item containing items for which USAGE (other than USAGE IS DISPLAY) is 
specified either explicitly or implicity. 

d. An index data item (Refer to the USAGE IS INDEX clause in this section). 



BLANK WHEN ZERO 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

BLANK WHEN ZERO 

The BLANK WHEN ZERO clause permits the blanking of an item when the value is zero. 

GeneraR Format: 

r--- BLANK WHEN ZERO L__ __________ ---J 

Syntax Rules: 

1. The BLANK WHEN ZERO clause can be used only for an elementary item whose PICTURE 
is specified as numeric or numeric edited. Refer to PICTURE in this section. 

General Rules: 

1. When the BLANK WHEN ZERO clause is used, the item will contain spaces if the value of 
the item is zero. 

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the 
category of the item is considered to be numeric edited. 

1168622 6-25 



B 1000 Systems COBOL74 Language Manual 
Data Division 

DATA-NAME or FILLER 

A data-name specifies the name of the data being described. The word FILLER specifies an elementary 
item of the logical record that cannot be referred to explicitly. 

General Format: 

{
-data-name} 
FILLER 

Syntax Rules: 

1. In the FILE, WORKING-STORAGE, COMMUNICATION, and LINKAGE SECTIONS, a 
data-name or the key word FILLER must be the first word following the level-number in each 
data description entry. 

General Rules: 

6-26 

1. The key word FILLER may be used to name an elementary item in a record. Under no circum
stances can a FILLER item be referred to explicitly. However, the key word FILLER may be 
used as a conditional variable because such use does not require explicit reference to the 
FILLER item, but to its value. 



JUSTIFIED 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

JUSTIFIED 

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data item. 

General Format: 

[ __________________ {_J_U_S_T-IF,_I_E_Dl ___ R_I_G_H_T ________________________ _. _ JUST 

Syntax Rules: 

1. The JUSTIFIED clause can be specified only at the elementary item level. 

2. JUST is an abbreviation for JUSTIFIED .. 

3. The JUSTIFIED clause cannot be specified for any data item described as numeric or for which 
editing is specified. 

General Rules: 

1. When a receiving data item is described with the JUSTIFIED clause and the sending data item 
is larger than the receiving data item, the leftmost characters are truncated. 

Example.: 
Sending 

ABCDEFG 
PIC X(7) I I I I I I I I 

Receiving 

CDEFG 
PIC X(S) I I I I I I 

When the receiving data item is described with the JUSTIFIED clause and it is larger than the sending 
data item, the data is aligned at the rightmost character position in the data item with space fill for 
the leftmost character positions. 

Example: 
Sending 

ABC ·n E 

PIC X(S) L I I I I I 

Receiving 

ABC DE 
PIC X(7) I 1 I I I I I I 

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elemen
tary item apply. Refer to Standard Alignment Rules in section 2. 

1168622 6-27 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

LEVEL-NUMBER 

The level-number shows the hierarchy of data within a logical record. In addition, it is used to identify 
entries for working storage items, linkage items, condition-names, and the RENAMES clause. 

General Format: 

level-number 

Syntax Rules: 

1. A .level-number is required as the first element in each data description entry. 

2. Data description entries subordinate to an FD, SD, or CD entry must have level-numbers with 
the values 01 through 49, 66 or 88. Refer to the FD, SD, and CD file descriptions in the 
paragraphs entitled File Description Structure, Sort-Merge File Description Structure, and Com
munication Description Structure in this section. 

3. Data description entries in the WORKING-STORAGE SECTION and LINKAGE SECTION 
must have level-numbers with the values 01 through 49, 66, 77 or 88. 

General Rules: 

6-28 

1. The level-number 01 identifies the first entry in each record description. Less inclusive groupings 
are given higher numbers (not necessarily successive) up to a limit of 49. 

2. Special level-numbers have been assigned to certain entries where there is no real concept of 
level: 

a. Level-number 77 is assigned to identify noncontiguous working storage data items, and 
noncontiguous linkage data items, and can be used only as described by Format 1 of the 
data description structure. 

b. Level-number 66 is assigned to identify RENAMES entries and can be used only as de
scribed in Format 2 of the data description structure. 

c. Level-number 88 is assigned to entries which define condition-names associated with a con
ditional variable and can be used only as described in Format 3 of the data description 
structure. 

3. Multiple level 01 entries subordinate to any given level indicator represent implicit redefinitions 
of the same area. 



Examples: 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

LEVEL-NUMBER 

The following is an example of a record layout which corresponds to figure 6-3 showing a record de
scription and the use of level numbers. 

STUDENT RECORD 

STUDENT NO. I NAME GRADE BIRTH DATE 

Last First mth day J yr 

I I I I I I J l l l 1 I I I l l I I I l l 

1168622 6-29 

I \ 



O"I 
I 
w 
0 

PROGRAM 

PROGRAMMER 

PAGE I LINE 
NO. NO. 

3 4 24 

G12332 

Burroughs COBOL CODING FORM 

REQUESTED BY 

DATE 

28 32 36 40 44 48 52 

Figure 6-3. Level Numbers 

PAGE J OF / 5 
IDENT. 73 80 

56 60 

r
m 
< m 
r-z 
c 
s: 
OJ 
m 
:::0 

t:O 

0 
0 
0 
Cl'..l 
'< 
fJl ...... 
(D 

s u fJl 

~ n ...... 0 
~ t:O 
00 
'<:. ~ -· --..] ~ • .+:>. 
0 ~ 
::::3 p.:i 

:::::: 
(JQ 

::::: 
p.:i 

(JQ 
(D 

~ 
p.:i 

:::::: 
::::: 
E. 



OCCURS 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

OCCURS 

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies infor
mation required :for the application of subscripts or indices. 

General Format: 

Format 1: 

Format 2: 

OCCURS integer-2 TIMES 

[ 

~ ASCENDING } 

t· DESCENDING 
KEY IS data-name-2 [, data-name-3] ... ] ... 

[INDEXED BY index-name-1 [, index-name-2] ... ] 

OCCURS integer-I TO integer-2 TIMES DEPENDING ON data-name-1 

[ ~ASCENDING } 

t DESCENDING 
KEY IS data-name-2 [ , data-name-3 ] ... J 

(INDEXED BY index-name-1 [, index-name-2] ... ] 

Syntax Rules: 

I. When both integer-I and integer-2 are used, the value of integer-I must be less than the value 
of integer-2. 

2. The data description of data-name-I must describe a positive integer and, therefore, cannot be 
zero. 

3. Data-name-I, data-name-2, data-name-3, ... may be qualified. 

4. Data-name-2 must either be the name of the entry containing the OCCURS clause or the name 
of an entry subordinate to the entry containing the OCCURS clause. 

5. Data-name-3, and so forth, must be the name of an entry subordinate to the group item which 
is the subject of thils entry. 

6. An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to 
this entry, is to be referred to by indexing. 

1168622 6-31 



B 1000 Systems COBOL74 Language Manual 
Data Division 

OCCURS 

7. A data description entry that contains Format 2 of the OCCURS clause may only be followed, 
within that record description, by data description entries which are subordinate to it. 

8. The OCCURS clause cannot be specified in a data description entry that: 

a. Has an OI, 66, 77, or 88 level-number. 

b. Describes an item whose size is variable. The size of an item is variable if the data descrip
tion of any subordinate item contains Format 2 of the OCCURS clause. 

9. In Format 2, the data item defined by data-name-I must not occupy a character position within 
the range of the first character position defined by the data description entry containing the 
OCCURS clause and the last character position defined by the record description entry contain
ing that OCCURS clause. 

IO. If data-name-2 is not the subject of this entry, then: 

a. All of the items identified by the data-names in the KEY IS phrase must be within the 
group item which is the subject of this entry. 

b. Items identified by the data-name in the KEY IS phrase must not contain an OCCURS 
clause. 

c. There must not be any entry that contains an OCCURS clause between the items identified 
by the data-names in the KEY IS phrase and the subject of this entry. 

I I. Index-name-I, index-name-2, ... must be unique words within the program. 

I2. Integer-2 in Format I and integer-I in Format 2 cannot be zero. 

General Rules: 

6-32 

I. The OCCURS clause is used in defining tables and other homogeneous sets of repeated data 
items. Whenever the OCCURS clause is used, the data-name which is the subject of this entry 
must be either subscripted or indexed whenever it is referred to in a statement other than 
SEARCH or USE FOR DEBUGGING. Further, if the data-name associated with the OCCURS 
clause is the name of a group item, then all data-names belonging to the group must be sub
scripted or indexed when used as operands, except as the object of a REDEFINES clause. Refer 
to Subscripting, Indexing, and Identifier in section 2. 

2. Except for the OCCURS clause, all data description clauses associated with an item whose de
scription includes an OCCURS clause apply to each occurrence of the item described. 

3. The number of occurrences of the subject entry is defined as follows: 

a. In Format I, the value of integer-2 represents the exact number of occurrences. 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

OCCURS 

b. In .Format 2'., the current value of the data item referenced by data-name-I represents the 
number of occurrences. 

Format 2 specifies that the data-name associated with the OCCURS clause has a variable 
number of occurrences. The value of integer-2 represents the maximum number of occur
rences and the value of integer-I represents the minimum number of occurrences. This does 
not imply that the length of the subject of the entry is variable, but that the number of 
occurrences is variable. When the OCCURS clause is subordinate to an OI level-number 
in the File Description of a file, the RECORD CONTAINS < integer-3 > to < integer-4 > 
clause indicates the minimum and maximum number of characters for the variable length 
records. 

When a table element is referenced, the value of data-name-I must fall within the range 
integer-I through integer-2, inclusive. If the value of data-name-I is outside this range, the 
execution of the program is terminated. The value of data-name-I is used to determine 
the last table element that may be referenced. When the value of data-name-I is less than 
integer-2, the data items whose occurrence' numbers exceed the value of data-name-I are 
inaccessible. Reducing the value of the data item referenced by data-name-1 has no effect 
upon the contents of data items whose occurrence numbers now exceed the value of the 
data item referenced by data-name-I. 

4. When a group item that has a subordinate entry that specifies Format 2 of the OCCURS ciause 
is referenced, only that part of the table area that is specified by the value of data-name-I is 
used in the operation. 

5. The KEY IS phrase is used to indicate that the repeated data is arranged in ascending or de
scending order according to the values contained in data-name-2, data-name-3, and so forth. 
The ascending or descending order is determined according to the rules for comparison of oper
ands (refer to Relation Condition in section 7 for the Comparison of Numeric Operands and 
the Comparison of Nonnumeric Operands). The data-names are listed in descending order of 
significance. 

Examples: 

The following data descriptions illustrate the use of an OCCURS clause to provide equivalent data 
mapping with fewer data names. 

01 DATA-REC. 01 DATA-REC. 
03 AMOUNT-ONE PIC 9 (8) . 03 AMOUNT PI C 9 (8) 
03 AMOUNT-TWO PIC 9 (8) • OCCURS 3 TIMES. 
03 AMOUNT-THREE PIC 9 (8) • 
03 DESC-1 TE.M PIC x (20) • 03 DESC-ITEM PI C X (20) • 
03 DESC-NO PIC 9 (5) • 03 DE SC-NO PI C 9 (5) . 

1168622 6-33 



OCCURS 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

This example illustrates a use of the OCCURS clause to provide nested descriptions. A reference to 
ITEM-4 requires the use of three levels of subscripting, for example, ITEM-4 (2, 5, 4). A reference 
to ITEM-3 requires two subscripts, for example, ITEM-3 (l,J). 

01 TABLE-REC. 
03 ITEM OCCURS 2 TIMES. 

05 I TEM-1 PI C X ( l 0) • 
05 ITEM-2 OCCURS 5 TIMES. 

07 I TEM-3 PI C X (4) • 
07 ITEM-4 OCCURS 5 TIMES. 

09 ITEM-5 PIC XX. 
09 ITEM-6 PIC 99. 

6-34 



PICTURE 

B I 000 Systems COBOL 74 Language Manual 
Data Division 

PICTURE 

The PICTURE clause describes the general characteristics and editing requirements of an elementary 
item. 

General Format: 

IS character-string 
PIC [ 

{
PICTURE} 

---------

Syntax Rules: 

1. A PICTURE clause can be specified only at the elementary item level. 

2. A character-string consists of certain allowable combinations of characters in the COBOL 74 
character set used as symbols. The allowable combinations determine the category of the 
elementary item. 

3. The maximum number of characters allowed in the character-string is 30. 

4. The PICTURE clause must appear in every elementary item except those items whose USAGE 
is declared as INDEX. · 

5. PIC is an abbreviation for PICTURE. 

6. The asterisk, when used as the zero suppression symbol, and the clause BLANK WHEN ZERO 
may not appear in the same entry. 

General Rules: 

1. There are five categories of data that can be described with a PICTURE clause: alphabetic, 
numeric, alphanumeric, alphanumeric edited, and numeric edited. 

2. To define an item as alphabetic: 

a. The PICTURE character-string can only contain the symbols 'A', 'B'. 

b. The item contents, when represented in standard data format, must be any combination 
of the 26 letters of the English alphabet and the space from the COBOL 74 character set. 

3. To define an item as numeric: 

1168622 

a. The PICTURE character-string can only contain the symbols '9', 'P', 'S', and 'V'. The 
number of digit positions that can be described by the PICTURE character-string must 
range from 1 to 18 inclusive. 

6-35 



· B 1000 Systems COBOL 74 Language Manual 
Data Division 

PICTURE 

6-36 

b. If unsigned, the item contents, when represented in standard data format, must be a com
bination of the numerals '0', '1', '2', '3', '4', '5', '6', '7', '8', and '9'; if signed, 
the item may also contain a ' + ', ' - ', or other representation of an operational sign. Refer 
to fhe SIGN clause in this section. 

I 
4. To define an item as alphanumeric: 

a. The PICTURE character-string is restricted to certain combinations of the symbols 'A', 
'X', '9', and the item is treated as if the character-string contained all X's. A PICTURE 
ch~racter-string which contains all A's or all 9' s does not define an alphanumeric item. 

b. The item contents, when represented in standard data format, are allowable characters in 
the B character set. 

5. To define an item as alphanumeric edited: 

a. The PICTURE character-string is restricted to certain combinations of the following sym
bols: 'A', 'X', '9', 'B', 'O', and '/'. 

1) The character-string must contain at least one 'B' and at least one 'X' or at least one 
'0' (zero) and at least one 'X' or at least one 'I' (stroke) and at least one 'X'. 

2) The character-string must contain at least one '0' (zero) and at least one ·'A' or at 
least one 'I' (stroke) and . at least one 'A' . 

b. The contents, when represented in standard data format, are allowable characters in the 
computer character set. 

6. To define an item as numeric edited: 

a. The PICTURE character-string is restricted to certain combinations of the symbols 'B', 
'/', 'P', 'V', 'Z', "O", "9", ",", ".", "*", "+","-","CR", "DB", and the currency 
symbol ($). The allowable combinations are determined from the order of precedence of 
symbols and the editing rules. 

1) The number of digit positions that can be represented in the PICTURE character-string 
must range from 1 to 18 inclusive. 

2) The character-string must contain at least one 'O' , 'B' , '/' , 'z' , ' * ' , ' + ' , ' , ' , / . ' , 
' - ', 'CR', 'DB', or currency symbol. 

b. The contents of the character positions of these symbols that are allowed to represent a 
digit in standard data format must be one of the numerals. 

7. The size of an elementary item, where size means the number of character pos1t10ns occupied 
by the elementary item in standard data format, is determined by the number of allowable sym
bols that represent character positions. An integer which is enclosed in parentheses following 
the symbols: "A", ",", "X", "9", "P", "Z", "*", 'B', 'I', 'O', '+ ', '-', or '$' indicates 
the number of consecutive occurrences of the symbol. The following symbols may appear only 
once in. a given PICTURE: "S", "V", '.', 'CR', and 'DB'. 



B 1000 Systems COBOL74 Language Manual 
Data Division 

PICTURE 

8. The functions of the symbols used to describe an elementary item are explained as follows: 

1168622 

'A' 
Each letter 'A' in the character·-string represents a character position wh,ich can contain 
only a letter of the alphabet or a space. 

'B' 

'P' 

'S' 

Each letter "B" in the character-string represents a character position into which the space 
character will be inserted. 

Each letter 'P' indicates an assumed decimal scaling position and is used to specify the lo
cation of an assumed decimal point when the point is not within the number that appears 
in the data item. The scaling position character 'P' is not counted in the size of the data 
item. Scaling position characters are counted in determining the maximum number of digit 
positions (18) in numeric edited items or numeric items. The scaling position character P 
can appear only to the left or tight as a continuous string of P's within a PICTURE de
scription; since the scaling position character P implies an assumed decimal point (to the , 
left if P's are leftmost PICTURE characters and to the right if 'P's are rightmost PIC
TURE characters), the assumed decimal point symbol 'V' is redundant as either the left-" 
most or rightmost character within such a PICTURE description. The character 'P' and 
the insertion character '.' (period) cannot both occur in the same PICTURE character
string. If, in any operation involving conversion of data from one form of internal represen
tation to another, the data item being converted is described with the PICTURE character 
'P', each digit position described by a 'P' is considered to contain the value zero, and 
the size of the data item is considered to include the digit positions so described. 

The letter 'S' is used in a character-string to indicate the presence of an operational sign 
in the internal representation of a numeric data item. It must be the first (leftmost) charac
ter in the charaGter-string and may be used in the PICTURE character-string of any data 
item whose USAGE is DISPLAY or COMPUTATIONAL. The SIGN clause may be used 
to specify the exact representation and position of the operational sign. Refer to the SIGN 
clause in this section for additional information. · 
When an operational sign is specified for a DISPLAY data item and a SIGN clause is not 
specified, the sign is maintained and expected in the zone of the most significant (leftmost) 
character. When the data item is the receiving field in an arithmetic statement and. since 
the native character set is EBCDIC, the four zone bits are set to binary 1101 for negative 
values and to binary 1100 for positive values. When the data item is used in an algebraic 
comparison or operation to supply an algebraic value, only the most significant zone being 
a binary 1101 will cause the value of the data item to be considered negative. Only the zone 
values 1100 and 1101 will qualify the data item as being NUMERIC if tested by the NU
MERIC class condition. For DISPLAY data items, the presence or absence of an operation
al sign has no effect upon the amount of storage required to contain the data item. 
When an operational sign is specified for a COMPUTATIONAL data item and a SIGN 
clause is not specified, the sign is maintained and expected as a leading separate 4-bit char
acter to the left of the most significant digit position. Since the native character set is 
EBCDIC, the binary pattern of the sign character is 1101 for negative values and 1100 for 
positive values. Like DISPLAY data items, only these values allow the item to be considered 
NUMERIC in the class condition test. Unlike DISPLAY data items, the specification of an 
operational sign for COMPUTATIONAL data items increases by one the number of 4-bit 
character positions occupied by the data item in storage. 

6-37 



B 1000 Systems COBOL74 Language Manual 
Data Division 

PICTURE 

6-38 

'V' 
The letter 'V' is used in a character-string to indicate the location of the assumed decimal 
point and may only appear once in a character-string. The 'V' does not represent a charac
ter position and is not counted in the size of the elementary item. When the assumed 
decimal point is to the right of the rightmost symbol in the string, the 'V' is redundant. 

'X' 

'Z' 

'9' 

'O' 

I /I 

I I 

I I 

Each letter 'X' in the character-string is used to represent a character position which con
tains any allowable character in the character set. 

Each letter 'Z' in a character-string may only be used to represent the leftmost leading nu
meric character positions which are replaced by a space character when the contents of that 
character position are zero. Each 'Z' is counted in the size of the item. 

Each numeral '9' in the character-string represents a character position which contains a 
numeral and is counted in the size of the item. 

Each numeral '0' in the character-string represents a character position into which the nu
meral zero is inserted. The '0' is counted in the size of the item. 

Each stroke 'I' in the character-string represents a character position into which the stroke 
character is inserted. The 'I' is counted in' the size of the item. 

Each comma ',' in the character-string represents a character position into which the char
acter ',' is inserted. This character position is counted in the size of the item. The insertion 
character ' ' must not be the last character in the PICTURE character-string. 

When the character period '.' appears in the character-string it is an editing symbol which 
represents the decimal point for alignment purposes and in addition, represents a character 
position into which the character '.' is inserted. The character '.' is counted in the size 
of the item. For a given program the functions of the period and comma are exchanged 
if the clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph. 
In this exchange the rules for the period apply to the comma and the rules for the comma 
apply to the period when appearing in a PICTURE clause. The insertion character '.' must 
not be the last character in the PICTURE character-string. 

'+' '-' 'CR' 'DB' 
These symbols are used as editing sign control symbols and when used, represent the charac
ter position into which the editing sign control symbol will be placed. The symbols are mu
tually exclusive in any one character-string and each character used in the symbol is counted 
in determining the size of the data item. 



I* I 

B I 000 Systems COBOL 74 Language Manual 
Data Division 

PICTURE 

Each asterisk '*' in the character-string represents a leading numeric character position into 
which an asterisk is placed when the contents of that position are zero. Each '*' is counted 
in the size of the item. 

I CS I 

The currency symbol '$' in the character-string represents a character position into which 
a currency symbol is placed. The currency symbol in a character-string is represented by 
either the dollar sign '$' or by the single character specified in the CURRENCY SIGN 
clause in the SPECIAL-NAMES ,paragraph. The currency symbol is counted in the size of 
the item. 

Editing Rules: 

1. There are two general methods of performing editing in the PICTURE clause, either by inser
tion or by suppression and replacement. The four types of insertion editing available are: 

a. Simple insertion 

b. Special insertion 

c. Fixed insertion 

d. Floating insertion 

There are two types of suppression and replacement editing: 

a. Zero suppression and replacement with spaces 

b. Zero suppression and replacement with asterisks 

2. The type of editing which may be performed upon an item is dependent upon the category to 
which the item belongs. Table 6-1 specifies which type of editing may be performed upon a 
given category: 

Table 6-1. Editing for Each Item Category 

Category 

Alphabetic 
Numeric 
Alphanumeric 
Alphanumeric Edited 
Numeric Edited 

Type of Editing 

Simple insertion 'B' only 
None 
None 
Simple insertion '0', 'B', and 'I' 
All, subject to Editing Rule 3 

3. Floating insertion, and editing by zero suppression and replacement, are mutually exclusive in 
a PICTURE clause. Only one type of replacement may be used with zero suppression in a PIC
TURE clause. 

1168622 6-39 



PICTURE 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

4. Simple Insertion Editing. The ',' (comma), 'B' (space), 'O' (zero), and '/' (stroke) are used 
as the insertion characters. The insertion characters are counted in the size of the item and rep
resent the position in the item into which the character is inserted. 

Any character which is not a defined PICTURE character may be used as a simple insertion 
character. Precedence rules for these characters and rules for determining category are the same 
as those for the simple insertion character "O". 

5. Special Insertion Editing. The ' . ' (period) is used as the insertion character. In addition to be
ing an insertion character it also represents the decimal point for alignment purposes. The inser
tion character, used for the actual decimal point, is counted in the size of the item. The use 
of the assumed decimal point, represented by the symbol 'V' and the actual decimal point, 
represented by the insertion character, in the same PICTURE character-string is disallowed. The 
result of special insertion editing is the appearance of the insertion character in the item in the 
same position as shown in the character-string. 

6. Fixed Insertion Editing. The currency symbol and the editing sign control symbols, ' + ', ' - ', 
'CR', 'DB', are the insertion characters. Only one currency symbol and only one of the edit
ing sign control symbols can be used in a given PICTURE character-string. The symbols 'CR' 
or 'DB' always represent two character positions in determining the size of the item and must 
represent the rightmost character positions counted in the size of the item. The symbol ' + ' 
or ' - ', when used, must be either the leftmost or rightmost character position to be counted 
in the size of the item. The currency symbol must be the leftmost character position to be 
counted in the size of the item except that it can be preceded by either a ' + ' or a ' - ' symbol. 
Fixed insertion editing results in the insertion character occupying the same character position 
in the edited item as in the PICTURE character-string. Editing sign control symbols produce 
the results shown in table 6-2 depending upon the value of the data item. 

Table 6-2. Editing of Sign Control Symbols 

Result 

Editing Symbol in Data Item Data Item 
PICTURE Character-String Positive or Zero Negative 

+ + -

- space -

CR 2 spaces CR 
DB 2 spaces DB 

7. Floating Insertion Editing. The currency symbol and editing sign control symbols ' + ' or ' - ' 
are the floating insertion characters and are mutually exclusive in a given PICTURE character
string. 

6-40 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

PICTURE 

Floating :insertion editing is indicated in a PICTURE character-string by using a string of at 
least two of the floating insertion characters. This string of floating insertion characters may 
contain any of the fixed insertion symbols or have fixed insertion characters immediately to 
the right. These simple insertion characters are part of the floating string. 

The leftmost character of the floating insertion string represents the leftmost limit of the float
ing symbol in the data item. The rightmost character of the floating string represents the right
most limit of the floating symbols in the data item. 

The second floating character from the left represents the leftmost limit of the numeric data 
that can be stored in the data item. Nonzero numeric data may replace all the characters at 
or to the right of this limit. 

In a PICTURE character-string, there are only two ways of representing floating insertion edit
ing. One is to represent any or all of the leading numeric character positions on the left of 
the decimal point by the insertion character. The other is to represent all of the numeric charac
ter positions in the PICTURE character-string by the insertion character. 

If the insertion characters are only to the left of the decimal point in the PICTURE character
string, the result is that a single floating insertion character is placed into the character position 
immediately preceding either the decimal point or the first nonzero digit in the data represented 
by the insertion symbol string, whichever is farther to the left in the PICTURE character-string. 
The character positions preceding the insertion character are replaced with spaces. 

If all numeric character positions in the PICTURE character-string are represented by the inser
tion character, the result depends upon the value of the data. If the value is zero, the entire 
data item will contain spaces. If the value is not zero, the result is the same as when the inser
tion character is only to the left of the decimal point. 

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data 
item must be the number of characters in the sending data item, plus the number of nonfloat
ing insertion characters being edited into the receiving data item, plus one for the floating inser
tion character. 

8. Zero Suppression Editing. The suppression of leading zeroes in numeric character positions is 
indicated by the use of the alphabetic character 'Z' or the character '*' (asterisk) as suppres
sion symbols in a PICTURE character-string. These symbols are mutually exclusive in a given 
PICTURE character-string. Each suppression symbol is counted in determining the size of the 
item. If 'Z' is used the replacement character is the space, and if the asterisk is used the re
placement character will be ' * ' . 

Zero suppression and replacement is indicated in a PICTURE character-string by using a string 
of one or more of the allowable symbols to represent leading numeric character positions which 
are to be replaced when the associated character position in the data contains a zero. Any of 
the simple insertion characters embedded in the string of symbols or to the immediate right 
of this string are part of the string. 

In a PICTURE character-string, there are only two ways of representing zero suppression. One 
is to represent any or all of the leading numeric character positions to the left of the decimal 
point by suppression symbols. The other is to represent all of the numeric character positions 
in the PICTURE character-string by suppression symbols. 

1168622 6-41 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

PICTURE 

If the suppression symbols appear only to the left of the decimal point, any leading zero in 
the data which corresponds to a symbol in the string is replaced by the replacement character. 
Suppression terminates at the first nonzero digit in the data represented by the suppression sym
bol string or at the decimal point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-string are represented by suppres
sion symbols and the value of the data is not zero, the result is the same as if the suppression 
characters were only to the left of the decimal point. If the value is zero and the suppression 
symbol is 'Z', the entire data item will be spaces. If the value is zero and the suppression 
symbol '*', the data item will be all asterisks except for the actual decimal point. 

The leftmost suppression symbol (' Z' or '* ') in the PICTURE character-string can only be 
preceded by the currency symbol or the sign symbols (' + ' or ' - '). 

9. The symbols ' + ', ' -', '*', 'Z', and '$', when used as floating replacement characters, are 
mutually exclusive within a given character-string. 

Precedence Rules 

Figure 6-4 shows the order of precedence when using characters as symbols in a character-string. An 
'X' at an intersection indicates that the symbol(s) at the top of the column may precede, in a given 
character-string, the symbol(s) .at the left of the row. Arguments appearing in braces indicate that the 
symbols are mutually exclusive. The currency symbol is indicated by the symbol 'cs'. 

At least one of the symbols 'A' , 'X' , 'Z' , '9' or 
'cs' must be present in a PICTURE string. 

6-42 

I* I or at least two of the symbols ' + ' , ' - ' or 
( 



B 1000 Systems COBOL? 4 Language Manual 
Data Division 

PICTURE 

---------------------------------------------------,-------------------------.~·------------------. 

~::=•• Non-Float;ng Float;ng 

~~...__8 ____ 
0 
__ ..--_

1

_,,,_'_"s_e __ rt~io_n_s_v_m_;-;-;---{-~-}~{-g_R_B~}~-c-s--1--{-:-}~{-z-.'-;~se-;-~·-;~S;-~-}-bo~l-',-s---.--c-s-1---g-~-~--O~t-h-~-s-v_m_:-o-ls..---P--..--P---1 

"' Cl] 
.!: E .... > 
~ (I) 

- c LL 0 c ·.;: 
0 .. 
z 51 

.E 

B x x x x x x x x x x x x x x x x x 
1----t------t-----f---+-----t--- ----t-----j-----+----it------+-----t------ !--------+--- -- --t---------11-------- -- -----+-------+---+----I 

0 x x x x x x x x x x x x x x x x x 
---+---+----+---+-----+--->-----------+------ 1--------t---- -- 1------- t--- --- -------+------~ --- t---- --+-----------<f------+-----+-----+-------1 

x x x x x x x x x x x x x x x x x 
1----+-----+------+-----+---+-----t-------t---------1 ---- --R------ +----------+------ t----- t------ -- --- t---- - t-----------+------l---t-------+----1 

x x x x x x x x x x x x x x x x 
----+----+----1----t-----+----+---+--f-----f---, 1r-------- +--------+----- --- 1------- t------t-- --- t---------+----- t--- +------·--·+------+-

x x x x x X I X x x x 
1-----+----+----l---t-------t----+---+-----i--+------tl-------+-----+---+-----+------ --- t------+---t-----11------t-----+----

{ ~} 
1-----+----+----l------t------+---l----+----+----+---+---f---+-----+-------+-------ll-------l-----t------t----+-----t---+----

{ +_} 
~--------x-+ ___ x ___ 1_x_,_,___x __ ,_x_,_,___---+----+---~r-x-~~-x------._x_-+----+-----+-)(__ x x x x x 

--- 1-------+---+-----i---+----+---• 

{~~} x x x x x x x x x x x x x x 
1-----t------+------+--+------+-----+--- t-----t-----+ ------+-------+----- - -- --- t -+ 

cs x 

{:} x x x x x x x 

x 
1-----t------+------+--+------+---+--+---t---11----~----+----+-------+---t- -

"' { :} 
] -----+----+-----+---+------+----+---~---+----rt----------i---~----+---+---+---~----t---t------+------+---4--1 

t-- - ---t-

x x x x x x x x x x 

x ciE {+_} 
·.S ~ _g s 1-{-+_·-}-t------+-----+--+------+----+---+--+------t------+-----+----+----t-------1 ---- t--------jf-------+------+----+---4-----1 

x x x x x 

LL·f X X X X X X X X X X 
51 
.E 

"' ] 
E 
~ ... 
QJ 

5 

G12333 

-----+----+-----+---+-----+----+------j----+-----+-----1-----+-----t-· --+----+----+---- t--------+-------------t----- ----i---- --;------

cs; x x x x x x 

x x x x x x x x x x 

g x x x x x x x x x x x x x x x 
1-----+-----+------+--+------+-----+-----1---t----+----------+--------+--- -·--1 -- ----+---------l -- I--- ---1------ - ---- --··-- t------ ---

A 
x 

s 

x x x x x 
----1-----f---+------+----+------i-----I 

1-----+-----+------+--+------+-----+---t-----+-----+----1----+----+------i---~---+---~-- -+-----+----+--+-----t----1 

v x x x x x x x x x x x x 
-----+-----+-------+--+------+----- t------1------ 1--------1---·- --- ----- t----------lr--------r------+- - ------j - ------ ·--- .. ---- -------1-----t--·-. t-----

p x x x x x x x x x x x x 
--------+-----+--+------+------r--- t------+--------+------1-----t-----11-------+---+------t- - -+------ . 

p x x x x x 

lFigure 6-4. PICTURE Character Precedence Chart 

1168622 6-43 



PICTURE 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

Nonfloating insertion symbols '+' and '-', floating insertion symbols "Z", "*", "+ ", "-", and "cs", 
and the other symbol "P" appear twice in the PICTURE character precedence chart, figure 6-4. The 
leftmost column and uppermost row for each symbol represent use on the left of the decimal point 
position. The second appearance of the symbol in the chart represents use to the right of the decimal 
point position. 

Examples: 

Table 6-3 demonstrates the editing function of the PICTURE Clause. 

Table 6-3. Editing Application of the PICTURE Clause 

Source Area Receiving Area 

Editing 
Picture Data Picture Edited Data 

9 ( 5) 12345 $ZZ,ZZ9.99 $12,345.00 
V9 (5) 12345 $$$,$$9.99 $0. 12 
V9 (5) 12345 $ZZ,ZZ9.99 $ 0. 12 

9 (5) 00000 $$$,$$9.99 $0.00 
9(3)V99 12345 $ZZ,ZZ9.99 $ 123.45 
9 ( 5) 00000 $$$,$$$.$$ 
9 ( 5) 01234 $ ;':;'>' ;': ;'>9. 9 9 $ ;': l '2 3 4. 00 
9 ( 5) 00000 $ ·;'~ i 1

\ ' ·k ;'\ ·k • -;'\ ;'\ .. 1 .... t.. .............. .... ..... ..r.. •• J .. 
1\#'\l\l\l\l\.I'\ I''' 

9 ( 5) 00123 $ h'> ' ;':;': 9 . 9 9 $;':;':;': 123. 00 
9(3)V99 00012 $ZZ,ZZ9.99 $ 0. 12 
9(3)V99 12345 $$$,$$9.99 $123.45 
9(3)V99 00001 $ZZ,ZZZ.99 $ . 0 l 
9 (5) 12345 $$$,$$9.99 $12,345.00 
9 ( 5) 00000 $ZZ,ZZZ.ZZ 
9(3)V99 00001 $$$,$$$.$$ $.01 

59 (5) (+) 12345 ZZZZ9.99+ 12345.00+ 
59(5) (-) 00123 --99999.99 -00123.00 

9(3)V99 12345 999.00 123.00 
59 (5) (-) 12345 ZZZZ9 I 99- 12345.00-
59 (5) ( +) 12345 ZZZZ9.99- 12345.00 
9 ( 5) 12345 BBB99.99 45.00 

S9(5)V (-) 12345 -ZZZZ9.99 -12345.00 
59 (5) (-) 12345 $$$$$$.99CR $12345.00CR 

s99v9(3) (-) 12345 ------.99 -12.34 
59 (5) (+) 12345 $$$$$$.99CR $12345.00 

9(3)V99 12345 999.BB 123. 
9 ( 5) 12345 00999.00 00345.00 

V9 (5) 12345 PPP99 00045 
9 (5) 12345 999PP 12300 

6-44 



REDEFINES 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

REDEFINES 

The REDEFINES clause allows the same computer storage area to be described by different data de
entries. 

General Format: 

r---- level-number data-name-1; REDEFINES data-name-2 L__ _______ __ 

NOTE 
Level-number, data-name-1 and the semicolon are shown in the general for
to improve clarity. Level-number and data-name-1 are not part of the 
REDEFINES clause. 

Syntax Rules: 

1. The REDEFINES clause, when specified, must immediately follow data-name-1. 

2. The level-numbers of data-name-1 and data-name-2 must be identical, but must not be 66 or 
88. 

3. This clause must not be used in level 01 entries in the FILE SECTION. Refer to the DATA 
RECORDS clause, General Rule 2, in this section. 

4. The REDEFINES c:lause must not be used in level 01 entries in the COMMUNICATION SEC-

5. The data description entry for data-name-2 cannot contain a REDEFINES clause. Data-name-
2 may be subordinate to an entry which contains a REDEFINES clause. The data description 
entry for data-name-2 cannot contain an OCCURS clause. However, d~ta-name-2 may be sub
to an item whose data description entry contains an OCCURS clause. In this case, 
the reference to data-name-2 in the REDEFINES clause may not be subscripted or indexed. Nei
the original definition nor the redefinition can include an item whose size is variable 
as defined in the OCCURS clause. Refer to the OCCURS clause in this section. 

6. No entry having a level-number numerically lower than the level-number of data-name-2 and 
data-name-1 may occur between the data description entries of data-name-2 and data-name-1. 

1168622 6-45 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

REDEFINES 

General Rules: 

1. Redefinition starts at data-narne-2 and ends when a level-number less than or equal to that of 
data-name-2 is encountered. 

2. The REDEFINES clause specifies the redefinition of a storage area, not of the data items occu
pying the area. Therefore, the usage of data-name-I need not be the same as the usage of data
name-2, except that DISPLAY or group data items may not redefine elementary COMPUTA
TIONAL or INDEX data items which do not begin on a byte boundary. When redefinition 
occurs at other than the 0 I level, the amount of storage allocated for data-name-2 must be the 
same as the amount of storage implied by the declared size and usage of data-name-I, with the 
following exceptions: 

a. A DISPLAY or group data item may redefine an elementary COMPUTATIONAL data 
item that begins, but does not end, on a byte boundary if the difference in size can be 
accounted for by the generation of a 4-bit filler so that the redefining item ends on a byte 
boundary. 

b. A DISPLAY or group data item may be redefined by an elementary COMPUTATIONAL 
data item even though the actual size (including sign position, if described) is one 4-bit 
character less than the number of 4-bit characters in the storage area. The redefining item 
is aligned to begin on a byte boundary and end at the middle of the last byte of storage. 

3. Multiple redefinitions of the same character positions are permitted. The entries giving the new 
descriptions of the character positions must follow the entries defining the area being redefined, 
without intervening entries that define new character positions. Multiple redefinitions of the 
same character positions must all use the data-name of the entry that originally defines the area. 

4. The entries giving the new description of the character positions must not contain any VALUE 
clauses, except in condition-name entries. 

5. Multiple 01 level entries subordinate to any given level indicator represent implicit redefinitions 
of the same area. 

Example: 

The following example illustrates the uses of the REDEFINES clause. 

01 

6-46 

WHOLE-ITEM. 
03 PART-ONE PIC X(40). 
03 PART-TWO REDEFINES PART-ONE. 

05 A PI C X (20) • 
05 B PIC X(20). 
05 B2 REDEFINES B_ PIC 9(20). 

03 PART-THREE REOEFINES PART-ONE 
03 PART-FOUR REDEFINES PART-ONE 

PIC X(40). 
PI C 9 (40) . 



RENAMES 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

RENAMES 

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary items. 

Generall Format: 

[ 
66 data-name-1: RENAMES data-name-2 [I THROUGH} data-name-3] 

' l THRU 

----
NOTE 

Level-number 66, data-name-1, and the semicolon are shown in the general 
format to improve clarity. Level-number and data-name-1 are not part of the 
RENAMES clause. 

Syntax Rules: 

1. All RENAMES entries referring to data items within a given logical record must immediately 
follow the last data description entry of the associated record description entry. 

2. Data-name-2 and data-name-3 must be names of elementary items or groups of elementary 
items in the same logical record, and cannot be the same data-name. A 66 level entry cannot 
rename another 66 level entry nor can it rename a 77, 88, or 01 level entry. 

3. Data-name-1 cannot be used as a qualifier, and can only be qualified by the names of the asso
Ievel 01, FD, or SD entries. Neither data-name-2 nor data-name-3 may have an OC-
clause in the data description entry nor be subordinate to an item that has an OC-
clause in the data des~iption entry. Ref er to the OCCURS clause in this section. 

4. The beginning of the area described by data-name-3 must not be to the left of the beginning 
of the area described by data-name-2. The end of the area described by data-name-3 must be 
to the right of the end of the area described by data-name-2. Data-name-3, therefore, cannot 
lbe subordinate to data-name-2. 

5. Data-name-2 and data-name-3 may be qualified. 

6. The words THRU and THROUGH are equivalent. 

7. None of the items within the range, including data-name·-2 and data-name-3, if specified, can 
be an item whose size is variable as defined in the OCCURS clause. 

General Rules: 

1. One or more RENAMES entries can be written for a logical record. 

2. When data-name-3 is specified, data-name-1 is a group item which includes all elementary items 
starting with data-name-2 (if data-name-2 is an elementary item) or the first elementary item 
in data-name-2 (if data-name-2 is a group item}, and concluding with data-name-3 (if data
name-3 is an elementary item) or the last elementary item in data-name-3 (if data-name-3 ·is 
a group item). 

1168622 6-4 7 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

RENAMES 

When data-name-3 is specified: If data-name-2 is an elementary COMPUTATIONAL or IN
data item, it must be positioned to begin at an 8-bit character boundary; if data-name-
3 is an elementary COMPUTATIONAL or INDEX data item, it must be positioned to end 
at the end of an 8-bit character boundary. 

3. When data-name-3 is not specified, data-name-2 can be either a group or an elementary item. 
When data-name-2 is a group item, data-name-1 is treated as a group item, and when data
name-2 is an elementary item, data-name-1 is treated as an elementary item. 

Data-name-1 assumes all the characteristics of data-name-2 as determined from the data de
of data-name-2, including usage, justification, synchronization, editing require-
and so on. 

Examples: 

The following are examples of the RENAMES clause. 

6-48 

0 l PART-ONE. 
03 SUB-PART-ONE. 

05 SP-1 PIC x. 
05 SP-2 PIC x (5) . 
05 SP-3 PIC xxx. 
05 SP-4 PIC x. 

03 SUB-PART-TWO. 
05 SP2-l PIC xx. 
05 SP2-2 PIC x ( l 0) • 
05 SP2-3 PIC xxx. 

66 SUB-PT-THREE RENAMES SUB-PART-ONE. 
66 SUB-PT-FOUR RENAMES SUB-PART-ONE. 
66 SUB-PT-5 RENAMES SP-2 THRU SP-4. 
66 SUB-PT-6 RENAMES SP-3 THROUGH SP2-2. 
66 SUB-PT-7 RENAMES SP-1 THRU SUB-PART-TWO. 



SIGN 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

SIGN 

The SIGN clause specifies the position and the mode of representation of the operational sign when 
necessary to describe these properties explicitly. 

General Format: 

~------~-[-S-IG_N __ Is __ J __ {_i_~_~_rL_I~-N~_~ __ } ____ [_sE_P_A_R_A_T_E_C_H_A_RA __ c_T_E_R_J __________ __ 

Syntax Rules: 

1. The SIGN clause may be specified only for a numeric data description entry whose PICTURE 
contains the character 'S', or a group item containing at least one such numeric data descrip
tion entry. 

2. The numeric data description entries to which the SIGN clause applies must be described as 
usage DISPLAY or COMPUTATIONAL. 

3. At most, one SIGN clause may apply to any given numeric data description entry. 

4. If the CODE-SET clause is specified, . any signed numeric data description entries associated 
with that file description entry must be described with the SIGN IS SEP ARA TE clause. 

General Rules: 

1. The optional SIGN clause, if present, specifies the position and the mode of representation of 
the operational sign for the numeric data description entry to which it applies, or for each nu
meric data description entry subordinate to the group to ,which it applies. The SIGN clause ap
plies only to numeric data description entries whose PICTURE contains the character 'S'; the 
'S' indicates the presence of, but neither the representation nor, necessarily, the position of 
the operational sign. 

2. A numeric data description entry whose PICTURE contains the character 'S', but to which 
no optional SIGN clause applies, has an operational sign which is positioned and represented 
according to the standard default position and representation of operational signs. Refer to the 
PICTURE clause, General Rule 8 (the 'S' symbol), in this section. 

3. If a SIGN clause, without a SEPARATE CHARACTER phrase, applies to a numeric data de
scription entry, then: 

1168622 

a. If the usage of the data item is DISPLAY, the operational sign is maintained and expected 
as a binary 1100 or 1101 in the zone of the LEADING or TRAILING character, and will 
not cause additional storage to be allocated for the data item. 

6-49 



B I 000 Systems COBOL 74 Language Manual 
Data Division 

SIGN 

b. If the usage of the data item is COMPUTATIONAL, the operational sign is maintained 
and expected as a binary 1100 or 1101 LEADING or TRAILING character, increasing by 
one 4-bit character the amount of storage allocated for the data item above that which 
would be allocated for an unsigned COMPUTATIONAL data item. The presence or ab
sence of the SEPARATE CHARACTER phrase has no effect upon the position or repre
sentation of the operational sign for COMPUTATIONAL data items. 

4. If a SIGN clause with a SEPARATE CHARACTER phrase applies to a numeric data descrip
tion entry, then: 

a. If the usage of the data item is DISPLAY, the operational sign is maintained and expected 
as a LEADING or TRAILING character separate from, and in addition to, the numeric 
character positions. The operational sign for negative values is the character "_fl and for 
positive values the character fl + fl. 

b. If the usage of the data item is COMPUTATIONAL, the rules listed above in General Rule 
3b apply. 

5. Every numeric data description entry whose PICTURE contains the character 'S' is a signed 
numeric data description entry. If a SIGN clause applies to such an entry and conversion is 
necessary for purposes of computation or comparisons, conversion takes place automatically. 

Examples: 

The following are examples of the SIGN clause. 

6-50 

WORKING-STORAGE SECTION. 
77 NUMBl PIC S9(ll) VALUE ZEROES SIGN IS TRAILING. 
77 NUMB2 PIC 59(6) VALUE ZEROES SIGN IS LEADING. 

01 GROUP- ITEM 
03 ITEM-1 
03 ITEM-2 
03 ITEM-3 
03 I TEM-4 

SIGN IS LEADING. 
PI C X ( 15) • . 
PICS9(4) COMP. 
PI C X (25) • 
PIC 59999. 



SYNCHRONIZED 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

SYNCHRONIZED 

The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries 
of the computer memory. 

General Format: 

SYNC RIGHT C {SYNCHRONIZED } [LEFT ] 

, _______ ______. 

Syntax Rules: 

I. This clause may only appear with an elementary item. 

2. SYNC is an abbreviation for SYNCHRONIZED. 

General Rules: 

I. This clause specifies that the subject data item is to be aligned in the computer to a byte bound
ary. If the previous data item did not end on a byte boundary an implicit 4-bit FILLER is 
generated. This unused filler digit is included in: 

a. The size of any group item(s) to which the elementary item belongs. 

b. Any redefinition of the previous data item when it is the object of a REDEFINES cla9se. 
Refer to the REDEFINES and the USAGE clauses in this section. 

2. Neither RIGHT nor LEFT following SYNCHRONIZED has effect on the positioning of the 
data item. RIGHT and LEFT are handled as comment entries. 

3. Whenever a SYNCHRONIZED item is referenced in the source program, the original size of 
the item, as shown in the PICTURE clause, is used in determining any action that depends 
on size, such as justification, truncation, or overflow. 

4. If the data description of an item contains the SYNCHRONIZED clause and an operational 
sign, the sign of the item appears in the normal operational sign position. 

5. When the SYNCHRONIZED clause is specified in a data description entry of a data item that 
also contains an OCCURS clause, or in a data description entry of a data item subordinate 
to a data description entry that contains an OCCURS clause, then: 

1168622 

a. Each occurrence of the data item :is SYNCHRONIZED. 

b. Any implicit FILLER generated for other data items within that same table are generated 
for each occurrence of those data items. 

6-51 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

USAGE 

The USAGE clause specifies the format of a data item in the computer storage. 

General Format: 

[USAGE IS] 
( COMPUTATIONAL l 
) COMP 
-) DiSPIA Y (' 
\ INDEX J 

Syntax Rules: 

1. The PICTURE character-string of a COMPUTATIONAL item can contain only '9' s, the oper
ational sign character 'S', the implied decimal point character 'V', and one or more 'P's. 
Refer to the PICTURE clause in this section. 

2. COMP is an abbreviation for COMPUTATIONAL. 

3. The USAGE clause may be written in any data description entry with a level number other than 
66 or 88. 

4. If the USAGE is written in the data description entry for a group item, it may also be written 
in the data description entry for any subordinate elementary item or group item, but the same 
USAGE must be specified by both entries. Items of different USAGE may appear in the same 
record. 

5. An index data item can be referenced explicitly only in a SEARCH or SET statement, a relation 
condition, the USING phrase of a PROCEDURE DIVISION header, or the USING phrase of 
a CALL statement. 

6. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO clauses 
cannot be used to describe group or elementary items described with the USAGE IS INDEX 
clause. 

General Rules: 

6-52 

1. If the USAGE clause is written at a group level, it applies to each elementary item in the group. 

2. This clause specifies the manner in which a data item is represented in the storage of a com
puter. It does not affect the use of the data item, although the specifications for some state
ments in the PROCEDURE DIVISION may restrict the USAGE clause of the data item. 

DISPLAY data items are represented internally as contiguous 8-bit characters represented in 
the native character set, EBCDIC. 

Elementary COMPUTATIONAL data items are represented internally as contiguous 4-bit char
acters or digits. 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

USAGE~ 

3. A COMPUTATIONAL item is capable of representing a value to be used in computations and 
must be numeric. If a group item is described as COMPUTATIONAL, the elementary items 
in the group are COMPUTATIONAL. The group item is not COMPUTATIONAL (cannot be 
used in computations). 

The group item is considered to be a group data item whose class is alphanumeric and whose 
usage is DISPLAY and may be referenced any place in the syntax acceptable for such an item. 
The size of the group item is considered to be in. terms of DI SPLAY characters aligned accord
ing to the rules for DISPLAY, one character for every two 4-bit characters or digits that form 
a part of it. 

4. The USAGE IS DISPLAY clause indicates that the format of the data is a standard data for
mat. 

5. If the USAGE clause is not specified for an elementary item, or for any group to which the 
item belongs, the usage is implicitly DISPLAY. 

6. Every occurrence of a DISPLAY data item begins and ends on a byte boundary. Within a rec
ord description, the declaration of a DISPLAY data item immediately following a COMPUT A
TIONAL or INDEX data item that does not end on a byte boundary causes an automatic gen
eration of a 4-bit filler between the two items. This filler area between the two data items is 
not included in the size of either item, but is included in the size of all group items to which 
the two items are subordinate. Similarly, if the last item declared within a group item at the 
next lowest hierarchical level is a COMPUTATIONAL or INDEX data item that does not end 
on a byte boundary, an automatic generation of a 4-bit filler occurs. This filler is included in 
the size of the group item. 

7. An elementary item described with the USAGE IS INDEX clause is called an index data item 
and contains a value which must correspond to an occurrence number of a table element. The 
elementary item cannot be a conditional variable. If a group item is described with the USAGE 
IS INDEX clause, the• elementary items in the group are all index data items. The group is not 
an index data item and cannot be used in the SEARCH or SET statement. 

The group item is considered to be a group data item whose class is alphanumeric and whose 
usage is DISPLAY and may be referenced any place in the syntax acceptable for such an item. 
The size of the group item is considered to be in terms of DISPLAY characters, four characters 
for each subordinate index data item. · 

8. An index data item can be part of a group which is referred to in a MOVE or input-output 
statement, in which case no conversion takes place. 

9. An index data item may contain a signed value. An index data item occupies the same space 
and has the same alignment as an item declared PICTURE S9(7) USAGE IS COMPUT A
TIONAL. 

1168622 6-53 



B I 000 Systems COBOL 74 Language Manual 
Data Division 

VALUE 

The VALUE clause defines the value of constants, the initial value of working-storage items, the initial 
value of data items in the COMMUNICATION SECTION, and the values associated with a condition
name. 

General Format: 

Format 1: 

VALUE IS literal 

Format 2: 

{VALUE IS t r {THROUGH} 
literal-2 J literal-I 

VALUES ARE j _ THRU 

[ , literal-3 
[ j THROUGH} 

l THRU 
literal-4 J ] 

Syntax Rules: 

1. The words THRU and THROUGH are equivalent. 

2. The VALUE clause cannot be stated for any item whose size is variable. Refer to the OCCURS 
clause in this section. 

3. A signed numeric literal must have an associated signed numeric PICTURE character-string. 

4. All numeric literals in a VALUE clause of an item must h<;lve a value which is within the range 
of values indicated by the PICTURE clause, and must not have a value which would require 
truncation of nonzero digits. Nonnumeric literals in a VALUE clause of an item must not ex
ceed the size indicated by the PICTURE clause. 

General Rules: 

6-54 

1. The VALUE clause must not conflict with other clauses in the data description of the item or 
in the data description within the hierarchy of the item. The following rules apply: 

a. If the category of the item is numeric, all literals in the VALUE clause must be numeric. 
If the literal defines the value of a working-storage item, the literal is aligned in the data 
item according to the standard alignment rules. Refer to Standard Alignment Rules in sec
tion 2. 



B I 000 Systems COBOL 74 Language Manual 
Data Division 

VALUE 

b. If the category of the item is alphabetic, alphanumeric, alphanumeric edited or numeric 
edited, all literals in the VALUE clause must be nonnumeric literals. The literal is aligned 
in the data item as if the data item had been described as alphanumeric. (Refer to Standard 
Alignment Rules in section 2.) Editing characters in the PICTURE clause are included in 
determining the size of the data item (refer to the PICTURE clause in this section) but 
have no effect on initialization of the data item. Therefore, the VALUE for an edited item 
is presented in an edited form. 

c. Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED clause 
that may be specified. 

2. A figurative constant may be substituted in both Format 1 and Format 2 wherever a literal is 
specified. 

Condition-Name Rules 

1. In a condition-name entry, the VALUE clause is required. The VALUE clause and the co·ndi
tion-name are the only two clauses permitted in the entry. The characteristics of a condition
name are implicitly those of the conditional variable. 

2. Format 2 can only be used in connection with condition-names. Refer to Condition-Name in 
section 2. Wherever the THRU phrase is used, literal must be less than literal-2, literal-3 less 
than literal-4, and so forth. 

Data Description Entries Other Than Condition-Names 

1. Rules governing the use of the VALUE clause differ with the respective sections of the DAT A 
DIVISION: 

a. In the FILE SECTION, the VALUE clause may be used only in condition-name entries. 

b. In the WORKING-STORAGE SECTION and the COMMUNICATION SECTION, the 
VALUE clause must be used in condition-name entries. The VALUE clause may also be 
used to specify the initial value of any other data item, in which case the clause causes 
the item to assume the specified value at the start of the object program. If the VALUE 
clause is not used in an item description, the initial value is undefined. 

c. In the LINKAGE SECTION, the VALUE clause may be used only in condition-name en
tries. 

2. The VALUE clause must not be stated in a data description entry that contains an OCCURS 
clause, or in an entry that is subordinate to an entry containing an OCCURS clause. This rule 
does not apply to condition-name entries. Refer to the OCCURS clause in this section. 

3. The VALUE clause must not be stated in a data description entry that contains a REDEFINES 
clause, or in an entry that is subordinate to an entry containing a REDEFINES clause. This 
rule does not apply to condition-name entries. 

1168622 6-55 



B 1000 Systems COBOL 7 4 Language Manual 
Data Division 

VALUE 

6-56 

4. If the VALUE clause is used in an entry at the group level, the literal must be a figurative 
constant or a nonnumeric literal, and the group area is initialized without consideration for the 
individual elementary or group items contained within this group. The VALUE clause cannot 
be stated at the subordinate levels within this group. 

5. The VALUE clause must not be written for a group containing items for which USAGE (other 
than USAGE IS DISPLAY) is specified either explicitly or implicity. 



B 1000 Systems COBOL74 Language Manual 
Data Division 

WORKING STORAGE SECTION 

WORKING-STORAGE SECTION 

The WORKING-STORAGE SECTION is optional and is that part of the DAT A DIVISION set aside 
for intermediate processing of data. The difference between the WORKING-STORAGE and FILE 
SECTIONS is that the former deals with data that is not associated with an input or output file. All 
clauses which are used in normal input or output record descriptions can be used in a WORKING
STORAGE record description. 

WORKING-STORAGE Structure 

Whereas the FILE SECTION is composed of file description (FD or SD) entries. and associated record 
description entries and noncontiguous items, the WORKING-STORAGE SECTION is composed only 
of record description entries and noncontiguous items. The WORKING-STORAGE SECTION begins 
with a section-header a·nd a period, followed by data description entries for noncontiguous WORKING
STORAGE items, and/or record description entries for WORKING-STORAGE records. 

Each WORKING-STORAGE SECTION record name and noncontiguous item name must be unique 
since it cannot be qualified. Subordinate data-names ne·ed not be unique if they can be made unique 
by qualification. 

General Format: 

WORKING-STORAGE SECTION. 
77 data-name-1; 

88 condition-name-1 

77 data-name-n 
01 data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 

Noncontiguous WORKING-STORAGE 

Items in WORKING-STORAGE which have no hierarchical relationship to one another need not be 
grouped into records, provided they do not need to be further subdivided. These items are classified 
and defined as noncontiguous elementary items. Each of these items is defined in a separate data de
scription entry which begins with the special level-number 77. 

The following record description clauses are required in each entry: 

Level-number 77 
Data-name 
The PICTURE clause or the USAGE IS INDEX clause. 

1168622 6-57 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

WORKING STORAGE SECTION 

The OCCURS clause is not meaningful on a 77 level item and causes an error at compilation time 
if used. Other data description clauses are optional and can be used to complete the description of 
the item if necessary. 

WORKING-STORAGE Records 

Data elements and constants in WORKING-STORAGE which have a definite hierarchic relationship 
to one another must be grouped into records according to the rules for the formation of record descrip
tions. All clauses which are used in normal input or output record descriptions can be used in a 
WORKING-STORAGE description, including REDEFINES, OCCURS, and COPY. 

Initial Values 

The initial value of any item in the WORKING-STORAGE SECTION except an index data item is 
specified by using the VALUE clause with the data item. The initial· value of any index data item is 
unpredictable. 

Condition-Names 

Any WORKING-STORAGE item may be a conditional variable with which one or more condition
names are associated. Entries defining condition-names must immediately follow the conditional 
variable entry. Both the conditional variable entry and the associated condition-name entries may con
tain VALUE clauses. 

CODING THE WORKING-STORAGE SECTION 

Figure 6-5 illustrates the coding of the WORKING-STORAGE SECTION. 

6-58 



O'\ 
00 
O'\ 
N 
N 

O'\ 
I 

Vi 
\0 

PROGRAM'-'J~~}()f-c- S>~~ 

PROGRAMMER """3 Q~~'-? 
A B 

PAGE I LINE 
NO. NO. 

3 4 

01 

07 

08 

09 

11 

1 2 

13 

14 

1 5 

16 

1 7 

1 8 

19 

20 

8 

G12334 

Burroughs COBOL CODING FORM 

~~'-~ REQUESTED BY 

DATE 

32 36 40 44 4B 52 56 

Figure 6-5. Coding the WORKING-STORAGE SECTION 

PAGE \ 3 OF S (o 
iDENT. 

60 

~ 
0 
:0 

" z 
G> 
Cl> 
-I 
0 
:0 
)> 
G> 
m 
Cl> 
m 
n 
-I 
0 
z 

to 

0 
0 
0 
en 
'< 
[/) 
.-+
(!) 

o~ 
a n 
~ 0 
0 to 
-· 0 < r 
~- -..J s· +::
::s r 

~ 

~ 
c 
~ 

CJQ 
(1) 

~ 
~ 

= c 
~ 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

LINKAGE SECTION 

The LINKAGE SECTION is used for Inter-Program Communication to provide a facility by which 
a program can communicate with one or more programs. This communication is provided by the ability 
to transfer control from one program to another within a run unit, and the ability for both programs 
to have access to the same data items. 

The LINKAGE SECTION is an optional part of the DAT A DIVISION. It is used when the object 
program is to be a called program and the CALL statement in the calling program contains a USING 
phrase. 

The LINKAGE SECTION is used for describing data that is available through the calling program but 
is to be referred to in both the calling and the called programs. No space is allocated in the program 
for data items referenced by data-names in the LINKAGE SECTION of that program. PROCEDURE 
DIVISION references to these data items are resolved at object time by equating the reference in the 
called program to the location used in the calling program. In the case of index-names, no such corres
pondence is established. Index-names in the called and calling programs always refer to separate in
dices. 

LINKAGE SECTION Structure 

The structure of the LINKAGE SECTION is the same as that previously described for the WORKING
STORAGE SECTION. It begins with a section header, followed by data description entries for noncon
tiguous data items and/or record description entries. But, each item name must be unique within the 
called program since it cannot be qualified. 

Data items defined in the LINKAGE SECTION of the called program may be referenced within the 
PROCEDURE DIVISION of the called program only if specified as operands of the USING phrase 
of the PROCEDURE DIVISION tieader or are subordinate to such operands, and the object program 
is under the control of a CALL statement that specifies a USING phrase. Condition-names and/or 
index-names associated with such data,..names and/or subordinate data items, may also be referenced 
in the PROCEDURE DIVISION. 

General Format: 

6-60 

LINKAGE SECTION. 
77 data-name-1 

88 condition-name-1 

77 data-name-n 
01 data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

Noncontiguous LINKAGE Storage 

LINKAGE SECTION 

Items in the LINKAGE SECTION that have no hierarchic relationship to one another need not be 
grouped into records and are classified and defined as noncontiguous elementary items. Each of these 
data items is defined in a separate data description entry which begins with the special level-number 
77. 

The foBowing data claus•~s are required in each data descript.ion entry: 

Level-number 77 
Data-name 
The PICTURE clause or the USAGE IS INDEX clause. 

Other data description clauses are optional and can be used to complete the description of the item 
if necessary. 

Linkage Records 

Data elements in the LINKAGE SECTION which have a definite hierarchic relationship to one another 
must be grouped into records according to the rules for formation of record descriptions. Any clause 
which is used in an input or output record description can be used in a LINKAGE SECTION. 

Initial Values 

The VALUE clause must not be specified in the LINKAGE SECTION except in condition-name entries 
(level 88). 

CODING THE LINKAGE SECTION 

Figure 6-6 illustrates the coding of the LINKAGE SECTION. 

1168622 6-61 



0\ 
I 

0\ 
N 

I PROGRAM L\ 
PROGRAMMER 

PAGE LINE 
NO. NO. 

3 4 

01 

02 

03 

04 

05 

06 

07 

08 

09 

I 0 

11 

1 2 

13 

1 4 

1 5 

16 

1 7 

1 8 

19 

20 

a 12 16 

G12335 

Burroughs COBOL CODING FORM 

20 24 28 32 36 40 44 48 52 56 60 64 68 

Figure 6-6. Coding the LINKAGE SECTION 

72 

r
z 

" )> 
G) 
m 
en 
m 
("') 
~ 

0 
z 

to 

0 
0 
0 
C/) 

'< 
rJJ 
.-+-

~ 
:;j 

or:/l 
~ n 
~o 
~ to 
oo 
:;:- r 
-·-...) 

~- ~ 
or ::s p; 

~ 
(IQ 

::::: 
~ 

(IQ 
(D 

~ 
~ 
~ 
::::: 
~ -



Examples: 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

LINKAGE SECTION 

The following two programs, IPCCALL and ST A TE, are sample programs using Inter-Program Com
munication (IPC). The calling program, IPCCALL, through the use of the CALL statement, passes 
a data item to STATE. The called program, STATE, has a LINKAGE SECTION, and the USING 
phrase specified in the PROCEDURE DIVISION heading in which to accept the shared data. When 
the program ST A TE has completed and executes the EXIT PROGRAM statement, control and the new 
value of the data item is returned to IPCCALL. 

6URROUGHS B1800/dl700 COBOL74 CCMPILER· MARK 1x.o.1 (05/07/80 16:27> 
IPCCALL 

1168622 

000200 
000300 
000400 
000500 
0 00600 
000700 
000800 
000900 
001000 
001100 
001200 
001600 
002200 
002300 
002400 
0 025.00 
002510 
002520 
002530 
002€00 
002700 
0028CO 
002900 
003000 
0 0 3100 
003900 
004000 
004100 
004200 
004400 

IDENTIFICATION 
PRQGRA~-TO. 

AUTt10f;. 
DATE-WR ITTfN. 
OATE-CO~PILEO. 
SECURITY. NON£. 

OIVISJON. 
f PCCAll. 
!MAURA ALFORC. 
04/28/80. 

1980 JU~£ 27 11:04 

* REMARKS. I CALL A P~OGRA~ 
ENVIRG~~£NT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COHPUTE~o 81985. 
OBJECT-COHPUTERu 81985. 
DUA DIVISION. 
WORKI~~-STORAG£ SECTION. 

CALLEO STAT£. 

01 U-STATE-AREA. 
05 U-ST•T£. 

10 U-NUMERIC-STATE 
05 U-STATE-NAHE 
05 U-STATf-RETUQ~-STATUS 

PROCFCUR£ DIVISIO~. 

BEGIN. 
HOVE "Al" TO U-STATE. 

PIC 95. 
PIC XC20>. 
PIC 9. 

CALL "STAT£• USING U-STATE-AREA. 
DISPLAY ~u-STATE-AREA = " U-STATE-AREA. 
HOVE "CT" TO U-STATf. 
CALL "STAIE" USING U-STATE-AREA. 
DISPLAY "U-STATE-AREA = " U-STATE-ARf.A. 
CANCEL "STAT£". 
STOP HUN. 

6-63 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

LINKAGE SECTION 

6-64 

HURROUG~S 01800/81700 COBOL74 CO~PLLER· HARK 1x.o.1 (05/07/80 16:27> 
STAH 

000100 
000200 
OOOJOO 
000310 
000400 
0005CO 
OOOf:OO 
000700 
000800 
000900 
001000 
001100 
001200 
001300 
001400 
001500 
0 01600 
001700 
OOlt!OO 
001900 
002000 
002100 
002110 
003700 
003800 
003900 
0 OleOOO 
OO'i1 on 
OO'i200 
004210 
004300 
004400 
004500 
00le60'l 
004700 
004800 
004810 
004900 
0 05000 
005100 
005200 
005300 
005400 
005500 
005600 
005700 
005800 
005900 
006000 
006100 
006200 
0 06 30'J 
006400 
006500 
0 06600 
006700 
006800 
00690!) 
007000 
o o 11 oo 
00720\l 
007300 
007400 
001500 
007600 
001700 
001800 
007900 
008000 
00810!} 
0 C8200 
008300 
0 Od400 

10£NT If ICATION ClVISION. 
PROGRA~-to. ST Alf. 
~UTHOR. TJC. 

• q[MAR~S. I AH CALLEO qy A PROGRA~ NA~EO IPCCALL. 
ENVIRC~H[NT OIVJSIO~. 
CONFIGURATION SECTION. 

SOU~CE-COHPUTER. B-1855. 
OBJECT-COMPUTE~- B-1~55. 

0 A TA 0 I V JS ION. 
WORKThG-STORAGE SECTION. 
01 NU~BER-OF-STATf-COCES-Jh-TABLE PIC 9<2> COMP VALUE 10. 
01 WS-STATE-Aq8~£V-ANO-NAHES. 

03 STAT£-Ol PIC XC23> VALUE •AL-#lABAMA "• 
03 STATE-02 PIC XC21> VALUE "AK-ALASKA "• 
03 STAT~-03 PlC XC2J> VALUE •AZ-ARIZONA "• 
03 STATE-Ole PIC XC23) VALUE "AR-•RKANSAS •. 
03 STATE-05 PIC XC23l V~LUE "CA-CALTFORNIA "• 
03 STATE-06 PIC X(2J> VALUE ·co-cOLORACO •• 
03 STATE-07 PIC XC2J> VALUE "CT-CONNECTICUT "• 
OJ SJATE-08 PIC Xl23l VALUE "DE-OELAWARE 
03 STATE-09 PIC XC23> VALUE •Jc-otSTRICT Cf COLUMeIA". 
03 STATE-10 PIC XC23> VALUE "fl-FLC~IOA "• 

01 MS-STATE-TABLE REDEFINES WS-STATE-ABBREV-ANO-NAH(S. 
03 MS-STATE OCCURS 10 TI~ES 

INOEX[O BY WS-STATF.-NUM0ER. 
05 MS-STATE-ABBREVIATJCH PIC XC2). 
05 FILLER PIC XO>. 
05 MS-STATE-~AM~ PIC XC20). 

LINKAGE SECTION. 
01 U•STATE-AREA. 

05 u-s TA TE. 
10 U-~U~ERJC-STATE 

05 U-STATE-NAHf 
05 U-STATE-RETURN-STATUS 

PIC 9<2>. 
PIC XC20>. 
PIC 9C1>. 

PROCf.CURE OIVISION USING U-STATE-AREA. 

000-EhTRY. 
HCVE ZERO TO U-STATE-RETURN-STATUS. 
HCVE SPACES TG U-STATE-NAHE. 
If U-STATE IS NUMERlC 

PERfOR~ 010-CONVERT-NU~ERIC-CODE 

ELSE 
PERFORM 020-CONVfRT-ALPhA-COOE. 

005-EXJT-PROGRAM. 
EX IT PRO GR Al'4. 

010-CCNVERT-NUMERIC-COOE. 
IF U-NUMtRIC-STATE > ZE~O AhC 

~OT > ~u~ef~-CF-STATE-CO[fS-IN-TABLE 
SET WS-STATE-NU~BER TC ~-NUMERIC-STAT£ 

HOVE WS-STATf-ABRREVIATIO~ CWS-STATE-NU~BER> 
TO U-STHE 

HOVE WS-STATE-NA~E CWS-STATE-NUM~ER> TO U-STATf-NAME 
fl SE 

IF U-NUMERIC-STAT( = 99 
HOV( "XX" TC U-STATE 

EL SE 
~OVE 1 TC U-STAT£-RETUR~-STATUS. 

020-CCNVERT-ALPHA-COCE. 
lf U-STATE = "XX" 

MOYE ~8 TO U-~UH(~IC-STATE 

ELSE 
SET WS-STATE-~U~6EP TO 1 
SEARCH '-S-STATE 

AT E~C ~OVE 1 TO u-sT•T(-RfTURN-STATUS 
WHEN U-STATf = WS-STATE-A89REVIATION <WS·STATE-NUM8E~> 

SfT u-~UMErlIC-STATf TC ws-~TATE-N~H8EP 

HOVE w~-ST~TE-~•~E <'-S-~TATE-~U~HE~> TC u-ST~TE-NA~~-



B 1000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

COMMUNICATION SECTION 

The COMMUNICATION SECTION is that part of the DAT A DIVISION wherein the interface areas 
necessary to communicate with data communication devices declared in the Network Controller (NC) 
are defined. 

In a COBOL 74 program the communication description entries (CD) represent the highest level of or
ganization in the COMMUNICATION SECTION. The COMMUNICATION SECTION header is fol
lowed by a communication description entry consisting of a level indicator (CD}, a data-name, and 
a series of independent clauses. These clauses indicate the queues and subqueues, the message date and 
time, the source, the text length, the status and end keys, and message count of input. Additional 
clauses specify the destination count, the text length, the status and error keys, and destinations for 
the output. The actual entry is terminated by a period. These record areas may be implicitly redefined 
by user--specified record description entries following the various communication description clauses. 

B 1000 COBOL 74 supports four levels of queue and subqueue names, and also provides full capabilities 
for the ENABLE, DISABLE, RECEIVE and SEND statements: Full Communication Section imple
mentation is possible only if the Data Communication Subsystem is a participating MCS and supports 
these features. For a non-participating MCS, B COBOL 74 provides limited capabilities for the EN
ABLE, DISABLE, RECEIVE and SEND statements as described in section 7 of this manual. A non
supportive MCS does not allow use of the SYMBOLIC SUB-QUEUES or the INITIAL clause as de
scribed in this section. Valid syntax that is not supported, however, is ignored during program execu
tion. 

1168622 6-65 



COMMUNICATION SECTION 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

Communication Description Structure 

General Format: 

Format 1: 

. 92 cd-name; 

FOR ( INITIAL ] INPUT 

6-66 

[ ( ; SYMBOLIC QUEUE IS data-name-1] 

[ ; SYMBOLIC SUB-QUEUE-1 IS data-name-2] 

[ ; SYMBOLIC SUB-QUEUE-2 IS data-name-3) 

[ ; SYMBOLIC SUB-QUEUE-3 IS data-name-4] 

(; MESSAGE DATE IS data-name-5] 

( ; MESSAGE TIME IS data-name-6] 

( ; SYMBOLIC SOURCE IS data-name-7] 

( ; TEXT LENGTH IS data-name-8] 

[ ; END KEY IS data-name-9 ] 

[; STATUS KEY IS data-name-10] 

[; MESSAGE COUNT IS data-name-I I]] 

[ data-name-1, data-name-2, ... , data-name-11 J 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

Format 2: 

CD cd-name; FOR OUTPUT 

( ; DESTINATION COUNT IS data-name-I] 

( ; TEXT LENGTH IS data-name-2] 

[ ; STATUS KEY IS data-name-3] 

[ ; DESTINATION TABLE OCCURS integer-2 TIMES 

[ ; INDEXED BY index-name-I [ , index-name-2] 

[ ; ERROR KEY IS data-name-4 ] 

( ; SYMBOLIC DESTINATION IS data-name-5] . 

... ] ] 

Syntax Rules: 

Format 1: 

1. A CD must appear only in the COMMUNICATION SECTION. 

2. Within a single program, the INITIAL clause may be specified in only one CD. The INITIAL 
clause must not be used in a program that specifies the USING phrase of the PROCEDURE 
DIVISION Header. 

3. Except for the INITIAL clause, the optional clauses may be written in any order. 

4. If neither option in the format is specified, a level 01 data description entry must follow the 
CD description entry. Either option may be followed by a level 01 data description entry. 

5. For each INPUT CD, a record area of 87 contiguous standard data format characters is allo
cated. This record area is defined as follows: 

II68622 

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an elementary alpha
numeric data item of 12 characters occupying positions 1 through 12 in the record. 

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 13-24 in the record. 

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 25 through 36 in the record. 

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 37 through 48 in the record. 

6-67 



B 1000 Systems COBOL 7 4 Language Manual 
Data Division 

COMMUNICATION SECTION 

e. The MESSAGE DA TE clause defines data-name-5 as the name of a data item whose impli
cit description is that of an integer of 6 digits without an operational sign occupying char
acter positions 49 through 54 in the record. 

f. The MESSAGE TIME clause defines data-name-6 as the name of a data item whose impli
cit description is. that of an integer of 8 digits without an operational sign occupying char
acter positions 55 through 62 in the record. 

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an elementary alpha
numeric data item of 12 characters occupying positions 63 through 74 in the record. 

h. The TEXT LENGTH clause defines data-name-8 as the name of an elementary data item 
whose implicit description is that of an integer of 4 digits without an operational sign occu
pying character positions 75 through 78 in the record. 

i. The END KEY clause defines data-name-9 as the name of an elementary alphanumeric data 
item of 1 character occupying position 79 in the record. 

j. The STATUS KEY clause defines data-name-10 as the name of an elementary alphanumeric 
data item of 2 characters occupying positions 80 through 81 in the record. 

k. The MESSAGE COUNT clause defines data-name-11 as the name of an elementary data 
item whose implicit description is that of an integer of 6 digits without an operational sign 
occupying character positions 82 through 87 in the record. 

The second option may be used to replace the above clauses by a series of data-names which, taken 
in order, correspond to the data-names defined by these clauses. 

Use of either option results in a record whose implicit description is equivalent to the following: 

6-68 

Implicit 
Description 

01 data-name-0. 

02 data-name-1 PICTURE 
02 data-name-2 PICTURE 
02 data-name-3 PICTURE 
02 data-name-4 PICTURE 
02 data-name-5 PICTURE 
02 data-name-6 PICTURE 
02 data-name-~ PICTURE 
02 data-name- PICTURE 
02 data-name-9 PICTURE 
02 data-name-10 PICTURE 
02 data-name-11 PICTURE 

x ( 1 2) . 
x ( 12) . 
x ( 12) • 
x ( l 2) . 
9 (06) . 
9 (08) . 
x ( 12) . 
9 (04) . 
x. 
xx. 
9 (06) . 

NOTE 

Comment 

SYMBOLIC QUEUE 
SYMBOLIC SUBQUEUE l 
SYMBOLIC SUBQUEUE 2 
SYMBOLIC SUBQUEUE 3 
MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC SOURCE 
TEXT LENGTH 
END KEY 
STATUS KEY 
MESSAGE COUNT 

The information under the heading Comment is for clarification and is not 
part of the description. 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

6. Record description entries following an INPUT CD implicitly redefine this record and must de
scribe a record of exactly 87 characters. Multiple redefinitions of this record are permitted; 
however, only the first redefinition may contain VALUE clauses. The record is always refer
enced according to the data descriptions defined in Syntax Rule 5. 

7. Data-name-1, data-name-2, ... , data-name-11 must be unique within the CD. Within this series, 
any data-name may be replaced by the reserved word FILLER. 

Format 2: 

8. A CD must appear only in the COMMUNICATION SECTION. 

9. If none of the optional clauses of the CD is specified, a level 01 data description entry must 
follow the CD description entry. 

