
Burroughs ~

RELEVANT TO MARK 9.0 RELEASE

L PRICED ITEM

, ________ __.

Printed in U.s.A. June 1981 1108883

Burroughs m

B 1000 Systems

COBOL74

REFERENCE MANUAL

RELEVANT TO MARK 9.0 RELEASE

Copyright © 1981 Burroughs Corporation, Detroit, Michigan 48232

l PRICED ITEM '----, ________ __
Priinted in U.S~.A. June 1981 1108883

ii

"The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi
cation with the names of any individuals, living or otherwise, is purely
coincidental and not inten:tional."

Burroughs believes that the information described in this
manual is accuratt~ and reliable, and much care has been
taken in its preparation. However. no responsibility. finanl'ial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of sul'h
changes and/or additions.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734,
Attn: Publications Department, TIO-West.

Burroughs m PUBLICATION
CHANGE

NOTICE

PCl\INo.:. 1108883-001 Date: September1982
Pub~ication Title: B 1000 Systems COBOL74 Reference Manual (June 1981)

Supersedes: _.__;N~/A~---------------------------

Description:

This PCN is relative to the Systems Software Release 10.0 and includes improvements to the
manual as well as 10.0 enhancements.

Replace these pages

iii
vii thru xv
xix thru xxi
2-21
5-9 thru 5-19
6-7
6-35
6-39
6-65 thru 6-67
7-31
7-41 thru 7-51
7-71 thru 7-73
7-79 thru 7-81
7-8 9 thru 7 -91
7-93
7-107 thru 7-111
7-125 thru 7-129

8-1 thru 8-11
9-5 thru 9-23
10-9
11-3
11-7
A-1
A-5
A-9
B-3
B-11 thrnB··13
B-17 thru B··21
B-25
D-1
D-15
D-19
E-7
Index 1 thru 1 7

Add these pages

5-lOA
5-12A
7-80A
7-90A

7-126A thru 7-126C
7-130A
8-2A
9-6A
10-8A
11-2A
B-12A
B-20A
B-26A
F-1 thru F-5
G-1 thru G-5

Copyright © 1982, Burroughs Corporation, Detroit, Michigan 48232

1108883-001

Printed in U.S. America iii

B 1000 Systems COBOL 74 Reference Manual

LIST OF EFFECTIVE PAGES

Page Issue Page Issue Page Issue

Title Original 7-79 thru 7-80 PCN-001 A-1 thru A-2 PCN-001
ii Original 7-80A PCN-001 A-3 thru A-4 Original
iii thru iv PCN-001 7-80B Blank A-5 thru A-6 PCN-001
v thru vi Original 7-81 thru 7-82 PCN-001 A-7 thru A-8 Original
vii thru xvi PCN-001 7-83 thru 7-88 Original A-9 PCN-001
xvii Original 7-89 thru 7 -90 PCN-001 A-10 Blank
xviii Blank 7-90A PCN-001 B-1 thru B-2 Original
xix thru xxi PCN-001 7-90B Blank B-3 thru B-4 PCN-001
xx ii Blank 7-91 thru7-94 PCN-001 B-5 thru B-10 Original
2-1 thru 2-20 Original 7-95 thru 7-106 Original B-11 thruB-12 PCN-001
2-2 l thru 2-22 PCN-001 7-l07 thru 7-112 PCN-001 B-12A PCN-001
2-23 Original 7-113 thru 7-124 Original B-l 2B Blank
2-24 Blank 7-l 25 thru 7·-126 PCN-001 B-13 thru B-14 PCN-001
3-1 thru 3-5 Original 7-126A thru 7-l 26C PCN-001 B-15 thru B-16 Original
3-6 Blank 7-l 26D Blank B-1 7 thru B-20 PCN-001
4-1 thm 4-3 Original 7-127 thru 7·-130 PCN-001 B-20A PCN-001
4-4 Blank 7-l 30A PCN-001 B-20B Blank
5-1 thru 5-8 Original 7-130B Blank B-21 thru B-22 PCN-001
5-9 thrn 5-10 PCN-001 8-1 thru 8-2 PCN-001 B-23 thru B-24 Original
5-lOA thru 5-lOB PCN-001 8-2A thru 8-2B PCN-001 B-25 thru B-26 PCN-001
5-11 thru 5-12 PCN-001 8-3 thru 8-11 PCN-001 B-26A PCN-001
·5-l 2A PCN-001 8-12 Blank B-26B Blank
5-l 2B Blank 9-1 thru 9-4 Original C-1 thru C-12 Original
5-13 thru 5-20 PCN-001 9-5 thru 9-6 PCN-001 D-1 thru D-2 PCN-001
6-1 thru 6-6 Original 9-6A PCN-001 D-3 thru D-14 Original
6-7 thru 6-8 PCN-001 9-6B Blank D-15 thru D-16 PCN-001
6-9 thru 6-34 Original 9-7 thru 9-23 PCN-001 D-17 thru D-18 Original
6-35 thru 6-36 PCN-001 9-24 Blank D-1 9 thru D-20 PCN-001
6-37 thru 6-38 Original 10-1 thru 1 0--8 Original D-21 Original
6-39 thru 6-40 PCN-001 10-8A thru 1 0-8 B PCN-001 D-22 Blank
6-41 thru 6-64 Original 10-9 thru 10-·l 0 PCN-001 E-1 thru E-6 Original
6-65 thru 6-67 PCN-001 10-11 Original E-7 thru E-8 PCN-001
6-68 Blank 10-12 Blank E-9 thru E-71 Original
7-1 thru 7-30 Original 11 -1 thru I 1 -2 Original E-72 Blank
7-31 thru 7-32 PCN-001 l l-2A PCN-001 F-1 thru F-5 PCN-001
7-33 thru 7-40 Original 11-2B Blank F-6 Blank
7-41 thru 7-52 PCN-001 11-3 thru 11-4 PCN-001 G-1 thru G-5 PCN-001
7-53 thru 7-70 Original 11-5 thru 11-6 Original G-6 Blank
7-71 thru 7 -7 4 PCN-001 11-7 PCN-001 I thru 17 PCN-001
7-75 thru 7-78 Original 11-8 Blank 18 Blank

iv

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS

Section Title Page

FOREWORD xvii
Burroughs Extensions To ANSI 74 COBOL xvii
Acknowledgement xvii
INTRODUCTION xix
COBOL74 Advantages xix
COBOL74 Concepts xix
Organization xx
PROGRAM ORGANIZATION 1-1
COBOL 74 Source Program Divisions 1-1
Required Headers 1-2

2 LANGUAGE CONCEPTS 2-1
General 2-1
Language Description Notation 2-1

Key Words 2-1
Optional Words 2-1
Generic Terms 2-1
Braces 2-1
Brackets 2-2
Level-Numbers 2-2
Ellipsis 2-2
Format Punctuation 2-2
Special Characters in Formats 2-2

Character Set 2-3
Characters Used for Words 2-3
Punctuation Characters 2-3
Editing. Characters 2-4
Characters Used in Arithmetic Expressions 2-4
Characters Used in Relation Conditions 2-4

Language Structure 2-4
Separators 2-4
Character-Strings 2-5

Definition of Words 2-5
Types of Words 2-6
Nouns 2-6

File-Name . 2-6
Record-Name 2-6
Data-Name 2-6
Condition-Name 2-7
Mnemonic-Name 2-7
Index-Name 2-7
Paragraph-Name 2-7
Section-Name 2-7
Other Categories 2-7

Verbs 2-7
Reserved Words 2-8

Key Words 2-8
Connectives 2-8
Optional Words 2-8

l ll08883 v

Section

2 (Cont)

3

4

5

vi

B IOOO Systems COB OL74 Reference Manual

TABLE OF CONTENTS (Cont)

Figurative Constant . .
Special Registers . . .
Special-Character Words

Literals
Numeric Literal
Nonnurneric Literal .
Hexadecimal Literals

Logical Record and File Concepts
Physical Aspects of a File . .
Conceptual Characteristics of a File
Record Concepts

Concept of Levels
Level-Numbers
Concept of Classes of Data
Algebraic Signs
Standard Alignment Rules
Uniqueness of Reference

Identifier . . .
Condition-Name
Qualification
Subscripting . .
Indexing

Explicit and Implicit Specifications

Title

Explicit and Implicit PROCEDURE DIVISION
Explicit and Implicit Transfers of Control
Explicit and Implicit Attributes

CODING FORM
General ...
Field Definitions I

Sequence Area (Record Positions 1-6)
Indicator Area (Record Position 7)
Area A (Positions 8 through 11) .
Area B (Po~itions 12 through 72)
Right Margin (Position 72) . . .
Identification (Positions 73 through 80)

Blank Lines . .
Punctuation
Sample Coding
IDENTIFICATION DIVISION
General
IDENTIFICATION DIVISIQN Structure

PROGRAM-ID Paragraph
DATE-COMPILED Paragraph

Coding the IDENT.IFICATION DIVISION
ENVIRONMENT DIVISION
General
ENVIRONMENT DIVISION Organization

References

Page

2-8
2-10
2-10
2-10
2-10
2-10
2-11
2-13
2-13
2-13
2-13
2-13
2-14
2-14
2-15
2-15
2-16
2-16
2-17
2-18
2-20
2-21
2-22
2-22
2-22
2-23

3-1
3-1
3-1
3-1
3-1
3-3
3-3
3-3
3-4
3-4
3-4
3-4
4-1
4-1
4-1
4-1
4-2
4-2
5-1
5-1
5-1

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

5 (Cont) ENVIRONMENT DIVISION Structure 5 .. 1
CONFIGURATION SECTION 5-2

SOURCE-COMPUTER Paragraph 5-3
OBJECT-COMPUTER Paragraph 5-4
SPECIAL-NAMES Paragraph 5-5

INPUT-OUTPUT SECTION 5-9
FILE Concepts 5-9

Sequential 1-0 5-9
Relative 1-0 . 5-9
Indexed 1-0 5-9

Queue Files 5·10
Queue File Family 5-10

Remote Files 5-10
Port Files 5-10

Sort-Merge 5-lOB
Relationship with Sequential 1-0 5-lOB

Organization 5-lOB
Access Mode 5-11

Sequential Files 5-11
Relative File . 5-11
Indexed Files 5-11

Current Record Pointer 5-11
1-0 Status 5-12

Status Key I 5-12
Successful Completion 5-12
At End 5-12
Invalid Key 5-12
Permanent Error 5-12A I
Burroughs-Defined Condition 5-13

Status Key 2 5-13
Short Block 5-14
Data Error 5-14

Q-Empty or No Data 5·14 I Q-Full or No Buff er 5·14
Timeout . 5-14
Break on Output 5-14
Unexpected I-0 Error 5-14

Valid Combinations of Status Keys I and 2 5-15
INVALID KEY 5-16
AT END 5-16
LINAGE-COUNTER 5-16

FILE-CONTROL Paragraph 5-17
File Control Entry 5-17

I·-0-CONTROL Paragraph 5-21
Coding the ENVIRONMENT DIVISION 5-22

6 DATA DIVISION 6-1
General 6-1
DATA DIVISION Organization 6-1

1108883-001 vii

B 1000 Systems COBOL 74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

6 (Cont) DATA DIVISION Structure
FILE SECTION

viii

Record Description . . .
File Description Structure
Sort-Merge File Description Structure

Coding the FILE SECTION
BLOCK CONTAINS
CODE-SET ...
DATA RECORDS
LABEL RECORDS
LINAGE
LINAGE-COUNTER

RECORD CONTAINS
VALUE OF
DATA DESCRIPTION STRUCTURE
BLANK WHEN ZERO .
DATA-NAME or FILLER
JUSTIFIED ...
LEVEL-NUMBER
OCCURS ..
PICTURE
REDEFINES
RENAMES .
SIGN
SYNCHRONIZED
USAGE
VALUE
Condition-Name Rules
Data Description Entries Other Than Condition-Names

WORKING-STORAGE SECTION . . .
WORKING-STORAGE Structure
Noncontiguous WORKING-STORAGE
WORKING-STORAGE Records . . .
Initial Values
Condition-Names

Coding the WORKING-STORAGE SECT.ION
LINKAGE SECTION

LINKAGE SECTION Structure . .
Noncontiguous LINKAGE Storage .
Linkage Records
Initial Values

Coding the LINKAGE SECTION
COMMUNICATION SECTION .

Communication Description Structun~
7 PROCEDURE DIVISION . .

General
Rules of Procedure Formation

Pag1e

6-2
6-3
6-3
6-4
6-5
6-ti
~:
6-9'

6-1()1
6-11
6-12:
6-B
6-16
6-17
6-19
6-21
6-22
6-23
6-24
6-26
6-29'
6-38
6-4(]1

6-42
644.
6-45
6-47
6-48
6-4~:
649'
6-491
6-491
6-50
6-SCI
6-5Cl
6-50
6-52:
6-52:
6-53;
6-53:
6-53;
6-53:
6-58
6-58

7-1
7-1
7-1

8 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

7 (Cont) Execution of the PROCEDURE DIVISION
PROCEDURE DIVISION Structure

PROCEDURE DIVISION Header
PROCEDURE DIVISION Body

Statements and Sentences
Conditional Statements
Conditional Sentences .
Compiler-Directing Statements
Compiler-Directing Sentences
Imperative Statements . .
Imperative Sentences

Control Relationship Between Procedures
Paragraphs
Sections

Segmen ta ti on
Program Segments
Fixed Portion
Independent Segments
Segmentation Classification
Segmentation Control . .

Structure of Program Segments
Segment-Numbers
SEGMENT-LIMIT
Restrictions on Program Flow
The ALTER Statement

The PROCEDURE DIVISION Header
DECLARATIVES

USE Declarative
USE FOR DEBUGGING Declarative

Arithmetic Expressions
Arithmetic Operators
Formation and Evaluation Rules
Intermediate Data Item

Conditional Expressions
Simple Conditions

1108883-001

Relation Condition
Comparison of Numeric Operands
Comparison of Nonnumeric Operands
Comparisons Involving Index-Names and/or Index Data Items

Class Condition
Condition-Name Condition (Conditional Variable)
Switch-Status Condition
Sign Condition

Complex Conditions
Negated Simple Conditions
Combined and Negated Combined Conditions

Abbreviated Combined Relation Conditions

Page

7-1
7-1
7-2
7-2
7-3
7-3
7-4
7-4
7-4
7-4
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-7
7-8
7-8
7-9
7-9

7-10
7-12
7-12
7-13
7-14
7.:14
7-14
7-15
7-15
7-15
7-17
7-18
7-18
7-18
7-19
7-19
7-20
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-25

ix

I

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

7 (Cont) Condition Evaluation Rules

x

Common Phrases
ROUNDED Phrase . . .
SIZE ERROR Phrase . .
CORRESPONDING Phrase

General Rules For Statement Formats
Arithmetic Statements
Overlapping Operands
Multiple Results in Arithmetic Statements
Incompatible Data
Numeric Functions

OFFSET Function
Categories of Verbs

Specific Verb Formats
ACCEPT
ACCEPT MESSAGE COUNT
ADD
ALTER
CALL .
CANCEL
CLOSE
COMPUTE
COPY ..
DELETE .
DISABLE
DISPLAY
DIVIDE
ENABLE .
EXIT
EXIT PROGRAM
GO TO
IF ...
INSPECT
MERGE
MOVE .
Valid Move Combinations
MULTIPLY
OPEN ..
PERFORM
READ ..
RECEIVE
RELEASE
RETURN .
REWRITE
SEARCH
SEEK
SEND
SET .

Page

7-26
7-28
7-28
7-28
7-29
7-30
7-30
7-30
7-30
7-31
7-31
7-31
7-32
7-33
7-34
7-36
7-37
7-40
7-41
744.
7-45
7-5(]1
7-51
7-54
7-55
7-56
7-57
7-59
7--60
7-61
7-62
7-63
7-64
7-7ll
7-74
7-76
7-78
7-79
7-83
7-90
7-94
7-95
7-96
7-97
7-99

7-103
7-104
7-106

B I 000 Systems COBOL 74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

7(Cont) SORT 7-108
START . 7-112
STOP 7-114
STRING 7-115
SUBTRACT 7-118
UNSTRING . 7-121
USE. 7-125
WAIT. 7-126 I WRITE . 7-126B

Mass and Non-Mass Storage Files 7-127
Non-Mass Storage Files 7-128
Mass Storage Files 7-129

Sequential. Files: 7-129
Indexed Files: . 7-l 30A I Relative Files: · 7-l30A

8 FILE ATTRIBUTES 8-1
General 8-1
File Attribute Identifier 8-1

CHANGE 8-3
VALUE OF . 8-4

File Attribute-Name Descriptions 8-5
9 DATA BASE MANAGEMENT 9-1

General 9-1
DATA-BASE SECTION . 9-2

Data Base Structure 9-2
Operations on Data Items 9-3
Operations on Structures . 9-3
Qualification . 9-3
Selection Expressions 9-4
Set Selection Expression . 9-5
Key Condition 9-6

Simple Key Condition 9-6
Complex Key Condition 9-6
Generalized Selection Expression . 9-6 I

Exception Type 9-7
BEGIN-TRANSACTION 9-10
CLOSE 9-11
CREATE 9-12
DELETE 9-13
END-TRANSACTION . 9-14
FIND 9-15
FREE 9-16
INSERT 9-17
LOCK 9-18
OPEN 9-19
RECREATE. 9-20
REMOVE 9-41

1108883-001 xi

I

I

Section

9 (Cont)
JO

11

A

B

c

xii

B 1000 Systems COJBOJL74 Reference Manual

TABLE OF C:ONTENTS (Cont)

STORE
DEBUG
General
Language Concepts

DEBUG-ITEM .
A Compile-Time Switch
An Object-Time Switch
Debugging Lines . . .

ENVIRONMENT DIVISION
WITH DEBUGGING MODE

PROCEDURE DIVISION . .
USE FOR DEBUGGING

Debugging and Diagnostic Facilities
Compiler Limits

COBOL74 COMPILER CONTROL
General
Input

Library Files
Output .

New Source Language Files
Output Listings
Generated Code

Compilation Source File
? COMPILE Record
Label Equation Records
Source Program

Increasing Program Code File Sizes

Compiler Control Images

Title

Boolean Expressions and User Defined Options
CCI Options
Normal Boolean Options
Miscellaneous Compiler Control Options

Reserved Words

COBOL 74 Syntax Summary
General Format For IDENTIFICATION DIVISION
General Format For ENVIRONMENT DIVISION
General Format For DAT A DIVISION . . .
General Format For Data Description Entry . . .
General Format For PROCEDURE DIVISION . .
General Format For Verbs
General Format For Data Base Management DATA DIVISION
General Format For Data Base Management PROCEDURE DIVISION
General Format For Data Base Management Verbs
COBOL74 GRAPHICS

9-22
IO-I
IO-I
10-I
10-I
IO-I
IO-I
10-2
I0-3
I0-3
10-4
I0-4
I 0-9'

10-ICI
I I-I
I I-I
I I-I
I I-I
I I-I
I I-I
I I-I
11-1
I I-2
11-2
I I-3

11-2A
11-2A

1 I-3
I 1-4
I I-4
11-5
I I-7
A-I
A-I
B-1
B-1
B-1
B-1
B-4
B-7

B-10
B-11

. B-26A

. B-26A
B-27

C-1

Section

D

E

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

GLOSSARY
Introduction .
Definitions
COBOL74 S-LANGUAGE
General
S·-Language Programs
Container Size . . .
S-·lnstruction Format

S-Operators . . .
COP and OPND .

Short COP

Title

Long COP with No Segment Number
Long COP with Segment Number

COBOL74 In-Line Descriptors
Implementation Strategy . .

MULTIPLE-ENTRY-FLAG
SHARED-DATA-FLAG
LITERAL-FLAG
Data Length
Segment Number . .
Displacement
DEPENDING-FLAG
Depending Attributes
SUBSCRIPT-FLAG
Subscripting
Indexing
In-line COP Entry Format

Instruction Set
Arithmetic
Data Movement
Branching . . .
Conditional Branching
Miscellaneous . . .
Character String Handling
Interprogram Communication
Optimized Operation Codes

CPA
CPN
CPZ
INC
INCi
MVA
MVN
MVZ.

..