10. For each OUTPUT CD, a record area of contiguous standard data format characters is allo
cated according to the formula: (10 + 13 x integer-2). 

a. The DESTINATION COUNT clause defines data-name-1 as the name of a data item whose 
implicit description is that of an integer without an operational sign occupying character 
positions 1 through 4 in the record. 

b. The TEXT LENGTH clause defines data-name-2 as the name of an elementary data item 
whose implicit description is that of an integer of 4 digits without an operational sign occu
pying character positions 5 through 8 in the record. 

c. The ST A TUS KEY clause defines data-name-3 to be an elementary alphanumeric data item 
of 2 characters occupying positions 9 through 10 in the record. 

d. Character positions 11 through 23 and every set of 13 characters thereafter form table 
items of the~ following description: 

1) The ERROR KEY clause defines· data-name-4 as the name. of an elementary alphanu
meric data item of 1 character. 

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the name of an elemen
tary alphanumeric data item of 12 characters. 

Use of the above clauses results in a record whose implicit description is equivalent to the following: 

1168622 

Implicit Description 

01 data-name-0. 

02 data-name-1 PICTURE 9(04). 
02 data-name-2 PICTURE 9(04). 
02 data-name-3 PICTURE XX. 
02 data-name OCCURS integer-2 TIMES. 

03 data-narne-4 PICTURE X. 
03 data-name-5 PICTURE X(l2). 

Comment 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 

ERROR KEY 
SYMBOLIC DESTINATION 

6-69 



COMMUNICATION SECTION 

B 1000 Systems COBOL 74 Language Manual 
Data Division 

NOTE 
The information under the heading Comment is for clarification and is not 
part of the description. 

11. Record descriptions following an OUTPUT CD implicitly redefine this record. Multiple 
redefinitions of this record are permitted; however, only the first redefinition may contain 
VALUE clauses. That record is always referenced according to the data descriptions defined 
in Syntax Rule 10. 

12. Data-name-1, data-name-2, ... , data-name-5 must be unique within a CD. 

13. If the DESTINATION TABLE OCCURS clause is not specified, one (1) ERROR KEY and 
one (1) SYMBOLIC DESTINATION area is assumed. In this case, neither subscripting nor 
indexing is permitted when referencing these data items. 

14. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and data-name-5 
may only be referred to by subscripting or indexing. 

15. There is no restriction on the value of the data item referenced by data-name-1 and integer-2. 

General Rules: 

Format 1: 

1. The INPUT CD information constitutes the communication between the Data Communication 
Subsystem and the COBOL 74 program as information about the message being transmitted. 
This information does not come from the terminal as part of the message. 

2. Subqueues can be implemented in B 1000 COBOL 74 but if these fields are not used, ANSI$74 
rules specify that these unused fields must contain spaces. Since COBOL 74 initializes data to 
hexadecimal zeros, not spaces, it is necessary to explicitly define a value of spaces for each of 
these unused fields to avoid a run-time error. 

3. The data items referenced by data-name-I, data-name-2, data-name-3, and data-name-4 contain 
symbolic names designating queues, subqueues, ... respectively. All symbolic names must have 
been previously defined in the Data Communication Subsystem. In accordance with the B nam
ing conventions, positions 11 and 12 in each data-name must contain spaces. 

The SYMBOLIC QUEUE field in the INPUT CD is mandatory, unless the SQN option is used 
at run time. Refer to the B 1000 Systems Software Operation Guide, Volume 1. Since the SQN 
option must be sent by an MCS, use is restricted and thus, designation of the SYMBOLIC 
QUEUE field in the INPUT CD is the easiest method of indicating the file name. 

4. A RECEIVE statement causes the serial return of the next message or portion of a message 
from the queue as specified by the entries in the CD. 

6-70 



B I 000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

If during the ex<~cution of a RECEIVE statement, a message from a more specific source is 
needed, the contents of the data item referenced by data-name-I can be made more specific 
by the use of the contents of the data iltems referenced by data-name-2, data-name-3, and in 
turn data-name-4. When a given level of the queue structure is specified, all higher levels must 
also be specified. 

If less than all the levels of the queue hierarchy are specified, the Data Communication Subsys
tem determines the "next" message or portion of a message to be accessed. 

After the execution of a RECEIVE statement, the contents of the data items referenced by 
data-name-I through data-name-4 will contain the symbolic names of all the levels of the queue 
structure. 

5. The INITIAL clause is specified in an INPUT CD, whenever a COBOL74 program is initiated 
by the Data Communication Subsystem as a result of receiving a message. The INITIAL clause 
requires a Data Communication Subsystem that supports this concept. The symbolic names of 
the queue structure that demanded this activity are placed in the data items referenced by data
name- I through clata-name-4, the SYMBOLIC QUEUE. In all other cases, the contents of the 
data items referenced by data-name-I through data-name-4 of the CD associated with the 
INITIAL clause are initialized to spaces. 

The symbolic names are inserted, or the initialization to spaces is completed prior to the execu
tion of the first PROCEDURE DIVISION statement. 

The execution of a subsequent RECEIVE statement naming the same contents of the data items 
referenced by data-name-I through data-name-4 will return the actual message that caused the 
program to be scheduled. Only at that time is the remainder of the CD updated. 

6. MESSAGE DATE (data-name-5) has the format YYMMDD (year, month, day), with contents 
representing the dat~ the message was received by the Data Communication Subsystem. 

The contents of the data item referenced by data-name-5 are only updated as part of the execu
tion of a RECEIVE statement. 

7. The contents of MESSAGE TIME (data-name-6) have the format HHMMSSTT (hours, min
utes, seconds, hundredths of a second) and represent the time the message was received by the 
Data Communication Subsystem. 

The contents of the data item referenced by data-name-6 are only updated as part of the execu
tion of the RECEIVE statement. 

8. During the execution of a RECEIVE statement, the data item referenced by data-name-7 (SYM
BOLIC SOURCE) is updated with the station name, as defined in the Station Section of the 
Network Controller. The SYMBOLIC SOURCE is the communications terminal that is the 
source of the message being transferred. However, if the station name of the communication 
terminal is not known, the contents of the data item referenced by data-name-7 will be spaces. 

After every RECEIVE operation, the user program must move the SYMBOLIC SOURCE sta
tion name to the appropriate field (SYMBOLIC DESTINATION) in the OUTPUT CD, before 
initiating the SEND to that station. If this is not done, a run-time error occurs since there is 
no destination station available for message transfer. 

1168622 6-71 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

9. TEXT LENGTH (data-name-8) contains the number of character positions filled as a result of 
the execution of the RECEIVE statement. 

10. The contents of the data item referenced by data-name-9 (END KEY) are set only by the Data 
Communication Subsystem as part of the execution of a RECEIVE statement according to the 
following rules: 

6-72 

a. When the RECEIVE MESSAGE phrase is specified, then: 

1) If an end of group has been detected, the contents of the data item referenced by data
name-9 are set to 3; 

2) If an end of message has been detected, the contents of the data item referenced by 
data-name-9 are set to 2; 

3) If less than a message is transferred, the contents of the data item referenced by data
name-9 are set to 0. 

b. When the RECEIVE SEGMENT phrase is specified, then: 

1) If an end of group has been detected, the contents of the data item referenced by data
name.;.9 are set to 3; 

2) If an end of message has been detected, the contents of the data item referenced by 
data-name-9 are set to 2; 

3) If an end of segment has been detected, the contents of the data item referenced by 
data-name-9 are set to 1; 

4) If less than a message segment is transferred, the contents of the data item referenced 
by data-name-9 are set to 0. 

c. When more than one of the above conditions is satisfied simultaneously, the rule first satis
fied in the order listed determines the contents of the data item referenced by data-name-9. 

11. The ST A TUS KEY referenced by data-name-10 indicates the status condition of the previously 
executed RECEIVE, ACCEPT MESSAGE COUNT, ENABLE INPUT, or DISABLE INPUT 
statements. 

Use of this field is optional but highly recommended. Any RECEIVE or SEND error, left un
detected because of the absence of a STATUS KEY check, causes the program to fall through 
to the next executable statement, in most cases, with no indication to the user that a problem 
exists. 

The actual association between the contents of the data item referenced by data-name-10 and 
the status condition is defined in table 6-4. 

12. The MESSAGE COUNT referenced by data-name-11 indicates the number of messages that 
exist in a queue structure. The Data Communication Subsystem updates the contents of the 
data item referenced by data-name-11 only as part of the execution of an ACCEPT statement 
with the COUNT phrase. 



B I 000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

Format 2: 

13. The nature of the OUTPUT CD information is such that it is not sent to the terminal, but 
contains information about the message being transmitted. 

14. During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement, the 
contents of the data item referenced by data-name-1 (DESTINATION COUNT) indicate the 
number of symbolic des.tinations that are to be used from the area referenced by data-name-
5 (SYMBOLIC DESTINATION). 

The first symbolic destination is found in the first occurrence of the area referenced by data
name-5; the second symbolic destination in the second occurrence of the area referenced by 
data-name-5 ... , up to and including the occurrence of the area referenced by data-name-5 indi
cated by the contents of data-name-1. 

If, during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement, 
the value of DESTINATION COUNT (data-name-1) is outside the range of 1 through integer-
2, an error condition is indicated and the execution of the SEND, ENABLE OUTPUT, or DIS
ABLE OUTPUT statement is terminated. 

15. It is the responsibility of the user to ensure that the value of DESTINATION COUNT (data
name-1) is valid at the time of execution of the SEND, ENABLE OUTPUT, or DISABLE 
OUTPUT statement. 

16. As part of the execution of a SEND statement, the Data Communication Subsystem interprets 
the contents of TEXT LENGTH (data-name-2) as user indication of the number of leftmost 
character positions of the data item referenced by the associated SEND identifier from which 
data is to be transferred. If TEXT LENGTH is zero, no characters are transferred. 

It is important that TEXT LENGTH be given the correct value prior to each SEND of a mes
sage size which varies from that of the previous SEND. If TEXT LENGTH is greater than 
the size of the message actually being sent, SEND fails with a STATUS KEY value of 50 . . 

17. Each occurrence of the data item referenced by data-name-5 contains a symbolic destination 
(station name) previously defined .in the Network Controller. If the SYMBOLIC DESTINA
TION (data-name--5) does not contain a valid station name, SEND fails with a STATUS KEY 
value of 20. 

These symbolic destination names must follow the rules for the formation of system-names. 
In accordance with the B naming conventions, positions 11 and 12 in data-name-5 must con
tain spaces. 

18. The contents of STATUS KEY ( data-name-3) indicates the status condition of the previously 
executed SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement. 

1168622 

The actual association between the contents of the data item referenced by data-name-3 and 
the status condition is defined in table 6-4. 

6-73 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

Table 6-4. Communication Status Key Condition 

RECEIVE 

SEND 

ACCEPT MESSAGE COUNT 
r-

* * * 

* 

* 

* * 

* 

* 

* 

* * * 

G12336 

6-74 

ENABLE INPUT (without terminal) 
I"'" 

* 

* 

* 

* 

ENABLE INPUT (with terminal) ,... 

..... ENABLE OUTPUT 

DISABLE INPUT (without terminal) 
..... 

DISABLE INPUT (with terminal) .-

,PISABLE OUTPUT 

STATUS KEY CODE 

~~ 1~ 1~ ,~ 1 Ir [ 

* * * 

* 

* 

* * 

* 

* * * * 

* * * * 

* 00 

10 

* 20 

20 

20 

* 30 

* 40 

so 

60 

* 91 

No error detected. Action completed. 

One or more destinations are disabled. Action completed. 

One or more destinations unknown, or access thereto 
denied by system. Action completed for known destina
tions. No action taken for unknown destinations. 
Data-name-4 (ERROR KEY) indicates known or unknown 
(includes system denied access). 

One or more queues unknown, or access to queue denied 
by system. No action taken. 

The source is unknown, or access thereto denied by the 
system. No action taken. 

Content of DESTINATION COUNT invaljd. No action 
taken. 

Password invalid. No enabling/disabling action taken. 

Character count greater than length of sending field. 
No action taken. 

Partial segment with either zero character count or 

no sending area specified. No action taken. 

No Data Communication Subsystem present. 

No action taken. 



B 1000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

19. If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT state
ment, the MCP determines that any specified destination is unknown, or the Network Control
ler chooses to deny the program access to any destination, the contents of the data item refer
enced by data-name-3 (ST A TUS KEY) and all occurrences of the data items referenced by 
data-name-4 (ERROR KEY) are updated. 

The contents of the data item referenced by data-name-4, when equal to 1, indicate that the 
associated value in the area referenced by data-name-5 (SYMBOLIC DESTINATION) has not 
been previously defined or has been denied access to this destination. Otherwise, the contents 
of the data item referenced by data-name-4 are set to zero (0). 

All Formats: 

20. Table 6-4 indicates the possible contents of the data items referenced by data-name-10 for For
mat l, and by data-name-3 for Format 2, at the completion of each statement shown. An as
terisk (*) on a line in a statement column indicates that the associated code shown for that 
line is possible for that statement. 

Example: 

The following program, ECHO-ECHO, illustrates the COMMUNICATION SECTION in a data communi
cation program. The SYMBOLIC QUEUE, MCSREMOTE, is a name declared in the Network Controller. 
One copy of this program can be accessed by more than one station if it is executed by means of the 
SMCS/JOBS file. This program executes under a participating or non-participating, supporting or non
supporting Data Communication Subsystem. 

1168622 6-75 



B I 000 Systems COBOL 74 Language M~nual 
Data Division 

COMMUNICATION SECTION 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-I~. ECHO-ECHa. 
000300 AUTHOR. JULIA. 
000400 * 
000500 * REMARKS. THIS PROGRAM IS AN ECHO TEST PROGRAM. ENT~R A 
000600 * MESSAGE UP TO 20 CHARACTERS LONG AND If WILL BE REPEATED 
000700 * BACK TO YOU. ENTER "END" AND IT WILL GO TO END-·DF--JOB. 
000800 * 
000900 ENVIRONMENT DIVISION. 
001000 CONFIGURATION SECTION. 
001100 SOURCE-COMPUTER. 81000. 
001200 OBJECT-COMPUTER. 81000. 
001300 DATA DIVISION. 
001400 WORKING-STORAGE SECTION. 
001500 01 OUT-AREA. 
001600 03 FILLER PIC X<20) VALUE "I AM YOUR ECHO ! ! 
001700 03 REC-AREA. 
001800 05 END-CODE PIC X(3). 
001900 05 FILLER PIC X<17). 
002000 * 
002100 COMMUNICATION SECTION. 
002200 CD INPUT-Q FOR INPUT. 
002300 01 IN-Q-SPECS. 
002400 * ********* 11 MCSRCMGi'E" IS THE NAME OF A REMOTE FILE DEFINED IN 
002500 * ********* THE NETWORK CONTROLLER. THE SYMBOLIC SUB-QUEUES MUST 
002510 * ********* CONTAIN SPACES WHEN NOT USED. 
002600 03 SYMBOLIC-QUE PIC X<12) VALUE "MCSREMOTE". 
002700 03 SY-SU81-QUE PIC X<12) VALUE SPACES. 
002800 03 SY-SUB2-QUE PIC X<12) VALUE SPAC~S. 

002900 03 SY-SUB3-QUE PIC X(12) VALUE SPACES. 
I 003000 * ********* NEXT 5 FIELDS ARE UPDATED WHEN A MESSAGE IS RECEIVED. 

003100 * ********* RECEIVED. 

6-76 

003200 03 MESS-DATE PIC 9(6). 
003300 03 MESS-TIME PIC 9(8). 
003400 03 IN-STATION PIC XC12). 
003500 03 IN-TEXT-LENGTH PIC 9(4). 
003600 03 END-KEY PIC X. 
003700 * ********* IN-STATUS-KEY SHOWS STATUS WHEN ONE OF THE FOLLOWING 
003800 * ********* STATEMENTS IS EXECUTED: RECEIVE, ACCEPT MESSAGE 
003900 * ********* COUNT, ENABLE INPUT, DISABLE INPUT. 
004000 03 IN-STATUS-KEY PIC XX. 
004100 * ********* FOLLOWING FIELD IS UPDATED WHEN THE ACCEPT MESSAGE 
004200 * ********* COUNT STATEMENT IS EXECUTED. 
004300 03 MSG-COUNT PIC 9(6). 
004400 * 
004500 CD OUTPUT-Q FOR OUTPUT. 
004600 01 OUT-Q-SPECS. 
004700 * ********* NUM-OUT-STATIONS WITH A VALUE OF 1 SENDS TO ONE 
004800 * ********* STATION AT A TIME. 
004900 03 NUM-OUT-STATIONS PIC 9(4) VALUE 1. 
005000 * ********* OUT-TEXT-LENGTH IS UPDATED BY USER. 
005100 03 OUT-TEXT-LENGTH PIC 9~4) VALUE 40. 
005200 * ********* FOLLOWING FIELD IS UPDATED BY SYSTEM AFTER EXECUTION 

H ~·Cf\! 

: 08 1B 83bi::; 
~ 

.u F'CN 

** PCN 
08 rn 83ho 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 
:n PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 
Otl 18 83bo 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 
08 19 83BO 
08 19 83BIJ 

** PCN 
** PCN 

** PCN 

** PCN 
08 19 83BO 

** PCN 

** PCN. 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 
:u PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 

** PCN 
08 rn 83bo 

** PCN 



B I 000 Systems COBOL 74 Language Manual 
Data Division 

COMMUNICATION SECTION 

005300 * ********* OF SEND, ENABLE OUTPUT, OR DISABLE OUTPUT. 
005400 03 OUT-STATUS-KEY PIC XX. 
005500 * ********* WHEN THE FOLLOWING TABLE OCCURS ONLY ONCE, THE 
005600 * ********* MESSAGE IS SENT TO ONE STATION AT A TIMEr BASED 
005610 * ********* ON THE VALUE IN THE OUT-STATION FIELD. 
005620 03 OUT-DESTINATION TABLE OCCURS 1. 
005700 05 OUT-ERROR-KEY PIC X. 
005800 * ********* OUT-STATION IS UPDATED BY USER WITH STATION NAME <AS 
005900 * ********* DECLARED IN NETWORK CONTROLLER> OF THE DESTINATION 
006000 * ********* FOR A MESSAGE. 
006160 05 OUT-STATION PIC X<12). 
006200 * 
006300 PROCEDURE DIVISION. 
006400 * 
006500 * ******** THE ENABLE INPUT STATEMENT IS ONLY NECESSARY IF 
006600 * ******** PASSWORD CHECKING IS DESIRED FOR COBOL74 DATA 
006610 * ******** COMMUNICATION USERS. THE PASSWORD, REFERRED TO BELOW 
006620 * ******** AS KEY, MUST BE ASSOCIATED WITH THE SMCS PROGRAM VIA 
006630 * ******** THE 11 PASSWORD 11 COMMAND FROM THE SYSTEM ODT. 
006640 * ******** SYSTEM ODT. 
006650 * 
006660 ***THE FOLLOWING PARAGRAPH DEMONSTRATES USE OF THE ENABLE VERB** 
006670 * * 
006680 * ENABLE-EXAMPLE. * 
006700 * ENABLE INPUT INPUT-Q WITH KEY 11 BLITZ 11

• * 
006800 * IF IN-STATUS-KEY NOT ::: 00 * 
006900 * DISPLAY II IN-SllffUS··-KEY =~ II IN-STATUS··-KEY * 
00'7000 * II SINCE MY IN-STATUS-KEY DOES NOT ::: 00, II * 
007100 * II I HAD AN ERROR. MY Pt~SSWORD IS NOT VALID. II. * 
007200 * STOP RUN. * 
007300 **************************************************************** 
007310 * 
007400 BEGINNING--OF-.JOB. 
007500 MOVE SPACES TO REC-AREA. 
007600 RECEIVE INPUT-Q MESSAGE INTO REC-AREA 
007700 NO DATA GO TO BEGINNING-OF-JOB. 
007800 IF IN-STATUS-KEY NOT = .00 
007900 DISPLAY 11 RECEIVE Wt~S NOT SUCCESSFUL. IN·-STATUS-KEY -
008000 IN-STATUS-KEY 
008100 STOP RUN. 
008200 IF END-CODE :::: 11 END 11 

008300 DISPLtH 11 THANK YOU FOR TALKING TO ME! ! II 
008400 STOP RUN. 
008500 * ********* SEND MESSAGE TO STATION THAT YOU RECEIVED FROM. 
008600 MOVE IN-STATION TO OUT-STATION<1>. 
008700 SEND OUTPUT-Q FROM OUT-AREA WITH EMI. 
008800 IF OUT-STATUS-KEY NOT = 00 
00890() DISPUW 11 MY SEND WAS NOT SUCCESSFUL. II 

009000 11 MY ouT-.. STATUS-·KEY == 11 ouT--srnrns-.. KEY 
009100 II; MY OUT-ERROR-KEY ~= II OUT--ERROR·-KEY ( 1) 

009200 STOP RUN. 
009300 IF OUT-ERROR-KEY Cl) NOT = 0 
009400 DISPLAY 11 0UT-··STATION HAS BEEN DUHEDr OOPS! 11 

009500 STOP RUN. 
009600 GO TO BEGINNING-OF-JOB. 

1168622 

** PCN 

** PCN 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 19 83BO 

** PCN 

** PCN 
08 18 83bo 

** PCN 

** PCN 
08 18 83bo 
** PCN 
08 18 83bo 
08 19 83BO 
08 19 83BO 
08 19 83BO 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 8~3bo 

08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 
08 18 83bo 

** PCN 

** PCN 
** ·pcN 
** PCN 
** PCN 

II 

** PCN 
** PCN 

** PCN 
** PCN 
** PCN 
** PCN 

** PCN 
08 18 83ho 
u PCN 

** PCN 

** PCN 

** PCN 
08 18 83b1J 

** PCN 
08 18 83bo 

** PCN 
** PCN 

** PCN 

6-77 





GENERAL 

B 1000 Systems COBOL 74 Language Manual 

SECTION 7 
PROCEDURE DIVISION 

The PROCEDURE DIVXSION must be included in every COBOL 74 source program. This division may 
contain declarative and nondeclarative procedures. 

Declarative sections must be grouped at the beginning of the PROCEDURE DIVISION preceded by 
the key word DECLARATIVES and followed by the key words END DECLARATIVES. Refer to the 
USE statement in this section. 

RULES OF PROCEDURE FORMATIO'N 

A procedure is composed of a paragraph or group of successive paragraphs, a section or a group of 
successive sections within the PROCEDURE DIVISION. If one paragraph is in a section, then all 
paragraphs must be in sections. A procedure-name is a word used to refer to a paragraph or section 
in the source program in which it occurs, and consists of a section-name or paragraph-name which 
may be qualified. 

The end of the PROCEDURE DIVISION and the physical end of the program is that physical position 
in a COBOL 74 source program after which no further procedures appear. 

A section consists of a s<~ction header followed by zero, one, or more successive paragraphs. A section 
ends immediately before the next section or at the end of the PROCEDURE DIVISION or, in the 
declaratives portion of the PROCEDURE DIVISION, at the key words END DECLARATIVES. 

A paragraph consists of a paragraph-name, followed by a period and a space, followed by zero, one, or 
more successive sentences. A paragraph ends, immediately before the next paragraph-name or section
name or at the end of the PROCEDURE DIVISION or, in the declaratives portion of the PROCEDURE 
DIVISION, at the key words END DECLARATIVES. 

A sentence consists of one or more statements and is terminated by a period. 

A statement is a syntactically valid combination of words and symbols beginning with a COBOL 74 
verb. 

The term 'identifier' is defined as the word or words necessary to make unique reference to a data 
item. 

EXECUTION OF THE PROCEDURE DIVISION 

Execution begins with the first statement of the PROCEDURE DIVISION, excluding declaratives. State
ments are executed in the order of appearance, except where the user indicates GO TO, PERFORM, 
CALL, conditional statements, and declarative procedures. 

PROCEDURE DIVISION STRUCTURE 

The PROCEDURE DIVISION is made up of the PROCEDURE DIVISION header and the PROCEDURE 
DIVISION body. Descriptions of these follow.· 

1168622 7-1 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

PROCEDURE DIVISION Header 

The PROCEDURE DIVISION is identified by and must begin with the following header: 

PROCEDURE DIVISION (USING data-name-1 [, data-name-2] ... ] . 

PROCEDURE DIVISION Body 

The body of the PROCEDURE DIVISION must conform to one of the following two formats. 

Format 1: 

Format 2: 

7-2 

[DECLARATIVES. 

{section-name SECTION [segment-numberJ. declarative-sentence 

[ paragraph-n-ame. [sentence) ... J ... } ... 
END DECLARATIVES.] 

{section-name· SECTION [segment-number]. 

[paragraph-name. [sentence] ... J ... } ... 

{paragraph-name. [sentence] ... } ... 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

STATEMENTS AND SENTENCES 

STATEMENTS AND SENTENCES 
There are three types of statements: conditional statements, compiler-directing statements, and 
imperative statements. 

There are three types of sentences: conditional sentences, compiler-directing sentences, and imperative 
sentences. 

Conditional Statements 

A conditional statement specifies that the truth value of a condition is to be determined and that the 
subsequent action of the object program is dependent on this truth value. 

A conditional statement is 

1. An IF, SEAR CH, or RETURN statement. 

2. A READ statement that specifies the AT END or INVALID KEY phrase. 

3. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE phrase. 

4. A ST ART, REWRITE, or DELETE statement that specifies the INVALID KEY phrase. 

5. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that 
specifies the SIZE ERROR phrase. 

6. A RECEIVE statement that specifies a NO DAT A phrase. 

7. A STRING, UNSTRINd, or CALL statement that specifies the ON OVERFLOW phrase. 

Example: 

The following syntax for the IF statement is an example of a conditional statement. 

IF conditional \ 
~ SENTENCE ; ELSE NEXT SENTENCE t [ 

{ 

statement-I } {, ; ELSE statement-2 ) 

----'---~---

Statement-I or statement-2 can be either imperative or conditional statements. If statement-I or state
ment-2 is conditional, then these conditions within the conditional statement (IF statement) are con-
sidered to be nested. · 

1168622 7-3 



B 1000 Systems COBOL.74 Language Manual 
Procedure Division 

STATEMENTS AND SENTENCES 

Conditional Sentences 

A conditional sentence is a conditional statement, optiona11y preceded by an imperative statement,,term
inated by a period. 

Examples: 

IF AGE IS GREATER THAN VOTE-AGE GO TO PARTY-TYPE, 
ELSE ADD 1 TO DONT-COUNT, GO TO GET-NEXT-PERSON. 

IF SALES IS EQUAL TO QUOTA , MOVE SALESMAN TO 
PROMOTION-LIST, ELSE MOVE SALESMAN TO BAD-LIST. 

Compiler-Directing Statements· 

A compiler-directing statement consists of a compiler-directing verb and its operands. The compiler
directing verbs are COPY and USE (refer to the COPY statement and the USE statement in this sec
tion). A compiler-directing statement causes the compiler to take a specific action during compilation. 

Compiler-Directing Sentences 

A compiler-directing sentence is a single compiler-directing statement terminated by a period. 

Example: 

MYFILE. COPY "FAMILY/MYFILE ON MYPACK". 

Imperative Statements 

An imperative statement indicates a specific unconditional action to be taken by the object program. 
An imperative statement is any statement that is neither a conditional statement nor a compiler-direct
ing statement. An imperative statement may consist of a sequence of imperative statements, each pos
sibly separated from the next by a separator. The imperative verbs are: 

7-4 

ACCEPT 
ADD (1) 
ALTER 
CALL(3) 
CANCEL 
CLOSE 
COMPUTE (1) 
DELETE (2) 
DISABLE 
DISPLAY 
DIVIDE (1) 
ENABLE 
EXIT 

GENERATE 
GO 
lNITlATE 
INSPECT 
MERGE 
MOVE 
MULTIPLY (1) 
OPEN 
PERFORM 
READ (5) 
RECEIVE (4) 
RELEASE 
REWRITE (2) 

SEND 
SET 
SORT 
START (2) 
STOP 
STRING (3) 
SUBTRACT (1) 
SUPPRESS 
TERMINATE 
UNSTRlNG (3) 
WAIT 
WRITE (6) 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

STATEMENTS AND SENTENCES 

The numbers in parentheses following some of the verbs have the following meaning: 

Number Meaning 

1 Without the optional SIZE ERROR phrase. 
2 Without the optional INVALID KEY phrase. 
3 Without the optional ON OVERFLOW phrase. 
4 Without the optional NO DAT A phrase. 
5 Without the optional AT END phrase or INVALID KEY phrase. 
6 Without the optional INVALID KEY phrase or END-OF-PAGE phrase. 

When 'imperative-statement' appears in the general format of statements, it refers to a statement that 
begins with an imperative verb and specifies an unconditional action to be taken. An imperative state
ment may consist of a sequence of imperative statements. Imperative statements must be ended by a 
period, or an ELSE phrase associated with a previous IF statement, or a WHEN phrase associated 
with a previous SEARCH statement. 

Imperative Sentences 

An imperative sentence is one or more imperative statements terminated by a period. An imperative 
:statement can contain either a GO TO statement or a STOP RUN statement which, if present, must 
be the last statement in the sentence. 

Examples: 

ADD 1 TO ITEM-COUNT, GO TO READ-NEXT-ITEM. 
DI SPLAY "THIS IS THE END ", STOP RUN. 

1168622 7-5 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONTROL RELATIONSHIP BETWEEN . PROCEDURES 

In COBOL 74, imperative and conditional sentences describe the procedure that is to be accomplished. 
The sentences are written successively, according to the rules of the coding form (section 3), to establish 
the sequence in which the object program is to execute the procedure. In the PROCEDURE DIVI
SION, names are used so that one procedure can reference another by naming the procedure to be 
referenced. In this way, the sequence in which the object program is to be executed may be varied 
simply by transferring control to a named procedure. 

In procedure execution, control is transferred only to the beginning of a paragraph or section. Control 
is passed to a sentence within a paragraph only from the sentence written immediately preceding it. 
If a procedure is named, control can be passed to it from any sentence which contains a GO TO or 
PERFORM, followed by the name of the procedure to which control is to be transferred. 

Paragraphs 

So that the source programmer may group several sentences to convey one idea (procedure), paragraphs 
have been included in COBOL 74. In writing procedures in accordance with the rules of the PROCE
DURE DIVISION and the requirements of the coding form (section 3), the programmer begins a 
paragraph with a name. The name consists of a word followed by a period, and the name precedes 
the paragraph it names. A paragraph is terminated by the next paragraph-name. The smallest grouping 
of the PROCEDURE DIVISION which is named is a paragraph. 

Programs may contain identical paragraph-names, provided they are resident in different sections. If 
such paragraph-names are not qualified when used, the current section is assumed. Paragraph-names 
may be used in GO TO, PERFORM, and ALTER statements. 

Sections 

A section consists of zero, one, or more successive paragraphs and must be named when designated. 
The section-name is followed by the word SECTION, a priority number which is optional, and a peri
od. If the section is a DECLARATIVE section, the DECLARATIVE sentence USE or COPY follows 
the section header and begins on the same line. Under all other circumstances, a sentence may not 
begin on the same line as a section-name. The section-name applies to all successive paragraphs until 
another section-name is found. 

Since paragraph-names and section-names both have the same designated position on the reference for
mat (position A), section-names, when specified, are written on one line followed by a paragraph name 
on a subsequent line. 

7-6 



SEGMENTATION 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

SEGMENTATION 

COBOL 74 segmentation is a facility that provides a means by which the user may communicate with 
the compiler to specify object program overlay requirements. 

COBOL 74 segmentation deals only with segmentation of procedures. As such, only the PROCEDURE 
DIVISION and the ENVIRONMENT DIVISION are considered in determining segmentation require
ments for an object program. 

Segmentation provides the facility of intermixing sections with different segment-numbers and allows 
the fixed portion of the source program to contain segments that may be overlaid. 

Program Segments 

Although it is not mandatory, the PROCEDURE DIVISION for a source program is usually written 
as a consecutive group of sections, each of which is composed of a series of closely related operations 
that are designed to collectively perform a particular function. However, when segmentation is used, 
the entire PROCEDURE DIVISION must be in sections. In addition, each section must be classified 
as belonging either to the fixed portion or to one of the independent segments of the object program. 
Segmentation does not affect the need for qualification of procedure-names to ensure uniqueness. 

Fixed ·Portion 

The fixed portion is defined as that part of the object program which is logically treated as if it were 
always in memory. This portion of the program is composed of two types of segments: fixed permanent 
segments and fixed overlayable segments. 

A fixed permanent segment is the main program segment and may be overlaid in the same manner 
as if it were a fixed overlayable segment. A fixed overlayable segment is a segment in the fixed portion 
which, although logically treated as if it were always in memory, can be overlaid by another segment 
to optimize memory utilization. Variation of the number of fixed permanent segments in the fixed por
tion can be accomplished by using a special facility called the SEGMENT-LIMIT clause (refer to SEG
MENT-LIMIT in this section). Such a segment, if called for by the program, is always made available 
in the last used state. 

Independent Segments 

An independent segment is defined as part of the object program which can overlay, and can be over
laid by, either a fixed overlayable segment or another independent segment. An independent segment 
is in initial state whenever control is transferred (either implicitly or explicitly) to that segment for the 
first time during the execution of a program. On subsequent transfers of control to the segment, an 
independent segment is also in initial state when: 

1. Control is transferred to that segment as a result of the implicit transfer of control between 
consecutive statements from a segment with a different segment-number. 

2. Control is transferred to that segment as the result of the implicit transfer of control between 
a SORT or MERGE statement, in a segment with a different segment-number, and an associ
ated input or output procedure in that independent segment. 

3. Control is transferred explicitly to that segment from a segment with a different segment-num
ber (with the exception noted in step 2 below). 

1168622 7-7 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

SEGMENTATION 

On subsequent transfer of control to the segment, an independent segment is, in the state when last 
used. 

1. Control is transferred implicitly to that segment from a segment with a different segment-num
ber (except as noted in paragraphs 1 and 2 above). 

2. Control is transferred explicitly to that segment as the result of the execution of an EXIT PRO
GRAM statement. 

Refer to Explicit and Implicit Transfers of Control in section 2 for additional information. 

Segmentation . Classification 

Sections which are to be segmented are classified, using a system of segment-numbers and the following 
criteria. 

1. Logic requirements: Sections which must be available for reference at all times, or which are 
referred to frequently, are normally classified as belonging to one of the permanent segments. 
Sections which are used less frequently are normally classified as belonging either to one of the 
overlayable fixed segments or to one of the independent segments, depending on logic require
ments. 

2. Frequency of use: The more frequently a section is referred to, the lower the segment-number; 
the less frequently it is referred to, the higher the segment-number. 

3. Relationship to other sections: Sections which frequently communicate with one another should 
be given the same segment-numbers. 

Segmentation Control 

The logical sequence of the program is the same as the physical sequence except for specific transfers 
of control. If any reordering of the object program is required to handle the flow from segment to 
segment, according to the rules, the compiler provides control transfers to maintain the logical flow 
specified in the source program. The compiler also provides all controls necessary for a segment to 
operate whenever the segment is used. Control may be transferred within a source program to any par
agraph in a section. It is not mandatory to transfer control to the beginning of a section. 

7-R 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

STRUCTURE OF PROGRAM SEGMENTS 
Segment-Numbers 

SEGMENTATION 

Section classification is accomplished by means of a system of segment-numbers. The segment-number 
is included in the section header. 

General Format: 

[ Section-name 
------

SECTION [ segment-number ] . ,J 

Syntax Rules: 

1. The segment-number must be an integer ranging in value from 0 through 126. 

2. If the segment-number is omitted from the section header, the segment-number is assumed to 
be zero. 

3. Sections in the declaratives must contain segment-numbers less than 50. 

General Rules: 

1. All sections which have the same segment-number constitute a program segment. Sections with 
the same segment-numbers need not be physically contiguous in the source program. 

2. Segments with segment-numbers 0 through 49 belong to the fixed portion of the object pro
gram .. 

J. Segments with segment-numbers 50 through 126 are independent segments. 

1168622 7-9 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

SEGMENTATION 

SEGMENT-LIMIT 

Ideally, all program s1egments having segment-numbers ranging from 0 through 49 should be specified 
as permanent segments. However, when insufficient memory is available to contain all permanent seg
ments plus the largest overlayable segment, it becomes necessary to decrease the number of permanent 
segments. The SEGMENT-LIMIT feature provides the user with a means of reducing the number of 
permanent segments in a program,, while still retaining the logical properties of fixed portion segments 
(segment-numbers 0 through 49). 

General Format: 

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph of the ENVIRON
MENT DIVISION and has the following format: 

[ , SEGMENT-LIMIT .!§. segment-number ] 

Syntax Rules: 

1. Segment-number must be an integer ranging in value from 1 through 49. 

General Rules: 

1. When the SEGMENT-LIMIT clause is specified, only those segments having segment-numbers 
from 0 up to, but not including, the segment-number designated as the segment-limit, are con
sidered as permanent segments of the object program. 

2. Those segments having segment-numbers from the segment-limit through 49 are considered as 
overlayable fixed segments. 

3. When the SEGMENT-LIMIT clause is omitted, all segments having segment-numbers from 0 
through 49 are considered as permanent segments of the object program. 

Example: 

All segments whose priority number is less than that specified in SEGMENT-LIMIT are gathered into 
a single segment, regardless of physical location in the source program. All other segments equal to 
or greater than that specified in SEGMENT-LIMIT are gathered into overlayable segments according 
to equal priority number, regardless of physical location in the source program. 

The use of the gathering technique allows programmers to create tailored segments which reduce disk 
access times. 

7-10 



Example: 

Segment 

00-16 
17 
18 
19 
20 
21 
22 

. 23 
24 
25 

.....___ __ 

Segment 

00-16 
17 
18 
19 
20 
17 
19 
17 
20 
20 

Segment 

00-16 
17 
18 
19 
20 

1168622 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

Program A: SEGMENT-LIMIT equals 17. 

Non-Gathered 

Description 

Main body of the program 
Used frequently 
Used frequently 
Used infrequently 
Used at EOJ only 
Used frequently 
Used at BOJ only 
Used frequently 
Used for infrequent test 
Used infrequently 

Gathered 

Description 

Main body of the program 
Used frequently 
Used frequently 
Used infrequently 
Used at EOJ only 
Used frequently (was segment 21) 
Used at BOJ only (was segment 22) 
Used frequently (was segment 23) 
Used for infrequent test (was segment 24) 
Used infrequently (was seg~ent 25) 

Results of Gathering 

Description 

Main body of the program 
Used frequently 
Used infrequently 
Used infrequently 
Used infrequently 

SEGMENTATION 

Size in Digits 

4,000 
1,000 
5,000 
4,000 

500 
2,000 
1,000 

500 
1,500 
3,000 

Size in Digits 

4,000 
1,000 
5,000 
4,000 

500 
2,000 
1,000 

500 
1,500. 
3,000 

Size in Digits 

4,000 
3,500 
5,000 
5,000 
5,000 

7-11 



SEGMENTATION 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

"Fall through" is performed in the sequence shown in the Non-Gathered example, and not as appears 
in the Results of Gathering example. This preserves the logical integrity of the original program. 

The COBOL 74 interpreter automatically checks to see whether an overlay being called for by an object 
program is already present in memory. If present, no disk access is required and the program is not 
interrupted. If the overlay is not present, the COBOL74 interpreter interrupts the program and accesses 
the disk for the desired overlayable portion of the program. The COBOL 74 interpreter uses overlay 
segments directly from the program library where the object program was compiled to, and is called 
in as an overlay in the initial generated code every time it is required by the operating program. 

Restrictions on Program Flow 

When segmentation is used, the following restriction is placed on the ALTER statement. 

The ALTER Statement 

A GO TO statement in a section whose segment-number is greater than or equal to 50 must not be , 
referred to by an ALTER statement in a section with a different segment-number. 

All other uses of the ALTER statement are valid and are performed even if the GO TO to which the 
ALTER statement refers is in a fixed overlayable segment. 

7-12 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

PROCEDURE DIVISION 

THE PROCEDURE DIVISION HEADER 

The PROCEDURE DIVISION is identified by, and must begin with, the following header: 

,---- PROCEDURE DIVISION [USING data-name-1 (, data-name-2] ... ] L_, ________ ___ 

The USING phrase is present only if the object program is to function under the control of a CALL 
statement, and the CALL statement in the calling program contains a USING phrase. 

Each of the operands in the USING phrase of the PROCEDURE DIVISION header must be defined 
as a data item in the LINKAGE SECTION in the DAT A DIVISION of the program in which this 
header occurs, and must have a 01 or 77 level-number. 

Within a called program, LINKAGE SECTION data items are processed according to the data descrip
tions given in the called program. 

When the USING phrase is present, the object program operates as if data-name-1 of the PROCE
DURE DIVISION header in the called program and data-name.,1 in the USING phrase of the CALL 
statement in the calling program ref er to a single set of data that is equally available to both the called 
and calling programs. The descriptions of data must define an equal number of character positions; 
however, they need not b(~ the same name. In like manner, there is an equivalent relationship between 
data-name-2, ... , in the USING phrase of the called program and data-name-2, ... , in the USING 
phrase of the CALL statement in the calling program. A data-name must not appear more than once 
in the USING phrase in the PROCEDURE DIVISION header of the called program; however, a given 
data-name may appear more than once in the same USING phrase of a CALL statement. · 

If the USING phrase is specified, the INITIAL clause must not be present in any CD entry. Refer 
to Syntax Rule 2, Format 1, of the Communication Description entry (CD), section 6. 

1168622 7-13 



DECLARATIVES 

B 1000 Systems COBOL74 Language Manual 
Procedure Division 

Declaratives are procedures which operate under the control of the input-output system or the DEBUG 
facility. Declaratives consist of compiler-directing sentences and associated procedures. Declaratives, if 
used, must be grouped together at the beginning of the PROCEDURE DIVISION. The group of dec
laratives must be preceded by the key word DECLARATIVE:;, and must be followed by the words 
END DECLARATIVES. Each DECLARATIVE consists of a single section and must conform to the 
rules for procedure formation. The next source statement following the END DECLARATIVES state
ment must be a section-name or paragraph-name. 

USE Declarative 

A USE declarative is used to supplement the standard procedures provided by the input-output system. 
The USE sentence immediately following the section-name identifies the condition calling for the execu
tion of the USE procedures. Only the PERFORM statements may reference all or part of a USE sec
tion. The USE sentence alone is never executed. Within a USE procedure, there must be no reference 
to the main body of the PROCEDURE DIVISION. The construct for the USE declarative is as fol
lows: 

section-name SECTION. USE ................ . 

paragraph-name. First procedure-statement .... 

Complete rules for writing the formats for USE are stated under the USE statement in this section. 

USE FOR DEBUGGING Declarative 

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the associ
ated debugging section. The construct of the USE FOR DEBUGGING statement is: 

section-name SECTION. USE FOR DEBUGGING... ·~ 
.L..-----------__J 

Complete rules for writing the format for USE FOR DEBUGGING are stated in section 10 (DEBUG) 
of this manual. 

7-14 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

ARITHMETIC EXPRESSIONS 

ARITHMETIC EXPRESSIONS 

An arithmetic expression can be an identifier of a numeric elementary it~m, a numeric literal, such 
identifiers and literals sep.arated by arithmetic operators, two arithmetic expressions separated by an 
arithmetic operator, or an arithmetic expression enclosed in parentheses. Any arithmetic expression may 
be preceded by a unary operator. The permissible combinations of variables, numeric literals, arithme
tic operators, and parentheses are given in table 7-1. 

Those identifiers and literals appearing in an arithmetic expression must represent either numeric 
elementary items or numeric literals on which arithmetic may be performed. 

Arithmetic Operators 

There are five binary arithmetic operators and two unary arithmetic operators that may be used in 
arithmetic expressions. They are represented by specific characters that must be preceded by a separator 
and followed by a separator. 

Binary Arithmetic 
Operators 

+ 

* 
I 
** 

Unary Arithmetic· 
Operators 

+ 

Formation and Evaluation Rules 

Meaning 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Meaning 

The effect of multiplication 
by the numeric literal + 1 

The effect of multiplication 
by numeric literal -1. 

1. Parentheses may be used in arithmetic expressions to specify the order in which elements are 
to be evaluated. Expressions within parentheses are evaluated first, and within nested parenthe
ses evaluation proceeds from the least inclusive set. When parentheses are not used, or paren
thesized expressions are at the same level of inclusiveness, the following hierarchical order of 
execution is implied: · 

1st 
2nd 
3rd 
4th 

1168622 

Unary plus ( +) and minus (-) 
Exponentiation 
Multiplication and division 
Addition and subtraction 

7-15 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

ARITHMETIC EXPRESSIONS 

7-16 

2. Parentheses are used either to eliminate ambiguities in logic where consecutive operations of 
the same hierarchical level appear, or to modify the normal hierarchical sequence of execution 
in expressions where it is necessary for deviation from the normal precedence. When the se
quence of execution is not specified by parentheses, the order of execution of consecutive 
operations of the same hierarchical level is from left to right. The following expressions are 
ordinarily considered to be ambiguous. 

A I B * C A I BI C A ** B ** C 

These expressions are permitted in COBOL 74 and are interpreted as if written, respectively: 

(A I B) * C (A I B) IC (A ** B) ** C 

Without parenthesizing, the following example 

A + B I C + D ** E * F - G 

is interpreted as 

A + (B I C) + ((D ** E) * F) - G . 

The sequence of operations working from the innermost parentheses to the outermost. That 
is, first exponentiation, then multiplication and division, and finally addition and subtraction 
are performed. 

3. The ways in which operators, variables, and parentheses may be combined in an arithmetic ex
pression are summarized in table 7-1, which illustrates that 

a. The letter 'P' indicates a permissible pair of symbols. 

b. The hyphen character ' - ' indicates an invalid pair. 

c. The word Variable indicates an identifier or literal. 

Table 7-1. Combination of Symbols in Arithmetic Expressions 

First Second Symbol 
Symbol 

Variable * I * * - + Unary + or - ( ) 

Variable - p - p p 
* I ** + - p - p - -

Unary+ or - p - - p - i 
( p - p p -

l ) - p - - p 



B 1000 Systems COBOL 7 4 Language Manual 
Procedure Division 

ARITHMETIC EXPRESSIONS 

4. An arithmetic expression may only begin with the symbol ' (', ' + ', ' - ', or a variable and may 
only end with a ')' or a variable. There must be a one-to-one correspondence between left and 
right parentheses of an arithmetic expression such that each left parenthesis is to the left of 
the corresponding right parenthesis. 

5. The following rules apply to evaluation of exponentiation in an arithmetic expression: 

a. If the value of an expression to be raised to a power is zero, the exponent must have a 
value not greater than zero. Otherwise, the size error condition exists. Refer to the SIZE 
ERROR phrase in this section. 

b. If the evaluation yields both a positive and a negative real number, the value returned as 
the result is the positive number. 

c. If no real number exists as the result of the evaluation, the size error condition exists. 

6. When no resultant-identifier is associated with an expression, an intermediate data item is used 
to store the value of the arithmetic expression. 

Intermediate Data Item 

An intermediate data item is a signed numeric data item containing the values developed in the course 
of evaluating an arithmetic expression prior to the final value being moved to the resultant-identifier, 
if any. The length of this data item is determined by the compiler throughout the calculation. 

1168622 7-17 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 
Conditional expressions identify conditions that are tested to enable the object program to select be
tween alternate paths of control depending upon the truth value of the condition. Conditional expres
sions are specified in the IF, PERFORM, and SEARCH statements. There are two categories of condi
tions associated with conditional expressions: simple conditions and complex conditions. Each may be 
enclosed within any number of paired parentheses, in which case the category is not changed. 

Simple Conditions 

The simple conditions are the relation, class, condition-name, switch status, and sign conditions. A sim
ple condition has a truth value of TRUE or FALSE. The inclusion in parentheses of simple conditions 
does not change the simple truth value. Simple conditions cannot contain more than one relational op
erator. 

Relation Condition 

A relation condition causes a comparison of two operands, each of which may be the data item refer
enced by an identifier, a literal, or the value resulting from an arithmetic' expression. A relation condi
tion has a truth value of TRUE if the relation exists between the operands. Comparison of two numeric 
operands is permitted regardless of the formats specified in respective USAGE clauses. However, for 
all other comparisons the operands must have the same usage. If either of the operands is a group 
item, the nonnumeric c01;nparison rules apply. 

General Format: 

{ 
/ IS [NOT] GREATER THAN 

identifier- I i· 1 
IS [NOT] LESS THAN { identifier-2 } 

literal-I < IS [NOT] EQUAL TO > literal-2 
arithmetic- IS [NOT] > I arithmetic-

expression- I IS [NOT] < I expression-2 

' IS [NOT] = 

NOTE 
The required relational characters ' > ', ' < ', and ' = ' are not underlined 
to avoid confusion with other symbols such as ' > ' (greater than or equal 
to). 

The first operand (identifier-I, literal-I·, or arithmetic-expression-I) is the subject of the condition; the 
second operand (identifier-2, literal-2, or arithmetic-expression-2) is the object of the condition. The 
relation condition must contain at least one reference to a variable. 

The relational operator specifies the type of comparison to be made in a relation condition .. A space, 
comma, semicolon, right parenthesis, closing quotation mark, or closing commercial at sign (@) must 
precede the first reserved word comprising the relational operator. A space, comma, semicolon, left 
parenthesis, opening quotation mark, or opening commercial at sign (@) must follow the last reserved 
word comprising the relational operator. If the relational operator consists of more than one reserved 
word, then a space, comma or semicolon must be used to separate each pair of consecutive reserved 

7-18 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

words comprising the relational operator. When used, NOT and the next key word or relational charac
ter are one relational operator that defines the comparison to be executed for truth value; for example, 
NOT EQUAL is a truth test for an unequal comparison; NOT GREATER is a truth test for an equal 
or less comparison. The meaning of the relational operators is as follows: 

Relational Operator 

IS [NOT] OREA TER THAN 
IS [NOT] > 
IS [NOT] LESS THAN 
IS [NOT] < 
IS [NOT] EQUAL TO 
IS [NOT] = 

Meaning 

Greater than or not greater than 

Less than or not less than 

Equal to or not equal to 

NOTE 
The required relational characters '> ', '< ', and ' = ' are not underlined 
to avoid confusion with other symbols such as ' > ' (greater than or equal 
to). 

Comparison of Numeric Operands 

For operands whose class is numeric, a comparison is made with respect to the algebraic value of the 
operands. The length of the literal or arithmetic expression operands, in terms of number of digits rep
resented~ is not significant. Zero is considered a unique value regardless of the sign. 

Comparison of these operands is permitted regardless of the manner in which usage is described. Un
signed numeric operands are considered positive for purposes of comparison. 

Comparison of Nonnumeric Operands 

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with 
respect to a specified collating sequence of characters.· Refer to OBJECT-COMPUTER in Section 5 
for additional information. If one of the operands is specified as numeric, it must be an integer data 
item or an integer literal. The following conditions apply: 

1. If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric op
erand is treated as though it were moved to an elementary alphanumeric data item of the same 
size as the numeric data item (in terms of standard data format characters), and the contents 
of this alphanumeric data item are compared to the nonnumeric operand. Refer to the MOVE 
statement and the PICTURE character 'P' in this section. 

2. If the nonnumeric operand is a group item, the numeric operand is treated as though it were 
moved to a group item of the same size as the numeric data item (in terms of standard data 
format characters), and the contents of this group item are compared to the nonnumeric oper
and. Refer to the MOVE statement, and the PICTURE character 'P' for additional informa
tion. 

3. A noninteger numeric operand cannot be compared to a nonnumeric operand. 

The size of an operand is the total number of standard data format characters in the operand. Numeric 
and nonnumeric operands may be compared only when usage is the same. 

1168622 7-19 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

There are two cases to consider: operands of equal size and operands of unequal size. 

1. Operands of equal size. If the operands are of equal size, comparison effectively proceeds by 
comparing characters in corresponding character positions starting from the high order end and 
continuing until either a pair of unequal characters is encountered Qr the low order end of the 
operand is reached, whichever comes first. The operands are determined to be equal if all pairs 
of characters compare equally through the last pair, when the low order end is reached. 

The first encountered pair of unequal characters is compared to determine a relative position 
in the collating sequence. The operand that contains the character that is positioned higher in 
the collating sequence is considered to be the greater operand. 

2. Operands of unequal size. If the operands are of unequal size, comparision proceeds as though 
the shorter operand were extended on the right by sufficient spaces to make the operands of 
equal size. 

Comparisons Involving Index-Names and/or Index Data Items 

Relation tests may be made between: 

1. Two index-names. The result is the same as if the corresponding occurrence numbers were com
pared. 

2. An index-name and a data item (other than an index data item) or literal. The occurrence num
ber that corresponds to the value of the index-name is compared to the data item or literal. 

3. An index data item and an index-name or another index data item. The actual values are com
pared without conversion. 

The comparison of an index data item with a literal or with any data item not specified above, 
is not allowed. 

Class Condition 

The class condition determines whether the operand is numeric, consisting entirely of the characters 
'O' , ' 1 ' , '2' , '3 ' , ... , '9' , with or without the operational sign, or alphabetic, consisting entirely of 
the characters 'A', 'B', 'C', ... , 'Z', and space. 

General Format: 

{
NUMERIC } 

identifier IS (NOT] ALPHABETIC 

The usage of the operand used with the ALPHABETIC test must be DISPLAY. The usage of the oper
and used with the NUMERIC test must be DISPLAY or COMPUTATIONAL. When used, NOT and 
the next key word specify one class condition that defines the class test to, be executed for truth value; 
for example, NOT NUMERIC is a truth test for determining that an operand is nonnumeric. 

7-20 



B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

The NUMERIC test cannot be used with an item whose data description describes the item as alphabet
ic or as a group item composed of elementary items whose data description indicates the presence of 
operational sign(s). If the data description of the item being tested does not indicate the presence of 
an operational sign, the item being tested is determined to be numeric only if the contents are numeric 
and an operational sign is not present. If the data description of the item does indicate the presence 
of an operational sign, the item being tested is determined to be numeric only if the contents are nu
meric and a valid operational sign is present. The position and representation of valid operational signs 
is discussed in the PICTURE clause, General Rule 8, the S symbol, and the SIGN clause in section 
6. 

The ALPHABETIC test cannot be used with an item whose data description describes the item as nu
meric. The item being tested is determined to be alphabetic only if the contents consist of any combina
tion of the alphabetic characters 'A' through 1 Z' and the space character. 

Condition-Name Condition (Conditional Variable) 

In a condition-name condition, a conditional variable. is tested to determine whether or not the value 
is equal to one of the values associated with a condition-name. 

General Format: 

If the condition-name is associated with a range or ranges of values, then the conditional variable is 
tested to determine whether or not the value is within this range, including the end values. 

The rules for comparing a conditional variable with a condition-name value are the same as those 
specified for relation conditions. 

The result of the test is TRUE if one of the values corresponding to the condition-name equals the 
value of the associated conditional variable. 

Switch-Status Condition 

A switch-status condition determines the ON or OFF status of a switch. The switch-name and the ON 
or OFF value associated with the condition must be named in the SPECIAL-NAMES paragraph of 
the ENVIRONMENT DIVISION. 

General Format: 

condition-name 

The result of the test is TRUE if the switch is set to the specified position corresponding to the condi
tion-name. 

1168622 7-21 



B 1000 Systems COBOL74 Langi.iage Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Sign Condition 

The sign condition determines whether or not the algebraic value of an arithmetic expression is less 
than, greater than, or equal to zero. 

General Format: 

arithmetic-expression {

POSITIVE ) 
IS [NOT] NEGATIVE f 

,ZERO Y 

When used, NOT and the next key word specify one sign condition that defines the algebraic test to 
be executed for truth value; for example, NOT ZERO is a truth test for a nonzero (positive or negative) 
value. An operand is positive if the value is greater than zero, negative if the value is less than zero, 
and zero if the value is equal to zero. The arithmetic expression must contain at least one reference 
to a variable. 

Complex Conditions 

A complex condition is formed by combining simple conditions, combined conditions, and/or complex 
conditions with logical connectors (logical operators AND and OR). or negating these conditions with 
logical negation (the logical operator NOT). The truth value of a complex condition, whether parenthe
sized or not, is that truth value which results from the interaction of all the stated logical operators 
on the individual truth values of simple conditions, or the intermediate truth values of conditions 
logically connected or logically negated. 

The logical operators with meanings follow. 

Logical Operator 

AND 

OR 

NOT 

Meaning 

Logical conjunction; the truth value is TRUE 
if both of the conjoined conditions are TRUE; 
FALSE if one or both of the conjoined 
conditions is FALSE. 

Logical inclusive OR; the truth value is TRUE 
if one or both of the included conditions is 
TRUE; FALSE if both included conditions are 
FALSE. 

Logical negation or reversal of truth value; 
the truth value is TRUE if the condition is 
FALSE; FALSE if the condition is TRUE. 

The logical operators must be preceded by a space and followed . by a space. 

7-22 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Examples: 

The following are illustrations of complex conditions: 

AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20. 

AGE IS GREATER THAN 24 OR MARRIED. 

STOCK-ON-HAND IS LESS THAN DEMAND OR STOCK-SUPPLY IS GREATER THAN DE
MAND + INVENTORY. 

A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT EQUAL TO F, AND G 
IS POSITIVE, OR H IS LESS THAN I * J. 

STOCK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS THAN 100 OR STK
NUMBER EQUAL TO 62879). 

It is not necessary to use the same logical connective throughout the complex expression. 

Negated Simple Conditions 

A simple condition is negated through the use of the logical operator NOT. The negated simple condi
tion effects the opposite truth value for a simple condition. Thus, the truth value of a negated simple 
condition is TRUE only if the truth value of the simple condition is FALSE; the truth value of a ne
gated simple condition is FALSE only if the truth value of the simple condition is TRUE. The inclusion 
in parentheses of a negated simple condition does not change the truth value. 

General Format: 

r--- NOT simple-condition L__ _________ ___, 

Combined and Negated, Combined Conditions 

A combined condition results from connecting conditions with one of the logical operators AND or 
OR. 

General Format: 

I condition { { ~~D } d T } L _____ con 1-1011 ---

1168622 7-23 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Where condition may be: 

1. A simple condition. 

2. A negated simple condition. 

3. A combined condition. 

4. A negated combined condition. The NOT logical operator followed by a combined condition 
enclosed within parentheses. 

5. Combinations of the above, specified according to the rules summarized in table 7-2. 

Although parentheses need never be used when either AND or OR (but not both) is used exclusively 
in a combined condition, parentheses may be used to effect a final truth value when a mixture of AND, 
OR, and NOT is used. Refer to table 7-2 and Condition Evaluation Rules in this section for additional 
information. 

Table 7-2 indicates the ways in which conditions and logical operators may be combined and parenthe
sized. There must be a one-to-one correspondence between left and right parentheses such that each 
left parenthesis is to the left of the corresponding right parenthesis. 

Table 7-2. Combinations of Conditions, Logical Operators, and Parentheses 

Location in In a left-to-right sequence of 
Conditional elements: 

Given the following Expression 
element Element, when not Element, when not 

first, may be last, may be 
First Last immediately immediately 

preceded by only: followed by only: 

Simple-condition Yes Yes OR, NOT, AND, ( OR, AND, ) 

simple-condition, simple-condition, 
OR or AND No No ) NOT, ( 

simple-condition, 
NOT Yes No OR, AND, ( ( 

simple-condition, 
( Yes No OR_, NOT, AND, ( NOT, ( 

simple-condition, 
) No Yes ) OR, AND, ) 

The element pair OR NOT is permissible but the pair NOT OR is not permissible. NOT ( is permissible 
but NOT NOT is not permissible. 

7-24 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Abbreviated Combined Relation Conditions 

When simple or negated simple relation conditions are combined with logical connectives in a 
consecutive sequence such that a succeeding relation condition contains a subject or subject and rela
tional operator that is common with the preceding relation condition, and no parentheses are used 
within such a consecutive sequence, any relation condition except the first may be abbreviated by: 

1. The omission of the subject of the relation condition. 

2. The omission of the subject and relational operator of the relation condition. 

General Format: 

c= ___ r-el_a_t_i_on_-_co_n_d-it-io_n __ { __ {_A_o_~_D __ }_[NOT] [relational-operator J object } ... 

Within a sequence of relation conditions, both of the above forms of abbreviation may be' used. The 
effect of using such abbreviations is as if the last preceding stated subject were inserted in place of 
the omitted subject, and the last stated relational operator were inserted in place of the omitted rela
tional operator. The result of such implied insertion must comply with the rules of table 7-2. This inser
tion of an omitted subject and/ or relational operator terminates once a complete simple condition is 
encountered within a complex condition. 

In abbreviated relation conditions, an arithmetic expression beginning with a left parenthesis may not 
be the object of an abbreviation where both the subject and the relational operator are implied. An 
arithmetic expression may be the object if it does not begin with a left parenthesis or if the relational 
operator is stated. 

The interpretation applied to the use of the word NOT in an abbreviated combined relation condition 
is as follows: 

1. If the word immediately following NOT is GREATER, ' > ', LESS, ' < ', EQUAL, or ' 
then the NOT participates as part of the relational operator. 

2. The NOT is interpreted as a logical operator and the implied insertion of subject or relational 
operator results in a negated relation condition. 

Examples of abbreviated combined and negated combined relation conditions and expanded equivalents 
follow. 

1168622 7-25 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Examples: 

Abbreviated Combined 
Relation Condition 

a > b AND NOT < c OR d 

a NOT EQUAL b OR c 

NOT a = b OR c 

NOT (a GREATER b OR < c) 

NOT (a NOT > b AND c 
AND NOT d) 

IF A B OR C 

IF A < B OR = C OR D 

Expanded Equivalent 

((a > b) AND (a NOT < c)) OR (a NOT < d) 

(a NOT EQUAL b) 'oR (a NOT EQUAL c) 

(NOT (a = b)) OR (a = c) 

NOT ((a GREATER b) OR (a < c)) 

NOT ((((a NOT > b) AND (a NOT > c)) 
AND (NOT (a NOT > d)))) 

IF A BORA c 
IF A < B OR A = C OR A D 

Condition Evaluation Rules 

Parentheses may be used to specify the order in which individual conditions of complex conditions are 
to be evaiuated when necessary to depart from the implied evaluation precedence. Conditions within 
parentheses are evaluated first, and, within nested parentheses, evaluation proceeds from the least inclu
sive condition to the most inclusive condition. When parentheses are not used, or parenthesized condi
tions are at the same level of inclusiveness, the following hierarchical order of logical evaluation is im
plied until the final truth value is determined. 

7-26 

1. Values are established for arithmetic expressions. Refer to Formation and Evaluation Rules in 
this section. 

2. Truth values for simple conditions are established in the following order: 

relation (following the expansion of any abbreviated relation condition) 
class 
condition-name 
switch-status 
sign 

3. Truth values for negated simple conditions are established. 

4. Truth values for combined conditions are established: .IN + 5 P AND logical operators, fol
lowed by 

OR logical operators. 

5. Truth values for negated combined conditions are established. 

6. When the sequence of evaluation is not completely specified by parentheses, the order of 
evaluation of consecutive operations of the same hierarchical level is from left to right. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Example: 

To evaluate 
Cl AND (C2 OR NOT (C3 OR C4) 

reduce as follows: 
let C5 equal "C3 OR C4", resulting in Cl AND (C2 OR NOT C5) 

let C6 equal "C2 OR NOT C5", resulting in Cl AND C6. 

1168622 7-27 



B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

COMMON PHRASES 

In the statement descriptions that follow, several phrases appear frequently: the ROUNDED phrase, 
the SIZE ERROR phrase, and the CORRESPONDING phrase. 

In the following discussion, a resultant-identifier is that identifier associated with a result of an arith
metic operation. 

ROUNDED Phrase 

lf, after decimal point alignment, the number of places in the fraction of the result of an arithmetic 
operation is greater than the number of places provided for the fraction of the resultant-identifier, trun
cation is relative to the size provided for the resultant-identifier. When rounding is requested, the abso
lute value of the resultant-identifier is increased by adding a one into the low-order digit whenever the 
absolute value, of the next least significant digit of the intermediate data item is greater than O( equal 
to five. 

When the low-order integer positions in a resultant-identifier are represented by the character 'P' in 
the picture for that resultant-identifier, rounding or truncation occurs relative to the rightmost integer 
position for which storage is allocated. 

SIZE ERROR Phrase 

If, after decimal point alignment, the absolute value of a result exceeds the largest value that can be 
contained in the associated resultant-identifier, a size error condition exists. Division by zero always 
causes a size error condition. The size error condition applies only to the final results of an arithmetic 
operation and does not apply to intermediate results, except in the MULTIPLY and DIVIDE state
ments, in which case the size error condition applies to the intermediate results as well. If the 
ROUNDED phrase is specified, rounding takes place before checking for size error. When a size error 
condition occurs, the subsequent action depends on whether or not the SIZE ERROR phrase is 
specified. 

7-28 

1. If the SIZE ERROR phrase is not specified and a size error condition occurs, the resultant val
ue is stored in each of the receiving fields left truncated where required. Values of resultant
identifier(s) for which no size error condition occurs are unaffected by size errors that occur 
for other resultant:-identifier(s) during execution bf this operation. 

If division by zero is the cause of the size error condition, the execution of the program is 
abnormally terminated. 

2. If the SIZE ERROR phrase is specified and a size error condition occurs, then the values of 
resultant-identifier(s) affected by the size errors are not altered. Values of resultant-identifier(s) 
for which no size error condition occurs are unaffected by size errors that occur for other re
sultant-identifier(s) during execution of this operation. After completion of the execution of this 
operation, the imperative statement in the SIZE ERROR phrase is executed. 

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT statement 
with the CORRESPONDING phrase, if any of the individual operations produces a size error 
condition, the imperative statement in the SIZE ERROR phrase is not executed until all of the 
individual additions and subtractions are completed. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

CORRESPONDING Ph1rase 

COMMON PHRASES 

For the. purpose of this discussion, dl and d2 must each be identifiers that refer to group items. A . 
pair of data items, one from d 1 and one from d2 correspond if the following conditions exist: 

1. A data item in d 1 and a data item in d2 are not designated by the key word FILLER and 
have the same data-name and the same qualifiers up to, but not including, dl and d2. 

2. At least one of the data items is an elementary data item in the case of a MOVE statement 
with the CORRESPONDING phrase. Both of the data items are elementary numeric data items 
in the case of the ADD statement with the CORRESPONDING phrase or the SUBTRACT 
statement with the CORRESPONDING phrase. 

3. The description of dl and d2 must not contain level-number 66, 77, or 88 or the USAGE IS 
INDEX clause. 

4. A data item that is subordinate to dl or d2 and contains a REDEFINES, RENAMES, OC
CURS, or USAGE IS INDEX clause is ignored, as well as those data items subordinate to the 
data item that contains the REDEFINES, OCCURS, or USAGE IS INDEX clause. However, 
dl and d2 may have REDEFINES or OCCURS clauses or be subordinate to data items with 
REDEFINES or OCCURS clauses. Refer to the OCCURS clause in section 6. 

Refer to the ADD statement in this section for an example of CORRESPONDING. 

1168622 7-29 



B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

GENERAL RULES FOR STATEMENT FORMATS 
The following paragraphs describe general rules for statement formats. 

Arithmetic Statements 

The arithmetic statements are ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT and have 
several common features: 

1. The data descriptions of the operands need not be the same; any necessary conversion and 
decimal point alignment is supplied throughout the calculation. 

2. The maximum size of each operand is 18 decimal digits. 

3. Each arithmetic operation is evaluated using an intermediate data item for the result of the op
eration. The contents of the intermediate data item are moved to the resultant-identifier accord
ing to the rules for the MOVE statement. Rounding is performed and the size error condition 
is determined only during this MOVE operation. Refer to Intermediate Data Item, Rounded 
Phrase, Size Error Phrase, and the MOVE Statement in this section for additional information. 

Overlapping Operands 

When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE, SET, 
STRING, or UNSTRING statement share a part, but not all, assigned storage areas, the result of the 
execution of such a statement is undefined. 

Multiple Results in Arithmetic Statements 

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multiple results. 
Such statements behave as though they had been written in the following ways: 

7-30 

1. A statement which.performs all arithmetic necessary to arrive at the result to be stored in the 
receiving items, and stores that result in a temporary storage location. 

2. A sequence of statements transferring or combining the value of this temporary location with 
a single result. These statements are considered to be written in the same left-to-right sequence 
in which the multiple results are listed. 

The result of the statement 

ADD A, B, C, TO C, D(C), E 

is equivalent to: 

ADD A, B, C GIVING TEMP 
ADD TEMP TO C 
ADD TEMP TO D(C) 
ADD TEMP TOE 

where TEMP is an intermediate result item provided by the compiler. 



Incompatible Data 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

STATEMENT FORMATS 

Except for the class condition (refer to Class Condition in this section), when the contents of a data 
item are referenced in the PROCEDURE DIVISION and the contents of that data item are not com
patible with the class specified for that data item by the PICTURE clause, then the result of such a 
reference is undefined. 

Numeric Functions 

A numeric function can be specified as a sending operand in an arithmetic statement, a MOVE state
ment, or afi arithmetic expression. 

OFFSET Function 

The OFFSET function represents the number of characters preceding a data item in a logical record. 

General Format: 

OFFSET (data-name) 

Syntax Rules: 

1. Data-name must be described in the DAT A DIVISION. 

2. Data-name can be qualified. 

General Rules: 

1. OFFSET (data-name) represents the number of characters preceding the data item referenced 
by data-name in the logical record in which data-name is defined. If data-name references a 
packed numeric data item not aligned on a character boundary, OFFSET (data-name) represents 
the number of characters preceding the character in which data-name begins. If data-name is 
a record-name or a 77-level item, the value of OFFSET (data-name) is zero. 

2. The internal representation of OFFSET is the same as that of an index data item; that is, it 
occupies the same space and has the same alignment as an item declared PICTURE S9(7) US
AGE IS COMPUTATIONAL. 

1168622 7-31 



STATEMENT FORMATS 

Categories of Verbs 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

The verbs available for use with the COBOL 74 compiler are categorized below. Although the word 
IF is not a verb in the English language, it is utilized as such in the COBOL 74 language. Its occurrence 
is a vital feature in the PROCEDURE DIVISION. 

7-32 

Category 

Arithmetic 

Compiler Directing 

Conditional 

Data Movement 

Ending 

Verb 

ADD 
COMPUTE 
DIVIDE 
INSPECT 
MULTIPLY 
SUBTRACT 

COPY 
USE 

ADD 
CALL 
COMPUTE 
DELETE 
DIVIDE 
IF 
MULTIPLY 
READ 
RECEIVE 
RETURN 
REWRITE 
SEARCH 
START 
STRING 
SUBTRACT 
UNSTRING 
WRITE 

ACCEPT 
INSPECT 
MOVE 
STRING 
UNSTRING 

STOP 

Option 

TALLYING 

SIZE ERROR 
OVERFLOW 
SIZE ERROR 
INVALID KEY 
SIZE ERROR 

SIZE ERROR 
END or INVALID KEY 
NO DATA 
END 
INVALID KEY 

INVALID KEY 
OVERFLOW 
SIZE ERROR 
OVERFLOW 
INVALID KEY or END-OF-PAGE 

DATE, DAY, or TIME 
REPLACING 



Category 

Input-Output 

Inter,.. Program 
Communication 

Ordering 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

Verb 

ACCEPT 
CLOSE 
DELETE 
DISABLE 
DISPLAY 
ENABLE 
OPEN 
READ 
RECEIVE 
REWRITE 
SEND 
START 
STOP 
WRITE 

CALL 
CANCEL 

MERGE 
RELEASE 
RETURN 
SORT 

Option 

identifier 

literal 

Procedure Branching ALTER 
CALL 
EXIT 

Table Handling 

GO TO 
PERFORM 

SEARCH 
SET 

SPECIFIC VERB FORMATS 

STATEMENT FORMATS 

The specific verb formats, together with a detailed discussion of the restrictions and limitations associ
ated with each, appear on the following pages in alphabetic sequence. 

1168622 7-33 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

ACCEPT 

The ACCEPT statement causes low volume data to be made available to the specified data item. 

General Format: 

Format 1: 

ACCEPT identifier [FROM {mnemonic-name I J 

Format 2: 

ACCEPT identifier FROM 

Syntax Rules: 

1. The mnemonic-name in Format 1 must also be specified in the SPECIAL-NAMES paragraph 
of the ENVIRONMENT DIVISION and must be associated with the hardware-name ODT. 

2. An item declared in the LINKAGE SECTION cannot be used with the ACCEPT statement. 

General Rules: 

Format 1: 

1. The ACCEPT statement causes the transfer of data from the hardware device. This data re
places the contents of the data item named by the identifier. 

2. The maximum number of characters that can be transferred is unlimited. 

3. If the FROM phrase is not given, the device that is used is the ODT. 

4. When the operator enters the AX message in response to the ACCEPT, continuation of the 
object program begins with the next executable statement in sequence. 

Format 2: 

7-34 

5. The ACCEPT statement causes the information requested to be transferred to the data item 
specified by identifier according to the rules of the MOVE statement. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: ACCEPT 

6. DATE is composed of the data elements year of century, month of year, and day of month. 
The sequence of the data element codes are from high order to low order (left to right), year 
of century, month of year, and day of month (YYMMDD). July 1, 1968 would be expressed 
as 680701. DATE, when accessed by a COBOL 74 program, behaves as that described in the 
COBOL 74 program as an unsigned elementary numeric integer data item, six digits in length. 

7. DAY is composed of the data elements year of century and day of year. The sequence of the 
data element codes are from high order to low order (left to right) year of century, day of 
year (YYDDD). July 1, 1968 is expressed as 68183. DAY, when accessed by a COBOL74 pro
gram, behaves as if described in a COBOL 74 program as an unsigned elementary numeric inte
ger data item, five digits in length. 

8. TIME is composed of the data elements hours, minutes, seconds, and hundredths of a second, 
(HHMMSSTH). TIME is based on elapsed time after midnight on a 24-hour clock basis; 2:41 
p.m. is expressed as 14410000. TIME, when accessed by a COBOL74 program, behaves as if 
described in a COBOL 74 program as an unsigned elementary numeric integer data item, eight 
digits in length. The minimum value of TIME is 00000000; the maximum value of TIME is 
23595990. 

1168622 7-35 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

ACCEPT MESSAGE COUNT 

The ACCEPT MESSAGE COUNT statement causes the number of messages in a queue to be made 
available. 

General Format: 

ACCEPT cd-name MESSAGE COUNT 

Syntax Rules: 

1. Cd-name must reference an input CD. 

General Rules: 

7-36 

1. The ACCEPT MESSAGE COUNT statement causes the MESSAGE ~OUNT field specified for 
cd-name to be updated to indicate the number of messages that exist in a queue. 

2. Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of the area 
specified by the communication description entry must contain the name of the symbolic queue 
to be tested. Testing the condition causes the contents of the data items referenced by data
name-10 (ST A TUS KEY) and data-name-11 (MESSAGE COUNT) of the area associated with 
the communication entry to be appropriately updated. Refer to the Communication Description 
(CD) in section 6. 



B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: ADD 

ADD 

The ADD statement causes two or more numeric operands to be summed and the result to be stored. 

General Format: 

Format 1: 

ADD { 

identifier-I } 

literal-I [ 

, identifier-2 J 
, literal-2 

TO identifier-m [ ROUNDED ] 

( , identifier-n [ ROUNDED ] ] 

Format 2: 

Format 3: 

1168622 

( ; ON SIZE ERROR imperative-statement] 

{ 

identifier-I } 

literal-· I 

' { identifier-2 } 

literal-2 [ 

, identifier-3 ] 

, literal-3 

GIVING identifier-m [ ROUNDED] ( , identifier-n [ ~OUNDED] ] ... 

[; ON .§!ZE ERROR imperative .. statement) 

{

CORRESPONDING l 
ADD 

CORR . 
identifier-I TO identifier-2 [ROUNDED] 

[ ; ON SIZE ERROR imperative-statement J 

7-37 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: ADD 

Syntax Rules: 

1. In Formats 1 and 2, each identifier must refer to an elementary numeric item, except that in 
Format 2 each identifier following the word GIVING must refer to either an elementary numer
ic item or an elementary numeric edited item. In Format 3, each identifier must refer to a group 
item. 

2. Each literal must be a numeric literal. 

3. CORR is an abbreviation for CORRESPONDING. 

General Rules: 

1. Additional rules and explanations relative to this statement are given in the appropriate 
paragraphs. Refer to Intermediate Data Item, CORRESPONDING Phrase, ROUNDED Phrase, 
SIZE ERROR Phrase, Arithmetic Statements, Overlapping Operands, and Multiple Results in 
Arithmetic Statements in this section. · 

2. If Format 1 is used, the values of the operands preceding the word TO are added together, 
then the sum is added to the current value of identifier-n storing the result immediately into 
identifier-n. This process is repeated, respectively, for each operand following the word TO. 

3. If Format 2 is used, the values of the operands preceding the word GIVING are added together, 
then the sum is stored as the new value of each identifier-m, identifier-n, ... ; the .resultant-iden
tifiers. 

4. If Format 3 is used, data items in identifier-I are added to and stored in corresponding data 
items in identifier-4. 

5. The compiler ensures that enough places are carried so that significant digits are not lost during 
execution. 

Examples: 

Assume as initial values: X=2, Y=lO, Z=15, TOT=50, and SUB==30. 

Format 1: 

ADD XTO TOT. results TOT= 52 
ADD X, Y, Z, TO TOT, SUB. results TOT= 77, SUB = 57 

Format 2: 

ADD X, Y GIVING TOT. results TOT= 12 
ADD X, Y, Z GIVING TOT, SUB. results TOT= 27, SUB = 27 

7-38 



Format 3: 

B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: ADD 

For Format 3, assume the following structures have the initial value in parentheses. 