Alithmetic Operands and Instructions
ADD THREE AODRESS
SUBTRACT THREE ADDRESS
ADD TWO ADDRESS

1108883-001

Page

D-1
D-1
D-1
E-1
E-1
E-1
E-3
E-3
E-3
E-3
E-4
E-4
E-4
E-5
E-5
E-6
E-6
E-6
E-6
E-6
E-6
E-6
E-6
E-7
E-7
E-7
E-8
E-9
E-9
E-9
E-9

E-10
E-10
E-10
E-10
E-11
E-11
E-11
E-11
E-11
E-11
E-12
E-12
E-12
E-12
E-14
E-15
E-16

xiii

B 1000 Systems COBOL74 Reference Manual

TABLE OF C:ONTENTS (Cont)

Section Title

E (Con1t) SUBTRACT TWO ADDRESS
MULTIPLY
DIVIDE
DIVIDE SPECIAL . . .
INCREMENT BY ONE .
DECREMENT BY ONE

xiv

Data Movement Operands and Instructions
MOVE ALPHANUMERIC
MOVE SPACES .
MOVE NUMERIC
MOVE ZEROS
CONCATENATE

Edit Instructions and Edit Micro-Operators
EDIT
EDIT WITH EXPLICIT MASK .
EDIT MICRO-OPERATORS
MOVE DIGIT
MOVE CHARACTER . . .
MOVE SUPPRESS
FILL SUPPRESS
SKIP REVERSE DESTINATION
INSERT UNCONDITIONALLY
INSERT ON MINUS
INSERT SUPPRESS
INSERT FLOAT . .
END FLOAT MODE
END NON-ZERO
END OF MASK ..
START ZERO SUPPRESS
COMPLEMENT CHECK PROTECT

Branching Operands and Instructions .
BRANCH UNCONDITIONALLY
BRANCH ON OVERFLOW
SET OVERFLOW TOGGLE
PERFORM ENTER
PERFORM EXIT
ENTER
EXIT

GO TO DEPENDING
ALTERED GO TO PARAGRAPH
ALTER

Conditional Brar .11 'Jperands and Instructions
COMPARE ALPHANUMERIC
COMPARE NUMERIC .
COMPARE FOR ZEROS
COMPARE FOR SPACES
COMPARE FOR CLASS

Page

E-17
E-18
E-19
E-20
E-21
E-22
E-23
E-24
E-25
E-26
E-27
E-28
E-29
E-30
E-31
E-32
E-33
E-33
E-33
E-33
E-33
E-34
E-34
E-34
E-35
E-35
E-35
E-35
E-35
E-35
E-36
E-37
E-38
E-39
E-40
E-41
E-42
E-43
E-44
E-45
E-46
E-47
E-48
E-49
E-50
E-51
E-52

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

E (Cont) COMPARE REPEAT . E-53
COMPARE COLLATE E-54

Miscellaneous Instruction E-55
COMMUNICATE E-55
LOAD COMMUNICATE REPLY E-56
CONVERT . . . E-57
MAKE PRESENT . E-58
FILE STATUS E-59

Character String S-Ops. E-60
DESCRIPTOR SETUP E-60
INSPECT SETUP E-61
INSPECT E-63
STRING E-65
DELIMITER SETUP E-66
UNSTRING E-67

Inter-Program Communication E-69
IPC Dictionary E-69

F PROGRAMMING EXAMPLES F-1
Example of Queue and Remote Files F-1

G COBOL68 REMOTE FILES AND COBOL74 QUEUE FILES G-1
COBOL68 Remote Files and COBOL 74 Queue Files On the B 1000 G-1

COBOL68 Remote Files and COBOL 74 Queue Files Under Control of AN MCS . . . G-4
Supervisory Message Control System (SMCS) G-4
Generalized Message Control System (GEMCOS) G-5

1108883-001 xv

Figure

3-1
3-2
4-1
5-1
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
I I - I
E-1
E-2

I G-1
G-2

Table

2-1

5-1

6-1
6-2
6-3
6-4
7-1
7-2
7-3
7-4

I 7-5
7-6
9-1
C-1
C-2
C-3
E-1
E-2

xvi

B 1000 Systems COBOL 74 Reference Manual

LIST OF ILLUSTRATIONS

"fit le

COBOL Coding Form
Example of Continuation of Words and Literals
Coding the IDENTIFICATION DIVISION
Coding the ENVIRONMENT DIVISION
Coding the FILE SECTION
Linage Page Relationship
Level Numbers
Pl CTU RE Character Precedence Chart
Coding the WORKING-STORAGE SECTION
Coding the LINKAGE SECTION . .
Valid MOVE Statement Combinations.
PERFORM VAR YING with One Condit11on .
PERFORM VAR YING with Two Conditions
SEARCH with Two WHEN Phrases
Compilation Control File
COBOL74 Program Layout
Memory Layout
COBOL68 Data Communications
COBOL 74 Data Communications

LIST OF TABLES

Classes of Data

Status Key Combinations

Editing for Each Item Category
Editing of Sign Control Symbols

Title

Editing Application of the PICTURE Clause
Communication Status Key Condition
Combination of Symbols in Arithmetic Expressions
Combinations of Conditions. Logical Or1erators. and Parentheses
Relationship of Categories of Files and Formats of the CLOSE Statement
A Valid MOVE Statement .
Permissible Statements
SET Statement Combinations .
Exception Category Names and Values
B 1000 Codes in EBCDIC Sequence .
B 1000 Codes in ASCll-7 Sequence .
Description of Control and Special Characters
Special Registers
Container Sizes

3-2
3-5
4-3

5-2.3
6-7

6-1.3
6-2:5
6-36
6-51
6-54
7-77
7-87
7-88

7-102
11··2
E-·2

E-71

G·l
G-3

2-15
5-15

6-33
6-34
6-37
6-65
7-16
7-24
7-46
7-76

7-80A
7-107

9 .. 7
C·2
C·7

C-11
E-·2
E··3

B 1000 Systems COBOL74 Reference Manual

FOREWORD

BURROUGHS EXTENSIONS TO ANSI 74 COBOL

Programming applications are written in the COBOL74 language as specified in this B 1000 Systems COBOL74
Reforence Manual. The source language herein described is the USA Standard COBOL, X3.23-I 974, which
implements the lowest defined level of the Report Writer Module, and also the highest defined level of these
Modules: Nucleus, Table Handling, Sequential I-0, Relative I-0, Indexed I-0, Sort-Merge, Segmentation, Li
brary, Debug, Inter-~rogram Communication, and Communication. 1111~~ l~le lli&Jll$ ~~£¢usi()n$ hav•
111)1,:1111111;;:::111;,111;1:1111m1.:11111m111i:1i111;:m1111-r1~;;11$flli;~11111~rits-1~·

ACKNOWLEDGEMENT

COBOL74 is an industry language and is not the property of any company or group of companies. or of any
organization or group of organizations.

No warranty, expressed or implied. is made by any contributor or by the CODASYL Programming Language
Committee as to the accuracy and functioning of the programming system and language. Moreover. no respon
sibility is assumed by any contributor. or by the committee. in connection therewith.

The authors and copyright holders of the copyrighted material used herein.

FLOW--MATIC (trademark of Sperry Rand Corporation). Programming for the UNIVAC ® I and II. Data
Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator
Form Number F 28-8013, copyrighted 1959 by IBM; FACT. OSI 27A5260-2760. copyrighted 1960 hy Min
neapolis-Honeywell.

have specifically authorized the use of this material in whole or in part. in the COBOL74 specifications. Such
authorization extends to the reproduction and use of COBOL74 specifications in programming manuals or
similar publications.

1108883 xvii

B 1000 Systems COBOL74 Reference Manual

INTRODUCTION

This manual provides a complete description of COBOL 74 (COmmon Business Oriented Language) as imple
mented for use on the Burroughs B 1000 System. This concept of COBOL 74 is designed along the guidelines
of the American National Standards Institute (ANSI) 1974. This edition contains changes throughout. I

COBOL74 ADVANTAGES

The long list of COBOL 74 advantages is derived chiefly from its intrinsic quality of permitting the programmer
to state the problem solution in English prose, and thus provide automatic program and system documentation.
When users adopt in-house standardization of clements within files plus well-chosen data-names before at
tempting to program a system. maximum documentational advantages of the language described herein are ob
tain1.xl.

To a computer user. Burroughs COBOL74 offers the following major advantages:

I. Expeditious means of program implementation.
" Accelerated programmer training and simplified retra111111g requirements.
3. Reduced conversion costs when changing from a computer of one manufacturer to that of another.
4. Significant case of program modification.
5. Standardized documentation.
6. Documentation which facilitates nontechnical management participation in data processing activities.
7. Efficient object program code.
8. Segmentation capability which sets the maximum allowable program size well in excess of any practi

cal requirement.
9. Because of the incorporation of debugging language statements. a high degree of sophistication in

program design is achieved.
I 0. A comprehensive source program diagnostic capability.

COBOL74 CONCEPTS

A program written in COBOL74. called a source program, is accepted as input by the COBOL74 compiler.
The compiler verifies that each source statement is syntactically correct. and then converts them into
COBOL74 S-code.

The executable program can then be executed on the B IOOO System using the COBOL74 interpreter. The in
terpreter causes the system hardware to perform the operations specified by the S-code and thus the source
program.

The B IOOO COBOL74 compiler operates under the control of the Master Control Program (MCP). Similarly.
the S-code generated by the compiler is executed under control of the MCP.

A COBOL program that was compiled with the ANSI 68 COBOL compiler must be recompiled with the
COBOL74 compiler in order to run with the COBOL74 interpreter.

1108883-001 xix

B 1000 Systems COBOL74 Reference M2.nual

ORGANIZATION

I This manual consists of 11 sections and 6 appendices:

xx

Section Contents

PROGRAM ORGANIZATION

Introduces the four divisions of a COBOL source program
and describes the major functions of each.

2 LANGUAGE CONCEPTS

The rules for creating a COBOL74 source program are
defined in this section.

3 CODING FORM

The standard format 1Jf the COBOL74 coding form and the
rules for spacing are described in this section.

4 IDENTIFICATION DIVISION

The structure of the IDENTIFICATION DIVISION and the
rules for coding are given.

5 ENVIRONMENT DIVISION

The structure of the ENVIRONMENT DIVISION and the
rules for coding are given.

6 DATA DIVISION

The four sections of the DATA DIVISION are described.

7 PROCEDURE DIVISION

The rules for coding and structuring the PROCEDURE
DIVISION are given.

8 FILE ATTRIBUTES

The file attribute names and the rules for changing attributes
are given.

9 DATA BASE MANAGEMENT

This section contains the verbs and constructs of COBOL74
that are available for interfacing with DMSII.

10 DEBUG

Contains an explanation of the debug facilities available.

11 COBOL74 COMPILER CONTROL Compiler options which
are available in the COBOL74 compiler are explained.

B 1000 Systems COBOL 74 Reference Manual

Appendix Contents

A RESERVED WORDS

B COBOL74 SYNTAX SUMMARY

C GRAPHICS

D GLOSSARY

E S-LANGUAGE

F PROGRAMMING EXAMPLES

G COBOL68 REMOTE FILES AND COBOL 74 QUEUE FILES

RELATED DOCUMENTS

The following documents are referenced in this document:

B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982.

B 1000 Systems System Software Operation Guide, Volume 2, form number 1108966.

B 1000 Systems Data Management System II (DMSII) Reference Manual, form number 1127222.

B 1000 System Burroughs Network Architecture (BNA) Installation and Operations Reference Manual, form
number 1127578.

8 1000 Systems Network Definition Language (NDL) Reference Manual, form number 1073715.

8 1000 Systems Supervisory Message Control System (SMCS) Reference Manual, form number 1108891.

1108883-001 xxi

B 1000 Systems COBOL 74 Reference Manual

SECTION 1
PROGRAM ORGANIZATION

COBOL74 SOURCE PROGRAM DIVISIONS

Every COBOL74 source program must contain these four divisions m the following order:

IDENTIFICAHON

ENVIRONMENT

DATA

PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition to required information. the program
mer may include such optional pieces of information as the date compiled and programmer's name for
documentation purposes. This division is completely machine-independent and does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains computer descriptions and
some information about the files the program will use.

The DATA DIVISION contains not only file and record descriptions describing the data files that the object
program manipulates or creates. but also the individual logical records which comprise these files. The charac
teristics or properties of the data are described in relation to a standard data format rather than an equipment
oriented format. Therefore. this division is to a large extent. computer-independent. While compatibility among
computers cannot be absolutely assured. careful planning in the data layout will permit the same data descrip
tions. with minor modification. to apply to more than one computer.

The PROCEDURE DIVISION specifies user-supplied steps for computer execution. These steps are expressed
in terms of meaningful English words. statements. sentences. and paragraphs. This division of a COBOL74
program is often referred to as the "program." In reality. it is only part of the total program. and alone is
insufficient to describe the entire program. This is true because repeated references must be made (either ex
plicitly or implicitly) to information appearing in the other divisions. This division. more than any other. allows
the user to express thoughts in meaningful English. Concepts of verbs to denote actions. and sentences to
describe procedures are basic. as is the use of conditional statements to provide alternative paths of action.

1108883 1-1

B 1000 Systems COBOL74 Reference Manuai
Progr~tm Organization

REQUIRED HEADERS

The standard for COBOL74 requires that a program consist of certain divisions, sections, and fixed paragraph
names known as headers.

The following elements are the minimum required for a COBOL 74 program:

IDENTIFICATION DIVISION.

PROGRAM-ID. MINIMUM.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. B-1000.

OBJECT-COMPUTER. B-1000.

DATA DIVISION.

PROCEDURE DIVISION.

STARTP.

STOP RUN.

1-2

GENERAL

B 1000 Systems COBOL74 Reference Manual

SECTION 2
LANGUAGE CONCEPTS

As stated in Section 1, COBOL74 is a language based on English and is composed of words, statements, sen
tences, and paragraphs. The following paragraphs define the rules to be. followed in .the creation of this lan
guage. The use of the different constructs formed from the created words is covered in subsequent sections
of this document.

LANGUAGE DESCRIPTION NOTATION

A nearly universal form of notation exists for COBOL reference manuals. This manual uses that notation as
described in the paragraphs that follow.

The apostrophe (') is used to delimit characters with specific meanings. Other than its use in this manual as
a delimiter, it has no specific use in the COBOL language.