Therefore the statement 

results in:: 

01 NOW 01 LATER 
02 AL 

03 FO (8) 
'05 AL 

06 FO (10) 
03 RD (10) 06 XY (10) 

02 ME (20) 05 AB (10) 
02 HE (5) 05 HE (10) 

ADD CORRESPONDING NOW TO LATER. 

02 LATER 
05 AL 

06 
06 

05 AB 
05 HE 

F 0 ( 18) 
XY ( (10) 

( l 0) 
( 15) 

The only data items whose values changed are FO and HE. 

1168622 7-39 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

ALTER 

The ALTER statement modifies a predetermined sequence of operations. 

General Format: 

ALTER procedure-name-I TO [PROCF.FD TO] procecture-name-2 

[ , procedure-name-3 TO [PROCEED TO] procedure-name4] ... 

Syntax Rules: 

1. Each procedure-name-I, procedure-name-3, ... , is the name of a paragraph that contains a sin
gle sentence consisting of a GO TO statement without the DEPENDING phrase. 

2. Each procedure-name-2, procedure-name-4, ... , is the name of a paragraph or section in the 
PROCEDURE DIVISION. 

General Rules: 

7-40 

1. Execution of the ALTER statement modifies the GO TO statement in the paragraph named 
procedure-name-1, procedure-name-3, ... , so that subsequent executions of the modified GO TO 
statements cause transfer of control to procedure-name-2, procedure-name-4, ... , respectively. 
Modified GO TO statements in independent segments may, under some circumstances, be re
turned to initial states. Refer to Independent Segments in this section. 

All other uses of the ALTER statement are valid and are performed even if procedure-name-
1, procedure-name-3 is in an overlayable fixed segment. Refer to Segmentation in this section. 



CALL 

B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: CALL 

The CALL statement causes control to be transferred from one object program to another, within the 
run unit. 

General Format: 

Format 1: 

Format 2: 

Format 3: 

Format 4: 

1168622 

f identifier- I } 
CALL ) 

~ literal-J 
(USING data-name-I [ , data-name-2] ... ] 

[ ; ON OVERFLOW imperative-statement] 

7-41 



B 1000 Systems COBOL 74 Language Manual 
· , · Procedure Division 

VERB FORMAT: CALL 

Syntax Rules: 

Format I Only: 

1. Literal-I must be a nonnumeric literal in the form "B" for a single file name, "B/C" for a 
multi-file-id and file-id, "B ON A" for a single file on a specific disk, or "B/C ON A" for 
a multi-file-id and file-id on a specific disk. Refer to the B 1000 Systems Software Operation 
Guide, Volume I, for the formation of file names. 

2. Identifier-I must be defined as an alphanumeric data item. 

3. The USING phrase is included in the CALL statement only if there is a USING phrase in the 
PROCEDURE DIVISION header of the called program. The number of operands in each 
USING phrase must be identical. 

4. Each of the operands in the USING phrase must have been defined as a data item in the FILE 
SECTION, WORKING-STORAGE SECTION, COMMUNICATION SECTION, or LINKAGE 
SECTION, and must have a level-number of OI or 77. Data-name-I, data-name-2, ... , may be 
qualified when refering to data items defined in the FILE SECTION or the COMMUNICA
TION SECTION. 

General Rules: 

Format I Only: 

7-42 

1. The program whose name is specified by the value of literal-I or identifier-I is the called pro
gram; the program in which the CALL statement appears is the calling program. 

2. The execution of a CALL statement causes control to pass to the called program. 

3. A called program is in initial state the first time it is called within a run unit and the first time 
it is called after. a CANCEL operation to the called program. 

On all other entries into the called program, the state of the program remains unchanged from 
the state when last exited by an EXIT PROGRAM statement. This includes all data fields, the 
status and positioning of all files, and all alterable switch settings. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: CALL 

4. ff, during the execution of a- CALL statement, it is determined that the available portion of 
object time memory is incapable of accommodating the program specified in the CALL state
ment, and the ON OVERFLOW phrase is specified, no action is taken and the imperative-state
ment is executed. 

If the above condition exists and the ON OVERFLOW phrase is not specified, the run unit 
is suspended until such time as the necessary portion of object time memory to accommodate 
the program specified in the CALL statement is available. 

5. Called programs may contain CALL statements. However, a called program must not contain 
a CALL statement that directly or indirectly calls the calling program. Program A can CALL 
Program B, and Program B can CALL Program C, but Program C cannot CALL A or B, 
and Program B cannot CALL A. 

6. The data-names, specified by the USING phrase of the CALL statement, indicate those data 
items available to a calling program that may be referred to in the called program. The order 
of appearance of the data-names in the USING phrase of the CALL statement and the USING 
phrase in the PROCEDURE DIVISION header is critical. Corresponding qata-names refer to 
a single set of data which is available to the called and calling programs. The correspondenc~ 
is identified by position, not by name. In the case of index-names, no such correspondence is 
established. Index-names in the called and calling programs always refer to separate indices. 

7. The CALL statement may appear anywhere within a segmented program. When a CALL state
ment appears in a section with a segment-number greater than or equal to 50, that segment 
is in the last used state when the EXIT PROGRAM statement returns control to the calling 
program. 

Example of Format 1: 

Assume the called program name js PROGONE, and the PROCEDURE DIVISION header is: 

PROCEDURE DIVISION USING A, B, C. 

The calling program contains: 

CALL "PROGONE" USING X, Y, A. 
ADD X, Y, A GIVING TOTAL. 

When the CALL is executed a correspondence is set up between- the two sets of data-names such that 
(A and X), (B and Y), and (C and A) refer to the same data items regardless of the fact that both 
sets contain an A as a data-name. If PROGONE changes the values of A, B~ and. C to new values, 
these data items are available to the calling program in X, Y, and A, respectively. 

When PROGONE is exited by a CANCEL or EXIT PROGRAM, control returns to: 

ADD X, Y, A GIVING TOTAL. 

1168622 7-43 



VERB FORMAT: CALL 

7-44 

B 1000 Systems COBOL 7 4 Language Manual 
Procedure Division 



CANCEL 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: CANCEL 

The CANCEL statement releases the memory areas occupied by the referred to program. 

General Format: 

CANCEL 
literal·· I , literal-2 [ 

{ 

identifier-I } [ , identifier-2 J 
----------

Syntax Rules: 

I. Literal-I, literal-2, ... , must be a nonnumeric literal in the form "B" for a single file name, 
"B/C" for a muhi-file-id and file-id, "B ON A" for a single file on a specific disk, or "B/C 
ON A" for a multi-file-id and file-id on a specific disk. Refer to the B 1000 Systems Software 
Operation Guide, Volume l, for the formation of file names. 

2. Identifier-I, identifier-2, ... , must each be defined as an alphanumeric data item such that val
ues can be a program name. 

General Rules: 

1. Subsequent to the execution of a CANCEL statement, the program that has been cancelled 
ceases to have any logical relationship to the run unit in which the CANCEL statement appears. 
A subsequently executed CALL statement naming the same program results in that program 
being initiated in the initial state. 

2. A program named in the CANCEL statement must not refer to any program that has been 
called and has not yet executed an EXIT PROGRAM statement. 

3. A logical relationship to a cancelled subprogram is established only by execution of a subse
quent CALL statement. 

4. A called program is cancelled either by being referred to as the operand of a CANCEL state
ment or by the termination of the run unit of which the program is a member. 

5. No action is taken when a CANCEL statement is executed naming a program that has not been 
called in this run unit or has been called and is, at present, cancelled. Control passes to the 
next statement. 

1168622 7-45 



B 1000 Systems COBOL 7 4 Language Manual 

Procedure Division 

CLOSE 

The CLOSE statement terminates the processing of a file, or a reel/unit of a file, and also may specify 
the disposition of the file and the device to which it is assigned. 

General Format: 

CLOSE file-name- I 

, file-name-2 

Syntax Rules: 

1. The REEL or UNIT phrase must only be used for sequential files. 

2. The files referenced in the CLOSE statement need not all have the same organization or access. 

General Rules: 

Except where otherwise stated in the following general rules, the terms reel and unit are synonymous 
and completely interchangeable in the CLOSE statement. 

7-46 

1. A CLOSE statement may only be executed for a file in an open mode. 

2. For the purpose of showing the effect of various types of CLOSE statements as applied to 
various storage media, all files are divided into the following categories: 

a. Sequential non-reel/unit. A sequential file whose input or. output medium is such that the 
concepts of rewind and reel/unit have no meaning. This category includes mass storage 
files. A CLOSE statement executed for a non-reel/unit file may affect the disposition of 



B 1000 Systems COBOL 74 Language Manual 

Procedure Division 

VERB FORMAT: CLOSE 

the device to which it is assigned. However, the assignment and control of the physical 
device on which certain non-reel/unit files (including mass storage files) reside, is regarded 
to be the exclusive right of the operating system. Consequently, CLOSE statements 
executed for these files affect only the disposition and association of the physical file with 
the logical file, not the disposition of the physical device. 

b. Sequential single-reel/unit. A sequential file that is entirely contained on one reel/unit. 

c. Sequential multi-reel/unit. A sequential file that is contained on more than one reel/unit. 

d. Indexed and Relative Files. Indexed and Relative files are labeled mass storage files. 

3. The results of executing each type of CLOSE for each category of file are summarized in table 
7-3. 

Table 7 .. 3. Relationship of Categories of Files and Formats of the CLOSE Statement 

File Category 

CLOSE Sequential Sequential Indexed & 
Statement Sequential Single- Multi- Relative 

Format Non-Reel/Unit Reel/Unit Reel/Unit Files 

CLOSE C,H C,G,H C,G,A,H Cl,H 

CLOSE WITH LOCK C,E,I,J C,G,E,I,J C,G,E,A,I,J Cl,I,E 

CLOSE WITH NO REWIND x C,B,H C,B,A,H 

CLOSE REEL/UNIT x x F,G 

CLOSE REEL/UNIT x x F,D,G,J 
FOR REMOVAL 

CLOSE REEL/UNIT x x F,B 
WITH NO REWIND 

1168622 7-47 



B 1000 Systems COBOL 74 Language Manual 

Procedure Division 

VERB FORMAT: CLOSE 

The definitions of the symbols in the table are given in the following pages. Where the definition de
pends on whether the file is an input, output, or input-output file, alternate definitions are given; other
wise, a definition applies to input, output, and input-output files. 

7-48 

'A' Previous Reels/Units Unaffected 

Input Files 

All reels/units in the file prior to the current reel/unit are processed according to the standard 
reel/unit swap procedure, except those reels/units controlled by a prior CLOSE REEL/UNIT 
statement. If the current reel/unit is not the last in the file, the reels/units in the file following 
the current one are not processed. 

Output Files: 

All reels/units in the file prior to the current reel/unit are processed according to the standard 
reel/unit swap procedure, except those reels/units controlled by a prior CLOSE REEL/UNIT 
statement. 

'B' No Rewind of Current Reel 

The current reel/unit is left in its current position. 

' C' Close File 

Input Files and Input-Output Files: 

If the file is positioned at the end and label records are specified for the file, the labels are 
processed according to the standard label convention. 

If label records are specified, the label records must be present. Label records that are not 
specified are ignored. 

Closing operations are executed. If the file is positioned at the end and label records are not 
specified for the file, label processing does not take place, but other closing operations are 
executed. If the file is positioned other than at the end, the closing operations are executed, 
but there is no ending label processing. 

Output Files 

If label records are specified for the file, the labels are processed according to the standard 
label convention. The behavior of the CLOSE statement when label records are specified but 
not present, or when label records are not specified but are present, is undefined. Closing op
erations are executed. If label records are not specified for the file, label processing does not 
take place, but other closing operations are executed. 

'Cl I CLOSE FILE 

The CLOSE operation marks the logical file as closed. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: CLOSE 

' D' Reel/Unit Removal 

The current reel/unit is rewound and released to the system. However, the reel or unit may 
be accessed again, in its proper order of reels or units within the file, if a CLOSE statement 
without the REEL or UNIT phrase is subsequently executed for this file followed by the 
execution of an OPEN statement for the file. 

'E ' File Lock 

The logical file is marked so it cannot be reopened during execution of the program. If the 
file is a mass storage file, it is made a permanent file before being made unavailable. If the 
file is assigned to a tape device, the physical unit is made not ready. · 

'F' Close Reel/Unit 

Input Files: 

The following operations take place: 

1. A reel/unit swap. 

2. The standard beginning reel/unit label procedure is executed. 

The next executed READ statement for that file makes available the next data record on the 
new reel/unit. 

Output Files 

The following operations take place: 

1. The. standard ending reel/unit label procedure is executed. 

2. A reel/unit swap. 

3. The standard beginning reel/unit la~el procedure is executed. 

The next executed WRITE statement that references that file directs the next logical data rec
ord to the next reel/unit of the file. 

'G' Rewind 

The current reel is positioned at its physical beginning. 

' H ' File Retention 

1168622 

The association between the logical file and the physical file is retained. Subsequent reopening 
of the file may not require the operating system to search for the physical file. 

7-49 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: CLOSE 

7-50 

'X' Illegal 

This is an illegal combination of a CLOSE option and a file category. If the CLOSE statement 
specifies the REEL/UNIT phrase, the CLOSE statement has no effect, and the file is not 
closed. If the CLOSE statement does not specify the REEL/UNIT phrase, any optional dispo
sition is ignored, but the file is closed. 

4. If a file is in the open mode when a STOP RUN statement is executed, when a CANCEL state
ment is executed for the program containing that file, or when an abnormal termination occurs, 
the action taken is to close the file as if a simple CLOSE statement had been executed. 

5. If the OPTIONAL phrase has been specified for the file in the FILE-CONTROL paragraph 
of the ENVIRONMENT DIVISION and the file is not present, the standard end-of-file process
ing is not performed for that file. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: CLOSE 

6. If a CLOSE statement without the REEL or UNIT phrase has been executed for a file, no other 
statement (except the SORT or MERGE statements with the USING or GIVING phrases) that 
references that file can be executed, either explicitly or implicitly, unless an intervening OPEN 
statement for that file is executed. 

7. 

8. The execution of a CLOSE statement has no effect upon the contents or the availability of the 
file record area. 

1168622 7-51 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

COMPUTE 

The COMPUTE statement assigns to one or more data items the value of an arithmetic expression. 

General Format: 

COMPUTE identifier-I [ROUNDED] [, identifier-2 [ROUNDFD]] ... 

=arithmetic-expression [;ON SIZE ERROR imperative-statement J 

Syntax Rules: 

I. Identifiers that appear only to the left of 
or an elementary numeric edited item. 

must ref er to either an elementary numeric item 

General Rules: 

7-52 

I. Additional rules and explanations relative to this statement are given in the appropriate 
paragraphs. Refer to Intermediate Data Item, ROUNDED Phrase, SIZE ERROR Phrase, Arith
metic Statements, Overlapping Operands, and Multiple Results in Arithmetic Statements in this 
section. 

2. An arithmetic expression consisting of a single identifier or literal provides a method of setting 
the values of identifier-I, identifier-2, and so forth, equal to the value of the single identifier 
or literal. (Refer to Arithmetic Expressions in this section.) 

3. If more than one identifier is specified for the result of the operation (those identifiers preced
ing the equal sign), the value of the arithmetic expression is computed, and the resultant value 
is then stored as the new value of each successive identifier, such as identifier-I, identifier-2, 
and so on. · 



B 1000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: COPY 

COPY 

The COPY statement incorporates text from a library into a COBOL 74 source program. 

COBOL 74 libraries contain library texts that are available to the compiler for copying at compile time. 
The effect of the interpretation of the COPY statement is to insert text into the source program, where 
it is treated by the compiler as part of the source program. Other than the use of dollar options, 
(NEW, DELETE, MERGE, and so forth; refer to section 11, COBOL 74 Compiler Control), libraries 
must be created by means other than the COBOL74 compiler. 

Additionally, the COPY st~tement can replace all occurrences of a given literal, identifier, word or 
group of words in the library text, with alternate text, during the copying process. 

General Format: 

COPY l { file-id 
literal-3 

[ REPLACINQ 

Syntax Rules: 

[ { ~ } multi-file-id J · · · } } 

{ 

==pseudo-text-2== } ) ] 
identifier-2 ( 
literal-2 ( · · · 
word-2 ) 

1. If more than one COBOL 74 library is available during compilation, file-id must be qualified 
by the multi-file-id identifying the COBOL 74 library in which the text associated with file-id 
resides. 

Within one COBOL 74 library, each file-id must be unique. 

File-id specifies the external identification of a file in the COBOL74 library. 

Multi-file-id specifies the external identification of a volume-id, or directory-id, which is the 
name of the COBOL 74 library. 

2. The COPY statement must be preceded by a space and terminated by the separator period. If 
the COPY statement appears in a "debug line," the word COPY cannot start in column 8. See 
section 10 in this manual. 

1168622 7-53 



B.1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: COPY 

3. Pseudo-text-I must not be null, and may not consist solely of the character space(s) or of com
ment lines. Psuedo-text-I represents one or more COBOL 74 words. It may not consist of a por
tion of a COBOL 74 word. 

4. Pseudo-text-2 may be null. 

5. Character-strings within pseudo-text-I and pseudo-text-2 may be continued. However, both 
characters of the pseudo-text delimiter ( - ) must be on the same line. For more details refer 
to Indicator Area for continuation of lines, Section 3. 

6. Word-I or word-2 may be any single COBOL74 word. 

7. A COPY statement may occur in the source program anywhere a character-string or a separator 
may occur, except that a COPY statement must not occur within a COPY statement nor in 
the library text. 

General Rules: 

7-54 

I. The compilation of a source program containing COPY statements is logically equivalent to 
processing all COPY statements prior to the processing of the resulting source program. 

2. The effect of processing a COPY statement is that the library text associated with file-id is cop
ied into the source program, logically replacing the entire COPY statement, beginning with the 
reserved word COPY and ending with the punctuation character period, inclusive. 

3. If the REPLACING phrase is not specified, the library text is copied unchanged. 

If the REPLACING phrase is specified, the library text is copied and each properly matched 
occurrence of pseudo-text-I, identifier-I, word-I, and literal-I in the library text is replaced by 
the corresponding pseudo-text-2, identifier-2, word-2, or literal-2. 

4. For purposes of matching, identifier-I, word-I, and literal-I are treated as pseudo-text contain
ing only identifier-I, word- I, or literal-I, respectively. 

5. The comparison operation that determines text replacement is explained in the following 
paragraphs. 

Any separator comma, semicolon and/or space(s) preceding the leftmost library text-word is 
copied into the source program. Starting with the leftmost library text-word and the first pseu
do-text-I, identifier-I, word-I, or literal-I that was specified in the REPLACING phrase, the 
entire REPLACING phrase operand that precedes the reserved word BY is compared to an 
equivalent number of contiguous library text-words. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: COPY 

Pseudo-text-I, identifier-I, word-I, or literal-I match the library text only if, the ordered se
quence of text-words that forms pseudo-text-I, identifier-I, word-I, or literal-I is equal, charac
ter for character, to the ordered sequence of library text-words. For purposes of matching, each 
occurrence of a separator comma or semicolon in pseudo-text-I or in the library text is consid
ered to be a single space, except when pseudo-text-I consists solely of either a separator comma 
or semicolon, in which case it participates in the match as a text-word. Each sequence of one 
or more space separators is considered to be a single space. 

If no match occurs, the comparison is repeated with each next successive pseudo-text-I, identifi
er-I, word-I, or literal-I, if any, in the REPLACING phrase until either a match is found or 
there is no next successive REPLACING operand. 

When all the REPLACING phrase operands have been compared and no match has occurred, 
the leftmost library text-word is copied into the source program. The next successive library 
text-word is then considered as the leftmost library text-word, and the comparison cycle starts 
again with the first pseudo-text-I, identifier-I, word-I, or literal-I specified in the REPLAC
ING phrase. 

Whenever a match occurs between pseudo-text-I, identifier-I, word-I, or literal-I and the li
brary text, the corresponding pseudo-text-2, identifier-2, word-2, or literal-2 is placed into the 
source program. The library text-word immediately following the rightmost text-word that par
ticipated in the match is then considered as the leftmost library text-word. The comparison cy
cle starts again with the first pseudo-text-· I, identifier-I, word-I, or literal-I specified in the RE
PLACING phrase. 

The comparison operation continues until the rightmost text-word in the library text has either 
participated in a match or been considered as a leftmost library text-word and participated in 
a complete comparison cycle. 

6. A comment line occurring in the library text and pseudo-text-I is interpreted, for purposes of 
matching, as a single space. Comment lines appearing in pseudo-text-2 and library text are cop
ied into the source program unchanged. 

7. Debuggi,ng lines are permitted within library text and pseudo-text-2. Debugging lines are not 
permitted within pseudo-text-I; text-words within a debugging line participate in the matching 
rules as if the "D" did not appear in the indicator area. If a COPY statement is specified on 
a debugging line, then the text that is the result of the processing of the COPY statement ap
pears as though it were specified on debugging lines with the following exception. Comment 
lines in library text appear as comment lines in the resultant source program. 

8. The text produced as a result of the complete processing of a COPY statement must not contain 
a COPY statement. 

9. The syntactic accuracy of the library text cannot be independently determined. The syntactic 
accuracy of the entire COBOL 74 source program cannot be determined until all COPY state
ments have been completely processed. 

IO. Library text must conform to the rules for COBOL 74 reference format.-

I I. For purposes of compilation, text-words, after replacement, are placed in the source program 
according to the rules for reference format. Refer to Field Definitions for reference format, 
section 3. 

1168622 7-55 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: COPY 

14. If file-id is specified and the optional multi-file-id and pack-id clauses are not present, the file
id is the internal name of the library text and the default external identification. 

Examples: The following items illustrate uses of the COPY statement. 

FD INV-FILE COPY "MASTER/INVENTORY ON MYPACK". 

FD PAYROLL COPY "LASTYR/PAYROLL" REPLACING "1979" BY "1980". 

COPY "INPUTFILE". 

COPY "SOFTWARE/FILE" REPLACING - MARK 10.0- BY - RELEASE 11.0-. 

COPY "THISFILE ON MYPACK" REPLACING AAA BY INPUT-DATA. 

COPY FILEFDS OF LIB ON USERl FROM 3500 to 4800. 

7-56 



B 1000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: DELETE 

DELETE 

The DELETE statement logically removes a record from a mass storage file. 

General Format: 

I DELETE file-name RECORD [ ; INVALID KEY imperative-statement ] L_ ____ , ____ _ 

Syntax Rules: 

1. The INVALID KEY phrase must not be specified for a DELETE statement which references 
a file in sequential access mode. 

2. The INVALID KEY phrase must be specified for a DELETE statement which references a file 
not in sequential access mode and for which an applicable USE procedure is not specified. 

3. A DELETE statement cannot be used with a SORT or MERGE file or with a Sequential File. 

General Rules: 

1. The associated file must be open in the 1-0 mode at the time of the execution of the DELETE 
statement. Refer to the OPEN Statement in this section. 

2. For files in the sequential access mode, the last input-output statement executed for file-name 
prior to the execution of the DELETE statement must have been a successfully executed READ 
statement. The record that was accessed by that READ statement is logically removed from the 
file. 

3. For a file in random or dynamic access mode, if the file is Relative, the record identified by 
the Relative Key data item is deleted; if the file is Indexed, the record identified by the Prime 
Record Key is deleted. If the file does not contain the record specified by the key, an INVALID 
KEY condition exists. Refer to the Invalid Key condition in section 5. 

4. After the successful execution of a DELETE statement, the identified record has been logically 
removed from the file and can no longer be accessed. The block control information, BCI, in
cluded at the start of each physical record block, is updated to show that the record slot occu
pied by the deleted record is now available to be reused when records are added to the file~ 

5. The execution of a DELETE statement does not affect the contents of the record area associ
ated with file-name. 

6. The current record pointer is not affected by the execution of a DELETE statement. 

7. The execution of the DELETE statement causes the value of the specified FILE ST A TUS data 
item, if any, associated with file-name to be updated. Refer to 1-0 Status in section 5. 

1168622 7-57 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

DISABLE 

The DISABLE statement inhibits data transfer between the specified output queue and destinations for 
output or between specified sources and input queue for input. 

General Format: 

{ 

INPUT ( TERMINAL] } . { identifier- I } 
DISABLE cd-name WITH KEY 

OUTPUT -- literal-I 

Syntax Rules: 

I. Cd-name must reference an input CD when the INPUT phrase is specified. 

2. Cd-name must reference an output CD when the OUTPUT phrase is specified. 

3. Literal-I or the contents of the data item referenced by identifier-I must be defined as alphanu
meric, containing at least I but not more then 10 characters. 

General Rules: 

7-58 

I. The DISABLE INPUT < cd-name > statement provides a logical disconnection between the 
Data Communication Subsystem and the specified sources or destinations. When this logical 
disconnection is already in existence, or is to be handled by some other means external to this 
program, the DISABLE statement is not required in this program. The logical path for the 
transfer of data between the COBOL 74 programs and the Data Communication Subsystem is 
not affected by the DISABLE statement. 

When the logical disconnection specified by the DISABLE statement is already in existence, 
is to be handled by some means external to this program, or is denied, the status key data 
item in the area referenced by CD-name is updated. Refer to Communication Description 
Structure (CD) in section 6. 

2. When the INPUT phrase with the optional word TERMINAL is specified, input to a specific 
terminal is disabled. Only the contents of the data item referenced by data-name-7 (SYMBOLIC 
SOURCE) of the area referenced by cd-name are meaningful. 

3. When the INPUT phrase without the optional word TERMINAL is specified, the logical paths 
for all of the sources associated with the queue and subqueues specified by the contents of data
name-I (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area 
referenced by cd-name are deactivated. 

4. When the OUTPUT phrase is specified, the logical path for destination, or the logical paths 
for all destinations, specified by the contents of the data item referenced by data-name-5 (SYM
BOLIC DESTINATION) of the data referenced by cd-name are deactivated. 



B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

B. The KEY phrase provides a pass'Yord facility. 

VERB FORMAT: DISABLE 

An additional area of interaction between the DISABLE and the Data Communication Subsys
tem is the' password. Within the message is a 10-byte field which contains a character string. 
It is the option of an MCS (Message Control System), to compare the password specified by 
literal-I or identifier-I to a master password. The data referenced by literal-I or identifier-I 
is transferred to the MCS according to the rules of the MOVE statement. The password is re
ceived in an alphanumeric data item I to 10 characters in length. 

I168622 7-59 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

DISPLAY 

The DISPLAY statement causes low volume data to be transferred to an appropriate hardware device. 

General Format: 

( identifier-1 ~ 
DISPLAY J 

l 1iteral-l j [

. identifier-2 ] 

, literal-1 _ 

[ UPON mnemonic-name ] 

Syntax Rules: 

1. The mnemonic-name is associated with a hardware device in the SPECIAL-NAMES paragraph 
in the ENVIRONMENT DIVISION and must be associated with the hardware-name ODT. 

2. Each literal may be any figurative constant, except ALL. 

3. If the literal is numeric, then it must be an unsigned integer. 

4. DISPLAY cannot use an item declared in the LINKAGE SECTION. 

5. DISPLAY cannot use the conceptual data items DATE, DAY, TODAYS-DATE, TODAYS
NAME, TIMER AND TIME. 

6. DISPLAY cannot use an index data item. 

General Rules: 

7-60 

1. The DISPLAY statement causes the contents of each operand to be transferred to the hardware 
device in the order listed. 

2. The maximum number of characters that can be transmitted is unlimited. 

3. If a figurative constant is specified as one of the operands, only a single occurrence of the fi
gurative constant is displayed. 

4. When a DISPLAY statement contains more than one operand, the size of the sending item is 
the sum of the sizes associated with the operands, and the values of the operands are transfer
red in the sequence in which the operands are encountered. If the data transferred does not 
fit on one line, carriage returns and line feeds are supplied so that the data is extended to other 
lines of print. 

5. If the UPON phrase is not used, the device used is the ODT. 



DIVIDE 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: DIVIDE 

The DIVIDE statement divides one numeric data item into others and sets the values of data items 
equal to the quotient and remainder. 

General Formats: 

Format I: 

!Format 2: 

!Format 3: 

1168622 

DIVIDE 

DIVIDE 

'~ identifier- I } 

{ literal-I 
INTO identifier-2 [ROUNDED] 

[ ; identifier-3 [ ROUNDED ] ] ... 

[; ON SIZE ERROR imperative-statement J 

) identifier- I } 

t literal-I { 

BY l ~ identifier-2 ( 

INTO \ ( literal-2 ( 

GIVING identifier-3 (ROUNDED] 

[ , identifier-4 [ROUNDED]] ... 

[ ; ON SIZE ERROR imperative-statement] 

{ 
identifier- I } 

DIVIDE 
literal-I 

{ 
BY ( { identifier-2 } 

LNTO j literal-2 

GIVING identifier-3 [ROUNDED] 

REMAINDER identifier-4 

[ ; ON SIZE ERROR imperative-statement J 

7-61 



B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: DIVIDE 

Syntax Rules: 

1. Each identifier must refer to an elementary numeric item, except that any identifier associated 
with the GIVING or REMAINDER phrase must refer to either an elementary numeric item or 
an elementary numeric edited item. 

2. Each literal must be a numeric literal. 

General Rules: 

7-62 

1. Additional rules and explanations relative to this statement are given in the appropriate 
paragraphs. Refer to Intermediate Data Item, Arithmetic Statements, Overlapping Operands, 
and Multiple Results in Arithmetic Statements in section 7. Also, refer to General Rules 4 
through 6 below for a discussion of the ROUNDED phrase and the SIZE ERROR phrase as 
theyipertain to Format 3. 

2. When Format I is used, the value of identifier-2 is divided by either the value of identifier-
1 or literal-I. The value of the dividend (identifier-2) is replaced by this quotient; and similarly 
for identifier- I or literal- I and identifier-3, and so forth. 

3. When Format 2 is used, the value of identifier-I or literal-I is divided by the value of identifier-
2 or literal-2, and the result is stored in identifier-3, identifier-4, and so on. 

4. Format 3 is used when a remainder from the division operation is desired, namely identifier-
4. The remainder in COBOL 74 is defined as the result of subtracting the product of the quo
tient (identifier-3) and the divisor from the dividend. If identifier-3 is defined as a numeric ed
ited item, the quotient used to calculate the remainder is an intermediate field which contains 
the unedited quotient. If ROUNDED is used, the quotient used to calculate the remainder is 
an intermediate field which contains the quotient of the DIVIDE statement, truncated rather 
than rounded. 

5. In Format 3, the accuracy of the REMAINDER data item (identifier-4) is defined by the calcu
lation described above. Appropriate decimal alignment and truncation (not rounding) is per
formed for the content of the data item referenced by identifier-4, as needed. 

6. When the ON SIZE ERROR phrase is used in Format 3, the following rules pertain: 

a. If the size error occurs on the quotient, no remainder calculation is meaningful. The con
tents of the data items referenced by both identifier-3 and identifier-4 remain unchanged. 

b. If the size error occurs on the remainder, the contents of the data items referenced by iden
tifier-4 remain unchanged. However, as with other instances of multiple results of arithme
tic statements, the user is responsible for performing the necessary analysis to determine 
which situation has actually occurred. 



B 1000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: ENABLE 

ENABLE 

The ENABLE statement allows data transfer between specified output queues and destinations for out
put or between specified sources and input queues for input. 

General Format: 

~--E-N-A--BL_E ____ {_~--N-~-UT_Pu __ ;_T_E_R_M_IN __ A_L_]_} ___ c_d_-n_a_m_e_w __ IT_H __ K_E_Y ___ {_'.~_~_:_t:_~_er--l--} ______ ___. 

Syntax Rules: 

1. Cd-name must reference an input CD when the INPUT phrase is specified. 

2. Cd-name must reference an output CD when the OUTPUT phrase is specified. 

3. Literal-1 or the contents of the data item referenced by identifier-I must be defined as alphanu
meric containing 1 to 10 characters, inclusive. 

General Rules: 

1. The ENABLE INPUT < cd-name > statement provides a logical connection between the Data 
Communication Subsystem and the specified sources or destinations. When this logical connec
tion is already in existence, or is to be handled by some other means external to this program, 
the ENABLE statement is not required. The logical path for the transfer of data between the 
COBOL74 programs and the Data Communication Subsystem is not affected by the ENABLE 
statement. 

When the logical connection specified by the ENABLE statement is already in existence, (only 
if a RECEIVE is done instead), or is to be denied, the status key data item in the area refer
enced by CD-name is updated. Refer to the Communication Description Structure (CD) in sec
tion 6. 

2. The INPUT phrase with the optional word TERMINAL is used to ENABLE a previously 
disabled (DISABLE) logical path between the source and all ·associated queues and subqueues. 
Only the contents of the data item referenced by data-name-7 (SYMBOLIC SOURCE) of the 
area referenced by cd-name are meaningful. 

3. When the INPUT phrase without the optional word TERMINAL is specified, the logical paths 
for all of the sources associated with the queue and subqueues specified by the contents of data
name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE3) of the area 
referenced by cd-name are activated. 

4. Wheri the OUTPUT phrase is specified, the logical path for destination, or the logical paths 
for all destinations, specified by the contents of the data item referenced by data-name-5 (SYM
BOLIC DESTINATION) of the area referenced by cd-name are activated. 

1168622 7-63 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: ENABLE 

7-64 

5. The KEY phrase provides a password facility. 

An additional area of interaction between the ENABLE and the Data Communication Subsys
tem is the password. Within the message is a 10-byte field which contains a character string. 
It is the option of the MCS (Message Control System), to compare the password specified by 
literal-I or identifier-I to a master password. The data referenced by literal-I or identifier-I 
is transferred to the MCS according to the rules of the MOVE statement. The password is re
ceived in an alphanumeric data item of I to 10 characters in length. 



EXIT 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: EXIT 

The EXIT statement provides a means of documenting the logical end point for a series of sections· 
or paragraphs that may be executed under the control of a PERFORM statement. 

General Format: 

r-- EXIT. L__ ___________ ___ 

Syntax Rules: 

1. The EXIT statement must appear in a sentence alone. 

2. The EXIT sentence must be the only sentence in the paragraph. 

General Rules: 

1. An EXIT statement serves only to enable the user to assign a procedure-name to a given point 
in a program. Such an EXIi: statement has no other effect on the compilation or execution 
of the program. 

1168622 7-65 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

EXIT PROGRAM 

The EXIT PROGRAM statement marks the logical end of a called program. 

General Format: 

EXIT PROGRAM. 

Syntax Rules: 

1. The EXIT PROGRAM statement must appear in a sentence alone. 

2. The EXIT PROGRAM sentence must be the only sentence in the paragraph. 

General Rules: 

7-66 

1. An execution of an EXIT PROGRAM statement in a called program causes control to be 
passed to the calling program. If the program is not called, control passes through the EXIT 
PROGRAM statement to the first sentence of the next .. paragraph. 



GO TO 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: GO TO 

The GO TO statement causes control to be transferred from one part of the PROCEDURE DIVISION 
to another. 

General Format: 

Format I: 

GO TO [ proced ure-name-1 J 

Format 2: 

GO TO proced ure-name-1 [, proced ure-name-2 J ... , proced ure-name-n 

DEPENDING ON identifier 

Syntax Rules: 

I. Identifier is the name of a numeric elementary item described without any positions to the right 
of the assumed decimal point. 

2. When a paragraph is referenced by an ALTER statement, that paragraph can consist only of 
a paragraph header followed by a Format I GO TO statement. 

3. A Format I GO TO statement, without procedure-name-I, can only appear in a single statement 
paragraph. 

4. If a GO TO statement, represented by Format I, appears in a consecutive sequence of 
imperative statements within a sentence, it must appear as the last statement in that sequence. 

General Rules: 

I. When a GO TO statement, represented by Format I is executed, control is transferred to proce- · 
dure-name-· I or to another procedure-name if the GO TO statement has been modified by an 
ALTER statement. 

2. If procedure-name-I is not specified in Format I, an ALTER statement, referring to the GO 
TO statement, must be executed prior to the execution of this GO TO statement. Otherwise, 
the program is abnormally terminated. 

3. When a Format 2 GO TO statement is executed, control is transferred to the procedure-name 
whose ordinal position in the list following the GO TO corresponds to the value of the identifier 
being I, 2, ... , n. If the value of the identifier is anything other than the positive or unsigned 
integers I, 2, ... , n, then no transfer occurs and control passes to the next statement in the 
normal sequence for execution. 

I I 68622 7-67 



IF 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

The IF statement causes a condition to be evaluated. The subsequent action of the object program de
pends on whether the value of the condition is TRUE or FALSE. 

General Format: 

( staternent-1 ) 
IF condition; ) ( 

\ NFXT SENTENCF J 

~ ; ELSE statement<! l 

l ; ELSE NEXT SEN TEN cd 

Syntax Rules: 

I. Statement-I and statement-2 represent either an imperative statement or a conditional statement, 
and either may be followed by a conditional statement. 

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal 
period of the sentence. 

General Rules: 

7-68 

I. When an IF statement is executed, the following transfers of control occur: 

a. If the condition is TRUE, statement-I is executed, if specified. If statement-I contains a 
procedure branching or conditional statement, control is explicitly transferred in accor
dance with the rules of that statement. Refer to Categories of Statements in this section. 
If statement-I does not contain a procedure branching or conditional statement, the ELSE 
phrase, if specified, is ignored and control passes to the next executable sentence. 

b. If the condition is TRUE and the NEXT SENTENCE phrase is specified instead of state
ment-I, the ELSE phrase, if specified, is ignored and control passes to the next executable 
sentence. 

c. If the condition is FALSE, statement-I or NEXT SENTENCE is ignored, and statement-
2, if specified, is executed. If statement-2 contains a procedure branching or conditional 
statement, control is explicitly transferred in accordance with the rules of that statement. 
Refer to Categories of Statements in this section. If statement-2 does not contain a proce
dure branching or conditional statement, control passes to the next executable sentence. 
If the ELSE statement-2 phrase is not specified, statement-I is ignored and control passes 
to the rtext executable sentence. 

d. If the condition· is FALSE, and the ELSE NEXT SENTENCE phrase is specified, state
ment-I is ignored, if specified, and control passes to the next executable sentence. 

2. Statement-I and/or statement-2 may contain an IF statement. In this case, the IF statement is 
nested. The Mark I 1.0 B 1000 COBOL 74 allows 45 nested IF statements. 

IF statements within IF statements may be considered as paired IF and ELSE combinations, 
proceeding from left to right. Thus, any ELSE encountered is considered to apply to the imme
diately preceding IF that has not been already paired with an ELSE. 



INSPECT 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

The INSPECT statement provides the ability to tally (Format 1), replace (Format 2), or. tally and re
place (Format 3) occurrences of single characters or groups of characters in a data item. 

General Formats: 

Format I: 

INSPECT identifier-I TALL YING 

{, identifier-2 FOB_ 
( { {ALL } { identifier-3} ~ 
~ , j LEADING literal-I ' [{ BEF~RE} INITIAL { i~lentifier4}] ~ 

AFTER hteral-2 ) ( ( CHARACTERS J 

Format 2: 

INSPFCT identifier-1 REP[,ACING 

CHARACTERS BY { i?entifier-(1 } 
~---------- - hteral-4 [{ BF.F~RF }. INITIAL { i~lentifier-7}] 

AFTER hteral-5 . 

(, J WDING ~. ~ { identifier-5} BY { identifier-6 } [{BEFORE} INITIAL f identiricr-7 t J I .. ! . l l FIRST j t ' literal-3 literal4 AFTER 
1 

) literal-5 ( \ J 

Format 3: 

INSPECT identifier-I TALL YING 

{ , idenlifier-2 !:QB 

REPLACING 

( ( ALL {id. entifier··3}\ J ) 
) ) LEADING I I I ( [{BEFORE l INITIAL j identifier-4 l ( ) , ) 1tera - ( , ( 
l l CHARACTERS J AFTER ' f literal-4 I J 

CHARACTERS BY { identifier-6 } 
literal-4 [{

BEFORE} 
AFTER 

INITIAL 
{. 
i~entif~er-7 }] 
literal-) 

l f , f ~DING l j { identifier-5} BY {identifier-(> } 
( ( .EIRST J l ' literal-3 - literal4 [{ BE~'ORE} INITIAL { identifier-7 ~·] l ~ 

AF f ER literal-5 J \ ... j ... 

1168622 7-69 



B 1000 Systems COBOL 74 Language Manual 
· Procedure Division 

VERB FORMAT: INSPECT 

Syntax Rules: 

All Formats 

1. Identifier-I must reference either a group item or any category of elementary item, described 
(either implicitly or explicitly) as usage is DISPLAY. 

2. Identifier-3 ... identifier-n must reference either an elementary alphabetic, alphanumeric, or nu
meric item described (either implicitly or explicitly) as usage is DISPLAY. 

3. Each literal must be nonnumeric and may be any figurative constant, except ALL. 

Formats 1 and 3 only 

4. Identifier-2 must reference an elementary numeric data item. 

5. If either literal-1 or literal-2 is a figurative constant, the figurative constant refers to an implicit 
one character data item. 

Formats 2 and 3 only 

6. The size of the data referenced by literal-4 or identifier-6 must be equal to the size of the data 
referenced by literal-3 or identifier-5. When a figurative constant is used as literal-4, the size 
of the figurative constant is equal to the size of literal-3 or the size of the data item referenced 
by identifier-5. 

7. When the CHARACTERS phrase is used, literal-4, literal-5, or the size of the data item refer
enced by identifier-6, identifier-7 must be one character in length. 

8. When a figurative constant is used as literal-3, the data referenced by literal-4 or identifier-6 
must be one character in length. 

General Rules: 

7-70 

1. Inspection (which includes the comparison cycle, the establishment of boundaries for the BE
FORE or AFTER phrase, and the mechanism for tallyfog and/or replacing) begins at the left
most character position of the data item referenced by identifier-I, regardless of class, and pro
ceeds from left to right to the rightmost character position as described in General Rules 4 
through 6 which follow. If identifier-! is signed, the sign character is not inspected. 

2. For use in the INSPECT statement, the contents of the data item referenced by identifier-I, 
identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 are treated as follows: 

a. If any of identifier-I, identifier-3, identifier-4, id en ti fier-5, identifier-6, or identifier-7 is de
scribed as alphanumeric, the INSPECT statement treats the contents of each such identifier 
as a character-string. 

b. If any of identifier-I, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is de
scribed as alphanumeric edited, numeric edited or unsigned numeric, the data item is in
spected as though redefined as alphanumeric (refer to General Rule 2a) and the INSPECT 
statement had been written to reference the redefined data item. 



B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

c. If any of identifier-I, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is de
scribed as signed numeric, the sign character of the data item is not inspected. 

3. In General Rules 4 through I I all references to literal-I, literal-2, literal-3, literal-4, and literal-
5 apply equally to the contents of the data items referenced by identifier-3, identifier-4, identifi
er-5, identifier-6, and identifier-7, respectively. 

4. During inspection of the contents of the data item referenced by identifier-I, each properly 
matched occurrence of literal-I is tallied (Formats I and 3) and/or each properly matched oc
currence of literal-3 is replaced by literal-4 (Formats 2 and 3). 

5. The comparison operation, to determine the occurrences of literal-I to be tallied and/or occur
rences of literal-3 to be replaced, occurs as follows: 

a. The operands of the TALL YING and REPLACING phrases are considered in the order 
specified in the INSPECT statement from left to right. The first literal-I, literal-3 is com
pared to an equal number of contiguous characters, starting with the leftmost character 
position in the data item referenced by identifier-I. Literal-I, literal-3 and that portion of 
the contents of the data item referenced by identifier-I match only if equal, character for 
character. 

b. If no match occurs in the comparison of the first literal-I, literal-3, the comparison is re
peated with each successive literal-I, literal-3, if any, until either a match is found or there 
is no next successive literal-I, literal-3. When there is no next successive literal-I, literal-
3, the character position in the data item referenced by identifier-I immediately to the right 
of the leftmost character position considered in the last comparison cycle is considered as 
the leftmost character position, and the comparison cycle begins again with the first literal-
1, literal-3. 

c .. Whenever a match occurs, tallying and/or replacing takes place as described in General 
Rules 8 thro.ugh 10. The character position in the data item referenced by identifier-I, im
mediately to the right of the rightmost character position that participated in the match, 
is now considered to be the leftmost character position of the data item referenced by iden
tifier- I. The comparison cycle starts again with the first literal-I, literal-3. 

d .. The comparison operation continues until the rightmost character position of the data item 
referenced by identifier-I has participated in a match or has been considered as the left
most character position. When this occurs, inspection is terminated. 

e. If the CHARACTERS phrase is specified, an implied one character operand participates 
in the cycle described in steps 5a through 5d above, except that no comparison to the con
tents of the data item referenced by identifier-I takes place. This implied character is al
ways considered to match the leftmost character of the contents of the data item referenced 
by identifier-I participating in the current comparison cycle. 

6. The comparison operation defined in General Rule 5 is affected by the BEFORE and AFTER 
phrases as follows: 

1168622 

a. If the BEFORE or AFTER phrase is not specified, literal-I, literal-3 or the imp1ied operand 
of the CHARACTERS phrase participates in the comparison operation as described in 
General Rule 5. 

7-7I 



B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

7-72 

b. If the BEFORE phrase is specified, the associated literal-I, literal-3 or the implied operand 
of the CHARACTERS phrase participates only in those comparison cycles which involve 
that portion of the contents of the data item referenced by identifier-I from the leftmost 
character position up to, but not including, the first occurrence of literal-2, literal-5 within 
the contents of the data item referenced by identifier-I. The position of this first occur
rence is determined before the first cycle of the comparison operation described in General 
Rule 5 is begun. If, on any comparison cycle, literal-I, literal~3 or the implied operand 
of the CHARACTERS phrase is not eligible to participate, it is considered not to match 
th~ contents of the data item referenced by identifier-I. If there is no occurrence of literal-
2, literal-5 within the contents of the data item reference~ by identifier-I, the associated 
literal-I, literal-3, or the implied operand of the CHARACTERS phrase participates in the 
comparison operation as though the BEFORE phrase had not been specified. 

Example: 

Assume that identifier-I contains ABCDEFGH. 

Phrase 

none 
BEFORE "G" 
BEFORE "DEF" 
BEFORE "FGE" 
BEFORE "A" 

Range of Inspection_ 

A through H 
A through F 
A through C 
A through H 
Null 

c. If the AFTER phrase is specified, the associated literal-I, literal-3 or the implied operand 
of the CHARACTERS phrase may participate only in those comparison cycles which in
volve that portion of the contents of the data item referenced by identifier-I from the char
acter position immediately to the right of the rightmost character position of the first oc
currence of literal-2, literal-5, within the contents of the data item referenced by identifier
I and the rightmost character position of the data item referenced by identifier-I. The posi
tion of this first occurrence is determined before the first cycle of the comparison 
operation described in General Rule 5 is begun. If, on any comparison cycle, literal-I, liter
al-3 or the implied operand of the CHARACTERS phrase is not eligible to participate, 
it is considered not to match the contents of the data item referenced by identifier-I. If 
there is no occurrence of literal-2, literal-5 within the contents of the data item referenced 
by identifier-I, the associated literal-1, literal-3, or the implied operand of the CHARAC
TERS phrase is never eligible to participate in the comparison operation. 

Example: 

Assume that identifier-I contains ABCDEFGH. 

Phrase 

none 
AFTER "C" 
AFTER "BCD" 
AFTER "DCE" 
AFTER "H" 

Range of Inspection 

A through H 
D through H 
E through H 
Null 
Null 



B 1000 Sysfems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

Format l: 

7. The contents of the data item referenced by identifier-2 are not initialized by the execution of 
the INSPECT statement. 

8. The rules for tallying are as follows: 

1168622 

a . .If the ALL phrase is" specified, the contents of the data item referenced by identifiet-2 are 
incremented by I for each occurrence of literal-I matched within the contents of the data 
item referenced by identifier- I. 

INSPECT word TALLYING count FOR ALL "BA". 

word 
word 

BARBARA 
HBAABCT 

count 
count 

2 
I 

b. If the LEADING phrase is specified, the contents of the data item referenced by identifier-
2 are incremented by I for each contiguous occurrence 'of literal-I matched within the con
tents of the data item referenced by identifier-I, provided that the leftmost such occurrence 
is at the point where comparison began in the first comparison cycle in which literal-I was 
eligible to participate. 

INSPECT word TALLYING count-1 FOR LEADING "N" BEFORE INITIAL "0", 
count-2 FOR LEADING "E" BEFORE INITIAL "R". 

word 
word 

PATTERSON 
MCKINNON 

count-I 
count-I 

0 
2 

count-2 
count-2 

1 
0 

c. If the CHARACTERS phrase is specified, the contents of the data item referenced by iden
tifier-2 are incremented by 1 for each character matched (refer to General Rule 5e) within 
the contents of the data item referenced by identifier-I. 

INSPECT word TALLYING count FOR CHARACTERS. 

word 
word 

KOMP 
HARRINGTON 

count 
count 

4 
10 

7-73 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

Format 2: 

7-74 

9. The required words ALL, LEADING, and FIRST are adjectives that apply to each succeeding 
BY phrase until the next adjective appears. 

10. The rules for replacement are as follows: 

a. When the CHARACTERS phrase is specified, each character matched (refer to General 
Rule 5e) in the contents of the data item referenced by identifier-I is replaced by literal-
4. 

INSPECT word REPLACING CHARACTERS BY "M". 

word 
word 

MMMGOOD 
KOUNT210 

count 
count 

MMMMMMM 
MMMMMMMM 

b. When the adjective ALL is specified, each occurrence of literal-3 matched in th~e contents 
of the data item referenced by identifier- I is replaced by literal-4. 

INSPECT word REPLACING ALL "R" BY "Z" BEFORE INITIAL "B" . 

word 
word 

ROBERTS 
RCHRBR 

. 
after 
after 

ZOBERTS 
ZCHZBR 

c. When the adjective LEADING is specified, each contiguous occurrence of literal-3 matched 
in the contents of the data item referenced by identifier- I is replaced by literal-4, provided 
that the leftmost occurrence is at the point where comparison began in the first comparison 
cycle in which literal-3 was eligible to participate. 

INSPECT word REPLACING LEADING "S" BY "X" AFTER INITIAL "O". 

word 
word 

SPORTS 
CROSS 

after 
after 

SPORTX 
CROXX 

d. When the adjective FIRST is specified, the leftmost occurrence of literal-3 matched within 
the contents of the data item referenced by identifier-I is replaced by literal-4. 

INSPECT word REPLACING FIRST "A" BY "S". 

word 
word 

ABCA 
TVANAR 

after 
after 

SBCA 
TVSNAR 



Format 3: 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

I I. A Format 3 INSPECT statement is interpreted and executed as though two successive IN
SPECT statements specifying-the same identifier-I had been written: one statement is a Format 
I statement with TALL YING phrases identical to those specified in the Format 3 statement. 
The other statement is a Format 2 statement with REPLACING phrases identical to those 
specified in the Format 3 statement. The general rules given for matching and counting apply 
to the Format I statement; the general rules given for matching and replacing apply to the 
Format 2 statement. 

Examples: 

INSPECT word TALLYING count-I FOR LEADING "L 11 BEFORE INITIAL "A 11
, count-2 FOR 

LEADING /1 A 11 BEFORE INITIAL 11 L". 

word 
word 

LARGE 
ANALYST 

count-I = I 
count-I = / 0 

count-2 
count-2 

0 
I 

INSPECT wQrd TALLYING count FOR ALL 11 L 11
, REPLACING LEADING 11 A 11 BY 11 E 11 AFTER 

INITIAL II L II. 

word 
word 
word 

CALLAR 
SALAMI 
LATTER 

count 
count 
count 

2 
I 
I 

after 
after 
after 

CALLAR 
SALEMI 
LETTER 

INSPECT word REPLACING ALL 11 A 11 BY 11 G 11 BEFORE INITIAL 11 X 11
• 

word 
word 

ARXAX 
HAND AX 

after 
after 

GRXAX 
HGNDGX 

INSPECT word TALL YING count FOR CHARACTERS AFTER INITIAL /1 1 11 REPLACING ALL 
11 A" BY 11 B". 

word 
word 
word 

ADJECTIVE 
JACK 
JUJMAB 

count 
count 
count 

6 
3 
5 

after 
after 
after 

BDJCTIVE 
JBCK 
JUJMBB 

INSPECT word REPLACING ALL "X 11 BY 11 Y 11
, 

11 B 11 BY 11 Z 11
, "W 11 BY "Q" AFTER INITIAL 11 R". 

1I68622 

word 
word 
word 

RXXBQWY 
YZACDWBR 
RAWRXEB 

after 
after 
after 

RYYZQQY 
YZACDWZR 
RAQRYEZ 

7-75 



B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: INSPECT 

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A". 

before: 1 2 X Z A B C D 

after: B B B B B A B C D 

INSPECT word REPLACING ALL "S" BY "H", "B" BY "A", "P" BY "L", "C" BY "E". 

word SBPC after HALE 
word = HOPPOWPOG after = HOLLOWLOG 

7-76 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: MERGE 

MERGE 

The MERGE statement combines two or more files on a set of specified keys, and during the process 
makes records available, in merged order, -to an output procedure or an output file. 

General Format: 

MERGE 
file-name- I 

{ 

ASCENDING } 
ON KEY data-name-I 

DESCENDING 
[ , data-name-2 ] 

{

.ASCENDING } 
KEY data-name-3 [, data-name-4] 

DESCENDING 

( COLLA TING SEQUENCE IS alphabet-name ] 

... ] ... 

fileQnarne-2 , file-narne-3 , file-narne-4 USING [{ PURCH }] [{PURGE }] [ [{PURGE }]] 
RELEASE RELEASE RELEASE 

OUTPUT PROCEDURE IS procedure-name-I [ j THROUGH t procedure-name-21 
( THRU j 

GIVING file-name-5 

Syntax Rules: 

1. File-name-I must be described in a sort-merge file description (SD) entry in the DATA DIVI
SION. 

2. Procedure-name-I represents the name of an output procedure. 

3. File-name-2, file-name-3, file-name-4, and file-name-5 must be described in a file description 
entry (FD), not in a sort-merge file description entry (SD), in the DAT A DIVISION. The actual 
size of the logical record(s) described for file-name-2, file-name-3, file-name-4, and file-name-
5 must be equal to the actual size of th~ logical record(s) described for file-name-I. If the data 
descriptions of the elementary items that make up these records are not identical, it is the 
programmer's responsibility to describe the corresponding records in such a manner so as to 
cause an equal number of character positions to be allocated for the corresponding records. 

1168622 7-77 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: MERGE 

4. The words THRU and THROUGH are equivalent. 

5. Data-name-I, data-name-2, data-name-3, and data-name-4 are KEY data-names and are subject 
to the following rules: 

a. The data items identified by KEY data-names must be described in records associated with 
file-name- I. 

b. KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be variable length items. 

d. If file-name-I has more than one record description, then the data items identified by KEY 
data-names may all be described within one of the record descriptions or in any combina
tion of record descriptions. It is not necessary to redescribe the KEY data-names in each 
record description. 

e. None of the data items identified by KEY data-names can be described by an entry which 
either contains an OCCURS clause or is subordinate to an entry which contains an OC
CURS clause. 

6. No more than one file-name from a multiple file reel can appear in the MERGE statement. 

7. File-names must not be repeated within the MERGE statement. 

8. MERGE statements may appear anywhere except in the Declarative portion of the PROCE
DURE DIVISION or in an input or output procedure associated with a SORT or MERGl 
statement. 

9. As many as eight file-names may be specified in the USING clause. 

General Rules: 

7-78 

I. The MERGE statement merges all records contained on file-name-2, file-name-3, and file-name-
4. The files referenced in the MERGE statement must not be open at the time the MERGE 
statement is executed. These files are automatically opened and closed by the MERGE operation 
with all implicit functions performed, such as the execution of any associated USE procedures. 
The terminating function for all files is performed as if a CLOSE statement, without optional 
phrases, had been executed for each file. 

2. The data-names following the word KEY are listed from left to right in the MERGE statement 
in order of decreasing significance without regard to division into KEY phrases. In the format, 
data-name-I is the major key, data-name-2 is the next most significant key, and so forth. 

a. When the ASCENDING phrase is specified, the merged sequence will be from the lowest 
value of the contents of the data items identified by the KEY data-names to the highest 
value, according to the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the merged sequence will be from the highest 
value of the contents of the data items identified by the KEY data-names to the lowest 
value, according to the rules for comparison of operands in a relation condition. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: MERGE 

3. The collating sequence that applies to the comparison of the nonnumeric key data items 
specified is determined in the following order of precedence: 

a. First, the collating sequence established by the COLLA TING SEQUENCE phrase, if 
specified, in that MERGE statement. 

b. Second, the collating sequence established as the program collating sequence. 

4. The output procedure must consist of one or more paragraphs or sections that appear conti
guously in a source program and do not form a part of any other procedure. In order to make 
merged records available for processing, the output procedure must include the execution of 
at least one RETURN statement. Control must not be passed to the output procedure except 
when a related SORT or MERGE statement is being executed. The output procedure may con
sist of any procedures needed to select, modify, or copy the records that are being returned 
one at a time in merged order, from file-name-1 . 

The restrictions on the procedural statements within the output procedure are as follows: 

a. The output procedure must not contain any transfers of control to points outside the out
put procedure. ALTER, GO TO, and PERFORM statements in the output procedure are 
not permitted to refer to procedure-names outside the output procedure. COBOL 74 state
ments that cause an implied transfer of control to declaratives are allowed. 

b. The output procedures must not contain any SORT or MERGE statements. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers of control 
to points inside the output procedures. ALTER, GO TO, and PERFORM statements in 
the remainder of the PROCEDURE DIVISION are not permitted to refer to procedure
names within the output procedures. 

5. If an output pr0€edure is specified, control passes to it during execution of the MERGE state
ment. The compiler inserts a return mechanism at the end of the last paragraph or section in 
the output procedure. When control passes the last statement in the output procedure, the re
turn mechanism provides for termination of the merge, and then passes control to the next 
executable statement after the MERGE statement. Before entering the output procedure, the 
merge procedure reaches a point at which it can select the next record in merged order when 
requested. The RETURN statements in the output procedure are the requests for the next rec
ord. 

6. If the GIVING phrase is specified, all the merged records in file-name-1 are automatically writ
ten on file-name-5 as the implied output procedure for this MERGE statement. 

7. When, according to the rules for the comparison of operands in a relation condition, the con
tents of all the key data items of one data record are equal to the contents of the corresponding 
key data items of one or more other data records, the order of return of these records: 

1168622 

a. Follows the order of the associated input files as specified in the MERGE statement. 

b. Is such that all records associated with one input file are returned prior to the return of 
records from another input file. 

7-79 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: MERGE 

7-80 

8. When the records in the files referenced by file-name-2, file-name-3, ... are not ordered as de
scribed in the ASCENDING or DESCENDING KEY clauses, MERGE takes place as previously 
described but with all improperly ordered data records being placed on the output file or re
turned to the output procedure immediately after being read from respective input files. As a 
result, when such a condition exists, the output from the MERGE statement is not in a strict 
ASCENDING or DESCENDING KEY order. 



B I 000 Systems COBOL 74 Language Manual 

Procedure Division 

VERB FORMAT: MOVE 

MOVE 

The MOVE statement transfers data: in accordance with the rules of editing, to one or more data 
areas. 

General Format: 

Format .I: 

literal 
TO identifier-2 (, identifier-3 ] ... L MOVE { identifier-I } 

----------
Format 2: 

CORR . 
identifier-I TO identifier-2 L MOVE { CORRESPONDING } 

·-----________, 

Syntax Rules: 

I. Identifier- I and literal represent the sending area; identifier-2, identifier-3, ... , represent the re
ceiving area. 

2. CORR is an abbreviation for CORRESPONDING. 

3. When the CORRESPONDING phrase is used, both identifiers must be group items. 

4. An index data item cannqt appear as an operand of a MOVE statement. Refer to the USAGE 
clause in section 6. 

General Rules: 

1. If the CORRESPONDING phrase is used, selected items within identifier-I are moved to se
lected items within identifier-2, according to the rules given in the CORRESPONDING phrase. 
The results are the same as if the user had referred to each pair of corresponding identifiers 
in separate MOVE statements. 

2. The data designated by the literal or identifier-I is moved first to identifier-2, then to identifier-
3:, a!ld so on. The rules governing identifier-2 also apply to the other receiving areas. Any subs
cripting or indexing associated with identifier-2, . . . , is evaluated immediately before the data 
is moved to the respective data item. 

1168622 7-81 



B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: MOVE 

7-82 

Any subscripting or indexing associated with identifier-I is evaluated only once, immediately. 
before data is moved to the first of the receiving opera.nds. The result of the statement: 

MOVE a (b) TO b, c (b) 

is equivalent to: 

MOVE a (b) TO temp 
MOVE temp TO b 
MOVE temp TO c (b) 

Temp is an intermediate result item provided by the compiler. 

3. Any MOVE in which the sending and receiving items are both elementary items is an elementary 
move. Every elementary item belongs to one of the following categories: numeric, alphabetic, 
alphanumeric, numeric edited, alphanumeric edited. These categories are described in the PIC
TURE clause in section 6. Numeric literals belong to the category numeric, and nonnumeric 
literals belong to the category alphanumeric. The figurative constant ZERO belongs to the 
category numeric. The figurative constant SP ACE belongs to the category alphabetic. All other 
figurative constants belong to the category alphanumeric. 
The following rules apply to an elementary move between the categories: 

a. The figurative constant SP ACE, a numeric edited, alphanumeric edited, or alphabetic data 
item must not be moved to a numeric or numeric edited data item. 

b. A numeric literal, the figurative constant ZERO, a numeric data item or a numeric edited 
data item must not be moved to an alphabetic data item. 

c. A noninteger numeric literal or a noninteger numeric data item must not be moved to an 
alphanumeric or alphanumeric edited data item. 

d. All other elementary moves are legal and are performed according to the rules given in 
General Rule 4. 

4. Any necessary conversion of data from one form of internal representation to another takes 
place during legal elementary moves, along with any editing specified for the receiving data 
item: 

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any 
necessary space filling takes place as defined under Standard Alignment Rules in section 
2. If the size of the sending item is greater than the size of the receiving item, the excess 
characters are truncated on the right after the receiving item is filled. If the sending item 
is described as being signed numeric, the operational sign is not moved. If the operational 
sign occupied a separate character position (refer to the SIGN clause in section 6), that 
character is not moved and the size of the sending item is considered to be one less than 
the actual size (in terms of standard data format characters). 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: MOVE 

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point 
and any necessary zero-filling takes place as defined under the Standard Alignment Rules, 
except where zeroes are replaced because of editing requirements. 

1) When a signed numeric item is the receiving item, the sign of the sending item is placed 
in the receiving item. Refer to the SIGN clause in section 6. Conversion of the represen
tation of the sign takes place as necessary. If the sending item is unsigned, a positive 
sign is generated for the receiving item. 

2) When an unsigned numeric item is the receiving item, the absolute value of the sending 
item is moved and no operational sign is generated for the receiving item. 

3) When a data item described as alphanumeric is the sending item, data is moved as if 
the sending item were described as an unsigned numeric integer. 

c. When a receiving field is described as alphabetic, justification and any necessary space-fill
ing takes place as defined under the Standard Alignment Rules. If the size of the sending 
item is greater than the size of the receiving item, the excess characters are truncated on 
the right after the receiving item is filled. 

5. Any move that is not an elementary move is treated exactly as if it were an alphanumeric to 
alphanumeric elementary move, except that there is no conversion of data from one form of 
internal representation to another. In such a move, the receiving area is filled without 
consideration for the individual elementary or group items contained within either the sending 
or receiving area, except as noted in General Rule 4 of the OCCURS clause in section 6. 

6. The validity of the various types of MOVE statements is summarized in table 7-4. The general 
rule reference (for example, 4c) indicates the rule that prohibits the move or the behavior of 
a valid move. 

Table 7-4. A Valid MOVE Statement 

Category of Receiving Data Item 

Categor:y of Alphanumeric Numeric Integer 
Sending Alphabetic Edited Numeric Noninteger 

Data Item Numeric Edited 
Alphanumeric 

ALPHABETIC Yes/4c Yes/4a No/3a 

ALPHANUMERIC Yes/4c Yes/4a Yes/4b 

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a 

INTEGER No/3b Yes/4a Yes/4b 
NUMERIC 

NONINTEGER No/3b No/3c Ycs/4b 
NUMERIC EDITED Noirb Yes/4a No/3a 

1168622 7-83 



VERB FORMAT: MOVE 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

Valid Move Combinations 

Figure 7-1 shows the valid combinations of sending and receiving fields permitted in COBOL74. 

7-84 



0\ 
00 
0\ 
N 
N 

-.....J 
I 

00 
U'l 

r 
RECEIVING 

SENDING 

ALPHABETIC 

GROUP 
AN 

ELEM (a) 

AE 

DISPLAY INTEGER 
NUMERIC 
(DN OR LIT) REAL 

CMP INTEGER (b) 

NUMERIC REAL 

NE 

a - also non-numeric literal 

b - also undigit literal 

NON-NUMERIC NUMERIC 
MOVE MOVE 

CD I 
G) I 
Q) I 
@ I 

G) I 

® ! 
Q) ,/ 

* ILLEGAL 

G12337 

AN DISPLAY NUMERIC CMPNUMERIC 
ALPHABEfIC AE NE 

GROUP ELEM INTEGER REAL INTEGER REAL 

CD CD CD @ * * * * * 
CD CD CD CD CD <D 0 Q) CD 
CD Q) Q) ® Q) Q) Q) G) (J) 

CD CD CD ® * * * * * 
* 

/"'.;"\ r.-- @) @ @ Q) Q) 0) ~ ~ 

* CD * * @ Q) G) @ (j) 
* G) CD © CD Q) 0 Q) (j) 

* ® * * 0) 0) 0 Q) (j) 
* CD CD ® * * * * * 

PROPER ZONES 
ZERO ZERO ANY SENDING STRIPPED OR 

LEFT JUST. BY SPACE FILL ON FILL ON NECESSARY ZONES SUPPLIED BY 
JU_ST. DECIMAL FILL RIGHT LEFT TRANSLATION STRIPPED - INTERPRETER 

I I I 
I I I 

I I I 
,/ I I / 
! ,/ I I 
I I ,/ 

,/ ,/ 

Figure 7-1. Valid MOVE Statement Combinations 

EDITING 
PERFORMED 

I 

I 

I 

< m 
:JJ 
to ,, 
0 
:JJ 
s 
)> 
-I 

s 
0 
< m 

to 

0 
0 
0 
tZl 
'< 
rJJ 

~ (; 
'"1 a 
0 VJ 
n (j 

&o 
~ to 
@ 0 

oS :;::· ~ 
v;· ~ -· ~ 0 ::s ::s (Jq 

c 
p.:i 

(Jq 
(D 

~ 
~ 
::s 
c 
~ 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

MULTIPLY 

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items 
equal to the results. 

General Format: 

Format 1: 

MULTIPLY { i?entifier-l } BY identifit:r-2 [ROUNDED] 
h teral-1 

[, identifier-3 [RO UNO FD I] [;ON SIZE ERROR imperative-statement] 

Format 2: 

MULTIPLY { i?entifier-1 } 
ltteral-1 BY 

[, identifier-4 [ROUNDED J] 

{ il?tentil·t~er-~ } GIVING identifier-3 l RO UN OED I 
1 era -- 1 

(;ON SIZE ERROR imperative-statement] 

Syntax Rules: 

1. Each identifier must refer to a numeric elementary item, except that in Format 2 each identifier 
following the word GIVING must refer to either an elementary numeric item or an elementary 
numeric edited item. 

2. Each literal must be a numeric literal. 

3. The composite of operands, determined by superimposing all receiving data items of a given 
statement, aligned on decimal points, must not exceed 18 digits. 

General Rules: 

7-86 

I. Refer to ROUNDED Phrase, SIZE ERROR Phrase, Arithmetic Statements, Overlapping Oper
ands, and Multiple Results in Arithmetic Statements in this section for additional rules and in
formation. 

2. When Format I is used, the value of identifier-I or literal-I is multiplied by the value of identi
fier-2. The value of the multiplier (identifier-2) is replaced by this product; similarly for identifi
er-I or literal-I and identifier-3, and so forth. 

3. When Format 2 is used, the value of identifier-I or literal-1 is multiplied by identifier-2 or liter
al-2 and the result is stored in identifier-3, identifier-4, and so on. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: OPEN 

OPEN 

The OPEN statement initiates the processing of files. It also performs checking and/or writing of labels 
and other input-output operations. 

General Format: 

[, 
OUTPUT 

OPEN [ ' 
I -0 

[ ' 
EXTEND 

Syntax Rules: 

file-name-1 

file-name-2 

file-name-3 
file-name4 

file-name-5 
file-name-6 

lr 11111;11111;.1111~11·1·] REVERSED 
WITH NO REWIND 

[ •1111••••!~-~ ~1·-~-111·:] REVERSED 
WITH NO REWIND 

[WITH NO REWIND] 
[WITH NO REWIND] 

J ... 

1. The REVERSED and the NO REWIND phrases can only be used with sequential single 
reel/unit files. Refer to CLOSE in this section for additional information. 

2. The 1-0 phrase can be used only for mass storage files. 

3. The EXTEND phrase can be used only for sequential files. 

4. The EXTEND phrase must not be specified for multiple file reels. Refer to the 1-0-CONTROL 
Paragraph in section 5. 

5. The files referenced in the OPEN statement need not all have the same organization or access. 

1168622 7-87 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: OPEN 

General Rules: 

7-88 

1. The successful execution of an OPEN statement determines the availability of the file and re
sults in the file being in an open mode. 

2. ·The execution of an OPEN statement does not affect either the contents or availability of the 
file's record area. 

3. When a given file is not in an open mode, no statement (except for a SORT or MERGE state
ment with the USING or GIVING phrases) that references that file, either explicitly or impli
citly, can be executed. 

4. An OPEN statement must be successfully executed prior to the execution of any of the permissi
ble input-output statements. In table 7-5, I, R, or S at an intersection indicates that the 
specified statement, used in the access mode given for that row, may be used with the corre
sponding file organization and open mode given at the top of the· column. 

Table 7-5. Permissible Statements 

Open Mode 
File Access 

Mode Statement Input Output Input-Output Extend 

Sequential READ I RS I R S 
WRITE I R S s 

REWRITE I RS 
START I R I R 

DELETE I R 

Random READ I RS I R S 
WRITE ·1 R S I RS 

REWRITE I R S 
START 

DELETE I R 

Dynamic READ I R I R 
WRITE I R I R 

REWRITE. I R 
START I R I R 

DELETE I R 

The letters I, R, and S have the following meanings: 

I Indexed 
R Relative 
S Sequential 



/ 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: OPEN 

5. A file may be opened with the INPUT, OUTPUT, EXTEND, and I-0 phrases in the same pro
gram. Following the initial execution of an OPEN statement for a file, each subsequent OPEN 
statement execution for that same file must be preceded by the execution of a CLOSE state
ment, without the REEL, UNIT, or IDll phrase, for that file. 

6. Execution of the OPEN statement does not obtain or release the first data record. 

7. If label records are specified for the file, the beginning labels are processed as follows: 

a. When the INPUT phrase is specified, the execution of the OPEN statement causes the la
bels to be checked in accordance with conventions for input label checking. 

b. When the OUTPUT phrase is specified, the execution of the OPEN statement causes the 
labels to be written in accordance with conventions for output label writing. 

If label records are not specified, it is possible by operator intervention to equate the file 
to one with labels, in which case the label records are ignored. 

8. The file: description entry for file-name-1, file-name-2, file-name-5, file-name-6, file-name-7, or 
file-name-8 must be equivalent to that used when this file was created. 

9. If an input file is designated with the OPTIONAL phrase in the SELECT clause, the object 
program causes an interrogation for the presence or absence of this file. If the file is not pres
ent, the first READ statement for this file causes the AT END condition to be executed only 
when the operator has responded with an "OF" system message. Refer to the READ Statement 
in this section. 

10. The REVERSED and NO REWIND phrases can only be used with sequential single reel/unit 
files. Refer to CLOSE in this section. 

11. The REVERSED and WITH NO REWIND phrases are ignored if they do not apply to the 
storage media on which the file resides. 

12. If the storage media for the file permits rewinding, the following rules apply: 

a. When neither the REVERSED, the EXTEND, nor the NO REWIND phrase is specified, 
execution of the OPEN statement causes the file to be positioned at the beginning. 

b. When the NO REWIND phrase is specified, execution of the OPEN statement does not 
cause the file to be repositioned; the file must be already positioned at the beginning prior 
to execution of the OPEN statement. 

c. When the REVERSED phrase is specified, the file is positioned at the end by execution 
of the OPEN statement. 

13. When the REVERSED phrase is specified, the subsequent READ statements for the file make 
the data records of the file available in reversed order starting with the last record. 

1168622 7-89 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: OPEN 

7-90 

14. For files being opened with the INPUT or I-0 phrase, the OPEN statement sets the current 
record pointer to the first record currently existing within the file. For indexed files, the prime 
record key is established as the key of reference and is used to determine the first record to 
be accessed. If no records exist in the file, the current record pointer is set such that the next 
executed Format 1 READ statement for the file results in an AT END condition. 

15. When the EXTEND phrase is specified, the OPEN statement positions the file immediately fol
lowing the last logical record of that file. Subsequent WRITE statements referencing the file 
will add records to the file as though the file had been opened with the OUTPUT phrase. 

16. When the EXTEND phrase is specified and the LABEL RECORDS clause indicates label rec
ords are present, the execution of the OPEN statement includes the following steps: 

a. The beginning file labels are processed only in the case of a single reel unit file. 

b. The beginning reel/unit labels on the last existing reel/unit are processed as though the file 
was being opened with the INPUT phrase. 

c. The existing ending file labels are processed as though the file is being opened with the 
INPUT phrase. These labels are then deleted. 

d. Processing then proceeds as though the file had been opened with the OUTPUT phrase. 

17. The I-0 phrase permits the opening of a mass storage file for both input and output 
operations. Since this phrase implies the existence of the file, it cannot be used if the mass 
storage file is being initially created. 

18. When the I-0 phrase is specified and the LABEL RECORDS clause indicates label records 
are present, the execution of the OPEN statement includes the following steps: 

a. The labels are checked in accordance with conventions for input-output label checking. 

b. The new labels are written in accordance with conventions for input-output label writing. 

19. Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file 
is created. At that time the associated file contains no data records. 

A relative or sequential file opened with the OUTPUT phrase specified is entered into the disk 
directory as a result of an appropriate CLOSE statement. 

20. OPEN OUTPUT of an ISAM File enters the file in the disk directory during MCP processing 
of the OPEN statement. Any existing ISAM file structures with the same external names as 
the newly created ISAM file will be removed at this time. For further information on ISAM 
file naming, refer to appendix G in this manual. 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: OPEN 

7-91 



VERB FORMAT: OPEN . 

7-92 

B l 000 Systems COBOL 7 4 Language Manual 
Procedure Division 



PERFORM 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: PERFORM 

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return 
control implicitly whenever execution of the specified procedure is complete. 

General Format: 

Format I: 

PERFORM procedure-name-I [,~THROUGH l procedure-name-2] 

{THRU t 

Format 2: 

I PERFO.BM procedure-name-I [ 1 =Uf;H l procedtire-name-2] 
J identifier-1 l 
l integer-I j 

Format 3: 

TIMES 

PERFORM procedure-name-I 
[ 
(THROUGH~ procedure-name-2] UNTIL cornlition-1 

_l THRU j 

1168622 7-93 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: PERFORM 

Format 4: 

PERFORM procedure-name- I [ 
f THROUGH } J t THRU procedure-name-2 

VARYING 
t identifier-2 } {. identifier-3 } 
) FROM index-name-2 
~index-name-I literal-I 

f identifier-4 } 
BY · 
- ( literal-2 

UNTIL condition-I 

[AFTER 
~ identifier-5 } { identifier-6 } 
j FROM index-name-4 
~ index-name-3 literal-3 

BY {identifier-7 } 

literal-4 
UNTIL condition-2 J ... 

Syntax Rules: 

7-94 

1. Each identifier represents a numeric elementary item described in the DATA DIVISION. In 
Format 2, identifier-I must be described as a nume·ric integer. 

2. Each literal represents a numeric literal. 

3. The words THRU and THROUGH are equivalent. 

4. If an index-name is specified in the VARYING or AFTER phrase, then: 

a. The identifier in the associated FROM and BY phrases must be an integer data item. 

b. The literal in the associated FROM phrase must be a positive integer. 

c. The literal in the associated BY phrase must be a nonzero integer. 

5. If an index-name is specifed in the FROM phrase, then: 

a. The identifier in the associated VARYING or AFTER phrase must be an integer data item. 

b. The identifier in the associated BY phrase must be an integer data item. 

c. The literal in the associated BY phrase must be an integer. 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: PERFORM 

6. Literal in the BY phrase must not be zero. 

7. Condition-· I, condition-2 may be any conditional expression as described in Conditional Expres
sions in this section. 

8. Where procedure-name-I and procedure-name-2 are both specified and either is the name of 
a procedure in the declarative section of the program, then both must be procedure-names in 
the same declarative section. 