KEY WORDS

All underlined upper-case words are key words and· are required when utilizing related functions. Omissions
of key words will cause error conditions at compilation time.· An example of key words follows:

~~~~-~~~~-1-F~~d-a-ta_-_na_m_e~~I-S~-[~ __ o_T_]~-{-~-~-·~-H-EA-RB_I~_T_I_c_}~~~~~--~---' 
The key words are IF, NOT, NUMERIC, and ALPHABETIC. 

OPTIONAL WORDS 

All upper-case words not underlined are optional words included for readability only and may be included or 
excluded in the source program. In the preceding example, the optional word is IS. 

GENERIC TERMS 

All lower-case words represent generic terms which are used to represent COBOL words, literals, PICTURE 
character-strings, comment-entries, or a complete syntactical entry that must be supplied in that format posi
tion by the programmer. Where generic terms are repeated in a general format, a number or letter appendage 
to the term serves to identify that term for explanation or discussion. Identifier-I and identifier-2 are g~neric 
terms in the following example: 

MOVE identifier-I TO identifier-2 

BRACES 

The followiing symbols are braces: { }. When words or phrases are enclosed in braces, a choice of one of 
the entries must be made. In the previous example in the subsection titled Key Words, either NUMERIC or 
ALPHABETIC must be included in the statement. 

1108883 2-1 



BRACKETS 

B 1000 Systems COBOL74 Reference Manual 
Language c:oncepts 

The following symbols are brackets: [ ]. Words and phrases enclosed in brackets represent optional portions 
of a statement. A programmer wishing to include the optional feature may do so by including the entry shown 
between brackets. Otherwise. the optional portion may be omitted. ( [NOT] in the example titled Key Words, 
is optional.) 

LEVEL-NUMBERS 

When specific level-numbers appear in data description entry formats, those specific level-numbers are re
quired when such entries are used in a COBOL74 program. In this document. the form 01, 02, ... , 09 is used 
to indicate level-numbers I through 9. 

ELLIPSIS 

The presence of the ellipsis (three consecutive periods ( ... )) within any format indicates the position at which 
repetition may occur at the programmer's option. The portion of the format that may be repeated is defim!d 
in the following paragraph. 

The ellipsis applies to the words between the determined pair of delimiters. Given the ellipsis in a clause or 
statement format, scanning right to left, determine the right bracket or right brace immediately to the left of 
the ... ; continue scanning right to left and determiine the logically matching left bracket. or left brace. 

FORMAT PUNCTUATION 

The separators comma and semicolon are used to imprnve the readability of the program. Suggested uses are 
shown in General Format subsections through this manual, however, use of these separators is optional. In 
the source program. the comma. semicolon. and space separators are interchangeable. If desired, a semicolon 
or comma may be used between statements in the PROCEDURE DIVISION. 

Paragraphs within the IDENTIFICATION and PROCEDURE DIVISIONS and entries within the ENVIRON
MENT and DATA DlVISIONS rpust be terminated by the separator period. When a single period is shown 
in a format, it must appear in the same position whenever the source program calls for the use of that 
particular statement. 

SPECIAL CHAFtACTERS IN FORMATS 

The characters · +'. ' -'. '>'. '<'. '='. when appearing in formats. although not underlined, are required when 
such formats are used. 

2-2 



CHARACTER SET 

B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

The COBOL74 character set for the B 1000 System consists of the following 52 characters: 

0 through 9 period or decimal point 

A through Z semicolon 

blank or space " quotation mark 

+ plus sign ( left parenthesis 

- minus sign or hyphen ) right parenthesis 

* asterisk > greater than symbol 

/ slash < less than symbol 

= equal sign @ "at" sign 

$ currency sign , comma 

CHARACTERS USED FOR WORDS 

The character set for words consists of the following 37 characters: 

[ 

0 through 9 J 
A through Z 

- (hyphen) 
------

PUNCTUATION CHARACTERS 

The following characters may be used for program punctuation: 

1108883 

@ "at" sign 

" quotation mark 

( left parenthesis 

) right parenthesis 

space or blank 

period 

, comma (see following note) 

semicolon 

NOTE 
For enhanced readability of the source program, commas may be used between 
statements, at the programmer's discretion. Use of commas implies that any suc
ceeding statement is to be included as an element of the prior statement. 

2-3 



B 1000 Systems COBOL 74 Reference Manual 
Language Concepts 

EDITING CHARACTERS 

The COBOL 74 compiler accepts the following characters in editing: 

$ currency sign + plus 

* asterisk (check protect) -· minus 

, comma CR credit 

I slash DB debit 

B space or blank insert 

O zero insert 

z zero suppress 

period 

CHARACTERS USED IN ARITHMETIC EXPRESSIONS 

The COBOL74 compiler accepts the following characters in arithmetic expressions: 

+ addition 

- subtraction 

** 1~xponentiation 
( left parenthesis 

* multiplication ) right parenthesis 

/ division 

CHARACTERS USED IN RELATION CONDITIONS 

The COBOL 74 compiler accepts the following characters in relation conditions: 

[ = equal sign ] 
< less than symbol 

> greater than symbol 
, __ _ 

LANGUAGE STRUCTURE 

The individual characters of the language are concatenated to form character-strings and separators. A separa
tor may be concatenated with another separator or w11th a character-string. A character-string may only be 
concatenated with a separator. The concatenation of character-strings and separators forms the text of a source 
program. 

SEPARATORS 

A separator is a string of one or more punctuation characters. The rules for formation of separators are: 

2-4 

1. The punctuation character space is a separator. Anywhere a space is used as a separator, more than 
one space may be used. 

2. The punctuation characters comma. semicolon, and period are separators. 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

3. The punctuation character quotation mark is a separator. An opening quotation mark must be immedi
ately preceded by one of the separators space, comma. semicolon, or left parenthesis; a closing quota
tion mark must be immediately followed by one of the separators space. comma, semicolon, period. 
or right parenthesis. 

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when the 
literal is continued. 

4. The punctuation characters right and left parentheses are separators. Parentheses may appear only in 
balanced pairs of left and right parentheses delimiting subscripts, indices. arithmetic expressions, or 
conditions. 

5. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be immediately preceded 
by a space; a closing pseudo-text delimiter must be immediately followed by one of the separators 
space, comma, semicolon, or period. 

Pseudo-text delimiters ( = =) may appear only in balanced pairs delimiting pseudo-text. 

6. The punctuation character (ff is a separator. An opening ([i' character must be preceded immediately 
by one of the separators space. comma. semicolon. or left parenthesis; a closing (<.1 character must 
be immediately followed by one of the separators space, comma. semicolon. period. or right parenthe
sis. 

At signs (([i') may appear only in balanced pairs delimiting hexadecimal literals. 

7. The separator space may optionally immediately follow any separator except the opening quotation 
mark. In this cas.e. a following space is considered as part of the nonnumeric literal and not as a se
parator. 

Any punctuation character which appears as part of the specification of a PICTURE character-string 
or numeric literal is not considered as a punctuation character. but rather as a symbol used in the 
specification of that PICTURE character-string or numeric literal. PICTURE character-strings are de
limited only by the separators space. comma, semicolon. or period. 

The rules established for the formation of separators do not apply to the characters which comprise 
the contents of nonnumeric literals. comment-entries, or comment lines. 

CHARACTER-STRINGS 

A character·-string is a character or sequence of contiguous characters which forms a COBOL 74 word. literal. 
PICTURE character-string, or comment-entry. A character-string is delimited by separators. 

Dl:FINITION OF WORDS 

A COBOL74 word is created from a combination of not more than 30 characters. selected from the following: 

[ 

0 through 9 

A through Z 

- (hyphen) _____ _____, 

1108883 2-5 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

A word is ended by a space, period, comma, or semicolon. A word may not begin or end with a hyphen. 
(A literal constitutes an exception to these rules, as explained in a paragraph entitled Literals in this section .. ) 

A user-defined word is a COBOL 74- word that must be supplied by the user to satisfy the format of a clause 
or statement. 

TYPES OF WORDS 

COBOL74 contains the following word types: nouns (user-defined words), verbs, and reserved words. 

NOUNS 

Nouns are divided into special categories: 

File-name 

Record-name 

Data-name 

Condition-name 

Mnemonic·· name 

Index-name 

Paragraph-name 

Family-name 

Cd-name 

Text-name 

Library-name 

Program-name 

Alphabet-name 

Section-name 

The length of a noun must not exceed 30 characters. For purposes of readability, a noun may contain one 
or more hyphens. However, the hyphen must neither begin nor end the noun (this does not apply to literals). 

All nouns within a given category must be unique. either because no other noun in the same source program 
has identical spelling or punctuation. or because uniqueness can be insured by qualification. With the exceptio111 
of paragraph-name. section-name. text-name. library-name. and family-name. all user-defined words must con
tain at least one alphabetic character. 

File-Name 

A file-name is a noun containing at least one alphabetic character assigned to designate a set of data items. 
The contents of a file are divided into logical records made up of any consecutive set of data items. 

Record-Name 

A record-name is a noun contammg at least one alphabetic character assigned to identify a logical record. A 
record can be subdivided into several data items. each distinguishable by a data-name. 

Data-Name 

A data-name is a noun assigned to identify elements within a record or work area and is used in COBOL74 
to refer to an element of data. or to a defined data area containing data elements. Each data-name must contai111 
at least one alphabetical character. 

2-6 



Condition-Name 

B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

A condition-name is the name assigned to a specific value, set of values, or range of values within the com
plete set of values that a data item may assume. The data item is a conditional variable. The condition-name 
must contain at least one alphabetic character and must be unique, or be able to be referenced uniquely 
through qualification. A conditional variable may be used as a qualifier for any of its condition-names. If refer
ences to a conditional variable require indexing, subscripting, or qualification, then references to any of its 
condition-names also require the same combination of indexing, subscripting, or qualification. A condition
name is used in conditions as an abbreviation for the relation condition; its value is TRUE if the associated 
conditional variable is equal to one of the set values to which that condition-name is assigned. 

Condition-names may be defined in the DATA DIVISION, or in a SPECIAL-NAMES paragraph within the 
ENVIRONMENT DIVISION where a condition-name must be assigned to the ON STATUS or OFF STAT
US, or both, of defined switches. 

Mnemonic-Name 

The use of mnemonic-names provides a means of relating certain hardware equipment names to problem-ori
ented names the programmer may wish to use. These associations are established in the SPECIAL-NAMES 
paragraph of the ENVIRONMENT DIVISION. 

Index-Name 

An index-name is a word with at least one alphabetic character that names an index associated with a specific 
table (refer to Indexing in this section). An index is a register, the contents of which represent the character 
position of the first character of an element of a table with respect to the beginning of the table. 

Paragraph-Name 

A paragraph-name is a word which names a paragraph in the PROCEDURE DIVISION. Paragraph-names are 
equivalent only if composed of the same sequence of the same number of digits and/or characters. 

Section-Name 

A section-name is a word which names a section in the PROCEDURE DIVISION. Section-names are 
equivalent only if composed of the same sequence of the same number of digits and/or characters. 

Other Categories 

See the glossary in Appendix D for definitions of all other types of user-defined words. 

VERBS 

A verb in COBOL74 is a single word that denotes action, such as ADD, WRITE, or MOVE. All allowable 
verbs in COBOL74, with the exception of the word IF, are English verbs. The usage of the COBOL74 verbs 
takes place primarily within the PROCEDURE DIVISION. 

1108883 2-7 



RESERVED WORDS 

B 1000 Systems COBOL 74 Reference Manual 
Language Concepts 

A reserved word is a COBOL74 word that is one of a specified list of words which may be used in COBOL74 
source programs, but must not appear in the programs as user-defined words. Refer to Appendix A, Reserved 
Words. 

These rules apply to the entire COBOL74 source program; no exceptions exist for specific divisions, sections., 
or statements. 

There are six types of reserved words: 

Key words 
Connectives 
Optional words 
Figurative constants 
Special registers 
Special-character words 

Key W'ords 

A key word is a word whose presence is required in a source program. Within each format, such words are 
upper-case and underlined. 

Key words are of three types: 

I. Verbs such as ADD and READ. 
2. Required words which appear in statement and entry formats. 
3.. Words which have a specific functional meaning such as NEGATIVE and SECTION. 

Connectives 

Connectives are used to indicate the presence of a qualifier or to form compound conditional statements. The 
connectives OF and IN are used for qualification. The connectives AND, AND NOT, OR, or NOT are used 
as logical connectives in conditional statements. The comma is used as a series connective to separate two 
or more operands. 

Optional Words 

Optional words are included in the COBOL74 language to improve the readability of the statement formats. 
These optional words may be included or omitted. For example, IF A IS GREATER THAN B ... is equivalent 
to IF A GREATER B ... $; the inclusion or omission of the words IS and THEN does not influence the logic 
of the statement. 

Figurative Constant 

A figurative constant is a reserved word used to reference specific constant values and must never be enclosed 
in quotation marks except when the word, rather than the value, is desired. The figurative constant names 
and mearnings are: 

2-8 

ZERO 
ZEROS 
ZEROES 

Represents the value 0, or one or more of the character 'O', depending on the 
context. 



SPACE 
SPACES 

B I 000 Systems COBOL74 Reference Manual 
Language Concepts 

Represents one or more spaces (blanks). 

HIGH-VALUE Represents one or more occurrences of the character that has the highest 
ordinal position in the program collating sequence, except in the alphabet-name 
clause of the SPECIAL-NAMES paragraph, where it represents the highest 
ordinal position in the native collating sequence. 

LOW-VALUE 
LOW-VALUES 

Represents one or more occurrences of the character that has the lowest 
ordinal position in the program collating sequence, except in the alphabet-name 
clause of the SPECIAL-NAMES paragraph, where it represents the lowest 
ordinal position in the native collating sequence. 

QUOTE 
QUOTES 

ALL<literal> 

Represents one or more occurrences of the character "". The word QUOTE 
or QUOTES cannot be used in place of a quotation mark in a source program 
to bound a nonnumeric literal. Thus, QUOTE ABO QUOTE is incorrect as a 
way of stating the nonnumeric literal "ABO". If, however, the full "ABO" is 
desired in a DISPLAY statement, it can be achieved by writing QUOTE 
"ABO" QUOTE, in which case the object program will display "ABO". 

When followed by a hexadecimal literal, a nonnumeric literal, or a figurative 
constant, the word ALL represents a series of that literal. For example, if the 
COBOL74 statement is MOVE ALL literal TO ERROR-CODE, then the 
resultant ERROR-CODE would take on the following values: 

ALL literal 

ALL "ABC" 
ALL "2" or ALL 2 
ALL QUOTE 
ALL SPACES 

Size of ERROR-CODE 

7 characters 
5 characters 
3 characters 
8 characters 

NOTE 

ERROR-CODE 

ABCABCA 
22222 

(eight spaces) 

The use of ALL with figurative constants, as ilJustrated in the last two instances, 
is redundant. MOVE ALL SPACES and MOVE SPACES yields the same result. 

When a figurative constant represents a string of one or more characters, the length of the string is determined 
by the compiler from context, according to the following rules: 

I. When a figurative constant is associated with another data item, the string of characters specified by 
the figurative constant is repeated character by character on the right until the size of the resultant 
string is equal to the size in characters of the associated data item. This is done prior to and independ
ent of the application of any JUSTIFIED clause that may be associated with the data item. 

2. When a figurative constant is not associated with another data item, as when the figurative constant 
appears in a DISPLAY, STRING, STOP, or UN STRING statement, the length of the string is one 
character. 

A figurative constant may be used wherever a literal appears in a format, except that whenever the literal 
is restricted to numeric characters only, the only figurative constant permitted is ZERO (ZEROS, ZEROES). 

When the figurative constants HIGH-V ALUE(S) or LOW-V ALUE(S) are used in the source program, the ac
tual character associated with each figurative constant depends upon the program collating sequence specified. 
Refer to OBJECT-COMPUTER and SPECIAL-NAMES in Section 5 for additional information. 

1108883. 2-9 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

Special Registers 

Certain reserved words are used to name and refen::nce special registers. Special registers are certain compiller 
generated storage areas whose primary use is to store information produced in conjunction with the use of 
specific COBOL74 features. These special regist,ers include the following: LINAGE-COUNTER, LINE
COUNTER, PAGE-COUNTER, and DEBUG-ITEM. 

Special-Character Words 

The arithmetic operators and relation characters are reserved words. Refer to the glossary in Appendix D for 
additional information. 

LITERALS 

A literal is an item of data whose value is implied by an ordered set of characters of which the literal is com
posed, or by specification of a reserved word which references a figurative constant. There are three classes 
of a literal: numeric, nonnumeric, and hexadecimal. 

Numeric Literal 

A numeric literal is a character-string whose characters are selected from the digits 0 through 9, the plus sign 
( + ), the minus sign (--), and/or the decimal point. Numeric literals may be from I to 18 digits in length. The 
rules for the formation of numeric literals are as follows: 

I. A numeric literal must contain at least one digit. 
2. A numeric literal must not contain more than one sign character. If a sign is used, it must appear 

as the leftmost character of the literal. If the literal is unsigned, the literal is positive. 
3. A numeric literal must not contain more than one decimal point. The decimal point is treated as an 

assumed decimal point, and may appear anywhere within the literal except as the rightmost charactt~r. 
If the literal contains no decimal point, the literal is an integer. An integer is a numeric lit~ral which 
contains no decimal point. 

llf a literal conforms to the rules of the formation of numeric literals, but is enclosed in quotation 
marks, it is a nonnumeric literal and is treated as such by the compiler. 

4. The value of a numeric literal is the algebraic quantity represented by the characters in the numeric 
literal. Every numeric literal belongs to category numeric. Refer to the PICTURE clause in Section 
6 for additional information. The size of a numeric literal in standard data format characters is equal 
to the number of digits specified by the user. The following are examples of numeric literals: 

51679 
.00.5 

+2.629 
-.8479 
6287.92 

Nonnumeric Literal 

A nonnumeric literal may be composed of any allowable character. The beginning and ending of a nonnumeric 
literal are both denoted by a quotation mark. Any character enclosed within quotation marks is part of the 
nonnumeric literal. Subsequently, all spaces enclosed within the quotation marks are considered part of the 
literal. Two consecutive quotation marks within a nonnumeric literal cause a single quotation mark to be in
serted into the literal string. Four consecutive quotation marks result in a single " literal. 

2-10 



B I 000 Systems COBOL74 Reference Manual 
Language Concepts 

All other punctuation characters are part of the value of the nonnumeric literal rather than separators; all non
numeric literals belong to category alphanumeric. Refer to the PICTURE clause in Section 6. 

A nonnumeric literal cannot exceed 160 characters. Examples of nonnumeric literals are: 

Literal on Source Program Level 

'THE TOTAL PRICE" 
"-2080.479" 
"""LIMITATIONS'""' 

"'"A''""B'' 

NOTE 

Literal Stored by Compiler 

THE TOTAL PRICE 
-2080.479 
"LIMITATIONS" 

A"B 

Literals that are used for arithmetic computation must be expressed as numeric lit
erals and must not be enclosed in quotation marks as nonnumeric literals. For ex
ample, "4.4" and 4.4 are not equivalent. The compiler stores the nonnumeric liter
al as 4.4, whereas the numeric literal would be stored as 0044 if the PICTURE 
were 999V9 DISPLAY, with the assumed decimal point located between the two 
fours. 

Hexadecimal Literals 

A hexadecimal literal is a character-string cons1stmg of characters selected from the hexadecimal digits 'O' 
through '9' and 'A' through 'F'. The beginning and ending of a hexadecimal literal are each denoted by an 
(<l sign. For example, a binary 12 would be expressed (<iC<Ji. 

The category of a hexadecimal literal (4-bit numeric or 8-bit alphanumeric) is determined by the category of 
the data item with which it is associated in a COBOL74 statement. A hexadecimal literal is handled as a 4-bit 
numeric when the category of the associated data item is numeric whether USAGE is COMPUTATION AL 
or DISPLAY. 

A hexadecimal literal is handled as if it were numeric if: 

I. In the VALUE clause, the category of the associated data item is numeric. 
2. In the MOVE statement, the category of the receiving data item is numeric or numeric edited. 
3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of the other 

relational operand is numeric. 

A hexadecimal literal is handled as 8-bit alphanumeric when the category of the associated data item is nonnu
meric. Each character is represented by two hexadecimal digits. This requires an even number of digits in 
the hexadecimal literal. A hexadecimal literal is handled as if it were alphanumeric if: 

I. In the VALUE clause, the category of the associated data item is not numeric. 
2. In the MOVE statement. the category of the receiving data item is alphanumeric, alphabetic, or alpha

numeric edited. 
3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of the other 

relational operand is not numeric. 
4. It appears in an INSPECT, STRING, UNSTRING, DISPLAY, STOP. DISABLE, or ENABLE state

ment. 
5. It appears in the ALL figurative constant. 

A hexadecimal literal may also appear in a COPY statement, in which case the hexadecimal literal does not 
have a type associated with it. 

1108883 2-11 



B 1000 Systems COBOL74 Reference Manual 
Language ('.oncepts 

The following restrictions apply to hexadecimal lit,~rals: 

2-12 

I. A hexadecimal literal is not allowed as an arithmetic operand in an ADD, SUBTRACT, MULTIPLY, 
or DIVIDE statement, nor in an arithmetic eJ1.pression in a COMPUTE statement or conditional ex
pression. 

2. A. hexadecimal literal is not allowed as a subscript or index. 
3. A hexadecimal literal is not allowed as a program name in a CALL or CANCEL statement. 
4. A.n identifier assigned a hexadecimal literal will not, in most cases, compare as either numeric or al