General Rules: 

I. The data items referenced by identifier-4 and identifier-7 must . not have a zero value. 

2. If an index-name is specified in the VARYING or AFTER phrase, and an identifier is specified 
in the associated FROM phrase, then the data item referenced by the identifier must have a 
positive value. 

3. When the PERFORM statement is executed, control is transferred to the first statement of the 
procedure named procedure-name-I, except as indicated in General Rules 6b, 6c, and 6d which 
follow. This transfer of control occurs only once for each execution of a PERFORM statement. 
For those cases where a transfer of control to the named procedure does take place, an implicit 
transfer of control to the next executable statement following the PERFORM statement is estab
lished as follows: 

a. If procedure-name-I is a paragraph-name and procedure-name-2 is not specified, then the 
return is after the last statement of procedure-name-I. 

b. If procedure-name-I is a section-name and procedure-name-2 is not specified, then the re-
turn is after the last statement of the last paragraph in procedure-name-I. · 

c. If procedure-name-2 is specified and it is a paragraph-name, then the return is after the 
last statement of the paragraph. 

d. If procedure-name-2 is specified and it is a section-name, then the return is after the last 
statement of the last paragraph in the section. 

. ' 

4. No particular sequential relationship is required to exist between procedure-name-I and proce-
dure-name-2. There may be more than one logical path of program control through the per
formed range of procedures. A common method, though not a required one, of. documenting 
the terminal paragraph of a performed range of procedures is through the use of the EXIT 
statement. 

5. An implicit return mechanism is established at the end of a performed range of procedures and 
is activated by the execution of a PERFORM statement. Program control reaching an active 
return mechanism always returns to the activating PERFORM statement. A return mechanism 
permanently deactivates. by transferring program control back to a PERFORM statement. An 
active return mechanism is temporarily deactivated by the execution of a PERFORM statement. 
Program control always passes through a nonactive return mechanism to the next executable 
statement following the PERFORM range. 

1168622 7-95 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: PERFORM 

7-96 

6. The PERFORM statements operate as follows with General Rule 5 applying to all formats: 

a. Format I is the format of the basic PERFORM statement. A procedure referenced by this 
type of PERFORM statement is executed once and then control passes to the next 
executable statement following the PERFORM statement. 

b. Format 2 is the format of the PERFORM ... TIMES statement. The procedures are per
formed the number of times specified by integer- I or by the initial value of the data item 
referenced by identifier-I for that execution. If, at the time of execution of a PERFORM 
statement, the value of the data item referenced by identifier-I is equal to zero or is 
negative, control passes to the next executable statement following the PERFORM state
ment. Following the execution of the procedures the specified number of times, control 
is transferred to the next executable statement following the PERFORM statement. 

During execution of the PERFORM statement, references to identifier-I cannot alter the 
number of times the procedures are to be executed from that which was indicated by the 
initial value of identifier-I. 

c. Format 3 is the format of the PERFORM ... UNTIL statement. The specified procedures 
are performed until the condition specified by the UNTIL phrase is TRUE. When the con
dition is TRUE, control is transferred to the next executable statement after tlie PER
FORM statement. If the condition is TRUE when the PERFORM statement is executed, 
no transfer to procedure-name- I takes place, and control is passed to the next executable 
statement following the PERFORM statement. 

d. Format 4 is the format of the PERFORM ... VARYING statement. This variation of the 
PERFORM statement is used to augment the values referenced by one or more identifiers 
or index-names in an orderly fashion during the execution of a PERFORM statement. In 
the following discussion, every reference to identifier as the object of the VARYING, AF
TER, and FROM (current value) phrases also refers to index-names. When index-name ap
pears in a VARYING and/or AFTER phrase, it is initialized and subsequently augmented 
according to the rules of the SET statement. When index-name appears in the FROM 
phrase, identifier, when it appears in an associated VAR YING or AFTER phrase, is initial
ized according to the rules of the SET statement. Subsequent augmentation is described 
in the following paragraphs. 

Identifier-2 and all occurrences, if any, of identifier-5 are set, in the order of occurrence 
in the PERFORM statement, to the value of the literal or the current value of the identifier 
in the associated FROM phrase. Condition-I is then evaluated. 

If any condition, other than the last, is FALSE on any occasion when it is evaluated, the 
next condition is evaluated immediately. 

If the last condition is FALSE when evaluated, the sequence of procedures, procedure
name-I through procedure-name-2, is executed once. The last BY value is then added to 
the associated identifier-2 or identifier-5 and the condition evaluated again. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: PERFORM 

If condition-I is TRUE when evaluated, control is transferred to the next executable state
ment after the PERFORM statement. If condition-I is TRUE the first time it is evaluated, 
the remaining conditions are not evaluated and the sequence of procedures, procedure
name-1 through procedure-name-2, is not executed. 

If any condit:ion-2 is TRUE when evaluated, these actions take place: first, the associated 
identifier-5 is set to the value of literal-3 or the current value of identifier-6 in the associ
ated FROM phrase. Second, the identifier of the immediately preceding AFTER or VARY
ING phrase is incremented by the associated BY value, and the condition specified in that 
preceding phrase is then evaluated. 

Figure 7-2 is a flowchart for the VARYING phrase of a PERFORM statement having one condition. 

1168622 

G'l2338 

ENTRANCE 

Set 
identifier-2 equal to 
current FROM value 

Execute 
procedure-name-1 THAU 

procedure-name-2 

Augment 
identifier-2 with 
current BY value 

Exit 

Figure 7-2. PERFORM VARYING with One Condition 

7-97 



VERB FORMAT: PERFORM 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

Figure 7-3 is a flowchart for the VARYING phrase of a PERFORM statement having two conditions. 

7-98 

G12339 

ENTRANCE 

Set identifier-2 and 
identifier-5 to current 

FROM values 

Execute 
procedure-name-1 THAU 

procedure-name-2 

Augment 
identifier-5 with 
current BY value 

TRUE 

TRUE 

Set 
identifier-5 to its 

current FROM value 

Augment 
identifier-2 with 
current BY value 

Figure 7~3. PERFORM VARYING with Two Conditions 

Exit 



B 1000 Systems COBOL 74 Language Manual 
, , · Procedure Division 

VERB FORMAT: PERFORM 

7. A procedure executed under the control of a PERFORM statement may execute PERFORM 
statements. There is no requirement that the range of procedures executed under the control 
of the nested PERFORM statement be declared totally within, or disjoint from, the range of 
procedures executed by the first PERFORM statement. The permanent deactivation of an active 
return mechanism causes the last return mechanism temporarily deactivated to again become 
active, allowing overlapping PERFORM ranges, or two or more PERFORM ranges that have 
a common exit point, to logically execute the same as disjoint PERFORM ranges. 

1168622 

Transferring program control, by means of a GO TO statement, from a range of procedures 
being executed under control of a PERFORM statement does not cause the return mechanism 
to be deactivated. Subsequently transferring program control back into the PERFORM range 
causes control to return to the PERFORM statement, provided that the return mechanism is 
still active. Repeatedly branching from a PERFORM range without allowing control to ever 
reach an active return mechanism may cause the program to terminate abnormally by exhaust
ing the resources allocated to account .for return mechanisms. 

7-99 



READ 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

For sequential access, the READ statement makes available the next logical record from a file. For 
random access, the READ statement makes available a specified record from a mass storage file. 

General Format: 

Format I: 

Format 2: 

7-100 

~ file-name ( !ifilIT] RECORD [ lliIQ. identifier] 

( ; AT §1:iQ imperative-statement] 

READ file-name RECORD ( INTO identifier ] 

( ; KEY IS data-name ] 

[ INV ALIQ. KEY imperative-statement J 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: READ 

:Syntax Rules: 

1. The INTO phrase must not be used when the input file contains logical records of various sizes 
as indicated by their record descriptions. The storage area associated with identifier and the 
storage area which is the record area associated with file-name must not be the same storage 
area. 

2. For an Indexed File, data-name must be the name of a data item specified as a record key 
associated with file-name. 

3. Data-name may be qualified. 

4. Format 1 must be used for all files in sequential access mode. 

5. The NEXT phrase must be specified for Relative and Indexed Files in dynamic access mode 
when records are to be retrieved sequentially. 

6. Format 2 is used for files in random access mode or for files in dynamic access mode when 
records are to be retrieved randomly. 

7. The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE pro
cedure is specified for the file-name. 

General Rules: 

1. The associated file must be open in the INPUT or 1-0 mode and must not be a SORT or 
MERGE file. Refer to the OPEN statement in this section. 

2. f:.~.tf.\.record to be made available by a Format 1 READ staterne11t·.l~I~ 1~~1)§·~ I~ 
l~~i~ .. is determined as follows: 

a. The record, pointed to by the current record pointer, is made available provided that the 
current record pointer is positioned by the START or OPEN statement and the record is 
still accessible through the path indicated by the current record pointer. If the record is 
no longer accessible, which may be caused by the deletion of the record or a change in 
an alternate record key, the current record pointer is updated to point to the next existing 
record within the established key of reference and that record is then made available. 

b. If the current record pointer was positioned by the execution of a previous READ state
ment, the current record pointer is updated to point to the next existing record in the file 
with the established key of reference, and that record is then made available. 

3. The execution of the READ statement causes the value of the FILE STATUS data item, if any, 
associated with file-name to be updated. Refer to 1-0 Status in section 5. 

4. Regardles.s of the ~~~g:gg g~.~g.>~.2 ... g.~~~.!.~g .. ~£$.7~~ .... !1.me with processing time, the concept of the 
READ statement ~~~ 1~11~ 1111 !~~~ .. @!; iY:~·g;1·.~i~~~ is unchanged in that a record is available 
to the object program prior to the execution of any statement following the READ statement. 

1168622 7-101 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: READ 

5. When the logical records of a file are described with more than one record description, these 
records automatically share the same storage area; this is equivalent to an implicit redefinition 
of the area. The contents of any data items which lie beyond the range of the current data 
record are undefined at the completion of the execution of the READ statement. 

6. If the INTO phrase is specified, the record being read is moved from the record area to the 
area specified by identifier according to the rules specified for the MOVE statement without 
the CORRESPONDING phrase. The sending area is considered to be a group item whose size 
is equal to the maximum record size for this file. 

The implied MOVE does not occur if the execution of the READ statement was unsuccessful. 
Any subscripting or indexing associated with identifier is evaluated after the record has been 
read and immediately before it is moved to the data item. 

7. When the INTO phrase is used, the record being read is available in both the input record area 
and the data area associated with identifier. 

8. If, at the time of execution of a Format 1 READ statement, the position of current record 
pointer for that file is undefined, the execution of that READ statement is unsuccessful. 

9. If, at the time of the execution of a Format 1 READ statement, no next logical record exists 
in the file, the AT END condition occurs, and the execution of the READ statement is consid
ered unsuccessful. Ref er to I-0 Status in section 5. 

10. When the AT END condition is recognized, the following actions are taken in the specified or
der: 

a. A value is placed into the FILE ST A TUS data item, if specified for this file, to indicate 
an AT END condition. Refer to I-0 Status in section 5. 

b. If the AT END phrase is specified in the statement causing the condition, control is trans
. f erred to the AT END imperative statement. Any USE procedure specified for this file is 
not executed. 

c. If the AT END phrase is not specified, then a USE procedure must be specified, either 
explicitly or implicitly for this file, and that procedure is executed. 

When the AT END condition occurs, execution of the input-output statement which caused 
the condition is unsuccessful. 

11. Following the unsuccessful execution of any READ statement, the contents of the associated 
record area and the position of the current record pointer are undefined. For Indexed Files, 
the key of reference is also undefined. 1 

12. When the AT END condition has been recognized, a Format 1 READ statement for that file 
must not be executed without first executing one of the following: 

7-102 

a. A successful CLOSE statement followed by the execution of a successful OPEN statement 
for that file. 

b. A successful START statement for the file. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

c. A successful Format 2 READ statement for that file. 

d. A SEEK statement. 

VERB FORMAT: READ 

13. For a file for which dynamic access mode is specified, a Format 1 READ statement with the 
NEXT phrase specified causes the next logical record to be retrieved from that file as described 
in the preceding General Rule 2. 

14. For an Indexed File being sequentially accessed, records having the same duplicate value in 
an alternate record key, which is the key of reference, are made available in the same order 
in which they are released by execution of WRITE statements, or by execution of REWRITE 
statements which create such duplicate values. 

15. For an Indexed File, if the KEY phrase is specified in a Format 2 READ statement, data
name is established as the key of reference for this retrieval. If the dynamic access mode is 
specified, this key of reference is also used for retrievals by any subsequent executions of For
mat 1 READ statements until a different key of reference is established for the file. 

16. For an Indexed File, if the KEY phrase is not specified in a Format 2 READ statement, the 
prime record key is established as the key of reference for this retrieval. If the dynamic access 
mode is specified, this key of reference is also used for retrievals by any subsequent executions 
of Format 1 READ statements until a different key of reference is established for the file. 

17. Execution of a Format 2 READ statement on an Indexed File causes the value of the key of 
reference to be compared with the value contained in the corresponding data item of the stored 
records in the file, until the first record having an equal value is found. The current record 
pointer is positioned to this record which is then made available. If no record can be so identi
fied, the INVALID KEY condition exists and execution of the READ statement is unsuccess
ful. Refer to the INVALID KEY Condition in section 5. 

18. If the end of a reel or unit is recognized during execution of a READ statement, and the 
logical end of the file has not been reached, the following operations are executed: 

a .. The standard ending reel/unit label procedure. 

b. A reel/unit swap. 

c. The standard beginning reel/unit label procedure. 

d. The first data record of the new reel/unit is made available. 

19. If a Sequential File described with the OPTIONAL phrase is not present at the time the file 
is opened, then at the time of execution of the first READ statement, the AT END condition 
occurs and the execution of the READ statement is unsuccessful. The standard end-of-file pro
cedures are not performed. Refer to the FILE-CONTROL Paragraph, and I-0 Status in sec
tion 5; OPEN Statement, and USE Statement in section 7. Execution of the program then pro
ceeds as specified in general rule 10. 

1168622 7-103 



VERB FORMAT: READ 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

20. In a Sequential File, if the ACTUAL KEY phrase is specified for a file whose access mode 
is sequential, the execution of a Format 1 READ statement updates the contents of the ACTU
AL KEY data item to the ordinal number of the logical record accessed. 

21. The execution of a Format 2 READ statement accesses the record specified by the contents 
of the ACTUAL KEY data item. 

22. If, upon the execution of a Format 2 READ statement, the contents of the ACTUAL KEY 
data item are less than 1 or greater than the ordinal number of the last record written to the 
file, the READ statement is unsuccessful and the INVALID KEY condition exists. 

23. In a Relative File, if the RELATIVE KEY phrase is specified, the execution of a Format 1 
READ statement updates the content of the RELATIVE KEY data item so that it contains 
the relative record number of the record made available. 

24. For a Relative File, the execution of a Format 2 READ statement sets the current record point
er and makes available the record whose relative record number is contained in the data item 
named in the RELATIVE KEY phrase for the file. If the file does not contain such a record, 
the INVALID KEY condition exists and execution of the READ statement is unsuccessful. Re
f er to the INVALID KEY condition under Invalid Key in section 5. 

7-104 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: READ 

7-105 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

RECEIVE 

The RECEIVE statement makes available to the COBOL74 program a message, message segment, or 
a portion of a message or segment, and other pertinent information about that data from a queue 
maintained by the Data Communication Subsystem. The RECEIVE statement allows for a specific im
perative statement when no data is available. 

Message segmentation (SEGMENT option) requires a participating Data Communication Subsystem 
that supports this feature. Refer to Communication Section in section 6 of this manual. 

General Format: 

RECEIVE {
MESSAGE} cd-name SEGMENT INTO identifier- I 

[ ; NO DATA imperative-statement ] 

Syntax Rules: 

I. Cd-name must reference an input CD. 

General Rules: 

I. The contents of the data items specified by data-name-I (SYMBOLIC QUEUE) through data
name-4 (SYMBOLIC SUB-QUEUE3) of the area referenced by cd-name designate the queue 
structure containing, the message. Refer to the Communication Description Structure (CD) in 
section 6. 

2. The message, message segment, or portion of a message or segment is transferred to the receiv
ing character positions of the area referenced by identifier-I aligned to the left without space 
fill. 

3. When, during the execution of a RECEIVE statement, the data is made available in the data 
item referenced by identifier-I, control is transferred to the next executable statement, whether 
or not the NO DATA phrase is specified. 

4. When, during the execution of a RECEIVE statement, the data is not made available in the 
data item referenced by identifier-I: 

7-I06 

a. If the NO DAT A phrase is specified, the RECEIVE operation is terminated with the indi
cation that action is complete (refer to General Rule 5), and the imperative statement in 
the NO DATA phrase is executed. 

b. If the NO DAT A phrase is not specified, execution of the object program is suspended 
until data is made available in the data item referenced by identifier- I. 

c. If the queue is unknown or access is denied to the queue, control passes to the next execut
able statement, whether or not the NO DATA phrase is specified. Refer to table 6-3, Com
munication Status Key Condition, in section 6. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: RECEIVE 

5. The data items identified by the input CD are appropriately updated at each execution of a 
RECEIVE statement. Refer to the Communication Description Structure (CD) in section 6. 

6. A single execution of a RECEIVE statement never returns to the data item referenced by identi
fier-I more than a single message (when the MESSAGE phrase is used) or a single segment 
(when the SEGMENT phrase is used). However, the Data Communication Subsystem does not 
pass any portion of a message to the object program until the entire message is available in 
the input queue, even if the SEGMENT phrase of the RECEIVE statement is specified. 

7. When the MESSAGE phrase is used, end of segment indicators are ignored, and the following 
rules apply to the data transfer: 

1168622 

a. If a message is the same size as the area referenced by identifier-!, the message is stored 
in the area referenced by identifier-I. 

b. If a message size is less than the size of the area referenced by identifi~r-I, the message 
is aligned to the leftmost character position of the area referenced by identifier-I with no 
space fill. 

c. If a message size is greater than the size of the area referenced by identifier-I, the message 
fills the area referenced by identifier- I left to right, starting with the leftmost character 
of the message. The remainder of the message is transfe:rred to the area referenced by iden
tifier-I with subsequent RECEIVE statements referring to the same queue, sub-queue, etc. 
Note that the remainder of the message is treated as a new message and the rules 7a, 7b, 
and 7c are applied again. 

7-107 



RELEASE 

B 1000 Systems COBOL74 Language Manual 
Procedure Division 

The RELEASE statement transfers records to the initial phase of a SORT operation. 

General Format: 

RELEASE record-name [FROM identifier] 

Syntax Rules: 

1. A RELEASE statement may only be used within the range of an input procedure associated 
with a SORT statement for a file whose Sort-Merge file description entry contains record-name. 
Refer to SORT in this section. 

2. Record-name must be the name of a logical record in the associated Sort-Merge file description 
entry and may be qualified. 

3. Record-name and identifier must not refer to the same storage area. 

General Rules: 

1. The execution of a RELEASE statement causes the record named by record-name to be released 
to the initial phase of a sort operation. 

2. If the FROM phrase is used, the contents of the identifier data area are moved to record-name, 
then the contents of record-name ary released to the sort file. Moving takes place according 
to the rules specified for the MOVE statement without the CORRESPONDING phrase. 

3. The execution of a RELEASE statement has no effect upon either the contents or accessibility 
of the record area. If the sort-merge file is named in a SAME RECORD AREA clause, the 
logical record is also available to the program as a record of other files referenced in the same 
SAME RECORD AREA clause as the associated sort-merge file~ as well as to the file associated 
with record-name. When control passes from the input procedure, the file consists of all those 
records which were placed in it by the execution of RELEASE statements. 

7-108 



RETURN 

B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: RETURN 

The RETURN statement obtains either sorted records from the final phase of a SORT operation or 
merged records during a MERGE operation. 

General Format: 

RETURN file-name RECORD (INTO identifier] : AT END imperative-statement 

Syntax Rules: 

1. File-name must be described by a Sort-Merge file description entry in the DA TA DIVISION. 

2. A RETURN statement may only be used within the range of an output procedure associated 
with a SORT or MERGE statement for file-name. 

3. The INTO phrase must not be used when the input file contains logical records of various sizes 
as indicated by their record descriptions. The storage area associated with identifier and the rec
ord area associated with file-name must not be the same storage area. 

General Rules: 

1. When the logical records of a file are described with more than one record description, these 
records automatically share the same storage area, which is an implicit redefinition of the area. 

2. The execution of the RETURN statement causes the next record, in the order specified by the 
KEY clause in the SORT or MERGE statement, to be transferred to the record area. 

It is the responsibility of the COBOL 74 programmer to account, if necessary, for the size of the logical 
record returned. 

3. If the INTO phrase is specified, the current record is moved from the input area to the area 
specified by identifier according to the rules for the MOVE statement without the CORRE
SPONDING phrase, with the sending area considered to be a group item having a fixed size 
equal to the maximum record size. The implied MOVE does not occur if there is an AT END 
condition. Any subscripting or indexing associated with identifier is evaluated after the record 
has been returned and immediately before it is moved to the data item. 

4. When the INTO phrase is used, the data is available in both the input record area and the 
data area associated with identifier. 

5. If no next logical record exists for the file at the time of the execution of a RETURN statement, 
the AT END condition occurs. 

When the AT END condition occurs, no transfer of data to the record area takes place and 
the contents of the record area are undisturbed. After the AT END condition occurs, the con
tents of the record area are still accessible. After the execution of the imperative-statement in 
the AT END phrase, no other RETURN statement may be executed as part of the current out
put procedure. 

1168622 7-109 



REWRITE 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

The REWRITE statement logically replaces a record existing in a mass storage file. 

General Format: 

REWRITE record-name [FROM identifier] 

[; INVALID KEY imperative.,-statement] 

Syntax Rules: 

1. Record-name and identifier must not ref er to the same storage area. 

2. Record-name is the name of a logical record in the FILE SECTION of the DAT A DIVISION 
and may be qualified. 

3. The INVALID KEY phrase must not be specified for a REWRITE statement which references 
a file in sequential access mode. 

4. The INVALID KEY phrase must be specified in the REWRITE statement for files in the ran
dom or dynamic access mode for which an appropriate USE procedure is not specified. 

General Rules: 

1. The file associated with record-name must be a mass storage file and must be open in the I-0 
mode at the time of execution of this statement. It cam1ot be a SORT or MERGE file. Refer 
to the OPEN statement in this section. 

2. For files in the sequential access mode, the last input-output statement executed for the associ
ated file prior to the execution of the REWRITE statement must be a successfully executed 
READ statement. The record that is accessed by the READ statement is logically replaced. 

3. The number of character positions in the record referenced by record-name must be equal to 
the number of character positions in the record being replaced. 

4. The execution of the REWRITE statement has no effect upon the contents or accessibility of 
the record area. If the associated file is named in a SAME RECORD AREA clause, the logical 
record is available to the program as a record of other files appearing in the same SAME REC
ORD AREA clause as the associated I-0 file, as well as to the file associated with record-name. 

7-110 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division . 

VERB FORMAT: REWRITE 

5. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution 
of: 

MOVE identifier TO ~ecord-name 

followed by the execution of the same REWRITE statement without the FROM phrase. The 
contents of the record area before execution of the implicit MOVE statement have no effect 
on the execution of the REWRITE statement. ' 

6. The current record pointer is not affected by the execution of a REWRITE statement. 

7. The execution of the REWRITE statement causes the value of the FILE ST A TUS data item, 
if any, associated with the file to be updated. Refer to I-0 STATUS in section 5. 

8. For a Relative File accessed in either random or dynamic access mode, the record specified by 
the contents of the RELATIVE KEY data item associated with the file is the one rewritten. 
If the file does not contain the record specified by the key, the INVALID KEY condition exists. 
Refer to the Invalid Key in section 5. The updating operation does not take place and the data 
in the record area is unaffected. 

9. In a Sequential File, contents of the ACTUAL KEY data item, if specified, are ignored during 
the execution of the REWRITE statement: and are not updated by execution of that statement. 

10. For an Indexed File in the sequential access mode, the record to be replaced is specified by 
the value contained in the prime record key. When the REWRITE statement is executed, the 
value· contained in the prime record key data item of the record to be replaced must be equal 
.to the value of the prime record key of the last record read from this file. 

11. For an Indexed File in the random or dynamic access mode, the record to be replaced is 
specified by the prime record key data item. 

12. In an Indexed File, the contents of alternate record key data items of the record being rewritten 
may differ from those in the record being replaced. The contents of the record key data items 
are utilized during the execution of the REWRITE statement in such a way that subsequent 
access of the record may be made based upon any of those specified record keys. 

13. In an Indexed File, the INVALID KEY condition exists when: 

1168622 

a. The access mode is sequential and the value contained in the prime record key data item 
of the record to be replaced is not equal to the value of the prime record key of the last 
record read from this file. 

b. The value contained in the prime record key data item does not equal that of any record 
stored in the file, or 

c. The value contained in an alternate record key data item for which a DUPLICATES clause 
has not been specified is equal to that of a record already stored in the file. 

The updating operation does not take place and the data in the record area unaffected. 
Ref er to the Invalid Key in section 5. 

7-111 



SEARCH 

B 1000 Systems COBOL74 Language Manual 
. Procedure Division 

The SEARCH statement is used to search a table for a table element that satisfies the specified condi
tion and to adjust the associated index-name to indicate that table element. 

General Formats: 

Format 1: 

Format 2: 

SEARCH identifier-I : [vARYING {~dedntifier-2 l }] 
m ex-name-

[;AT END imperative-statement-I] 

; WHEN condition-I 

[;WHEN conJition-2 

{ 
imperative-statement-2} 
NEXT SENTENCE 

{ 
imperative-statement-3} J 
NEXT SENTENCE 

SEARCH ALL identifier-I [;AT END imperative-statement-t l 

7-112 

;WHEN 
.~ data-name-I { :~ ;QUAL TO} 

t condition-name-I 

ANO· 
[ 

{ d· t ., { lS·.· EQUAL TO~ ) a e-name-_ lS = ~ 

-- t condition-name-2 

{ 
imperative-statement-2 } 
NEXT SENTENCE 

NOTE 

{ 

identifier-3 } ) 
literal-I ( 
arithmetic-expression-I ~ 

{ 
identifier-4 } ) ] 
literal-2 ( 
arithmetic-expression-2 ~· 

To avoid confusion with other symbols, the required relational character ' = ' 
is not underlined. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SEARCH 

Syntax Rules: 

1. ln both Formats and 2, identifier-I must not be subscripted or indexed, but its description 
must contain an OCCURS clause and an INDEXED BY clause. The description of identifier
I in Format 2 must also contain the KEY IS phrase in its OCCURS clause. 

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as a numeric elemen
tary item without any positions to the right of the assumed decimal point. 

3. In Fq,rmat I, condition-I, condition-2, and so on, may be any condition as described in Condi
tionaf Expressions in this section. 

4. In Format 2, all referenced condition-names must be defined as having only a single value. The 
data-name associated with a condition-name must appear in the KEY clause of identifier-I. 
Each data-name:..}, data-name-2 may be qualified. Each data-name-I, data-name-2 must be in
dexed by the first index-name associated with identifier-I along with other indices or literals 
as required, and must be referenced in the KEY clause of identifier-I. Identifier-3, identifier-
4, or identifiers specified in arithmetic-expression-I, arithmetic-expression-2 must not be refer,. 
enced in the KEY clause of identifier-I or be indexed by the first index-name associated with 
identifier- I. 

In Format 2, when a data-name in the KEY clause of identifier-I is referenced, or when a con· 
dition-name associated with a data-name in the KEY clause of identifier-I is referenced, all pre
ceding data-names in the KEY clause of identifier-I or their associated condition-names must 
also be referenced. 

General Rules: 

1. If Format I of the SEARCH ~tatement is used, a serial type of search operation takes place, 
starting with the current index setting. 

1168622 

a. If, at the start of execution of the SEARCH statement, the index-name associated with 
identifier-I contains a value that corresponds to an occurrence number that is greater than 
the highest permissible occurrence number for identifier-I, the operation is terminated im
mediately. The number of occurrences of identifier-1, the last of which is the highest per
mitted, is discussed in the OCCURS clause. Ref er to the OCCURS clause in section 6. 
Then, if the AT END phrase is specified, imperative-statement-I is executed, and the AT 
END phrase is not specified, control passes to the next executable sentence. 

b. If, at the start of execution of the SEARCH statement, the index-name associated with 
identifier-I contains a value that corresponds to an occurrence number that is not gr~ater 
than the highest permissible occurrence number for identifier- I, the SEARCH statement 
operates by evaluating the conditions in the order in which written, making use of the in
dex settings, wherever specified, to determine the occurrence of those items to be tested. 
If none of the conditions are satisfied, the index-name for identifier-I is incremented to 
obtain reference to the next occurrence. The process is then repeated using the new index
name settings unless the new value of the index-name settings for identifier-I corresponds 
to a table element outside the permissible range of occurrence values, in which case the 
search terminates as indicated in General Rule I a. If one of the conditions is satisfied upon 
its evaluation, the search terminates immediately and the imperative statement associated 
with that condition is executed; the index-name remains set at the occurrence which caused 
the condition to be satisfied. 

7-I 13 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SEARCH 

2. In a Format 2 SEARCH statement, the results of the SEARCH ALL operation are predictable 
only when the data in the table is ordered in the same manner as described in the 
ASCENDING/DESCENDING KEY clause associated with the description of identifier-I. 

3. If Format 2 of the SEARCH statement is used, a binary search type of operation takes place; 
the initial setting of the index-name for identifier-I is ignored and its setting is varied during 
the search operation according to accepted binary techniques, with the restriction that at no 
time is it set to a value exceeding the value which corresponds to the last element of the table, 
or which is less than the value that corresponds to the first element of the table. The length 
of the table is discussed in the OCCURS clause. Refer to the OCCURS clause in section 6. 
If any of the conditions specified in the WHEN clause cannot be satisfied for any setting of 
the index within the permitted range, control is passed to imperative-statement-I of the AT 
END phrase, when specified, or to the next executable sentence when not specified. In eith~r 
case, the final setting of the index is the value which corresponds to an occurrence number 
which is one greater than the last element of the table. 

If all the conditions can be satisfied, the index indicates an occurrence that allows the condi
tions to be satisfied, and control passes to imperative-statement-2. 

When the contents of the key(s) referenced in the WHEN clause are not sufficient to identify 
a unique table element, the index indicates the occurrence closest to the beginning of the table 
which satisfies the condition. 

4. After execution of imperative-statement-I, imperative-statement-2, or imperative-statement-3, 
that does not terminate with a GO TO statement, control passes to the next executable sentence. 

5. In Format 2, the index-name that is used for the search operation is the first or only index
name that appears in the INDEXED BY phrase of identifier-I. Any other index-names for iden
tifier- I remain unchanged. 

6. In Format I, if the VARYING phrase is not used, the index-name that is used for the search 
operation is the first or only index-name that appears in the INDEXED BY phrase of identifier-
1. Any other index-names for identifier-I remain unchanged. 

7. In Format I, if the VARYING index-name-I phrase is specified, and if index-name-I appears 
in the INDEXED BY phrase of identifier-I, that index-name is used for this search. If this is 
not the case, or if the VARYING identifier-2 phrase is specified, the first or only index-name 
given in the INDEXED BY phrase of identifier-I is used for the search. In addition, the fol
lowing operations occur: 

7-I 14 

a. If the VARYING index-name-1 phrase is used, and if index-name-I appears in the IN
DEXED BY phrase of another table entry, the occurrence number represented by index
name-I is incremented by the same amount and at the same time as the occurrence number 
represented by the index-name associated with identifier-I is incremented. 

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index data item, 
then the data item referenced by identifier-2 is incremented by the same amount and at 
the same time as the index associated with identifier-I is incremented. If identifier-2 is not 
an index data item, the data item referenced by identifier-2 is incremented by the value 
I at the same time as the index referenced by the index-name associated with identifier
! is incremented. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SEARCH 

8. If identifier-I is a data item subordinate to a data item that contains an OCCURS clause pro
viding for a multidimensional table, an index-name must be associated with each dimension of 
the table through the INDEXED BY phrase of the OCCURS clause. Only the setting of the 
index-name associated with identifier-I (and the data item identifier-2 or index-name-I, if pres
ent) is modified by the execution of the SEARCH statement. To search an entire multidimen
sional table it is necessary to execute a SEARCH statement several times. Before each execution 
of a SEARCH statement, SET statements must be executed whenever index-names must be ad
justed to appropriate settings. 

Figure 7-4 contains a flowchart of the Format SEARCH operation containing two WHEN phrases. 

G12340 

I I 68622 

START 

c:ement index-name for 
tifier-1 (index-name-1 

if applicable) 

increment index-name-1 

>AT END* 

TRUE 

TRUE 

(for a different table) * 
or identifier-2 

imperative
statement-1 

imperative
statement-2 

imperative
statement-3 

* THESE OPERATIONS ARE OPTIONS INCLUDED ONLY WHEN 

SPECIFIED IN THE SEARCH S'TATEMENT. 

* 

* * EACH OF THESE CONTROL TRANSFERS IS TO THE NEXT 

EXECUTABLE SENTENCE UNLESS THE IMPERATIVE-STATEMENT 

ENDS WITH A GO TO STATEMENT. 

)figure 7-4. SEARCH with Two WHEN Phrases 

** 

7-115 



7-116 

B 1000 Systems COBOL74 Language Manual 
Procedure Division 



B I 000 Systems COBOL 7 4 Language Manual 
Procedure Division 

VERB FORMAT: SEND 

SEND 

The SEND statement causes a message, a message segment, or a portion of a message or segment to 
be released to one or more output queues maintained by the Data Communication Subsystem. Use of 
the partial message feature (ESI and EGI) requires a participating Data Communication Subsystem that 
supports this construct. Valid syntax for ESI and EGI is ignored by non-participating, non-supporting 
Data Communication Subsystems. Refer to the Communication Section in section 6 of this manual and 
the B 1000 Systems Network Definition Language (NDL) Reference Manual for further information. 

General Formats: 

Format 1: 

SEND cd-name FROM identifier-I ] 

Format 2: 

t 
WITH identifier-2 } 

SEND cd··name ( FROM identifier-I] ~g:~ ~~I 
WITH EGI 

Syntax Rules: 

{ BEFORE } ADVANCING 
AFTE:Ji 

1. Cd-name must reference an output CD. 

{ { 
~dentifier-3 } 
mteger 

{ 
mnemonic-name } 
PAGE 

[ LINE ] } 
LINES 

2. Identifier-2 must reference a I-character integer without an operational sign. 

3. When identifier-3 is used in the ADVANCING phrase, it must be the name of an elementary 
integer item. 

4. When the mnemonic-name phrase is used, it must be associated with a CHANNEL number. 
The mnemonic-name is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT 
DIVISION. 

5. Integer or the value of the data item referenced by identifier-3 may be zero. 

1168622 7-117 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SEND 

General Rules: 

All formats: 

I. When a receiving communication device such as a printer, display screen, or card punch, is ori
ented to a fixed line size: 

a. Each message or message segment begins at the leftmost character position of the physical 
line. 

b. A message or message segment that is smaller than the physical line size is released so as 
to appear space-filled to the right. 

c. Excess characters of a message or message segment are not truncated. Characters are 
packed to a size equal to that of the physical line and then sent to the device. The process 
continues on the next line with the excess characters. 

2. When a receiving communication device (paper tape punch, or another computer) is oriented 
to handle variable length messages, each message or message segment begins on the next 
available character position of the communications device. 

3. As part of the execution of a SEND statement, the data item referenced by data-name-2 (TEXT 
LENGTH) of the area referenced by cd-name is the user's indication of the number of leftmost 
character positions of the data item referenced by identifier- I from which data is to be transfer-

· red. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area refer
enced by cd-name are zero, no characters of the data item referenced by identifier-I are trans
ferred. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area refer
enced by cd-name are outside the range of zero through the size of the data item referenced 
by identifier- I inclusive, an error is indicated by the value of the data item referenced by data
name-3 (ST A TUS KEY) of the area referenced by cd-name, and no data is transferred. Refer 
to table 6-3, Communication Status Key Condition, in section 6. 

4. As part of the execution of a SEND statement, the contents of the data item referenced by 
data:-name-3 (STATUS KEY) of the area referenced by cd-name are updated. Refer to Commu
nication Description Structure (CD) in section 6. 

5. The effect of having special control characters within the contents of the data item referenced 
by identifier-I are undefined. 

6. A single execution of a SEND statement for Format I releases only a single portion of a mes
sage or of a message segment to the Data Communication Subsystem. 

7-118 

A single execution of a SEND statement for Format 2 never releases to the Data Communica
tion Subsystem more than a single message or a single message segment as indicated by the 
contents of the data item referenced by identifier-2 or by the specified indicator ESI, EMI, or 
EGL 



. B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SEND 

The length of the portion of the message or message segment is defined by rule 3 above. 

The Data Communication Subsystem may not transmit any portion of a message to a commu
nication device until the entire message has been placed in the output queue. 

7. Disposition of a portion of a message not terminated by an EMI or EGI is defined within the 
Data Communication Subsystem. 

Format 2: 

8. The ctmtents of the data item referenced by identifier-2 indicates that the contents of the data 
item referenced by identifier-I are to have associated with them an ending indicator. Table 7-6 
lists the possible values for the ending indicator and the meaning associated with that value. 

A supporting Data Communication Subsystem recognizes these indicators and establishes what
ever is necessary to maintain group, message, and segment control as defined in the following 
rules: 

• a. If the contents of the data item referenced by identifier-2 contains a "I", the contents of 
the data item referenced by identifier-I is associated with an end of segment indicator or 
ESL 

The ESI indicates to the Data Communication Sybsystem that the message segment is com
plete. 

b. If the contents of the data item referenced by identifier-2 contains a "2", the contents of 
the data item referenced by identifier- I is associated with an end of message indicator or 
EMI. 

The EMI indicates to the Data Communication Sybsystem that the message is complete. 

c. If the contents of the data item referenced by identifier-2 contains a "3", the contents of 
the data item referenced by identifier- I is associated with an end of group indicator or 
EGL 

The EGI indicates to the Data Communication Sybsystem that the group of messages is 
complete. 

The interpretation given to the EGI is dependent upon options as specified in the Data 
Communication Subsystem. 

d. The hierarchy of ending indicators is EGI, EMI, and ESL An EGI need not be preceded 
by an ESI or EMI. An EMI need not be preceded by an ESI. 

II68622 

If the content of the data item referenced by identifier-2 is other than a "I", "2", or "3", 
and identifier-I is not specified, then an error is indicated by the value in the data item 
referenced by data-name-3 (STATUS KEY) of the area ·referenced by cd-name, and no 
data is transferred. 

7-I l 9 



B 1000 _Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SEND 

9. The ADVANCING phrase allows control of the vertical positioning of each message on a com
munication device where vertical positioning is applicable. If vertical positioning is not applica
ble on the device, the vertical positioning specified or implied is ignored. 

10. On a device where vertical positioning is applicable and the ADVANCING phrase is not 
specified, automatic advancing is provided to act as if the user has specified AFTER ADVANC
ING 1 LINE. 

11. If the ADVANCING phrase is implicitly or explicitly specified and vertical positioning is appli
cable, the following rules apply: 

7-120 

a. If identifier-3 or integer is specified, characters transmitted to the communication device 
are repositioned vertically downward the number of lines equal to the value associated with 
the data item referenced by identifier-3 or integer. 

b. If mnemonic-name is specified, characters transmitted to the communication device are po
sitioned to the line number corresponding to the CHANNEL number. 

c. If the BEFORE phrase is used, the message is represented on the communication device 
before vertical repositioning according to General Rules 9a and 9b. 

d. If the AFTER phrase is used, the message is represented on the communication device after 
vertical repositioning according to General Rules 9a and 9b. 

e. If PAGE is specified, characters transmitted to the communication device are represented 
on the device BEFORE or AFTER (depending upon the phrase used) the device is !eposi
tioned to the next page. If PAGE is specified but page has no meaning in conjunction 
with a specific device, then page advancing is provided to act as if the user has specified 
BEFORE or AFTER ADVANCING 1 LINE. 

Table 7-6. Specifying End Indicators. 

Means of Specifying 

Type of Indicator identifier-1 identifier-2 

no indicator blank 0 

end of segment ESI 1 

end of message EMI 2 

end of group EGI 3 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SET 

SET 

The SET statement establishes reference points for table handling operations by setting index-names 
associated with table elements. 

General Format: 

Format I: 

mclex-name-1 , index-name-2 { 

identifier-3 } 
TO index-name-3 

integer-I [ 
m { '.dentifier-1 } [' identifier-2 ] 

'----~--

Format 2: 

SET index-name-4 [, index-name-5 J 

Syntax Rules: 

{
UP BY } 

. . . DOWN BY { 

identifier-4 } 

integer-2 

1. All references to index-name-I, identifier-I, and index-name-4 apply equally to index-name-2, 
identifier-2, and index-name-5, respectively. 

2. Identifier-I and identifier-3 must name index data items, or elementary items described as an 
integer. 

3. Identifier-4 must be described as an elementary numeric integer. 

4. Integer-I and integer-2 may be signed. Integer-I may be zero. 

General Rules: 

I. Index-names are considered related to a given table and are defined by being specified in the 
INDEXED BY clause. 

2. If index-name-3 is specified, the value of the index before the execution of the SET statement 
should correspond to an occurrence number of an element in the associated table. 

If index-name-4, index-name-5 is specified, the value of the index both before and after the 
execution of the SET statement should correspond to an occurrence number of an element in 
the associated table. If index-name-I, index-name-2 is specified, the value of the index after 
the execution of the SET statement should correspond· to an occurrence number of an element 
in the associated table. 

1168622 7-121 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SET 

It is permissible to set index-name-I, index-name-2, index-name-4, index-name-5, to any value 
with the following restrictions: 

a. If overflow occurs, the value in the index-name is left-truncated according to the arithmetic 
rules for a size error condition without a SIZE ERROR phrase. Refer to the SIZE ERROR 
phrase in this section. 

b. When a statement using the index-name to refer to a table element is executed, the value 
in the index or the value produced by relative indexing must fall within the range specified 
by the OCCURS clause defining the table. Otherwise, an abnormal termination of. the pro
gram occurs. Refer to Indexing in section 2. 

3. When a Format I SET statement is executed, the following actions occur: 

a. Index-name- I is set to a value causing it to refer to the table element that corresponds in 
occurrence number to the table element referenced by index-name-3, identifier-3, or inte
ger-I. If identifier-3 is an index data item, or if index-name-3 is related to the same table 
as index-name- I, no conversion takes place. 

b. If identifier-I is an index data item, it may be set equal to either the contents of index
name-3 or identifier-3, where identifier-3 is also an index data item. No conversion takes 
place in either case. 

c. If identifier-I is not an index data item, it may be set only to an occurrence number that 
corresponds to the value of index-name-3. Neither identifier-3 nor integer-I can be used 
in this case. 

d. The process is repeated for index-name-2, identifier-2, etc., if specified. Each time, the val
ue of index-name-3 or identifier-3 is used as it was at the beginning of the execution of 
the statement, any subscripting or indexing associated with identifier-I, and so forth, is 
evaluated immediately before the value of the respective data item is changed. 

4. In Format 2, the contents of index-name-4 are incremented (UP BY) or decremented (DOWN 
BY) by a value that corresponds to the number of occurrences represented by the value of inte
ger-2 or identifier-4; thereafter, the process is repeated for index-name-5, and so on. Each time, 
the value of identifier-4 is used as it was at the beginning of the execution of the statement. 

5. Data in table 7-7 represents the validity of various operand combinations in the SET statement. 
The general rule reference (for example, 3b) indicates the applicable general rule. 

Table 7-7. SET Statement Combinations 

Sending Item 
Receiving Item 

Integer Data Item Index-Name Index Data Item 

Integer Literal No/3c Valid/3a No/3b, 
Integer Data Item N0/3c Valid/3a No/3b 
Index-Name Valid/3c Valid/3a Valid/3b* 
Index Data I tern No/3c Valid/3a* Valid/3b* 

*No conversion takes place 

7-I22 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SORT 

SORT 

The SORT statement creates a sort file two ways: first, by executing input procedures or, second, by 
transferring records from another file. The records are then sorted on a set of specified keys, and in 
the final phase of the sort operation, made available in sorted order, to some output procedures or 
to an output file. 

General Format: 

SORT file-name- I 

{ 

ASCEND ING ( 
ON 

DESCENDING ( 
KEY data-name-I [ , data-name-2] 

[
ON { ASCENDING } 

DESCENDING 
KEY data-name-3 [ , data-name-4) ... J 

[COLLATING SEQUENCE IS alphabet-name J 

INPUT PROCEDURg IS procedure-name-I [ {::::UGH } procedure-name-2 J 

USING file-name-2 [ file-name-3 

OUTPUT PROCEDURE IS procedure-name-3 [ {::::UGH} procedure-name-4 J 

GIVING file-name-4 

1168622 7-123 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SORT 

Syntax Rules: 

1. File-name-I must be described in a sort-merge file description (SD) entry in the DATA DIVI
SION. 

2. Procedure-name-I represents the name of an input procedure. Procedure-name-3 represents the 
name of an output procedure. 

3. File-name-2, file-name-3, and file-name-4 must be described in a file description entry (ED), not 
in a Sort-Merge file description entry (SD), in the DATA DIVISION. The actual size of the 
logical record(s) described for file-name-2 and fiJe-name-4 must be equal to the actual size of 
the logical record(s) described for file-name-I. If the data descriptions of the elementary items 
that make up these records are not identical, it is the programmer's responsibility to describe 
the corresponding records so as to cause an equal number of character positions to be allocated 
for the corresponding records. 

4. Data-name-I, data-name-2, data-name-3, and data-name-4 are KEY data-names and are subject 
to the following rules: 

a. The data items identified by KEY data-names must be described in records associated with 
file-name-I. 

b. KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be variable length items. 

d. If file-name-1 has more tlian one record description, then the data items identified by KEY 
data-names may all be described within one of the record descriptions or in any combina
tion of record descriptions. It is not necessary to redescribe the KEY data-names in each 
record description. 

e. None of the data items identified by KEY data-names can be described by an entry which 
contains an OCCURS clause or which is subordinate to an entry which contains an . OC
CURS clause. 

5. The words THRU and THROUGH are equivalent. 

6. SORT statements may appear anywhere except in the declaratives portion of the PROCEDURE 
DIVISION or in an input or output procedure associated with a SORT or MERGE statement. · 

7. No more than one file-name from a multiple file reel can appear in the SORT statement. 

General Rules: 

1. The PROCEDURE DIVISION may contain more than one SORT statement appearing any
where except: 

a. In the declaratives portion. 

b. In the input and output procedures associated with a SORT or MERGE statement. 

7-124 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SORT 

2. The data-names following the word KEY are listed from left to right in the SORT statement 
in order of decreasing significance without regard to how they are divided into KEY phrases. 
In the format, data-name-1 is the lJlajor key, data-name-2 is the next most significant key. 

a. When the ASCENDING phrase is specified, the sorted sequence is from the lowest value 
of the contents of the data items identified by the KEY data-names to the highest value, 
according to the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the sorted sequence is from the highest value 
of the contents of the data items identified by the KEY data-names to the lowest value, 
according to the rules for comparison of operands in a relation condition. 

3. The collating sequence that applies to the comparison of the nonnumeric key data items 
· specified is determined in the following order of precedence: 

a. First, by the collating sequence established by the COLLA TING SEQUENCE phrase, if 
specified, in the SORT statement. 

b. Second, by the collating. sequence established as the program collating sequence. 

4. The input procedure must consist of one or more paragraphs or sections which appear conti
guously in a source program and which do not form a part of any output procedure. In order 
to transfer records to the file referenced by file-name-1, the input procedure must include the 
execution of at least one RELEASE statement. Control must not be passed to the input proce
dure except when a related SORT statement is being executed. The input procedure can include 
any procedures needed to select, create, or modify records. The restrictions on the procedural 
statements within the input procedure are as follows: 

a. The input procedure must not contain any SORT or MERGE statements. 

b. The input procedure must not contain any explicit ·transfers of control to points outside 
the input procedure. ALTER, GO TO, and PERFORM statements in the input procedure 
are not permitted to refer to procedure-names outside the input procedure. COBOL 74 
statements that cause an implied transfer of control to declaratives are allowed. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers of control 
to points inside the input procedure. ALTER, GO TO, and PERFORM statements in the 
remainder of the PROCEDURE DIVISION must not refer to procedure-names within the 
input procedure. 

Violations of these restrictions on procedural statements concerning input procedures are not 
syn taxed by the compiler. It is the responsibility of the programmer to ensure that these restric
tions are enforced. 

5. If an input procedure is specified, control is passed to the input procedure before file-name-
1 is sequenced by the SORT statement. The compiler inserts a return mechanism at the end 
of the last paragraph or section in the input procedure. When control passes the last statement 
in the input procedure, the records released to file-name-1 are sorted. 

1168622 7-125 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SORT 

7-126 

6. The output procedure must consist of one or more paragraphs or sections which appear conti
guously in a source program and which do not form part of any input procedure. In order 
to make sorted records available for processing, the output procedure must include the execu
tion of at least one RETURN statement. Control must not be passed to the output procedure 
except when a related SORT statement is being executed. The output procedure may consist 
of any procedures needed to select, modify, or copy the records that are being returned, one 
at a time in sorted order, from the sort file. The restrictions on the procedural statements within 
the output procedure are as follows: 

a. The output procedure must not contain any SORT or MERGE statements. 

b. The output procedure must not contain any explicit transfers of control to points outside 
the output procedure. ALTER, GO TO, and PERFORM statements in the output proce
dure are not permitted to refer to procedure-names outside the output procedure. 
COBOL 74 statements that cause an implied transfer of control to declaratives are allowed. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers of control 
to points inside the output procedure. ALTER, GO TO, and PERFORM statements in the 
remainder of the PROCEDURE DIVISION must not refer to procedure-names within the 
output procedure. 

Violations of these restrictions on procedural statements concerning output procedures are not 
syntaxed by the compiler. It is the responsibility of the programmer to ensure that these restric
tions are enforced. 

7. If an output procedure is specified, control passes to it after file-name-1 is sequenced by the 
SORT statement. The compiler inserts a return mechanism at the end of the last paragraph or 
section in the output procedure. When control passes the last statement in the output procedure, 
the return mechanism provides for termination of the sort and then passes control to the next 
executable statement after the SORT statement. Before entering the output procedure, the sort 
procedure reaches a point at which it can select the next record in sorted order when requested. 
The RETURN statements in the output procedure are the requests for the next record. 

8. If the USING phrase is specified, all the records in file-name-2 are transferred automatically 
to file-name-1. At the time of execution of the SORT statement, file-name-2 must not be open. 
The SORT statement automatically initiates the processing of, makes available the logical rec
ords for, and terminates the processing of file-name-2. These implicit functions are performed 
such that any associated USE procedures are executed. The terminating function for all files 
is performed as if a CLOSE statement, without optional phrases, had been executed for each 
file. The SORT statement also automatically performs the implicit functions of moving the rec
ords from the file area of file-name-2 to the file area for file-name-1 and the release of records 
to the initial phase of the SORT operation. 

9. If the GIVING phrase is specified, all the sorted records in file-name-1 are automatically written 
on file-name-4 as the implied output procedure for this SORT statement. At the time of execu
tion of the SORT statement file-name-4 must not be open. The SORT statement automatically 
initiates the processing, releases logical records to and terminates the processing of file-name-
4. These implicit functions are performed so that any associated USE procedures are executed. 
The terminating function is performed as for a CLOSE statement, without optional phrases, 
had been executed for the file. The SORT statement also automatically performs the implicit 
functions of the return of the sorted records from the final phase of the SORT operation and 
the moving of the records from the file area for file-name-1 to the file area for file-name-4. 



1168622 

B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SORT 

7-127 



START 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

The ST ART statement provides a basis for logical positioning within an indexed or relative file, for 
subsequent sequential retrieval of records. 

General Format: 

ST ART file-name KEY 

IS EQUAL TO 
IS = 
IS GREATER THAN 
IS> 
IS NOT LESS THAN 
IS NOT < 

[ ; INVALID KEY imperative-statement] 

NOTE 

data-name 

The requireq relational characters '> ', '< ', and ' = ' are not underlined 
to avoid confusion with other symbols such as. ' > ' , meaning greater than 
or equal to. 

Syntax Rules: 

1. File-name must be the name of an Indexed or Relative File. 

2. File-name must be the name of a file with sequential or dynamic access. 

3. Data-name may be qualified. 

4. The INVALID KEY phrase must be specified if no applicable USE procedure is specified for 
file-name. 

5. If file-name is the name of an Indexed File, and if the KEY phrase is specified, data-name may 
reference a data item specified as a record key associated with file-name. Data-name may refer
ence any data item of category alphanumeric subordinate to the data-name of a data item 
specified as a record key associated with file-name whose leftmost character position corre
sponds to the leftmost character position of that record key data item. 

6. Data-name, if specified for a Relative File, must be the data item specified in the RELATIVE 
KEY phrase of the associated file control entry. 

General Rules: 

1. File-name must be open in the INPUT or I-0 mode at the time that the START statement is 
executed. Refer to the OPEN statement in this section. 

2. If the KEY phrase is not specified, the relational operator 'IS EQUAL TO' is implied. 

7-128 



B 1000 Systems COBOL 74 L~nguage Manual 
Procedure Division 

VERB FORMAT: START 

3. The type of comparison specified by the relational operator in the KEY phrase occurs between 
a key associated with a record in the file referenced by file-name and a data item as specified 
in General Rule 5. If file-name references an indexed file and the operands are of unequal size, 
comparison proceeds as though the longer operand were . truncated on the right, so that its 
length is equal to that of the shorter operand. All other nonnumeric comparison rules apply 
except that the presence of the PROGRAM COLLA TING SEQUENCE clause has no effect 
on the comparison. Refer to Comparison of Nonmimeric Operands in this section. 

a. The current record pointer is positioned to the first logical record currently existing in the 
file whose key satisfies the comparison. 

b. If the comparison is not satisfied by any record ih the file, an INVALID KEY condition 
exists, the execution of the START statement is unsuccessfut and the position of the cur-. 
rent record pointer is undefined. Refer to Invalid Key Condition in section$5. 

4. The .execution of the START statement causes the value of the FILE STATUS data item, if 
any, associated with file-name to be updated. Refer to I-0 Status in section$5. 

5. For an Indexed File using the KEY phrase, the com1;mrison described in General Rule 3 uses 
the data item referenced by data-name. 

6. For an Indexed File not using the KEY phrase, the comparison described in General Rule 3 
uses the data item referenced in the RECORD KEY clause associated with file-name. 

7. For a Relative File, the comparison described in General Rule 3 uses the data item referenced 
by the RELATIVE KEY clause associated with file-name. 

8. Upon completion of the successful execution of the START statement, a key of reference is 
established and used in subsequent Format 1 READ statements as follows: 

a. If the KEY phrase is not. specified, the prime record key specified for file-name becomes 
the key of reference. 

b. If the KEY phrase is specified, and data-name is specified as a record key for file-name, 
that record key becomes the key of reference. 

c. If the KEY phrase is specified, and data-name is not specified as a record key for file
name, the record key whose leftmost character position corresponds to the leftmost charac
ter position of the data item specified by data-name, becomes the key of reference. 

d. Refer to .the READ statement in this section. 

9. For an Indexed File, if the execution of the START statement is not successful, the key of ref
erence is undefined. 

1168622 7-129 



STOP 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

The STOP statement causes a permanent or temporary suspension of the execution of the object pro
gram. 

General Format: 

STOP { RUN} 
literal 

Syntax Rules: 

1. The literal may be numeric, nonnumeric, or any figurative constant except ALL. 

2. If the literal is numeric, then it must be an unsigned integer. 

3. If a STOP RUN statement appears in a consecutive sequence of imperative statements within 
a sentence, it must appear as the last statement in that sequence. 

General Rules: 

1. If the RUN phrase is used, then the ending procedure established by the installation and/or 
the compiler is instituted. 

2. If STOP literal is specified, the literal is displayed on the Operator Display Terminal (ODT), 
and the program issues an ACCEPT message. When the operator enters the AX message, con
tinuation of the object program begins with the next executable statement in sequence. 

7-130 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: STRING 

STRING 

The STRING statement concatenates partial or complete contents of two or more data items into a 
single data item. 

General Format: 

{ 
identifier-I } [, identifier-2] 

STRING 
literal-I . literal-2 

{ 
identifier-4 l [' identifier-SJ ... 

literal-4 J literal-5 

{ 

identifier .. 3 } 
DELIMITED BY literal-3 

SIZE 

DELIMITED BY literal-6 { 

identifier-6 } 

SIZE 

INTO identifier-7 ( WITH POINTER identifier-8 ) 

[; ON OVERFLOW imperative-statement] 

Syntax Rules: 

l. Each literal may be any figurative constant without the optional word ALL. 

2. All literals must be described as nonnumeric literals, and all identifiers, except identifier-8, iden
tifier-9, and identifier-IO, must be described implicitly or explicitly, as usage is DISPLAY. 

3. Identifier-7 must represent an alphanumeric data item without editing symbols or the JUSTI
FIED clause. 

4. Identifier-8 must represent an elementary numeric integer data item of sufficient size to contain 
a value equal to the size of the area referenced by identifier-7 plus 1. The symbol 'P' may 
not be used in the PICTURE character-string of identifier-8. 

5. Where identifier- l, identifier-2, ... , or identifier-3 is an elementary numeric data item, it must 
be described as an integer without the symbol 'P' in the PICTURE character-string. 

I I68622 7-I 3 I 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: STRING 

General Rules: 

1. All references to identifier-I; identifier-2; identifier-3, identifier-9, literal-I, literal-2, literal-3, 
and integer-I apply equally to identifier-4, identifier-5, identifier-6, identifier-IO, literal-4, liter
al-5, literal-6 and integer-2, respectively, and all recursions thereof. 

2. Identifier-I, literal-I, identifier-2, literal-2, represent the sending items. Identifier-7 represents 
the receiving item. 

3. Literal-3, identifier-3, indicate the character(s) delimiting the move. If the SIZE phrase is used, 
the complete data item defined by identifier-I, literal-I, identifier-2, literal-2, is moved. When 
a figurative constant is used as a delimiter, it stands for a single character nonnumeric literal. 

4. When a figurative. constant is specified as literal-I, literal-2, literal-3, it refers to an implicit 
one character data item whose usage is DISPLAY. 

5. When the STRING statement is executed, the transfer of data is governed by the following 
rules: 

a. Those characters from literal-I, literal-2, or from the contents of the data item referenced 
by identifier-I, identifier-2, are transferred to the contents of identifier-7 according to the 
·rules for alphanumeric to alphanumeric moves: however, no space-filling is provided. Refer 
to the MOVE Statement in this section. 

b. If the DELIMITED phrase is specified without the SIZE .phrase, the contents of the data 
item referenced by identifier-I, identifier-2, or the value of literal-I, literal-2, are transfer
red to the receiving data item in the sequence specified in the STRING statement beginning 
with the leftmost character and continuing from left to right until the end of the data item 

· is reached, or until the character(s) specified by literal-3, or by the contents of identifier-
3 are encountered. The character(s) specified by literal-3 or by the data item referenced 
by identifier-3 are not transferred. 

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire contents of literal- · 
I, literal-2, or the contents of the data iteni referenced by identifier- I, identifier-2, are 
transferred, in the sequence specified in the STRING statement, to the data item referenced 
by identifier-7 until all data has been transferred or the end of the data item referenced 
by identifier-7 is reached. 

6. If the POINTER phrase is specified, identifier-8 is explicitly available to the programmer, and 
he is responsible for setting its initial value. The initial value must not be less than I. 

7. If the POINTER phrase is not specified, the following General Rules 8, 9, 10, 11, and I2 apply 
as if the user had specified identifier-8 with an initial value of I. 

7-I32 



B 1000 Systems ~OBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: STRING 

8. When characters are transferred to the data item referenced by identifier-7, the moves behave 
as though the characters were moved one at a time from the source into the character position 
of the data item referenced by identifier-7 designated by the value associated with identifier-
8. Identifier-8 is increased by one before the move of the next character. The value associated 
with identifier-8 is changed during execution of the STRING statement only by the behavior 
specified in this general rule. 

9. At the end of execution of the STRING statement, only the portion of the data item referenced 
by identifier-7 that was referenced during the execution of the STRING statement is changed. 
All other portions of the data item referenced by identifier-7 contain data that was present be
fore this execution of the STRING statement. 

10. If at any point at or after initialization of the STRING statement, but before execution of the 
STRING statement is completed, the value associated with identifier-8 is either less than 1 or 
great~r than the number of character positions in the data item referenced by identifier-7, no 
additional data is transferred to the data item referenced by identifier-7, and the imperative 
statement in the ON OVERFLOW phrase is executed, if specified. 

11. If the ON OVERFLOW phrase is not specified, when the conditions described in General Rule 
10 are encountered, control is transferred to the next executable statement. 

12. Integer-I, identifier-9, indicate the number of characters to be moved. 

Examples: 

Assume that: 

NOW = A, B, C, D ••• Z (26 characters) 
CHNG = GHI 
LATER = LLL 
AFTR :' A, B, C, D ••• Z (26 characters) 
n1rn -· TTTT 

1. STRING ~ATER, "NEW", THEN, SPACE DELIMITED BY SIZE INTO AFTR 

After execution AFTR contains: 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~+ 

L L L N E W T T T T L M N 0 P Q R S T U V W X Y Z 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

2. MOVE 1 TO HERE. STRING THEN, "NEXT", SPACE, LATER DELIMITED BY SIZE; 
NOW DELIMITED BY CHNG INTO AFTR WITH POINTER HERE 

After execution AFTR contains: 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
T T T T N E X T L L L A B C D E F S T U V W X Y Z 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~+-+-+-+-+-+-+-+-+-+-+-+ 
{ not changed } 

1168622 7-133 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: STRING 

3. MOVE 8 TO HERE. STRING THEN, "NEXT", SPACE, LATER DELIMITED BY SIZE; 
NOW DELIMITED BY CHNG INTO AFTR WITH POINTER HERE 

After execution AFTR contains: 

7-134 

8 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

A B C D E F G T T T T N E X T L L L A B C D E F Z 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
{ not changed } 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: SUBTRACT 

SUBTRACT 

The SUBTRACT statement is used to subtract one or the sum of two or more numeric data items 
from one or more items, and set the values of one or more items equal to ~he results. 

General Format: 

Format l: 

L 

{ 

identifier- I } 
SUBTRACT 

literal-I [ 

, identifier-2] 

, literal-2 
FROM identifier-m [ROUNDFD] 

[, identifier-n [ROUNDED] J . . . [;ON SIZE ERROR imperative-state1)1ent] 

Format 2: 

{ 

identifier-I } 
SUBTRACT 

literal-I [

, identifier-2 J 
, literal-'.:! · 

{ 

identifier-m } 
... FROM 

literal-m 

9IVING identifier-n [ROUNDED] (, identifie~-o [ROUNDED] J ... 
[;ON SIZE ERROR imperative-statement J 

-------------------·-----------------------' 

Format 3: 

. . {CORRESPONDING} 
SUBTRACT identifier-I FROM identifier-2 [ROUNDED] 

C..ORR 

[ ; ON SIZE ERROR imperative-statement ] 

II68622 7-135 



B 1000 Systerns COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SUBTRACT 

Syntax Rules: 

1. Each identifier must ref er to a numeric elementary item except that 

a. In Format 2, each identifier following the word GIVING must refer to either an elementary 
numeric item or to an elementary numeric edited item. 

b. In Format 3, each identifier must refer to a group item. 

2. Each literal must be a numeric literal. 

3. CORR is an abbreviation for CORRESPONDING. 

General Rules: 

1. Additional rules and explanations related to this statement are given in the appropriate 
paragraphs. Refer to Intermediate Data Item, ROUNDED Phrase, SIZE ERROR Phrase, COR
RESPONDING Phrase, Arithmetic Statements, Overlapping Operands, and Multiple Results in 
Arithmetic Statements in this section. 

2. In Format 1, all literals or identifiers preceding the word FROM are added together, and this 
total is subtracted from the current value of identifier-m. The result is immediately stored into 
identifier-m, and . this process is repeated respectively for each operand following the word 
FROM. 

3. In Format 2, all literals or identifiers preceding the word FROM are added together, the sum 
is subtracted from literal-m or identifier-m, and the result of the subtraction is stored as the 
new value of identifier-n, identifier-o, etc. 

4. If Format 3 is used, data items in idep.tifier-1 are subtracted from and stored into corresponding 
data items in identifier-2. 

Examples: 

Assume as initial values X=2, Y=lO, Z=l5, TOT=50, and SUB=30. 

Format 1: 

Format 2: 

7-136 

SUBTRACT X FROM TOT. 
SUBTRACT X, Y, Z, FROM TOT, SUB. 

SUBTRACT X, Y FROM SUB GIVING TOT. 
SUBTRACT X, Y,FROM Z GIVING TOT, SUB. 

results TOT=48 
results TOT=23, SUB=3 

results TOT=18 
results TOT=3, SUB=3 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: SUBTRACT 

For Format 3 assume that the following structures have the initial value in parentheses. 

01 NOW 
02 AL 

03 FO (8) 
03 RD (10) 

02 CR (20) 
02 TR (5) 

The following statement 

0 l LATER 
05 AL 

06 F 0 ( l 0) 
06 XY ( 10) 

05 .48 (10) 
05 TR (10) 

SUBTRACT CORRESPONDING NOW FROM LATER. 

results in 

02 LATER 
05 AL 

06 
06 

05 AB 
05 TR 

F 0 (2) 
XY ((10) 

( 10) 
(5) 

Note, the only data names whose values changed are FO and TR. 

1168622 7-137 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

UNSTRING 

The UNSTRING statement causes contiguous data in a sending field to be separated and placed into 
one or more receiving fields. 

General Format: 

Format 1: 

UNSTRING identifier-I 

[ 

DELIMITED BY [ALL] { identifier-2 t [,OR [ALL] { identifier-3} J . . . ] 
literal-I f literaI-2 

INTO identificr-4 [,DELIMITER IN identifier-5] [,COUNT IN identifier-6] 

[ , identifier-7 [, DELIMIT ER IN iden tifier-8] ( , COUNT IN iden ti fier-9 ] J 
(WITH POINTER identifier-IO] [ TALLYING IN identifier-I I] 

[;ON OVERFLOW imperative-statement J 

Format 2: 

7-138 

UNSTRING identifier-I 

INTO identifier-4 

[ , identifier-7 

{ 

identifier-12 } 
FOR 

integer-I 

FOR 
{ 

identifier-I 3 } J ... 
mteger-2 

(WITH POINTER identifier- I 0 ] [TALL YING IN identifier-11] 

[; ON OVERFLOW imperative-statement J 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: UNSTRING 

Syntax Rules: 

1. Each literal must be a nonnumeric literal.. In addition, each literal may be any figurative con
stant without the optional word ALL. 

2. Identifier-I, identifier-2, identifier-3, identifier-5, and identifier-8 must be described, implicitly 
or explicitly, as alphanumeric data items. 

3. Identifier-4 and identifier-7 may be described as either alphabetic, alphanumeric, or numeric 
and must be described as usage is DISPLAY. However, the alphabetic symbol 'B' and the nu
meric symbol 'P' may not be used in the PICTURE character-string. 

4. Identifier-6, identifier-9, identifier-IO, and identifier-I I must be described as elementary numeric 
integer data items (except that the symbol 'P' may not be used in the PICTURE character
string). 

5. No identifier may name a level 88' entry. 

· 6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the DELI
MITED BY phrase is specified. 

7. Identifier-I2 and identifier-I3 must be described as elementary numeric integer data items (ex
cept that the symbol 'P' may not be used in the PICTURE character-string). 

General Rules: 

1. All references to identifier-2, literal-I, identifier-4, identifier-5, identifier-6, identifier-I2, and in
teger-I, apply equally to identifier-3, literal-2, identifier-7, identifier-8 identifier-I 3, and integer-
2, respectively, and all recursions thereof. 

2. Identifier-I represents the sending area. 

3. Identifier-·4 represents the data receiving area. Identifier-5 represents the receiving area for de
limiters. 

4. Literal-I or the data item referenced by identifier-2 specifies a delimiter. In Format-2, integer
I or the data item referenced by identifier-I2 specifies a count of the number of characters 
within identifier-I which is moved to identifier-4. If the number of characters remaining in the 
data item referenced by identifier-I is less than the number of characters specified by integer
I or the data item referenced by identifier-I2, then the short field is transferred according to 
General Rule I 3c. 

5. Identifier-6 represents the count of the number of characters within the data item referenced 
by identifier-I isolated by the delimiters for the move to identifier-4. This value does not include 
a count of the delimiter character(s). 

6. The data item referenced by identifier-IO contains a value that indicates a relative character po
sition within the area defined by identifier-I. 

1168622 7-I39 



B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: UNSTRING 

7. The data item referenced by identifier-I I is a counter that records the number of data items 
acted upon during the execution of an UNSTRING statement. 

8. When a figurative constant is used as a delimiter, it stands for a single character nonnumeric 
literal. 

When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of 
literal-I (figurative constant or not) or the contents of the data item referenced by identifier-
2 are treated as only one occurrence, and this occurrence is moved to the receiving data item 
according to General Rule 13d. 

9. When any examination encounters two contiguous delimiters, the current receiving area is either 
space or zero filled according to the description of the receiving area. 

10. Literal-I or the contents of the data item referenced by identifier-2 can contain any character 
in the computer's character set. 

I I. Each literal-I or data item referenced by identifier-2 represents one delimiter. When a delimiter 
contains two or more characters, all of the characters must be present in contiguous positions 
of the sending item, and in the order given to be recognized as a delimiter. 

I2. When two or more delimiters are specified in the DELIMITED BY phrase, an 'OR' condition 
exists between them. Each delimiter is compared to the sending field. If a match occurs, the 
character(s) in the sending field are considered to be a single delimiter. No character(s) in the 
sending field can be considered a part of more than one delimiter. 

Each delimiter is applied to the sending field in the sequence specified in the UNSTRING state
ment. 

13. When the UNSTRING statement is initiated, the current receiving area is the data item refer
enced by identifier-4. Data is transferred from the data item referenced by identifier-I to the 
data item referenced by identifier-4 according to the following rules: 

7-140 

a. If the POINTER phrase is specified, the string of characters referenced by identifier-I is 
examined beginning with the relative character position indicated by the contents of the 
data item referenced by identifier-IO. If the POINTER phrase is not specified, the string 
of characters is examined beginning with the leftmost character position. 

b. If the DELIMITED BY phrase is specified, the examination proceeds left to right until a 
delimiter specified by the value of literal-I or the data item referenced by identifier-2 is 
encountered. Refer to General Rule I I. If the DELIMITED BY phrase is not specified, 
the number of characters examined is equal to the size of the current receiving area. How
ever, if the si.gn of the receiving item is defined as occupying a separate character position, 
the number of characters examined is one less than. the size of the current receiving area. 

If the end of the data item referenced by identifier-I is encountered before the delimiting 
condition is met, the examination termfoates with the last character examined. 

c. The characters examined, excluding any delimiting characters(s), are treated as an elemen
tary alphanumeric data item, and are moved into the current receiving area according to 
the rules for the MOVE statement. Refer to the MOVE statement in this section. 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: UNSTRING 

d. If the DELIMITER IN phrase is specified, the delimiting character(s) are treated as an 
elementary alphanumeric data item and are moved into the data item referenced by identi
fier-5 according to the rules for the MOVE statement. Refer to the MOVE statement for 
additional information. If the delimiting condition is the end of the data item referenced 
by identifier-I, then the data item referenced by identifier-5 is space-filled. 

e. If the COUNT IN phrase is specified, a value equal to the number of characters examined, 
excluding any delimiter character(s), is moved into the area referenced by identifier-6 ac
cording to the rules for an elementary move. 

f. If the DELIMITED BY phrase is specified, the string of characters is further examined be
ginning with the first character to the right of the delimiter. If the DELIMITED BY phrase 
is not specified, the string of characters is further examined beginning with the character 
to the right of the last character transferred. 

g. After data is transferred to the data item referenced by identifier-4, the current receiving 
area is the data item referenced by identifier-7. The behavior described in General Rules 
13b through 13f is repeated either until all the characters are exhausted in the data item 
referenced by identifier-I or until there are no more receiving areas. 

I4. The initialization of the contents of the data items associated with the POINTER phrase or 
the TALL YING phrase is the responsibility of the user. 

I 5. The contents of the data item referenced by identifier- I 0 are incremented by one for each char
acter examined in the data item referenced by identifier-I. When the execution of an UNSTR
ING statement with a POINTER phrase is completed, the contents of the data item referenced 
by identifier-IO will be a value equal to the initial value plus the number of characters exam
ined in the data item referenced by identifier-I. 

I 6. When the execution of an UNSTRING statement with a TALL YING phrase is completed, the 
contents of the data item referenced by identifier- I I contains a value equal to its initial value 
plus the number of data receiving items acted upon. 

I 7. Any of the following situations causes an overflow condition: 

II68622 

a. An UNSTRING statement is initiated, and the value in the data item referenced by identifi
er-IO is less than I or greater than the size of the data item referenced by identifier-I. 

b. If, during execution of an UNSTRING statement, all data receiving areas have been acted 
upon, and the data item referenced by identifier-I contains characters that have not been 
examined. 

c. An UNSTRING is initiated, and the value in the data item referenced by identifier-12 is 
less than I or greater than the size of the data item referenced by identifier-I. 

d. If, during execution of an UNSTRING statement, all data receiving areas have been acted 
upon, and the number of cha~acters acted upon is less than the value of identifier-12 or 
integt:~r-1. 

7-I41 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: UNSTRING 

18. An overflow condition occurs if during the execution of an UNSTRING, the value of the 
pointer item (identifier-IO) becomes less than or greater than the number of characters in the 
sending item, or if all the receiving items have been acted upon and the sending item still con
tains data characters that have not been examined. 

When an overflow condition exists, the UNSTRING operation is terminated. If an ON OVER
FLOW phrase has been specified, the imperative statement included in the ON OVERFLOW 
phrase is executed. If the ON OVERFLOW phrase is not specified, control is transferred to 
the next executable statement. 

19. The evaluation of subscripting and indexing for the identifiers is as follows: 

a. Any subscripting or indexing associated with identifier-I, identifier-IO, identifier-11 is eval
uated only once, immediately before any data is transferred as a result of the execution 
of the UNSTRING statement. 

b. Any subscripting or indexing cissociated with identifier-2, identifier-3, identifier-4, identifi
er-5, identifier-6 is evaluated immediately before the transfer of data into the respective 
data item. 

Examples: 

A~sume that ALPHA = ABCH~FFG~®zxIJKL, that the size of each of the receiving data items 
- ITEM-1, ITEM-2, or ITEM~fis equal to 5, and that ITEM-3 is equal to 4. 

1. UNSTRING ALPHA INTO ITEM-1, ITEM-2, ITEM-3, ITEM-4 

2. UNSTRING ALPHA DELIMITED BY "X" INTO ITEM-1, ITEM-2, ITEM-3 

3. UNSTRING ALPHA DELIMITED BY ALL "X" INTO ITEM-1, ITEM-2, ITEM-3 

4. UNSTRING ALPHA DELIMITED BY "X" OR "H" INTO ITEM-1, ITEM-2, ITEM-3 

After execution the contents of the receiving fields are as follows. 

7-142 

I TEM-1 
+-+-+-+-+-+ 

l. ABCHX 
+-+-+-+-+-+ 

ITEM-2 
+-+-+-+-+-+ 

E F G X X 
+-+-+-+-+-+ 

+-+-+-+-+-+ +-+-+-+-+-+ 
2. A B C H E F G 

+-+-+-+-+-+ +-+-+-+-+-+ 

+-+-+-+-+-+ +-+-+-+-+-+ 
3. A B C H E F G 

+-+-+-+-+-+ +-+-+-+-+~+ 

+-+-+-+-+-+ +-+-+-+-+-+ 
4. A B C 

+-+-+-+-+-+ +-+-+-+-+-+ 

ITEM-3 
+-+-+-+-+ 

Z X I J 
+-+-+-+-+ 

+-+-+-+-+ 

+-+-+-+-+ 

+-+-+-+-+ 
z 

+-+-+-+-+ 

+-+-+-+-+ 
E F G 

+-+-+-+-+ 

ITEM-4' 
+-+-+-+-+-+ 

K L 
+-+-+-+-+-+ 



USE 

B I 000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: USE 

The USE statement specifies procedures for input-output error handling that are in addition to the stan
dard procedures provided by the input-output control system. 

General Format: 

Syntax Rules: 

USE AFTER ST AND ARD 

{ file-name- I 
J INPUT 

I 
OUTPUT 
I-0 
EXTEND 

f EXCEPTION } 

(ERROR 

[, file-name-2] 

PROCEDURE ON 

1. A USE statement, when present, must immediately follow a section header in the Declaratives 
Section and must be followed by a period followed by a space. The remainder of the section 
must consist of zero, one, or more procedural paragraphs ~hat define the procedures to be used. 

2. The USE statement only defines the conditions calling for the execution of the USE procedures, 
and is. never executed. 

3. The same file-name can appear in a different specific arrangement of the format. Appearance 
of a file-name in a USE statement must not cause the simultaneous request for execution of 
more than one USE procedure. 