phabetic in a class condition test. 
5. When a hexadecimal literal is handled as ff its category were computational, then the length of the 

literal must be from 1 to 18 digits. When a h1~xadecimal literal is handled as if it were nonnumeriic, 
the length of the literal must be from 2 to 3'.!0 digits. 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

DATA DESCRIPTION CONCEPTS 

LOGICAL RECORD AND FILE CONCEPTS 

The purpose of defining file information is to distinguish between the physical aspects of the file and the con
ceptual characteristics of the data contained within the file. 

PHYSICAL ASPECTS OF A FILE 

The physical aspects of a file describe the data as it appears on the input or Ol:Jtput media and include such 
features as: 

I. The grouping of logical records within the physical limitations of the file medium. 
2. The means by which the file can be identified. 

CONCEPTUAL CHARACTERISTICS OF A FILE 

The conceptual characteristics of a file are the explicit definition of each logical entity within the file itself. 
In a COBOL74 program, the input or output statements refer to one logical record. 

It is important to distinguish between a physical record and a logical record. A COBOL74 logical record 1s 
a group of related information, uniquely identifiable, and treated as a unit. 

A physical rec,ord is a physical unit of information whose size and recording mode are adapted to a particular 
computer for the storage of data on an input or output device. The size of a physical record is hardware de
pendent and has no direct relationship to the size of the file of information contained on a device. 

A logical record may be contained within a single physical unit; several logical records may be contained 
within a single physical unit; or. in the case of mass storage files, a logical record may require more than 
one physical unit. There are several source language methods available for describing the relationship of logical 
records and physical units. When a permissible relationship has been established, control of the accessibility 
of logical records as related to the physical unit must be provided by the interaction of the object program 
on the hardware and/or software system. In this manual, references to records indicate records, unless the 
phrase 'physical record' is specifically used. 

The concept of a logical record is not restricted to file data but is carried over into the definition of working 
storage. Working storage may be grouped into logical records and defined by a series of record description 
entries. 

RECORD CONCEPTS 

The record description consists of a set of data description entries which describe the characteristics of a par
ticular record. Each data description entry consists of a level-number followed by a data-name, if required. 
followed by a series of independent clauses, as required. 

CONCEPT OF LEVELS 

A level concept is inherent in the structure of a logical record. This concept arises from the need to specify 
subdivisions of a record for the purpose of data reference. Once a subdivision has been specified. it may be 
further subdivided to permit more detailed data referral. 

1108883 2-13 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

DATA DESCRIPTION CONCEPTS 

The most basic subdivisions of a record, those not further subdivided, are ca1led elementary items; consequen
tly, a record is said to consist of a sequence of elementary items, or the record itself may be an elementary 
item. 

In order 1to refer to a set of elementary items. the elementary items are combined into groups. Each group 
consists of a named sequence of one or more elementary items. Groups, in turn, may be combined into groups 
of two or more groups. An elementary item may belong to more than one group. 

LEVEL.-·NUMBERS 

A system of level-numbers shows the organization of elementary items and group items. Since records a.re 
the most inclusive data items, level-numbers for records start at 01. Less inclusive data items are assigned 
higher (not necessaiily successive) level-numbers not greater in value than 49. There are special level-numbers 
66, 77, and 88, which are exceptions to this rule. Separate entries are written in the source program for each 
level-number used. 

A group includes all group and elementary items following it until a level-number less than or equal to the 
level-number of that group is encountered. All items which are immediately subordinate to a given group item 
must be described using identical level-numbers greater than the level-number used to describe that group item. 

Three types of entries exist for which there is no true concept of level. These are: 

l. Entries that specify elementary items or groups introduced by a RENAMES c1ause. 
2. Entries that specify noncontiguous working storage and linkage data items. 
3. Entries that specify condition-names. 

Entries describing items by means of REN AMES c1auses for the purpose of regrouping data items have been 
assigned the special level-number 66. 

Entries that specify noncontiguous data items, which are not subdivisions of other items. and are not subdi
vided. have been assigned the special level-number T7. 

Entries that specify condition-names. to be associated with particular values of a conditional variable, have 
been assigned the special level-number 88. 

CONCEPT OF CLASSES OF DATA 

The five categories of data items (refer to the PICTURE c1ause in Section 6) are grouped into three classes: 
alphabetic. numeric, and alphanumeric. For alphabetic and numeric. the classes and categories are 
synonymous. The alphanumeric class includes the categories of alphanumeric edited, numeric edited. and al
phanumeriic (without editing). Every elementary item, except for an index data item, belongs to one of the 
classes and also to one of the categories. The class of a group item is treated at object time as alphanumeric 
regardless of the class of elementary items subordinate to that group item. Table 2-1 shows the relationshi;p 
of the class and categories of data items. 

2-14 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

DATA DESCRIPTION CONCEPTS 

Table 2-1. Classes of Data 

level of Item Class Category 

Alphabetic Alphabetic 

Numeric Numeric 

Elementary Numeric Edited 
Alphanumeric Alphanumeric Edited 

Alphanumeric 

Alphabetic 
Numeric 

Nllnelementary Alphanumeric Numeric Edited 
(Group) Alphanumeric Edited 

Alphanumeric 

ALGEBRAIC SIGNS 

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric data items 
and signed numeric literals to indicate algebraic properties; and editing signs, which appear on edited reports 
to identify the sign of the item. 

The SIGN clause permits the programmer to state explicitly the location of the operational sign. The clause 
is optional; if it is not used, operational signs are represented as defined under symbol 'S' of the PICTURE 
clause. Refer to the "PICTURE clause, General Rule 8, the 'S' symbol in Section 6. 

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause. 

STANDARD ALIGNMENT RULES 

The standard rules for positioning data within an elementary item depend on the category of the receiving item. 
These rules are: 

I. If the receiving data item is described as numeric: 

a. The data is aligned by decimal point and is moved to the receiving character positions with zero 
fill or truncation on either end as required. 

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it had 
an assumed decimal point immediately following the rightmost character and is aligned as in step 
la above. 

2. If the receiving data item is a numeric edited data item, the data moved to the edited data item is 
aligned by decimal point with zero fill or truncation at either end as required within the receiving char
acter positions of the data item, except where editing requirements cause replacement of the leading 
zeros. 

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric edited 
or alphabetic, the sending data is moved to the receiving character positions and aligned at the left
most character position in the data item with space fill or truncation to the right, as required. 

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified as described 
in the JUSTIFIED clause description in Section 6. 

1108883 2-15 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

UNIQUENESS OF REFERENCE 

Uniqueness of reference for id~ntifiers and condition-names, if not unique in the program, can be accomplished 
through the use of qualification, subscripting, or indexing. 

IDENTIFIER 

An identifier is a term used to reflect that a data-name, if not unique in a program, must be fonowed by a 
syntactically correct combination of qualifiers, subscripts, or indices necessary to ensure uniqueness. 

General Formats: 

Format I: 

data-name- I [ { ?rf } data-name-2 J [_£subscript-I 

[ , subscript-2 [ , subscript-3 ] J l] 

Format 2: 

·-·---·--·-·····------------------------------

data-name-I [ { ?rf} 

[ ( { 

index-name-I 

literal- I 

[ 

) index-name-2 

' { literal-3 

[ 

' {, index-name-3 

literal-5 

data-name-2 J 

[ { 
+ { literal-2 ] } 

' -· t 

r 
) + ( literaI-4 J { 
t -· j f 

[{ :: } literal-6 ] } ] l ) ] 
Restrictions on qualification, subscripting. and indlexing are: 

2-16 

I. A data-name must not be subscripted or indexed when that data-name is being used as an index, sub
script, or qualifier. 

2. Indexing is not permitted where subscripting is not permitted. 
3. An index may be modified only by the SET. SEARCH, and PERFORM statements. Data items de

scribed by the USAGE IS INDEX clause permit storage of the values associated with index-names 
as data. Refer to the USAGE cause in Section 6. Such data items are called index data items. 

4. Literal-I. literal-3, literal-5, ... in the previous format example, must be positive numeric integers. Lit
eral-2, literal-4, literal-6, ... must be unsigned numeric integers. 



CONDITION-NAME 

B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

Each condition-name must be unique, or made unique through qualification and/or indexing, or subscripting. 

If qualification is used to make a condition-name unique, the associated conditional variable may be used as 
the first qualifier. If qualification is used, the hierarchy of names associated with the conditional variable, or 
the conditional variable itself, must be used to make the condition-name unique. 

If references to a conditional variable require indexing or subscripting, then references to any of its condition
names also require the same combination of indexing or subscripting. 

The format and restrictions on the combined use of qualification, subscripting, and indexing of condition-names 
is exactly that of 'identifier' except that data-name-1 is replaced by 'condition-name-I'. 

In the general formats, 'condition-name' refers to a condition-name qualified, indexed or subscripted, as neces
sary. 

1108883 2-17 



QUALllFICATION 

B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

QUALIFICATION 

Every user-specified name that defines an element in a COBOL74 source program must be unique .. either be
cause no other name has the identical spelling and hyphenation, or because the name exists within a hierarchy 
of names such that references to the name can be made unique by mentioning one or more of the higher levels 
of the hierarchy. The higher levels are called qualifiers and the process that specifies uniqueness is called quali
fication. Enough qualification must be mentioned to make the name unique; however, it may not be necessary 
to mention all levels of the hierarchy. Within the DATA DIVISION, all data-names used for qualification must 
be associated with a level indicator or a level-numbt::r. Therefore, two identical data-names must not appear 
as entries subordinate to a group item unless they are capable of being made unique through qualification. 
In the PROCEDURE DIVISION. two identical paragraph-names must not appear in the same section. 

In the hierarchy of qualification, names associated with a level indicator are the most significant, followed by 
those names associated with level-number 01, and finally the names associated with level-number.02, ... , 49. 
A section-name is the highest and only qualifier available for a paragraph-name. The most significant name 
in the hierarchy must be unique and cannot be qualified. Subscripted or indexed data-names and conditional 
variables. as well as procedure-names and data-names. may be made unique by qualification. The name of 
a conditional variable can be used as a qualifier for any of its condition-names. Regardless of the available 
qualification. no name can be both a data-name and procedure-narr!~. 

Qualification is performed by following a data-name. a condition-name, a paragraph-name, or a text-name by 
one or more phrases composed of a qualifier preceded by IN or OF. IN and OF are logically equivalent. 

General Format: 

Format I: 

[--
{
. data-name-I } 
. condition-name [ { ?: } data-name-2 J 

____ ] 
Format 2: 

[_ .. paragraph-name ·~---s-·e_c-t1-·o_n_-_n_a_m_c_J _____ ~--~-J 
Format 3: 

l-·· 
text-name [ 

f ()F} 
) _lN 

library-name J 

__ ] 

2-18 



General Rules: 

B 1000 Systems COBOL 74 Reference Manual 
Language Concepts 

QUALIFICATION 

I. Each qualifier must be of a successively higher level and within the same hierarchy as the name it 
qualifies. 

2. The same name must not appear at two levels in a hierarchy. 
3. If a data-name or a condition-name is assigned to more than one data item in a source program. the 

data··name or condition-name must be qualified each time it is referenced in the PROCEDURE. ENVI
RONMENT. and DATA DIVISIONS (except in the REDEFINES clause where qualification is unnec
essary and must not be used.) 

4. A paragraph-name must not be duplicated within a section. When a paragraph-name is qualified by 
a section-name. the word SECTION must not appear. A paragraph-name need not be qualified when 
referred to from within the same section. 

5. A data-name cannot be subscripted when used as a qualifier. 
6. A name can be qualified even though it does not need qualification: if there is more than one combina

tion of qualifiers that ensures uniqueness. then any such set can be used. The complete set of qualifi
ers for a data-name must not be the same as any partial set of qualifiers for another data-name. Quali
fied data-names may have any number of qualifiers up to and including 49. 

7. If more than one COBOL74 library is available to the compiler during compilation. text-name must 
be qualified each time it is referenced. 

Examples: In the following file descriptions all items are unique except the data-name TECH. In order to refer 
to either TECH item. qualification must be used. Otherwise. if reference is made to TECH only. the compiler 
would not know which of the two is desired. Therefore. in order to move the contents of one TECH into 
the other TECH. the PROCEDURE DIVISION must be coded with one of the following sentences: 

MOVE TECH IN CITY-NO TO TECH OF STATE-NO. 

MOVE TECH OF CI TY-tW TO TECH I t~ STATE-NO. 

MOVE TECH IN AREA-tJO TO TECH OF RADIUS-NO. 

MOVE TECH OF AREA-NO TO TECH IN RADIUS-NO. 

01 AREA-IW . 01 RADIUS-NO . 
03 CI TY-IW 03 STATE-NO . 

05 TECH . 05 TECH 
05 BRANCH . 05 DIST-BR 

03 DISTRICT . . 03 REGION . . 

1108883 2-I 9 



B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

SUBSCRIPTING 

SUBSCRIPTING 

Subsc1ipts can be used only when reference is made to an individual element within a list or table of like 
elements that have not been assigned individual data-names (refer to the OCCURS clause in Section 6). 

The subscript can be represented either by a numeric literal that is an integer or by a data-name. The data
name must be a numeric elementary item that represents an integer. When the subscript is represented by 
a data-name, the data-name may be qualified but not subscripted. 

The subscript may be signed and, if signed, must be positive. The lowest possible subscript value is 1. This 
value points to the first element of the table. The next sequential elements of the table are pointed to by sub
scripts whose values are 2. 3, and so forth. The highest permissible subscript value, in any particular case, 
is the maximum number of occurrences of the item as specified in the OCCURS clause. 

At the time of execution of a statement which refers to a subscripted table element, each subscript specified 
is validated. That is. its value must not be less than one or more than the maximum number of occurrences 
as specified by the corresponding OCCURS clause (as modified by the DEPENDING ON clause, if any). If 
the subscript value is not within this range. an abnormal termination of the program occurs. 

The subscript or set of subscripts that identifies the table element is delimited by the balanced pair of separa
tors. left parenthesis and right parenthesis, following the table element data-name. The table element data-name 
appended with a subscript is called a subscripted data-name or an identifier. 

When more than one subscript is required., they arc written in the order of successively less inclusive dimen
sions of the data organization. 

General Format: 

[ } data-name ( 

) condition-name j ( 
subscript-I 

[ , -s-u-bs-c-ri_p_t--2--[_._s_u_b-sc-r-ip-t--3_]_,~_\:t-%@-J _J ___ ] 

Example: 

In the foHowing file description. to reference the first d1.!partment, DEPT (I) is written. If data-name X contains 
the number of the department desired, DEPT (X) is ·written. If the data item GROUP contains the specific 
group desired. then POSITION (X. GROUP) would reference the exact employee. 

2-20 

01 EMPLOYEE-JOBS I 

05 DEPT 
10 DEPT-NAME 
10 ALL-JOBS 

15 POSITION 

OCCURS 50 TIMES. 
PIC X(lO) I 

OCCURS 20 TIMES. 
PIC X(l5). 



INDEXING 

B 1000 Systems COBOL74 Reference Manual 
Language Concepts 

INDEXING 

References can be made to individual elements within a table of like elements by specifying indexing for that 
reference. An index is assigned to that level of the table by using the INDEXED BY phrase in the definition 
of a table. A name given in the INDEXED BY phrase is known as an index-name and is used to refer to 
the assigned index. The value of an index corresponds to the occurrence number of an element in the associ
ated table. An index-name can be given a value by the execution of a SET statement. a SEARCH ALL state
ment. or a Format 4 PERFORM statement. 

An index-name has the same internal representation as an index data item. Refer to General Rule 9. the US- I 
AGE clause. in Section 6. If a value to be stored in an index-name or in an index data name exceeds the 
largest value that can be held in that index-name or index data name. the value is truncated according to the 
rules for the occurrence of a size error condition in an arithmetic statement without a SIZE ERROR phrase. 

An index-name assigned to one table may not be used to index another table. 

Direct indexing is specified by using an index-name in the form of a subscript. Relative indexing is specified 
when the index-name is followed by the operator + or -. followed by an unsigned integer numeric literal. all 
of which is ddimited by the matching pair of separators. left parenthesis and right parenthesis. following the 
table element data-name. The occurrence number resulting from relative indexing is determined by increment
ing (where the operator + is used) or decrementing (when the operator - is used). by the value of the literal. 
the occurrence number represented by the value of the index. When more than one index-name is required. 
they are written in the order of successively less inclusive dimensions of the data organization. 

At the time of execution of a statement which refers to an indexed table element. the value of each direct 
or relative index must not be less than a value which corresponds to the beginning of the first occurrence 
of the table element. Also. the index must not be greater than a value which corresponds to the beginning 
of the last occurrence of the table element as specified by the corresponding OCCURS clause. If the index 
value is not within this range. the execution of the program is terminated. The index value need not precisely 
address the beginning of a table element in order to pass the range check. This may occur when an index
name is set to the value of an index data item which has been set to the value of another index-name. as 
such assignments are made without conversion. 

Subscripting 1is permitted where indexing is permitted. 

General Format: 

) data-name l ( ) indcx-name-1 [ I + l literal-2 J l. 
{ condition-name j { literal- I ~ - ' j 

[ { index-name-2 

[ t : } 
literal-4 J l 

literal-3 ~· 

[ ) index-name-3 

[ {:} literal-6 J } l l ) 
' ,( literal-5 

I 
J ... J 

1108883-001 2-21 



B IOOO Systems COBOL74 Reference Manual 
Language Concepts 

EXPLICIT & IMPLICIT 

EXPUCIT AND IMPLICIT SPECIFllCATIONS 

There are three types of explicit and implicit specifications that occur in COBOL74 source programs: 

II. Explicit and implicit PROCEDURE DIVISlON references. 
2. Explicit and implicit transfers of control. 
3. Explicit and implicit attributes. 

EXPLICIT AND IMPLICIT PROCEDURE DIVISION REFERENCES 

A COBOL74 source program can reference data items either explicitly or implicitly in PROCEDURE DIVI
SION statements. An explicit reference occurs when the name of the referenced item is written in a PROCE
DURE DIVISION statement or when the name of the referenced item is copied into th_e PROCEDURE DIVI
SION by the processing of a COPY statement. An implicit reference occurs when the item is referenced by 
a PROCEDURE DIVISION statement without the name of the referenced item being written in the source 
statement. An implicit reference also occurs, during the execution of a PERFORM statement, when the index 
or data item referenced by the index-name or identifier specified in the VARYING, AFTER, or UNTIL phrase 
is initialized. modified. or evaluated by the contro! mechanism associated with that PERFORM statement. 
Such an implicit reference occurs if the data item contributes to the execution of the statement. 

EXPLICIT AND IMPLICIT TRANSIFERS OF CONTROL 

The mechanism that controls program flow transfers control from statement to statement in the sequence in 
which the statements were written in the source program, unless an explicit transfer of control overrides this 
sequence or there is no next executable statement to which control can be passed. The transfer of control 
from statement to statement occurs without the writing of an explicit PROCEDURE DIVISION statement, 
and therefore. is an implicit transfer of control. 

COBOL74 provides both explicit and implicit means of altering the implicit control transfer mechanism. 

In ~dclition to the implicit transfer of control betwefn consecutive statements, i'mplicit transfer of control also 
occurs when the normal flow is altered without the execution of a procedure branching statement. COBOL74 
provides the following types of implicit control flow alterations which override the statement-to-statement 
transfers of control: 

2-22 

I.. If a paragraph is being executed under control of another COBOL74 statement (for example, PER
FORM, USE, SORT, and MERGE) and the paragraph is the last paragraph in the range of the control
ling statement, then an implied transfer of control occurs from the last statement in the paragraph to 
the control mechanism of the last executed controlling statement. Further, if a paragraph is !being 
executed under the control of a PERFORM statement which causes iterative execution and that 
paragraph is the first paragraph in the range of that PERFORM statement, an implicit transfer of con
trol occurs between the control mechanism associated with that PERFORM statement and the first 
statement in that paragraph for each iterative execution of the paragraph. 

2. When a SORT or MERGE statement is executed. an implicit transfer of control occurs to any associ
ated input or output procedures. 

3. When any COBOL74 statement is executed which results in the execution of a declarative section, 
an implicit transfer of control to the declarative section occurs. Another implicit transfer of control 
occurs after execution of the declarative section. as described in step 1 above. 



8 IOOO Systems COBOL74 Reference Manual 
Language Concepts 

EXPLICIT & IMPLICIT 

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by the execu
tion of a procedure branching or conditional statement. An explicit transfer of control can be caused only by 
the execution of a procedure branching or conditional statement. The execution of the procedure branching 
statement ALTER does not constitute an explicit transfer of control, but affects the explicit transfer of control 