4. The words ERROR and EXCEPTION are synonymous and may be used interchangeably. 

5. The files implicitly or explicitly referenced in a USE statement need not all have the same or
ganization or access. 

6. EXTEND can only be used for Sequential Files. 

General Rules: 

1. The designated procedures are executed two ways: first, by the input-output system after com
pleting the standard input-output error routine, or second, upon recognition of the INVALID 
KEY or AT END conditions when the INVALID KEY phrase or AT END phrase has not been 
specified in· the input-output statement. 

2. After execution of a USE procedure, control is returned to the routine that caused the USE 
procedures to be invoked. 

1168622 7-143 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: USE 

3. Within a USE procedure, there must not be any reference to any nondeclarative procedures. 
Conversely, in the nondeclarative portion, there must be no reference to procedure-names that 
appear in the declarative portion, except that PERFORM statements may refer to a USE state
ment or to the procedures associated with such a USE statement. 

4. Within a USE procedure, there must not be the execution of any statement that causes the 
execution of a previously invoked USE procedure that has not yet returned control to the invok
ing routine. 

7-144 



1168622 

B 1000 Systems CO BO L 7 4 Language Manual 
Procedure Division 

VERB FORMAT: WAIT 

7-145 



VERB FORMAT: WAIT 

7-146 

B 1000 Systems COBOL 74 Language Manual 
Procedure Division 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: WRITE 

WRITE 

The WRITE statement releases a logical record for an output file. It can also be used for vertical posi
tioning of lines within a logical page. 

General Format: 

WRITE record-name [ FROM identifier-I ] 

[ 

( { identifier-2 } [LINE J 
{ 

BEFORE } · ) , integer-I LINES 
ADVANCING 

AFTER ) { mnemonic-name } 
l , PAGE l l 

[ fEND-OF~AGE} J 
AT } imperative-statement 

~ EOP , 

Format 2: 

[------------W--R~I_T ___ E----r-e-co_r_d_-n_a_rn_e _____ [_F_R_O __ M--id_e_n_ti_·u-·e_r--1_] ____________________ __ [; INVALID KEY imperative-statement ] 

Format 3: 

Syntax Rules: 

1. Record-name and identifier-I must not reference the same storage area. 

2. When mnemonic-name is specified, it must be associated with a CHANNEL number. The mne
monic-name is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVI
SION. 

3. The record-name is the name of a logical record in the FILE SECTION of the DATA DIVI
SION and may be qualified. 

4. When identifier-2 is used in the ADVANCING phrase, it must be the name of an elementary 
integer data item. 

1168622 7-147 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: WRITE 

5. Integer-I or the value of the data item referenced by identifier-2 may be zero. 

6. If the END-OF-PAGE phrase is specified, the LINAGE clause must be specified in the file de
scription entry (FD) for the associated file. 

7. The words END-OF-PAGE and EOP are equivalent. 

· 8. The ADVANCING mnemonic-name phrase cannot be specified when writing a record to a file 
whose file description entry contains the LINAGE clause. 

9. Format 1 must be used if the ACTUAL KEY phrase is not specified in the file-control entry 
for the file associated with record-name. Format 2 must be used if the ACTUAL KEY phrase 
is specified in the file-control entry for the file associated with record-name. 

10. Format 2 is used for Relative and Indexed Files and also Sequential Files in the Random access 
mode. 

11. In Format 2, the INVALID KEY phrase must be specified if an applicable use procedure is 
not specified for the associated file. 

General Rules: 

These rules follow under the following headings: 

Mass and Non-Mass Storage Files 

Non-Mass Storage Files 

Mass Storage Files 
1) Sequential Files r (Q.ueu.e files) 
2) Indexed Files 
3) Relative Files 

Mass and Non-Ma,ss Storage Files 

1. The associated file must be open in the OUTPUT, INPUT-OUTPUT, or EXTEND mode at 
the time of the execution of this statement, and must not be a SORT or MERGE File. Refer 
to the OPEN statement in this section. 

2. The execution of a WRITE statement has no effect upon either the contents or accessibility 
of the record area. If the associated file is named in the SAME RECORD AREA clause, the 
logical record is also available to the program as a record of other files referenced in the same 
SAME RECORD AREA clause; the associated output file and the file associated with record
name. 

7-148 



B 1000 Systems COBOL 74 Language Manual· 
Procedure Division 

VERB FORMAT: WRITE 

3. The results of the execution of the WRITE statement with the FROM phrase is equivalent to 
the execution of 

a. The statement: 

MOVE identifier-I TO record-name 

according to the rules specified for the MOVE statement, followed by 

b. The same WRITE statement without the FROM phrase. 

~ The contents of the record area before the execution of the implicit MOVE statement have 
no effect on the execution of this WRITE statement. 

4 .. The current record pointer is unaffected by the execution of a WRITE statement. 

5 .. The execution of the WRITE statement causes the value of the FILE STATUS data item, if 
any, associated with the file to be updated. Refer to I-0 Status in section 5. 

6 .. The maximum record size for a file is established when the file is created and must not subse
quently be changed. 

7 .. The number of character positions on a mass storage device required to store a logical record 
in a file may or may not be equal to the number of character positions defined by the logical 
description of that record in the program. 

8. The execution of the WRITE statement releases a logical record to the operating system. 

Non-Mass Storage Files 

9. Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the vertical 
positioning of each line on a representation of a printed page. If the ADVANCING phrase is 
not used, automatic advancing is provided to act as if the user had specified AFTER AD
VANCING 1 LINE. If the ADV ~NCING phrase is used, advancing is provided as follows: 

1168622 

a. If identifier-·2 is specified, the page is advanced the number of lines equal to the current 
value of identifier-2. 

b. If integer-1 is specified, the page is advanced the number of lines equal to the vaiue of 
integer-1. 

c. If mnemonic-name is specified, the page is advanced to the line number corresponding to 
the CHANNEL number. 

d. If the BEFORE phrase is used, the line is written before the page Js advanced according 
to rules 9a, 9b, and 9c. 

e. If the AFTER phrase is used, the line is written after the page is advanced according to 
rules 9a, 9b, and 9c. 

7-149 



B 1000 Systems COBOL74 Language Manual 
Procedure Division 

VERB FORMAT: WRITE 

f. If PAGE is specified, the record is written on the logical page BEFORE or AFTER (de
pending on the phrase used) the device is repositioned to the next logical page. If the rec
ord to be written is associated with a file containing a LINAGE clause, the repositioning 
is to the first line that can be written on the next logical page as specified in the LINAGE 
clause. If the record to be written is associated with a file which does not contain a 
LINAGE clause, the repositioning is to CHANNEL 1 or line 1 of the next logical page 
when appropriate for the hardware device. 

If PAGE has no meaning in conjunction with a specific device, then advancing is provided 
by the compiler to act as if the user had specified BEFORE or AFTER ADVANCING 
1 LINE. In either case, page positioning depends on the phrase used. 

10. If the logical end of the page is reached during the execution of a WRITE statement with the 
END-OF-PAGE phrase, the imperative-statement specified in the END-OF-PAGE phrase is 
executed. The logical end is specified in the LINAGE clause associated with record-name. 

11. An end-of-page condition is reached whenever the execution of a given WRITE statement with 
the END-OF-PAGE phrase causes printing or spacing within the footing area of a page body. 
This occurs when the execution of such a WRITE statement causes the LINAGE-COUNTER 
to equal or exceed the value specified by integer-2 or the data item referenced by data-name-
2 of the LINAGE clause, if specified. In this case, the WRITE statement is executed and then 
the imperative statement in the END-OF-PAGE phrase is executed. 

An automatic page overflow condition is reached whenever the execution of a given WRITE 
statement (with or without an END-OF-PAGE phrase) cannot be fully accommodated within 
the current page body. 

Overflow occurs when a WRITE statement, if executed, causes the LINAGE-COUNTER to ex
ceed the value specified by integer-1 or to exceed the data item referenced by data-name-1 of 
the LINAGE clause. In this case, the record is written (depending on the phrase used) on the 
logical page before or after the device is repositioned to the first line that can be written on 
the next logical page as specified in the LINAGE clause. The imperative statement in the END
OF-P AGE clause, if specified, is executed after the record is written and the device has been 
repositioned. 

If integer-2 or data-name-2 of the 'LINAGE clause is ~ot specified, no end-of-page condition 
distinct from the page overflow condition is detected. In this case, the end-of-page condition 
and page overflow . condition occur simultaneously. 

If integer-2 or data-name-2 of the LINAGE clause is specified, but the execution of a given 
WRITE statement would cause LINAGE-COUNTER to simultaneously exceed the value of 
both integer-2 (or the data item referenced by data-name-2) and integer-1 (or the data item ref
erenced by data-name-1), then the operation proceeds as if integer-2 or data-name-2 had not 
been specified. 

12. After the recognition of an end-of-reel or an end-of-unit of an output file that is contained 
on more than one physical reel/unit, the WRITE statement performs the following operations: 

a. The standard ending reel/unit label procedure. 

b. A reel/unit swap. 

7-150 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

c. The standard beginning reel/unit label procedure. 

VERB FORMAT: WRl.TE 

Mass Storage Files 
! 

13. When the INVALID KEY condition is recognized, the execution of the WRITE statement is 
unsuccessful. The contents of the record area are unaffected and the FILE ST A TUS data item, 
if any, associated with the file-name of the associated file is set to a value indicating the cause 
of the condition. Execution of the program proceeds according to the rules stated for the IN
VALID KEY condition. Refer to 1-0 Status in section 5. 

Sequential Files: 

14. When an attempt is made to write beyond the externally defined boundaries of a Sequential 
File, an exception condition exists and the contents of the record area are unaffected. The fol
lowing action takes place: 

a. The value of the FILE ST A TUS data item, if any, of the associated file is set to a value 
indicating a boundary violation. Ref er to 1-0 Status in section 5. 

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly specified 
for the file, that declarative procedure is then executed. 

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implicitly spec
ified for the file, the result is undefined. · 

15. lf the ACTUAL KEY phrase is specified for a mass storage file whose access mode is sequen
tial, the successful execution of a Format 2 WRITE statement updates the contents of the AC
TUAL KEY data item to the ordinal number of the logical record written. 

16. For a mass storage file whose access mode is sequential, the execution of a Format 2 WRITE 
statement releases the record area to the next logical record in the file. 

17. For a mass storage file whose access mode is sequential, the INVALID KEY condition exists 
when a maximum logical size is specified for the file and no more logical records may be writ
ten. 

18. For a mass storage file whose access mode is random, the execution of a Format 2 WRITE 
statement releases the record area to the logical record o( the file specified by the contents of 
the ACTUAL KEY data item. 

19. For a mass storage file whose access mode is random, an INVALID KEY condition exists when 
the value of the ACTUAL KEY data item is less than 1 or greater than the ordinal number 
of the last logical record allowed for the file, provided that the maximum logical size of the 
file is specified. 

1168622 7-151 



VERB FORMAT: WRITE 

Indexed Files: 

B 1000 Systems COBOL74 Language Manual 
Procedure Division 

24. For an Indexed File, execution of the WRITE statement causes the contents of the record area · 
to be released. The contents of the record keys are utilized such that subsequent access of the 
record key may be made based upon any of those specified record key·s. 

25. The value of the prime record key must be unique within the records in the Indexed File. 

26. In an Indexed File, the data item specified as the prime record key must be set by the program 
to the desired value before the execution of the WRITE statement. 

27. If the sequential access mode is specified for an Indexed File, records must be released in as
cending order of prime record key values. 

28. If random or dynamic access mode is specified for an Indexed File, records may be released 
in any program-specified order. 

29. When the ALTERNATE RECORD KEY clause is specified in the file control entry for an In
dexed File, the value of the alternate record key may be nonunique only if the DUPLICATES 
phrase is specified for that data item. In this case, the storage of records is such that when 
records are accessed sequentially, the order of retrieval of those records is the order in which 
they are released. 

7-152 



B 1000 Systems COBOL 74 Language Manual 
Procedure Division 

VERB FORMAT: WRITE 

30. The INVALID KEY condition exists under any of the following circumstances: 

a. When sequential access mode is specified for a file opened in the output mode, and the 
value of the prime record key is not greater than the value of the prime record key of 
the previous record. 

b. When the file is opened in the output or 1-0 mode, and the value of the prime record 
key is equal to the value of a prime record key of a record already existing in the file. 

c. When the file is opened in the output or 1-0 mode, and the value of an alternate record 
key for which duplicates are not allowed equals the corresponding data item of a record 
already existing in the file. · 

d. When an attempt is made to write beyond the externally defined b~mndaries of the file. 

Relative Files: 

31. When a Relative File is opened in the output mode, records may be placed into the file in one 
of the following ways: 

a. If the access mode is sequential, the WRITE statement causes a record to be released. The 
first record has a relative record number of 1 and subsequent records released have relative 
record numbers of 2, 3, 4, and so on. If the RELATIVE KEY data item has been specified 
in the file control entry for the associated file, the relative record number of the record 
just released is placed into the RELATIVE KEY data item during execution of the WRITE 
statement. 

b. If the access mode is random or dynamic before the execution of the WRITE statement, 
the value of the RELATIVE KEY data item must be initialized in the program with the 
relative record number to be associated with the record in the record area. That record 
is then released by execution of the WRITE statement. 

32. When a Relative File is opened in the 1-0 mode and the access mode is random or dynamic, 
records are to be inserted in the associated file. The value of the RELATIVE KEY data item 
must be initialized by the program· with the relative record number to be associated with the . 
record in the record area. Execution of a WRITE statement then causes the contents of the 
record area to be released. 

33. The INVALID KEY condition exists under any of the following circumstances: 

1168622 

a. · When the access mode is random or dynamic, and the RELATIVE KEY data item specifies 
a record which already exists in the file. 

b. When an attempt is made to write beyond the externally defined boundaries of the file. 

7-153 



B 1000 Systems COBOL 74 Language Manual 

1168622 8-1 



B 1000 Systems COBOL 74 Language Manual 
File Attributes · 

8-2 



1168622 

B 1000 Systems COBOL 74 Language Manual 
File Attributes 

8-3 



8-4 

B 1000 Systems COBOL 74 Language Manual 
File Attributes 



B 1000 Systems COBOL 74 Language Manual 
File Attributes 

CHANGE 

111•11ml . : . ·: ·: '... . . . .... c· . .. . .. .. . . :' ·. ;~: : :111~~i!ji.\ ... ~ ; 1::11:-::. : .. ;:;\if . . .... :. ·. 

: lorxnat ·_ l! 2 > • > · ·;: .. :•J: 

••• 

1168622 
8-5 



8-6 

B 1000 Systems COBOL 74 Language Manual 
File Attributes 



Jl 168622 

B 1000 Systems COBOL 74 Language Manual 
File Attributes 

VALUE OF 

8-7 



B 1000 Systems COBOL74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-8 



B 1000 Systems COBOL 74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 



B 1000 Systems COBOL 74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-10 



] 168622 

B 1000 Systems COBOL 74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-11 



B 1000 Systems COBOL74 Language Manual 
.File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-12 



1168622 

B 1000 Systems COBOL 74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-13 



B 1000 Systems COBOL 74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-14 



1168622 

B I 000 Systems COBOL 74.Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-15 



B 1000 Systems COBOL74 Language Manual 
File Attributes 

ATTRIBUTE NAME DESCRIPTIONS 

8-16 



B I 000 Systems COBOL 74 Language Manual 

1168622 9-1 



DATA BASE SECTION 

9-2 

B 1000 Systems COBOL74 Language Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 

SELECTION EXPRESSIONS 

9-3 



9-4 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



]! 168622 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 

KEY CONDITION 

9-5 



KEV CONDITION 

9-6 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



1168622 

B I 000 Systems COBOL 74 Language Manual 
Data Base: Management 

EXCEPTION TYPE 

9-7 



EXCEPTION TYPE 

9-8 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL74 Language Manual 
Data Base Management 

EXCEPTION TYPE 

9-9 



EXCEPTION TYPE 

9-10 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL74 Language Manual 
Data Base Management 

BEGIN-TRANSACTION 

9-11 



9-12 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 

. . .. . ~ 

. . : . . . . . 
.. . . .. . ' 

,; <>•·· 



1168622 

B I 000 Systems COBOL 74 Language Manual 
Data Base Management 

CREATE 

9-13 



9-14 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 

END-TRANSACTION . 

9-15 



9-16 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL74 Language Manual 
Data Base Management 

FREE 

9-17 



9-18 

B 1000 Systems COBOL74 Langu3:ge Manual 
Data Base Management 

·.··. ·.··· .·.: .· .. ··· 

···:·· :·· .. ·· ·· .. :·.:-~·:.=·f:·.. :·,······ .... 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 

LOCK 

9-19 



9-20 

B 1000 Systems COBOL 74 Langu~ge Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL74 Language Manual 
Data Base Management 

RECREATE 

9-21 



9-22 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management 

STORE 

9-23 



STORE 

9-24 

B 1000 Systems COBOL 74 Language Manual 
Data Base Management. 



GENERAL 

B I 000 Systems COBOL 74 Language Manual 

SECTION 10 
DE:BUG 

The Debug section provides a means by which the user can describe a debugging algorithm, including 
the conditions under which data items or procedures are to be monitored during the execution of the 
object program. 

The decisions of what to monitor and what information to display on the output device are explicitly 
in the domain of the user. The COBOL 74 debug facility simply provides a convenient access to per
tinent information. 

LANGUAGE CONCEPTS 
The features of the COBOL 74 language that support the Debug section are: 

1. A compile-time switch called WITH DEBUGGING MODE. 
2. An object-time switch. 
3. A USE FOR DEBUGGING statement. 
4. A special register called DEBUG-ITEM. 
5. Debugging lines. 

DEBUG-ITEM 

The reserved word DEBUG-ITEM is the name for a special register generated automatically. Only one 
DEBUG-·ITEM is allocated per program. The names of the subordinate data items in DEBUG-ITEM 
are also reserved words. 

A Compile-Time Switch 

The WITH DEBUGGING MODE clause is written as part of the SOURCE--COMPUTER paragraph. 
It serves as a compile-time switch over all the debugging statements written in the program. 

An Object-Time Switch 

An object-time switch (SW9), dynamically activates the debugging code inserted by the compiler. This 
switch cannot be addressed in the program; it is controlled outside the COBOL 74 environment. If the 
switch is ON (SW9 = 1), all the effects of the debugging language written in the source program are 
permitted. If the switch is OFF (SW9 = 0), all the effects described in the USE FOR DEBUGGING 
statement are inhibited. The value of SW9 has no effect on debugging lines in the source program. 
Recompilation of the source program is not required in order to provide or take away this facility. 

The object-time switch has no effect on the execution of the object program if the WITH DEBUG
GING MODE clause was not specified in the source program at compile time. 

1168622 10-1 



Debugging Lines 

B 1000 Systems COBOL 74 Language Manual 
Debug 

--------------------------------

A debugging line is any line with the letter D in the indicator area (column 7), of the line. Any debug
ging line that consists solely of spaces from columns 8 to 72 is considered the same as a blank line. 

The contents of a debugging line must be such that a syntactically correct program is formed with or 
without the debugging lines being considered as comment lines. 

A debugging line is considered to have all the characteristics of a comment line, if the WITH DEBUG
GING MODE clause is not specified in the SOURCE-COMPUTER paragraph. 

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that each 
continuation line must contain the letter D in the indicator area, and character-strings may not be bro
ken across two lines. 

The OBJECT-COMPUTER paragraph must precede any debugging line in a program. 

10-2 



B 1000 Systems COBOL 74 Language Manual 
• Debug 

ENVIRONMENT DIVISION 

ENVIRONMENT DIVISION 

To use the debugging features, you must specify the WITH DEBUGGING MODE clause in the ENVI
RONMENT DIVISION. 

WITH DEBUGGING MODE 

The WITH DEBUGGING MODE clause indicates that all debugging sections and all debugging lines 
are to be compiled. Refer to Debugging Lines and USE FOR DEBUGGING in this section. If this 
clause is not specified, all debugging lines and sections are compiled as comment lines. 

General Format: 

c=== __ ~s_o_u __ R_c_E_-e_o_M_~PU __ T_E_R_. ___ c_o_m_p_u_te_r_-_n_am __ e ___ [_w_1T_H __ D~E-B_u_c_G_1N __ G_M~O-D_E_]~--~----
General Rules: 

1. If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER paragraph 
of the CONFIGURATION SECTION of a program, all USE FOR DEBUGGING statements 
and all debugging lines are compiled. 

2. If the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER 
paragraph of the CONFIGURATION SECTION of a program, any USE FOR DEBUGGING 
statements and all associated debugging sections, and any debugging lines are compiled as com
ment lines. 

I I 68622 10-3 



B 1000 Systems COBOL 74 Language Mamial 
Debug 

PROCEDURE DIVISION 

Within the PROCEDURE DIVISION, procedures and data-names can be selectively monitored through 
the USE FOR DEBUGGING statement. 

USE FOR DEBUGGING 

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the associ
ated debugging section~ 

General Format: 

section-name SECTION [ segment-number ] . 

USE FOR DEBUGGING ON 

{ cd-name-1 
) (ALL REFERENCES OF] 
·i file-name- I 

procedure-name-1 
ALL PROCEDURES 

cd-name-2 
(ALL REFERENCES OF] 

file-name-2 
identificr-2 l 

procedure-name-2 
ALL PROCEDURES 

identifier- I l 

~ 

Syntax Rules: 

10-4 

1. Debugging section(s), if specified, must appear together immediately after the DECLARA
TIVES header. 

2. Except in the USE FOR DEBUGGING statement, there must be no reference to any nondec
larative procedure within the debugging section. 

3. Statements appearing outside of the set of debugging sections must not reference procedure
names defined within the set of debugging sections. 

4. Except for the USE FOR DEBUGGING statement, statements appearing within a given debug
ging section may reference procedure-names defined within a different USE procedure only with . 
a PERFORM statement. · 

5. P rocedure-names defined within debugging sections must not appear within USE FOR DE
BUGGING statements. 

6. Any given identifier, cd-name, file-name, or procedure-name may appear in only one USE FOR 
DEBUGGING statement and may appear only once in that statement. 



B I 000 Systems COBOL 7 4 Language Manual 
Debug 

PROCEDURE DIVISION 

7. The ALL PROCEDURES phrase can appear only once in a program. 

8. When the ALL PROCEDURES phrase is specified, procedure-name-I, procedure-name-2, 
must not be specified in any USE FOR DEBUGGING statement. 

9. If the data description entry of the data item referenced by identifier-I, identifier-2, ... , contains 
an OCCURS clause or is subordinate to a data description entry that contains an OCCURS 
clause, identifier-I, identifier-2, ... , must be specified without the subscripting or indexing nor
mally required. 

10. References to the special register DEBUG-ITEM are restricted to references from within a de
bugging section. 

General Rules: 

I. In the following general rules all references to cd-name-I, identifier-I, procedure-name-I, and 
.file-name-I apply equally to cd-name-2, identifier-2, procedure-name-2, and file-name-2, respec
tively. 

2. Automatic execution of a debugging section is not caused by a statement appearing in a debug
ging section. 

3. When file-name-I is specified in a USE FOR DEBUGGING statement, that debugging section 
is executed: 

a. After the execution of any OPEN or CLOSE statement that references file-name-I, and 

b. After the execution of any READ. statement (after any other specified USE procedure) not 
resulting in the execution of an associated AT END or INVALID KEY imperative state
ment, and 

c. After the execution of any DELETE or START statement that references file-name-I. 

4. When procedure-name-I is specified in a USE FOR DEBUGGING statement, that debugging 
section is executed: 

a. Immediately before each execution of the named procedure; 

b. Immediately after the execution of an ALTER statement which references procedure-name-
1. 

5. The ALL PROCEDURES phrase causes the effects described in General Rule 4 to occur for 
every procedure-name in the program, except those appearing within a debugging section. 

6. When the ALL REFERENCES OF identifier-I phrase is specified, that debugging section is 
executed for every statement that explicitly references identifier-I at each of the following times: 

1168622 

a. In the case of a WRITE or REWRITE statement, immediately before the execution of that 
WRITE or REWRITE statement and after the execution of any implicit move resulting 
from the presence of the FROM phrase. 

I0-5 



B 1000 Systems COBOL 74 Language Manual 
Debug 

PROCEDURE DIVISION 

10-6 

b. In the case of a GO TO statement with a DEPENDING ON phrase, immediately before 
control is transferred and prior to the execution of any debugging section associated with 
the procedure-name to which control is to be transferred. 

c. In the case of a PERFORM statement in which a VARYING, AFTER, or UNTIL phrase 
references identifier-I, immediately after each initialization, modification, or evaluation of 
the contents of the data item referenced by identifier- I. 

d. In the case of any other CQBOL 74 statement, immediately after execution of that state
ment. 

If identifier-I is specified in a phrase that is not executed or evaluated, the associated de
bugging section is not executed. 

7. When identifier-I is specified without the ALL REFERENCES OF phrase, that debugging sec
tion is executed at each of the following times: 

a. In the case of a WRITE or REWRITE statement that explicitly references identifier-I, im
mediately before the execution of that WRITE or REWRITE statement and after the 
execution of any implicit move resulting from the presence of the FROM phrase. 

b. In the case of a PERFORM statement in which a VARYING, AFTER, or UNTIL phrase 
references identifier-I, immediately after each initialization, modification, or evaluation of 
the contents of the data item referenced by identifier-I. 

c. Immediately after the execution of any other COBOL 74 statement that explicitly references 
and causes the contents of the data item referenced by identifier-I to be changed. 

If identifier-I is specified in a phrase that· is not executed or evaluated, the associated de-· 
bugging section is not executed. 

8. The associated debugging section is not executed for a specific operand more than once as a 
result of the execution of a single statement, regardless of the number of times that operand 
is explicitly specified. In the case of a PERFORM statement which causes iterative execution 
of a referenced procedure, the associated debugging section is executed once for each iteration. 

Within an imperative statement, each individual occurren..ce of an imperative verb identifies a 
separate statement for the purpose of debugging. 

9. When cd-name-I is specified in a USE FOR DEBUGGING statement, that debugging section 
is executed: 

a. After the execution of any ENABLE, DISABLE, and SEND statement that references cd
name-I, 

b. After the execution of a RECEIVE statement referencing cd-name-I that does not result 
in the execution of the NO DATA imperative-statement, and 

c. After the execution of an ACCEPT MESSAGE COUNT statement that references cd
name-I. 



B 1000 Systems COBOL74 Language Manual 
Debug 

PROCEDURE DIVISION 

10. A reference to file-name-I, identifier-I, procedure-name-I, or cd-name-1 as a qualifier does 
not constitute reference to that item for the debugging described in the previous general rules. 

11. Associated with each execution of a debugging section is the special register DEBUG-ITEM, 
which provides information about the conditions that caused the executfon of a debugging sec-
tion. DEBUG-ITEM has the following implicit description: ' · 

01 DrnUG-1 TEM. 
02 DEBUG-LINE PICTURE IS x (6). 
02 FILLER PICTURE IS x VALUE SPACE. 
02 DEBUG-NAME PICTURE IS x ( 30) • 
02 Fl LLER PICTURE IS x VALUE SPACE. 
02 D EBUG-SUB-1 PICTURE IS s9999 SIGN IS LEADING SEPARATE 

CHARACTER 
02 FILLER PICTURE IS x VALUE SPACE. 
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE 

CHARACTER 
02 FILLER PICTURE IS x VALUE SPACE. 
02 DEBUG-SUB- 3 PICTURE IS S9999 SIGN IS LEADING SEPARATE 

CHARACTER 
02 FILLER PICTURE IS x VALUE SPACE. 
02 DEBUG-CONTENTS PICTURE IS X (n) . 

12. Prior to each execution of a debugging section, the contents of the data items referenced by 
DEBUG-ITEM are space-filled. The contents of data items subordinate to DEBUG-ITEM are 
then updated, according to the following General Rules, immediately before control is passed 
to that debugging section. The contents of any data item not specified in the following general 
rules remain spaces. 

Updating is accomplished in accordance with the rules for the MOVE statement, the sole excep
tion being the move to DEBUG-CONTENTS when the move is treated exactly as an alphanu
meric to alphanumeric elementary move with no conversion of data from one form of internal 
representation to another. 

13. DEBUG-LINE is a data item that identifies the particular source statement that caused the 
debugging section to be executed. It contains the line number of the source image, a number 
which starts from I and is incremented by I for every source image compiled. This line num
ber is printed on the source listing during compilation. 

14. DEBUG-NAME contains the first 30 characters of the name that caused the debugging section 
to be executed. 

All qualifiers of the name are separated in DEBUG-NAME by the word IN or OF. 
Subscripts/indices, if any, are not entered into DEBUG-NAME. 

I 5. If the reference to a data item that causes the debugging section to be executed is subscripted 
or indexed, the occurrence number of each level is entered in DEBUG-SUB-I, DEBUG-SUB-
2, DEBUG-SUB-3 respectively as necessary. 

Il68622 10-7 



B 1000 Systems COBOL 74 Language Manual 
Debug 

PROCEDURE DIVISION 

10-8 

If the data item is subscripted with more than three subscripts or indices, only the occurrence 
numbers of the first three levels are entered into the DEBUG-ITEM. 

I6. DEBUG-CONTENTS is a data item that is large enough to contain the data required by the 
following General Rules I 7 through 25. 

·I 7. If the first execution of the first nondeclarative procedure in the program causes the debugging 
section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the first statement of that procedure. 

b. DEBUG-NAME contains the name of that procedure. 

c. DEBUG-CONTENTS contains 'START PROGRAM'. 

I 8. If a reference to procedure-name-I in an ALTER statement causes the debugging section to 
be executed, the following conditions exist: 

a. DEBUG-LINE identifies the ALTER statement that references procedure-name·-I. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains the applicable procedure-name associated with the TO 
phrase of the ALTER statement. 

I 9. If the transfer of control associated with the execution of a GO TO statement causes the de
bugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the GO TO statement whose execution·transfers control to·•proce
dure-name-I. 

b. DEBUG-NAME contains procedure-name-I. 

20. If reference to procedure-name-I in the INPUT or OUTPUT phrase of a SORT or MERGE 
statement causes the debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the SORT or MERGE statement that references procedure-name-
1. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains: 

I) 'SORT INPUT' if the reference to procedure-name-I is in the INPUT phrase of a 
SORT statement. 

2) 'SORT OUTPUT' if the reference to procedure-name-I is in the OUTPUT phrase of 
a SORT statement. 

3) 'MERGE OUTPUT' if the reference to procedure-name-I is in the OUTPUT phrase 
of a MERGE statement. 



B 1000 Systems COBOL 74 :Language Manual 
Debug 

PROCEDURE DIVISION 

2I. If the transfer of control from the control mechanism associated with a PERFORM statement 
caused the debugging section associated with procedure-name-I to be executed, the following 
conditions exist: 

a. DEBUG-LINE identifies the PERFORM statement that references procedure-name-I. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains 'PERFORM LOOP'. 

22. If procedure-name-I is a USE procedure that is to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the statement that causes execution of the USE procedure. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains 'USE PROCEDURE'. 

23. If an implicit transfer of control from the previous sequential paragraph to procedure-name
I causes the debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE. identifies the previous statement. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains 'FALL THROUGH'. 

24. If references to file-name-I, cd-name-I cause the debugging section to be executed, then: 

a. DEBUG-LINE identifies the source statement that references file-name-I, cd-name-1. 

b. DEBUG-NAME contains the name of file-name-I, cd-name-1. 

c. For READ, DEBUG-CONTENTS contains the entire record read. 

d. For all other references to file-name-I, DEBUG-CONTENTS contains spaces. 

e. For any reference to cd-name-I, DEBUG-CONTENTS contains the contents of the area 
associated with the cd-name. 

25. If a reference to identifier-I causes the debugging section to be executed, then: 

1168622 

a. DEBUG-LINE identifies the source statement that references identifier-I. 

b. DEBUG-NAME contains the name of identifier-I, and 

c. DEBUG-CONTENTS contains the contents of the data item referenced by identifier-I at 
the time that control passes to the debugging section (refer to General Rules 6 and 7). 

10-9 



B 1000 Systems COBOL 74 Language Manual 
Debug 

Example: 

10-10 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. DEBUGTEST. 
000 300 ,., 
000400 ,., 
000500 ,., 
000600 ,., 
000700 ,., 
000800 ,., 
0008 l 0 )'( 
000900 ,., 

THIS PROGRAM IS AN EXAMPLE OF THE COBOL74 DEBUGGING AIDS. 
NOTE THAT THE "WITH DEBUGGING MODE 11 STATEMENT IN THE SOURCE 
COMPUTER PARAGRAPH INSTRUCTS THE ·coMP ILER THAT DEBUGGING 
STATEMENTS ARE TO BE COMPILED INTO THE OBJECT CODE. SETTING 
SW9=l AT EXECUTION TIME ENABLES THE EFFECTS DESCRIBED IN 
THE 11 USE FOR DEBUGGING" STATEMENT. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 81985 WITH DEBUGGING MODE. 
OBJECT-COMPUTER. 01985. 

001000 
001100 
001200 
001300 
001400 
001500 
001600 
001700 D 
001800 
001900 
002000 
002100 
002200 D 
002300 D 
002400 
002500 
002600 
002700 
002800 D 
002900 D 
003000 D 
003100 01 
003200 
003300 
003400 77 
003500 77 
003600 77 
003700 01 
003800 
003900 
004000 ,., 
004100 
004200 
004300 
004400 
004500 
004600 
004700 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT PRINTFILE ASSIGN TO PRINTER. 
SELECT DBGFILE ASSIGN TO PRINTER. 

DATA DIVISION. 
FILE SECTION. 
FD PR I NTF ILE. 
01 PRINT-REC 
FD DBGFILE. 
01 DEBUG-REC 
WORKING-STORAGE SECTION. 
77 ALF A 
77 BRAVED 
77 CHARLIE 
77 FLAG 

88 NEED-IT 
88 FILE-OPEN 
BARBARA. 
03 CHERYL. 

05 DIANNE 

PIC X(l32). 

PIC X(l32). 

PIC 9 VALUE 4. 
PIC 99 VALUE 16. 
PIC 99. 
PIC 9. 
VALUE ZERO. 
VALUE l. 

PIC 99 VALUE 16. 
PI C 9 ( l 8) . ELVA 

FRAN 
GOLDIE 
HEID I. 

PI C X (32) VALUE "TEST PROGRAM FOR COBOL 74 MANUAL 81
• 

PI C 9 VALUE l. 

03 I LENE 
03 JANIS 

PROCEDURE DIVISION. 
DECLARATIVES. 
D-BUG SECTION. 

USE DEBUGGING ON 

PI C 9 (8) OCCURS 5 TI MES. 
PIC 9. 

ALL REFERENCES OF CHARLIE 
ALL REFERENCES OF BRAVEO 
ALL PROCEDURES. 

004800 ,., RECORD 
004900 ,., 

DESCRIPTION FOR DEBUG-ITEM. 



B 1000 Systems COBOL 74 Language Manual. 
Debug 

DEBUG-ITEM. 
02 DEBUG-LI NE 
02 FILLER 
02 DEBUG-NAME 
02 FILLER 
02 DEBUG-SUB-1 

02 FILLER 
02 DEBUG-SUB-2 

02 FILLER 
02 DEBUG-SUB-3 

02 FILLER 
02 DEBUG-CONTENTS 

DEBUG-OUT. 
IF NEED-IT 

OPEN OUTPUT DBGFILE 
MOVE 1 TO FLAG. 

PIC 
PIC 
PIC 
PIC 
PIC 

PIC 
PIC 

PIC 
PIC 

PIC 
PIC 

WRITE DEBUG-REC FROM DEBUG-ITEM. 
END DECLARATIVES. 
WORK SECTION. 
START-IT. 

x (6) . 
X VALUE SPACE. 
x (30) • 
X VALUE SPACE. 
S9 (4) SIGN IS LEADING 

SEPARATE CHARACTER. 
X VALUE SPACE. 
S9 (4) SIGN IS LEADING 

SEPARATE CHARACTER. 
X VALUE SPACE. 
S9 (4) SIGN IS LEADING 

SEPARATE CHARACTER. 
X VALUE SPACE. 
X (n) . 

005000 )'c 0 l 
005100 )'( 
005200 )'( 
005300 ,•c 
005400 ,•c 
005500 ,•c 
005600 )'c 
005700 ,•c 
005800 ,•c 
005900 ,., 
006000 )'C 

006 100 ,., 
006200 ~·c 
006 300 ,., 
006400 )'C 

006500 )'C 

006600 
006700 
006800 
006900 
007000 
007100 
007200 
007300 
007400 
007500 
007600 
007700 
007800 
007900 
008000 
008100 
008200 
008300 
008400 
008500 
008600 
008650 D 
008700 D 
008800 

SUBTRACT ALFA FROM BRAVED GIVING CHARLIE. 
DIVIDE BRAVED BY CHARLIE GIVING ALFA. 
SUBTRACT ALFA FROM BRAVED GIVING CHARLIE. 

FOLLOW-UP. 
SUBTRACT 4 FROM ANN. 
DIVIDE ANN INTO DIANNE GIVING JANIS. 
ACCEPT ILENE (GOLDIE) FROM TIME. 
OPEN OUTPUT PRINTFILE. 
WRITE PRINT-REC FROM FRAN. 
WRITE PRINT-REC FROM ILENE (GOLDIE). 
WRITE PRINT-REC FROM JANIS. 

CLOSE-SHOP. 
CLOSE PRINTFILE RELEASE. 
IF FILE-OPEN 

CLOSE DBGFILE RELEASE. 
STOP RUN. 

The output from the file DBGFILE follows. 

000074 
000074 
000074 
000074 
000075 
000075 
000076 
000076 
000076 
000084 

1168622 

WORK 
START-IT 
BRAVEO 
CHARLIE 
BRAVED 
CHARLIE 
BRAVED 
CHARLIE 
FOLLOW-UP 
CLOSE-SHOP 

START PROGRAM 
FALL THROUGH 
16 
12 
16 
12 
16 
15 
FALL THROUGH 
FALL THROUGH 

10-11 



DIAGNOSTICS 

B 1000 Systems COBOL 74 Language Manual 
Debug 

Debugging and Diagnostic Facilities. 

The following compile-time facilities are available: 

1. Syntax error messages are printed before the line in error prior to the PROCEDURE DIVISION 
and after the line in error thereafter. A pointer indicates the location of the possible error. 

2. Warning messages are optionally printed before the line in error prior to the PROCEDURE 
DIVISION and after the line in error thereafter. A pointer indicates the location of the possible 
error for some of these messages. 

3. Various ·informational messages are printed. 

4. No code is generated if syntax errors are present. 

All error messages are specific. and are sufficient to determine the cause of the error. 

10-12 



B 1000 Systems COBOL 74·Language Manual 
Debug 

COMPILER LIMITS 

10-13 



10-14 

B l 000 Systems COBOL 74 Language Manual 
Debug 



B 1000 Systems COBOL 74 Language Manual 

1168622 11-1 



11-2 

B 1000 Systems COBOL74 Language Manual 
COBOL 74 Compiler Control 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Compiler Control 

11-3 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 Compiler Control 



1168622 

B 1000 Systems COBOL74'Language Manual 
COBOL 74 Compiler Control 

11-5 



11-6 

B) 000 Systems COBOL 74 Language Manual 
COBOL74 Compiler Control 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Compiler Control 



11-8 

B 1600 Systems COBOL 74 Language Manual 
COBOL74 Compiler Control 



B 1000 Systems COBOL 7 4 Language Manual 
\ 

APPENDIX A 
RESERVED WORDS 

All reserved words known to the B 1000 COBOL 74 compiler are listed in this Appendix, which includes 
notations (X) of the DIVISION(s) wherein the words are used. Also, the notation (X) indicates that 
the word is used for DAT A MANAGEMENT (DMSII). 

1168622 

RESERVED 
WQRDS 

ACCEPT 
ACCESS 

ALPHABETIC 
ALSO 
ALTER 
ALTERNATE 
AND 
ARE 
AREA 
AREAS 
ASCENDING 
ASSIGN 
AT 

CALL 
CANCEL 
CD 
F 
CH 

REASON FOR RESERVATIONS 

DIVISION 
IDEN ENVI DATA PROC DMSII 

x 
x 

x 
x 

x 
x 

x 
x 

x 
x 

x x 
x 

x x 
x 
x 

x 
x 

A-1 



A-2 

B 1000 Systems COBOL 74 Language Manual 
Reserved Words 

REASON FOR RESERVATIONS 
RESERVED 

WORDS DIVISION 
IDEN ENVI DATA PROC 

CHARACTERS 
CLOCK-UNITS 
CLOSE 
COBOL 
CODE 
CODE-SET 
COLLATING 
COLUMN 
COMMA 

x 
x 

x 

x 
•··••••••••·•111111111111·11•·•1•••··•••·•·•·•·•·••••••••••·•·• ;••··••··········································· ······························**•······r··························I ••••••••••·•••••••••••1 

COMMUNICATION 
COMP 
COMPUTATIONAL 
COMPUTE 
CONFIGURATION 
CONTAINS 
CONTROL 
CONTROLS 
COPY X 
CORR 
CORRESPONDING 

DATA 
DATA-BASE 
DATE 
DATE-COMPILED x 
DATE~WRITTEN x 
DAY 

DEBUG-CONTENTS 
DEBUG-ITEM 
DEBUG-LINE 
DEBUG-SUB-1 
DEBUG-SUB-2 
DEBUG-SUB-3 
DEBUGGING 

x 
x 

x 

x 

x 

x 
x 

x 

x 
x 
x 

x 
x 
x 
x 

x 

x 

x 

x 

x 

x 

x 
x 
x 

x 

x 

x 

x 
x 
x 
x 
x 
x 
x 

DMSll 

x 



1168622 

RESERVED 
WORDS 

DECIMAL-POINT 
DECLARATIVES 
DELETE 
DELIMITED 
DELIMITER 
DEPENDING 
DESCENDING 
DESTINATION 
DETAIL 
DISABLE 
DISPLAY 
DIVIDE 
DIVISION 

DOWN 
DUPLICATES 
DYNAMIC 

EGI 
ELSE 
EMI 
ENABLE 
END 

ENVIRONMENT 
EOP 
EQUAL 
ERROR 
ESI 
EVERY 
EXCEPTION 
EXIT 
EXTEND 

FILE 
FILE-CONTROL 
FILLER 

B 1000 Systems COBOL 74 Language Manual 
Reserv~~d Words 

REASON FOR RESERVATIONS 

DIVISION 

IDEN ENVI DATA PROC 

x 
x 
x 
x 
x 

x x 
x x 
x 
x 

x 
x x 

x 
x x x x 

x 
x 

x x 

x 
x 

x x 
x 

x 
x 
x 
x 

x 
x 

DMSII 

A-3 



A-4 

RESERVED 
WORDS 

FROM 

GENERATE 
GIVING 
GO 
GREATER 
GROUP 

HEADING 
HIGH-VALUE 
HIGH-VALUES 

I-0 
I-0-CONTROL 

B 1000 Systems COBOL 74 Language Manual 
Reserved Words 

REASON FOR RESERVATIONS 

DIVISION 

IDEN ENVI DATA PROC 

x 
x 
x 
x 
x 

x 
x 
x x 
x x 

x 
x 

IDENTIFICATION x 
IF x 
IN x 
INDEX x 
INDEXED x x 
INDICATE x 
INITIAL 

INITIATE 
INPUT 
INPUT-OUTPUT 

IS x x x 
JUST x 
JUSTIFIED x 
KEY x x x 
LABEL x 
LAST -x 

DMSII 



1168622 

B 1000 Systems COBOL 74 Language Manual 
Reserved Words 

REASON FOR RESERVATIONS 
RESERVED 

DIVISION WORDS 
IDEN ENVI DATA PROC 

LEADING x x 
LEFT x 
LENGTH x 

·LESS x 
LIMIT x 
LIMITS x 
LINAGE x 
LINAGE-COUNTER x 
LINE x x 
LINE-COUNTER x 
LINES x x 
LINKAGE x 
LOCK x 
LOW-VALUE x x 
LOW-VALUES x x 
MEMORY x 
MERGE x 
MESSAGE x x 
MODE x 
MODULES x 
MOVE x 
MULTIPLE x 
MULTIPLY x 
NATIVE x 
NEGATIVE 
NEXT x 

NUMBER x 
NUMERIC x 
OBJECT-COMPUTER x 
OCCURS x 
ODT x 
ODT-INPUT-PRESENT x 
OF x x x 
OFF x 
OFFER x 

DMSII 

A-5 



RESERVED 
WORDS 

OFFSET 
OMITTED 
ON 
OPEN 
OPTIONAL 
OR 
ORGANIZATION 
OUTPUT 
OVERFLOW 

PAGE 
PAGE-COUNTER 
PERFORM 
PF 
PH 
PIC 
PICTURE 
PLUS 
POINTER 
POSITION 
POSITIVE 
PRINTING 

1ROCED'..., 
PROCEDURES 
PROCEED 
PROGRAM 
PROGRAM-ID 

QUEUE 
QUOTE 
QUOTES 

RANDOM 
RD 
READ 
READ-01 

RECEIVE 
RECORD 
RECOR .... 

REDEFINES 
REEL 
REFERENCES 

A-6 

B 1000 Systems COBOL 74 Language Manual 
Reserved Words 

REASON FOR RESERVATIONS 

DI v·I SI 0 N 

IDEN ENVI DATA PROC 

- - - x 
- - x -
- x x x 
- - - x 
- x - -
- - - x 
- x - -
- - x X. 
- - - x 
- - x x 
- - - x 
- - - x 
- - x -
- - x -
- - x -
- - x -
- - x -
- - - x 
- x - -
- - - x 
- - - x 

- - - x 
- - - x 
- - - x 
- x - x 
x - - -

- - x -
- - x x 
- - x x 
- x - -
- - x -
- - - x 
- - - x 

- - - x 
- x x x 
- x x ""--

- - x -
- x - . x 
- - - x 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-

-
-
-

-
-
-



RESERVED 
WORDS 

RELATIVE 
RELEASE 
REMAINDER 

RENAMES 
REPLACING 
REPORT 
REPORTING 
REPORTS 
RERUN 
RESERVE 
RESET 
RETURN 
REVERSED 
REWIND 
REWRITE 
RF 
RH 

RIGHT 
ROUNDED 
RUN 

SAME 

SD 
SEARCH 
SECTION 
SECURITY 

SEGMENT-LIMIT 
SELECT 
SEND 
SENTENCE 
SEPARATE 
SEQUENCE 
SEQUENTIAL 
SET 
SIGN 
SIZE 
SORT 
SORT-MERGE 
SOURCE 

1168622 

B I 000 Systems COBOL 74 Language Manual 
Reserved Words 

REASON FOR RESERVATIONS 

DIVISION 

IDEN ENVI DATA PROC 

x 
x 
x 

x 
X· 

x 
x 

x 
x 
x 

x 
x 
x 
x 
x 

x 
x 

x 
x 
x 

x 

x 
x 

x x x 

x 
x 

x 
x 

x 
x x 
x 

x 
x x 
x x 
x x 
x 

x 

DMSII 

A-7 



A-8 

B 1000 Systems COBOL 74 Language Manual 
Reserved Words 

RESERVED 
WORDS 

SOURCE-COMPUTER 
SPACE 
SPACES 
SPECIAL-NAMES 

STANDARD 
STANDARD-I 
START 
STATUS 
STOP 

STRING 
SUB-QUEUE-1 
SUB-QUEUE-2 
SUB-QUEUE-3 
SUBTRACT 
SUM 
SUPPRESS 
SYMBOLIC 
SYNC 
SYNCHRONIZED 

(:::11111•: 

TALLYING 
TAPE 
TERMINAL 
TERMINATE 
TEXT 
THAN 
THROUGH 
THRU 

REASON FOR RESERVATIONS 

DIVISION 
IDEN ENVI DATA PROC 

x 
x x 
x x 

x 

x 
x 

x 
x 

x 
x 
x 
x 

x 
x 

·x 
x 
x 
x 

x 
x 

x 
x 

x 

x 
x 

DMSII 



1168622 

RESERVED 
WORDS 

TYPE 

UNITS 
UNSTRING 
UNTIL 
UP 

UPON 
USAGE 
USE 
USING 

VALUE 

WITH 
WORDS 

B 1000 Systems COBOL74 Language Manual 
Reserved Words 

REASON FOR RESERVATIONS 

DIVISION 

x 
x x 

x 
x 
x 

x x 
x 

x 
x 

x x x 
x 

WORKING-STORAGE .x 
WRITE x 
WRITE-OK x 
ZERO x x 
ZEROES x x 
ZEROS x x 
ZIPSB x 
+ x 

x 
•: x 
I x 
** x 
> x 
< x 
·- x 

A-9 



B 1000 Systems COBOL 74 Language Manual 

APPENDIX B 
COBOL74 SYNTAX SUMMARY 

This appendix contains the composite language skeleton of COBOL 74. Shaded items indicate extensions 
to the American National Standard, 1974 (ANSl·74). 

IDENTIFICATION DIVISION 

General Format 

1168622 

IDENTIFICATION plVISION. 
PROGRAM-ID. program-name. 

[AUTHOR. [comment-entry] ... ] 
[INSTALLATION. [comment-entry ] ... ] 
[DATE-WRITTEN. [comment-entry ] ... ] 
[DATE-COMPILED. [comment-entry ] ... ] 
[SECURITY. [comment-entry ] ... 1 

B-1 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

ENVIRONMENT DIVISION 

General Format 

SOURCE-COMPUTER 

Format 1: 

Format 2: 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. source-computer-entry 
OBJECT-COMPUTER. object-computer-entry 

[SPECIAL-NAMES. special-names-entry ) 
[INPUT-OUTPUT SECTION. 
FILE-CONTROL. { file-control-entry } ... 

[1-0-CONTROL. input-output-control-entry l 

SOURCE-COMPUTER. computer-name. 

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE) ~ 

OBJECT-COMPUTER 

OBJECT-COMPUTER. computer-name [,MEMORY SIZE integer {~~:~CTERs}] 
MODULES 

B-2 

[ , PROGRAM COLLA TING SEQUENCE IS alphabet··name ) 

[ , SEGMENT-LIMIT !.§.. segment-number ) . 



B 1000 Systems COBOL 7 4 Language Manual 
COBOL 74 Syntax Summary 

SPECIAL-NAMES 

SPECIAL-NAMES . 

IS mnemonic-name 

[ , ON ST A TUS !§. condition-name-I 

[ , OFF STATUS IS condition-name-2 ] ] 

IS mnemonic-name 

(, OFF STATUS IS condition-name-2 

. [ , ON STATUS IS condition-name-I ] ] 

ON ST A TUS IS condition-name-I 
[ , OFF STATUS IS condition-name-2] 

OFF STATUS IS condition-name-2 
[ , ON STATUS IS condition-name-I ] 

, alphabet-name IS 

STANDARD-I 
NATIVE 
ASCII 
EBci51c 

[ 
{

THROUGH } litera:t-2 
literal-I THRU · 

ALSO literaI-3 [ , ALSO literaI-4 ] ... ] 

ENVIRONMENT DIVISION 

[ Htera1-s [ ~~~~::) 1 1~t~rs~ literai-s 1 ... J ] 

II68622 

( , CURRENCY SIGN IS literaI-9 ] 

( , DECIMAL-POINT IS. COMMA J . 

B-3 



B 1000 Systems CO BO L 7 4 Language Manual 
COBOL 74 Syntax Summary 

ENVIRONMENT DIVISION 

INPUT-OUTPUT SECTION 

B-4 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT [OPTIONAL] file-name 

ASSIGN TO 

[ 
; RESERVE integer-2 [AREA J ] 

AREAS 

[ ; ORGANIZATION IS SEQUENTIAL ] 

[ { 

SEQUENTIAL [ ; ACTUAL KEY IS data-name-2 ] } J 
; ACCESS MODE IS 

RANDOM; ACTUAL KEY IS data-name-2 

; ORGANIZATION IS RELATIVE 

l !SE UENTIAL [ , RELATIVE KEY IS data-name-3] i l 
; ACCESS MODE IS RANDOM t , RELATIVE KEY IS data-name-3 ( 

DYNAMIC( J 

; ORGANIZATION IS INDEXED 

[ ACCESS MODE IS { 
SEQUENTIAL} J 
RANDOM 
DYNAMIC 

; RECORD KEY IS data-name-4 

[ ; ALTERNATE RECORD KEY IS data-name-5 [WITH DUPLICATES] ] ... 

[ ; FILE STATUS IS data-name-1 ] . 



1-0-CONTROL 

B I 000 Systems COBOL 7 4 Language Manual 
COBOL 74 Syntax Summary. 

ENVIRONMENT DIVISION 

1-<)-CONTRO L. 

[

RECORD ] 
SORT-
;SoRT-MERGE 

AREA FOR file-name-3 j, file-name-4 ~ ... ] ... 

1168622 B-5 



DATA DIVISION 

General Format 

B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

DATA DIVISION. --

[

FILE SECTION. 
I 

file-description-entry [record-description-entry] ... 
[ sort-merge-file-description-entry (record-description-entry) . . . ] 

B-6 

[

WORKING-STORAGE SECTION. ] 

[ 
77-level-description-entry J 
record-description-entry 

[

LINKAGE SECTION. ] 

[ 
77-lcvel-description-entry J 
record-description-entry 

[

COMMUNICATION SECTION. 

[communication-description-entry r record-description-entry] 

... ] 

. .. ] ... ] 



B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

DATA DIVISION 

FILE SECTION 

FD file-name 

[ fQ file-name 

[; BLOCK CONTAINS [integer-I TO) integer-2 {
RECORDS } ] 

CHARACTERS 

( ; RECORD CONTAINS [ integer-3 TO] integer-4 CHARACTERS 

[ DEPENDING ON data-name-I ] ] 

[ {
RECORD IS } {~NDARD}·] 

; LABEL 
RECORDS ARE OMITTED 

[ 
Is { 

data-name-2 } 
; VALUE OF attribute-name-I 

literal-I 

[ 
, attribute-name-2 IS { data-name-

3 
} ] .. ] ... 

literal-2 , 

[ {

RECORD IS } 
; DATA 

RECORDS ARE 
data-name-4 . [, data-name-5) ... ] 

[; LINAGE IS { 
data-name-6} · [ { data-name-7 }. ] 

LINES , WITH FOOTING AT 
integer-5 integer-6 

[ { 
data-name-9 } ] ] 

, LINES AT BOTTOM . 
mteger-8 [

. .{ data-name-8}] 
, LINES AT TOP 

- integer-7 

[ ; CODE-SET IS alphabet-name] . 

{ record-deScription-entry f ... ] 

1168622 B-7 



B 1000 Systems COBOL74 Language Manual 
COBOL 74 Syntax Summary · 

DAT A DIVISION 

SD file-name 

[SD file-name 
(; RE:_CORD CONTAINS [integer-I TO] integer-2 CHARACTERS 

[ DEPENDING ON data-name-1 ] ] 

[
; DATA {RECORD IS } data-name-2 [, data-name-3.] ... J 

RECORDS ARE 

f record-description-entry} ... J 

B-8 



B I 000 Systems COBOL 7 4 Language Manual 
COBOL 74 Syntax Summary 

DATA DIVISION 

Data Description Entry 

Format 1: 

1168622 

level-number { data-name-I} 

FILLER 

[ ; REDEFINES data-name-2] 

[ { ::~TURE} JS characteMtring 1 

[ I COMPUTATIONAL) ] 
(USAGE IS] COMP '( · 

DISPLAY j 
INDEX 

; OCCURS [integer-I TO] integer-2 TIMES 

(DEPENDING ON data-name-3 ] 

[ {

ASCENDING } 
KEY IS data-name-4 

DESCENDING 
[, data-name-5] ... ] ... 

[ 
[ 
[. 

f 

[INDEXED BY index-name-I [, index-name-2] ... ] 

(SIGN IS J {LEADING } (SEPARATE CHARACTER] ] 
TRAILING 

I 

{ 
SYNCHRONIZED } [ LEFT 1 ] 
SYNC RIGHT J 

{
JUSTIFIED} J 

RIGHT 
JUST • 

BLANK WHEN ZERO ] 
VALUE IS literalJ-:-

B-9 



B 1000 Systems COBOL74 Language Manual 
COBOL 74 Syntax Summary 

DATA DIVISION 

Data Description Entry 

Format 2: 

66 data-name-I; RENAMES data-name-2 [{
THROUGH} ] data-name-3 . 
THRU 

Format 3: 

88 condition-name~ literal- I 
{

VALUE IS } [{THROUGH}· 
VALUES ARE THRU 

literal-'.!] 

[ , literal-3 [ { =UGll} Jiteral-4] ] ... 

B-10 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

WORKING-STORAGE SECTION 

1168622 

WORKING-STORAGE SECTION. 
77 data-name-I 

77 
01 

01 

88 condition-name-I 

data-name-n 
data-name-2 
02 data-name-3 

66 data-name-m RENAMES data-name-3 . 
data-name-4 
02 data-name-5 

03 data-name-n 
88 condition-name-2 

DATA DIVISION 

B-11 



DATA DIVISION 

LINKAGE SECTION 

B 1000 Systems COBOL74 Language Manual 
COBOL 74 Syntax Summary 

LINKAGE SECTION. 
77 data-name-I 

88 condition-name-I 

77 data-name-n 
01 data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n . 

88 condition-name-2 

B-12 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

DATA DIVISION 

COMMUNICATION SECTION 

·Format 1: 

CD cd-name; 

[ ( ; SYMBOLIC QUEUE IS data-name-I] 

[ ; SYMBOLIC SUB-QUEUE-I IS data-name-2) 

( ; SYMBOLIC SUB-QUEUE-2 IS data-name-3] 

( ; SYMBOLIC SUB-QUE{)E-3 IS data-name-4] 

FOR ( INITIAi; ] INPUT ( ; MESSAG.E . DATE IS data-name-5] 

Format 2: 

1168622 

[ ·; MESSAGE TIME IS data-name-6] 

[ ; SYMBOLIC SOURCE IS data-name-7] 

( ; TEXT LENGTH IS data-name-8] 

[ ; END KEY IS data-name-9 ] 

(; STATUS KEY IS data-name-IO] 

[ ; MESSAGE COUNT IS data-name-11]] 

[ data-name-I, data-name-2, ... , data-name-1,1 J 

£Q cd-name; FOR OUTPUT 

( ; DESTINATION COUNT IS data-name-I] 

( ; TEXT LENGTH IS data-name-2] 

[ ; STATUS KEY IS data-name-3] 

[; DESTINATION TABLE OCCURS integer-2 TIMES 

[ ; INDEXED BY index-name-I [ , index-name-2] 

( ; ERROR KEY IS data-name-4 ] 

( ; SYMBOLIC DESTINATION IS data-name-5] 

... J ] 

B-13 



B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

PROCEDURE DIVISION 

General Format 

PROCEDURE DIVISION (USING data-name-I [, data-name-2] ... ] . ~ 

Format 1: 

[DECLARATIVES. 

{section-name SECTION [segment-number!. declarative-sentence 

[paragraph-name. l sentence I ... J ... } ... 
END DECLARATIVES.] 

[paragraph-name. I sentence] ... J ... } ... 

{section-name SECTION [segment-numberj. _J 
L----------

Format 2: 

{paragraph-name. [sentence I ... } ... 

DECLARATIVES 

B-14 

section-name SECTION ( segment-number ] . 

USE FOR DEBUGGING ON 

( cd-name-1 
) (ALL REFERENCES OF] 
·i file-name- I 

proced ure-name-1 
ALL PROCEDURES 

(ALL REFERENCES OF] 
, file-name-2 

[ 

cd-name-2 

identificr-2 l 
procedure-name-2 
ALL PROCEDURES 

identifier- I l 
~· 



VERBS 

ACCEPT 

Format 1: 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 Syntax Summary 

ACCEPT 

r-- ACCEPT identifier J FROM { mnemonic-name } J L_, __________ _____, 

Format 2: 

ACCEPT identifier FROM 

Format 3: 

ACCEPT cd-name MESSAGE COUNT 

1168622 B-15 



ADD 

ADD 

Format 1: 

ADD 

B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

{ 

identifier-I } 

literal- I [ 
,, identifier-2 J 

literal-2 
TO identificr-m [ ROUNDEC~ ] 

( , identifier-n [ ROUNDED ] ] 

[ ~ ON SIZE ERROR imperative-statement J 

Format 2: 

f identifier- I } f identifier-2 ( [: identifier-3 J 
ADD f literal-I 

' t lit era 1-2 j literal-3 

GIVING identifier-m [ROUNDED] [ , identifier-n f ROUNDED]] .... 

[; ON SIZE ERROR imperative-statement] 

Format 3: 

' ('() R R I-s PON)) I l\ ( ; I 
ADD idL·ntifier-1 TO iLkntifier-2 I ROUN))IJ) I 

I CORR \ 

(:ON SI/I· LRROR imperatiw-statemL·nt J 

B-16 



ALTER 

CALL 

Format 1: 

Format 2: 

Format 3: 

[ 
Format 4: 

[ 

1168622 

B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

ALTER procedure-name-I TO [PROCEED.IQ] procedure-name-2 

[ , procedure-na~e-3 .IQ [PROCEED IQ] procedure-name-4 J ... 

ALTER, CALL 

~ identifier- I } 
CALL \ [ USING data-name-I [ , data-name-2 ] ... ] 

~ literal- I · 

( ; ON OVERFLOW imperative-statement J 

··o;'l\1!111\l!l\i. 

CALL SYSTEM WFL USING { 
identifier-3 } 
literal-3 

B-17 



B 1000 Systems COBOL74 Language Manual 
COBOL 74 Syntax Summary 

CANCEL, CLOSE, COMPUTE 

CANCEL 

CLOSE 

{ 

identifier- I } 
CANCEL 

literal- l [ 
, identifi.cr~2] 
, literal-2 

{ REEL} [WITH NO REWIND] 
UNIT FOR REMOVAL 
--· NO REWIND 

CLOSE file-name-1 WITH LOCK 

, file-name-2 WITH 

COMPUTE 

COMPUTE identifier-I [ ROUNDLD I (. identifier-2 I ROUND FD I] ... 

= arithmetic-expression [:ON SIZL ERROR imperative-statement J 

B-18 

J 



COPY 

COPY 

B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

COPY, DELETE,' DISABLE, DISPLAY 

{ 
file-id [ { OINF } multi-file~id J 
literal-3 } } 

[ 

REPLACING .~ { ~=:nst~~~~--:ext-1 ==} BY { ~d=:nst~~i~~-~ext-2== } l ] 
) ' literal-I - literal-2 ( · · · 
l word-I word-2 } 

DELETE 

[ 
DELETE file-name RECORD (; INVALID KEY i~perative-statement] 

, ______ , 
DISABLE 

[ { 

INPUT (TERMINAL] } · { identifier- I ) 
DISABLE cd-name WITH KEY \ 

OUTPUT literal- I t _____ , 
DISPLAY 

I idl'ntificr-1 ) 
DISPLAY J ( 

/ litl'ral-1 ~ l , id e n t i fi l' r -.:2 ] 

, literal-~ 

[UPON mnl'monic-naml' J 

1168622 B-19 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

DIVIDE, ENABLE 

DIVIDE 

Format 1: 

Format 2: 

Format 3: 

ENABLE 

DIVIDE J INTO identifier-2 
( identifier- I } 

( literal- I 
[ROUNDED] 

[ ; identifier-3 [ ROUNDED ] ] ... 

[; ON SIZE ERROR imperative-statement J 

DIVIDE 
<~ 1.·dentifier-l } j BY f ~ identifier-2 f 
t literal-I { INTO ( { Iitcral-2 ( 

GIVING identifier-3 [ROUNDED] 

[ , identifier-4 [ROUNDED] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

{ 
identifier-I } 

DIVIDE 
literal-I 

j BY { { identifier-2 ( 

t INTO t litcral-2 J 

. GIVING identifier-3 [ROUNDED] 

REMAINDER identifier-4 

[ ; ON SIZ~ ERROR imperative-statement J 

ENABLE cd-name WITH KEY 
OUTPUT literal-I 

{
INPUT [TERMINAL] } {identifier-I} J 

'---------~---

B-20 



EXIT 

B 1000 Systems COBOL74 Language Manual 
COBOL 74 Syntax Summary 

EXIT, GO TO 

~ I~XIT. L__ __________ _ 

EXIT PROGRAM 

EXIT PROGRAM. 

GO TO 

Format 1: 

r--- GO TO [ procl'd llfl'-11Ul11C-1 J L_ _________ _____, 

Format 2: 

,LlQ TO proced ure-name-1 [, proced url·-naml·-.2 J ... , proced ure-name-n 

DH'ENDIN<i ON identifier 

·----

IF 

[--

' F condition; 
- I 

\ st a t t' Ill l' n t - I 

l NJ· Kr Sl·NTl·N< T 

\; 1-'LSL statl'nwnt-.2 I 

l; LL.St-: Nl·XT Sl·\Tl·.\Cl·.\ 

B-21 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

INSPECT 

Format 1: 

INSPECT identifier-I TALLYING 

! . . .. . ~ ( {ALL l { identifier-3 l 1 
, 1de11t1l1er-2 I-OR ) , ) LEADING f literal-I f ( 

{ ( CllJ\RJ\CTLRS J 
[

j BL.F~RL} INITIAL J identifier-+}] I I 
) Al·TLR l liternl-C ! . · . r · · 

Format 2: 

INSPFCT identifier-I RFPl.ACINC 

CHARACTERS BY J identifier-(, l 
--_..;._~- - ) literal-4 ( [{

BF.FOR!-" l INITIAL J idc11til°il'1-7l-] 
Al-TLR ( ) literal-'.' ( 

(, ( ~l~~DING l .. ~ {identifier-)} BY { identifier-(i ( [j BEFORE} I . Tl. J idditii"icr-7 t. J l ~ I / ~ . j / ' literal-.l literal-\ I ) AFTER :'ii AL ) litcral-5 j \ · · · 1 · · 

Format 3: 

INSPECT identifier-I TALL YING 

~ 
l 

~ ~ ALL { identifier-3}) 
, iuenlil'ier-2 FOR · , · Ll:ADING literal-I ( 

t i CHARACTERS \ 

REPLACING 

I 

Cl IARACTERS BY { identifier-6 } 
l'iteral-4 [

f BEFORL} 
) AFTLR 

[ { BL_F~ IU·} IN IT IA L { identifier-4} J ~ 
Al· Tl-.R literal-2 ~ 

INITIAL { 
i~lentif~er-7 }-] 
literal-.) 

I ( ( A~L _ ) 
) ) LL:"ADIN . ( ~ , { i(.lentifier-5} BY {identifier-<)} I ) ' ) t: I G . 

· , { ( [_IRST j l hteral-3 - literal-4 [{ 
B~~·ORL} INITIAL J identil'ier-7 ~·] l 
Al- fLR ) ltteral-5 I \ 

\ 

B-22 

> 

) 



MERGE 

MERGE 
file-name- I 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

MERGE, MOVE 

j ASCENDING } 
ON ) KEY data-name-I [ , data-name-2] ... 

~DESCENDING 

{ 

ASCENDING } 
KEY data-name-3 (, data-name-4 J 

DESCENDING 
... ] 

( COLLATING SEQUENCE IS alphabet-name ] 

file-name-2 · , file-name-3 , file-name-4 USING [{ PURCH }] [{PURGE }] [ [\PURGE }]] 
RELEASE RELEASE RELEASE 

MOVE 

[ 
(THROUGH t l 

_9UTPUT PROCEDURE IS procedure-name-I i THRU · j procedure-name-2 

GIVING file-name-5 

Format 1: 

Format 2: 

MOVE { 
ident ifier-1 } 
literal TO id~ntifier-~ [, idcntificr-J] . . . ~ 

Movl . \ identifier-I TU id~ntifier-2 { 
CORRl:SPONDJN(_; i 

~-:· CORR f 

1168622 B-23 



MULTIPLY, OPEN 

MULTIPLY 

Format 1: 

B 1000 Systems COBOL74 Language Manual 
COBOL74 Syntax Summary 

MULTIPLY { i~lentifier-l } BY identifit·r--2 I ROUNDU) I 
hteral-1 

(,identifier<~ I ROUNDFD I] (~ON SIZL LRROR impnatiw-stah'nwnt] 

Format 2: 

MULTIPLY { i~lentifier-l } l3 Y J '1·~ttentil· f~er-~ } GIVING identifier-3 I RO UN DLD I 
literal-1 - ) 1 er<t -~ , 

OPEN 

B-24 

[, identifier-4 [ROUNDED J] [;ON SIZL I· RROR imperatiw-statl'ment] 

OPEN 

I - 0 

EXTEND 

file-name-I 

[. file-name-2 

file-name-3 [WITH NO REWIND] 
[ , file-name-4 [WITH NO REWIND] 

file-name-5 
[ , file-name-6 

file-name-7 ] 
file-name-8 ] 



PERFORM 

Format 1: 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 Syntax Summary 

PERFORM procedure-name- I 
[

·'THROUGH t procL·durc-namL·-~] 
{TllRU \ 

Format 2: 

PERFORM procedure-name-I 

Format 3: 

[ 

J TH ROUCH / ] 
procedure-name-~ 

/THRU j 

( identifier-11 

I i n t t' g l' r -1 \ 

PERFORM 

TIMLS 

PERFORM proceJ ure-name-1 
[ 

J TH ROU~ill I procedurl'-11a111L'-~] UNTIL rnndit ion- I 

/TIIRU ~ 

Format 4: 

1168622 

PERFORM proced ure-name-1 [ 
f THROUGH } J l THRU procedure-name-2 

VARYING · FROM index-name-2 
~ identifier-2 } {' identifier-3 } 

l index-name-I literal- I 

BX j identifier-4 ( 

( literal-2 f 
UNTIL condition-I ---

[AFTER ~ identifier-5 } {identifier-6 } 
FROM index-name-4 

~: index-name-3 literal-3 

BY { identifier-7 } 

literal-4 
UNTIL condition-2 J ... 

B-25 



READ 

Format 1: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

( ; AT §!:iQ imperative-statement) 

READ file-name [ ~] RECORD [ INTO identifier J J 
~-----

Format 2: 

READ fiJe-name RECORD [ INTO identifier ] 

[ ; KEY IS data-name ] 

[ ; INV AUD KEY imperative-statement J 

B-26 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

RECEIVE, RELEASE, RETURN, .REWRITE 

RECEIVE 

[ 

{
MESSAGE} RECEIVE cd-name SEGMENT INTO 

( ; !:'!Q DATA imperative-statement J 
----~-----------

identifier-I 

RELEASE 

[ 
RELEASE record-name [FROM identifier] 

·------------
RETURN 

[ RETURN file-name RECORD [INTO identifier) ; AT END imperative_,;tatement 

REWRITE 

[ 

REWRITE record-name [FROM identifier] 

[; INV AUD KEY imperative-statement] 

·------~------' 

1168622 B-27 



SEARCH, SEEK 

SEARCH 

Format 1: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

SEARCH identifier-I [VARYING { 
identifier-2 }] 
index-name-1 

Format 2: 

[; AT END imperative-statement-I] 

; WHEN condition-I 

[;WHEN condition-2 

{ 
imperative-statement-2} 
NEXT SENTENCE 

{ 
imperative-statement-3} J 
NEXT SENTENCE 

SEARCH ALL identifier-I [;AT END imperative-statement-1 l 

:WHEN 
l data-name-I { :~ ~QUAL TO} 

l condftion-name-1 

( identifier-3 } ) 
) literal-I ( 
{ arithmetic-cxpression-1 j 

AND 
a e-name-_ IS= literal-2 ( 

l arithmetic-expression-2 j 
I 

[ 

~ d, t ,., {IS EQUAL TO} 

-- l condition-name-2 

j identifier-4 } ) ] 

{ 
irnperative-statement-2 } l 
NEXT SENTENCE l 

i.____:___ __________________ _ 

SEEK 

B-28 



SEND 

Format 1: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

SEND, SET 

[----~------~----~·-s_E_N_n ____ c_d_-n_a_m_e __ ~ __ F_R_o_M ___ id_e_n_ti_fi_er_-_i ____________________ __ 

Format 2: 

SET 

Format 1: 

Format 2: 

t 
WITH identifier-2 } 

~ cd-name [ FROM identifier- I] :~i~ ~~I 
WITH EGI 

{ BEFORE } ADVANCING 
AFTER 

{ { 
~dentifier-3 } 
mteger 

{ 
mnemonic-name } 
PAGE 

[ LINE ] } 
LINES 

SET { '.dentifier-1 } [ , identifier·-2 J 
{ 

identifier-3 } 
TO index-name-3 

mdex-name-1 , index-name-2 integer-I 

SET index-name-4 (, index-name-5] . . . - -- • 
DOWN BY ~ integer-2 [ I 
UP BY } ) idcntificr-4 } 

--------~ 

1168622 B-29 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

SORT 

B-30 

SORT file-name-1 

{ 

ASCEND ING t 
ON 

DESCENDING\ 
KEY data-name-1 ( , data-name-2] 

[
ON { ASCENDING } KEY data-name-3 ( , data-name-4] ... J 

DESCENDING 

. (COLLA TING SEQUENCE IS alphabet-name J 

11111111111:11111111:i!lilli1 1!ilil!lllllll!!lllllli:t.1:1111 

INPUT PROCEDURE IS procedure-name-I [ {
THROUGH } J 
THRU procedure-name-2 

USING file-name-2 ~JJ [ file-name-3 

OUTPUT PROCEDURE IS procedure-name-3 [ { ::::UGH} procedure-name-4 J 

GIVING file-name-4 -



B 1000 Systems COBOL 74 Language Manual 
COBOL74 Syntax Summary 

START, STOP, STRING 

START 

STOP 

STRING 

ST ART file-name KEY 

IS ,EQUAL TO 
IS = 
IS GREATER THAN 
IS> 
IS NOT LESS THAN 
IS 

0

NOT Z--

( ; INVALID KEY imperative-statement] 

STOP { RUN } 
Ii teral 

STRING , { 
identifier-I } [ identifier-2] 

literal-I , literal-2 

data-name 

{ 

identifier-3 } 
DELIMITED BY litera. I-3 

SIZE 

, J identifier-4 } [' identifier-5] ... 

( literal-4 literaI-5 

{

. identifier-6 } 
DELIMITED BY literal-6 

filE. 

INTO identifier-7 ( WITH POINTER identifier-8 ] 

(; ON OVERFLOW imperative-statement] 

1I68622 B-31 



SUBTRACT 

Format 1: 

B 1000 Systems COBOL 7 4 Language Manual 
COBOL 74 Syntax Summary 

SUBTRACT { 

identifier-1 } 

literal-1 
[

, identifier-2] 

, literal-2 
FROM idl·ntifil·r-m I RO UNI ff DI 

[, iuentifier-n [ROUNDED I] ... [;?N SIZL ERROR imperatiw-statem~nt] 

Format 2: 

· { iuentifier-1 } 
SUBTRACT 

literal-1 [

, identil'ier-2] , , { identifkr-m } 
... f·ROIVI 

, literal-2 -. --- litcral-m 

GIVING identifier-n [ROUNDED I [,identifier-a [ROUNDED I J ... 
[;ON SIZE ERROR imperative-statement J 

Format 3: 

{

CORRESPONDING} . 
SUBTRACT CQRR identifier-I FROM identifier-2 [ROUNDED) 

[ ; ON SIZE ERROR imperative-statement ] 

B-32 



B 1000 Systems COBOL 74 Language Ma:nual 
COBOL 74 Syntax Summary 

UNSTRING 

Format 1: 

~UNSTRING identifier-I 

[ DELIMITED BY [ALL] 
{ 

identifi.er-2} [ { identifier-3} ] 
, OR [ALLI 

literal-I literal-2 

!NTO identificr-4 (,DELIMITER IN identifier-5] [,COUNT IN identifier-6] 

UNSTRING 

... l 
[, idcntificr-7 [,DELIMITER IN identifier-8] [,COUNT IN identifier-9] J. 

[WITI-1 POINTER identifier-IO] [TALLYING IN identifier-I I] 

[~ON OVERfLOW imperative-statement] 

Format 2: 

UNSTRING identifier-I 

INTO identifier-4 

[ , identifier-? 

FOR { 1deritif1.· er- I 2 } 

mtcger-1 

FOR { 
identifier-I 3 } J ... 

, mteger-2 

(WITH POINTER identifier-I 0] [TALL YING IN identifier-I I] 

[; ON OVERFLOW imperative-statement] 

1168622 B-33 



USE AFTER, WAIT UNTIL 

USE AFTER 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

USE AFTER STANDARD 
f EXCEPTION } 

tERROR 
PROCEDURE ON 

WAIT UNTIL 

B-34 

( file~name-1 
) INPUT 

·t OUTPUT 
1-0 
EXTEND 

[, file-name-2] ... ~ 

j 



. WRITE. 