that occurs when the associated GO TO statement is executed. The procedure branching statement EXIT PRO
GRAM causes an explicit transfer of control when the statement is executed in a called program. 

In this manual, the term 'next executable statement' is used to refer to the next COBOL74 statement to which 
control is transferred according to the rules above and the rules associated with each language element in the 
PROCEDURE DIVISION. 

There is no next executable statement following: 

I. The last statement in a declarative section when the paragraph in which it appears is not being 
executed under the control of some other COBOL74 statement. 

2. The last statement in a program when the paragraph in which it appears is not being executed under 
the control of some other COBOL 74 statement. 

EXPLICIT AND IMPLICIT ATIRIBUTES 

Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified is called 
an explicit attribute. If an attribute has not been specified explicitly, then the attribute assumes the default 
specification .. Such an attribute is known as an implicit attribute. 

For example, the usage of a data item need not be specified, in which case. a data item's usage is DISPLAY. 

1108883 2-23 



B 1000 Systems COBOL74 Reference Manual 

SECTION 3 
CODING FORM 

GENERAL 

The format of the COBOL74 coding form (Figure 3-1) has been defined by CODASYL and ANSI, and by 
common usage. The B 1000 COBOL 74 Compiler accepts this standard format. Should program interchange be 
a major consideration, the user is directed to the ANSI standard. 

The rules for spacing given in the following description of the reference format take precedence over all other 
rules for spacing. 

FIE:LD DEFINITIONS 

The same coding form is used for all four divisions of a COBOL74 program. These divisions must appear in 
proper order: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The following paragraphs 
describe the various fields of this coding form. 

SEQUENCE AREA (Record Positions l-6) 

A sequence number, consisting of six digits in the sequence area, may be used to label a source program line. 

INDICATOR AREA (Record Position 7) 

Column 7 has the following functions: 

1. A $ symbol in column 7 indicates that the record is used to specify options for compiler operation. 
Refer to Section 11 for additional information. 

2. If column 7 contains an asterisk (*), the remainder of the record is considered to be a comment and, 
is not "compiled" to produce object code. 

3. If column 7 contains a slash (/), the listing is advanced to channel I before printing, and the record 
is considered to be a comment record. 

4. The presence of a hyphen (-) indicates that the last word or literal on the previous record is not com
plete and is continued on this record beginning in Area B (positions 12 through 72). 

Words and numeric literals may be split at any point by placing a hyphen in column 7 of the following 
record. Any rightmost blank spaces on a record are ignored as are the leftmost blank spaces on the 
continuation record. 

Nonnumeric literals are split in a slightly different fashion than words and numeric literals. On the 
initial record starting from the quotation mark, all information through position 72 is taken as part 
of the literal, and on the next record a quotation mark must be used to indicate the start of the second 
part of the literal. 

If there is no hyphen in column 7 of a coding line, it is assumed that the last character in the preced
ing line is followed by a space. 

5. The letter D in column 7 specifies a debugging line. Any debugging line that consists solely of spaces 
from positions 8 through 72 is considered the same as a blank line. 

1108883 3-1 



w 
I 

N 

r
l_:ROGRAM 

I 
PROGH.A.MMER 

PAGE LINE 
NO. NO. 

A B 

1 3 4 6 7 8 11 12 

j_ j_ o 1 I l l j_ j_ j_ j_ 

1 J_ 0 2 l J. _l_ .l .l l J_ 

l J. 
03 I _l 1 I lll 

T 
i J_ 04 1 j_ J_ J_ j_ l l 

J_ l 05 I J ..1 L J_ J_ 1 
T 

l J_ 0 6 J_ _1 J_ J_ j_ l J_ 

~J o 1 I _l J_ j_ J_ j_ j_ 
T 

l I j_ I l ..l J 1-J_i_...1 
00 I 

I 
j_ J_ 0 9 _l - J_ _l_ ..l J_ .1 ..l 

I 

J_ J_ 1 o I l J_ l 111 
I 

11 I 

11 1 2 J_ l j J_ l Li 

j_ J_ 1 3 I l I J. l l 1 
I 

j_ j_ 14 1 j_ Li J_ J_ l_ 

J_ J_ 1 5 I J_ _i J_ l_ J_ J_ 
I 

1-...L.l 16 l .l J. l ..l ..l J_ 

1 J 1 1 I lll J_ _l_l -r 
l l 1 8 l. lll lll 

l J 19 I _L I I l J_ J_ 

l 
..l J_ 2 0 J_ J_ l l .l l _J_ 

~- I l J_ ..l ..l ..l l. 
I 

..l j _l j_ J. L ..l l. ..l 
I 

l--LJ_J ___L 1 J J_ l l J_ 

I 
..l l i _L l l _l l 

J_ J. I J_ .l l. J_ J. _j 

8 12 

G12326 

--

16 20 24 

J_ j_ j_ j_ J_ .l .l ..l l 

_l_ l .l j_ l j_ J_ l_ .l 

Ill l J l I l L 

1 J_ j_ .l l_ .l i l l 

_i J_ l J_ J_ l _l _l l 

..1 l J_ j_ .l J_ J_ J_ J_ 

J_ J_ j_ j_ J_ j_ .l l 1 

J_ j_ ..l j_ l_ ..l .l 11 

_l _l .1 J_ J_ _l _J_ J_ _l_ 

J. l l j_ J. j_ i l J. 

_l J_ l _l_ _L l _L l _i 

_l J_ l_ _J_ l 1 l _l l 

__l___l_l _l_ _l__l_ _J_ _L J_ 

_i l_ l J_ i _J_ _ii _l 

J. ..l j_ l _l_l .l l l 

..1 ..l l. ..1 ..l .l J_ l l 

l J_ l l Ll J_ 11 

l j_ j_ J_ _l j_ J_ J_ J 

j_ l. l. j_ _l j_ j_ J_ J_ 

_l J_ ..l ..l l. .l j_ l J_ 

_l J_ l j_ ..l 1 J_ J_ J_ 

J_ l. l J_ l _l J_ J_ l 

_l J_ ..l J_ _L J_ _Lj_ _l 

l J_ l l. J_ J_ J_ -11 
16 20 '4 

Burroughs COBOL CODING FORM 

I REQUESTED BY 

1 DATt: 

28 32 36 40 44 48 52 

j_ J_ j_ J_ j_ ..l l_ J 1 j_ J_ j_ _l 1 J_ 1 J_ l l Ll 

J_ l J_ 1 J_ l_ lll _l_j_j_ l. l l lll l j_ j_ 

l 11 J_ J_ J_ 111 J_ l j_ lll J_ 1 J_ 1 11 

J_ 1 J l J_ j_ I I J. J_ j_ l j_ 1 l J_ l l l l 1 

J_ l _l -11 j_ i i l l 11 J_ l J_ _i J_ J_ l _i l 

J_ J_ ..1 J_ l J_ j_ J_ l J_ _l_ J_ j_ l l J_ l l J_ 11 

J.j_+j_J_ l J_ l _J_ j_ J_ lll j_ J_ j_ J_ j_ j_ 

_J_ lJ ..l.11. 1 J i l _i l j_ I j_ l l _l l J_ l 

.l _l j_ _i J_ 1 __LLl J_ l J_ 1 l J_ J_ J_ l l .1 J_ 

j_ l j_ l_ L l 1 j_ l j_ _l j_ j_ l j_ lii l l l 

I l 
I I I 

1 l J l j_ j_ 1 l l_ i J_ 1 _l_ _l__i lll lll 

l l_ J _l_ _l j_ 1 I l 1 J_ J_ l l j_ Ll i l LL 

_L J_ _l J_ j_ J_ l_i_j_ J_ l i _l_J_l l_ _L i l_ l_ l 

j _J_ _L J_ J_ J_ J_ _[ _L_ l J_ J_ l_ _l j_ J_ j_ J_ J_ l J_ 

J_ j_ l_ .l l l l LL J J_ i .l Jl l l j_ J_ J_ l 

l L ..l 1 J_ J_ J. J. J. _LLL J_ l J_ j_ l ..1 j_ J_ J_ 

l 1 _l J_ 1 1 1 l J_ __i__l___L J_ l l 11 J_ l j_ j_ 

l J_ J_ J_ .l .l l ll lll J 11 _i J_ L l l L 

_l ..l.L J__J__l_ _l J_ _l lll j_ -11 ..l _l ..1 _l l _l 

_L ..l ..l J_ J_ j_ J_ l J_ l J_ J_ l l J_ J_ l J_ J_ j_ l 

i LL t-_l_L_L J_ l J_ J_ .l J_ j_ l l J_ J_ J_ J_ J_ ..l 

l l J_ _Ll l J_ l _J_ l l J_ 111 lll l ll 

_l ..l J_ _L --1 l _l _l _J_ l J_ l Li i l 1 J_ _l ..l ..l 

l J_ l l J_ l l J_ _l l j_ _l l J_ j_ 111 l ..l J_ 
28 32 36 40 44 48 52 

Figure 3-1. COBOL Coding Form 

I PAGE 

l 
IOENT 

56 60 

J_ .l J_ l l J_ 

.l j_ J. lll 

111 l 11 

l l l 111 

j_ l J_ l l j_ 

J_ j_ J. .l .l J_ 

j_ l l lll 

J_ I I ..1 .l 1 

..l J_ l J_ J_ l 

l LI l l l 
. . ... 

• _i_ l ' o I 

j_ J_ J_ l l j_ 

i J_ _l .l i j_ 

J_ J_ J_ ..l J_ J. 

i il lll 

J. 1 I J_ J_ J_ 

J_ l l lll 

lll l l _l 

l l j_ l l..l 

J_ l l l l J_ 

_l I I l J_ J_ 

l ll Ll 1 

_l J_ l J_ _l l. 

l ll lll 
60 

OF 

73 

I 
eo I 

J_ j_ j__l _l_l I I I 

z 

64 68 J?2 

l J_ l _l_l l .l 

l J 1 _l_ 1 j_ l 

Ll 1 _i i l I 

l J_ J_ llll 

j_ l J_ J_J.Jl 

J_ l l ill_l_ 

lll I II I I 
l j_ J_ J_IJ_j_ I 

l.l.l l J J l 
l 

_l J 1 j_J_JJJ 

. .. " I I I 
I I I I I • I 

..l J_ l J.1-ll 

1 J__j_ j__l_l_l 

..l ..l _l J_J__l_l 

l J l l l _l J 

1 J l ll.l_l_ 

11 L l l l j_ 

..l 1 l l _j_ 1 l_ 

lll 1--11 j_ 

l I l l l l l 

1 I L l l J. L 

j_ l 1 l l l l 

J_ .l J_ J_ l _l_l_ 

J_ _l l J_j_J__l 

64 68 l 72 



B 1000 Systems COBOL74 Reference Manual 
Coding Form 

A debugging line is considered to have all the characteristics of a comment line, if the WITH DE
BUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph. Therefore, the 
contents of a debugging line must be such that a syntactically correct program is formed with or with
out the debugging lines being considered as comment lines. 

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph. 

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that each 
continuation line must contain the letter D in position 7, and character-strings may not be broken 
across two lines. 

AHEA A (Positions 8-11) 

DIVISION, SECTION, and PARAGRAPH headers must begin in Area A. A division header consists of the 
division name (IDENTIFICATION, ENVIRONMENT, DATA, or PROCEDURE), followed by a space, then 
the word DIVISION followed by a period. 

In the ENVlRONMENT and DATA DIVISIONS, a section header consists of the section-name, followed by 
a space, and then the word SECTION followed by a period. 

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the reserved 
word SECTION, followed by a segment-number (optional), followed by a period. 

A paragraph header consists of the paragraph-name followed by a period. The first sentence of the paragraph 
may appear on the same line as the paragraph header. 

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph headers are fixed 
and only the: headers shown in this manual are permitted. Within the PROCEDURE DIVISION, the section 
and paragraph headers are defined by the user. 

Within the DATA DIVISION, the level indicators (FD, CD, SD) and the level numbers 01 and 77 must each 
beg1in in Area A, followed by the associated name and appropriate descriptive information. 

The key words DECLARATIVES and END DECLARATIVES that precede and follow the declaratives por
tion of the PROCEDURE DIVISION, must appear on separate lines. Each must begin in Area A and must 
be followed by a period and a space. 

AREA 8 (Positions 12-72) 

All entries which are not DIVISION, SECTION, or PARAGRAPH headers; level numbers 01 and 77, or level 
indicators (FD, SD, CD), must start in Area B. 

When level-numbers are to be indented, each new level-number may begin any number of spaces to the right 
of Area A. The extent of indentation to the right is determined only by the width of the physical medium. 

RIGHT MARGIN (Position 72) 

The text of the program must appear between positions 8 and 72, inclusive. A word or statement may end 
in position 72. 

1108883 3-3 



B 1000 Systems COBOL74 Reference Manual 
Coding Form 

IDENTIFICATION (Positions 73-80) 

The identification field may contain any information d1esired by the user. The field is ignored but is reproduced 
on the output listing by the compiler. This field is normally used for the program name. 

BLANK LINES 

A blank line is one that contains no entries in the Indicator Area, Area A, and Area B. A blank line may 
appear anywhere in the source program except immediately preceding a continuation line. 

PUNCTUATION 

The following rules of punctuation apply to COBOL74 source programs for the B 1000 system. 

1. A sentence must be terminated by a period followed by a space. A period must not appear within 
a sentence unless it is within a nonnumeric literal or is a decimal point in a numeric literal or PIC· 
TURE string. 

2. T 1No or more names in a series must be separated by a space or by a comma. If used, commas mus1t 
appear only where allowed. 

3. Semicolons (;) are used only for readability and are never required. 
4. A space must never be embedded in a name; hyphens are to be used instead. A hyphen must not 

start or terminate a name. For example: 

PAY-DAY 
-PAYDAY 

(correct) 
(wrong) 

SAMPLIE CODING 

An extract sample from a source program, showing the continuation of both words and nonnumeric literals., 
is illustrated in Figure 3-2. 

3-4 



0 
00 
00 
00 
w PROGRAM 

G12327 

Burroughs COBOL CODING FORM 

REQUESTED BY PAGE J._ OF IQ 

Figure 3-2. Example of Continuation of Words and Literals 



GENERAL 

B JOOO Systems COBOL74 Reference Manual 

SECTION 4 
IDENTIFICATION DIVISION 

The first division of the COBOL74 source program is the IDENTIFICATION DIVISION whose function is 
to identify the source program and the resultant output of compilation. In addition, the date the program was 
written, the date the source program was compiled, and other pertinent information can be included in the 
IDENTIFICATION DIVISION. 

IDENTIFICATION DIVISION STRUCTURE 

The structure of this division follows: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. program-name. 

[AUTHOR. [comment-entry] ... ] 
[INSTALLATION. [comment-entry] ... ] 
[DATE-WRITTEN. [comment-entry ] ... ] 
[DATE-COMPILED. [comment-entry ] ... ] 
[SECURITY. [comment-entry ] ... ] 

The following rules must be observed in the formation of the IDENTIFICATION DIVISION: 

1. The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION DIVI
SION followed by a period and a space. 

2. All paragraph-names must begin in positions 8 through 11 (Area A) of the coding form. 
3. The comment-entry can consist of any combination of the characters from the B JOOO character set. 

The continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; 
however, the comment-entry may be contained on one or more lines. A period must be present to 
denote the end of the comment entry. 

PHOGRAM-ID PARAGRAPH 

The PROGRAM-ID paragraph gives the name by which a program is identified. 

[ PROGRAM-ID. program-name. 
------------

The following rules must be observed to form PROGRAM-ID paragraphs. 

1. The program-name must conform to the rules for formation of a user-defined word. 
2. The PROGRAM-ID paragraph contains the name of the program and must be present in every pro

gram. 
3. The: program-name identifies the source program and all listings pertaining to a particular program. 

1108883 4-1 



B 1000 Systems COBOL74 Reference Manual 
Identification Division 

IDENTIFICATION DIVISION 

DATE-COMPILED PARAGRAPH 

The DATE-·COMPILED paragraph provides the compilation date in the IDENTIFICATION DIVISION source 
program listing. c DATE-COMPILED. [comment-entry l ... l 
The paragraph-name DATE-COMPILED causes the current date to be inserted during program compilation. 
If a DATE-COMPILED paragraph is present, it is replaced during compilation with a paragraph of the form: c DATE-COMPILED. current date. ] 

CmTent date is composed of the elements year, month, day of month, hour, and minute and represents th1e 
date and time at which the compilation of the source program started. 

Year is presented as four digits, starting in the position on the printed line corresponding to column 25 of 
a source line. 

Month is presented as the name of the month in English, starting in the position on the printed line correspond
ing to column 30 of a source line. 

Day of month is presented as two digits, starting in the position on the printed line two places to the right 
of the last character of the month entry. 

Time is presented as four digits, with a colon between the second and third digits, and represents the time 
on a 24-hour clock. Time is presented in the position on the printed line five places to the right of the second 
digit of day of month. 

Any leading zeros in the numeric fields are presented as the character 'O' (zero). 

If a compHation commences at 11:03 p.m., February 3, 2001, the current date would be presented as: 

2001 FEBRUARY 03 23:03 

CODING THE IDENTIFICATION DIVISION 

Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be coded in the source pro
gram. Continued lines must begin in Area B and must not include a hyphen in the indicator area. 

4-2 



0 
00 
00 
00 
w 

PROGRAM 

PROGRAMMER 

PAGE LINE A 
NO. NO. 

1 3 4 

G12328 

Burroughs COBOL CODiNG FORM 

REQUESTED BY 

DATE 

36 40 44 48 52 

Figure 4-1. Coding the IDENTIFICATION DIVISION 

PAGE 

IDENT. 

56 60 

6 
m 
2 
-f :;; 
n 
)> 
-f cs 
2 
c 
< 
Cii 
cs 
2 

-0 

8 



GENERAL 

B 1000 Systems COBOL74 Reference Manual 

SECTION 5 
ENVIRONMENT DIVISION 

The ENVIRONMENT DIVISION is the second division of a COBOL74 source program. Its function is to 
specify the computer being used for the program compi1ation, specify the computer to be used for object pro
gram execution, associate files with the computer hardware devices, and provide the compiler with pertinent 
information about disk storage files defined within the program. Furthermore, this division is also used to spec
ify input-output areas to be utilized for each file declared in a program. 

ENVIRONMENT DIVISION ORGANIZATION 

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION contains the 
overall specifications of the computer. The INPUT-OUTPUT SECTION deals with files to be used in the ob
ject program. 

ENVIRONMENT DIVISION STRUCTURE 

The structure of this division follows: 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTE~source-computer-entry 
OBJECT-COMPUTER. object-computer-entry 

[SPECIAL-NAMES. special-names-entry ] 
[INPUT-OUTPUT SECTION. 
FILE-CONTROL. {file-control-entry } ... 

[1-0-CONTROL. input-output-control-entry ] 

The following rules must be observed in the formulation of the ENVIRONMENT DIVISION. 

I. The ENVIRONMENT DIVISION must begin with the reserved words ENVIRONMENT DIVISION 
followed by a period and a space. 

2. Al1 entries must begin in Area A (columns 8 through 11) of the coding form. 

1108883 5-1 



B 1000 Systems COBOL74 Reference Manual 
Environmc::nt Division 

CONFIGUBATION SECTION 

CONFIGURATION SECTION 

The CONFIGURATION SECTION contains information concerning the system to be used for program com
pilation (SOURCE-COMPUTER), the system to be used for program execution (OBJECT-COMPUTER), and 
the SPECIAL-NAMES paragraph. The SPECIAL-NAMES paragraph relates hardware names used by th 1e 
B 1000 COBOL74 Compiler to the mnemonic-names in the source program, and alphabet-names to character 
sets and/or collating sequences. 

5-2 



B 1000 Systems COBOL 74 Reference Manual 
Environment Division 

SOURCE-COMPUTER PARAGRAPH 

SOURCE-COMPUTER 

The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to be compiled. 

General Format: 

[ ______ ·~~--~--~----s_o_u_R __ c_E_-e_o_M~P_u_T_E_R_: _____ c_o_m_p_u_t_er_-n_a_m_e_. __________________ ~~ 
Syntax Rule: 

I. The computer-name is any COBOL74 word and is handled as a comment entry which describes the 
computer upon which the source program is to be compiled. This computer name is for documentation 
only. 

General Rule: 

I. The computer-name is treated as a comment and ignored. 

1108883 5-3 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

OBJECT-COMPUTER 

OBJECT-COMPUTER PARAGRAPH 

The OBJECT-COMPUTER paragraph identifies the computer on which the program is to be executed. 

General Format: 

OBJgCT-COMPUTER. computer-name [,MEMORY SIZE integer {
WORDS }] 
CHARACTERS. 
MODULES 

[ , PROGRAM COLLA TING ..§.£QUENCE IS alphabet-name ] 

[ , SEGMENT-LIMIT IS segment-number ] . 

Syntax Rules: 

I. Computer-name is a system name. 
2. Segment-number must be an integer whose value is within the range of 1 through 49. 

General Rules: 

5-4 

I. The computer-name is any COBOL74 word and is handled as a comment entry which describes the 
computer upon which the object program is to be executed. This computer name is for documenta
tion only. 

2. ][f the PROGRAM COLLA TING SEQUENCE clause is specified, the collating sequence associated 
1with alphabet-name is used to determine the truth value of any nonnumeric comparisons: 

a. Explicitly specified in relation conditions. Refer to Relation Condition in Section 7 for additional 
information. 

b. Explicitly specified in condition-name cond:itions. Refer to Condition-Name Condition (Condition
al Variable) in Section 7 for additional information. 

3. If the PROGRAM COLLATING SEQUENCE clause is not specified, the EBCDIC collating sequence 
is used. 

4. If the PROGRAM COLLA TING SEQUENCE clause is specified, the program collating sequence i:s 
the collating sequence associated with the alphabet-name specified in that clause. 

5. The PROGRAM COLLA TING SEQUENCE clause is also applied to any nonnumeric merge or sort 
keys unless the COLLATING SEQUENCE phrase of the respective MERGE or SORT statement is 
sp1~cified. Refer to the MERGE and SORT statement in Section 7. 

6. The PROGRAM COLLA TING SEQUENCE •clause applies only to the program in which it is 

The SEGMENT-LIMIT clause specifies the limit of the fixed segment for sections nn·mn,pr~~n 
to 49. Refer to Segmentation in Section 7 for further discussion. 

9. The MEMORY SIZE clause is used to increase the amount of dynamic memory. 
IO. WORDS and MODULES are equivalent to CHARACTERS. 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

SPECIAL-NAMES PARAGRAPH 

SPECIAL-NAMES 

The SPECIAL-NAMES paragraph provides a means of relating names to user-specified mnemonic-names and 
of relating alphabet-names to character sets and/or collating sequences. 

General Format: 

1108883 

SPECIAL-NAMES. 

IS mnemonic-name 

[, ON STATUS~ condition-name··! 

[ , OFF STATUS ~ condition-name-2 ] ] 

IS mnemonic-name 

[, OFF STATUS ~ condition-name-2 

f, ON STATUS ~condition-name-I] ] 

ON STATUS IS condition-name-I 
I , OFF STATUS ~ condition-name-2 I 

OFF STATUS ~ condition-name-2 
[, ON STATUS ~condition-name-I 

, alphahet-name IS 

STANDARD-I 
NATIVE 
ASCII 
EBCDIC 

literal-I )THRU I 
[ 

j THROUGH l literal-2 

ALSO literal-3 I , ALSO literal-4 I 

[ , CURRENCY SIGN ~ literal-9 ] 

[ , DECIMAL-POINT IS COMMA) 

.. ] 

5-5 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

SPECIAL-NAMES 

Syntax Rules: 

I. The literals specified in the literal phrase of the alphabet-name clause: 

a. If numeric, must be unsigned integers and must have a value within the range of 1 through the 
maximum number of characters in the EBCDIC character set. 

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one charactier 
in length. 

2. If the literal phrase of the alphabet-name cllause is specified, a given character must not be specified 
more than once in an alphabet-name clause. 

3. The words THRU and THROUGH are equivalent. 

General Rules: 

5-6 

l. If switch-name is not specified, the associated mnemonic-name may be used in the ACCEPT, DIS
PLAY, SEND, and WRITE statements. 

5. The alphabet-name clause provides a means for relating a name to a specified character code set and/ 
or collating sequence. When alphabet-name is referenced in the PROGRAM COLLA TlNG SE
QUENCE clause (refer to OBJECT-COMPUTER Paragraph in this Section) or the COLLATING SE
QUENCE phrase of a SORT or MERGE stati!ment (refer to MERGE and SORT in Section 7), the 
alphabet-name clause specifies a collating sequence. When alphabet-name is referenced in a CODE
S ET clause in a file description entry (refer to the File Description Structure in Section 6), the alpha
bet-name clause specifies a character code set. 

a. ASCII is a synonym for STANDARD-I. If the STANDARD-I or ASCII phrase is specified, the 
character code set and collating sequence identified is that defined in the American National Stan
dard Code for Information Interchange. X'.1.4-1968. 

lb. If the NATIVE phrase is specified, the native character code set and native collating sequence 
will be identified with the alphabet-name. The native character code set is EBCDIC and is the 
character code set associated with DISPLAY usage. 

c. The correspondence between characters of the ASCII character code set and characters of the 
EBCDIC character code set is determined by standard translation tables for EBCDIC to ASCII 
and ASCII to EBCDIC translation. Refer to Appendix C. 

d. If the literal phrase is specified. the alphabet-name may not be referenced in a CODE-SET clause. 
Refer to the CODE-SET clause in Section 6. The collating sequence identified is that defined ac
cording to the following rules: 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

Rule 1: The value of each literal specifies: 

SPECIAL-NAMES 

I) The ordinal number of a character within the native character set, if the literal is numeric. This 
value must not exceed the value which represents the number of characters in the native char
acter set. 

2) The actual character within the native character set, if the literal is nonnumeric. If the value 
of the nonnumeric literal contains multiple characters, each character in the literal, starting with 
the leftmost character, is assigned successive ascending positions in the collating sequence be
ing specified. 

Rule 2: The order in which the literals appear in the alphabet-name clause specifies, in ascending 
sequence, the ordinal number of the character within the collating sequence being specified. 

Rule 3: Any characters within the native collating sequence, which are not explicitly specified in 
the literal phrase, assume a position, in the collating sequence being specified, greater than any 
of the explicitly specified characters. The relative order within the set of these unspecified charac
ters is unchanged from the native collating sequence. 

Rule 4: If the THROUGH phrase is specified, the set of contiguous characters in the native char
acter set beginning with the character specified by the value of literal-I, and ending with the char
acter specified by the value of literal-2, is assigned a successive ascending position in the collating 
sequence being specified. In addition, the set of contiguous characters specified by a given 
THROUGH phrase may specify characters of the native character set in either ascending or de
scending sequence. 

Rule 5: If the ALSO phrase is specified, the characters of the native character set specified by 
the value of literal- I, literal-3, literal-4, ... , are assigned to the same position in the collating se
quence being specified. 

6. The character that has the highest ordinal position in the program collating sequence specified is asso
ciated with the figurative constant HIGH-VALUE. If more than one character has the highest position 
in the program collating sequence, the last character specified is associated with the figurative constant 
HIGH-VALUE. 

7. The character that has the lowest ordinal position in the program collating sequence specified is asso
ciated with the figurative constant LOW-VALUE. If more than one character has the lowest position 
in the program collating sequence, the first character specified is associated with the figurative con
stant LOW-VALUE. 

8. The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE clause 
to represent the currency symbol. The literal is limited to a single character and must not be one of 
the following characters: 

a. Digits 0 through 9. 
b. Alphabetic characters: 

1108883 

A 
B 
c 

D 
L 
p 

R 
s 
v 

x 
z 
space 

5-7 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

SPECIAL-NAMES 

5-8 

c .. Special characters: 

* 
+ 

( 
) 

I 
= 

If the CURRENCY SIGN IS clause is not present, the default value dollar sign ($) is used in the 
PICTURE clause. 

9. The clause DECIMAL-POINT IS COMMA means that the functions of the comma and period are 
exchanged in the character-string of the PICTURE clause and in numeric literals. 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

INPUT-OUTPUT SECTION 

INPUT-OUTPUT SECTION 
FILE CONCEPTS 

The INPUT-OUTPUT section contains information concerning files to be used by the object program, the 
manner of recording used or to be used, and the presence of any multiple-file tape or disk. 

FILIE CONCEPTS 

In the folfowing paragraphs, concepts of File Types, Organization, Access Mode, Current Record Pointer, I-0 
Status, INVALID KEY, AT END, and LINAGE-COUNTER are discussed pertaining to Sequential, Indexed, 
Relative, and Sort-Merge files. 

SEOUENTIAL 1-0 

Sequential I-0 provides a capability to access records of a file in established sequence. The sequence is estab
lished as a result of writing the records to the file. It also provides for the sharing of memory areas among 
files. 

Sequential I-0 provides full facilities for the FILE-CONTROL, I-0-CONTROL, and FD entries as specified 
in the formats of this manual. Within the PROCEDURE DIVISION, Sequential I-0 provides full capabilities 
for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements . Additional features available in
clude: OPTIONAL files, the RESERVE clause, SAME RECORD AREA, REVERSED, and EXTEND op
tions. 

RELATIVE 1-0 

Relative 1-0 provides the capability to access records of a mass storage file in either a random or sequential 
manner. Each record in a relative file is uniquely identified by an integer value greater than zero which 
specifies the record's logical ordinal position in the file. 

Relative I-0 has full facilities for the FILE-CONTROL, I-0-CONTROL, and FD entries as specified in the 
formats of this manual. Within the PROCEDURE DIVISION, the Relative I-0 provides full capabilities for 
the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements. Additional fea
tures available include: the RESERVE clause, DYNAMIC accessing, SAME RECORD AREA, READ NEXT, 
and the ST ART statement. 

INDEXED 1-0 

Indexed I-0 provides a capability to access records of a mass storage file in either a random or sequential 
manner. Each record in an indexed file is uniquely identified by the value of one or more keys within that 
record. 

Indexed I-0 provides full facilities for the FILE-CONTROL, I-0-CONTROL, and FD entries as specified in 
the formats for this module. Within the PROCEDURE DIVISION, the Indexed 1-0 provides full capabilities 
for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified 
in the formats for this module. Additional features include: the RESERVE clause, DYNAMIC accessing, AL
TERNATE KEYS, SAME RECORD AREA, READ NEXT, and the START statement. 

n os8a~-001 5-9 



5-10 

B 1000 Systems COBOL 74 Reference Manual 
Environment Division 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Environment Division 

5-IOA 



INPUT-OUTPUT SECTION 
FILE CONCEPTS 

SORT-MERGE 

B 1000 Systems COBOL74 Reference Manual 
Environment Division 

The Sort-Merge module provides the capability to order one or more files of records, or to combine two or 
more 1identically ordered files of records, according to a set of user-specified keys contained within each rec
ord. Optionally, a user may apply some special processing to each of the individual records by input or output 
procedures. This special processing may be applied before and/or after the records are ordered by the SORT 
or after the records have been combined by the MERGE. 

Sort-Merge provides the facility for sorting one or more files, or combining two or more files, one or more 
times within a given execution of a COBOL74 program. 

Relationship with Sequential 1-0 

The files specified in the USING phrase of the SORT and MERGE statements must be described impl1icitly 
or explicitly in the FILE-CONTROL paragraph as having sequential organization. 

The file specified in the GIVING phrase of the SORT and MERGE statements must be described impliicitly 
or explicitly in the FILE-CONTROL paragraph as having sequential organization. 

No input-output statement may be executed for th1~ file named in the Sort-Merge file description. 

ORGANIZATION 

Sequential Files are organized such that each record in the file except the first has a unique predecessor rec
ord. and each record except the last has a unique successor record. These predecessor-successor relationships 
are established by the order of WRITE statements when the file is created. Once established, the predecessor
successor relationships do not change except in the case where records are added to the end of the file. 

Relative File organization is permitted only on mass storage devices. A Relative File consists of records which 
are identified by relative record numbers. The file may be thought of as composed of a serial string of areas, 
each capable of holding a logical record. Each of these areas is denominated by a relative record number. 
Records are stored and retrieved based on this number. For example, the tenth record is the one addressed 
by relative record number 10 and is in the tenth record area, whether or not records have been written in 
the first through the ninth record areas. 

A file whose organization is Indexed is a mass storage file in which data records may be accessed by the 
value of a key. A record description may include one or more key data items, each associated with an index. 
Each ~ndex provides a logical path to the data records according to the contents of a data item within each 
record which is the record key for that index. 

The data item named in the RECORD KEY clause of the file control entry for an Indexed File is the prime 
record key for that file. For purposes of inserting. updating. and deleting records in a file, each record is identi
fied solely by the value of its prime record key. This value must, therefore, be unique and must not be changed 
when updating the record. 

A data item named in the ALTERNATE RECORD KEY clause of the file control entry for an Indexed File, 
is an alternate record key for that file. The value of an alternate record key may be nonunique if the DUPLI
CATES phrase is specified. These keys provide alternate access paths for retrieval of records from the file. 

I 5-IOB 



ACCESS MODE 

B I 000 Systems COBOL 74 Reference Manual 
Environment Division 

INPUT-OUTPUT SECTION 
FILE CONCEPTS 

The ACCESS MODE clause specifies the manner in which records are accessed in a file. Sequential. Relative. 
and Indexed File access methods are discussed in the following paragraphs. 

Sequential Files 

In the sequential access mode. the sequence in which records are accessed is by the ascending order of ordinal 
location within the file. 

In the random access mode. the sequence in which records are accessed is specified by the contents of the 
ACTUAL KEY data item at the time the READ or WRITE statement is executed. The value of the ACTUAL 
KEY data item supplies the ordinal record number of the record accessed. 

Relative File 

In the sequential access mode. the sequence in which records are accessed 1s the ascending order of the 
relative record numbers of all records which currently exist within the file. 

In the random access mode. the sequence in which records are accessed is controlled by the programmer. 
The desired record is accessed by placing its relative record number in a relative key data item. 

In the dynamic access mode. the programmer may change at will from sequential access to random access 
using appropriate forms of input-output statements. 

Indexed Files 

In the sequential access mode. the sequence in which records are accessed is the ascending order of the record 
key values. The order of retrieval of records within a set of records having duplicate record key values is 
the order in which the records were written into the set. 

In the random access mode. the sequence in which records are accessed is controlled by the programmer. 
The desired record is accessed by placing the value of the record key in a record key data item. 

In the dynamic access mode. the programmer may change at will from sequential access to random access 
using appropriate forms of input-output statements. 

CUf~RENT RECORD POINTER 

For all file types. the current record pointer is a conceptual entity used in selection of the next record to be 
accessed within a given file. The setting of the current record pointer is affected only by the OPEN. ST ART. 
and READ statements. The WRITE statement for a sequentially organized file may also affect the setting of 
the current record pointer. 

1108883-001 5-11 



I 

B 1000 Systems COBOL 74 Reference Manual 
Environment Division 

INPu·r-OUTPUT SECTION 
FILE CONCEPTS 

1-0 STATUS 

If the FILE STATUS clause is specified in a file control entry. a value is placed into the specified two-charac
ter data item during the execution of an OPEN. CLOSE. READ. WRITE. REWRITE. DELETE. or ST ART 
statement and before any applicable USE procedure is executed. to indicate to the COBOL74 program the 
status of that input-output operation. 

Status Key 1 

The lef1tmost chaFacter position of the FILE STATUS data item is known as status key I and is set to a value 
which indicates one of the following conditions upon completion of the input-output operation. 

Value 

0 
I 
2 
3 
8 
9 

Condition 

Successful Completion 
At End 
Invalid K•.!Y 
Permanent Error 
Burroughs-Defined Condition 
Burroughs-Defined Condition 

The above conditions are defined in following text. 

SUCCESSFUL COMPLETION 

The input-output statement was successfully executed. 

AT END 

The sequential READ statement was unsuccessfully executed as a result of: 

1. An attempt to read other than a queue or port file record when no next logical record exists in the file. 
2. The first READ statement being executed for a file described with the OPTIONAL clause, when that 

file was not available to the was executed. 
• • :···:{•:•:•:•:•:·~:·:·:·:·:Y:·~:·:-:·:·:-:•:.:~·:•:•:•:•:•:-:·~'.-:·:·:·:·:~·:·'.·:-:•:•:·:{-:•:·:-:-: •• • 

INVALID KEY 

The input-output statement was unsuccessfully executed as a result of one of the following: 

5-12 

1. For a Format 2 READ statement, on other than a queue or port file, the contents of the ACTUAL 
KEY data item were less than I or greater than the original number of the last record ever written to 
the file. 

2. For a Format 2 WRITE statement, on other than a queue or port file, the contents of the ACTUAL 
KEY data item were less than 1 or great·~r than the last record allowed to be written because of the 
specification of a maximum file size. 



PERMANENT ERROR 

B 1000 Systems COBOL74 Reference Manual 
Environment Division 

INPUT-OUTPUT SECTION 
FILE CONCEPTS 

The input-output statement was unsuccessfully executed as the result of a boundary violation for a sequential 
file or as the result of an input-output error, such as data check parity error, or transmission error. 

1108883-001 5-12A 

I 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

BURROUGHS-DEFINED CONDITION 

INPUT-OUTPUT SECTION 
FILE CONCEPTS 

The input-output statement encountered conditions other than those already defined and may have been unsuc
cessfully executed, depending on the value of status key 2. 

Status Key 2 

The rightmost character position of the FILE ST ATVS data item is known as status key 2 and is used to 
further describe the results of the input-output operation. This character contains a value as follows: 

I. If no further information is available concerning the input-output operation, then status key 2 contains 
a value of 0. 

2. When status key I contains a value of 0 indicating a successful completion, status key 2 may contain 
a value of 2 indicating a duplicate key. This condition indicates: 

a. For a READ statement, the key value for the current key of reference is equal to the value of 
that same key in the next record within the current key of reference. 

b. For a WRITE or REWRITE stf1tement, the record just written created a duplicate key value for 
at least one alternate record key for which duplicates are allowed. 

3. When status key I contains a value of 2 indicating an INVALID KEY condition. status key 2 is used 
to designate the case of that condition as follows: 

a. A value of I in status key .2 indicates a sequence error for a sequentially accessed indexed file. 
The ascending sequence requirements of successive record key values have been violated (refer 
to WRITE in Section 7), or the prime record key value has been changed by the COBOL74 pro
gram between the successful execution of a READ statement and the execution of the next RE
WRITE statement for that file. 

b. A value of 2 in status key 2 indicates a duplicate key value. An attempt was made to write or 
rewrite a record that would create a duplicate key in an indexed file. 

c. A value of 3 in status key 2 indicates no record found. An attempt is made to access a record. 
identified by a key, but that record does not exist in the file. 

d. A value of 4 in status key 2 indicates a boundary violation. An attempt was made to write beyond 
the externally defined boundaries of an indexed file. The compiler specifies the manner in which 
these boundaries are defined. 

4. When status key I contains a value of 3 indicating a permanent error condition, status key 2 may 
contain a value of 4 indicating a boundary violation" This condition indicates that an attempt was made 
to write beyond the externally defined boundaries of a sequential file. The compiler specifies the man
ner in which these boundaries are defined. 

1108883-001 5-13 

I 



I 

I 

INPUT -OUTPUT SECTION 
FILE CONCEPTS 

B 1000 Systems COBOL 74 Reference Manual 
Environment Division 

6, When status key 1 contains a value of 9 indicating a Burroughs-defined condition, the value of status 
key 2 indicates the condition as follows: 

SHORT BLOCK 

Status Key ~! 

Value Condition 

2 
4 
5 
6 
7 
9 

Short Block 
Data Error 
Q-Empty or No Data 
Q-Full or No Buffer 
Timeout 
Break on Output 
Unexpected 1-0 Error 

Because of the limitation of the physical recording medium. the 'iystem is unable to determine whether the 
logical record returned had been written to the file. Dctermi nation of the validity l)f the data record is the 
respons1ibility of the programmer. 

DATA ERROR 

When logical records are declared variable in length and the logical record length is supplied by the program
mer (by means of the RECORD CONTAINS clause). a data error occurs on a READ. WRITE. or REWRITE 
statement if the logical record length supplied is less than the minimum record size or greater than the 
maximum record size declared for the file. This condition initiates no input-output operation nor does it cause 
data to be transferred to or from the record area. 

TIMEOUT 

A time limit has elapsed prior to the transfer of data to or from the hardware device. 

BREAK ON OUTPUT 

For an output or input-output file. this condition occurs if the physical hardware device is equipped with a 
break such that an operator can halt the transfer of data in process. 

UNEXPECTED 1-0 l:RROR 

An error may have occurred in the input-output operation but its nature cannot be determined. 

5-14 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

Valiid Combinations of Status Keys 1 and 2 

INPUT-OUTPUT SECTION 
FILE CONCEPTS 

The valid permissible combinations of the values of status key 1 and status key 2 are shown in Table 5-1. The. I 
letter I (Indexed), P (Port), R (Relative), S (Sequential), or Q (Queue) at an intersection indicates a valid permissi-· 
ble combination. 

Table 5-1. Status Key Combinations 

STATUS KEY 2 

No Record Found 

Duplicate Key or (;'•Data Error)---

Sequence Error or (:/•Short Block)l 

No Information -i 
0 1 

Successful 
Completion R 

0 s 

s 
T 
A 
T 
u 
s 2 

K 
E 
y 

At 
End 

lnva 1 id 
Key 

Permanent 
Error 

R 
s 

2 

I 
R 

Burroughs 
-Defined ,., S 1'•S 

9 

3 

I 
R 

Boundary 

4 

I 
R 

!Break on 

+ rl-0 Error 

Output 

7 9 

s s 

The (*) distinguishes which error occurred when there are 
two with the same value. 

1108883-001 

I 

I 

5-15 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

INPUT-OUTPUT SECTION 
FILE CONCEPTS 

INVALID KEY 

The INVALID KEY condition can occur as a result of the execution of a START, READ, WRITE, RE
WRITE, or DELETE statement. For details of thf causes of the condition, refer to the START, READ, 
WRITE, REWRITE, and DELETE statements in Section 7. 

When the INV AUD KEY condition is recognized, these actions are taken in the following order: 

I. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an INVALID 
KEY condition. Refer to I-0 Status in this section for additional information. 

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is transferred 
to the INVALID KEY imperative statement. Any USE procedure specified for this file is not 
executed. 

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for this file, eiither 
explicitly or implicitly, that procedure is executed. 

When the INVALID KEY condition occurs, execution of the input-output statement which recognized the con
dition is unsuccessful and the file is not affected. 

AT END 

l1he AT END condition can occur as a result of the execution of a READ statement. For details of the causes 
af the condition refer to the READ statement in Section 7. 

LI NAG E-COU NTER 

For Sequential Files only, the reserved word LINACiE-COUNTER is a name for a special register generated 
by the presence of a LINAGE clause in a file description entry. The implicit description is that of an unsigned 
integer whose size is equal to the size of integer-JI or the data item referenced by data-name-I in the LINAGE 
clause. Refer to the LINAGE clause in Section 6 for the rules governing the LINAGE-COUNTER. 

5-16 



B IOOO Systems COBOL74 Reference Manual 
Environment Division 

FILIE-CONTROL PARAGRAPH 

FILE-CONTROL 

The FILE-CONTROL paragraph names each file and allows specification of other file-related information. 

General Format: 

[ FILE-CONTROL. { file-control-entry } . . . __J 
·---------

FILIE CONTROL ENTRY 

The file control entry names a file and may specify other file-related information. If usinf; the sort-merge fea
tures. the file control entry names a sort or merge file and specifies the association of the file to a storage 
medium. 

1108883-001 5-17 



I 

B 1000 Systems COBOL74 Reference Manual 
Fnvironmcnt Division 

FILE-CONTROL 

General Format: 

5-18 

INPUT-OUTPUT SECTION. 
i~ILE-CONTROL. 

SELECT I OPTIONAL I file-name 

[ 
. RESERVE integer-3 [AREA J ] 

AREAS 

: ORGANIZATION IS~~ 

[ 

(SE UENTIAL~ 
, . ) RANDOM f 

: ACCESS MODE IS ) ·~ , 
{ 'DYNAMIC' 

: ORGANIZATION IS INDEXED 

I . RLLATIVE KEY IS data-namt.:-3] ~ l 
. RLLATIVE KLY IS data-name-3 \ 

[ ACCESS MODE IS 
~ SEQUENTIAL f J 
) RANDOM · 
~ pYNAMW ~ 

: RECORD KEY IS data-name-4 ---
[ : ALTERNATE RECORD KEY IS dat.1-name-5 I WITH DUPLICATES I I ... 

I : Fl LE STATUS IS data-name-I I. 



Syntax Rules: 

B 1000 Systems COBOL74 Reference Manual 
Environment Division 

FILE-CONTROL 

I. The SELECT clause must be specified first in the file control entry. The clauses which follow the 
SELECT clause may appear in any order. 

2. Each file described in the DAT A DIVISION must be named only once with a file-name in the Fl LE
CONTROL paragraph. Each file specified in the file control entry must have a file description entry 
in the DAT A DIVISION. For an Indexed File. the first eight letters of the file-name must he unique. 

3. If the ACCESS MODE clause is not specified. the ACCESS MODE IS SEQUENTIAL clause with
out the ACTUAL KEY phrase is implied. 

4. Data-name-I must be defined in the DATA DIVISION as a two-character data item of the category 
alphanumeric and must not be defined in the FILE SECTION or the COMMUNICATION SEC
TION . 

.. qf: laellr · · 

14. 

15. 

18. 
CURS clause in Section 6 for more information. 

IS 

19. Data-name-5 cannot reference an item whose leftmost character position corresponds to the leftmost 
character position of an item referenced by data-name-4 or by any other data-name-5 associated with 
this file. 

General Rules: 

I. The ASSIGN clause specifies the association of the file referenceC.i by file-name to a storage medium. 
For Relative and the storage medium 

1108883-00 l 5-I 9 

I 

I 



I 

B IOOO Systems COBOL74 Reference Manual 
Environment Division 

FILE-CONTROL 

5-20 

4. The RESERVE clause allows the user to specify the number of input-output areas allocated .. If the 
RESERVE clause is specified. the number nf input-output areas allocated is equal to the value of 
integer-3. If the RESERVE clause is not specified. one input-output area is allocated. 

5. The ORGANIZATION clause specifies the l1Jgical structure of a file. The file organization is estab
at the time a file is created and cannot subse uentl be chan ed. 

..... .. ... . . 

7. When the access mode of a Relative File is sequential. records in the file are accessed in the order 
of ascending relative record numbers of existing records in the file. 

8. When the access mode of an Indexed File is sequential. records in the file are accessed in the order 
of ascending record key values within a gi,·en key of reference. 

9. When the FILE STATUS clause is specified. a value is moved by the operating system into the data 
item specified by data-name- I after the execution of every statement that references that file either 
explicitly or implicitly. This value indicates the status of execution of the statement. Refer to 1-0 
Status in this section for additional information. 

10 .. If the access mode of a Relative File is random. the value of the RELATIVE KEY data item indi
cates the record to be accessed. 

11. If the access mode of an Indexed File is random. the value of the RECORD KEY data item indicates 
the record to be accessed. 

12 .. When the access mode is dynamic. records in the file may be accessed sequentially and/or randomly. 
Refer to General Rules 5 and 8. or 6 and 9 under the Fl LE-CONTROL statement. 

13. All records stored in a Relative File are uniquely identified by relative record numbers. The relative 
record number of a given record specifics the record's logical ordinal position in the file. The first 
logical record has a relative record number of I. and subsequent logical records have relative record 
numbers of 2. 3. 4. and so forth. 

14. In a Relative File. the data item specified bv data-name-3 is used to communicate a relative record 
number between the program and the MICP. 

15. The RECORD KEY clause specifies the prime record key for the file. The values must be unique 
among records of the file. The prime record key provides an access path to records in an Indexed 
File. 

16. An ALTERNATE RECORD KEY clause specifies an alternate record key for the file and provides 
an alternate access path to records in an Indexed File. 