Format 1: 

Format 2: 

B 1000 Systems COBOL 7 4 Language Manual 
COBOL 74 Syntax Summary 

WRITE record-name [FROM identifier-I] 

[ {

BEFORE} 

AFTER 

( { ~dentifier-2 } [LINE ] 
) , integer-I LINES 

ADVANCING t 
{ 

mnemonic-name } 
PAGE , __ 

[ ~END-OF~AGE) J 
; AT ) } imperative-statement 

~ EOP J 

WRITE 

~ -~~-~~-W~_R_J[_T_E~~-re_c_o_rd--n-a_m_e_·~-[-F_R_O_M~-id_e_n-ti-fi-er_-_1]~~~~~~~~~~--L_ [ ; INVALID KEY imperative-statement ] 

Format 3: 

1168622 B-35 



B I 000 Systems COBOL 74 Language Manual 
COBOL 74 Syntax Summary 

DATA BASE MANAGEMENT 

DATA DIVISION 

General Format 

PROCEDURE DIVISION 

Format for Selection Expression 

Format for Set Selection Expression 

B-36 



B 1000 Systems COBOL74 Language Manual 
COBOL74 Syntax Summary 

DATA BASE MANAGEMENT 

DATA BASE MANAGEMENT VERBS 

1168622 B-37 

-~, ·- . ,,,.., ....... ·~ 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 Syntax Summary 

DATA BASE MANAGEMENT 

FREE 

.__ _______ F_R_E_E __ d_a_ta_~_e_t-_na_m_e __ [_o_N_E_x_c_E_PT_I_o_N~st_a_te_m_e_nt_J ___ ~~ 
INSERT 

INSERT data~et-name INTO subset-name [ON EXCEPTION statement] 
• 

LOCK 

_______ Lo_c_K __ t _se_i_ec_ti_o_n-e_xp_r_es_si_o_n_f_[_o_N_E_x_c_E_PT_Io_N_s_ta_te_m_e_n_t _J __ 3 

B-38 



B 1000 Systems COBOL 74 Language Manual 

APPENDIX C 
COBOL74 GRAPHICS 

Table C-1 lists the 8-bit EBCDIC internal code together with the USASCII-7, 80-column card codes 
and the associated control or special codes or graphics. Table C-2 presents similar information, but 
restricted to and in sequence of the USASCII-7 code. Table C-3 explains all the control or special 
codes. 

Column headings have the following meanings in tables C-1 and C-2: 

Column 
Heading 

A 
B 
c 
D 
E 
lF 

Meaning 

EBCDIC sequence number and decimal value 
EBCDIC hexadecimal representation 
ASCII-7 sequence number and decimal value 
ASCII-7 hexadecimal representation 
80-column card code 
Graphic or code 

Hexadecimal representation means that standard convention is followed for the 8-bit internal codes. 
These codes are shown translated as pairs of hexadecimal numbers in the following examples. 

Examples: 

A B 

0 00 
] 01 
2 02 
3 03 
4 04 
5" 05 
6 06 
7 07 
8 08 
9 09 

10 OA 
1 J OB 
12 oc 

1168622 

Hex 
Number 

Pair 

@39@ 
@BE@ 
@OF@ 

8-Bit 
Internal Code 

8 4 2 1 
0 0 1 1 
1 0 1 I 
0 0 0 0 

8 4 2 1 
1 0 0 1 
1 1 1 0 
I 1 I 1 

Table C-1. B 1000 Codes in EBCDIC Sequence 

c D E F 

0 00 12 0-1-8-9 NUL (Null) 
I - 01 12 1-9 SOH (Start of Heading) 
2 02 12 2-9 STX (Start of Text) 
3 03 12 3-9 ETX (End of Text) 

12 4-9 
9 09 12 5-9 HT (Horizontal Tab) 

12 6-9 
127 7F 12 7-9 DEL (Delete) 

12 8-9 
12 J-8-9 
12 2-8-9 

II OB 12 3-8-9 VT (Vertical Tab) 
12 oc 12 4-8-9 FF (Form Feed) 

C-1 



A B 

13 OD 
I4 OE 
15 OF 

16 IO 
17 11 
18 12 
19 13 
20 14 
21 15 
22 16 
23 I7 
24 18 
25 19 
26 IA 
27 1B 
28 IC 
29 JD 
30 IE 
31 IF 

32 20 
33 21 
34 22 
35 23 
36 24 
37 25 
38 26 
39 27 
40 28 
41 29 
42 2A 
43 2B 
44 2C 
45 2D 
46 2E 
47 2F 
48 30 
49 31 
50 32 
51 33 
52 34 
53 35 
54 36 
55 37 

C-2 

B I 000 Systems COBOL 74 Language Manual 
COBOL74 Graphics 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

c D E F 

13 OD I2 5-8-9 CR (Carriage Return) 
I4 OE 12 6-8-9 SO (Shift Out) 
15 OF I2 7-8-9 SI (Shift In) 

16 IO 12-11-1-8-9 DLE (Data Link Escape) 
17 11 11-1-9 DCl (Device Control I) 
18 12 11-2-9 DC2 (Device Control 2) 
19 13 11-3-9 DC3 (Device Control 3) 

I 1-4-9 
I 1-5-9 NL (New Line) 

8 08 Il-6-9 BS (Backspace) 
II-7-9 

24 I8 1 I-8-9 CAN (Cancel) 
15 I9 I 1- I-8-9 EM (End of Medium) 

II-2-8-9 
I 1-3-8-9 

28 JC I I-4-8-:9 FS (File Separator) 
29 ID 1 I-5-8-9 GS (Group Separator) 
30 IE I 1-6-8-9 RS (Record Separator) 
31 IF 11-7-8-9 US (Unit Separator) 

11-0-1-8-9 
0-1-9 
0-2-9 
0-3-9 
0-4-9 

10 OA 0-5-9 LF (Line Feed) 
13 I7 0-6-9 ETB (End of Transmission Block) 
?.7 1B 0-7-9 ESC (Escape) 

0-8-9 
0-1-8-9 
0-2-8-9 
0-3-8-9 
0-4-8-9 

5 05 0-5-8-9 ENQ (Enquiry) 
6 • 06 0-6-8-9 ACK (Acknowledge) 
7 07 0-7-8-9 BEL (Bell) 

12-I 1-0-1-8-9 
1-9 

22 16 2-9 SYN (Synchronous Idle) 
3-9 
4-9 
5-9 
6-9 

4 04 7-9 EQT (End of Transmission)O 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Graphics ~ 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

A I B I c D E F 

S6 38 8-9 
. 

S7 39 1-8-9 
S8 3A 2-8-9 
S9 3B 3-8-9 
60 3C 20 14 4-8-9 DC4 (Device Control 4) 
61 3D 21 IS 5-8-9 NAK (Negative Acknowledge) 
62 3E 6-8-9 
63 3F 26 IA 7-8--9 

64 40 32 20 (No Punches) (SPACE) 
6S 41 12 O- l ·-8-9 
66 42 12 0-2-9 
67 43 12 0-3-9 
68 44 12 0-4-9 
69 4S 12 O-S-9 
70 46 12 0-6.-9 
71 47 12 O-T-9 
72 48 12 0-8--9 
73 49 12 1-8 
74 4A 91 SB 12 2-8 [ (LEFT BRACKET) 
7S 4B 46 2E 12 3-8 . (PERIOD, DECIMAL POINT) 
76 4C 60 3C 12 4-8 < (LESS-THAN SIGN) 
77 4D 40 28 12 S-8 ( (LEFT PARENTHESIS) 
78 4E 43 2B 12 6-8 + (PLUS SIGN) 
79 4F 33 21 12 7-8 I (VERTICAL BAR) 

80 so 38 26 12 & (AMPERSAND) 
81 S1 12-11-1-9 
82 S2 12-11-2-9 
83 S3 12-11-3-9 
84 S4 12-11-4-9 
8S SS 12-11-S-9 
86 S6 12-11-6-9 
87 S7 12-11-7-9 
88 S8 12-11-8-9 
89 S9 11-1-8 
90 SA 93 SD 11-2-8 ] (RIGHT BRACKET) 
91 SB 36 24 11-3-8 $ (DOLLAR SIGN) 
92 SC 42 2A 11-4-8 * (ASTERISK) 
93 SD 41 29 I l-S-8 ) (RIGHT PARENTHESIS) 
94 SE S9 3B 11-6-8 ; (SEMICOLON) 
9S SF 94 SE II-7-8 I -, (LOGICAL NOT) 
96 60 4S 2D I I - (MINUS, HYPHEN) 
97 6I 47 2F 0-1 I (SLASH) 
98 62 lI-0-2-9 
99 63 l 1-0-3-9 

1168622 C-3 



A B 

100 64 
IOI 65 
102 66 
103 67 
104 68 
105 69 
106 6A 
107 6B 
108 6C 
109 6D 
110 6E 
111 6F 

112 70 
I 13 71 
I 14 72 
115 73 
116 74 
117 75 
I 18 76 
119 77 
120 78 
121 79 
122 7A 
123 7B 
124 7C 
125 7D 
126 7E 
127 7F 

128 80 
129 81 
130 82 
13 I 83 
132 84 
133 85 
134 86 
135 87 
136 88 
137 89 
138 8A 
139 8B 
140 8C 

141 I 8D 
142 8E 
143 8F 

C-4 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 Graphics 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

c D E F 

11-0-4-9 
I 1-0-5-9 
I 1-0-6-9 
I 1-0-7-9 
11-0-8-9 

0-1-8 
124 7C 12-11 
44 2C 0-2-8 , (COMMA) 
37 25 0-4-8 % (PERCENT SIGN) 
95 SF 0-5-8 _. (UNDERSCORE) 
62 3E 0-6-8 > (GREATER-THAN SIGN) 
63 3F 0-7-8 ? (QUESTION MARK) 

12-11-0 ! (EXCLAMATION POINT) 
12-11-0-1-9 
12-11-0-2-9 
12- I 1-0-3-9 
12- I 1-0-4-9 
12-11-0-5-9 
12-11-0-6-9 
12-11-0-7-9 
12-11-0-8-9 

96 60 1-8 
58 3A 2-8 : (COLON) 
35 23 3-8 # (NUMBER OR POUND SIGN) 
64 40 4-8 (il (AT SIGN) 
39 27 5-8 ' (APOSTROPHE) 
61 3D 6-8 = (EQUAL SIGN) 
34 22 7-8 " (QUOTATION MARK) 

-

12 0-1-8 
97 61 12 0-1 a 
98 62 12 0-2 b 
99 63 12 0-3 c 

100 64 12 0-4 d 
101 65 12 0-5 e 
102 66 12 0-6 f 
103 67 12 0-7 g 
104 68 12 0-8 h 
105 69 12 0-9 i 



A B 

144 90 
145 91 
146 92 
147 93 
148 94 
149 9S 
ISO 96 
lSI 97 
IS2 98 
lS3 99 
IS4 9A 
ISS 9B 
lS6 9C 
1S7 90 
1S8 9E 
lS9 9F 

160 AO 
161 Al 
162 A2 
163 A3 
164 A4 
16S AS 
166 A6 
167 A7 
168 A8 
169 A9 
170 AA 
171 AB 
172 AC 
173 AD 
174 AE 
17S AF 

176 BO 
177 Bl 
178 B2 
179 B3 
180 B4 
181 BS 
182 B6 
183 B7 
184 BS 
18S B9 
186 BA 

1168622 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Graphics 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

I c D E F 

12-11-1-8 
106 6A 12-11-1 j 
107 6B 12-11-2 k 
108 6C 12- n-3 I 
109 60 12-11-4 m 
I IO 6E 12- I l-S n 
111 6F 12-l 1-6 0 

112 70 12-11-7 p 
113 71 12-11-8 q 
114 72 12-11-9 r 

12-11-2-8 
12-11-3-8 
12-11-4-8 
12-11-S-8 
12-11-6-8 
I 2-11-7-8 

11-0-1-8 
126 7E I 1-0-1 ¢ (CENTS SIGN) 
llS 73 I 1-0-2 s 
116 74 11-0-3 t 
117 7S 11-0-4 u 
118 76 11-0-5 v 
119 I 77 11-0-6 w 
120 78 11-0-7 x 
121 79 11-0-8 y 
122 7A 11-0-9 z 

11-0-2-8 
11-0-3-8 
11-0-4-8 
11-0-5-8 
11-0-6-8 
11-0-7-8 

12-11-0- ] -8 
12-11-0-1 
12-11-0-2 
12-11-0-3 . 
12-11-0-4 
12-11-0-5 
12-11-0-6 
12-11-0-7 
12-11-0-8 
12-11-0-9 
12-11-0-2-8 

I 
C-5 



A B 

187 BB 
188 BC 
189 BD 
190 BE 
191 BF 
192 co 
193 Cl 
194 C2 
19S C3 
196 C4 
197 cs 
198 C6 
199 C7 
200 cs 
201 C9 
202 CA 
203 CB 
204 cc 
205 CD 
206 CE 
207 CF 

208 DO 
209 DI 
210 02 
211 D3 
2I2 D4 
213 DS 
2I4 D6 
2IS 07 
216 D8 
217 D9 
218 DA 
219 DB 
220 DC 
221 DD 
222 DE 
223 OF 

224 EO 
22S El 
226 E2 
227 E3 
228 E4 
229 ES 

I 
C-6 

B 1000 Systems COBOL 7 4 Language Manual 
COBOL 74 Graphics 

1able C-1. B 1000 Codes In EBCDIC Sequence {Cont) 

c D E F 

12-11-0-3-8 
12-11-0-4-8 
12-11-0-S-8 
12-1 1-0-6-8 
12-11-0-7-8 

123 7B 12 0 { (LEFT BRACE) 
6S 41 12 I A 
66 42 12 2 B 
67 43 12 3 c 
68 44 12 4 D 
69 45 12 5 E 
70 46 12 6 F 
71 47 12 7 G 
72 48 12 8 H 
73 49 12 9 I 

12S 7D } (RIGHT BRACE) 
74 4A 11 1 J 
7S 4B 11 2 K 
76 4C 11 3 L 
77 4D 11 4 M 
78 4E 11 5 N 
79 4F I l 6 0 
80 50 11 7 p 

SI S1 11 8 Q 
82 52 I I 9 R 

·-

92 SC """ (REVERSE SLASH) 

83 S3 0-2 s 
84 54 0-3 T 
SS SS 0-4 u 
86 S6 0-S v 



B I 000 Systems COBOL 74 Language Manual 
COBOL74 Graphics 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

~~ 

230 E6 
231 E7 
232 E8 
233 E9 
234 EA 
235 EB 
236 EC 
237 ED 
238 EE 
239 EF 
240 FO 
241 Fl 
242 F2 
243 F3 
244 F4 
245 F5 
246 F6 
247 F7 
248 F8 
249 F9 
250 FA 
251 FB 
252 FC 
253 FD 
254 FE 
255 FF 

c I D 

87 57 
88 58 
89 59 
90 SA 

48 30 
49 31 
50 32 
51 33 
52 34 
53 35 
54 36 
55 37 
56 38 
57 39 

I E 

0-6 
0-7 
0-8 
0-9 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

w 
x 
y 

z 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

F 

J_ __ 
Table C-2 lists the 8-bit EBCDIC internal code together with the USASCII-7, and 80-column card 
codes in sequence of the USASCII-7 code. 

A B 

0 00 
I 01 
2 02 
3 03 

55 37 
45 2D 
46 2E 
47 2F 
22 16 

5 05 
37 25 

1168622 

Table C-2. B 1000 C9des in ASCII-7 Sequence 

c I D 

0 00 12 
I 01 12 
2 02 12 
3 03 12 
4 04 
5 05 
6 06 
7 07 
8 08 
9 09 12 

10 OA I 
I 

E 

-1-8-9 0 
1 -9 
2 -9 
3 -9 
7 -9, 
0 -5-8-9 
0 -6-8-9 
0 -7-8-9 

] 1-6. -9 
5 -9 
0 -5-9 

F 

NUL (Null) 
SOH (Start of Heading) 
STX (Start of Text) 
ETX (End of Text) 
EQT (End of Transmission) 
ENQ (Enquiry) 
ACK (Acknowledge) 
BEL (Bell) 
BS (Backspace) 
HT (Horizontal Tab) 
LF (Line Feed) 

C-7 



A B 

11 OB 
12 oc 
13 OD 
14 OE 
15 OF 
16 IO 
17 11 
18 12 
19 13 
60 3C 
61 3D 
50 32 
38 26 
24 18 
2S 19 
63 3F 
39 27 
28 IC 
29 ID 
30 IE 
31 IF 
64 40 
79 4F 

127 7F 
123 7B 
91 SB 

108 6C 
80 so 

12S 7D 
77 4D 
93 SD 
92 SC 
78 4E 

107 6B 
96 60 
7S 4B 
97 61 

240 FO 
241 Fl 
242 F2 
243 F3 
244 F4 
24S FS 
246 F6 
247 F7 
248 F8 

C-8 

B I 000 Systems COBOL 7 4 Language Manual 
COBOL 74 Graphics 

Table C-2. B 1000 Codes in ASCll-7 Sequence (Cont) 

c D E F 

11 OB 12 3-8-9 VT (Vertical Tab) 
12 oc 12 4-8-9 FF (Form Feed) 
13 OD 12 5-8-9 CR (Carriage Return) 
14 OE 12 6-8-9 SO (Shift Out) 
IS OF 12 7-8-9 SI (Shift In) 
16 IO 12-11-1-8-9 DLE (Data Link Escape) 
17 11 11-1-9 DC I (Device Control I) 
18 12 I 1-2-9 DC2 (Device Control 2) 
19 13 11-3-9 DC3 (Device Control 3) 
20 14 4-8-9 DC4 (Device Control 4) 
21 15 5-8-9 NAK (Negative Acknowledge) 
22 16 2-9 SYN (Synchronous Idle) 
23 17 0-6-9 ETH (End of Transm. Block) 
24 18 11-8-9 CAN (Cancel) 
25 19 11-1-8-9 EM (End of Medium) 
26 IA 7-8-9 SUB (Substitute) 
27 JB 0-7-9 ESC (Escape) 
28 IC I 1-4-8-9 FS (File Separator) 
29 ID I l-S-8-9 GS (Group Separator) 
30 IE I 1-6-8-9 RS (Record Separator) 
31 IF I 1-7-8-9 US (Unit Separator) 
32 20 I [NO PUNCHES] (SPACE) 
33 21 12 7-8 I (VERTICAL BAR) 
34 22 7-8 " (QUOTATION MARK) 

. 

3S 23 3-8 # (NUMBER OR POUND SIGN) 
36 24 11-3-8 $ (DOLLAR SIGN) 
37 25 0-4-8 % (PERCENT SIGN) 
38 26 12 & (AMPERSAND) 
39 27 S-8 ' (APOSTROPHE) 
40 28 . 12 5-8 ( (LEFT PARENTHESIS) 
41 29 11-S-8 ) (RIGHT PARENTHESIS) 
42 2A 11-4-8 I * (ASTERISK) 
43 2B 12 6-8 + (PLUS SIGN) 
44 2C 0-2-8 , (COMMA) 
4S 2D 11 - (MINUS SIGN, HYPHEN) 
46 2E 12 3-8 . (PERIOD) 
47 2F 0-1 I (SLASH) 
48 30 0 0 
49 3 I I I 
so 32 2 2 
SI 33 3 3 
S2 34 4 4 
S3 3S 5 s 
S4 36 6 6 
S5 37 7 7 
S6 38 8 8 

I 



A I B 

249 F9 
122 7A 
94 SE 
76 4C 

126 7E 
110 6E 
111 6F 
124 7C 
193 

1
CI 

194 C2 
195 C3 
196 C4 
197 cs 
198 C6 
199 C7 
200 C8 
201 C9 
209 DI 
210 D2 
211 03 
212 04 
213 DS 
214 D6 
215 D7 
216 08 
217 09 
226 E2 
227 E.3 
228 E4 
229 E5 
230 E6 
231 E7 
232 E8 
233 E9 

74 4A 
224 EO 

90 SA 
9S 5F 

109 6D 
121 79 
129 81 
130 8}. 
131 83 
132 84 
133 85 

1168622 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Graphics 

Table C-2. B 1000 Codes in ASCll-7 Sequence (Cont) 

c D E F 

S7 39 9 9 
S8 3A 2-8 : (COLON) 
S9 3B I 1-6-8 ; (SEMICOLON) 
60 3C 12 4-8 < (LESS-THAN SIGN) 
61 30 6-8 = (EQUAL SIGN) 
62 3E 0-6-8 > (GREATER-THAN SIGN) 
63 3F 0-7-8 ? (QUESTION MARK) 
64 40 4-8 (il (AT SIGN) 
6S 41 12 I A 
66 42 12 2 B 
67 43 12 3 c 
68 44 12 4 D 
69 4S 12 s E 
70 46 12 6 F 
71 47 12 7 G 
72 48 12 8 H 
73 49 12 9 I 
74 4A 1 1-1 J 
7S 4B 11-2 K 
76 4C 11-3 L 
77 40 11-4 M 
78 4E 11-5 N 
79 4F 11-6 0 
80 so 11-7 p 
81 SI 11-8 Q 
82 S2 11-9 R 
83 S3 0-2 s 
84 S4 0-3 T 
8S SS 0-4 u 
86 S6 0-S v 
87 57 0-6 w 
88 58 0-7 x 
89 S9 0-8 y 

90 SA 0-9 z 
91 SB 12 2-8 [ (LEFT BRACKET) 
92 SC ""' (REVERSE SLASH) 
93 SD 11-2-8 ] (RIGHT BRACKET) 
94' 5E I 1-7-8 I (LOGICAL NOT) 
9S 5F O-S-8 _ (UNDERSCORE) 
96 60 1-8 
97 61 12 0-1 a 
98 62 12 0-2 b 
99 63 12 0-3 c 

100 64 12 0-4 d 
101 6S 12 0-S e 

C-9 



A B 

134 86 
135 87 
136 88 
137 89 
145 91 
146 92 
147 93 
148 94 
149 95 
150 96 
151 97 
152 98 
153 99 
162 A2 
163 A3 
164 A4 
165 A5 
166 A6 
167 A7 
168 AS 
169 A9 
192 co 
106 6A 
208 DO 
161 Al 
7 07 

C-10 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 Graphics 

Table C-2. B 1000 Codes in ASCll-7 Sequence (Cont} 

c D E F 

102 66 12 0-6 f 
103 67 12 0-7 g 
104 68 12 0-8 h 
105 69 12 0-9 i 
106 6A 12-11-1 j 
107 6B 12-11-2 k 
108 6C 12-11-3 I 
109 6D 12-11-4 m 
1 IO 6E 12-11-5 n 
111 6F 12-11-6 0 

112 70 12-11-7 p 
113 71 12-11-8 q 
114 72 12-11-9 r 
115 73 11-0-2 s 
116 74 11-0-3 t 
I 17 75 11-0-4 u 
118 76 11-0-5 v 
119 77 I 1-0-6 w 
120 78 11-0-7 x 
121 79 I 1-0-8 y 
122 7A I 1-0-9 z 
123 7B 12 0 { (LEFT BRACE) 
124 7C 12-11 
125 7D } (RIGHT BRACE) 
126 7E 11-0-1 ¢ (CENTS SIGN) 
127 7F 12 7-9 DEL (Delete) 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 Graphics 

Table C--3 explains all of the control and special codes. The symbols are presented in the order of ap
pearance~ in table C-1 and C-2. 

Symbol 

NUL 

SOH 

STX 

ETX 

EOT 

ENQ 

ACK 

BEL 

BS 

HT 

1168622 

Table C-3. Description of Control and Special Characters 

Name /Function 

Null: The all zeros character which may serve to 
accomplish time fill and media fill. 
Start of Heading: A communication control character 
used at the beginning of a sequence of characters 
which constitutes a machine-sensible address or 
routing information. Such a sequence is referred 
to as the "heading." An STX character has the 
effect of terminating a heading. 

Start of Text: A communication control character 
which precedes a sequence of characters which are to be 
treated as an entity and which are entirely transmitted 
to the ultimate destination. Such a sequence is 
referred to as "text." STX may be used to terminate 
a sequence of characters started by SOH. 

End of Text: A communication control character used 
to terminate a sequence of characters started with 
STX and transmitted as an entity. 

End of Transmission: A communication control character 
used to indicate the conclusion of a transmission which 
may have contained one or more texts and any 
associated headings. 

Enquiry: A communication control character used in 
data communication systems as a request for a 
response from a remote station. It may be used as a 
"Who Are You" (WRU) to obtain identification, or may 
be used to obtain station status, or both. 

Acknowledge: A communication control character 
transmitted by a receiver as an affirmative response 
to a sender. 

Bell: A character for use when there is a need to call 
for human attention. It may control alarm or attention 
devices. 

Backspace: A format effector that controls the 
movement of the printing mechanism one print 
position backward on the same print line. 

Horizontal Tabulation: A format effector that controls 
the movement of the printing mechanism to the next position 
in a series of predetermined positions along the print 
line. 

C-11 



Symbol 

LF 

VT 

FF 

CR 

so 

SI 

DLE 

DCl 
DC2 
DC3 
DC4 

NAK 

SYN 

ETB 

C-12 

B I 000 _Systems COBOL 74 Language Manual 
COBOL 74 Graphics 

Table C-3. Description of Control and Special Characters (Cont) 

Name /Function 

Line Feed: A format effector that controls movement 
one line at a time. 

Vertical Tabulation: A format effector that controls 
movement to the next in a series of predetermined 
lines. 

Form Feed: A format effector that controls the 
movement of the printing position to the first 
predetermined printing line on the next form 
or page. 

Carriage Return: A format effector that controls 
the movement of the print mechanism to the first 
print position on the same print line. 

Shift Out: A control character indicating that the 
code combinations that follow shall be interpreted 
as outside of the character set of the standard 
code table until a Shift In character is detected. 

Shift In: A control character indicating that the 
code combinations that follow shall be interpreted 

. according to the standard code table. 

Date Link Escape: A communication control character 
that will change the meaning of a limited number 
of contiguously following characters. It is used 
exclusively to provide supplementary controls in 
data communication networks. 

Device Controls: Characters for the control of 
ancillary devices associated with data processing or 
telecommunication systems, more especially switching 
devices ON or OFF. If a single "stop" control is 
required to interrupt or turn off ancillary devices, 
DC4 is the preferred assignment. 

Negative Acknowledge: A communication control 
character transmitted by a receiver as a negative 
response to the sender. 

Synchronous Idle: A communication control character 
used by a synchronous transmission system in the 
absence of any other character to provide a signal 
from which synchronism may be achieved or retained. 

End of Transmission Block: A communication control 
character used to indicate the end of a block of 
data for communication purposes. ETB is used for 
blocking data where the block structure is not 
necessarily related to the processing format. 



Symbol 

CAN 

EM 

SUB 

ESC 

FS 
GS 
RS 
us 

SP 

DEL 

1168622 

B 1000 _Systems COBOL 74 Language Manual 
COBOL 74 Graphics 

Table C-3. Description of Control and Special Characters (Cont) 

Name/Function 

Cancel: A control character used to indicate that 
the data with which it is sent is in error and is 
to be disregarded. 

End of Medium: A control character associated with 
the sent data which may be used to identify the 
physical end of the medium, or the end of the 
used., or wanted, portion of information recorded 
on a medium. The position of this character does 
not necessarily correspond to the physical end of 
the medium. 

Substitute: A character that may be substituted for a 
character which is determined to be invalid or in 
error. 

Escape: A control character intended to provide code 
extension (supplementary characters) in general 
information interchange. The Escape character itself 
is a prefix affecting the interpretation of a limited 
number of contiguously following characters. 

File Separator, Group Separator, Record Separator, and 
Unit Separator. These information separators may be 
optionally used within data, except that their 
hierarchical relationship shall be such that FS is the 
most inclusive, then GS, then RS, and US is least 
inclusive. The content and length of a File, Group, 
Record, or Unit are not specified. 

Space: A normally non-printing graphic character used 
to separate words. It is also a format effector which 
controls the movement of the printing position, one 
printing position forward. 

Delete: This character is used primarily to "erase" or 
"obliterate" erroneous or unwanted characters in 
perforated tape. In the strict sense, DEL is not a 
control character. 

C-13 



INTRODUCTION 

B I 000 Systems COBOL 74 Language Manual 

APPENDIX D 
GLOSSARY 

• 

The terms in this glossary are defined in accordance with meaning as used in this document describing 
COBOL74 and may not have the same meaning for other languages. 

Data Base Management definitions are not included in this glossary. Ref er to the B 1000 Systems Data 
Managiement System II (DMSII) Reference Manual for these definitions. 

DEFINITIONS 

Abbreviated Combined Relation Condition 
The combined condition that results from the explicit omission of a common subject or a common 
subject and common relational operator in a consecutive sequence of relation conditions. 

Access Mode 
The manner in which records are to be operated upon within a file. 

Actual Decimal Point 
The physical representation, using either of the decimal point characters period (.) or comma (,), of 
the decimal point position in a data item. 

Actual Key 
A key whose contents identify a logical record in a sequential file. 

Alphabet-Name 
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that 
assigns a name to a specific character set and/ or collating sequence. 

Alphabetic Character 
A character that belongs to the following set of letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 
0, P, Q, R, S, T, U, V, W, X, Y, Z, and the space. 

Alphanumeric Character 
Any character in the computer character set. 

Alternate Record Key 
A key, other than the prime record key, whose contents identify a record within an Indexed File. 

Arithmetic Expression _ 
An arithmetic expression can be an identifier or a numeric elementary item, a numeric literal, such 
identifiers and literals separated by arithmetic operators, two arithmetic expressions separated by an 
arithmetic operator, or an arithmetic expression enclosed in parentheses. 

1168622 D-1 



B I 000 Systems COBOL 7 4 Language Manual 
Glossary 

Arithmetic Operator • 
A single character, or a fixed 2-character combination, that belongs to the following set: 

Ascending Key 

Character 

+ 

* 
I 
** 

Meaning 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

A key upon the values of which data is ordered starting with the lowest value of key in accordance 
with the rules for comparing data items. 

Assumed Decimal Point 
A decimal point position which does not involve the existence of an actual character in a data item. 
The assumed decimal point has logical meaning but no physical representation. 

At End Condition 
A condition caused: 

Block 

a. During the execution of a READ statement for a sequentially accessed file. 

b. During the execution of a RETURN statement, when no next logical record exists for the 
associated sort or merge file. 

c. During the execution of a SEARCH statement, when the search operator terminates with
out satisfying the condition specified in any of the associated WHEN phr~ses. 

A physical unit of data that is normally composed of one or more logical records. For mass storage 
files, a block may contain a portion of a logical record. The size of a block has no direct relationship 
to the size of the file within which the block is contained or to. the size of the logical record(s) that 
are either continued within the block or that overlap the block. The term is synonymous with physical 
record. 

Burroughs Network Architecture (BN A) 
A system which provides a means to perform distributed data processing such as remote data base ac
cess, file transfer, remote task initiation and control, logical 1/0, interprocess communication, and re
source sharing. 

Called Program 
A program which is the object of a CALL statement combined at object time with the calling program 
to produce a run unit. 

Calling Program 
A program which executes a CALL to another program. 

D-2 



Cd-Name 

B 1000 Systems COBOL74 Language Manual 
Glossary 

A user-defined word that names an MCS interface area described in a communication description entry 
within the COMMUNICATION SECTION of the DATA DIVISION. 

Character 
The basic indivisible unit of the language. 

Character Position 
A character position is the amount of physical storage required to store a single standard data format 
character described as usage is DISPLAY. 

Character-String 
A sequence of contiguous characters which form a COBOL 74 word, a literal, a PICTURE character
string, or a comment-entry. 

Class Condition 
The proposition, for which a truth value can be determined, that the content of an item is wholly al
phabetic or is wholly numeric. 

Clause 
A claus~~ is an ordered set of consecutive COBOL 74 character-strings whose purpose is to specify an 
attribute of an entry. 

COBOL74 Character Set • 
The complete COBOL 74 character set consists of the 52 characters listed below: 

COBOL'74 Word 
Refer to Word. 

1168622 

Character 

0,1, ... ,9 
A,B, ... ,z 

+ 

* 
I 

$ 

If 

( 
) 
> 
< 
@ 

Digit 
Letter 

Meaning 

Space (blank) 
Plus sign 
Minus sign (hyphen) 
Asterisk 
Stroke (virgule, slash) 
Equal sign 
Currency sign 
Comma (decimal point) 
Semicolon 
Period (decimal point) 
Quotation mark 
Left parenthesis 
Right parenthesis 
Greater than symbol 
Less than symbol 
Commercial at 

D-3 



Collating Sequence 

B 1000 Systems COBOL 7 4 Language Manual 
Glossary 

The sequence in which the characters are acceptable in a computer are ordered for purposes of sorting, 
merging, and comparing. 

Column 
A character position within a print line. The columns are numbered from 1, by 1, starting at the left
most character position of the print line and extending to the rightmost position of the print line. 

Combined Condition 
A condition· that is the result of connecting two or more conditions with the AND or the OR logical 
operator. 

Comment-Entry 
An entry in the IDENTIFICATION DIVISION that may be any combination of characters from the 
computer character set. 

Comment Line 
A source program line represented by an asterisk in the indicator area of the line and any characters 
from the computer's character set in Area A and Area B of that line. The comment line serves only 
for documentation in a program. A special form of comment line represented by a stroke (/) in the 
indicator area of the line and any characters from the computer's character set in area A and area 
B of that line cause page ejection before printing a comment. 

Communication Description Entry • 
An entry in the COMMUNICATION SECTION of the DAT A DIVISION .that is composed of the level 
indicator CD, followed by a cd-name, and then followed by a set of clauses as required. It describes 
the interface between the Data Communication Subsystem and the COBOL 74 program. 

Communication Device 
A mechanism (hardware or hardware/software) capable of sending data to a queue and/or receiving 
data from a queue. This mechanism may be a computer or a peripheral device. One or more programs 
containing communication description entries and residing within the same computer define one or 
more of these mechanisms. 

Communication Section 
The section of the DATA DIVISION that describes the interface areas between the MCS and the pro
gram, composed of one or more CD description entries. 

Compile Time 
The time when a COBOL74 source program is translated to a COBOL74 object program by the 
COBOL74 compiler. 

Compiler-Directing Statement 
A statement that begins with a compiler-directing verb and causes the compiler to take a specific action 
during compilation. 

Complex Condition 
A condition in which one or more logical operators act upon one or more conditions. Refer to the 
terms Negated Simple Condition, Combined Condition, and Negated Combined Condition. 

Computer-Name 
A system name that identifies the computer upon which the program is to be compiled or run. 

D-4 



Condition 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

A status of a program at execution time for which a truth value can be determined. Where the term 
'condition' (condition- I, condition-2, ... ) appears in this language in or in reference to 'condition' 
(condition-I, condition-2, ... ) of a general format, it is a conditional expression consisting of either 
a simple condition optionally parenthesized, or a combined condition consisting of the syntactically cor
rect combination of simple conditions, logical operators, and parentheses, for which a truth value can 
be determined. 

Condition-Name 
A user-defined word assigned to a specific value, set of values, or range of values, within the complete 
set of values that a conditional variable may possess; or the user-defined word assigned to a status 
of a switch or device. 

Condition-Name Condition 
The proposition, for which a truth value can be determined, that the value of a conditional variable 
is a member of the set of values attributed to a condition-name associated with the conditional variable. 

Conditional Expression 
A simple condition or a complex condition specified in an IF, PERFORM, or SEARCH statement. 
Refer to the terms Simple Condition and Complex Condition. 

Conditional Statement 
A conditional statement specifies that the truth value of a condition is to be determined and that the 
subsequent action of the object program is dependent on this truth value. 

Conditional Variable 
A data item one or more values of which has a condition-name assigned to it. 

Configuration Section 
A section of the ENVIRONMENT DIVISION that describes overall specifications of source:.and object 
computers. 

Connective 
A reserved word that is used to: 

a. Associate a data-name, paragraph-name, condition-name, or text-name with the qualifier. 
b. Link two or more operands written in a series. 
c. Form conditions (logical connectives). Refer to the term Logical Operator. 

Contiguous Items 
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite 
hierarchic relationship to each other. 

Counter 
A data item used for storing numbers or number representations in a manner that permits these num
bers to be increased or decreased by the value of another number, or to be changed or reset to zero 
or to an arbitrary positive or negative value. 

Currency Sign 
The character '$' of the COBOL 74 character set. · 

1168622 D-5 



Currency Symbol 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. If no 
CURRENCY SIGN clause is present in a COBOL 74 source program, the currency symbol is identical 
to the currency sign. 

Current Record 
The record which is available in the record area associated with the file. 

Current Record Pointer 
A conceptual entity that is used in the selection of the next record. 

Data Clause 
A clause that appears in a data description entry in the DATA DIVISION and provides information 
describing a particular attribute of a data item. 

Data Communication Subsystem 
Consists of a Network Controller and one or more programs (optional MCS). The Network Controller 
is responsible for handling all the details of the data communications line discipline. 

Data Description Entry 
An entry in the DAT A DIVISION that is composed of a level-number followed by a data-name, if 
required, and then followed by a set of data clauses, as required. 

Data Item 
A character or a set of contiguous characters (excluding in either case literals) defined as a unit of 
data by the COBOL 74 program. 

Data-Name 
A user-defined word that names a data item described in a data description entry in the DATA DIVI
SION. When used in the general formats, data-name represents a word which can neither be sub
scripted, indexed, nor qualified unless specifically permitted by the rules for that format. 

Debugging Line 
A debugging line is any line with D in the indicator area of the line. 

Debugging Section 
A debugging section is a section that· contains a USE FOR DEBUGGING statement. 

Declaratives 
A set of one or more special purpose sections, written at the beginning of the PROCEDURE DIVI
SION, the first of which is preceded by the key word DECLARATIVES and the last of which is fol
lowed by the key words END DECLARATIVES. A declarative is composed of a section header, fol
lowed by a USE compiler directing sentence, followed by a set of zero, one or more associated 
paragraphs. 

Declarative-Sentence 
A compiler-directing sentence consisting of a single USE statement terminated by the separator period. 

Delimiter 
A character or a sequence of contiguous characters that identify the end of a string of characters and 
separates that string of characters from the following string of characters. A delimiter is not part of 
the string of characters that it delimits. 

D-6 



Descending Key 

B 1 OQO Systems COBOL 74 Language Manual 
Glossary 

A key upon the values of which data is ordered starting with the highest value of key down to the 
lowest value of key, according to the rules for comparing data items. 

Destination 
The symbolic identification of the receiver of a transmission from a queue. 

Digit Position 
A digit position is the amount of physical storage required to store a single digit. This amount may 
vary depending on the usage of the data item describing the digit position. 

Division 
A set of zero, one or more sections of paragraphs, called the division body, that are formed and com
bined in accordance with a specific set of rules. There are four divisions in a COBOL 74 program: 
IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. 

Division Header 
A combination of words followed by a period and a space that indicates that beginning of a division. 
The division headers are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION [USING data-name-1 [data-name-2] ... ] . 

Dynamic Access 
An acces9 mode in which specific logical records can be obtained from or placed into a mass storage 
file in a nonsequential manner (see Random Access) and obtained from a file in a sequential manner 
(see Sequential Access), during the scope of the same OPEN statement. 

Editing Character 
A single character or a fixed two-character combination belonging to the following set: 

Elementary Item 

Character 

B 
0 
+ 

CR 
DB 
z 
* 
$ 

I 

Space 
Zero 
Plus 
Minus 
Credit 
Debit 

Meaning 

Zero suppress 
Check protect 
Currency sign 
Comma (decimal point) 
Period (decimal point) 
Stroke (virgule, slash) 

A data item that is described as not being further logically subdivided. 

1168622 D-7 



B I 000· Systems COBOL 74 Language Manual 
Glossary 

End of PROCEDURE DIVISION 
The physical position in a COBOL 74 source program after which no further procedures appear. 

Entry 
Any descriptive set of consecutive clauses terminated by a period and written in the IDENTIHCA TION 
DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL74 source program. 

Environment Clause 
A clause that appears as part of an ENVIRONMENT DIVISION entry. 

Execution Time 
See Object Time. 

Extend Mode 
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that 
file and before the execution of a CLOSE statement for that file. 

Figurative Constant 
A compiler-generated value referenced through the use of certain reserved words. 

File 
A collection of records. 

File Clause 
A clause that appears as part of any of the following DATA DIVISION entries: 

File description (FD) 
Sort-Merge file description (SD) 
Communication description (CD) 

FILE-CONTROL 
The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source 
program are declared. 

File Description Entry 
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD, 
followed by a file-name, and then followed by a set of file clauses as required. 

File-Name 
A user-defined word that names a file described in a file description entry within the FILE SECTION 
of the DATA DIVISION. 

File Organization 
The permanent logical file structure established at the time that a file is created. 

File Section 
The section of the DAT A DIVISION that contains file description entries and Sort-Merge file descrip
tion entries together with associated record descriptions. 

Format 
A specific arrangement of a set of data. 

D-8 



Group Item 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

A named contiguous set of elementary or group items. 

Hexadecimal Literal 
A character-string bounded by @ signs.· The string of characters must consist of one or more characters 
chosen from the set of hexadecimal digits consisting of the digits 0 through 9, A, B, C, D, E, and 
F. The characters A through F are the hexadecimal digit representation for the decimal values 10 
through 15. 

High Order End 
The leftmost character of a string of characters. 

1-0-Control 
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for 
specific input-output techniques, rerun points, sharing of same areas by several data files, and multiple 
file storage on a single input-output device are specified . 

. 1-0 Mode 
The state of a file after execution of an OPEN statement, with the I-0 phrase specified, for that file 
and before the execution of a CLOSE statement for that file. 

Identifier 
A data-name, followed as required by the syntactically correct combination of qualifiers, subscripts, 
and indices necessary to make unique reference to a data item. 

Imperative Statement 
A statement that begins with an imperative verb and specifies an unconditional action to be taken. 
An imperative statement may consist of a sequence of imperative statements. 

Index 
A computer storage position or register, the contents of which represent the identification of a 
particular element in a table. 

Index Data Item 
A data item in which the value associated with an index-name can be stored. 

Index-Name 
A user-defined word that names an index associated with a specific table. 

Indexed Data-Name 
An identifier that is composed of a data-name, followed by one or more index-names enclosed in pa
rentheses. 

Indexed File 
A file with indexed organization. 

Indexed Organization 
The permanent logical file structure in which each record is identified by the value of one or more 
keys within that record. 

Input File 
A file that is opened in the input mode. 

1168622 D-9 



Input Mode 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that 
file and before the execution of a CLOSE statement for that file. 

Input-Output 
A file that is opened in the I-0 mode. 

INPUT-OUTPUT SECTION 
The section of the ENVIRONMENT DIVISION that names the files and the external media required 
by an object program and which provides information required for transmission and handling of data 
during execution of the object program. 

Input Procedure 
A set of statements that is executed each time a record is released to the sort file. 

Integer 
A numeric literal or a numeric data item that does not include any character positions to the right 
of the assumed decimal point. Where the term 'integer' appears in general formats, integer must not 
be a numeric data item, and must not be signed nor zero unless explicitly allowed by the rules of that 
format. 

Intermediate Data Item 
A signed numeric data item provided by the compiler that contains the results developed in the course 
of an arithmetic operation prior to the final result being moved to the resultant-identifier, if any. 

Invalid Key Condition 
A condition, at object time, caused when a specific value of the key associated with an Indexed or 
Relative File is determined to be invalid. 

Key 
A data item which identifies the location of a record, or a set of data items which serve to identify 
the ordering of data. 

Key of Reference 
The key, either prime or alternate, currently being used to access records within an Indexed File. 

Key Word 
A reserved word whose presence is required when the format in which the word appears is used in 
a source program. 

Language-Name 
A system name that specifies a particular programming language. 

Level Indicator 
Two alphabetic characters that identify a specific type of file or a position in hierarchy. 

D-10 



Level-Number 

B 1000 Systems COBOL74 Language Manual 
Glossary 

A user-defined word which indicates the position of a data item in the hierarchical structure of a logical 
record or which indicates special properties of a data description entry. A level-number is expressed 
as a one-or two-digit number. Level-numbers in the range 1 through 49 indicate the position of a data 
item in the hierarchical structure of a logical record. Level-numbers in the range 1 through 9 may be 
written either as a single digit or as a zero followed by a significant digit. Level-numbers 66, 77, and 
88 identify spec~al properties of a data description entry. 

Library-Name 
A user-defined word that names a COBOL 74 library that is to be used by the compiler for a given 
source program compilation. 

Library-Text 
A sequence of character-strings and/or separators in a COBOL74 library. 

Une Number 
An integer that denotes the vertical position of a report line on a page. 

Linkage Section 
The section in the DAT A DIVISION of the called program that describes data items available from 
the calling program. These data items may be referred to by both the calling and called program. 

Literal 
A charac:ter-string whose value is implied by the ordered set of characters comprising the string. 

Logical Operator 
One of the reserved words AND, OR, or NOT. In the formation of a condition, AND and/or OR 
can be used as logical connectives. NOT can be used for logical negation. 

Logical Record 
The most inclusive data item. The level-number for a record is 01. 

Low Order End 
The rightmost character of a string of characters. 

Mass Storage 
A storage medium on which data may be organized and maintained in both a sequential and nonse
quential manner. 

Mass Storage Control System (MSCS) 
An input-output control system that directs, or controls, the processing of mass storage files. 

Mass Storage File 
A collection of records that is assigned to a mass storage medium. 

MCS 
Refer to Message Control System. 

Merge File 
A collection of r,ecords to be merged by a MERGE statement. The merge file is created and can be 
used only by the merge function. 

1168622 D-11 



Message 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

Data associated with an end of message indicator or an end of group indicator. Refer to Message Indi
cators. 

Message Control System (MCS) 
A communication control system that supports the processing of messages. 

Message Count 
The count of the number of complete messages that exist in the designated queue of messsages. 

Message Indicators 
EGI (end of group indicator), EMI (end of message indicator), and ESI (end of segment indicator) 
are conceptual indications that serve to notify the MCS that a specific condition exists. 
Within the hierarchy of EGI, EMI, ESI, an EGI is conceptually equivalent to an ESI, EMI, and EGL 
An EMI is conceptually equivalent to an ESI and EML Thus, a segment may be terminated by an 
EMI or EGL 

Message Segment 
Data that forms a logical subdivision of a message normally associated with an end of segment indica
tor. Refer to Message Indicators. 

Mnemonic-Name 
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified name. 

MSCS 
Refer to Mass Storage Control System. 

Native Character Set 
The character set associated with the computer for which object code is generated. 

Native Collating Sequence 
The collating sequence associated with the native character set. 

Negated Combined Condition 
The NOT logical operator immediately followed by a parenthesized combined condition. 

Negated Simple Condition 
The NOT logical operator immediately followed by a simple condition. 

Network Controller 
The Network Controller program is a data communications operating system and is responsible for 
handling all of the details of the data communications line discipline. 

Next Executable Sentence 
The next sentence to which control will be transferred after execution of the current statement is com
plete. 

Next Record 
The record which logically follows the current record of a file. 

D-12 



Noncontiguous Items 

B 1000 Systems COBOL 7 4 Language Manual 
Glossary 

Elementary data items, in the WORKING-STORAGE and LINKAGE SECTIONS, which bear no 
hierarchic relationship to other data items. 

N onnumeric Item 
A data item whose description permits its contents to be composed of any combination of characters 
taken from the computer's character set. Certain categories of nonnumeric items may be formed from 
more restricted character sets. 

N onnumeric Literal 
A character-string bounded by quotation marks. The string of characters may indude any character 
in the computer's character set. To represent a single quotation mark character within a nonnumeric 
literal, two contiguous qubtation marks must be used. 

Numeric Character 
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

Numeric Item 
A data item whose description restricts its contents to a value represented by characters chosen from 
the digits 0 through 9; if signed, the item may also contain a +, -, or other representation of an 
operational sign. 

Numeric Literal 
A literal composed of one or more numeric characters that also may contain either a decimal point, 
an algebraic sign, or both. The decimal point must not be the rightmost character. The algebraic sign, 
if present, must be the leftmost character. 

OBJECT-COMPUTER 
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, within 
which the object program is executed, is described. 

Object of Entry 
A set of operands and reserved words, within a DAT A DIVISION entry, that immediately follows the 
subject of the entry. 

Object Program 
A set or group of executable instructions and other material designed to interact with data to provide 
problem solutions. In this context, an object program is generally the result of the operation of a 
COBOL 74 compiler on a source program. Where there is no danger of ambiguity, the ~ord 'program' 
alone may be used in place of the phrase 'object program' . 

Object Time 
The time at which an object program is executed. 

ODT 
Operator Display Terminal. 

Open Mode 
The state of a file after execution of an OPEN statement for that file and before the execution of 
a CLOSE statement for that file. The particular open mode is specified in the OPEN statement as ei
ther INPUT, OUTPUT, I-0, or EXTEND. 

1168622 D-13 



Operand 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

Whereas the general definition of operand is 'that component which is operated upon, ' for the pur
poses of this manual, any lower-case word or words that appear in a statement or entry format may 
be considered to be an operand and, as such, imply reference to the data indicated by the operand. 

Operational Sign 
An algebraic sign, associated with a numeric data item or a numeric literal, to indicate whether its 
value is positive or negative. 

NE 3 Optional Word 
A reserved word that is included in a specific format only to improve the readability of tht:~ language 
and whose presence is optional to the user when the format in which the word appears is used in a 
source program. 

Output File 
A file that is opened in either the output mode or extend mode. 

Output Mode 
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase spec
ified for that file and before the execution of a CLOSE statement for that file. 

Output Procedure 
A set of statements to which control is given during execution of a SORT statement after the sort func
tion is completed, or during execution of a MERGE statement after the merge function has selected 
the next record in merged order. 

Page 
A vertical division of a report representing a physical separation of report data, the separation being 
based on internal reporting requirements and/ or external characteristics of the reporting medium. 

Page Body 
That part of the logical page in which lines can be written and/or spaced. 

Page Footing 
A report group that is presented at the end of a report page. 

Page Heading 
A report group that is presented at the beginning of a report page. 

Paragraph 
In the PROCEDURE DIVISION, a paragraph-name followed by a period and a space and by zero, 
one, or more sentences. In the IDENTIFICATION and ENVIRONMENT DIVISIONS, a paragraph 
header followed by zero, one, or more entries. 

D-14 



Paragraph Header 

B 1000 Systems COBOL74 Language Manual 
.Glossary 

A reserved word, followed by a period and a space that indicates the beginning of a paragraphjn the 
IDENTIFICATION and ENVIRONMENT DIVISIONS. The permissible paragraph headers are: 

In the IDENTIFICATION DIVISION: 
PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN 
DATE-COMPILED. 
SECURITY. 

In the ENVIRONMENT DIVISION: 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
l[-0-CONTROL. 

Paragraph-Name 
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION. 

Phrase 
A phrase is an ordered set of one or more consecutive COBOL 74 character-strings that form a portion 
of a COBOL 74 procedural statement or of a COBOL 74 clause. 

Physical Record 
Refer to Block. 

Port File 
A type of file used by the Burroughs Network Architecture (BNA) system to provide paths between 
two or more processes. 

Prime Record Key 
A key whose contents uniquely identify a record within an Indexed File. 

Procedure 
A paragraph or group of logically successive paragraphs, or a section or group of logically successive 
sections, within the PROCEDURE DIVISION. 

Procedure-Name 
A user-defined word which is used to name a paragraph or section in the PROCEDURE DIVISION. 
It consists of a paragraph-name (which may be qualified) or a section-name. 

Program-Name 
A user-defined word that identifies a COBOL 74 source program. 

Pseudo-Text 
A sequence of character-strings and/ or separators bounded by, but not including, pseudo-text delimit
ers. 

1168622 D-15 



Pseudo-Text Delimiter 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

Two contiguous equal sign ( =) characters used to delimit pseudo-text. 

Punctuation Character 
A character that belongs. to the following set: 

Qualified Data-Name 

Character 

II 

( 
) 

@ 

Meaning 

Comma 
Semicolon 
Period 
Quotation mark 
Left parenthesis 
Right parenthesis 
Space 
Equal sign 
Commercial at 

An identifier that is composed of a data-name followed by one or more sets of either of the connectives 
OF and IN followed by a data-name qualifier. 

Qualifier 

1. A data-name which is used in a reference together with another data-name at a lower level in 
the same hierarchy. 

2. A section-name which is used in a reference together with a paragraph-name specified in that 
section. 

3. A library-name which is used in a reference together with a text-name associated with that 
library. 

Queue 
A logical collection of messages awaiting transmission or processing. 

Queue Name 
A symbolic name that indicates to the MCS the logical path by which a message or a portion of a 
completed message may be accessible in a queue. 

Random Access 
An access mode in which the program-specified value of a key data item identifies the logical record 
that is obtained from, deleted from or placed into a Relative or Indexed file. 

Record 
Refer to Logical Record. 

Record Area 
A storage area allocated for the purpose of processing the record described in a record description entry 
in the FILE SECTION. 

D-16 



Record Description 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

Ref er to Record Description Entry. 

Record Description Entry 
The totali set of data description entries associated with a particular record. 

Record Key 
A key, either the prime record key or an alternate record key, whose contents identify a record within 
an Indexed File. 

Record-Name 
A user-defined word that names a record described in a record description entry in the DATA DIVI
SION. 

Reference Format 
A format that provides a standard method for describing COBOL 74 source programs. 

Relation 
Ref er to Relational Operator. 

Relation Character 
A character that belongs to the following set: 

Relation Condition 

Character Meaning 

> Greater than 
< Less than 

Equal to 

The proposition, for which a truth value can be determined, that the value of an arithmetic expression 
or data item has a specific relationship to the value of another arithmetic expression or data item.· Refer 
to Relational Operator. 

Relational Opera~:or 
A reserved word, a relation character, a group of consecutive reserved words, or a group of consecutive 
reserved words and relation characters used in the construction of a relation condition. The permissible 
operators and their meanings are: 

Relative ,~ile 

Relational Operator 

IS [NOT] OREA TER THAN 
IS [NOT] > 
IS [NOT] LESS THAN 
IS [NOT] < 
IS [NOT] EQUAL TO 
IS [NOT] = 

A file with relative organization. 

1168622 

Meaning 

Greater than or not greater than 

Less than ·or not less than 

Equal to or not equal to 

D-17 



Relative Key 

B 1000 Systems COBOL 74 Language Manual 
Glossary 

A key whose contents identify a logical record in a Relative File. 

Relative Organization 
The permanent logical file structure in which each record is uniquely identified by an integer value 
greater than zero, which specifies the record's logical ordinal position in the file. 

Reserved Word 
A COBOL 74 word specified in the list of words which may be used in COBOL 74 source~ programs, 
but which must not appear in the programs as user-defined words. 

Resultant-Identifier 
A user-defined data item that is to contain the result of an arithmetic expression. 

Run Unit 
A set of one or more object programs which function, at object time, as a unit to provide problem 
solutions. 

Section 
A set of zero, one, or more paragraphs or entries, called a section body, the first of which is preceded 
by a section header. Each section consists of the section header and the related section body. 

Section Header 
A combination of words followed by a period and a space that indicates the beginning of a section 
in the ENVIRONMENT, DATA, and PROCEDURE DIVISIONS. 
In the ENVIRONMENT and DAT A DIVISIONS, a section header is composed of reserved words fol
lowed by a period and a space. The permissible section headers are: 

In the ENVIRONMENT DIVISION: 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

In the DATA DIVISION: 
FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
COMMUNICATION SECTION. 

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the 
reserved word SECTION, followed by a segment-number (optional), followed by a period and a space. 

Section-Name 
A user-defined word which names a section in the PROCEDURE DIVISION. 

Segment-Number 
A user-defined word which classifies sections in the PROCEDURE DIVISION for purposes of segmen
tation. Segment-numbers may contain only the characters "0", "1 ", ... , "9". A segment-number may 
be expressed as a 1-, 2-, 3-, or 4-digit number. 

Sentence 
A sequence of one or more statements, the last of which is terminated by a period followed by a space. 

D-18 



B 1000 Systems COBOL74 Language Manual . 
Glossary 

Separator 
A punctuation character used to delimit character-strings. 

Sequential Access 
An access mode in which logical records are obtained from or placed into a file in a consecutive prede
cessor-to-successor logical record sequence determined by the order of the records in the file. 

Sequential File 
A file with sequential organization. 

Special Character 
A character that belongs to the following set: 

Special-Character Word 

Character 

+ 

* 
I 

$ 

" 
( 
) 
> 
< 
@ 

Meaning 

Plus sign 
Minus sign 
Asterisk 
Stroke (virgule, slash) 
Equal sign 
Currency sign 
Comma (decimal point) 
Semicolon 
Period (decimal point) 
Quotation mark 
Left parenthesis 
Right parenthesis 
Greater than symbol 
Less than symbol 
Commercial at 

A reserved word which is an arithmetic operator or a relation character. 

SPECIAL-NAMES 
The name of an ENVIRONMENT DIVISION paragraph in which names are related to user specified 
mnemonic-names. 

Special Registers 
Compiler-generated storage areas whose primary use is to store information produced in conjunction 
with the user of specific COBOL 74 features. 

Standard Data Ji'ormat 
Describes the characteristics of data in a COBOL 74 DATA DIVISION under which the characteristics 
or properties of the data are expressed by the appearance of the data on a printed page of infinite 
length and breadth. Standard Data Format is not a form oriented to the manner in which data is stored 
internally in the computer, or on a particular external medium. 

Statement 
A syntactically valid combination of words and symbols written in the PROCEDURE DIVISION be
ginning with a verb. 

1168622 D-19 



Sub-Queue 

B 1000 Systems COBOL 7 4 Language Manual 
Glossary 

A logical hierarchical division of a queue. 

Subfile 
The unique connection to an individual process in a Burroughs Network Architecture (BNA) port file. 

Subject of Entry 
An operand or reserved word that appears immediately following the level indicator or the level-number 
in a DATA DIVISION entry. 

Subprogram 
Refer to Called Program. 

Subscript 
An integer whose value identifies a particular element in a table. 

Subscripted Data-Name 
An identifier that is composed of a data-name followed by one or more subscripts enclosed in parenthe
ses. 

Switch-Status Condition 
The proposition, for which a truth value can be determined, that a switch, capable of being set to 
an 'on' or 'off' status, is set to a specific status. 

System Name 
A COBOL 74 word which is used to communicate with the operating environment. 

Table 
A set of logically consecutive items of data that are defined in the DATA DIVISION by means of 
the OCCURS clause. 

Table Element 
A data item that belongs to the set of repeated items comprising a table. 

Terminal 
The originator of a transmission to a queue, or the receiver of a transmission from a queue. 

Text-Name 
A user-defined word which identifies library text. 

Text-Word 
Any character-string or separator, except space, in a COBOL 74 library or in pseudo-text. 

Truth Value 
The representation of the result of the evaluation of a condition in terms of one of two values: 

TRUE 
FALSE 

Unary Operator 
A plus ( +) or a minus (-) sign, which precedes a variable or a left parenthesis in an arithmetic expres
sion and which has the effect of multiplying the expression of + 1 or -1, respectively. 

D-20 



Unit 
A module of mass storage. 

User-Defined Word 

B 1000 Systems COBOL 7 4 Language Manual 
Glossary 

A COBOL 74 word that must be supplied by the user to satisfy the format of a clause or statement. 

Variable 
A data item whose value may be changed by execution of the object program. A variable used in an 
arithmetic expression must be a numeric elementary item. 

Verb 
A word that expresses an action to be taken by a COBOL 74 compiler .or object program. 

Word 
A character-string of not more than 30 characters which forms a user-defined word, a system-name, 
or a reserved word. 

WORKING-STORAGE SECTION 
The section of the DATA DIVISION that describes working-storage data items, composed either of 
noncontiguous items or of working-storage records or of both. 

77-Level-Description-Entry 
A data description entry that describes a noncontiguous data item with the level-number 77. 

1168622 D-21 



GENERAL 

B 1000 Systems COBOL 7 4 Language Manual 

APPENDIX E 
COBOL74 S-1.,ANGUAGE 

B 1000 COBOL74 S-language provides the virtual machine interface between the code generated by the 
COBOL 74 compiler and the COBOL 74 interpreter. This appendix includes a description of the format 
of COBOL74 S-instructions and an explanation of each operator as a member of one of the following 
classes:: 

ARITHMETIC 
DAT A MOVEMENT 
BRANCHING 
CONDITIONAL BRANCHING 
MISCELLANEOUS 
CHARACTER STRINGS 
INTERPROGRAM COMMUNICATION 

S-LANGUAGE PROGRAMS 

All COBOL 74 S-language programs have a base register and a limit register associated with them. The 
area bet)Veen the base and the limit is to be used as data space only. All program code, organized 
in segment form, is stored at any available location in memory, according to the memory management 
algorithms used by the B operating system. 

The data space includes a nonoverlayable area which contains various parameters such as edit masks, 
literals, and record areas. 

Various parameters, necessary for the running of the S-language object code are stored beyond the 
Limit Register in the Run Structure Nucleus (RSN). 

1168622 E-1 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

A typical COBOL 74 program layout in memory is shown in figure E-1. 

BASE REGISTER r EDIT TABLE (8 CHAS) 

SPECIAL REGISTERS 

COLLATE TABLE ADDRESS 
(24 BITS) 

DATANAME MONITOR 

I SYMBOLS 
I 

STATIC MEMO RY 
EDIT MASKS DAT A SEGMENT ZERO 

NONOVER LAY ABLE 
USER'S DATA AREA 

TRASH (INTERMEDIATE RESULTS) 

LITERAL POOL 

ALTER TABLE (IF ANY) 

- STACK BASE 
STACK 1 -- STACK LIMIT 

DYNAMIC MEM NOT ASSIGNED 

LIMIT REGISTER.__ 

ORY { 

-- EX TENDABLE LIMIT 
REGISTER Rr::INSTATE INFO 

AND RUN STRUCTURE 

DATA DICTIONARY 

S-CODE 

G12342 

Figure E-1. COBOL 74 Program Layout 

Special registers are listed in Table E-1. 

E-2 

Table E-1. Special Registers 

ADDRESS 

0 

7 
49 

NAME 

SWl 

SW8 
DM-STATUS 

PICTURE 

9 CMP 

9 CMP 
9 (2) 

( BOJ ATTRIBUTE) 



CONTAINER SIZE 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 S-Language 

Container size is a field size in bits necessary to contain the maximum value required for that field. 
For ex.ample, a container size of five bits allows a field size to house a 32-bit address (0-31). 

All container sizes in the COBOL 74 S-Machine are fixed_ length and shown in table E-2. 

Table E-2. Container Sizes 

Abbreviation Container Length· 

OP Opcode 9 bits 

LEN Data length op 14 bits 

DISP Data displacement 20 bits 

SEG Data segment number 10 bits 

BAD DR Branch address 21 bits 

DAD DR Data address 20 bits 

S-INSTRUCTION FORMAT 
Each COBOL 74 S-instruction consists of an S-operator followed by arguments consisting of a variable 
number of bits. The format and interpretation of these arguments are specified by the S-operator and 
are described in detail by the specification of the individual operators. An example of one such instruc
tion format is illustrated below. 

S-Operators 

OPI 
(9) 

OPND 
(Variable) 

COP 
(Variable) 

[ [COP Information or Literal 

COP Information or Literal 

All S-operators are encoded in a 9-bit S-operator field denoted f:}S OPl. 

COP and OPND 

A COP is an inline descriptor pointing to a data item or a literal. An operand (OPND) may be an 
inline COP or an inline literal. All data items a.re placed in data segment zero. 

There are three types of descriptors: a short COP, a long COP with segment numbers, and a long 
COP without segment numbers. 

1168622 E-3 



Short COP 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

0 1 7 24 

I 0 I DATA LENGTH I DISP I 
6 17 

A short COP cannot be generated for subscripts, indexes, IPC data, or literals. Because a short COP 
does not contain information on data types, it can be used only with the following S-operators: 

MVA CPN 

MVN CPZ 

MVZ INC 

CPA INCl 

Long COP with No Segment Number 

Format: 

0 2 6 10 24 44 

10 4/8 MSIL DATA LENGTH DISP rest unchanged 

LITERAL 

This COP can be used for any data except IPC data. A description of the fields is found in the fol
lowing section on In-line Descriptors. 

Long COP with Segment Number 

2 6 10 24 34 54 

I 4/8 I MSIL I DA TA LENGTH I SEG I DISP I rest unchanged 

This COP can be used for IPC data only. It cannot be used for literals. Descriptions of the fields 
are provided in the following section on In-line Descriptors. 

E-4 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COBOL74. IN-LINE DESCRIPTORS 

An in-line descriptor must provide for the following capabilities: 

1. Multidimensional tables with unlimited subscripting/indexing (the real limit is 48). 

2. Run-time bounds-checking on each dimension of a table. 

3. Variable length data items with an OCCURS DEPENDING clause. 

4. Shared data addressing. 

5. The specification of CODE-SET. 

A variable length data item may be declared in COBOL74 by using an OCCURS DEPENDING clause. 

Example: 

01 A. 
02 B PIC X. 
02 C QC 5 TO 10 TIMES DEPENDING ON V. 

03 D PIC X OC 20 TIMES. 

In this data structure, A is a variable length item whose length is determined as follows: 

LENGTH [A] == LENGTH [BJ + ( V * LENGTH [C] ) 

where 5 LEQ V LEQ 10 

When A is referenced, only that part of it defined by the calculated length is used in any operation. 

When C or D is referenced, the length is not variable, but V must be bound-checked to verify that 
the requested table element exists. 

The Restrictions: 

1. A data description entry that contains an OCCURS DEPENDING clause may only be followed 
by entries that are subordinate to it. · 

2. The OCCURS DEPENDING clause cannot be specified in a data description entry that de
scribes an item whose size is variable. 

These restrictions ensure that the description of the first subscript/index associated with a variable is 
the only one that contains an OCCURS DEPENDING clause. 

1168622 E-5 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

Implementation Strategy 

COBOL 74 S-language employs a continue flag to tell the interpreter that more COP information is 
specified. 

The same bounds-checking information is needed when referencing either a variable length item or the 
first dimension of a subscripted variable contained in a variable length item. Dimension information 
required for the subsequent dimensions is different from that which is required for the first dimension. 

When a variable length item is referenced, the COP of the OCCURS DEPENDING operand is pro
vided following the COP of data-name. The operand is bound-checked to verify that it is within the 
specified integer range. 

MULTIPLE-ENTRY-FLAG 

The MULTIPLE-ENTRY-FLAG is TRUE when indicating that multiple entry attributes are associated 
with this entry and FALSE when indicating otherwise. When TRUE~ the next entry(s) contain(s) the 
necessary OCCURS DEPENDING and/or subscripting or indexing attribute information. 

SHARED-DATA-FLAG 

The SHARED-DATA-FLAG is TRUE when indicating that this entry was a data item passed by a 
CALL statement of another program and FALSE when indicating otherwise. When TRUE, IPCD-IN
DEX specifies the location of the !PC.DICTIONARY descriptor for this entry. 

LITERAL-FLAG 

If this flag is set, then a literal follows after the DATA LENGTH field. 

Data Length 

The data length field is 14 bits wide and contains the length of the data in digits. If this field is the 
length of a variable length item, the data length field contains the length of that part of the table which 
is not variable. The actual length is calculated at run time by the interpreter (refer to Depending Attri
butes in this section). 

Segment Number 

Segment number is expressed in binary and specifies the data segment number of the operand. It is 
10 bits in length. 

Displacement 

Displacement is expressed in binary and specifies the digit displacement of the data from the base of 
the data segment. All data is stored beginning at an address which modulo 4-bit must equal zero. The 
container size is 20 bits. 

E-6 



DEPENDING-FLAG 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

The DEPENDING-FLAG is TRUE when indicating that an OCCURS DEPENDING operand is associ
ated with this variable and FALSE when indicating otherwise. When TRUE, the bounds-checking and 
factor information follow in the entry. This is followed by any subscripting or indexing information 
that may be necessary. 

Depending Attributes 

When the DEPENDING-FLAG is TRUE, the attributes of the DEPENDING operand are encoded in 
LOWER-·BOUND-0, UPPER-BOUND-0, and FACTOR-0, which are binary fields. LOWER-BOUND-
0 and UPPER-BOUND-0 contain the integer range of the DEPENDING operand while FACTOR-0 
contains the digit displacement between elements of the table. 

The value of the DEPENDING operand is verified to be greater than or equal to LOWER-BOUND-
0 and less than or equal to UPPER-BOUND-0. If the value is outside the range, then an error commu
nicate is issued. 

If CONTINUE-FLAG-0 is FALSE, then the value of the DEPENDING operand is multiptied by FAC
TOR-0 and is added to the data length specified in the primary COP entry, and decoding of the multi
ple entry attributes terminates. In this case, the data length specified in the COP entry is the fixed 
part of the table. 

If CONTINUE-FLAG-0 is TRUE, then subscripting or indexing information follows. One is subtracted 
from the value of the DEPENDING operand and the result is multiplied by FACTOR-0 to form a 
new upper-bound. In this case, FACTOR-1 and UPPER-BOUND-1 are omitted from the entry because 
the equivalence of those factors is represented by FACTOR-0 and NEW.UPPER.BOUND. 

SUBSCRIPT-FLAG 

If the SUBSCRIPT-FLAG is FALSE, it specifies that indexing information follows and that the factor 
associated with each dimension of the table is omitted. If it is TRUE, it specifies that subscripting in
formation follows for each dimension of the table. 

Factor and upper·-bound fields are binary. Factor is the digit displacement between elements of the ta
ble. Upper-bound is the maximum digit displacement allowed for this dimension of the table.·· UPPER
BOUND-0 differs from the other upper-bound fields in that it represents the maximum value of the 
DEPENDING operand. 

Subscripting 

Subscripting requires a factor and an upper-bound for each dimension of the variable. The continue
flag is TRUE until the last dimension is reached. When the continue-flag becomes FALSE, decoding 
is terminated. 

Each subscript value is obtained and 1 is subtracted from it. If the resuft is less than zero, an error 
communicate is issued; otherwise, the result is multiplied by the associated factor and the product is 
compared to the corresponding upper-bound. If the product exceeds the upper-bound, an error commu
nicate is issued; otherwise,. the product is added to the address displacement. 

1168622 E-7 



Indexing 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

Because an index value is premultiplied by the associated factor, the factor required for subscripting 
is omitted from the attributes. An upper-bound is required for each dimension of the variable. The 
continue-flag is TRUE until the last dimension is reached. When the continue-flag becomes FALSE, 
decoding is terminated. 

Each index value is obtained, and if it is less than zero or greater than the upper-bound, an error com
municate is issued; otherwise, the value is added to the address displacement. The format of the index 
consists of a 4-bit sign followed by seven 4-bit decimal digits. 

In-line COP Entry Format 
The format of an in-line COP entry is as follows: 

E-8 

0 4 

4/8 

L 

MULTIPLE 
ENTRY 
FLAG 

= -4 4 BIT 
8 = 8-BIT 

s 6 7 8 22 

SHARED LITERAL DATA LENGTH 
SIGNED DATA FLAG IN 

FLAG DIGITS 

L = 0 No Sign 
I = Sign 

2_2 ____ -..32 _________ s2 ... •----Bit Position 

SEGMENT # 
OR 

IPCD INDEX 

DISPLACEMENT IN 
DIGITS 

DEPENDING- COP-0 LOWER-
FLAG BOUND-0 
( I) (20 BITS) 

UPPER
BOUND-0 
(20 BITS) 

FACTOR-0 
(14 BITS) 

CONTINUE
FLAG-0 
(I) 

l LoccuRs DEPENDING Value 

y 

Omitted if DEPENDING-FLAG=O 

Omitted if DEPENDING-FLAG= I 

SUBSCRIPT
FLAG 

COP-I FACTOR-I 
(14 BITS) 

UPPER
BOUND-1 
(20 BITS) (I) 

0 =INDEXING 
I = SUBSCRIPTING 

Omitted if Indexing 

Subscript or Index Value 

COP-N F ACTOR-N UPPER- CONTINUE-
( 14 BITS) BOUND-N FLAG-N 

(20 BITS) (I ) 

[ L Omitted if Indexing 

Subscript or Index Value 

CONTINUE
FLAG-1 
(I) 



· B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

INSTRUCTION SET 

The following list contains the name, mnemonic, and arguments for each instruction in the COBOL 74 
S-Language which are discussed in more detail within this appendix. 

Arithmetic 

Name 

INCREMENT 
ADD 
DECREMENT 
SUBTRACT 
MULTIPLY 
DIVIDE 
DIVIDE SPECIAL 
INCREMENT BY ONE 
DECREMENT BY ONE 

Data Movement 

Name 

MOVE ALPHANUMERIC 
MOVE SPACES 
MOVE NUMERIC 
MOVE ZEROS 
CONCATENATE 
EDIT 
EDIT WITH EXPUCIT MASK 

Branching 

Name 

BRANCH ON OVERFLOW 
SET OVERFLOW 
BRANCH UNCONDITIONALLY 
PERFORM ENTER 
PERFORM EXIT 
ENTER 
EXIT 
GO TO DEPENDING 

ALTERED GO TO PARAGRAPH 
ALTER 

1168622 

Mnemonic 

INC 
ADD 
DEC 
SUB 

MULT 
DIV 

DIVS 
IN Cl 
DECl 

Mnemonic 

MVA 
MVS 
MVN 
MVZ 
CAT 
EDIT 
EDTE 

Arguments 

OPNDl, COPl 
OPNDl, COPl, COP2 
OPNDl, COPI 
OPNDl, OPND2, COPI 
OPNDl, COPl, COP2 
OPNDl, COPl, COP2 
OPNDl, COPl, COP2 
COPl 
COPl 

Arguments 

COPl, OPNDI 
COPl 
COPl, OPNDl 
COPl 
N, COPl, OPNDO, ... , OPNDN 
OPNDl, COPl, DADDR 
OPNDI, COPl, MASK 

Mnemonic Arguments 

V, BADDR BOFL 
SOFL 
BUN 
PERF 
PXIT 
NTR 
XIT 

GOTD 
DBADDRL 

GPAR 
ALTR 

v 
BADDR 
K, BADDR 
K 
BADDR 

COPI, L, DBADDRO, ... , 

DADDR 
DADDR, ACON 

E-9 



B I 000 Systems COBOL 7 4 Language Manual 
COBOL 74 S-Language 

Conditional Branching 

Name 

COMPARE ALPHANUMERIC 

COMPARE NUMERIC 

COMPARE FOR ZEROS 
COMP ARE FOR SP ACES 
COMP ARE FOR CLASS 
COMP ARE REPEAT 

COMPARE COLLATE 

Miscellaneous 

Name 

COMMUNICATE 
LOAD COMMUNICATE 
CONVERT 
MAKE PRESENT 
FILE STATUS 

Character String Handling 

Mnemonic 

CMPA 

CMPN 

CMPZ 
CMPS 
CMPC 
CMPR 

CPC 

Mnemonic 

COMM 
REPLY LDCR 

CONV 
MAKP 
FIST 

Arguments 

OPNDl, OPND2, R, 
BAD DR 
OPNDl, OPND2, R, 
BAD DR 
COPl, R, BADDR 
COPI, R, BADDR 
COPl, C, BADDR 
OPNDl,. COPl, R, 
BAD DR 
OPNDl, COP2, R, 
BAD DR 

Arguments 

COPl 
DADDR 
COPl, DADDR, N 
COPl, DADDR 
RW, COPl 

Name 

DESCRIPTOR SETUP 
INSPECT SETUP 

Mnemonic Arguments 

INSPECT 
STRING 

DELIMITER SETUP 
UN STRING 

lnterprogram Communication 

Name 

IPC DICTIONARY 

E-10 

DSET DADDR, COPI 
ISET Vl, V2, FLAC, 

DADDRl, COPl, COP2, 
DADDR2, OPNDl 

INSP Vl, DADDRl, DADDR2 
STRI Z, OPNDl, DADDRl, 

COPl, OPND2, BADDR 
DLIM Vl, V2, DADDRl, COPl 
UNST F, M, Z, C, J, 1BADDR, 

DADDRl, COPl, DADDR2 ..... 

Mnemonic Arguments 

IPCD V, COPl, BADDRl 



B 1000 Systems COBOL 74 Language Manual 
. COBOL74 S-Language 

Optimized Operation Codes 

Eight operators have been optimized for improved performance: CPA, CPN, CPZ, INC, INCl, MNA, 
MNV, and MVZ. The optimized OP codes include the following data as a part of the OP code: 

1. The type of data item (8-bit or 4-bit). 

2. Signed or unsigned data. 

3. Information about the logical size of operands if the OP code has two operands. 

The following notation is used to describe the OP codes. 

CPA 

Symbol Meaning 

8 8-bit or 4-bit data item. 

S Signed or unsigned data item. 

TRUE if the LOGICALSIZES of two operands are equal. 

> TRUE if the LOGICALSIZE (OPNDl) is greater the 
LOGICALSIZE (OPND2). 

OP code: @(1)011100@ CAT SS 

The~ LOGICALSIZE of the second operand is greater than the 

LOGICALSIZE of the fir,st operand. 

CPN 

OP code: @(1)0110@ CAT 88SS = 

The LOGICALSIZE of the second operand is always greater than the LOGICALSIZE of the first 
operand. 

CPZ 

OP code: @(1)0111010@ CAT 8S 

INC 

OP code: @(1)001@ CAT 88SS CA @(1)11@ 

INC1 

OP code: @(1) 0111100@ CAT 8S 

1168622 E-11 



B 1000 Systems COBOL74 Language Manual 
COBOL 7 4 S-Language 

MVA 

OP code: @(1)001@ CAT 88SS = > 

The first operand is the destination, and the second operand is the source. h3 MVN 

OP code: @(1)010@ CAT 88SS = > 

The first operand is the destination, and the second operand is the source. 

MVZ 

OP code: @(1)0111011@ CAT 8S 

ARITHMETIC OPERANDS AND INSTRUCTIONS 

In general, operands can have any of the following formats: 

1. Unsigned 4-BIT. 

2. Unsigned 8-BIT. 

3. Signed 4-BIT (sign is MSD). 

4. Signed 8-BIT (sign over MSD). 

Any restrictions concerning the types of operands permitted in an operation are specified under the 
description of the particular operation. 

All fields are addressed by pointing to the most significant bit of the most significant unit which, in 
the case of a signed field, is the sign. 

All fields are considered to be comprised of decimal integers. 

The absolute value is stored if the receiving field is unsigned. 

Unsigned fields are considered positive. 

When a signed format is specified for the receiving field of any arithmetic operation, the sign position 
is set to 1100 for a positive result and to 1101 for a negative result. 

4-BIT operands are interpreted in units of 4 bits. When a signed operand is specified, the sign is inter
preted as a separate and leading (leftmost) 4-BIT unit which is not included in the statement of length. 

8-BIT operands are interpreted in units of 8 bits. When a signed operand is specified, the sign is inter
preted as being contained in the leftmost 4 bits of the leftmost 8-BIT unit. 

The length of the operand field specifies the number of 4-BIT units. 

When 8-BIT units are specified for the receiving field of an arithmetic operation, the leftmost 4 bits 
of each 8-BIT unit, except the unit carrying a sign, is set to 1111. 

E-12 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

The value of an 8-BIT unit is carried in the rightmost 4 bits of the unit. Its value is as defined below 
for the 4·-BIT unit. The leftmost 4 bits, except for a sign, are ignored. The value and sign interpretation 
of a 4-BIT unit are as follows: 

4-BIT 
Unit Value Sign 

0000 0 + 
0001 1 + 
0010 2 + 
0011 3 + 
0100 4 + 
0101 5 + 
0110 6 + 
0111 7 + 
1000 8 + 
1001 9 + 
1010 Undefined + 
1011 Undefined + 
1100 Undefined + 
1101 Undefined 
1110 Undefined + 
1111 Undefined + 

In addition and subtraction operations, results generated when the size of the result field is not suffi
cient to contain the result are not specified. When the result field is longer than the length of the result, 
leading zero units are stored. 

In three-address add, three-address subtract, and multiply operations, total or partial overlap o.f the 
first two operands is permitted. Results generated when the result field totally or partially overlaps ei
ther of the operand fields, are not specified. 

In two-address add and subtract, total overlap is permitted. Results generated when the result field par
tially overlaps the first operand field are not specified. Total overlap implies that the two fields are 
identical. 

No overlap of operands or result fieH:ls is permitted in divide operations. Results generated under any 
condition of overlap are not specified. 

1168622 E-13 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

ADD THREE ADDRESS 

OP: 08 

Format: 

ADD OPNDl, COPl, COP2 

Function: 

Algebraically add an addend denoted by OPNDl to an augend denoted by COPI and store the sum 
in the field denoted by COP2. OPNDl, COPl, and COP2 must be 4-bit items. 

E-14 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

SUBTRACT THREE ADDRESS 

OP: 10 

Format:. 

SUB OPNDl, OPND2, COPl 

Function: 

COBOL74 S-LANGUAGE 

Algebraically subtract a subtrahend denoted by OPND 1 from a minuend denoted by OPND2 and store 
the difference in the field denoted by COPl. OPNDl, OPND2, and COPl must be 4-bit items. 

1168622 E-15 



COBOL74 S-LANGUAGE 

ADD TWO ADDRESS 

Format: 

INC OPNDl, COPl 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

Algebraically add an addend denoted by OPNDl to an augend denoted by COPl and store the sum 
in the field denoted by COPl. 

INC is an optimized S-OP. OPNDl and COPl must have the same data unit type. OPNDl and COPl 
both must be either 4-bit data items or 8-bit data items. The format of the OP code is 0108855. For 
example, if both OPNDl and COPl are unsigned 8-bit items, then the OP code is 010110011 or 179. 

E-16 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

SUBTRACT TWO ADDRESS I 

OP: 09 

DEC OPNDl, COPl 

Function: 

COBOL74 S-LANGUAGE 

Algebraically subtract a subtrahend denoted by OPND 1 from a minuend denoted by COP 1 and store 
the difference in the field denoted by COPl. OPNDl and COPl must be 4-bit items. 

1168622 E-17 



COBOL74 S-LANGUAGE 

MULTIPLY 

OP: 11 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

MULT OPNDl, COPl, COP2 

Function: 

Algebraically multiply a multiplicand denoted by COP 1 by a multiplier denoted by OPND 1 and store 
the product in the field denoted by COP2. 

The result field length is the sum of the lengths of the two operands and must be denoted by COP2. 
OPNDl and COPl must be 4-bit items. 

The result field is always either a signed 4-BIT format or an unsigned 4-BIT format. 

E-18 



B I 000 Systems COBOL 74 Language Mainial 
COBOL 74 S-Language 

· COBOL74 $-LANGUAGE 

DIVIDE 

OP: 12 

Format: 

DIV OPNDl, COPC COP2 

Function: 

Algebraically divide a dividend denoted by COP 1 by a divisor denoted by OPND 1 and store the quo
tient in the field denoted by COP2. Store the remainder in the field denoted by COPl. · 

The result field length is the difference of the lengths of the two operands and must be denpted by 
COP2. . . 

Results are not specified if the length of the dividend is not greater than the length of the divisor. 

If the absolute value of the divisor is not greater than the absolute value of an equivalent number of 
leading digits of the dividend, the result is undefined. 

Division by zero results in a fatal error communicate to the MCP. 

OPNDl,, COPl, and COP2 must be 4-bit items. 

The sign of the remainder is that of the original dividend. 

The dividend field is always either signed 4-BIT format or unsigned 4-BIT format. 

1168622 E-19 



COBOL74 S-LANGUAGE 

DIVIDE SPECIAL 

OP: 16 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 S-Language 

DIVS OPNDl, COPXl, COPX2 

Function: 

This operation is performed in exactly the same manner as the standard divide (DIV) operator, except 
that when a divisor equal to zero is encountered, an overflow toggle is set and processing is allow~d 
to continue. The overflow toggle can be manipulated by the SOFL and BOFL S-operators. 

E-20 



INCREMENT BY ONE 

OP: 240-243 

Format: 

INCl COPl 

Function: 

B 1000 Systems COBOL 74 Language Manual 
. COBOL 7 4 S-Language 

COBOL74 S-LANGUAGE 

Algebraically add the positive integer 1 to an augend denoted by COP 1 and store the sum in the field 
specified by' COPl. · 

INCL is an optimized S.;op and the OP code includes information regarding the data type of COPl. 
COPl may be a short COP: the format of the OP code is 01111008S. 

OP Code Type of Data SS 

240 4-bit unsigned 00 

241 4-bit signed 01 

242 8-bit unsigned 10 

243 8-bit signed 11 

1168622 E-21 



COBOL74 S-LANGUAGE 

DECREMENT BY ONE 

OP: 14 

Format: 

DECl COPl 

Function: 

B 1000 Systems COBOL 7 4 Language Manual 
COBOL 7 4 S-Language 

Algebraically subtract the positive integer 1 from a minuend denoted by COP 1 a,nd store the difference 
in the field specified by COPl. COPl must be a 4-bit item. 

/ 

E-22 



B I 000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COBOL74 S-LANGUAGE 

DATA MOVEMENT OPERANDS AND INSTRUCTIONS 

In general, fields involved in data movement: operations can have any of the following formats: 

1. Unsigned 4-BIT. 

2. Unsigned 8-BIT. 

3. Signed 4-BIT (sign is MSD). 

4. Signed 8-BIT (sign over MSD). 

Any restrictions as to the type of fields permitted in an operation are specified under the description 
of the particular operation. 

Refer to Arithmetic Operands and Instructions in this appendix for a description of the four types of 
fields. 

Totally or partially overlapped fields are not permitted, unless specified by the description of the indi
vidual instruction. 

1168622 E-23 



COBOL74 $-LANGUAGE 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

MOVE ALPHANUMERIC 

OP: 64-127 it: 

Format: 

MVA COPl, OPNDl 

Function: 

Move 8-BIT or 4-BIT units from the source field denoted by OPNDl to the 8-BIT or 4-BIT destination 
field denoted by COPl. · 

If the destination field is signed, it receives either the sign of the source if the source is signed, or 
1100 if the source is unsigned. 

If the data type of the source field is 4-BIT and the data type of the destination field is 8·-BIT, each 
4-BIT unit is moved to the destination with 1111. 

If the data type of the source field is 8-BIT and the data type of the destination is A-BIT, the rightmost 
4 bits are moved. 

If the data type of the source field is the same as the data type of the destination field, each unit 
is moved unchanged to the destination. 

If the destination length is greater in size than the source length, the destination field is filled in on 
the right with trailing spaces (0100 0000) if the destination type is 8-BIT; otherwise, it is filled in on 
the right with zeros (0000). 

If the destination length is lesser in size than the source l~ngth, the source data is truncated on the 
right. 

Overlapping operand fields are permitted if the data type of both fields is the same. It can be assumed 
that the source is moved 24 bits (six digits or three characters) at a time into the destination field and 
that the move is from left to right. 

MV A is an optimized S-OP, and COP 1 and OPND 1 may be short COP descriptors. The OP code 
contains information regarding the data types. The format of the OP code is 00188SS = >. For exam
ple, if both source and destination fields are signed 8-bit items of equal length, then the OP code is 
001111110, or 126. 

E-24 



MOVE SPACES 

OP: 15 

Format: 

MVS COPl 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

Fill the destination field denoted by COPl with spaces (0100 0000). 

COBOL74 S-LANGUAGE 

The data type of the destination field is ignored and is assumed to be unsigned 8-BIT. 

1168622 E-25 



COBOL74 S-LANGUAGE 

MOVE NUMERIC 

OP: 128-191 

Format: 

MVN COPl, OPNDl 

Function: 

B 1000 Systems COBOL74 Language Manual 
COBOL 7 4 S-Language 

Move 8-BIT or 4-BIT units from the source field denoted by OPNDl to the 8-BIT or 4-BIT destination 
field denoted by COPl. · 

If the destination field is signed, it receives either the sign of the source if the source is signed,. 'Of 

1100 if the source is unsigned. 

If the destination field is unsigned, the sign of the source is ignored. 

If the data type of the destination field is 8-BIT, the leftmost 4 bits of each 8-BIT unit, except for 
the sign position, if signed, are set to 1111 regardless of the data type of the source field. 

If the data type of the destination field is 4-BIT, the leftmost 4 bits of each source 8-BIT unit are 
ignored and only the rightmost 4 bits are moved; if the source field is a 4-BIT field; each 4-BIT unit 
is moved unchanged. 

If the destination length is greater in size than the source length, the destination field is filled in on 
the left with leading zeros of appropriate type (1111 0000). 

If the source length is greater in size than the destination length, the source data is truncated on the 
left. 

A sign. is placed in the leftmost 4 bits of a field, whether 4-BIT or 8-BIT. 

Overlapping operand fields are permitted if the data type of both fields is the same. It can be assumed 
that the source is moved 24 bits (six digits or three characters) at a time into the destination field and 
that the move is from left to right. 

MVN is an optimized S-OP. Consequently, COPl and OPNDl may be short COP descriptors. The 
OP code contains information regarding the data types. The format of the OP code is 01088SS = >. 
For example, if both source and destination fields are unsigned and the source field is 4-BIT data and 
the destination field is 8-BIT data and the destination length is greater in size than the source length, 
then the OP code is 010100001, or 161. 

E-26 



MOVE ZEROS 

OP: 236-239 

Format: 

MVZ COPl 

Function: 

B 1000 Systems COBOL 7 4 Language Manual 
CO BO L 7 4 S-Language 

COBOL74 $-LANGUAGE 

Fill the destination field denoted by COPl with zeros of the appropriate type (1111 0000 or 0000 if 
4-BIT). 

If the destination field is signed, 1100 is placed into the sign position. 

MVZ is an optimized S-OP. COPl can be a short COP. The format of the OP code is 011101188. 

Opcode Data Type SS 
236 4-BIT unsigned 00 

237 4-BIT signed 01 

238 8-BIT unsigned 10 

239 8-BIT signed 11 

1168622 E-27 



COBOL74 S-LANGUAGE 

CONCATENATE 

OP: 32 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

CAT N, COPl, OPNDO, ... , OPNDN 

Function: 

Move each of the N + 1 fields denoted by OPNDO through OPNDN, in the order specified, into an 
output string starting at the field denoted by COPl. 

The number of source fields is specified by the 4-BIT binary value N. The value N ranging from 0000 
to 1111 is used to indicate 1 to 16 source fields. 

Each field is moved according to the rules specified for MOVE ALPHANUMERIC. 

If the destination length is greater in size than the combined source length, the destination field is filled 
on the right with trailing spaces (0100 0000). 

If the destination length is lesser in size than the combined source lengths, the source data is truncated 
on the right. 

E-28 



B 1000 Systems COBOL74 Language Manual 
COBOL74 S-Language 

COBOL74 S-LANGUAGE 

EDIT INSTRUCTIONS AND EDIT MICRO-OPERATORS 

No restrictions are placed on the data type of the source field of an edit operation. 

The data type of the destination field of an edit operation must be unsigned 8-BIT. 

If the destination length is greater in size than the source length, the source data is assumed to have 
leading zero fill on the left. 

If the source length is greater in size than the destination length, the source data is truncated on the 
left. 

The. operation is terminated by an edit micro-operator and not by exhaustion of either the source or 
destination fields. 

1168622 E-29 



COBOL74 S-LANGUAGE 

EDIT 

OP: 17 

Format: 

B 1000 Systems COBOL74 Language Manual 
COBOL 7 4 S-Language 

EDIT OPNDI, COPI, DADDR 

Function: 

Move data from the source field, denoted by OPNDl, to the destination field, denoted by COPl, un- · 
der the control of the micro-;operator string contained at the location denoted by the DADDR. 

The argument DADDR is an unsigned binary value which specifies the digit displacement of the micro
operator string relative to the data segment zero base. The container size of DADDR is DISPB. 

E-30 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

EDIT WITH EXPLICIT MASK 

OP: 21 

Format:: 

• EDTE OPNDl, COPl, MASK 

Function: 

COBOL74 S-LANGUAGE 

Move data from the source field denoted by OPNDl to the destination field denoted by COPl under 
the control of the micro-operator string immediately following COPl. The format of the explicit micro-
operator string is the same as a literal. · 

1168622 E-31 



B I 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 S-LANGUAGE 

EDIT MICRO-OPERA TORS 

The edit micro-operators used in an edit instruction are: 

Operator 

0000 R 
0001 R 
0010 R 
0011 R 
0100 N 
0101 T 
0110 T 
0111 T 
1000 T 
1001 T 
1010 0000 
1010 0001 
1010 0010 
1010 0011 
OTHERS 

Mnemonic 

MVD 
MVC 
MVS 
FIL 
SRD 
INU 
INM 
INS 
INF 
EFM 
ENZ 
EOM 
szs 
CCP 

Operation 

Move digits 
Move characters 
Move suppress 
Fill suppress 
Skip reverse destination 
Insert unconditionally 
Insert on minus 
Insert suppress 

. Insert float 
End float mode 
End nonzero 
End of mask 
Start zero suppress 
Complement check protect 
Undefined 

"R" indicates a 4-BIT binary value used as a repeat count. The value 0000 represents no repeat; do 
it once. 

"N" indicates a 4-BIT binary value used to skip over a number of destination 8-BIT units. The value 
0000 represents no skip. 

"T" indicates a 4-BIT binary value which is: 

1. Used to index into a table of editing constants. 

2. Used to indicate a conditional selection between two table constants. 

3. Used to indicate an editing constant in line with the edit-operator string. 

The next edit-operator follows the constant. 

The following table indicates the normal table editing constants as well as the conditional and uncondi
tional selection of constants associated with the value of T. 

E-32 



T 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

EDITING CONSTANTS 

Table Entry Mnemonic Unconditional or 
EBCDIC Conditional Constant 

"+" PLU 
"-" MIN 
"*" AST 
" " DPT 
" ff CMA ' 
"$" CUR 
"0" ZRO 
" " BLK 

SPM Either entry 0 or 1 
SBM Either entry 7 or 1 
LIT In-line 8-BIT constant 

Associated with the edit instructions are three toggles denoted as S for sign, Z for zero suppress, and 
P for check protect. Initially, the Z and the P toggles are assumed to be set to the zero state and 
are set and reset as specified by the description of the individual micro-operators. The S toggle is set 
to 0 if the source field sign is positive, and to 1 if the source field sign is negative. Unsigned fields 
are considered positive. 

MOVE DIGIT 

Set Z to 1, to end the zero suppress state. Move an appropriate unit (4-BIT digit or 8-BIT character) 
from the source field to the destination field. If a 4-BIT unit is moved, append the four bits (1111) .. 
to the left before storing in the destination. If an 8-BIT unit is moved, the four bits (1111) are substi
tuted for the leftmost four bit~- of the 8-BIT unit. 

MOVE CHARACTER 

Set Z to l, to end the zero suppress state. Move an appropriate unit (4-BIT digit or 8-BIT character) 
from the source field to the destination field. If a 4-BIT unit is moved, append the four bits 1111 
to the left before storing in the destination. If an 8-BIT unit is moved, it is moved unchanged. 

MOVE SUPPRESS 

The micro-operator MOVE DIGIT is performed if the 4-BIT unit, or the rightmost four bits of the 
8-BIT unit of the source field are not equal to 0000. 

If the appropriate four bits of the source field unit are equal to 0000 the suppress toggle Z is inspected. 
If Z equals 1, indicating nonsuppress mode, the micro-operator MOVE DIGIT is performed. If the 
suppress toggle Z equals 0, the check protect toggle P is inspected. If P = 0, indicating noncheck pro
tect mode, move the table entry containing the 8-BIT code for blank to the destination field. If P = 
1, move the table entry containing the 8-BIT code for asterisk to the destination field. 

1168622 

SOURCE NOT 
Z= 1 SOURCE 

Z=O P=O SOURCE 
Z = 0 P = 1 SOURCE 

- 0 Move digit 
0 Move digit 
0 Move table entry 7 (Blank) 

= 0 Move table entry 2 (Asterisk) 

E-33 



FILL SUPPRESS 

B I 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

If P = 0, indicating noncheck protect mode, move the table entry containing the 8-BIT code for blank 
to the destination field. If P = 1, move the table entry containing the 8-BIT code for asterisk to the 
destination field. 

P 0 Move table entry 7 (Blank) 

P 1 Move table entry 2 (Asterisk) 

SKIP REVERSE DESTINATION 

Adjust the address pointer of the destination field to skip backward (lower address) N 8-BIT units. 

INSERT UNCONDITIONALLY 

Move the table entry T as indicated below to the destination field .. 

S=O 
S=l 
S=O 
S=l 

INSERT ON MINUS 

T=0 ... 7 
T=8 
T=8 
T=9 
T=9 
T= 10 

Move table entry T 
Move table entry 0 (Plus) 
Move table entry 1 (Minus) 
Move table entry 7 (Blank) 
Move table entry 1 (Minus) 
Move in-line table entry 

Move the table entry T as indicated below to the destination field. 

S=l 
* P=O 
* P= 1 
S=l 
S=l 
S=l 

T=0 ... 7 

T=8 
T=9 
T=lO 

Move table entry T 
Move table entry 7 (Blank) 
Move table entry 2 (Asterisk) 
Move table entry 1 (Minus) 
Move table entry 1 (Minus) 
Move in-line table entry 

*: S = 0 or only source digits/characters equal to zero (minus zero) have been moved. 

INSERT SUPPRESS 

Move the table entry T as indicated below to the destination . field. 

E-34 

Z=l 
Z=O P=O 
Z=O P= 1 
Z=l 
Z=l 
Z=l 
Z=l 
Z=l 

S=O 
S=l 
S=O 
S=l 

T=0 ... 7 

T=8 
T=8 
T=9 
T=9 
T= 10 

Move table entry T 
Move table entry 7 (Blank) 
Move table entry 2 (Asterisk) 
Move table entry 0 (Plus) 
Move table entry 1 (Minus) 
Move table entry 7 (Blank) 
Move table entry 1 (Minus) 
Move in-line table entry 



B I 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

INSERT FLO.AT 

Move the table entry T and/or perform the micro-operator MOVE DIGIT as indicated below. 

z == 1 
Z==O SOURCE =0 P=O 
Z==O SOURCE =0 P = 1 
Z==O SOURCE NOT=O T=0 .. 7 
Z==O SOURCE NOT=O T=8 S=O 
Z==O SOURCE NOT=O T=8 S= 1 
Z==O SOURCE NOT=O T=9 S=O 
Z == 0 SOURCE NOT= 0 T = 9 S = 1 
Z==O SOURCE NOT=O T=lO 

END FLOAT MODE 

Move digit 
Move table entry 7 (Blank) 
Move table entry 2 (Asterisk) 
Move table entry T, then move digit 
Move table entry 0 (Plus) then move digit 
Move table entry 1 (Minus) then move digit 
Move table entry 7 (Blank) then move digit 
Move table entry 1 (Minus) then move digit 
Move in-line table entry, then move digit 

Move the table entry T as indicated below to the destination field. 

S=O 
S=l 
S=O 
S=l 

T=0 ... 7 
T=8 
T=8 
T=9 
T=9 
T=lO 

Z==O 
Z==O 
Z==O 
Z==O 
Z==O 
Z=O 
Z=:l NO OPERATION 

END NON-ZERO 

Move table entry T 
Move table entry 0 (Plus) 
Move table entry 1 (Minus) 
Move table entry 7 (Blank) 
Move table entry 1 (Minus) 
Move in-line table entry 

Terminate the micro-operator operations if any nonzero source character/digit has been moved; other
wise, continue with the next in-line operator. 

END OF MASK 

Terminate the micro-operator operations. 

START ZERO SUPPRESS 

Set Z to the zero state. 

COMPLEMENT CHECK PROTECT 

Complement the state of P. Hl BRANCHING OPERANDS AND INSTRUCTIONS 

1168622 E-35 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COBOL74 S-LANGUAGE 

BRANCHING OPERANDS AND INSTRUCTIONS 

A branch address argument BADDR has the following format: 

Displacement 
(21 bits) 

0: 

l: 

BTYPE 
(1) 

Segment Number 
(7) 

f • Present if BTYPE = 

Relative to the current code 
segment base (intrasegment branch) 
Relative to a new code segment base 
(intersegment branch) 

Displacement is an unsigned binary value which specifies the bit displacement of an instruction relative 
to a segment base. The container size of the displacement and BTYPE combined is a program 
parameter. 

E-36 



B 1000 Systems COBOL 74 Language Manual 
COBOL"/ 4 S-Language 

BRANCH UNCONDITIONALLY 

OP: 03 

Format: 

BUN BADDR 

Function: 

Obtain the next instruction from the location specified by BADDR. 

1168622 

COBOL74 S-LANGUAGE 

E-37 



COBOL74 S-LANGUAGE 

B I 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

BRANCH ON OVERFLOW 

OP: 23 

Format: 

BOFL V, BADDR 

Function: 

If the overflow toggle equals V, a transfer to the address (BADDR) given in the instruction occurs; 
otherwise, control is passed to the next sequential instruction. 

The overflow toggle is unchanged. The length of V is one bit. 

E-38 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL7.4 S-LANGUAGE 

SET OVERFLOW TOGGLE 

OP: 07 

Format: 

SOFL V 

Function: 

Set the overflow toggle to V. 

The length of V is one bit. 

NOTE 
The overflow toggle is set to 1 if a DIVIDE BY ZERO is encountered in the 
DIVIDE SPECIAL S-operator. 

1168622 

SOFL 

E-39 



COBOL74 $-LANGUAGE 

PERFORM ENTER 

OP: 06 

Format: 

PERF K, BADDR 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

Create a stack entry with the following format: 

Displacement 
(24) 

Segment No. 
(7) 

K 
(12) 

Insert a displacement value, relative to the active code segment base and pointing to the next sequential 
S-instruction, into the stack. 

Insert the current code segment number into the stack. Insert the value of K from the instruction into 
the stack. 

Adjust the stac~ pointer to point to the next possible entry. 

Obtain the next instruction from the location specified by BADDR. 

E-40 



PERFORM EXIT 

OP: 34 

Format: 

PXIT K 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COBOL74 S-LANGUAGE 

Compare the K contained in the instruction to the K in the current stack entry and, if unequal, proceed 
to the next in-line S-instruction. If equal, adjust the stack pointer to point to the previous entry and 
obtain the next S-instruction from the information contained in the removed stack entry. 

1168622 E-41 



COBOL74 S-LANGUAGE 

ENTER 

OP: 18 

Format: 

NTR BADDR 

Function: 

BI 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

Same function as PERF. K is assumed to be equal to zero. 

E-42 



EXIT 

OP: 19 

Format: 

XIT 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

Same function as PXIT. K is assumed to be equal to zero. 

1168622 

COBOL74 $-LANGUAGE 

E-43 



COBOL74 S-LANGUAGE 

GO TO DEPENDING 

OP: 39 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

GOTD COPl, L, DBADDRO, ... , DBADDRL 

Function: 

Compare the 10-bit binary value L with the variable specified by COP 1. The variable is first converted 
to a binary value, Modulo 2 to the 24th power. 

If the binary value of the variable is less than zero or greater than L, the next instruction is obtained 
from the location specified by DBADDRO. The variable can be signed. 

If the binary value of the variable is in the range zero through L, it is used as an index to select from 
the list of DBADDRs the appropriate DBADDR to be used to obtain the next instruction. 

DBADDR and BADDR have the same format with the exception that DBADDR always contains the 
segment number. Although segment number is unnecessary for those DBADDRs with BTYPE equal 
to zero, in order to index into the list of DBADDRs, all of the DBADDRs must be of equal length. 
The container size of DBADDR is BDISPBl + 7. 

E-44 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

ALTERED GO TO PARAGRAPH 

OP: 35 

Format: 

GPAR DADDR 

Function: 

COBOL74 $-LANGUAGE 

GPAR 

Obtain the next instruction from the location specified by the address ACON. 

The address constant ACON has the same format as a BADDR. 

The argument DADDR is an unsigned binary value which specifies the digit displacement of the ACON 
relative to the data segment zero base. 

The container size of DADDR is DISPB. 

1168622 E-45 



COBOL74 S-LANGUAGE 

ALTER 

OP: 36 

Format: 

ALTR DADDR, ACON 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

Copy the address constant ACON into the data area specified by the argument DADDR. 

The address constant ACON has the same format as a BADDR. 

The argument DADDR is an unsigned binary valtJe which specifies the digit displacement of the ACON 
relative to the data segment zero base. 

The container size of DADDR is DISPB. 

E-46 



B I 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 $-LANGUAGE 

CONDITIONAL BRANCH OPERANDS AND INSTRUCTIONS 
If the condition A (R) B is TRUE a transfer to the address (BADDR) given in the instruction occurs; 
otherwise~ control is passed to the next sequential instruction. The relation (R) is defined as follows: 

R Meaning 

_ 000 Undefined 
001 GTR 
010 LSS 
011 NEQ 
100 EQL 
101 GEQ 
110 LEQ 
111 Undefined 

Overlap of fields is permitted. *A* is the first operand denoted in the instruction. If an instruction 
has only one operand, then the assumed field is the A field. 

1168622 E-47 



COBOL74 S-LANGUAGE 

B I 000 Systems COBOL 74 Language Manual 
COBOL 74 . S-Language 

COMPARE ALPHANUMERIC 

OP: 224-231 

Format: 

CMPA OPNDl, OPND2, R, BADDR 

Function: 

Compare the two operand fields according to binary values. 

[cMPA 

The comparison is performed left to right with any shorter operand assumed ·to be right-filled with 
blank characters (0100 0000 if EBCDIC or 0010 0000 if ASCII). ' 

The fields are considered equal when the equal size portions are equal and the longer field (if one is 
longer) has trailing blanks. 

An 8-BIT data format is assumed for both fields with no checking to verify otherwise. Signed fields 
have the most significant four bits (the sign) modified to the appropriate numeric zone (1111 for. 
EBCDIC, 0011 for ASCII) before being compared. This modification is not permanent and is done 
so that the sign does not affect the result of an alphanumeric comparison. 

CMPA is an optimized S-OP. Consequently, OPNDl and OPND2 may be short COPs. The LOGI
CALSIZE of OPND2 is always greater than or equal to the LOGICALSIZE of OPNDl. The format 
of the OP code is 011 lOOSS 

E48 



COMPARE NUMERIC 

OP: 192-223 

Format: 

B 1000 Systems COBOL 74 Language Manual 
CO BO L 7 4 S-Language · 

CMPN OPNDI, OPND2, R, BADDR 

Function: 

COBOL74 $-LANGUAGE 

CMPN 

Compare the two operand fields according to the algebraic values, considering the two fields to be com-
prised of decimal integers. · 

When the field sizes are different, the longer field is tested for leading zeros (0000). There is no restric
tion as to data type. In comparing an 8-BIT character, only the rightmost four bits of the character 
are considered; the other bits are ignored. 

Two fields of all zeros are equal regardless of sign. 

Unsigned fields are considered positive. Sign conventions are the same as for arithmetic operands .. 

Results generated by invalid digit values are undefined. 

CMPN is an optimized S-·OP. OPNDl and OPND2 can be short COPS. The LOGICALSIZE of 
OPNDl is always less than the LOGICALSIZE of OPND2. The format of the OP code is 011088SS =. 

1168622 E-49 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COBOL74 $-LANGUAGE 

COMPARE FOR ZEROS 

OP: 232-235 

Format: 

CMPZ COPl, R, BADDR 

Function: 

Compare two operand fields according to algebraic va1ues, assuming the first field to be comprised 
of all zeros (0000). 

There is no restriction as to data type. In comparing an 8-BIT character only the rightmost four bits 
of the character are considered. The other bits are ignored. 

Two fields of all zeros are equal regardless of sign. 

Unsigned fields are considered positive. Sign conventions are the same as for arithmetic operands. 

Results generated by invalid digit values are undefined. 

CMPZ is an optimized S-OP. COPl can be a short COP. The format of the OP code is 01110108S. 

OP code Data Type SS 
232 4-BIT unsigned 00 

233 4-BIT signed 01 

234 8-BIT unsigned 10 

235 8-BIT signed 11 

E-50 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COMPARE FOR SPACES 

OP: 37 

Format: 

CMPS COPl, R, BADDR 

Function:: 

COBOL74 S-LANGUAGE 

CMPS 

Compare two op<~rand fields according to binary values, assuming the first field to be comprised of 
all spaces (0100 0000). 

The comparison is performed left to right. 

Unsigned 8-BIT format is assumed with no checking to verify otherwise. 

This operator is not sensitive to collate table address and is valid only for the native collating sequence. 

1168622 E-51 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COMPARE FOR CLASS 

OP: 38 

Format: 

CMPC COPl, C, BADDR 

Function: 

Compare the operand field and determine whether the field is: 

C = 00 Completely alphabetic 
01 Completely numeric 
10 Not completely alphabetic 
11 Not completely numeric 

If the condition being tested is TRUE, a transfer to the address BADDR given in the instruction oc
curs; otherwise, control is passed to the next sequential instruction. 

-
In the alphabetic test, each character is range-checked for 1100 0001 through 1100 1001, 1101 0001 
through 1101 1001, 1110 0010 through 1110 1001, and for 0100 0000. Unsigned 8-BIT format is as
sumed with no checking to verify otherwise. 

In the numeric test each character is range-checked for 1111 0000 through 1111 1001. Signed or un
signed 8-BIT format is permitted. The four bits in the sign position of a signed 8-BIT field are ignored. 
The sign position is the leftmost 4 bits of the most significant character. 

E-52 



COMPARE REPEAT 

OP: 45 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

CMPR OPNDl, COPl, R, BADDR 

Function: 

Compare the two operand fields according to binary value. 

COBOL74 S-LANGUAGE 

If the COLLA TE TABLE ADDRESS is nonzero, each character in the operands must be translated 
before comparison. This is accomplished by using each 8-BIT character from OPNDl and COPl, mul
tilplied by eight, as an index into the translation table located at the address given by the COLLATE 
TABLE ADDRESS to obtain the character to be compared. 

Comparison proceeds from left to ~ight. 

The field lengths are considered equal by repeating OPND 1. 

Both fields are assumed to have unsigned 8-BIT data type. 

The size of COP 1 must be evenly divisible by the size of OPND 1; otherwise, the results of the compare 
may be erroneous. , 

1168622 E-53 



COBOL74 $-LANGUAGE 

COMPARE COLLATE 

OP: 04 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

CPC OPNDl, COPl, R, BADDR 

Function: 

If the COLLATE TABLE ADDRESS is nonzero, this program is using a non-native collating sequence 
and the operands must be translated into the program collating sequence before comparison. This is 
accomplished by using each 8-BIT character from OPNDl and COPl, multiplied by eight, as an index 
into the translation table located at the address given by the COLLA TE TABLE ADDRESS to obtain 
the character to be compared. 

The comparison is performed left to right with any shorter operand assumed to be right-filled with 
blank characters. The blanks are translated if this program is using a nonnative collating sequence. 

The fields are considered equal when the equal size portions are equal and the longer field (if one is 
longer) has trailing blanks. 

An 8-BIT data format is assumed for both fields with no checking to verify otherwise. Signed fields 
have the most significant four bits (the sign) modified to 1111 before any necessary translation is done. 
This modification is not permanent and is done so that the sign will not affect the result of an alphanu
meric comparison. 

E-54 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 S-Language 

MISCELLANEOUS INSTRUCTION 
COMMUNICATE 

OP: 33 

Format: 

COMM COPl 

Function: 

COBOL74 S-LANGUAGE 

COMM 

Move the length and address fields from the COPl entry to the RS.COMMUNICATE.MSG 

TR field located in the program RS.NUCLEUS, converting them enroute. The origin field is un
changed. 

The length is converted ftom a digit or character length to a bit length. The address is stored as an 
absolute~ bit address. 

1168622 E-55 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 $-LANGUAGE 

LOAD COMMUNICATE REPLY 

OP: 41 

Format: 

LDCR DADDR 

Function: 

The LDCR reply does the mapping of RS.RMSG.P2 and the last logical 1/0 status values as follows: 

E-56 

Bit 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
13 
14 
15 

RS.RMSG.P2 Value 

0 Good Complete 

Value Stored at DADDR 

0 
1 AT END 1 
2 I/O Error 2 
3 Incomplete I/O 3 
4 Duplicate Record OK 0 

LAST LOGICAL 1/0 STATUS Value Stored at DADDR 

Exception Descriptor Follows 
Value of 0 2 
Value of 1 Examine following bits 
Boundary Violation 1 
Duplicate Key 1 
Sequence Error 1 
Variable Length Record Error 2 
Invalid Key 1 
Reserved 
Parity Error 2 
Reserved 
AT END I EOP Not requested 
Short Block 2 
Reserved 
Break On Output 2 
Reserved 
Timeout 2 

16 - 23 Reserved 



CONVERT 

OP: 40 

Format: 

CONV COPl DADDR N 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 S-LANGUAGE 

Convert the operand denoted by COPl from a decimal value to an unsigned 24-bit binary value, trun
cating or zero-filling on the left if necessary. Place the result at the location specified by DADDR. 
N represent the number of bits of converted value to store at DADDR. 

The operand must be either unsigned 4-BIT or unsigned 8-BIT units. 

Refer to MAKE PRESENT for definition of DADDR. 

1168622 E-57 



COBOL74 S-LANGUAGE 

MAKE PRESENT 

OP: 42 

Format: 

MAKP COPl, DADDR 

Function: 

B I 000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

I MAKP 

Load the data segment specified by COP 1 and place the base relative address of the data area specified 
by COPl into the 24-bit location specified by DADDR. 

DADDR is an unsigned binary value which specifies a digit displacement from the data segment zero 
base. 

The container size of DADDR is DISPB. 

• 

E-58 



B 1000 ·Systems COBOL 7 4 Language Manual · 
COBOL 74 S-Lang~age 

COBOL74 S-LANGUAGE 

FILE STATUS 

OP: 57 

Format: 

FSTA, WRIT, COP 

Function: 

COP contains the translated value of the status of the last IO.WRIT which indicates whether the last 
l!O was a READ or a WRITE. · . 

The translation from COMMUNICATE REPLY (RE.RMSG .P2) or the last logical I/O status values 
to File Status Codes will be according to the following table: 

Communicate Reply 
(Values returned by MCP) 

0 Good Complete 
1 AT END I EOP 

2 I/O Error 
3 Incomplete I/O 
4 Duplicate Record OK 

Last Logical 1/0 Status 

Bit 0 Exception Description Follows 
value of 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16-23 

value of 1 
Boundary Violation 
Duplicate Key 
Sequence Error 
Variable Length Record Error 
Invalid Key 
Reserved 
Parity Error 
Reserved 
AT END I EOP 
Short Block 
Reserved 
Reserved 
Break On Output 
Reserved 
Timeout 
Reserved 

File Status Codes 

00 
10 (READ) 

34 (WRITE) 
Examine I/O status 

02 

File Status Codes 

99 
Examine following bits 

24 
22 
21 
92 
23 

30 

Not requested 
91 

97 

96 

For any Communicate Reply or last logical 1-0 status value that does not have a File Status code, 
the condition is masked out with the result mask specified by the communicate. An EOP will result 
i:n a 34 instead of the expected (and correct) 00. 

1168622 E-59 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

COBOL74 S-LANGUAGE 

CHARACTER STRING S-OPS 
DESCRIPTOR SETUP 

OP: 50 

Format: 

DSET DADDR, COP 

Function: 

Build a descriptor of COP 1 at the location specified by DADDR. 

The format of a descriptor (DESC) is that of a COP entry after the OCCURS DEPENDING value 
has been applied and after subscripts or indices have been evaluated to derive an ultimate displacement. 

The current B format for a descriptor is as follows: 

DESC (64) 

DATA- MULTIPLE- SIGNED SHARED- LITERAL-
TYPE ENTRY- DATA- FLAG 

FLAG FLAG 
(4) (1) (1) (1) (1) 

' ' 

LENGTH- SEGNO- DISPLACEMENT FILLER 
IN- OR-IPCD- IN DIGITS 
DIGITS INDEX 
(14) (10) (20) (12) 

The MULTIPLE.ENTRY.FLAG and LITERAL.FLAG are equal to zero in the above format. 

E-60 
) 



INSPECT SETUP 

OP: 51 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 S-Language 

ISET Vt, V2, FLAC, DADDRI, COPI, COP2, DADDR2, OPND 

Function: 

Build an INSPECT.TABLE entry at DADDRl. 

COBOL74 S-LANGUAGE 

Vl specifies whether this is the last entry (Vl = 1) or not. V2 indicates whether BEFORE, V2 = 1, or 
AFTER, V2 = 2 or both, V2 = 3, were specified. FLAC indicates the mode of INSPECTION. 

FLAC 
FLAC 
FLAC 
FLAC 

0 indicates FIRST 
= l indicates LEADING 

2 indicates ALL 
= 3 indicates CHARACTERS 

DADDRl indicates the location for this INSPECT TABLE entry. COPl indicates the number of char:.. 
acters to be tallied or replaced when FLAC is not equal to 3. 

COP2 is the count field for tallying or the replacement string. DADDR2 is the location of the source 
field description if BEFORE/ AFTER is specified. 

OPND is the delimiter if BEFORE/ AFTER is specified. 

Set INELIGIBLE.FLAG= 0. 

If V2 = 0, set AFTER.FLAG = 0 and examine the source field for the delimiter specified by OPND 1. 
If a match is found, set ELIGIBLE.POSITION to the character position of the beginning of the first 
occurrence of the delimiter. If a match is not found, set ELIGIBLE.POSITION= 0 and 
AFTER.FLAG== 1. This, in effect, makes the entry eligible for all characters of the source field. 

If V2 = l, set AFTER.FLAG= 1 and examine the source field for the delimiter specified by OPND 1. 
If a match is found, set ELIGIBLE.POSITION to the character position to the right of the first occur
rence of the delimiter. If a match is not found, set INELIGIBLE.FLAG= 1. 

If V2=3, set ELIGIBLE.POSITION=O and AFTER.FLAG= 1. This, in effect, makes the entry eligi
ble for all characters of the source field. 

1168622 E-61 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Language Manual 
COBOL 74 S-Language 

The description of the INSPECT TABLE is as follows: 

INSPECT .POINTER is the first 24 bits of the Inspect Table which is used to save a pointer into the 
source string in case inspection is interrupted. This field is followed by a variable number of entries 
with the following format: 

INSPECT.TABLE.ENTRY (148) 

LAST- INELIGIBLE- AFTER-
ENTRY- FLAG FLAG 
FLAG 
(1) (1) (1) 

• • j~ 

ELIGIBLE-
POSITION 

(13) 

j~ 

FLAC 

(2) 

j~ 

DESCI 

(64) 

j~ 

DESC2 FILLER 

(64) (2) 

Ja 
[Unused 

L- Count field or 
replacement 
string 

L-- Characters to be 
tallied or replace 
(not meaningful if 
FLAC=3) 

.____ O=FIRST 
!=LEADING 
2=ALL 
3=CHARACTERS 

'--- Position at which DESCI becomes 
eligible for comparison in 
conjunction with the AFTER.FLAG 

.._ O=BEFORE 
l=AFTER 

E-62 

.___ O=ELIGIBLE 
1 =INELIGIBLE 

.___ O=More entries 
I= Last entry 



INSPECT 

OP: 52 

Format:: 

INSP V, DADDRl, DADDR2 

Function: 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 S-Language 

COBOL74 $-LANGUAGE 

Inspect the source field specified at DADDR2, taUying or replacing a variable number of 8-BIT charac
ter(s). The location of the character(s) to be tallied or replaced and the location of count field or re-
placement string is specified in the Inspect Table specified by DADDRl. · 

Eligibility of an entry is established as follows: 

1. If INELIGIBLE.FLAG= 1, this entry is ineligible. 

2. If AFTER.FLAG= 0 and the current character position is not less than ELIGIBLE.POSITION, 
this entry is no longer eligible and it is made ineligible; otherwise, the entry is eligible. 

3. If AFTER.FLAG= 1 and the current character position is less than ELIGIBLE.POSITION, this 
~enty is ineligible; otherwise the entry is eligible. 

4. When looking for a match and the number of characters left in the source is less than the size 
of the data item specified by DESCl, this entry is made ineligible. 

NOTE 
An entry is made ineligible by setting INELIGIBLE.FLAG= 1. 

The comparison operation to determine the occurrences of the operands to be tallied or replaced occurs 
as follows: 

1. The entries in the INSPECT.TABLE are considered in the order in which they are spedfied. 

2. If the entry is eligible, DESCl is compared against an equal number of contiguous characters, 
starting with the leftmost character of the source field. 

3. If no match occurs or if the entry is ineligible, the comparison is repeated for each successive 
entry, if any, until either a match is found or there is no next successive entry. When there 
is no successive entry, the character position immediately to the right of the leftmost character 
position considered in the last comparison cycle is considered as the leftmost character position, 
and the comparison cycle begins with the first table entry. 

4. Whenever a match occurs, tallying or replacing takes place. The character position immediately 
to the right of the rightmost character position that participated in the match is now considered 
to be the leftmost character position of the source field and the comparison cycle starts again 
with the first table entry. 

1168622 E-63 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 S-Language 

5. The comparison operation continues until there are no eligible entries in the table or until the 
rightmost character position of the source field has participated in a match or has been consid
ered as the leftmost character pdsition. When this occurs, the inspection is terminated. 

NOTE 
It is intended that this process be interruptable at the beginning of the cycle. 
INSPECT .POINTER is the first 24 bits of the Inspect Table, and is used to 
save and restore the pointer into the source field in case an interrupt occurs. 

A detailed description of the inspection cycle is as follows: 

1. Set current position P =INSPECT.POINTER. 

2. Point to the first entry in the Inspect Table. 

3. If the entry is ineligible, go to step 5. 

4. Do the following according to the contents of FLAC: 

a. If FIRST is specified, look for a match. 

If a match is not found, go to step 5. 

If a match is found, make the entry ineligible, tally or replace and go to step 7. 

b. If LEADING is specified, make the entry ineligible. 

If (AFTER.FLAG=O AND P NOT=l) OR (AFTER.FLAG= I AND P 
NOT= ELIGIBLE.POSITION), go to step 5. 

Look for a match. 

If a match is not found, go to step 5. 

If a match is found, tally or replace contiguous occurrences of DESCl and go to step 7. 

c. If ALL is specified, look for a match. 

If a match is not found, go to step 5. 

If a match is found, tally or replace and go to step 7. 

d. If CHARACTERS is specified, tally or replace and go to step 6. 

5. Get the next table entry. If there is a next entry, go to step 3. 

If INELIGIBLE.FLAG= 1 for all the table entries, terminate the proc.ess. 

6. Increment P by 1. 

7. If P > size of the source string, terminate the process; otherwise, go to step 2. 

E-64 



STRING 

OP: 53 

Format: 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

STRI Z, OPNDI, DADDRI, COPI, OPND2, BADDR 

Function: 

COBOL74 S-LANGUAGE 

Move a variable number of 8-BIT characters from the source field denoted by OPND 1 to the destina
tion field specified at DADDRl using the value specified in COPl as a character offset into the destina
tion field. Z indicates how OPND2 is to be used: 

0 = OPND2 is the number of characters to move 

1 = OPND2 is the delimiting character(s) 

2 = OPND2 is omitted - the number of characters to move is the size of OPND 1 

BADDR specifies the next statement if overflow occurs. 

An overflow condition is .caused if at anytime during execution the value in the pointer field is less 
than 1 or greater than the size of the destination string. 

If an overflow condition exists, the operation is terminated and the next instruction address is obtained 
from BADDR. 

The transfer of data is governed by the following rules: 

1. Characters are moved from the source field to the destination field in accordance with the rules 
for MOVE ALPHANUMERIC (MVA), except that no space fill is provided. The contents of 
COPl are incremented by 1 for each character transferred. 

2. If V = 0, characters are transferred until the end of the source field is reached, or until the num
b~er of characters specified by OPND2 are transferred. 

If V = 1, characters are transferred until the end of the source field is reached, or until the 
delimiting character(s) specified by OPND2 are encountered. The delimiting character(s) 
specified are not transferred. 

1168622 E-65 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 S-LANGUAGE 

DELIMITER SETUP 

OP: 54 

Format: 

DLIM VI, V2, DADDRl, COPl 

Function: 

Build a delimiter table entry at the location specified by DADDRI. Vl == 1 specifies that this is the last 
entry. V2 = 1 indicates that ALL was specified. COP 1 is the delimiter. 

Th,e table used by the Unstring S-operator contains a variable number of entries with the following 
format: 

DELIMITER. TABLE. ENTRY (68) 

LAST-ENTRY-FLAG 
(I) 

ALL-FLAG 
(1) 

DESCl 
(64) 

FILLER 
(2) 

Unused 

Delimiter descriptor 

O= More entries 
1 =Last entry 

O=Single occurrence of delimiter 
1 =All occurrences of delimiter treated as one 

When Z = 1, DADDR3 specifies the location of the Delimiter Table and the following comparison cycle 
occurs: 

E-66 

1. The entries in the Delimiter Table are processed in the order specified. 

2. The delimiter is compared against an equal number of characters of the source field, starting 
with the leftmost character. 

3. If no match occurs, the comparison is repeated for any successive entry until a match is found 
or until there is no next successive entry. When there is no successive entry, the character posi
tion to the immediate right of the leftmost character position considered in the last comparison 
cycle is considered as the leftmost character position, and the comparison cycle begins with the 
first table entry. 

4. Whenever a match occurs, examination stops and the comparison cycle is discontinued. 

5. The comparison operation continues until there are no more entries in the table or until the 
rightmost character position of the source field has participated in a match or has been consid
ered as the leftmost character position. When this occurs, examination is terminated. 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 S-LANGUAGE 

UNSTRING 

OP: 55 

Format: 

UNST F, M, Z, C, J, BADDR, DADDRl, COPI, 
DADDR2, OPNDI, DADDR3, COP2, COP3, DADDR4 

Function: 

Move a variable number of 8-BIT characters from 'the source field specified at DADDRl to the destina
tion field denoted by COPl using the value specified at DADDR2 as a character offset into the source 
field. 

Any of the following situations cause an overflow condition: 

1. F = 2 or F = 3 and the value in the pointer field is less than 1 or greater than the size of the 
source string. 

2. Z = 0 and the value in OPND 1 is less than 1 or greater than the size of the source string. 

3. Upon completion of the operation, F = 1 or F = 3 and either of the following occurs: 

a. The source field contains characters that have not been examined. 

b. Z == 0 and the number of characters transferred is less than the number of characters 
specified by OPND 1. 

If an overflow condition exists, the operation is terminated and the next instruction address is obtained 
from BADDR. 

The transfer of data is governed by the following rules: 

1. The string of source characters is examined beginning with the relative character position in the 
pointer field. 

2. The number of characters examined is determined as follows: 

1168622 

a. If Z = 1, the examination proceeds ·from left to right until either a delimiter in the Delimiter 
Table specified by DADDR3 is encountered or until the end of the string is encountered. 

If the end of the string is encountered before the delimiting condition is met, examination 
terminates with the last character to be examined. 

If two contiguous delimiters are encountered, the number of characters examined is zero. 

b. If Z = 2; the number of characters is the size specified by COPl. 



E-68 

B 1000 Systems COBOL 7 4 Language Manual 
COBOL 7 4 S-Language 

3. The characters, thus examined, are moved to the destination field as follows: 

a. If C = 0, the characters are moved in accordance with the rules of the MOVE NUMERIC 
(MVN) S-operator. 

If the number of characters to be moved is zero, the destination field is zero-filled. 

b. If C = 1, the characters are moved according to the rules of the MOVE ALPHANUMERIC 
(MV A) S-operator. 

If J = 1, the characters are moved right-justified. 

If the number of characters to be moved is zero, the destination field is space--filled. 

4. If the delimiter receiving field is present, the delimiting character(s) are moved to it according 
to the rules of the MOVE ALPHANUMERIC (MV A) S-operator. If the delimiting condition 
is the end of the string, then it is space-filled. 

5. If the count field is present, the number of characters examined is moved to it according to 
the rules of the MOVE NUMERIC (MVN) S-operator. 

6. If the tallying field is present, 1 is added to the contents according to the rules of the Increment 
By One (INCl) S-operator. 

7. If Z = 0, Z = 2 or the delimiting condition is the end of the string, the pointer field is set to 
point to the character to the right of the last character transferred in step 3. 

If Z = 1, the pointer field is set as follows: 

a. If the ALL.FLAG= 0 for the matched delimiter, it points to the character to the right of 
the delimiter. 

b. If the ALL.FLAG= 1 for the matched delimiter, the string is examined for contiguous oc
currences of the delimiter and it points to the right of the last such occurrenc1;!. 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 S-Language 

INTER-PROGRAM COMMUNICATION 
IPC DICTIONARY 

Format: 

IPCD V COP BADDR 

Functions: 

COBOL74 S-LANGUAGE 

The execution of the IPCD S-OP results in the construction and insertion of an 80-bit system descriptor 
for the COP in the IPC.DICTIONARY at the displacement address specified by V. The base address 
of the IPC.DICTIONARY is adjacent to the program RSN and can be found in RS.IPC.DICTIONAR
Y.SPACE as an absolute address. The BADDR contains the address of the first IPCD S-op which ref
erences an operand that lies in an overlayable data segment. This address is required by the interpreter 
when checkerboarding has occurred and a necessary data segment does not fit into dynamic memory 
without overlaying another required data segment. 

The Inter-Program Communication (IPC) Module provides a facility to transfer control from one pro
gram to another and the ability for both programs to have access to the same data items. Language 
is not a barrier in IPC. The names of the programs to which control is to be passed may or may 
not be known at compile time. Additionally, this module provides the ability to determine the availabil
ity of memory for the program to which control is being passed. 

The definition of a 'run unit' is critical to the implementation of the CALL/CANCEL mechanism 
described in the ANSI Standard. The beginning-of-job (BOJ) of any program by an execute instruction 
does not establish a run unit. A run unit is established only when an executed program initiates another 
program through the CALL communicate. That called program is now a member q.f the run unit asso
ciated with that program that was originally executed. Likewise, any program called by a program 
within the run unit becomes part of that run unit and remains in that run unit until terminated or 
cancelled (CANCEL). A job cannot be a member of more than one run unit. The following figure 
represents seven programs (A through G) which have been called within a run unit. 

A A was .executed 

I ... Current Path 

Previous~ 
Path 

B~ 
D c 

I 
F G E 

1168622 E-69 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

The connecting links are generated by and represent the last used path, and the link exists until a return 
(EXIT PROGRAM) is accomplished. Once a called program has been exited (D, F, G), it remains sus
pended in the current state. The only path that is of interest is the path last traversed. 

The current path is important in order to check the validity of a CALL or CANCEL statement; a 
program may not call or cancel itself or any of its predecessors. The other links are unimportant, as 
any program in the run unit can call or delete other existing programs (with the exceptions previously 
mentioned) or can call new programs. 

If, for example, program E cancels program D, then the run unit consists of all of the following pro
grams and appears as: 

A 

I 
B 

I 
c 

I 
E 

Unattached 
Programs 

F,G 

A call to any of these programs results in a transfer of control to the existing state, whereas a call 
to any other program (including D) causes an initial state copy to be invoked before control is transfer
red. The termination (by STOP RUN or ABORT) of any program in a run unit results in the removal 
qf all programs in that run unit from memory. 

The calling program may specify one or more data items to which the called program has access. The 
shared data may be any 01 or 77 level item (including items whose addresses have been received 
through a CALL) described in the calling program. The data items may be named and defined differ
ently in each program. Additionally, storage for the shared data is never allocated in the called pro
gram; the address is always passed to the called program. 

The IPC.DICTIONARY is a list of SYSTEM.DESCRIPTORS built by the program to describe the 
parameters to be passed with a CALL. This dictionary is within the space defined by RS.IPC.DICT 
in the RS.NUCLEUS of the calling program. The length of this dictionary is passed in the CALL com
municate. The MCP verifies that the number and length of parameters passed match the IPC.P ARAM
ETER.LIST of the CALLed program. 

The IPC.P ARAMETER.LIST is a series of 24-bit fields that contain the length in bits of the 
parameters required for a given program. The original copy is generated by the compiler and resides 
at the end of the code file. The MCP can locate this list through a 24-bit field in th1~ Program 
Parameter Block (the PROG.IPC.PTR contains the relative disk address in the code file of the !PC
.PARAMETER.LIST). The number of entries in the list is obtained from a 16-bit field in the PPB 
(PROG.IPC.SIZE). After the program has been successfully called, the !PC.PARAMETER.LIST is ap
pended to the RS.NUCLEUS (and the first element contains the number of entries) in order to 
facilitate future calls on this program. 

E-70 



B 1000 Systems COBOL 74 Language Manual 
COBOL 7 4 S-Language 

COBOL74 $-LANGUAGE 

After the MCP verifies that the number and length of parameters are correct, it updates this field to 
allow access to the shared data. The interpreter uses this field just as it would use the address of a 
data dictionary, that is, to obtain the absolute address of the IPC.DICTIONARY. 

Figure E-2 illustrates the manner in which data is linked between the calling program and the called 
program. 

CALLING PROGRAM WITH SHARED 
AND SEGMENTED DATA 

BR 

STATIC MEMORY 

DYNAMIC MEMORY 

LR 
RS, IPC. DICT. SPACE 

DATA DICTIONARY 

- IPC DICTIONARY ~---
G12343 

BR 

LR 

l ---

Figure E-2. Memory Layout 

CALLED PROGRAM 

STATIC MEMORY 

RS. IPC. DICT 
RS. IPC. PARM. LIST 

IPC. PARAM. LIST 

Accessing shared data should be almost identical to accessing segmented data. One difference is that 
the reading and writing take place outside the program base-to-limit area and, therefore, the base-limit 
check must be inhibited. This implies that any COP for a parameter must have a flag (SHARED.D
AT A.FLAG) which suppresses the base-limit test and indicates that there is a following 10-bit field 
l(IPCD.INDEX) which supplies an index into the IPC.DICTIONARY. With the absolute address ob-
1tained from the IPC.DICTIONARY, the interpreter can proceed as if it has an absolute address for 
a normal data item. 

1168622 E-71 



B I 000 Systems COBOL 7 4 Language Manual 

APPIENDIX F 
COMMUNICATION CONCEPTS AND EXAMPLES 

COBOL74 QUEUE FILES 

Queue files permit message transfer between one or more programs. A queue is established when the 
program opens a queue file. This program may be one of many readers or writers of the queue file. 
Message transfer to and from the queue is handled by the operating system when a WRITE or a READ 
operation is specified for the queue file. Messages are written to the back of the queue and read from 
the front of the queue. Therefore, if one program opens a queue file 1/0, there is a good chance that 
no message transfer between two programs will actually occur. Instead, the single program could be 
reading messages that it just wrote. Figure F-1 is a diagram of a unidirectional message transfer with 
two writers and three readers. 

~;i~ 
~ ~QUEUE FIL.E 

OPEN OUTPUT MESSAGES 

l t 11111 
OPEN INPUT 

READER ~ READER 

G18655 

Figure F-1. Unidirectional Queue File Message Transfer 

When message transfer in two directions is desired, two queue files should be used. This can be seen 
in figure F-2. 

1168622 

E-ERIREADER 

T OPEN INPUT 

O_PEN 

OU[T 1111 

G18656 

QUEUE FILE B 
MESSAGES 

QUEUE FILE A 
MESSAGES 

1111 , 

OPEN INPUT 

OPEN 
OUTPUT 

READER/WRITER 

Fligure F -2. Bidirectional Queue File Message Tran sf er 

F-1 



B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

Messages may be written into a queue (space permitting) even though a reader of that queue does not 
exist. The messages are stored until read out of the queue or the queue file is closed by the last pro
gram that has the queue file open. The oldest messages are read from the queue first and are then 
removed (FIFO). When the queue file is closed by the last user of the queue file, any unread messages 
are discarded by the operating system. 

In the following program, there is one queue file that is read from and one queue file that is written 
to. This is done for example only, as normal use of queue files is for communication between separate 
programs. The VALUE OF TITLE clause for each of the queue files declared in the program has the 
same value. This is the only statement in the source code that instructs the operating system to use 
the same location in memory (queue) for each of the declared queue files. 

F-2 

000100 
000200 
000300 
000400 
000500 
000600 
000700 
000800 
000900 
001000 
001100 
001200 
001300 
001400 
001500 
001600 
001700 
001800 
001900 
002000 
002100 
002200 
002300 
002400 
002500 
002600 
002700 
002800 
002900 
003000 
003100 
003200 
003300 
003400 
003500 
003600 
'003700 
003800 
003900 
004000 
004100 
004200 
004300 
004400 
004500 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 
AUTHOR. 
DATE-WRITTEN. 
SECURITY. 
ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 
SOURCE-COMPUTER. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

QUEUE-ECHO. 
ORWELL84. 
12/02/83. 
NONE. 

81000. 
BlOOO. 

SELECT QUEUE-IN ASSIGN TO QUEUE 
FILE STATUS IS IN-STAT 
ACTUAL KEY IS Q-IN-KEY 
RESERVE 2 AREAS. 

SELECT QUEUE-OUT ASSIGN TO QUEUE 
FILE STATUS IS OUT-STAT 
ACTUAL KEY IS Q-OUT-KEY 
RESERVE 2 AREAS. 

1-0-CONTROL. 
SAME RECORD AREA FOR QUEUE-IN QUEUE-OUT. 

DATA DIVISION. 

FILE SECTION. 

FD QUEUE-IN 
VALUE OF MAXCENSUS IS 2 
VALUE OF MAXSUBFILES IS 4 
VALUE OF TITLE IS 11 QRWE LL84 11

• 

01 QUEUE-REC-IN. 
03 BYE-BYE PIC X(3). 
03 FILLER PIC X(77). 

FD QUEUE-OUT 
VALUE OF MAXSUBFILES IS 4 
VALUE OF TITLE IS 11 QRWELL84 11

• 

0 l QUEUE-REC-OUT PI C X (80) . 



1168622 

004600 
004700 
004800 
004900 
005000 
005100 
005200 
005300 
005400 
005500 
005600 
005700 
005800 
005900 
006000 
006100 
006200 
006300 
006400 
006500 
006600 
006700 
006800 
006900 
007000 
007100 
007200 
007300 
007400 
007500 
007600 
007700 
007800 
007900 
008000 
008100 
008200 
008300 
008400 
008500 
008600 
008700 
008800 
008900 
009000 
009100 
009200 
009300 
009400 

B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

WORKING-STORAGE SECTION. 
77 Q-IN-KEY 
77 Q-OUT-KEY 
77 FLAG 

88 EOF 
01 Q-MESS 
01 OUT-STAT 

88 Q-FULL 
01 IN-STAT 

88 Q-EMPTY 
PROCEDURE DIVISION. 

MAIN-DRIVER. 
OPEN INPUT QUEUE-IN. 
OPEN OUTPUT QUEUE-OUT. 

PI C 9 (8) COMP VALUE l. 
PIC9(8) COMPVALUEO. 
PIC 9 COMP VALUE ZERO. 
VALUE 1. 

PI C X (80) . 
PIC XX VALUE 11 00 11

• 

VALUE 11 95 11
• 

PI C XX VALUE 11 00 11
• 

VALUE 11 94 11
• 

PERFORM ECHO THRU ECHO-EXIT UNTIL 
FLAG > 0. 

CLOSE QUEUE-IN. 
IF FLAG NOT= 2 

CLOSE QUEUE-OUT. 
STOP RUN. 

ECHO. 
DISPLAY 11 ENTER ONE LINE MESSAGE, AND I WILL ECHO IT BACK". 
DISPLAY 11 TO EXIT PROGRAM, ENTER BYE 11 

ACCEPT Q-MESS. 
MOVE Q-MESS TO QUEUE-REC-OUT 
MOVE Q-IN-KEY TO Q-OUT-KEY. 
WRITE QUEUE-REC-OUT. 
MOVE Q-OUT-KEY TO Q-IN-KEY. 
IF Q-FULL 

READ QUEUE-IN 
GO TO.ECHO-EXIT. 

DISPLAY QUEUE-REC-OUT. 
WAIT UNTIL READ-OK ON QUEUE-IN (l) 

READ-OK ON QUEUE- IN (2) 
READ-OK ON QUEUE- IN (3) 
READ-OK ON QUEUE-IN (4) 

GIVING Q-IN-KEY. 
READ QUEUE-IN AT END 

MOVE l TO FLAG. 
IF BYE-BYE = 11 BYE'' 

DISPLAY "BYE-BYE" 
MOVE 2 TO FLAG 
CLOSE QUEUE..-QUT 
GO TO ECHO-EXIT. 

ECHO-EXIT. 
EXIT. 

END-OF-JOB. 

F-3 



B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

COBOL74 REMOTE FILES 

Each COBOL 74 program can declare a maximum of one remote file. A remote file, as declared in 
a COBOL74 program, is a Burroughs extension to ANSI 74 COBOL. A remote file allows the 
COBOL 74 program a high degree of control for input, output or I/O with ·a set of data communication 
devices. 

With COBOL 74 remote files, all message transfer and control of the remote files is handled by the 
network controller in conjunction with a Message Control System (MCS), if present. The presence of 
an MCS allows dynamic, run-time modification of the station list in the network controller:, such as 
transforming the second or subsequent .open request to an attach of the station to an existing remote 
file instead of an open of a new remote file. Without an MCS, there can be no flexibility of the station 
list and attachment of a remote file to a station is rigidly dependent on the file statement as pre-defined 
in the network controller. 

The controlling MCS is responsible for approving or denying the second and any subsequent open of 
the same remote file name. The approval or denial of the open is determined by a variety of factors, 
such as authentication of the station list as defined in the network controller. 

If there is no MCS, the second and any subsequent open of the same remote file name results in a 
denial of the open from the network controller, with a message indicating the file is locked. 

In figure F-3, program A opens the remote file named XYZ, and the network controller generated by 
the the Network Definition Language (NDL) compiler assigns remote file number 1 to that fille, which 
is the data communication system's internal method of identification. Program B opens the remote 
file named XYZ, and the network controller assigns remote file number 2 (or the next lowest available 
file number) to that file. Thus, it is possible (only under control of an MCS) to run multiple copies 
of the same program from different stations, or declare the same remote file name in different pro
grams, with a guarantee from the system that messages to and from individual programs will be cor
rectly directed to the appropriate program. This is handled by assigning a unique remote file number 
to each remote file opened even if the remote file names are the same. (If program A or program 
B is an MCS, the above sequence of events may be different.) 

F-4 



B I 000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

PROG~ PROGRAM PROGRAM 

(Ml/ If 15) 
B c 

(MIX f/18) (MIX f/20) 

REMOTE FILE REMOTE FILE REMOTE FILE 
NAME'= XYZ 

NUMBER = 1 

NAME= XYZ 

NUMBER= 2 

MESSAGE CONTROL. SYSTEM (MCS) 

REMOTE~ 
Mcsau:~ 

NAME = FGH 

NUMBER = 3 

(OPTIONAL) 

[ 

NETWORK CONTROLLER 

DEFINED BY THE NETWORK DEFINITION LANGUAGE (NOLf COMPILER 

G18657 

Figure F-3. COBOL74 Remote Files 

Enhancements to the Mark 11.0 COBOL 74 compiler expand the capabilities of remote file usage. These 
include the abilities to selectively access multiple stations of a remote file and to construct variable 
length records for a remote file. 

Multiple, Stations of a Remote File 

A COBOL 74 .program can open a remote file with more than one station if that configuration has 
been defined in the station list of the network controller. More than one station can also be established 
for a remote file of a COBOL74 program when running under an MCS by means of the dynamic at
tachment mechanism. The MAXST A TIO NS file attribute must be declared greater than one in the 
COBOL 74 program (see programming example below) or the NUMBER.ST A TIO NS file attribute must 
be modified to the number of stations e~pected. 

Example: 

MODIFY <program name> FILE <file name> NUMBER.STATIONS = <integer> 

In COBOL 14, a program may initiate communication to ·a specific terminal, which was attached in 
its remote file open, and that terminal remains assigned to the program for the duration of the remote 
file open., This is done by association of a Relative Station Number (RSN) within a station list for 
that remote file, as defined in the network controller. 

1168622 F-5 



B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

The LASTST A TION file attribute indicates the relative station number of the source of a message fol
lowing a READ operation from a remote file. By changing the value of the LASTSTA TION attribute 
prior to a WRITE operation to a remote file, the message can be directed to another station. Use of 
the LASTST A TIO~ attribute is optional. It is only required if the program needs to know what station 
was accessed on the last READ operation, or if the program wants to direct the next WRITE operation 
to a station other than the one that was the source of the previous READ operation. The LASTSTA
TION attribute can be read or changed when the file is open. 

The following example shows how the LASTST A TION and MAXST A TIO NS file attributes can be 
used in a program using remote files. When the number of stations has been declared to be: greater 
than 1 and the program has been entered into the JOBS file of the SMCS program, two or more users 
can sign on to this program and receive the messages from each other. 

• 

F-6 



000100 
000200 
000300 
000400 
000500 
000600 
000~00 
000 00 
000900 
001000 
001100 
001200 
001300 
001400 
001500 
001600 
001~00 
001 00 
001900 
002000 
002100 
002200 
002300 
002400 
002500 
002600 
002~00 
002 00 
002900 
003000 
003100 
003200 
003300 
003400 
003500 
003600 
003~00 
003 00 
003900 
004000 
004100 
004200 
004300 
004400 
004500 
004600 
004~00 
004 00 
004900 
005000 
005100 
005200 
005300 
005400 

1168622 

B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MULTI-STATIONS. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. BlOOO. 
OBJECT-COMPUTER. BlOOO. 
INPUT-OUTPUT SECTION. 

FILE-CONTROL. 
SELECT RMTE ASSIGN TO REMOTE 

RESERVE 3 AREAS. 
DATA DIVISION. 

FILE SECTION. 
FD RMTE 

VALUE OF MAXSTATIONS IS 2 
RE.CORD CONTAINS 1950 CHARACTERS. 

01 RMTE-·RECORD PI C X ( 1950) . 

WORKING-STORAGE SECTION. 
01 SCREEN-OUTPUT. 

05 TOP-LINE PIC 9 ( l 0) COMP 
VALUE @OCOOOOOOOO@. 

05 SCREEN PIC X(l920). 
05 BOTTOM-LINE PIC 9 ( 12) COMP 

VALUE @27E600000003@. 
01 ENTRY-SCREEN-OUT. 

05 ES-FIRST-LINE. 
10 FILLER PIC x (31) VALUE SPACES. 
10 ES-TITLE PI C X ( 19) 

VALUE "REMOTE FILE EXAMPLE". 
10 FILLER PIC X(30) VALUE SPACES. 

05 FILLER PI C X ( 160) VALUE SPACES. 
05 ES-NAME-LINE. 

10 FILLER PIC x (20) VALUE SPACES. 
10 NAME-FILL PIC x ( 16) 

VALUE "ENTER YOUR NAME II 

10 LEFT-DELIMITER PIC 9 (02) COMP VALUE @lF@. 
10 FILLER PIC x (20) VALUE SPACES. 
10 RIGHT-DELIMITER PIC 9 (02) COMP VALUE @lE@. 
10 FILLER PIC x (22) VALUE SPACES. 

05 FILLER PIC x (80) VALUE SPACES. 
05 ES-MESSAGE-LINE. 

10 FILLER PIC x (8) 
VALUE "MESSAGE II 

10 LEFT-DELIMITER PIC 9 (02) COMP VALUE @lF@. 
10 FILLER PIC x (70) VALUE SPACES. 
10 RIGHT-DELIMITER PIC 9 (02) COMP VALUE @lE@. 

05 FILLER PIC X(l440) VALUE SPACES. 
01 INPUT-SCREEN. 

05 YOUR-NAME PIC x (20) . 
05 YOUR-MESSAGE PIC x (70) . 

01 SECOND-SCREEN-OUT. 

F-7 



F-8 

005500 
005600· 
005700 
005800 
005900 
006000 
006100 
006200 
006300 
006400 
006500 
006600 
006700 
006800 
006900 
007000 
007100 
007200 
007300 01 
007400 
007500 
007600 
007700 
007800 
007900 
008000 
008100 
008200 
008300 
008400 
008500 
008600 
008700 
008800 
008900· 

B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

05 SS-FIRST-LINE. 
10 FILLER 
10 SS-TITLE 

VALUE "REMOTE FILE 
10 FILLER 

05 FILLER 
05 FILLER 

VALUE "WELCOME TO THE 
05 NAME-OUTl 
05 FILLER 
05 FILLER 

VALUE 11 1 WILL NOW SEND 
05 FILLER 
05 FILLER 

VALUE "GOOD-BYE II 

05 NAME-OUT2 
05 FILLER 

LAST-SCREEN-OUT. 
05 LS-FIRST-LINE. 

10 FILLER 
10 LS-TITLE 

VALUE "REMOTE FI LE 
10 FILLER 

05 FILLER 
05 FILLER 

VALUE "TH IS MESSAGE IS 
05 NAME-OUT3 
05 FILLER 
05 SEND-MESSAGE 
05 FILLER 
05 FILLER 

VALUE 11 GOOD-BYE II 

05 FILLER 

PIC X(31) VALUE SPACES. 
PI C X ( 19) 
EXAMPLE 11

• 

PI C X (30) VALUE SPACES. 
PI C X ( 160) VALUE SPACES. 
PI C X (46) 

WORLD OF COBOL74 REMOTE FI LES, 11 

PI C X (20) . 
PI C X (94) VALUE SPACES. 
PI C X (48) 
YOUR MESSAGE TO ANOTHER STAT I ON • 11 

• 

PIC X(l32) VALUE SPACES. 
PI C X (9) 

PI C X (20) . 
PIC X(l311) VALUE SPACES. 

PI C X (31) VALUE SPACES. 
PI C X ( 19) 
EXAMPLE". 
PI C X (30) VALUE SPACES. 
PI C X (172) VALUE SPACES. 
PI C X (21) 
FROM II. 

PI C X (20) . 
PIC X(ll2) VALUE SPACES. 
PI C X (70) . 
PIC X(120) VALUE SPACES. 
PI C X (9) 

PIC X(l316) VALUE SPACES. 



B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

009000 PROCEDURE DIVISION. 
009100 
009200 OPEN-FILE. 
009300 OPEN 1-0 RMTE. 
009400 
009500 READ-AND-WRITE-DEFAULT. 
009600**** THE DEFAULT FOR THE RELATIVE STATION NUMBER IS l**** 
009700**** THIS MESSAGE GOES TO STATION WITH RSN=l. 
009800 MOVE ENTRY-SCREEN-bur TO SCREEN. 
009900 WRITE RMTE-RECORD FROM SCREEN-OUTPUT. 
010000**** THIS READ ACCEPTS THE FIRST MESSAGE SENT TO THE**** 
010100**** REMOTE FILE FROM ANY STATION ATTACHED TO IT. **** 
010200 READ RMTE INTO INPUT-SCREEN AT END 
010300 GO TO CLOSE-FILE. 
010400 WRITE-TO-LAST-READ. 
010500**** THIS WRITE IS DIRECTED TO THE RELATIVE STATION **** 
010600**** NUMBER OF THE SOURCE OF THE LAST READ. **** 
010700 MOVE YOUR-NAME TO NAME-OUTl, NAME-OUT2, NAME-OUT3. 
010800 MOVE YOUR-MESSAGE TO SEND-MESSAGE. 
010900 MOVE SECOND~SCREEN-OUT TO SCREEN. 
011000 WRITE RMTE-RECORD FROM SCREEN-OUTPUT. 
011100 WAIT 6. 
011200 WRITE-TO-DIFFERENT-STATION. 
011300**** THIS WRITE IS DIRECTED TO A DIFFERENT STATION **** 
011400**** BY CHANGING THE VALUE OF LASTSTATION. **** 
011500 IF ATTRIBUTE LASTSTATION OF RMTE = l 
011600 CHANGE ATTRIBUTE LASTSTATION OF RMTE TO 2. 
011700 IF ATTRIBUTE LASTSTATION OF RMTE = 2 
011800 CHANGE ATTR.IBUTE LASTSTATION OF RMTE TO l. 
011900 MOVE LAST-SCREEN-OUT TO SCREEN. 
012000 WRITE RMTE-RECORD FROM SCREEN-OUTPUT. 
012100 CLOSE-FILE. 
012200 CLOSE RMTE. 
012300 STOP RUN. 
012400 END-OF-JOB. 

1168622 F-9 



B I 000 Systems COBOL 74 Language Manual 
Communication Concepts and Exampl.es 

Variable 'Length Records 

Variable length records for a remote file are declared by the use of the RECORD CONTAINS and 
the RECORDS CONTAINS ... DEPENDING ON phrases in the FD statement for the remote file in 
the source code. Run-time code is generated by the compiler to handle the variable length records. 
Other than specifying one of the above phrases, the programmer need not be concerned with the pro
cessing of the variable length records except as noted in the three examples below. 

F-10 

Example l: 

000100 iDENTIFICATION DIVISION. 
000200 PROGRAM-ID. 
000300 ENVIRONMENT DIVISION. 
000400 
000500 CONFIGURATION SECTION. 
000600 
000700 SOURCE-COMPUTER. 
000800 OBJECT-COMPUTER. 
000900 
001000 INPUT-OUTPUT SECTION. 
001100 
001200 FILE-CONTROL. 
001300 SELECT RMTE 
001400 
001500 DATA DIVISION. 
001600 
001700 FILE SECTION. 
001800 FD RMTE 

VARl-METHODl. 

BlOOO. 
81000. 

ASSIGN TO REMOTE. 

001900 RECORD CONTAINS 125 TO 1940 CHARACTERS. 
002000 
002100 01 SHORT-RECORD 
002200 01 LONG-RECORD 
002300 
002400 WORKING-STORAGE SECTION. 
002500 
002600 01 REMOTE-MESSAGE. 
002700 05 SPACING-AREA 
002800 05 MESSAGE-AREA 
002900 
003000 PROCEDURE DIVISION. 
003100 
003200 OPEN-REMOTE .. 
003300 OPEN 1-0 RMTE. 
003400 WRITE-SHORT-RECORD. 

PI C X ( 125) . 
PI C X ( 1940) . 

PIC X(ll5) VALUE SPACES. 
PI C X ( 1825) VALUE SPACES. 

003500*** ONLY THE FIRST 125 CHARACTERS ARE WRfTTEN TO FILE RMTE. *** 
003600 MOVE "HELLO USER, GO AWAY. I DO NOT LIKE YOU. " 
003700 TO MESSAGE-AREA. 
003800 WRITE SHORT-RECORD FROM REMOTE-MESSAGE. 
003900 MOVE SPACES TO MESSAGE-AREA. 
004000 WAIT 4. 
004100 WRITE-LONG-RECORD. 
004200*** UP TO 1940 CHARACTERS ARE WRITTEN TO REMOTE FILE RMTE. *** 
004300 MOVE "HELLO USER. WELCOME TO THE WORLD OF VARIABLE 
004400- 11 LENGTH REMOTE FILE RECORDS. WE ARE VERY HAPPY YOU ARE 
004500- "HERE." TO MESSAGE-AREA. 
004600 WRITE LONG-RECORD FROM REMOTE-MESSAGE. 
004700 WAIT 4. 
004800 CLOSE-FILE. 
004900 CLOSE RMTE. 
005000 STOP RUN. 
005100 END-OF-JOB. 