17. In an Indexed File. the data descriptions of data-name-4 and data-name-5 as well as the relative loca
tions within a record must be the same as that used when the file was created. The number of alter
nate keys for the file must also be the same as that used when the file was created. 

18. The DUPLICATES phrase specifies that the value of the associated alternate record key may be du
plicated within any of trhe records in the file If the DUPLICATES phrase is not specified. the value 
of the associated alternate record key must not be duplicated among any of the records in the file. 

19. DISK specifies that mass storage is the :.;torage medium of the file. A more precise specification of 
the medium may be made in the VALUE OF clause in the File Description entry or by means exter
nal to the language. 



B 1000 Systems COBOL74 Reference Manual 
Environment Division 

1-0-CONTROL 

1-0-CONTROL PARAGRAPH 

The 1-0-CONTROL paragraph specifies the memory area which is to be shared by different files, and the loca
tion of files on a multiple file reel. 

General Format: 

1-0-CO NTR 0 L. 

[

RECORD J 
SORT 
SORT-MERGE 

AREA FOR file-name-3 j, file-name-4 } .. · l · · · 
Syntax Rules: 

I. The 1-0-CONTROL paragraph is optional. 
2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent. 
3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of the file

names must represent a sort or merge file. Files that do not represent sort or merge files may also 
be named in the clause. 

4. The four formats of the SAME clause (SAME AREA, SAME RECORD AREA, SAME SORT AREA, 
SAME SORT-MERGE AREA) are considered separately in the following description. 

More than one SAME clause may be included in a program; however, the following restrictions apply: 

a. A file-name must not appear in more than one SAME AREA clause. 
b. A file-name must not appear in more than one SAME RECORD AREA clause. 
c. If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA clause, 

all of the file-names in that SAME AREA clause must appear in the SAME RECORD AREA 
clause. However, additional file-names not appearing in that SAME AREA clause may also appear 
in that SAME RECORD AREA clause. The rule that only one of the files mentioned in a SAME 
AREA clause can be open at any given time takes precedence over the rule that all files mentioned 
in a SAME RECORD AREA clause can be open at any given time. 

d. A file-name that represents a sort or merge file must not appear in more than one SAME SORT 
AREA or SAME SORT-MERGE AREA clause. 

e. If a file-name that does not represent a sort or merge file appears in a SAME AREA clause and 
one or more SAME SORT AREA or SAME SORT-MERGE AREA clauses, all of the files named 
in that SAME AREA clause must be named in that SAME SORT AREA or SAME SORT-MERGE 
AREA clause(s). 

5. The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT AREA, or SAME 
SORT-MERGE AREA clause need not all have the same organization or access type. 

1108883 5-21 



B IOOO Systems COBOL 74 Reference Manual 
Environment Division 

1-0-CONTROL 

General Rules: 

I. If the SAME SORT AREA or SAME SORT-l\.1ERGE AREA clause is used, at least one of the file
names must represent a sort or merge file. Files that do not represent sort or merge files may also 
be named in the clause. This clause specifies that storage is shared as follows: 

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory area which 
is made available for use in sorting or merging each sort or merge file named. Thus, any memory 
area allocated for the sorting or merging cf a sort or merge file is available for reuse in sorting 
or merging any of the other sort or merge files. 

lb. In addition, storage areas assigned to files that do not represent sort or merge files may be allo
cated as needed for sorting or merging the sort or merge files named in the SAME SORT AREA 
or SAME SORT-MERGE AREA clause. The extent of such allocation is specified by the MCP. 

c. Files other than sort or merge files do not share the same storage area with each other. If the 
user wishes these files to share the same storage area with each other, a SAME AREA or SAME 
RECORD AREA clause naming these files must also be included in the program. 

d. During the execution of a SORT or MERGE statement that refers to a sort or merge file named 
in this clause, any files named in this clause that are not sort-merge files must not be open. 

2. The SAME AREA clause specifies that two or more files that do not represent sort or merge files 
are to use the same memory area during processing. The area being shared includes all storage area 
assigned to the files specified. It is not valid to have more than one of the files open at the same 
time. Refer to syntax rule 4c under the I·-0-C~ONTROL paragraph. 

3. The SAME RECORD AREA clause specifies 1hat two or more files are to use the same memory area 
for processing of the current logical record. All of the files may be open at the same time. A logical 
record in the SAME RECORD AREA is considered as a logical record of each opened output file 
whose file-name appears in this SAME RECORD AREA clause and of the most recently read input 
file whose file-name appears in this SAME RECORD AREA clause. This is equivalent to an implicit 
fl::!definition of the area; records are aligned on the leftmost character position. 

CODING THE ENVIRONMENT DIVISION 

Figure 5-1 provides an example of how the ENVIRONJVIENT DIVISION may be coded in the source program. 

5-22 



--0 
00 
00 
00 
w 

PAGE LINE A 
NO. NO. 

3 4 

01 

04 

06 

07 

08 

09 

1 0 

11 

1 2 

13 

14 

1 5 

16 

1 7 

1 B 

1 9 

20 

G12329 

12 16 20 24 

Burroughs COBOL CODING FORM 

REQUESTED BY 

DATE 

32 36 40 44 48 52 

28 32 36 40 44 48 52 

Figure 5-1. Coding the ENVIRONMENT DIVISION 

PAGE L OF 7._ 0 
IDENT. 

56 60 

56 60 64 68 72 

'i"" 
0 
h 
0 
2 
-t 
::JJ 
0 
r-

tc 

0 

8 
CJ) 

'< 
rr, 

g1 ~ 
:5. rJ; 

d n 
= 0 
3 tc 
(1i 0 
~ r 

--..J 

9. ~ 
~- :;:i::l 
[F; (1i -· ~ 0 (1i 

= ""I (1i 

= r. 
(1i 

3::: 
:.; 

= ~ 



GENERAL 

B 1000 Systems COBOL 74 Reference Manual 

SECTION 6 
DATA DIVISION 

The DAT A DIVISION describes the data that the object program is to accept as input, to manipulate, to cre
ate, or to produce as output. Data to be processed belongs to these three categories: 

l. That which is contained in files and enters or leaves the internal memory of the computer from a spec
ified area or areas. 

2. That which is developed internally and placed into intermediate or working storage, or placed into 
specific format for output reporting purposes. 

3. Constants which are defined by the user. 

DATA DIVISION ORGANIZATION 

The DATA DIVISION, which is one of the required divisions in a program, is subdivided into sections. These 
are FILE, WORKING-STORAGE, LINKAGE, and COMMUNICATION SECTIONS. 

The FILE SECTION defines the structure of data files. Each file is defined by a file description entry and 
one or more record descriptions. Record descriptions are written immediately following the file description en
try. 

The WORKING-STORAGE SECTION describes records and noncontiguous data items which are not part of 
external data files but are developed and processed internally. It also describes data items whose values are 
preassigned in the source program. 

The LINKAGE s'ECTION appears in the called program and describes data items that are to be referred to 
by the calling program and the called program. The structure is the same as the WORKING-STORAGE SEC
TION. 

The COMMUNICATION SECTION describes the data items in the source program that serve as the interface 
between the Data Communication Subsystem and the program. 

1108883 6-1 



B 1000 Systems COBOL74 Reference Manual 
Data Diyision 

DATA DIVISION STRUCTURE 

DATA DIVISION STRUCTURE 

The following structure shows the general format of the sections of the DATA DIVISION, and defines the 
order of presentation in the source program. 

6-2 

DATA DIVISION. 

[

FILE SECTION. 

[
file-description-entry [record-description-entry] . . . J 
sort-merge-file-description-entry (record-description-entry) ... 

[

WORKING-STORAGE SECTION. 

[ 
77-level-desc.rip.tion-entry J 
record-descnpt10n-entry 

[

LINKAGE SECTION. _-] 

[ 
77-level-description-entry J 
record-description-entry 

[

COMMUNICATION SECTION. 

[communication-description-entry r record-description-entry] 

. .. ] 

.. . ] ... ] 



FILE SECTION 

B 1000. Systems COBOL74 Reference Manual 
Data Division 

FILE DESCRIPTION 

In a COBOL74 program, the file description entry (FD) represents the highest level of organization in the 
HLE SECTION. The FILE SECTION header is followed by a file description entry consisting of a level indi
cator (FD), a file-name, and a series of independent clauses. The FD clauses specify the size of the logical 
and physic:al records, the presence or absence of label records, the value of label items, the names of the 
data records which comprise the file, and the number of lines to be written on a logical printer page. The 
entry is terminated by a period. 

The Sort-Merge file description (SD) gives information about the size and the name of the data records associ
ated with the file to be sorted or merged. There are no label procedures which the user can control, and the 
mies for blocking and internal storage are peculiar to the SORT and MERGE statements. 

RECORD DESCRIPTION 

A record description consists of a set of data description entries which describe the characteristics of a 
particular record. Each data description entry· consists of a level-number followed by a data-name (if required), 
followed by a series of independent clauses as required. 

Examples: 

01 DATA-ITEM-ONE 
03 LINE-COUNT 

PICTURE 
PICTURE 

X( 10). 
999 VALUE ZEROES. 

A record dt!scription has a hierarchical structure and, therefore, the clauses used with an entry may vary consi
derably, depending upon whether or not it is followed by subordinate entries. The structure of a record de
scription is defined in Concepts of Levels, Section 2, while the elements allowed in a record description are 
shown in the data description structure. 

1108883 6-3 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

FILE DESCRIPTION 

FILE DESCRIPTION STRUCTURE 

The file description entry furnishes information concerning the physical structure, identification, and record 
names pertaining to a given file. 

General Format: 
·----------- ----------------------------

[FD fille-name 

[; BLOCK CONTAINS [integer-I TO] integer-2 {RECORDS } J 
CHARACTERS 

[ ; RECORD CONTAINS [ integer-3 TO] integer-4 CHARACTERS] 

[; LABEL {

RECORD IS } 

RECORDS ARE 

~STANDARD( J 
t OMITTED ~ 

[; t data-name-I '} 
VALUE OF attribute-name-] IS ) 

~ Jitera l-1 

[ { 
data-name-2 } J l 

, attribute-name-2 IS . . . . . .. 
hteral-2 

[ 
: DAT A ~RECORD IS ~ data-namt-3 [, data-name-4] . . . J 

~RECORDS ARE J 

[

; LINAGE IS ~ data-name-s 1, LINES [·. WITH FOOTING AT ~ data-name-
6

} J 
~ integer-5 ~ . ~ mteger-6 

[ 
, LINES AT TOP {data-name-? f J [, LINES AT BOTTOM ! data-name-S ~ J l 

mteger-7 ( ~ mteger-8 ' 

( ; CODE-SET IS alphabet-name]. 

{ record-description-entry } . . . J 

Syntax Rules: 

6-4 

1. The level indicator FD identifies the beginning of a file description and must precede the file-name. 
2. The clauses which follow the name of the file are optional in many cases, and order of appearance 

is immaterial. 
3. One or more record description entries must follow the file description entry. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

SORT-MERGE FILE DESCRIPTION 

SORT-MERGE FILE DESCRIPTION STF~UCTURE 

The Sort-Merge file description entry furnishes information concerning the physical structure, identification, 
and record names of the file to be sorted or merged. 

General Format: 

[SD file-name 

( ; RECORD CONTAINS [ integer-I TO] integer-2 CHARACTERS] 

{

RECORD IS } 
data-name-I f , Glata-name-2] 

RECORDS ARE 
... J 

{ record-description-entry } ... J ... 

Syntax Rult:~s: 

1. The level indicator SD identifies the beginning of the Sort-Merge file description entry and must pre
cede the file-name. 

2. The clauses which follow the name of the file are optional and their order of appearance is immaterial. 
3. One or more record description entries must follow the Sort-Merge file description entry; however, 

no input-output statements may be executed for this file. 

1108883 6-5 



FILE SECTION 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

CODING THE FILE SECTION 

Figure 6-1 illustrates the coding of the FILE SECTION and shows a File Description and a Sort-Merge Fili~ 
Description. 

6-6 



-- Burroughs COBOL CODING FORM 

28 32 36 40 44 48 

G12330 

0\ 
I 

-....J Figure 6-1. Coding the FILE SECTION 

52 56 60 64 68 

~ 
r
m 
(J) 
m 
('") 
-t 
0 
2 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

BLOCK CONTAINS 

BLOCK CONTAINS 

The BLOCK CONTAINS clause specifies the size of a physical record. 

General Format: 

---] 
BLOCK CONTAINS [ integer-1 IQ ] 

{

RECORDS } 
integer-2 

CHARACTERS 

Syntax Rules: 

I. When the word RECORDS is not specified, tl1e value of integer-2 must not be less than the largest 
record specified for the file. 

General Rules: 

6-8 

l. This clause is required when the physical record contains more than one logical record. If this clatrne 
is not specified, the physical record is presum1:!d to contain one logical record that is as large as the 
largest record specified for this file. 

2. When the word RECORDS is specified, the physical record size is considered to be integer-2 tim1~s 
the largest record specified for this file. 

3. ~~!hen the word CHARACTERS is specified, the physical record size is considered to be integer-2 
characters. If integer-2 is not a multiple of the largest record specified for this file, the physical record 
size is adjusted so that it is a multiple of the largest record specified, but must not exceed the value 
of integer-2. 

4. llnteger-2 represents the exact number of records or characters in the physical record unless the size 
is adjusted as stated in General Rule 3. 

5. If logical records of differing sizes are grouped into one physical record, the amount of data transfer-· 
red from the record area to the physical record depends on the size of the record named in the 
Vv'RITE or REWRITE statement. In this case, the logical records are aligned on maximum record
size boundaries. If the size of the record named is not equal to the maximum record size specified 
for the file, the data is transferred to the physical record according to the rules specified for the 
l\tlOVE statement without the CORRESPONDING phrase, with the sending area considered to be a 
group item. 



CODE-SET 

B 1000 Systems COBOL 74 Reference Manual 
Data Division 

CODE-SET 

The CODE-SET clause specifies the character code set used to represent data on the external media. 

General Format: 

[.~~~.~~--~-------------c_o_D~E_-s_E_T~I_s __ a_I_P_h_ab_e_t_-n_a_m_e~~~~~----~--~=====i 

Syntax Rules: 

1. When the CODE-SET clause is specified for a file, all data in that file must be described as USAGE 
IS DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause. 

2. The aiphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase. 
and must be declared in the SPECIAL-NAMES Paragraph. 

General Rules: 

1. If the CODE-SET clause is specified, alphabet-name specifies the character code convention used to 
represent data on the external media. It also specifies the algorithm for converting the character codes 
on the external media from/to the native character codes. This code conversion occurs during the 
execution of an input or output operation. Refer to the SPECIAL-NAMES paragraph in Section 5. 

2. If the CODE-SET clause is not specified, the native character code set, EBCDIC, is assumed for data 
on the external media. 

3. For the creation of the translate table to be used by the COBOL 74 compiler, refer to the CREATE/ 
TABLE utility. For example, when ASCII is the character code set, the COBOL74 compiler requires 
a file called TRANSLATE/ASCII to perform the translation. The file, TRANSLATE/ASCII. is created 
by using the CREATE/TABLE utility. 

Example: 

The following example shows how the character code set desired is declared in the SPECIAL-NAMES 
paragraph and then used in the CODE-SET clause. 

1108883 

SPECIAL-NAMES. 
ODT IS SPO 
SWl ON STATUS IS SWITCH-1-0N 
MY-REC-MODE IS ASCII. 

FD IN-FI LE 
BLOCK CONTAINS 5 RECORDS 
CODE-SET IS MY-REC-MODE. 

01 DATA-ITEM-ONE PI C X ( 80) • 

6-9 



B 1000 Systems COBOL 74 Reference Manual 
Data Division 

DATA RECORDS 

DATA RECORDS 

The DAT A RECORDS clause serves only as documentation for the names of data records with their associ
ated file. 

General Format: 

DATA 
{

RECORD IS l 
RECORDS ARE} 

data-name-1 [, data-name-2 ] ] 

---

Syntax Rules: 

I. Data-name-I and data-name-2 are the names of data records and must have 01 level-number record 
descriptions. with these same names, associated with them. 

General Rules: 

6-10 

1. Thie presence of more than one data-name indicates that the file contains more than one type of data 
record. These records may be of different s1izes, different formats, and so forth. The order in which 
they are listed is not significant. 

2. Conceptually, all data records within a file shan' the same area. This is in no way altered by the pres
ence of more than one type of data record within the file. 



LABEL RECORDS 

B I 000 Systems COBOL 74 Reference Manual 
Data Division 

The LABEL RECORDS clause specifies whether labels are present. 

Gc!neral Format: 

LABEL 
RECORDS ARE OMITTED 

LABEL RECORDS 

[ {
RECORD IS ~ {STANDARD} 

, ______ ___ 
Syntax Rules: 

I. When this clause is not specified, the STANDARD option is assumed. 

General RUtles: 

I. OMITTED specifies that no explicit labels exist for the file or the device to which the file is assigned. 
For Indexed and Relative Files, OMITTED is documentation only. 

2 .. In a Sequential File, STANDARD specifies that labels exist for the file or the device to which the 
file is assigned and the labels conform to the label specifications. 

3. The LABEL RECORDS clause is ignored for mass storage files. All mass storage files are labeled. 

1108883 6-11 



LINAGE 

LINAGE 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

The LINAGE clause provides a means for specifying th•.~ depth of a logical page in terms of number of lines. 
It also provides for specifying the size of the top and bottom margins on the logical page, and the line number, 
within the page body, at which the footing area begim .. 

General Format: 
---·-------· ----··---------------------· 

LINAGE IS { 
data-name-1 } 
integer-l LINES 

I[, LINES AT TOP { 
?ata-name-3 } ] 
mteger-3 

[ { 
data-name-2 } ] 

, WITH FOOTING AT integer-2 

I[ , LINES AT BOTTOM { 
?ata-name-4}] 
mteger-4 

The relationship of the page components is shown in Figure 6-2. 

6-12 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

} 

LOGICAL PAGE 

G12331 

Figure 6-2. Linage Page Relationship 

Syntax Rules: 

1. Data names must be elementary unsigned numeric items. 
2. The value of integer-I must be greater than zero. 
3. The value of integer-2 must not be greater than integer- I. 
4. Integer-3 and integer-4 may be equal to zero. 

1108883 

TOP MARGIN 
(lnteger-3) 

PAGE BODY 
{lnteger-1) 

FOOTING 
(lnteger-2) 

BOTTOM MARGIN 
Onteger-4) 

LINAGE 

6-13 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

LINAGE 

General Rules: 

6-14 

1. The LINAGE clause provides a means for specifying the size of a logical page in terms of the number 
of lines. 

Example: 

Logical page = LINAGE LINES + LINES AT TOP + LINES AT BOTTOM 

If LINES AT TOP or LINES AT BOTTOM are not specified, the values for these functions are 0. 

If the FOOTING phrase is not specified, the assumed value is equal to integer-1 (or data-name-1). 

There is not necessarily any relationship between the size of the logical page and the size of a physical 
page. 

2. The value of integer-I (data-name-1) speciffos the number of lines that can be written and/or spaced 
on the logical page. That part of the logical page in which these lines can be written and/or spaced 
is called the page body. 

3 .. The value of integer-3 (data-name-3) specifies the number of lines that comprise the top margin on 
the logical page. 

4. The value of integer-4 (data-name-4) specifies the number of lines that comprise the bottom margin 
on the logical page. 

5. The value of integer-2 (data-name-2) specifies the line number within the page body at which the foot
ing area begins, where 0 < integer-2 < integer-I. 

6. The values of integer-1, integer-2, and integer-4, if specified, are used at the time the file is opened 
with the OUTPUT phrase, to specify the number of lines that comprise each of the indicated sections 
of a 1 ogi cal page. 

The value of integer-2, if specified, is used at that time to define the footing area. 

These values are used for all logical pages written for the file during a given execution of the program. 

7. Tlhe values of the data items referenced by data-name-1, data-name-3, and data-name-4, if specified, 
are used as follows: 

a. The values of the data items, at the time an OPEN statement with the OUTPUT phrase is executed 
for the file, are used to specify the number of lines that are to comprise each of the indicated sec
tions of the FIRST logical page. 

lb. The values of the data items, at the time a WRITE statement with the ADVANCING PAGE 
phrase is executed or page overflow condition occurs, are used to specify the number of lines that 
are to comprise each of the indicated sections for the next logical page. 

8. The value of data-name-2, if specified at the time an OPEN statement with the OUTPUT phrase is 
executed for the file, is used to define the footing area for the first logical page. 

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow 
condition occurs, data-name-2 is used to define the footing area for the next logical page. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

LINAGE 

LI NAG E-COU NTER 

A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the LINAGE-COUN
TER at any given time represents the line number at which the logical device is positioned within the current 
page body. The rules governing the LINAGE-COUNTER are as follows: 

I. A separate LINAGE-COUNTER is supplied for each file described in the FILE SECTION whose file 
description entry contains a LINAGE clause. 

2. LINAGE-COUNTER may be referenced but not modified by PROCEDURE DIVISION statements. 

Since more than one LINAGE-COUNTER may exist in a program, the user must qualify LINAGE
COUNTER by file name when necessary. 

3. LINAGE-COUNTER is automatically modified, according to the following rules, during the execution 
of a WRITE statement: 

a. When the ADVANCING PAGE phrase of the WRITE statement is specified, the LINAGE-COUN
TER is automatically reset to I. 

b. When the ADVANCING identifier-2 or the integer phrase of the WRITE statement is specified. 
the LINAGE-COUNTER is incremented by integer or the value of identifier-2. 

c. When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE-COUN
TER is incremented by the value of I. 

d .. The value of LINAGE-COUNTER is automatically reset to I when the device is repositioned to 
the first line that can be written on for each of the succeeding logical pages. 

4. The value of LINAGE-COUNTER is automatically set to I at the time an OPEN statement is 
executed for the associated file. 

Example: 

The following example shows the LINAGE clause used to define a logical printer page (standard I I-inch form). 
Vertical height is made up of a top margin, a page body, and a bottom margin. All actual printing is done 
in the page body, including a commonly required footing area of five lines near the bottom of the page body. 

Now equate: 

the statement would be 

1108883 

page body to integer-1 
footing to integer-2 

top margin to integer-3 
bottom margin to integer-4 

LINAGE IS 50 LINES, 
WITH FOOTING AT 45, 
LINES AT TOP 6, 
LINES AT BOTTOM 10. 

6-15 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

RECORD CONTAINS 

RECORD CONTAINS 

The RECORD CONTAINS clause specifies the size of the data records. 

General Format: 

C ---_-__ RECORD CONTAINS ---- I integer-I _T_o_J __ in_t_eg_e_r-_2_c_H_A_R_A_CT_E_R_s _______ J 

General Rules: 

6-16 

I. Th1e size of each data record is completely defined within the record description entry; therefore, this 
clause is never required. When present, however, the following items apply: 

a .. Integer-2 may not be used unless all the data records in the file have the same size. In this case, 
integer-2 represents the exact number of characters in the data record. If integer-I and integer-