B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

Example 2: 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. 
000300 ENVIRONMENT DIVISION. 
000400 
000500 CONFIGURATION SECTION. 
000600 
000700 SOURCE-COMPUTER. 
000800 OBJECT-COMPUTER. 
000900 
001000 INPUT-OUTPUT SECTION. 
001100 
001200 FILE-CONTROL. 
001300 SELECT RMTE 
001400 
001500 DATA DIVISION. 
001600 
001700 FILE SECTION. 
001800 
001900 FD RMTE 

VARl-METHOD2. 

BlOOO. 
BlOOO. 

ASSIGN TO REMOTE. 

002000 RECORD CONTAINS 4 TO 1944 CHARACTERS 
002100 DEPENDING ON LENGTH-IN-BYTES. 
002200 
002300 01 DEPENDING-RECORD. 
002400 05 LENGTH-IN-BYTES 
002500 05 ACTUAL-RECORD-AREA 

WORKING-STORAGE SECTION. 
01 MESSAGE-IN. 

05 HELLO 
05 MESSAGE-AREA. 

10 USER-CODE 
10 FILLER 
10 REST-OF-MESSAGE 

MESSAGE-OUT. 

PIC 9(4). 
PI C X ( 1940) . 

PI C X (6). 

PI C X (7) • 
PIC X VALUE SPACES. 
Pl C X (1932). 

002600 
002700 
002800 
002900 
003000 
003100 
003200 
003300 
003400 01 
003500 
003600 
003700 
003800 
003900 
004000 
004100 

05 GOOD-MORNING PIC X(l4) 
VALUE "GOOD MORNING, 11 

05 USER-NAME PI C X (10). 
05 INSTRUCT PI C X (36) 

VALUE 11
• CLEAR HOME AND ENTER ANY MESSAGE. 11

• 

05 FILLER PIC X(l880) VALUE SPACES. 

004200 PROCEDURE DIVISION. 
004300 OPEN-REMOTE. 
004400 OPEN 1-0 RMTE. 
004500 READ-AND-WRITE. 
004600~h'c A USER KEYS IN "HELLO 11 THEN HIS USER CODE AND PASSWORD TO ~'de 
004700** GET ON THE SYSTEM. 
004800 WAIT UNTIL READ-OK ON RMTE. 
004900 READ RMTE AT END GO TO CLOSE-FILE. 
005000 MOVE ACTUAL-RECORD-AREA TO MESSAGE-IN. 
005100 MOVE SPACES TO ACTUAL-RECORD-AREA. 
005200 MOVE 1940 TO LENGTH-IN-BYTES. 

1168622 

. ..... 
"""" 

F-11 



F-12 

B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

005300 WRITE DEPENDING-RECORD. 
005400 MOVE USER-CODE TO USER-NAME. 
005500 MOVE MESSAGE-OUT TO ACTUAL-RECORD-AREA. 
005600 MOVE 60 TO LENGTH-IN-BYTES. 
005700 WRITE DEPENDING-RECORD. 
005800 WAIT UNTIL READ-OK ON RMTE. 
005900*ENTER ANY MESSAGE AT THE REMOTE TERMINAL AND TRANSMIT** 
006000 READ RMTE AT END GO TO CLOSE-FILE. 
006100 MOVE SPACES TO MESSAGE-IN. 
006200 MOVE LENGTH-IN-BYTES TO USER-CODE. 
006300 MOVE 11 CHARACTERS = THE LENGTH OF YOUR MESSAGE 11 

006400 TO REST-OF-MESSAGE. 
006500 MOVE MESSAGE-AREA TO ACTUAL-RECORD-AREA. 
006600 MOVE 47 TO LENGTH-IN-BYTES. 
006700 WRITE DEPENDING-RECORD. 
006800 CLOSE-FILE. 
006900 CLOSE RMTE. 
007000 STOP RUN. 
007100 END-OF-JOB. 



B 1000 Systems COBOL74 Language Manual 
Communication Concepts and Examples 

Example 3: 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. 
000300 ENVIRONMENT DIVISION. 
000400 
000500 CONFIGURATION SECTION. 
000600 
000700 SOURCE-COMPUTER. 
000800 OBJECT-COMPUTER. 
000900 
001000 INPUT-OUTPUT SECTION. 
001100 
001200 FILE-CONTROL. 

VARl-METHOD3. 

81000. 
81000. 

001300 SELECT RMTE ASSIGN TO REMOTE. 
001400 
001500 DATA DIVISION. 
001600 
001700 FILE SECTION. 
001800 
001900 FD RMTE 
002000 RECORD CONTAINS 280 TO 680 CHARACTERS. 
002100 
002200 01 
002300 
002400 
002500 
002600 
002700 
002800 

OCCURS-RECORD. 
05 FILLER PIC X(120). 
05 VARIABLE-PART. 

10 FIRST-PART PIC X(80). 
10 SECOND-PART PIC X(80) 

OCCURS l TO 6 TIMES DEPENDING ON Z. 

002900 WORKING-STORAGE SECTION. 
003000 77 z PIC 9 COMP VALUE l. 
003100 01 ENTREES. 
003200 05 F LLER 
003300 05 F LLER 
003400 05 F LLER 
003500 05 F LLER 
003600 05 F LLER 
003700 05 F LLER 
003800 05 F LLER 
003900 05 F LLER 
004000 05 F LLER 
004100 05 F LLER 
004200 05 F LLER 
004300 05 F LLER 
004400 01 ENTRE -TABLE REDEFINES 
004500 05 ENTREE 
004600 
004700 PROCEDURE DIVISION. 
004800 OPEN-REMOTE. 
004900 OPEN 1-0 RMTE. 

p c x ( 15) 
p c x (65) 
p c x ( 15) 
p c x (65) 
p c x ( 15) 
p c x (65) 
p c x ( 15) 
p c x (65) 
p c x ( 15) 
p c x (65) 
p c x ( 15) 
p c x (65) 

ENTREES. 
PI C X (80) 

005000 MOVE SPACES TO OCCURS-RECORD. 
005100 MOVE II LUNCH MENU: II TO FIRST-PART. 
005200 PERFORM WRITE-REMOTE VARYING Z FROM l 
005300 CLOSE RMTE. 
005400 STOP RUN. 
005500 WRITE-REMOTE. 
005600 MOVE ENTREE (Z) TO SECOND-PART(Z). 
005700 WRITE OCCURS-RECORD. 
005800 END-OF-JOB. 

1168622 

VALUE "ONION SOUP 
VALUE SPACES. 
VALUE "FRUIT SALAD 
VALUE SPACES. 
VALUE "HAMBURGER 
VALUE SPACES. 
VALUE "FRENCH FRIES 
VALUE SPACES. 
VALUE II I CEO TEA 
VALUE SPACES. 
VALUE "ICE CREAM 
VALUE SPACES. 

OCCURS 6. 

BY l UNTIL Z > 6. 

II 

II 

II 

II 

II 

II 

F-13 



B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

COBOL74 CD (COMMUNICATION DESCRIPTION} FILES 

In addition to the use of queue files and remote files, another method exists in the COBOL74 language 
of implementing communication between a user program and remote terminals. This is described in 
the COMMUNICATION SECTION and refers to a CD (Communication Description) file. The pro
grammer specifies a symbolic queue file name, and, by means of the associated CD statement 
parameters, messages are passed to and from an actual physical file. The actual file is identified by 
the symbolic queue name. The symbolic queue name must be the name of a remote file as defined 
in the network controller if executing under the SMCS program. When the COBOL 74 program does 
the first RECEIVE or ENABLE INPUT operation, the operating system looks for a COBOL 74 queue 
file already open, with the same name as the symbolic queue name specified in the appropriate CD 
of the COBOL 74 program. If no such queue file is open, the operating system opens the file, with 
the name as specified in the symbolic queue name. If such a queue file is already open, messages to 
and from this program are directed to the queue file of the same name. Figure F-4 is a diagram of 
the concept of COBOL 74 communication description (CD) files. 

For more information and a sample program using COBOL 74 CD files, refer to COMMUNICATION 
SECTION in section 6 of this manual. 

F-14 

PROGRAM A 

SYMBOLIC QUEUE 

NAME= XYZ 
NUMBER = 1 

PROGRAM B 

MESSAGE CONTROL SYSTEM {MCS) 

REMOTE FILE 
MCSOUEUE 

NETWORK CONTROLLER 

{OPTIONAL) 

DEFINED BY THE NETWORK DEFINITION LANGUAGE {NOL) COMPILER 

G18658 

Figure F-4. COBOL 74 Communication Description (CD) Files 



PORT FILES 

B 1000 Systems COBOL 74 Language Manual 
Communication Concepts and Examples 

Port files permit communication between two processes across a Burroughs Network Architecture 
(BNA) network. The communication path must be established between both processes before any mes
sages may be read or written. A port file may contain subfiles that enable a single process to communi
cate with several other processes (one per subfile). For bidirectional message traffic, a single subfile 
is used. The BNA network keeps track of the two paths. 

Port subfiles may communicate across machine boundaries, enabling a program to communicate with 
other Burroughs host computers. Figure F-5 is a diagram of a possible port/subport communication 
path. 

HOST-A 

l USER PROCESS 

PORT 

l SUBPORT 1 J [ SUBPORT 2 J 

HOST-C 

USER PROCESS 
BURROUGHS 

NETWORK I 
ARCHITECTURE 

PORT 

1 SUBPORT l L 

L ~~ 
HOST-B 

PORT PORT 

E¥0RT1~ l SUBPORT l 
SUBPORT 2 

l 
USER PROCESS USER PROCESS 

G18659 

Figure F-5. Port/Subport Communication Path across BNA Network 

For more information on PORT files, how to use them, and the file attributes to be used with them, 
refer to sections 5, 7, and 8 in this manual and the B 1000 Systems Burroughs Network Architecture 
(BNA) llnstallation and Operation Manual. 

1168621- F-15 



B I 000 Systems COBOL 7 4 Language Manual 
Communication Concepts and Examples 

INTER-PROGRAM COMMUNICATION (IPC) 

The Inter-Program Communication (IPC) module allows communication and data sharing from one 
program to one or more other programs within the same run unit. This concept can be referenced in 
section 6 under LINKAGE SECTION in this manual. 

ROLE OF THE MESSAGE CONTROL SYSTEM (MCS) 

Any program that opens a remote file with the HEADERS option is a Message Control System (MCS) 
and can control the stations associated with that file as defined in the network controller. In addition, 
an MCS can attach and detach unassigned stations from the station list. When there is no MCS pres
ent, message transfer and control of the data communications files is handled by the operating system 
with strict adherence to the remote file station list declarations in the network controller. Two of the 
more commonly used Burroughs MCS products are briefly discussed below along with the 
COBOL 74MCS program. 

Supervisory Message Control System (SMCS) 

When multiple COBOL74 programs are executed (EX) under the SMCS program, they can open remote 
files with the same remote file name. Individual remote files are created with the same name, unique 
remote file numbers and the file attribute NUMBER.STATIONS equal to 1. When multiple users sign 
on (ON <program name>) and the NUMBER.STATIONS is greater than 1, then the SMCS program 
attempts to attach subsequent stations to the original remote file within the limits of the network con
troller. Refer to the B 1000 Systems SMCS Installation, Operation and Functional Description Manual 
for additional information. 

Likewise, under the SMCS program, multiple COBOL 74 programs can reference the same CD queue 
file name, but in this case, the programs physically share the same CD queue file (both name and num
ber are the same). The SMCS program approves the second and any subsequent attachment of 
COBOL 74 messages to an already established queue file or CD file. 

Generalized Message Control System (GEMCOS) 

Under the GEMCOS program (as under the SMCS program), multiple COBOL 74 programs can open 
the same remote file name, creating individual remote files with the same name but unique numbers. 
The GEMCOS program can attach stations to an existing open remote file or deny the second or any 
subsequent open of the same remote file name.· 

GEM COS allows the COBOL 74 CD queue file sharing function; however, the receiver of any response 
is unpredictable since GEMCOS cannot control the distribution of messages from the queue to the re
mote files. If control is necessary, remote files should be used instead of CD files. 

COBOL74MCS 

The COBOL 74MCS supports all capabilities of the ANSI 74 COBOL data communications module. 
This MCS program was designed to be run under the control of the SMCS program. 

F-16 



B 1000 Systems COBOL 74 Language Manual 

APPENDIX G 
COBOL74 ISAM FILE CONCEPTS 

INTRODUCTION 

The Indexed I-0 Module provides the capability to access records of a mass storage file in either a 
random or sequential manner. Each record in an indexed file is uniquely identified by the value of 
one primary key within that record. Additionally, each record can contain up to 98 alternate keys, for 
which duplicates are allowed. The alternate keys allow versatility in the access path for the indexed 
file. The B 1000 COBOL 74 compiler utilizes all features of the ANSI 74 syntax for the Indexed I-0 
module, including, but not limited to deletion of records, duplicates on the. alternate keys, input-output 
error monitoring through the FILE STATUS clause and the USE procedure, and versatility in access 
method and/or path. · 

Enhancements to Burroughs B 1000 COBOL 74 include 1) the AUDITED file attribute, which insures 
that each update to the file is completed and written to disk before the user program continues process
ing, 2) file handling procedures, which are resident within the operating system, as opposed to being 
compiled into the codefile of each program, 3) file management procedures that automatically recycle 
record slots, making it unnecessary to reorganize the file after deletions and additions, and 4) block 
control information (BCI) located within each block of the data file that enables re-creation of a cor~ 
rupted ISAM file or creation of a new ISAM file with the added, deleted, or altered keys from an 
existing ISAM file. 

A COBOL 74 Indexed file consists of a minimum of three files (maximum of 101 files) referred to as 
the associated files in this appendix. The associated files can only be created or accessed as an Index 
Sequential Access Method (ISAM) file while all of the associated files are resident on disk. 

ORGANIZATION 

An ISAM file consists of a minimum of three separate but related files. For each Indexed file, there 
exists one global file, one data file, and one primary index file. If the file includes alternate keys (98 
possible), there is one index file for each of the alternate keys as well. Figure G-1 demonstrates the 
relationship of the associated ISAM file structures. 

1168622 

·~ 
!MARY r-; 
~ .X FILE 

G18680 

GL09AL FILE 

' 
_.. DATA FILE ~ 

•• 
ALTERNATE ~ - INDEX FILES 

[ 
l 

Figure G-1. Relationship of the ISAM File Structures 

~ 

G-1 



B I 000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Global File Concepts 

Every ISAM file has one global file with a file type of IS.G. This file, sometimes referred to as the 
cluster file, is created along with the data file, primary index file and alternate index files (if present), 
when a file with indexed organization is opened output. The external file identifier of the global file 
is also the name of the associated files collectively referred to "the ISAM file." Physical attributes of 
the global file are set by the operating system and cannot be modified in any way. The global file 
contains all the information needed by the operating system for management of the ISAM file. It must 
be present on disk whenever the ISAM file is opened. If corruption of the global file occurs, the ISAM 
file must be rebuilt as described in this appendix. 

Some of the information f~elds in the global file are listed below: 

Name and location of all subfiles 
Number of users 
Number of users with file open for updates 
Structure information 
Version number 
Disk file header extension 
File audited or not audited 

The disk file header extension keeps track of the space available in the data file where new records 
can be added. This results in automatic recycling of record slots when records are deleted. 

Data File Concepts 

Every ISAM file has one file containing the data records. IS.D is the B file type for this file. It tells 
the operating system that the physical structure of the file is exactly like any other relative file with 
the exception that this file is one of the associated files of an ISAM file as well. 

Physical Attributes 

An ISAM file may be created using operating system default values. Alternatively, file attribute values 
describing physical size and maximum population of the ISAM data file may be declared by the user 
in the file description (FD) statement of the program creating the ISAM file. These value·s are also 
used by the operating system to establish physical sizes of the index files when created. Size-related 
file attributes include maximum number of areas, record size, records per block, blocks per area, and 
area length. · 

The relationship of the size-related attributes of a relative file or an ISAM data file is given in the 
following formula: 

Formula 1: 

(blocksize) * (blocks per area) = (area length) 

For an ISAM data file or a relative file, block control information (BCI), must be included when calcu
lating blocksize as shown below: 

Formula 2: 

(blocksize) =. (record size * records per block) + BCI 

G-2 



B 1000 Systems COBOL74 Language Manual 
COBOL74 ISAM File Concepts 

When an ISAM file is created, or records are added to the file, the operating system opens new areas 
for the data and index files as required. When the file is first created, the default value of 25 maximum 
areas is used by the operating system unless overridden by the VALUE OF AREAS clause in the FD 
statement of the program. The value of maximum number of areas of the ISAM data file is the only 
size-related file attribute that can be changed after the file has been created without re-creating the 
ISAM file and changing the programs that access that file. The maximum number of areas may in
crease to the operating system maximum of 105 when the FLEXIBLE attribute is set to TRUE within 
the program. 

NOTE 
Use of the FLEXIBLE attribute to increase the maximum number of areas 
for an existing ISAM file can cause one or more of the subfiles to exceed 
their allocated space before the data file reaches the limit of 105 areas. In 
this case, the file must be re-created with a user program. 

The value of record size may be specified by the RECORD CONTAINS integer CHARACTERS clause 
of the FD statement. If this clause is not included, the operating system obtains the record size from 
the largest record description entry for the file. The minimum record size for an ISAM data record 
is 4 bytes. 

The default value for records per block is 1 unless overridden by the BLOCK CONTAINS integer 
RECORDS clause of the FD statement in the source program. Unlike other file types in the B 1000 
system, blocking an ISAM file with the default value will not insure that as each record is updated 
it will be written to disk. When the AUDITED file attribute is set to TRUE for the ISAM file, each 
update is written to disk before control returns to the user program. 

The operating system default value for blocks per area is 500, but this can be overridden by the user 
in two separate ways. The value of blocks per area cannot be explicitly specified within the B 1000 
Systems COBOL 74 syntax, but it can be implicitly specified by including the VALUE OF AREA
LENGTH clause in the FD statement as seen in the above formulas. The desired number of blocks 
per area may also be controlled by the user by modifying the BLOCKS.PER.AREA file attribute of the 
code file for the program creating the ISAM file. 

Example: 
MODIFY <program name> FILE <file name> BLOCKS.PER.AREA= 100 

This must be done prior to the creation of the ISAM file. If the VALUE OF AREALENGTH clause 
has not been specified and BLOCKS.PER.AREA has not been modified, the operating system uses the 
default value for the ISAM data file. 

The largest value thaLcan be specified for AREALENGTH is 2097151. However, as with the previously 
listed size-related file attributes, declaring a VALUE OF AREALENGTH is optional. If the value of 
blocksize exceeds 4194 bytes, user specification of a VALUE OF AREALENGTH or modification of 
BLOCKS.PER.AREA to a value less than 500 is required. This can be seen by substituting 4194 
for the blocksize and the default of 500 blocks per area into formula 1: 

(4194) * 500 = 2097000 

An understanding of block control information (BCI) is necessary when calculating blocksize for an 
ISAM data file and also when choosing optimum values for record size and records per block. 

1168622 G-3 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Block Control Information (BCI) 

Data storage on disk media includes the concepts of bits, bytes and segments. A byte consists of eight 
bits and every 180 bytes on disk represents a new segment. A bit can be on (1) or off (0). A digit 
of information consists of four bits and can be represented by the bit pattern (example: 1011) or by 
the hexadecimal values, 0-9 and A-F. The hexadecimal representation of a byte with all bits on is 
@FF@. The (@) character delimits a hexadecimal value. A RECORD is defined as the logical unit 
of data made available to a program in an INPUT or OUTPUT command. A BLOCK is the~ physical 
unit of data that is read from disk (INPUT) or written to disk (OUTPUT). A SEGMENT is the smal
lest unit of disk that can be located and read from or written to. All space from the end of the block 
to the end of the segment or segment multiple is wasted. A knowledge of these concepts is assumed 
in the following discussion. 

The structure of an ISAM data file is exactly the same as that of any other B relative file. In relative 
file organization, each record is uniquely identified by an integer value greater than zero. This integer 
specifies the logical ordinal position of the record in the file. As each record is added to a relative 
file, a "presence" bit is turned on (a value of 1 is on, 0 is off). Block control information (BCI) consists 
of one presence bit for each record in the block plus up to seven extra bits to force the BCI to end 
on a byte boundary. An ISAM file has the added capability of record deletion. When a record is de
leted, the presence bit for that record is turned off and information in the disk file header extension 
is updated to reflect a free record slot. 

Each physical block of an ISAM data file (or relative file) starts on a segment boundary with the block 
control information. All disk space from the end of the physical block to the start of the next block 
(at the segment boundary) is allocated to the file but is wasted. The BCI for all files with blocking 
factors of 1 through 8 records per block is the same; one byte. In each case, however, only the presence 
bits for the block are significant. Unused bits in the BCI of an ISAM data file are not initialized~ 
Similarly, the BCI of an ISAM file blocked 10 records per block consists of two bytes; 10 bits 
significant and 6 bits insignificant as shown. Table G-1 shows the BCI statistics for several sample 
blocks. 

Table G-1. BCI Statistics For Several Blocking Factors 

Records 
per BCI Records Bit 

Block (bytes) Deleted Pattern 

2 1 none {llxxxxxx} 

4 1 #2 { lOllxxxx} 

8 1 none {11111111} 

10 2 #5, #8 {1111011-0llxxxxxx} 

13 2 #13 {llllllllllllOxxx} 

x = unused bits of the BCI byte 

An ISAM data file may be opened independently as a relative file. At this time the user need not be 
concerned with eliminating invalid records. The operating system handles this by using the BCI and 
the records per block value in the disk file header. 

G-4 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Efficient Blocking of the Data File 

Careful calculation of ISAM blocksize from formula 2 above and a knowledge of disk segmentation 
may result in optimum disk utilization. Table G-2 lists the percent of utilization of disk space for 
various record sizes and blocking factors for an ISAM file. 

Table G-2. ISAM Disk Utilization 

Record size Records BCI Blocksize Wasted 
(bytes) per block (bytes) (bytes) (bytes) 

32 255 32 8192 808 
89 1 1 90 90 
89 2 1 179 1 
90 181 179 
90 9 2 812 88 

440 16 2 7042 158 
440 18 3 7923 177 

The maximum blocksize allowable for an ISAM data file is 8192 bytes. 

Index File Concepts 

Percent 
Utilization 

91.00 

50.00 

99.44 

50.27 

90.22 

97.80 

97.81 

For every ISAM file there is one primary index file and one index file for each of the alternate keys. 
There can be up to 98 alternate index files. All keys are alphanumeric and may overlap, but the left
most character of overlapping keys may not start in the same location. Primary keys are unique, 
whereas alternate keys may have duplicates if declared that way when file is originally created. Dupli
cate keys are returned on INPUT in their order of introduction to the file. 

An index file consists of coarse tables and/or fine tables, collectively referred to as index tables. The 
index table entries each contain a key and an address. For a fine table, the address points to the loca
tion of the data record in the ISAM data file for that key. Fine tables are linked in one direction for 
efficient sequential access to the data records. Coarse tables exist when there is more than one fine 
table. An address entry in the coarse table points to a location in a fine table. The "coarsest" coarse 
table is called a root table. This exists when there is more than one coarse table. Figure G-2 is a simpli
fied diagram of an index file with pointers into the data file. 

1168622 G-5 



G18661 

B I 000 Systems COBOL 74 Language Manual 
COBOL 74 ISAM File Concepts 

ROOT 
TABLE 

DATA FILE 

COARSE 
TABLE 

Figure G-2. The ISAM Index and Data FiDes 

Naming Co'nvention for the ISAM File Structures 

INDEX 
FILE 

B 1000 ISAM files have been designed so that internal file management is handled completely by the 
operating system. The naming convention for ISAM files is as follows: 

The internal-file-name is the name assigned to a file by the programmer in the SELECT statement of 
the source program. The external-file-name is the name assigned to a file on disk by the operating sys
tem during creation of the file. The external-file-name has the following form: 

<family-name> I< first-name> I< second-name>. 

Family-name is the pack identifier of the file. First-name is always present. When file security is uti
lized, second-name is the file identifier and first-name is the user code. Second-name is optional when 
there is no file security. The B operating system limits each part of the external-file-name to ten char
acters. This nomenclature is explained further in the B 1000 Systems System Software Operation Guide, 
Volume 1. It is possible to change the external-file-name after creation, but for purposes of thils discus
sion, the external-file-name is assigned at creation time and is dependent: on how the creation program 
is executed and the VALUE OF TITLE clause (if present) in the source program. An ISAM file is 
referred to by the name of its global file. 

File Creation Without a User Code 

When an ISAM file is not created under a user code and the VALUE OF TITLE clause has not been 
specified, the associated files reside on the system disk and do not have a second-name. Their first
names are assigned using the ISAM naming convention: in this case a 2-digit numeric prefix is attached 
to the internal-file-name forcing truncation of the internal-file-name if it has more than eight charac
ters. The first-names of the associated files are shown below. 

G-6 

File Type 

global 
data 
primary index 
alternate index 

First Name 

<internal-file-name> 
< OOinternal-file-name > 
< Olinternal-file-name > 
< 02internal-file-name > 

through < 99internal-file-name > 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

When th~~ VALUE OF TITLE syntax ·is included in the source program, specification of a family-name 
overrides the system disk default. If both first-name and second-name are specified through the VAL
UE OF TITLE syntax, it is necessary for the second-names to be unique in the first eight digits. The 
external file identifiers are as follows: 

File Type 

global 
data 
primary index 
alternate index 

External File Identifier 

<family-name> I< first-name> I< second-name> 
<family-name> I< first-name> I< OOsecond-name > 
<family-name> I< first-name> I< Olsecond-name > 
<family-name> I< first-name> I< 02second-name > 

through < 99second-name > 

When a second-name is not specified, the ISAM naming convention applies to the first-name as fol
lows: 

File Type 

global 
data 
primary index 
alternate index 

External File Identifier 

<family-name> I< first-name> I 
<family-name> I< OOfirst-name >I 
<family-name> I< Olfirst-name >I 
<family-name> I< 02first-name >I 

through < 99first-name >I 

File Creation Under a User Code 

When an ISAM file is created under a user code and a VALUE OF TITLE clause is not specified, 
the user code becomes the first-name and the internal-file-name becomes the stem for attaching the 
numeric prefix as above, but now this becomes the second-name of the external-file-name. The default 
pack for the user code is the family-name. 

File Type 

global 
data 
primary index 
alternate index 

External File Identifier 

<default pack> I< (user code)> I< internal-file-name> 
<default pack> I< (user code)> I< OOinternal-file-name > 
<default pack> I< (user code)> I< Olinternal-file-name > 
<default pack> I< (user code)> I< 02internal-file-name > 

through < 99internal-file-name > 

When an ISAM file is created under a user code, the VALUE OF TITLE clause can override the de
fault pack; otherwise, the family-name is the default pack for the user code. An ISAM file created 
under a user code will always have a first-name and second-name. The VALUE OF TITLE clause can 
override the user code as the first-name, but the ISAM naming convention for the associated files is 
always applied· to the second-name of the file. 

When an ISAM file is opened output, all of the associated files are created and entered into the disk 
directory at that time, automatically removing any existing files with the same names. For this reason, 

·care should be taken to insure that names to which the ISAM naming convention is applied are unique 
to the first eight characters. For example, if the ISAM file Userl/(SBPC)/Inventory exists and the file 
Userl/(SBPC)/Inventors is opened output, creation of the data file for the Inventors file, 
Userl/(SBPC)/OOinventor, will remove the data file for the Inventory file. The same thing occurs for 
the primary index file, and alternate index files, if they exist. 

1168622 G-7 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Changing the Name of an ISAM File 

The B 1000 Systems operating system command CHANGE can be used to change the name of any 
of the associated files of an ISAM file individually, but this renders the files unusable as an ISAM 
file. The global file contains information needed by the operating system to process the associated files 
as an ISAM file. This information can only be changed using the system utility program SYSTEM/IS
MAINT as described later in this appendix. : 

ISAM ACCESS METHODS 

The access method for an ISAM file can be SEQUENTIAL, RANDOM, or DYNAMIC. Programming 
examples are located at the end of this appendix. 

Sequential access refers to access via ascending order of the key of reference. The primary key is the 
default key of reference. In order to change the access path, the ST ART verb must be specified, with 
the data-name referring to the name of the key desired. For the necessary syntax for the START state
ment, refer to section 7 in this manual. 

Random access requires specification of a key value. The key of choice is declared in the syntax of 
the READ, WRITE and _DELETE statements (refer to section 7). 

Dynamic access allows the user program to use either sequential access or access via key value. 

MULTIPLE USERS OF AN ISAM FILE 

An ISAM file may have more than one user at any one time and still retain its integrity. A user is 
loosely defined as an "opener" of the file. A program may open one ISAM file with more than one 
access method at the same time, and/or more than one program can open the file at the same time. 
The latter represents multiple users of the file. The internal-file-names within one program must be 
unique in the SELECT statements, while the VALUE OF TITLE clauses in the FD statements relate 
the internal-file-names to the same physical file for all users. 

As each user opens the file, the operating system creates a File Information Block (FIB) connecting 
that user to the only copy of the global file in memory for the ISAM file. The FIB contains informa
tion specific to that user and remains in memory until the user closes the file. 

The global file contains all the information needed for system management of the file. It points to 
and contains information on all of the structures of the ISAM file. When in memory, each block of 
the data file is one buff er, and each table of the index files is also one buff er. As many buffers as 
needed are in memory at any one time, but there is never more than one copy (the latest) of any one 
block. There is a current-pointer for each user that associated with each index file in memory. This 
current maintains the pointer into that index file for the user. 

Since there is only one copy of any of the ISAM structures in memory at any time, each user has 
access to the most recent data for the ISAM file. Simultaneous updating of an ISAM file does not 
occur since a buffer being updated is marked by the operating system and cannot be used by any other 
process until that update is completed. Figure G-3 is a simplified diagram relating two users and one 
ISAM file in memory. STRUCTURE 0 represents the data file and STRUCTURE 1 represents the pri-
mary index file. · 

t 1 ~ , 

G-8 



G18662 

USER 1 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

USER 2 

~b--~OB}-1 --~ 
_______ ] 

STRUCTURE 0 -----· ----·-I DFH 

~FFER 1 ~----------· .... I BUFFER 21...,. .. --~ • • • 

STRUCTURE 1 DFH 

CURRENT-1 CURRENT-2 

BUFFER 1 ... ~..._--------41•---. I BUFFER 2 I-·--·~ ... 

Figure G-3. Relationship of Two Users to the ISAM Structures 

When an update to a record in an ISAM file occurs, each buffer that has been changed is marked 
by the operating system as needing to be written to disk. As long as the operating system has no de
mand on the memory space, those buffers remain in memory. The actual physical file on disk is not 
updated until the I/O occurs and the buffers are written to disk. When an update user closes the fiJe, 
the ISAM file is written from memory to disk even if other users remain attached to the ISAM file. 

The AUDITED file attribute was introduced for ISAM files as·a patch to the B 1000 System Software 
in the Mark 10.0 release. Use of this attribute reduces the possibility for data loss in case of a system 
halt when an ISAM file is open for update. 

The AUDITED File A1ttribute 

The AUDITED file attribute is especially designed for maintaining the integrity of an ISAM file in 
an online environment where the actual 1/0 time is small compared to the elapsed time. When VALUE 
OF AUDITED IS TRUE is specified in the FD description, or the codefile is modified to true for this 
attribute of the ISAM file, each update to the file is written to disk before control is returned to the 
]program. If a system halt occurs when an audited ISAM file is open for update, recovery procedures 
for that file are simplified considerably, as seen in table G-3. 

When an ISAM file is open for update, it is possible that the operating system is 1) updating the global 
file or one of the index files, 2) updating the data file, or 3) not doing an update at all. Recovery 
of an ISAM file after a CLEAR/START depends on which of these three possibilities was happening 
and whether or not the file was AUDITED. Table G-3 lists the recovery procedures for all cases. The 
entries in this table reflect operating system messages that are issued the first time the file is opened 
as an ISAM file after a CLEAR/START operation. 

1168622 G-9 



Global or index 
file update in 
process 

Data file update 
in process 

No updates in 
process 

B I 000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Table G-3. ISAM File Recovery 

AUDITED 

Must rebuild or OK to 
continue 

Message indicates possible 
loss of one data record, 
continuation is automatic 

Message indicates file 
open for update during 
system halt, continuation 
is automatic 

NOT AUDITED 

Must rebuild or run 
SYSTEM/ISVERIFY to 
verify validity of file 

Must rebuild or run 
SYSTEM/ISVERIFY to 
verify validity of file 

Must rebuild or run 
SYSTEM/ISVERIFY to 
verify validity of file 

When there are multiple users of an ISAM file, the file remains in an audited state until all users 
specifying AUDITED have closed the file. Since only one copy of the file is in memory, while one 
user is auditing, all users are auditing. 

Rebuilding an ISAM file can be accomplished by a user program similar to the example at the end 
of this appendix or by use of the B 1000 s~stem utility program, CREATE/ISAM. 

SYSTEM UTILITY PROGRAMS FOR ISAM FILE MAINTENANCE 

Three B 1000 system utility programs exist for specific use with ISAM files: CREATE/ISAM, 
SYSTEM/ISVERIFY, and SYSTEM/IS~MAINT. They are explained briefly below. Refer to the B 1000 
Systems System Software Operation Guide, Volume 2, for more detailed information on each program. 

CREA TE/I SAM 

The purpose of this utility program is to generate an ISAM file from an existing data file. The existing 
data file can be an ISAM data file or a sequential data file. 

The CREA TE/ISAM utility program may be executed by means of three interfaces; a screen interface, 
an ODT interface and a card interface. 

This utility program can be used to create the associated files on different disk packs or on a default 
pack. It can be used to build an ISAM file with added, deleted or altered keys for special purposes, 
while maintaining the original file. In the case of file recovery, the utility program can be used to re
create an ISAM file whose global or index files have become corrupt. 

The CREA TE/ISAM utility program should not be used to rebuild an ISAM file if new blocking is 
desired. The blocking factors of the input data file are used to create the blocking factors of the new 
ISAM data file. The user has control over this information only with a user program. 

The CREA TE/ISAM utility program does not allow creation of an ISAM file whose output data file 
has the same file identifier as the input data file. 

G-10 



SYSTEM/ISVERIFY 

B I 000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

The purpose of this utility program is to verify the integrity of an ISAM file. The program will: 

List information contained in the global file 
List structure information for data and index files 
Verify mapping of index file(s) onto the data file 
Verify global file information 
Verify the overall structure of all index files 
Notify the user about the condition of the ISAM file 

When the SYSTEM/ISVERIFY utility program finds that there is no problem with the integrity of 
the file, it changes the integrity bit in the cluster file allowing user access to the ISAM file. 

It is not possible for any system utility program to verify the integrity of the data within the ISAM 
data file. This can only be accomplished with a user program, because only the user knows what consti
tutes valid data in his file. 

SYSTEM/IS-MAI NT 

This system utility program performs library maintenance functions on ISAM files. A few of the more 
important commands and their functions are listed below. 

The CHANGE command is used to change the names of an )SAM file in the disk directory. At the 
same time, it modifies the data in the global file to reflect the new names. This command can only 
be used when the pack identifier remains the same. 

The COPY command may be used to copy an of the associated files of an ISAM file to another disk 
or to tape. Only the name of the global file need be entered, no matter how many index files exist. 
If the me is copied to another disk, the update command must be used to modify the information 
within the global file. 

The LIST ODT command lists the names of all the associated files of an ISAM file. It is good practice 
to use this command after any change to verify the accuracy of the changes. 

The UPDATE command is the only way to correct the information within the global file when it be
comes necessary to move an ISAM file or subfile~ of the ISAM file to another disk pack. 

RPG COMPATIBILITY 

COBOL74 ISAM files can be accessed or created by RPG programs as well as COBOL74 programs. 
If an ISAM file is to be accessed by RPG programs, the key length must be limited to 23 alphanumeric 
bytes. For further information refer to the B 1000 Systems Report Program Generator (RPG) Reference 
Manual. 

PROGRAMIVllNG EXAMPLES 

Three COBOL 74 source programs are listed below. Each program demonstrates a variety of features 
and constructs des9ribed earlier in this appendix. 

1168622 G-11 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Creating an ISAM File 

G-12 

000100 
000200 
000300 
000400 
000500 
000600 
000700 
000800 
000900 
001000 
001100 
001200 
001300 
001400 
001500 
001600 
001700 
001800 
001900 
002000 
002100 
002200 
002300 
002400 
002500 
002600 
002700 
002800 
002900 
003000 
003100 
003200 
003300 
003400 
003500 
003600 
003700 
003800 
003900 
004000 
004100 
004200 
004300 
004400 
004600 
004700 
004800 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CREATE-ISAM. 
ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

Bl000. 
Bl000. 

SELECT MYISAMFILE ASSIGN TO DISK 
ORGANIZATION IS INDEXED 
ACCESS IS DYNAMIC 
RECORD KEY IS EMPL-NUM 
ALTERNATE RECORD KEY IS EMPL-NAME 
ALTERNATE RECORD KEY IS DEPARTMENT 

WITH DUPLICATES 
FILE STATUS IS ISAM-STAT. 

DATA DIVISION. 

FILE SECTION. 
FD MYISAMFILE 

01 

RECORD CONTAINS 89 CHARACTERS 
BLOCK CONTAINS 16 RECORDS 
VALUE OF TITLE IS ISAM-NAME 
VALUE OF AREAS IS 105 
VALUE OF AUDITED IS FALSE. 

ISAM-REC. 
05 EMPL-NUM. 

10 SOC-SEC PIC 
10 DEPARTMENT PIC 

05 EM PL-NAME PIC 
05 FILLER PIC 

WORKING-STORAGE SECTION. 
01 ADD-COUNT PIC 
01 REJECT-COUNT PIC 
01 ADD-MORE-FLAG PIC 

88 THATS-ALL VALUE 11 N0 11
• 

·01 ISAM-STAT PIC 

X(ll). 
X( 4). 
x ( 20) • 
x ( 54) . 

9(4) 
9(4) 
X( 3) 

xx 
88 WRITEOK VALUE "00" I 11 02 11

• 

01 ISAM-NAME PIC X(35) 

VALUE 
VALUE 
VALUE 

VALUE 

VALUE 

ZE:RO. 
ZERO. 
"YES". 

SPACES. 

SPACES. 



B 1000 Systems· COBOL74 Language Manual 
COBOL74 ISAM File Concepts 

004900 PROCEDURE DIVISION. 
005000 

PUT-FILE-IN-DIRECTORY. 005100 
005200 
005300 
005400 
005500 
005600** 
005700** 
005800** 
005900 
006000 
006100 
006200 
006205 
006210 
006300 
006400 
~)06500 

006600 
{'.)06700 
006800 
006900 
007000 
Q)07100 
007200 
007300 
007400 
~H37500** 
007600 
~m1100 
007800 
007900 
008000 
~W8100 

008200 
008300 
008400 
008600 
008800 
~rn8900 
009000 
~rn9100 
009200 
009300 
009400 
009500 

DISPLAY "THIS PROGRAM IS GOING TO REMOVE OLD FILE " 
MOVE II (KARIN)/C74ISAM ON S" 1ro ISAM-NAME. 

1168622 

OPEN OUTPUT MYISAMFILE. 
CLOSE MYISAMFILE. 

ALL OF THE ASSOCIATED FILES ARE IN THE DISK 
DIRECTORY, AND CAN BE ACCESSED BY OTHER USERS AT 
THIS TIME. 

LOAD-DYNAMIC. 
CHANGE ATTRIBUTE AUDI 1rED OF MYISAMFILE TO TRUE. 
OPEN I-0 MYISAMFILE. 
IF ISAM-STAT NOT = 11 00" 

DISPLAY "STATUS IS II 

PERFORM GET-INFORMATION 
PERFORM DISPLAY-TOTALS. 
CLOSE MYISAMFILE SAVE. 
STOP RUN. 

GET-INFORMATION. 

ISAM-STAT. 
UNTIL THATS-ALL. 

** 
** 
** 

DISPLAY "ENTER EMPLOYEE NAME: LAST NAME, FIRST NAME". 
ACCEPT EMPL-NAME. 
DISPLAY "ENTER SOCIAL SECURITY NUMBER: XXX-XX-XXXX". 
ACCEPT SOC-SEC. 
DISPLAY "ENTER 4-DIGIT DEPARTMENT NUMBER". 
ACCEPT DEPARTMENT. 

VALIDATION PROCEDURES FOR EACH ENTRY GO HERE. 
PERFORM HANDOM-WRITE. 
IF WHITEOK 

DISPLAY "ENTRY ADDED" 
ELSE 

** 

DISPLAY "ENTRY NOT ADDED, STATUS = 11 ISAM-STAT. 
DISPLAY "MORE RECORDS TO ADD, YES OR NO? " 
ACCEPT ADD-MORE-FLAG. 

RANDOM-WRITE. 
WRITE ISAM-REC INVALID KEY 

ADD 1 TO REJECT-COUNT. 
IF WRITEOK 

ADD 1 TO ADD-COUNT. 

DISPLAY-TOTALS. 
DISPLAY "RECORDS ADDED = 11 ADD-COUNT. 
DISPLAY "RECORDS REJECTED = II REJECT-COUNT. 
DISPLAY II ****** GOOD-BYE ******" 

G-13 



B 1000 Systems COBOL 74 Language Manual 
COBOL 74 ISAM File Concepts 

Updating an ISAM File 

G-14 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. UPDATE-ISAM. 
000300 ENVIRONMENT DIVISION. 
000400 
000500 CONFIGURATION SECTION. 
000600 
000700 SOURCE-COMPUTER. 
000800 OBJECT-COMPUTER. 
000900 
001000 INPUT-OUTPUT SECTION. 
001100 

FILE-CONTROL. 

Bl000. 
Bl000. 

SELECT MYISAMFILE ASSIGN TO DISK 
ORGANIZATION IS INDEXED 
ACCESS IS DYNAMIC 

001200 
001300 
001400 
001500 
001600 
001700 
001800 
001900 

RECORD KEY IS EMPL-NUM 
ALTERNATE RECORD KEY IS EMPL-NAME 
ALTERNATE RECORD KEY IS DEPARTMENT 

WITH DUPLICATES 
002000 
002100 

FILE STATUS IS ISAM-STAT. 

002200 DATA DIVISION. 
002300 

FILE SECTION. 
FD MYISAMFLLE 

002400 
002500 
002600 
002700 
002800 

VALUE OF TITLE IS ISAM-NAME 
VALUE OF AUDITED IS TRUE. 

002900 01 
003000 
003100 
003200 
003300 
003400 
003500 
003600 
003700 

ISAM-REC. 
05 EMPL:....NUM. 

10 SOC-SEC 

05 
05 
05 
05 

10 DEPARTMENT 
EM PL-NAME 
EVENT 
EVENT-DATE 
FILLER 

003800 WORKING-STORAGE SECTION. 
003900 01 ISAM-STAT 
004000 88 DELETEOK 
004100 88 READOK 
004200 88 WRITEOK 
004300 88 END-OF-FILE 
004400 88 INVALID-KEY 
004500 88 END-DUP-KEY 
004600 01 ISAM-NAME 
004700 
004800 PROCEDURE DIVISION. 
004900 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

00 . 
00 I 

00 I 

10 . 
21 I 

00 . 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

X(ll). 
X( 4). 
X(20). 
X(l0). 
9(6). 
X(38). 

PIC XX 

11 02 11
• 

11 02 11
• 

VA.LUE SP.A.CES. 

"22 II I 
11 23 11

, 
11 24 11

• 

PIC X(35) VALUE SPACES. 



mZJ5000 
005100 
005200 
,305300 
005400 
,305500 
005600 
005700 
005800 
005900 
006000 

B I 000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

MAIN-DRIVER. 
MOVE "(KARIN)/C74ISAM ON S" TO ISAM-NAME. 
OPEN I-0 MYISAMFILE. 
PERFORM READ-SEQUENTIAL-DEFAULT. 
PERFORM READ-SEQUENTIAL-ALTERNATE. 
PERFORM ADD-RANDOM-WRITE. 
PERFORM UPDATE-RANDOM-REWRITE. 
PERFORM DELETE-RANDOM. 
CLOSE MYISAMFILE. 
STOP RUN. 

006100 READ-SEQUENTIAL-DEFAULT. 
006200** AFTER OPEN, CURRENT RECORD POINTER FOR THIS USER IS ** 

, 006300** POSITIONED AT FIRST RECORD OF PRIMARY KEY. 
006400 PERFORM READ-NEXT UNTIL END-OF-FILE. 
006500 DISPLAY "THIS IS 'l1HE END OF THE FILE. 11

• 

006600 
006700 READ-SEQUENTIAL-ALTERNATE. 
006800** IT IS NECESSARY TO CHANGE THE KEY OF REFERENCE 
'306900** WHEN READING SEQUENTIALLY VIA AN ALTERNATE KEY. 
007000** THE START STATEMEN'I' CHANGES THE KEY HERE. 
007100 MOVE 11 PA&S 11 TO DEPARTMENT. 
007200 S'l1ART MYISAMFILE KEY IS EQUAL TO DEPARTMENT 
007300 INVALID KEY 
007400 DISPLAY "NO RECORDS FOR DEPARTMENT PA&S". 

** 

** 
** 
** 

007500 
,307600** 
007700** 
007800** 
007900** 
008000** 
008100** 
008200** 
'"'8300** 
,308400** 

THE FILE STATUS IS 11 00 11 WHEN THE START IS ** 

008500 
008600 
008700 
'008800 
008900 
009000 
009100 
009200 
009300 
009400 
009500 

1168622 

SUCCESSFUL. IT BECOMES 11 02 11 AFTER A SUCCESSFUL ** 
READ .••.. NEXT VIA AN ALTERNATE KEY PATH WITH ** 
DUPLICATES. ON THE LAST READ OF THE ALTERNATE KEY,** 
THE FILE STATUS WILL CHANGE TO 11 00". IN ORDER TO ** 
USE THIS CHANGE OF STATUS TO MARK THE END OF THE ** 
ALTERNATE KEY PATH, IT IS NECESSARY TO SET THE FILE** 
STATUS TO A VALUE OTHER THAN 11 00 11 BEFORE THE FIRST ** 
READ ..... NEXT OPERATION IS PERFORMED. ** 

IF' ISAM-STAT = 11 00 11 

MOVE "XX" TO ISAM-STAT 
PERFORM READ-NEXT UNTIL END-DUP-KEY 
DISPLAY "END OE' DEPARTMENT 11 DEPARTMENT. 

READ-NEXT. 
READ MYISAMFILE NEXT 

NEXT SENTENCE. 
IF' READOK 

AT END 

DISPLAY "SEQ READ ON II EMPL-NAME II II DEPARTMENT. 

G-15 



G-16 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

009600 ADD-RANDOM-WRITE. 
009700 
009800 
009900 
010000 
010100 
010200 
010300 
010400 
010500 

MOVE 11 K0 11 TO EMPL-NAME. 
MOVE 11 571-92-2758UCSC" TO EMPL-NUM. 
MOVE "NEW HIRE 11 TO EVENT. 
MOVE 11 850623 11 TO EVENT-DATE. 
WRITE ISAM-REC INVALID KEY 

DISPLAY "INV. KEY ON WRITE 11 EMPL-NAME EMPL-NUM. 
IF WRITEOK 

DISPLAY "RECORD ADDED " EMPL-NAME EMPL-NUM. 

010600 UPDATE-RANDOM-REWRITE. 
010700** A REWRITE OPERATION MUST FOLLOW A SUCCESSFUL READ. ** 

-010800** THEREFORE, IT IS IMPERATIVE TO CHECK FILE STATUS . 
010900** AFTER THE READ, BEFORE THE REWRITE. 
011000 MOVE 11 565-50-7656PA&S" TO EMPL-NUM. 
011100 READ MYISAMFILE INVALID KEY 
011200 DISPLAY "INVALID READ ON 11 EMPL-NUM. 
011300 IF READOK 
011400 MOVE "PROMOTION II TO EVENT 
011500 MOVE 11 840103 11 TO EVENT-DATE 
011600 REWRITE ISAM-REC INVALID KEY 
011700 DISPLAY "INVALID REWRITE ON 11 .EMPL-NUM. 
011800 IF WRITEOK 
011900 DISPLAY "UPDATE OK ON II EMPL-NAME II II EMPL-NUM. 
012000 
012100 
012200 
012300 
012400 
012500 
012600 

DELETE-RANDOM. 
MOVE 11 103-20-4373PA&S" TO EMPL-NUM. 
DELETE MYISAMFILE INVALID KEY 

DISPLAY "INVALID DEL~TE ON " EMPL-NUM. 
IF DELETEOK 

DISPLAY "DELETE OK ON II EMPL-NUM. 

** 
** 



B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

Rebuilding an ISAM File from an ISAM DAT A File 

000100 
012'0200 
000300 
000400 
000500 
0(2'0600 
000700 
000800 
000900 
0'H000 
001100 
001200 
'~HH300 
''.HH400 
001500 
'2HH600 
001700 
001800 
~HH900 

002000 
002100 
002200 
002300 
002400 
002500 
0~'2600 

1168622 

IDENTIFICATION DIVISION. 
PROGRAM-ID. REBUILD-ISAM. 
ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-·COMPUTER. 
OBJECT-·COMPUTER. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

Bl000. 
Bl000. 

SELECT OLDDATAFILE ASSIGN TO DISK 
ORGANIZATION IS RELATIVE 
ACCESS IS SEQUENTIAL 
FILE STATUS IS RELA-STAT. 

SELECT MYISAMFILE ASSIGN TO DISK 
ORGANIZATION IS INDEXED 
ACCESS IS DYNAMIC 
RECORD KEY IS EMPL-NUM 
ALTERNATE RECORD KEY IS EMPL-NAME 
ALTERNATE RECORD KEY IS DEPARTMENT 

WITH DUPLICATES 
FILE S'rA'rus IS ISAM-STAT. 

G-17 



G-18 

B 1000 Systems COBOL 74 Language Manual 
COBOL74 ISAM File Concepts 

002700 DATA DIVISION. 
002800 

FILE SECTION. 
FD OLDDATAFILE 

002900 
003000 
003100 
003200** 
003300** 
003400** 
003500** 
003600** 
003700** 
003800 

VALUE OF TITLE IS RELA-NAME. 
THERE ARE 89 CHARACTERS PER RECORD, 

16 RECORDS PER BLOCK AND 
500 BLOCKS PER AREA FOR THIS FILE, AS 

CREATED BY THE USER PROGRAM, CREATE-ISAM. SINCE 
THIS FILE IS OPENED INPUT, THESE VALUES DO NOT 
HAVE TO BE INCLUDED IN THIS PROGRAM. 

** 
** 
** 
** 
** 
** 

003900 01 RELA-REC 
004000 

PIC X(89). 

004100 Im 
004200 
004300 
004400 
004500 
004600** 
004700** 
004800** 
004900** 
005000** 
005100** 
005200** 
005300** 
005400** 
005500** 
005600** 

MYI SAMF' I LE 
BLOCK CONTAINS 16 RECORDS 
VALUE OF TITLE IS ISAM-NAME 
VALUE OF AUDITED IS FALSE 
VALUE OF AREALENGTH IS 1426000. 

ONE REASON FOR REBUILDING AN ISAM FILE WITH A USER ** 
PROGRAM IS TO CHANGE THE BLOCKING FACTORS. IN THIS** 
CASE, IT IS DESIRED TO MAKE THE CAPACITY OF THE NEW** 
ISAM FILE GREATER. SPECIFYING A VALUE OF 14260'30 ** 
FOR THE AREALENGTH WILL FORCE THE NUMBER OF BLOCKS ** 
PER AREA TO· 1000, WITH THE SAME INPUT VALUES OF 16 ** 
RECORDS PER BLOCK, AND 105 MAXIMUM AREAS. THIS ** 
DOUBLES THE CAPACITY OF THE NEW ISAM FILE BUT NONE ** 
OF THE OLD UPDATE PROGRAMS NEED BE RECOMPILED.. ** 

** ** AUDITING A REBUILD PROGRAM SUCH AS THIS IS NOT 
PRACTICAL SINCE IT WOULD BE LESS TIME CONSUMING TO ** 
RE-EXECUTE THE PROGRAM IN CASE OF A FAILURE. 

ISAM-REC. 
05 EMPL-NUM. 

05 
05 
05 
05 

10 SOC-SEC 
10 DEPARTMENT 
EMPL-NAME 
EVENT 
EVENT-DATE 
FILLER 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

X(ll). 
x ( 4). 
X(20). 
X(l0). 
9 ( 6) • 
X(38). 

** 

WORKING-STORAGE SEC'rION. 
01 RECORD-COUNTS. 

005700** 
005800** 
005900 01 
006000 
006100 
006200 
006300 
006400 
006500 
006600 
006700 
006800 
006900 
007000 
007100 
007200 
007300 01 
007400 
007500 
007600 01 
007700 
007800 
007900 01 
008000 01 
008100 

05 READ-COUNT 
05 GOOD-WRITE-COUNT 
05 BAD-WRITE-COUNT 
ISAM-STAT 
88 WRITEOK 
88 INVALID-KEY 
RELA-STAT 
88 READOK 
88 END-OF-FILE 
ISAM-NAME 
RELA-NAME 

VALUE 
VALUE 

VALUE 
VALUE 

11 00 11 
I 

11 21 11 
I 

"00" I 

11 10". 

Pre· 9(6) 
PIC 9(6) 
PIC 9(6) 
PIC XX 
11 02 11

• 

VALUE :ZERO. 
VALUE ZERO. 
VALUE ZERO. 
VALUE SPACES. 

"22" I "23" I "24" • 
PIC XX VALUE SPACES. 
"02 II• 

PIC X(35) VALUE SPACES. 
PIC X(35) VALUE SPACES. 



B 1000 Systems COBOL74 Language Manual 
COBOL 74 ISAM File Concepts 

008200 PROCEDURE DIVISION. 
008300 
008400 REMOVE-OLD-ISAM. 
008500** THE OPEN OUTPUT STATEMENT WILL REMOVE ALL OF THE ** 
008600** ASSOCIATED FILES OF THE OLD ISAM FILE SO I'l1 IS ** 
008700** ABSOLUTELY NECESSARY TO CHANGE THE NAME OF THE OLD ** 
ernBB00** DATA FILE BEFORE THIS PROGRAM IS EXECUTED. ** 
008900*~k EXAMPLE: ** 
0~'9000*~k *Z USER KARIN/BESTFRIEND CHANGE 00C74ISAM TO OLDDATA** 
009100 MOVE "(KARIN)/C74ISAM ON S" TO ISAM-NAME. 
009200 OPEN OUTPUT MYISAMFILE. 
0f,9300 CLOSE MYISAMFILE. 
0~,9400 

009500 
0e,9600 
ern9700 
009800 
009900 
010000 
010100 
010200 
010300 
010400 
010500 
010600 
010700 
010800 
010900 
011000 
011100 
011200 
011300 
011400 
011500 
011600 
011700 
011800 
011900 
012000 

1168622 

PROCESS-TRANSFER-OF-DATA. 
MOVE "(KARIN)/OLDDATA ON S" TO RELA-NAME. 
OPEN I-0 MYISAMFILE. 
OPEN INPUT OLDDATAFILE. 
PERFORM READ-AND-WRITE-LOOP UNTIL END-OF-FILE. 
CLOSE MYISAMFILE 

OLDDA'l1AFILE. 
PERFORM TOTALS. 
S'l'OP RUN. 

READ-AND-WRITE-LOOP. • 
READ OLDDATAFILE AT END ' 

DISPLAY "END OF OLD DATA FILE". 
IF READOK 

ADD 1 TO READ-COUNT 
WRITE ISAM-REC FROM RELA-REC INVALID KEY 

ADD 1 TO BAD-WRITE-COUNT 
DISPLAY "INVALID WRITE ON ," EMPL-NUM. 

IF READOK AND HRITEOK 
ADD 1 TO GOOD-WRITE-COUNT. 

TOTALS. 
DISPLAY "READS ON OLD DATA FILE = " RE.AD-COUNT. 
DISPLAY "WRITES TO NEW ISAM FILE = " GOOD-WRITE-COUNT. 
DISPLAY "BAD WRITES TO NEW FILE = 11 BAD-WRITE-.COUNT. 
DISPLAY "****** GOOD-BYE ******" 

G-19 



B 1000 Systems COBOL 74 Reference Manual 

[ ] · (brackets) 2-2 
. ( period ) 2 - 2 
•• ., (ellipsis) 2-2 
; (semicolon) 2-2 
, (comma) 2-2, 2-3 
@ (at sign) 2-11 
' (apostrophe) 2-1 
" (quotation mark) 2-10 
{ J (braces) 2-1 

ACCEPT 7...;.34 
ACCEPT MESSAGE COUNT 7-36 
ACCESS MODE 5-12 
ADD 7-37 
Advantages of COBOL74 xxi 
Algebraic Signs 2-15 
alignment rules 2-16 
ALL<literal> 2-8 
ALTER 7-·12, 7-40 

INDEX 

ANS~ 74 COBOL, Burroughs extensions to xix 
AREALENG'I'H 8-8 
AREAS 8-·8 
arithmetic expression rules 7~15 
arithmetic expression, characters used in 2-3 
Arithmetic Expressions 7-15 
Arithmetic Operators 7-15 
Arithmetic Statements 7-30 
ASCII-7 sequence, B 1000 codes in C-7 
AT END 5-18, 7-3 
ATTERR 8-8 
attributes, explicit and implicit 2-23 
AUDITED 8-8 
AUDITED file attribute G-9 

BACKUPKIND 8-8 
BAC.KUPPERMITTED 8-8 
BCI (Block Control Information) G-4 
BEGIN-TRANSACTION 9-11 
BLANK WHEN ZERO 6-25 
BLOCK 8-8 
BLOCK CONTAINS 6-8 
blocking, data file G-5 
BLOCKSIZE 8-8 
BLOCKSTRUCTURE 8-8 
Braces 2-1 
Brackets 2-2 
BUFFERS 8-9 

CALL 7-41 

1168622 



2 

B 1000 Systems COBOL74 Reference Manual 

INDEX (CONT} 

CANCEL 7-45 
CD (communication description) files F-14 
CENSUS 8-9 
CHANGE 8-5 
CHANGEDSUBFILE 8-9 
CHANGEEVENT 8-9 
Character Set 2-2 
Character-Strings 2-5, 6-35 

PIC 1rURE 6-35 
Characters Used for Words 2-3 
Characters Used in Arithmetic Expressions 2-3 
characters used in editing 2-3 
characters used in punctuation 2-3· 
Characters Used in Relation Conditions 2-4 
characters used in words 2-3 
characters, control and special C-7 
characters, special 2-2 
CLOSE 7-46, 9-12 
COBOL74 COMPILER CONTROL 11-1 
COBOL74 Syntax Summary B-1 

Format 1: B-2 
Format 2: B-2 
General Format for Environment Division B-2 
General Format for Identification Division B-1 

CODE-SET 6-10 
Codes C-1 
CODING FORM 3-1 

Area A (Positions 8 ·through 11) 3-3 
Area B (Positions 12 through 72) 3-3 
Blank Lines 3-4 
Field Definitions 3-1 
General 3-1 
Identification (Positions 73 through 80) 3-4 
Indicatpr Area (Record Position 7) 3-1 
Punctuation 3-4 
Right Margin (Position 72) 3-3 
Sample Coding 3-4 
Sequence Area (Record Positions 1-6) 3-1 

Coding the ENVIRONMENT DIVISION 5-26 
Coding the FILE SECTION 6-6 
Coding the LINKAGE SECTION 6-61 
Coding the WORKING-STORAGE SECTION 6-58 
combined relation conditions, abbreviated 7-25 
comma 2-2 
communication description (CD) files F-14 
Communication Description Structure 6-66 
COMMUNICATION SECTION 6-65 
Compiler control 11-1 

+integer 11-6 



B 1000 Systems COBOL74 Reference ·Manual 

INDEX (CONT) 

? COMPILE record 11-2 
Boolean Expressions 11-4 
CCI Options 11-4 
CODE 11-5 
Compilation Source File 11-2 
DEBUG ERRMESS 11-5 
DEBUG TIME 11-5 
DELETE 11-5 
DOUBLE 11-5 
FEDLEVEL = ~nteger-1 11-6 
file illustration 11-2 
General 11-1 
Input 11-1 
integer 11-6 
LIBRDOLLAR 11-5 
LIST 11-5 
LISTDELETED 11-5 
.LISTDOLLAR 11-5 
:LISTOMITTED 11-6 
:LISTP 11-6 
:LIST! 11-5 
MAP .11-6 
MERGE 11-6 
NEW 11-6 
NEWID 11-6 
Nonnumeric literal 11-6 
Normal Boolean Options 11-5 
OMIT 11-6 
Output 11-1 
PAGE 11-6 
Semantics: 11-4 
SEQCHECK 11-6 
SEQUENCE 11-6 
STATISTICS 11-6 
SUMMARY 11-6 
Syntax: 11-4 
user-defined options 11-4 
VOID 11-9 
WARNFA'rAL 11-·6 
WARNSUPR 11-6 
XREF 11-6 
XSEQ 11-6 

Compiler-Directing Sentences 7-4 
Compiler·-Directing Statements 7-4 
COMPRESSION 8-·9 
COMPUTE 7-52 
Concepts, COBOL74 xxi 

ANSI 68 COBOL xxii 
compiler xxi 

1168622 3 



4 

B 1000 Systems COBOL 74 Reference Manual 

interpreter xxi 
MCP xxii 
s-code xxi 

INDEX (CONT) 

Concepts, language 2-1 
Condition Evaluation Rules 7-26 
Condition-Name 2-6, 2-17 
Condition-Name Rules 6-55 
Conditional Expressions 7-18 
Conditional Sentences 7-4 
Conditional Statements 7-3 
Conditional variable 7-21 

Complex Conditions 7-22 
Conditions, combined. 7-22 
Conditions, negated 7-23 
CONFIGURATION SECTION 1-2 
Connectives 2-8 
control characters C-7 
Control Relationship Between Procedures 7-6 
control transfers, explicit and implicit 2-22 
COPY 7-53 
copyrights, authorizations for use of xix 
CORRESPONDING Phrase 7-29 
CREATE 9-13 
CREATIONDATE 8-9 
currency symbol 6-39 
Current Record Pointer 5-13 
CURRENTBLOCK 8-9 

Data 2-15 
alphabetic 2-15 
alphanumeric 2-15 
classes 2-15 
numeric 2-15 

data base item qualification 9-2 
Selection Expressions 9-2 

DATA BASE MANAGEMENT 9-1 
Data Base Reference Format 9-1 

Syntax Rules: 9-1 
Data base selection expressions 9-3 

Set Selection Expression 9-4 
Data description entry, general format B-9 

Fonua t 1: B-9 
Format 2: B-10 
Format 3: B-10 

Data Description Structure &-22 
DATA DIVISION 1-1, 1-2, 6-1, B-36 

Data base management general format B-36 
definition 1-1 
General 6-1 



B 1000 Systems COBOL 74 Reference Manual 

INDEX (CONT) 

organization 6-1 
structure 6-·2 

data items, operations on 9-2 
Dl\TA RECORDS 6-11 
data structures, operations on 9-2 
DATA-BASE SECTION 9-1 

Data Base Structure 9-1 
Data-Name 2-6 
DATA-NAME or F'ILLER 6-26 
DEBUG 10-1 

Compile-Time Switch 10-1 
DEBUG example 10-10 
DEBUG-ITEM 10-1 
Debugging Lines 10-2 
DEGUG·-ITEM implicit description 10-7 
ENVIRONMENT DIVISION 10-3 
General 10-1 
General Format: 10-3, 10-4 
General Rules: 10-3, 10-5 
Language Concepts 10-1 
Object-Time Switch 10-1 
PROCEDURE DIVISION 10-4 
Syntax Rules: 10-4 
USE FOR DEBUGGING 10-4 
WITH DEBUGGING MODE 10-3 

DEBUG-I'J~EM 2-8 
Debugging and 
Declaratives 
DELETE 7-5 7 I 
DENSI'rY 8-9 
DEPENDENT SPECS 

Diagnostic Facilities 
7-14 
9-14 

8-9 
diagnostic facilities 10-12 

Compiler Limits 10-13 
DIRECTION 8-9 
DISABLE 7-58 
DISPLAY 7-60 
DIVIDE 7-61 
divisions, program 1-1 
DMCATEGORY attribute 9-7 
DMERROR attribute 9-7 
DMSTATUS register 9-7 

EBCDIC sequence, B 1000 codes in C-1 
Editing Characters 2-3 
elementary items 2-14 
Ellipsis 2-2 
ENABLE 7-63 
END-TRANSACTION 9-15 
ENVIRONMENT DIVISION 1-1, 1-2, 5-1 

1168622 

10-12 

5 



6 

B 1000 Systems COBOL 74 Reference Manual 

INDEX (CONT) 

CONFIGURATION SECTION 5-1 
definition 1-1 
General 5-1 
INPUT-OUTPUT SECTION 5-9 
OBJECT-COMPUTER Paragraph 5-3 
organization 5-1 
SOURCE-COMPUTER Paragraph 5-2 
SPECIAL-NAMES Paragraph 5-5 
structure 5-1 

exception category names 9-8 
exception condition information 9-7 
Exception Type 9-7 
EXIT 7-65 
EXIT PROGRAM 7-66 
extensions xix 
EXTMODE 8-9 

FAMILYNAME 8-9 
Figurative Constant 2-8 
F.ile 2-13 

conceptual characteristics 2-13 
physical aspects 2-13 

File Attribute Identifier 8-1 
File Attribute-Name Descriptions 8-8 
FILE ATTRIBUTES 8-1 
File Concepts 5-9 
File Control Entry 5-19 
File Description Structure 6-3 
FILE SECTION 6-3 
FILE SECTION coding 6-6 
FILE SECTION record description 6-3 
FILE-CONTROL Paragraph 5-19 
File-Name 2-6 -
FILEKIND 8-10 
files, indexed 7-152 
files, mass storage 7-151 
files, relative 7-153 
files, sequential 7-151 
FILESECTION 8-10 
FILES'rATE 8-10 
FILESTATE attribute-name mnemonic values 8-11 

AWAITINGHOST 8-11 
BLOCKED 8-11 
CLOSED 8-11 
CLOSEPENDING 8-11 
DEACTIVATED 8-11 
DEACTIVATIONPENDING 8-11 
OFFERED 8-11 
OPENED 8-11 
SHUTTINGDOWN 8-11 



B 1000 Systems COBOL 74 Reference Manual 

FIND 9-·16 
FLEXIBLE 8-12 
FRAMESIZE 8-12 
FR.EE 9-17 

INDEX (CONT) 

GEMCOS (Generalized Message Control System) F-16 
GO TO 7-·67 
Graphics C-1 
groups 2-14 

headers, required 1-2 
HIGH-VAL.UE, HIGH-VALUES 2-8 
HOSTNAME: 8-12 

I-0 Stat.us 5-1.3 
I-0-CONTROL Paragraph 5-24 
IDENTIFICATION DIVISION 1-1, 1-2, 4-1 

coding 4-2 
DATE-COMPILED Paragraph 4-2 
definition l·-1 
General 4-1 
PROGRAM-ID Paragraph 4-1 
structure 4-1 

Identifier 2-16 
identifier formats 2-16 
IF 7-3, 7-68 
Imperative Sentences 7-4 
Imperative Statements 7-4 
in-line descriptors E-5 
index data ite~ .. ', comparison of 7-20 
Index-Name 2-e:;> 
index-names, comparison of 7-20 
Indexed File organization 5-11 
Indexed Files 5-12 
Indexed Files: 7-152 
Indexed I-0 5-9 

,Indexing 2-2L 
indexing format 2-21 
Initial Values 6-61 
INSERT 9-18 
INSPECT 7-69 
inter-program communication 6-60 
Inter-Program Communication (IPC) F-16 
INTNAME 8-12 
INVALID KEY 5-18, 7-3 
ISAM file concepts G-1 
ISAM file structure naming convention G-6 

1168622 7 



8 

B 1000 Systems COBOL 74 Reference Manual 

JUSTIFIED 6-27 

Key Condition 9-5 
complex 9-5 
simple 9-5 

Key Words 2-7 
KIND 8-12 

LABEL 8-12 
LABEL RECORDS 6-12 
LANGUAGE CONCEPTS 2-1 
language concepts 2-1 

INDEX (CONT) 

Language Description Notation 2-1 
Language Structure 2-4 
LASTRECORD 8-12 
LASTSTATION 8-13 
LASTSUBFILE 8-13 
Level Numbers 2-2 
LEVEL-NUMBER 6-28 
Level-Numbers 2-14 
levels 2-14 
LINAGE 6-13 
LINAGE-COUNTER 2-8, 5-18 
LINE-COUNTER 2-8 
Linkage Records 6-61 
LINKAGE SECTION 6-60 
LINKAGE SECTION Structure 6-60 
LINKAGE SECTION, coding 6-61 
LINKAGE storage, noncontiguous 6-61 
Literal 2-9, 2-11 

hexadecimal 2-11 
nonnumeric 2-10 
numeric 2-10 

LOCK 9-19 
logical operator meanings 7-22 
Logical Record and File Concepts 2-13 
LOW-VALUE, LOW-VALUES 2-8 

MAXRECSIZE 8-13 
MAXSTATIONS 8-13 
MAXSUBFILES 8-13 
MCS (Message Control System) F-16 
MERGE 7-77 
Message Control System (MCS) F-16 
micro-operators, edit E-32 
MINRECSIZE 8-13 
Mnemonic-Name 2-6 
MOVE 7-81 
MOVE dombinations 7-84 



B 1000 Systems COBOL74 Reference Manual 

MOVE combinations 7-85 
MUI.1T !PLY 7-86 
MYHOSTNAME 8-13 
MYNAME 8-13 
MYUSE 8·-13 

negated conditions 7-23 
NEWFILE 8-13 

INDEX (CONT} 

next executable statement 2-22 
NEXTRECORD 8-13 
Nonconti~jUOUS LINKAGE Storage 6-61 
nonnumer:Lc operands, comparison of 7-19 
notation, language 2-1 
Nouns 2--5 
numbers, level 2-2 
numeric operands, comparison of 7-19 

OBJECT-COMPUTER 1-2 
OCCURS 6-31, 6-58 
OFFSET Function 7-31 
OPEN 7-87, 8-14, 9-20 
operators, arithmetic 7-15 
operators, logical 7-22 
OPTIONAL 8-14 
OTHERUSE 8-14 

PAGE-COUNTER 2·-8 
PARAGRAPH-NAME 1-2 
Paragraph-Name 2-7 
Paragraphs 7-6 
PARITY 8-14 
PERFORM 7-93 
period 2-2 
PICTURE clause 6-35, 6-57 
Port Files 5-10 
Port files F-15 
PRINTDISPOSITION 8-14 
PROCEDURE DIVISION 1-1, 1-2, 2-22, 7-1, B-14 

body 7-2 
d1efinition 1-1 
execution of 7-1 
explicit and implicit references 2-22 
GENERAL 7-1 
general format B-14 
hE:!ader 7-2, 7--13 
Rules of Procedure Formation 7-1 
structure 7-1 

PROCEDURE DIVISION: data base management general format B-36 
procedure formation, rules of 7-1 . 

Execution of the PROC-EDURE DIVISION 7-1 

1168622 9 



10 

B 1000 Systems COBOL 74 Reference Manual 

INDEX (CONT) 

PROGRAM ORGANIZATION 1-1 
PROGRAM-ID 1-2 
punctuation 2-2 
Punctuation Characters 2-3 

Qualification 2-18 
qualifier formats 2-18 
Queue Files 5-10 
Queue files F-1 
QUOTE, QUOTES 2-8 

READ 7-3, 7-100 
RECEIVE 7-106 
RECORD 8-14 
Record Concepts 2-13 
RECORD CONTAINS 6-18 
record description clause 6-57 
Record-Name 2-6 
record, logical 2-13 
record, physical 2-13 
RECREATE 9-21 
REDEFINES 6-40 
reference, unique 2-16 
references xx111 
register 2-8 

special 2-8. 
relation conditions, characters used in 2-4 
Relative File 5-12 
Relative File organization 5-11 
Relative Files: 7-153 
Relative I-0 5-9 
RELEASE 7-108 
Remote Files 5-10 
Remote files F-4 
REMOVE 9-22 
RENAMES 6-47 
RENAMES clause 2-14 
Reserved Words 2-7, A-1 
RETURN 7-3, 7-109 
REWRITE 7-110 
ROUNDED Phrase 7-28 

SAVEFACTOR 8-14 
SEARCH 7-3, 7-112 
Section-Name 2-7 
Sections 7-6 
SECURITYTYPE 8-14 
SEEK 7-116 



B 1000 Systems COBOL74 Reference Manual 

INDEX (CONT) 

Segmentation 7-7 
Fixed Portion 7-7 
Independent Segments 7-7 
Program Segments 7-7 
Segmentation Classification 7-8 
Segmentation Control 7-8 

selection expression, generalized 9-5 
semicolon 2-2 
SEND 7-117 
sentences 7-3 
Separators 2-4 
Sequential File organization 5-11 
Sequential Files 5-12 
Sequential Files: 7-151 
Sequential I-0 5-9 
SERIALNO 8-14 
SET 7-121 
shading xix 
sign 2-15 

algebraic 2-1.5 
editing 2-15 

SIGN 6-49 
SIGN clause 2-15 
Simple Conditions 7-18 
SIZ.E ERROR Phrase 7-28 
SMCS (Supervisory Message Control System) F-16 
SOR1T 7-123 
Sort-Merge 5-11 
Sort-Merge File Description Structure 6-5 
SOURCE-COMPUTER 1-2 
space character 2-4 
SPACE, SPACES 2-8 
specifications, explicit and implicit 2-22 
START 7-128 
statement format rules 7-30 
statements 7-3 
Statements and Sentences 7-3 
statements, conditional 7-3 
status key combinations 5-16 
STOP 7-130 
Storage Files 7-148 
storage files 7-148 

Mass Storage Files 7-151 
Non-Mass Storage Files 7-149 

STORE 9-23 
STRING 7-131 
string, character 2-5 
Structure of Program Segments 7-9 

R~~strictions on Program Flow 7-12 

1168633 11 



12 

B 1000 Systems COBOL 74 Reference Manual 

SEGMENT-LIMIT 7-10 
Segment-Numbers 7-9 

INDEX (CONT} 

The ALTER Statement 7-12 
SUBFILERROR 8-14 
SUBFILERROR attribute mnemonic values 8-15 

DATALOST 8-15 
DISCONNECTED 8-15 
NOBUFFER 8-15 
NOERROR 8-15 
NOFILEFOUND 8-15 
UNREACHABLEHOST 8-15 

subscript formats .2-20 
Subscripting 2-20 
SUBTR,ACT 7-135 
SYNCHRONIZED 6-51 

TITLE 8-15 
TRANSLATE 8-15 
TRANSLATING 8-16 

UNSTRING 7-138 
UPDATEFILE 8-16 
USAGE 6-52 
USE 7-143 
USE Declarative 7-14 
USE FOR DEBUGGING Declarative 7-14 
USEDATE 8-16 
USERBACKUPNAME 8-16 

VALUE 6-54 
VALUE OF 6-20, 8-6 
verb formats 7-33 
Verbs 2-7 
verbs, categories of 7-32 
Verbs, general format for B-15 
Verbs: data base management general format B-37 
VOLUMEINDEX 8-16 

WAIT 7-145 
word types 2-5 
Words 2-1, 2-5, 2-8, 2-9 

Generic Terms 2-1 
Key Words 2-1 
lower-case words 2-1 
Optional Words 2-1 
optional words 2-8 
special character words 2-9 
upper-case, not-underlined words 2-1 
upper-case, underlined words 2-1 



B 1000 Systems COBOL74 Reference Manual 

INDEX (CONT) 

WORKING-STORAGE SECTION 6-57 
WORKING-.STORAGE SECTION, codin9 6-58 
WRI'rE 7-147 

YOURNAME 8-16 
YOURUSERCODE 8-16 

ZERO, ZEROS, ZEROES 2-8 

1168633 13 



Documentation Evaluation Form 

Title: B 1000 COBOL 74 Language Manual FormNo: 1168622 

Date: August 1984 

Burroughs Corporation is _interested in receiving your comments 
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual. 

Please check type of Suggestion: 

D Addition 

Comments: 

From: 

Name 

Title 

Company 

Address 

Phone Number 

D Deletion D Revision 

Remove form and mail to: 

Burroughs Corporation 
Corporate Documentation - West 

1300 John Reed Court 
City of Industry, CA 91745 

U.S.A. 

D Error 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	07-124
	07-125
	07-126
	07-127
	07-128
	07-129
	07-130
	07-131
	07-132
	07-133
	07-134
	07-135
	07-136
	07-137
	07-138
	07-139
	07-140
	07-141
	07-142
	07-143
	07-144
	07-145
	07-146
	07-147
	07-148
	07-149
	07-150
	07-151
	07-152
	07-153
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	E-51
	E-52
	E-53
	E-54
	E-55
	E-56
	E-57
	E-58
	E-59
	E-60
	E-61
	E-62
	E-63
	E-64
	E-65
	E-66
	E-67
	E-68
	E-69
	E-70
	E-71
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	replyA