2 are both shown, they refer to the minimum number of characters in the smallest size data record 
and the maximum number of characters in the largest size data record, respectively. 

b. The size is specified in terms of the number of character positions required to store the logical 
record, regardless of the types of characters used to represent the items within the logical record. 
The size of a record is determined by the sum of the number of characters in all fixed lengtlh 
elementary items plus the sum of the maximum number of characters in any variable length item 
subordinate to the record. 

2. For an Indexed File integer-2 cannot be less than four. 



1108883 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

VALUE OF 

6-17 



VALUE OF 

B 1000 Systems COBOL 74 Reference Manual 
Data Division 

DATA-NAME-I is. defined as an alphanumeric data it1,!m in the DATA DIVISION. The programmer builds 
the literal string in the data item (DATA-NAME- I) prior to the OPEN of the file. This option cannot be used 
for Indexed Files. 

01 DATA-NAME-1 PIC X(35). 

The following are examples of statements which may he used in the PROCEDURE DIVISION to create the 
literal string. 

MOVE 11 MYF I LE" TO DATA-NAME-1. 
MOVE 11 FAMILY/MYFILE 11 TO DATA-NAME-1. 
MOVE 11 FAMILY/MYFILE DN MYPACK11 TO DATA-NAME-1. 

STRING 11 FAMILY11
, 

11
/

11
, 

11 MYFILE 11
, DELIMITED BY SIZE 

INTO DATA-NAME-1. 

STRING 11 MYFI LE 11
, 

11 ON 11
, 

11 MYPACK11 DELIMITED BY SIZE 
INTO DATA-NAME-I. 

Use of the STRING statement satisfies the requirement that there is no spaces either side of the slash (/) when 
creating the title of the file. 

6-18 



B 1000 Systems COBOL 74 Reference Manual 
Data Division 

DATA DESCRIPTION 

DATA DESCRIPTION STRUCTURE 

A data description entry specifies the characteristics of a particular item of data. 

General Format: 

Format 1: 

1108883 

level-number { data-name-I } 

FILLER 

( ; REDEFINES data-name-2] 

[ {::~URE} IS characteMtring 1 
[ I COMPUTATIONAL ) ] 

(USAGE IS] COMP ( 
DISPLAY ( 
INDEX ) 

; OCCURS [ integer-I TO] integer-2 TIMES 

[DEPENDING ON data-name-3 ] 

[ {
ASCENDING } KEY IS data-name-4 [, data-name-5] ... J ... 
DESCENDING 

[ 
[ 
l 
t 

[INDEXED l}Y index-name-I [, index-name-2] ... ] 

t LEADING } 
[SIGN IS] \ 

~TRAILING 
[ SEP ARA TE CHARACTER ) ] 

{ 
SYNCHRONIZED } [ LEFT 1 l 
SYNC RIGHT J 

{
JUSTIFIED } ] 

RIGHT 
JUST 

BLANK WHEN ZERO ] 
VALUE IS litera~ 

6-19 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

DATA DESCRIPTION 

Format 2:: 

[--
66 data-name-I; RENAMES data-name-2 [{::UGH} data-namc-3] 

---1 
Format 3: 

88 condition-name; ( literal- I 
{

VALUE IS I 

VALUES ARE j [{
THROUGH} 

THRU 
literal-2] 

[ , literal-3 r{ TIIROUGJl} . ] 
hteral-4 

THRU ] .. 

Syntax Rules: 

1. The level-number in Format I may be any number from 01 through 49 or 77. 
2. The clauses may be written in any order with two exceptions: the data-name-I or FILLER clause 

must immediately folJow the level-number; the REDEFINES clause, when used, must immediately fol
low the data-name-1 clause. 

3. The PICTURE clause must be specified for every elementary item except an index data item, in whi1;;h 
case, use of this clause is prohibited. 

4. The words THRU and THROUGH are equivalent. 

General Rules: 

6-20 

I. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses must not be 
specified except for an elementary data item. 

2. Format 3 is used for each condition-name. Ea;:h condition-name requires a separate entry with level
number 88. Format 3 contains the name of the condition and the value, values, or range of values 
associated with the condition-name. The condition-name entries for a particular conditional variable 
must follow the entry describing the item with which the condition-name is associated. A condition
name can be associated with any data description entry which contains a level-number except the fol
lowing: 

a. Another condition-name. 
b. A level 66 item. 
c. A group item containing items for which USAGE (other than USAGE IS DISPLAY) is specified 

either explicitly or implicitly. 
d. An index data item (Refer to the USAGE IS INDEX clause in this section). 



B 1000 Systems COBOL 74 Reference Manual 
Data Division 

BlANK WHEN ZERO 

BLANK WHEN ZERO 

The BLANK WHEN ZERO clause permits the blanking of an item when the value is zero. 

G(meral Format: 

[ BLANK WHEN ZERO 
-----·------

Syntax Rules: 

I. The BLANK WHEN ZERO clause can be used only for an elementary item whose PICTURE is spec
ified as numeric or numeric edited. Refer to PICTURE in this section. 

G(!neral Rules: 

I. Wiilen the BLANK WHEN ZERO clause is used, the item will contain spaces if the value of the item 
is zero. 

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the catego
ry of the item is considered to be numeric edited. 

1 ll08883 6-21 



B 1000 Systems COBOL74 Reference Manual 
Data DJ[vision 

DATA-NAME 
FILLER 

DATA·-INAME OR FILLER 

A data-name specjfies the name of the data being desc:ribed. The word FILLER specifies an elementary item 
of the logical record that cannot be referred to explidtly. 

General Format: 

Syntax Rules: 

1. lln the FILE, WORKING-STORAGE, COMMUNICATION, and LINKAGE SECTIONS, a data
name or the key word FILLER must be the first word following the level-number in each data descrip-
1tion entry. 

General Rules: 

6-22 

I. The key word FILLER may be used to name an elementary item in a record. Under no circumstances 
can a FILLER item be referred to explicitly. However, the key word FILLER may be used as a con
ditional variable because such use does not require explicit reference to the FILLER item, but to its 
value. 



JUSTIFIED 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data item. 

General Format: 

JUSTIFIED 

[ 
{

JUSTIFIED} J RIGHT 
JUST 

, _____ _ 
Syntax Rules: 

1. The JUSTIFIED clause can be specified only at the elementary item level. 
2. JUST is an abbreviation for JUSTIFIED. 
3. The JUSTIFIED clause cannot be specified for any data item described as numeric or for which edit

ing is specified. 

General Rules: 

1. When a receiving data item is described with the JUSTIFIED clause and the sending data item is larg
er than the receiving data item, the leftmost characters are truncated. 

Example: 

Sending 

ABCDEFG 
PIC X(7) I I I I I I I I 

Receiving 

CDEFG 
PIC X(S) I I I I I I 

When the receiving data item is described with the JUSTIFIED clause and it is larger than the sending 
data item, the data is aligned at the rightmost character position in the data item with space fill for 
the leftmost character positions. 

Example: 

Sending 

ABC DE 
PIC X(S) I I I I I I 

Receiving 

ABC DE 
PIC X(7) I I I I I I I I 

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elementary item 
apply. Refer to Standard Alignment Rules in Section 2. 

1108883 6-23 



8 1000 Systems COBOL74 Reference Manual 
Data Division 

LEVEL-NUMBER 

LEVEL-NUMBER 

The level-number shows the hierarchy of data within a logical record. In addition, it is used to identify entries 
for working storage items, linkage items, condition-names, and the RENAMES clause. 

General JFormat: 

level-number J ____ ,_, 

Syntax Rules: 

l. A level-number is required as the first element in each data description entry. 
2. Data description entries subordinate to an FD, SD, or CD entry must have level-numbers with the 

values 01 through 49, 66 or 88. Refer to the FD, SD, and CD file descriptions in the paragraphs en
titled File Description Structure, Sort-Merge File Description Structure, and Communication Descrip
tion Structure in this section. 

3. Data description entries in the WORKING-STORAGE SECTION and LINKAGE SECTION must 
have level-numbers with the values 01 through 49, 66, 77 or 88. 

General Rules: 

JI. The level-number 0 I identifies the first entry in each record description. Less indusive groupings are 
given higher numbers (not necessarily successive) up to a limit of 49. 

2. Special level-numbers have been assigned to certain entries where there is no real concept of level: 

a. Level-number 77 is assigned to identify non1,::ontiguous working storage data items, and noncontigu
ous linkage data items, and can be used cnly as described by Format 1 of the data description 
structure. 

b. Level-number 66 is assigned to identify RENAMES entries and can be used only as described in 
Format 2 of the data description structure. 

c. Level-number 88 is assigned to entries which define condition ..... names associated with a conditional 
variable and can be used only as described in Format 3 of the data description structure. 

3. Multiple level 01 entries subordinate to any given level indicator represent implicit redefinitions of the 
same area. 

Examples: 

The following is an example of a record layout which corresponds to Figure 6-3 showing a record description 
and the use of level numbers. 

______ , ___________________________ __, 

STUDENT RECORD 
--------~·------------------~---~------~ 

STUDENT NO. NAME GRADE BIRTH DATE 
.---------I 

Last First mth day yr 

6-24 



0 
00 
00 
00 
w 

0\ 
I 

N 
Vi 

PROGRAM 

PROGRAMMER 

PAGE LINE 
NO. NO. 

J 4 24 

G12332 

Burroughs COBOL CODING FORM 

REQUESTED BY 

DATE 

28 32 36 40 44 48 52 

Figure 6-3. Level Numbers 

PAGE .3 
IDENT. 

56 60 

OF / 5 

r 
~ 
m 
r 

I 

2 c 
~ m 
m 
:a 

-0 
0 
0 

r:n 
'<: 
r:J) ..... 
("[) 

3 
r:J) 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

TABLE HANDLING 
OCCURS 

OCCUBS 

The OCCURS clause Q.Jiminates the need for separate entries for repeated data items and supplies information 
required for the application of subscripts or indices. 

General Format: 

Format 1: 

OCCURS integer-2 TIMES 

[ 
t ASCENDING } 

t DESCENDING 
KEY IS data-narne-2 [, data-narne-3 ) ... J ... 

[INDEXED BY index-name-I [ , index-name-2] ... ] 

Format 2:: 

OCCURS integer-I TO integer-2 TIMES DEPENDING ON data-name-I 

[ 
t ASCENDING } 

l DESCENDING 
KEY IS data-narne-2 [ , data-narne-3 ) ... J 

[INDEXED BY index-name-I [, index-name-2] ... ] 

Syntax Rules: 

6-26 

1. When both integer-I and integer-2 are used, the value of integer-I must be less than the value of 
integer-2. 

2. The data description of data-name-I must des,~ribe a positive integer and, therefore, cannot be zero. 
3. Data-name-I, data-name-2, data-name-3, ... may be qualified. 
4. Data-name-2 must either be the name of the entry containing the OCCURS clause or the name of 

an entry subordinate to the entry containing the OCCURS clause. 
5. Data-name-3, and so forth, must be the name of an entry subordinate to the group item which is 

the subject of this entry. 
6. An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this 

entry, is to be referred to by indexing. 
7. A data description entry that contains Format 2 of the OCCURS clause may only be followed, within 

that record description, by data description entries which are subordinate to it. 



B 1000 Systems COBOL 74 Reference Manual 
Data Division 

TABLE HANDLING 
OCCURS 

8. The OCCURS clause cannot be specified in a data description entry that: 

a. Has an 01, 66, 77, or 88 level-number. 
b. Describes an item whose size is variable. The size of an item is variable if the data description 

of any subordinate item contains Format 2 of the OCCURS clause. 

9. In Format 2, the data item defined by data-name-1 must not occupy a character position within the 
rarnge of the first character position defined by the data description entry containing the OCCURS 
clause and the last character position defined by the record description entry containing that OC
CURS clause. 

10. If data-name-2 is not the subject of this entry, then: 

a. All of the items identified by the data-names in the KEY IS phrase must be within the group 
item which is the subject of this entry. 

b. Items identified by the data-name in the KEY IS .phrase must not contain an OCCURS clause. 
c. There must not be any entry that contains an OCCURS clause between the items identified by 

the data-names in the KEY IS phrase and the subject of this entry. 

11. Index-name-1, index-name-2, .. . must be unique words within the program. 
12. Int:eger-2 in Format 1 and integer-I in Format 2 cannot be zero. 

General Rules: 

1. The: OCCURS clause is used in defining tables and other homogeneous sets of repeated data items. 
Whenever the OCCURS clause is used, the data-name which is the subject of this entry must be either 
subscripted or indexed whenever it is referred to in a statement other than SEARCH or USE FOR 
DEBUGGING. Further, if the data-name associated with the OCCURS clause is the name of a group 
item, then all data-names belonging to the group must be subscripted or indexed when used as oper
ands, except as the object of a REDEFINES clause. Refer to Subscripting, Indexing, and Identifier 
in Section 2. 

2. Except for the OCCURS clause, all data description clauses associated with an item whose description 
includes an OCCURS clause apply to each occurrence of the item described. 

3. The: number of occurrences of the subject entry is defined as follows: 

1108883 

a. In Format I, the value of integer-2 represents the exact number of occurrences. 
b. In Format 2, the current value of the data item referenced by data-name-I represents the number 

of occurrences. 

Format 2 specifies that the data-name associated with the OCCURS clause has a variable number 
of occurrences. The value of integer-2 represents the maximum number of occurrences and the 
value of integer- I represents the minimum number of occurrences. This does not imply that the 
length of the subject of the entry is variable, but that the number of occurrences is variable. 

When a table element is referenced, the value of data-name-I must fall within the range integer
I through integer-2, inclusive. If the value of data-name-I is outside this range, the execution of 
the program is terminated. The value of data-name-I is used to determine the last table element 
that may be referenced. When the value of data-name-I is less than integer-2, the data items whose 
occurrence numbers exceed the value of data-name-I are inaccessible. Reducing the value of the 
data item referenced by data-name-I has no effect upon the contents of data items whose occur
rence numbers now exceed the value of the data item referenced by data-name- I. 

6-27 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

TABLE HANDLING 
OCCURS 

4. When a group item that has a subordinate entry that specifies Format 2 of the OCCURS clause is 
referenced, only that part of the table area that is specified by the value of data-name-1 is used in 
the operation. 

5. The KEY IS phrase is used to indicate that tht': repeated data is arranged in ascending or descending 
order according to the values contained in data-name-2, data-name-3, and so forth. The ascending or 
descending order is determined according to the rules for comparison of operands (refer to Relation 
Condition in Section 7 for the Comparison of Numeric Operands and the Comparison of Nonnumeric 
Operands). The data-names are listed in dcsce~nding order of significance. 

Examples: 

The following data descriptions illustrate the use of an OCCURS clause to provide equivalent data mapping 
with fewer data names. 

01 DATA-REC. 01 DATA-REC. 
03 AMOUNT-ONE PIC 9(B). 03 AMOUNT PIC 9(8) 
03 AMOUNT-TWO PIC 9 ( B) . OCCURS 3 TIMES. 
03 AMOUNT-THREE PIC 9 ( B) • 
03 DESC-ITEM PIC X(:W). 03 DESC-ITEM PIC x (20) . 
03 DESC-NO PIC 9 ( ~;) . 03 DE SC-NO PIC 9 ( 5) . 

This example illustrates a use of the OCCURS clause to provide nested descriptions. A reference to ITEM-
4 requires the use of three levels of subscripting, for example, ITEM-4 (2, 5, 4). A reference to ITEM-3 n~
quires two subscripts, for example, ITEM-3 (l,J). 

01 TABLE-REC. 
03 ITEM OCCURS 2 TIMES. 

05 I TEM-1 PI C X ( l 0) . 
05 ITEM-2 OCCURS 5 TIMES. 

07 ITEM-3 PIC X(4). 
07 ITEM-4 OCCURS 5 TIMES. 

09 ITEM-5 PIC XX. 
09 ITEM-6 PIC 99. 

6-28 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

PICTURE 

PICTURE 

The PICTURE clause describes the general characteristics and editing requirements of an elementary item. 

General Format: 

[ 
{

PICTURE} 
IS character-string 

PIC 

------
Syntax Rules: 

1. A PICTURE clause can be specified only at the elementary item level. 
2. A character-string consists of certain allowable combinations of characters in the COBOL74 character 

set used as symbols. The allowable combinations determine the category of the elementary item. 
3. The maximum number of characters allowed in the character-string is 30. 
4. The PICTURE clause must appear in every elementary item except those items whose USAGE is de

clared as INDEX. 
5. PIC is an abbreviation for PICTURE. 
6. The asterisk, when used as the zero suppression symbol, and the clause BLANK WHEN ZERO may 

not appear in the same entry. 

Gerneral Rules: 

1. There are five categories of data that can be described with a PICTURE clause: alphabetic, numeric, 
alphanumeric, alphanumeric edited, and numeric edited. 

2. To define an item as alphabetic: 

a. The PICTURE character-string can only contain the symbols 'A', 'B'. 
b. The item contents, when represented in standard data format, must be any combination of the 26 

letters of the English alphabet and the space from the COBOL74 character set. 

3. To define an item as numeric: 

a. The PICTURE character-string can only contain the symbols '9', 'P', 'S', and 'V'. The number 
of digit positions that can be described by the PICTURE character-string must range from I to 
118 inclusive. 

b. If unsigned, the item contents, when represented in standard data format, must be a combination 
of the numerals 'O', 'I', '2', '3', '4', '5', '6', '7', '8', and '9'; if signed, the item may also contain 
a '+', '-', or other representation of an operational sign. Refer to the SIGN clause in this section. 

4. To define an item as alphanumeric: 

1108883 

a. The PICTURE character-string is restricted to certain combinations of the symbols 'A', 'X', '9', 
and the item is treated as if the character-string contained all X's. A PICTURE character-string 
which contains all A's or all 9's does not define an alphanumeric item. 

b. The item contents, when represented in standard data format, are allowable characters in the 
B 1000 character set. 

6-29 



B 1000 Systems COBOL74 Reference Manual 
Data DivQsion 

PICTURE 

6-30 

5. To define an item as alphanumeric edited: 

a. The PICTURE character-string is restricted to certain combinations of the following symbols: 'A', 
'X', '9', 'B', 'O', and '/'. 

1) The character-string must contain at least one 'B' and at least one 'X' or at least one 'O' (zero) 
and at least one 'X' or at least one '/' (stroke) and at least one 'X': 

2) The character-string must contain at least one 'O' (zero) and at least one 'A' or at least one 
'/' (stroke) and at least one 'A'. 

b .. The contents, when represented in standard data format, are allowable characters in the computer 
character set. 

6. To define an item as numeric edited: 

a. The PICTURE character-string is restricted to certain combinations of the symbols 'B', '/', 'P', 
'V', 'Z', 'O', '9', ',', '.', '*', '+','-','CR', 'DB', and the currency symbol($). The allowable com
binations are determined from the order of precedence of symbols and the editing rules. 

1) The number of digit positions that can be represented in the PICTURE character-string must 
range from 1 to 18 inclusive. 

2) The character-string must contain at least one 'O', 'B', '/', 'Z', '*', '+', ',', '.', '-', 'CR', 'DB', 
or currency symbol. 

b .. The contents of the character positions of these symbols that are allowed to represent a digit iln 
standard data format must be one of the numerals. 

7. The size of an elementary item, where size means the number of character positions occupied by the 
elementary item in standard data format, is determined by the number of allowable symbols that repr,e
sent character positions. An integer which its enclosed in parentheses following the symbols: 'A', ',', 
'X', '9', 'P', 'Z', '*', 'B', '/', 'O', '+', '-', or '$' indicates the number of consecutive occurrences 
of the symbol.. The following symbols may appear only once in a given PICTURE: 'S', 'V', '.', 'CR', 
and 'DB'. 

8. Tlhe functions of the symbols used to describe an elementary item are explained as follows: 

"A.' 

'P' 

Each letter 'A' in the character-string represents a character position which can contain only a 
letter of the alphabet or a space. 

Each letter 'B' in the character-string represents a character position into which the space chara,c
ter will be inserted. 

Each letter 'P' indicates an assumed decimal scaling position and is used to specify the location 
of an assumed decimal point when the point is not within the number that appears in the data 
item. The :scaling position character 'P' is not counted in the size of the data item. Scaling position 
characters are counted in determining the maximum number of digit positions (18) in numeric ed
ited items or numeric items. The scaling position character P can appear only to the left or riglht 
as a continuous string of P's within a PICTURE description; since the scaling position charack~r 



1108883 

'S' 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

PICTURE 

P implies an assumed decimal point (to the left if 'P's are leftmost PICTURE characters and to 
the right if 'P's are rightmost PICTURE characters), the assumed decimal point symbol 'V' is re
dundant as either the leftmost or rightmost character within such a PICTURE description. The 
character 'P' and the insertion character '.' (period) cannot both occur in the same PICTURE 
character-string. If, in any operation involving conversion of data from one form of internal repre
sentation to another, the data item being converted is described with the PICTURE character 'P', 
1each digit position described by a 'P' is considered to contain the value zero, and the size of the 
data item is considered to include the digit positions so described. 

The letter 'S' is used in a character-string to indicate the presence of an operational sign in the 
internal representation of a numeric data item. It must be the first (leftmost) character in the char
acter-string and may be used in the PICTURE character-string of any data item whose USAGE 
is DISPLAY or COMPUTATIONAL. The SIGN clause may be used to specify the exact repre
sentation and position of the operational sign. Refer to the SIGN clause in this section for addition
al information. 

When an operational sign is specified for a DISPLAY data item and a SIGN clause is not 
specified, the sign is maintained and expected in the zone of the most significant (leftmost) charac
ter. When the data item is the receiving field in an arithmetic statement and since the native char
acter set is EBCDIC, the four zone bits are set to binary 1101 for negative values and to binary 
1100 for positive values. When the data item is used in an algebraic comparison or operation to 
supply an algebraic value, only the most significant zone being a binary 1101 will cause the value 
of the data item to be considered negative. Only the zone values 1100 and 1101 will qualify the 
data item as being NUMERIC if tested by the NUMERIC class condition. For DISPLAY data 
items, the presence or absence of an operational sign has no effect upon the amount of storage 
required to contain the data item. 

When an operational sign is specified for a COMPUTATIONAL data item and a SIGN clause is 
not specified, the sign is maintained and expected as a leading separate four-bit character to the 
left of the most significant digit position. Since the native character set is EBCDIC, the binary 
pattern of the sign character is 1101 for negative values and 1100 for positive values. Like DIS
PLAY data items, only these values allow the item to be considered NUMERIC in the class condi
tion test. Unlike DISPLAY data items, the specification of an operational sign for COMPUT A
TIONAL data items increases by one the number of 4-bit character positions occupied by the data 
item in storage. 

'V' 

'X' 

'Z' 

The letter 'V' is used in a character-string to indicate the location of the assumed decimal point 
and may only appear once in a character-string. The 'V' does not represent a character position 
and is not counted in the size of the elementary item. When the assumed decimal point is to the 
right of the rightmost symbol in the string, the 'V' is redundant. 

Each letter 'X' in the character-string is used to represent a character position which contains any 
allowable character in the character set. 

Each letter 'Z' in a character-string may only be used to represent the leftmost leading numeric 
character positions which are replaced by a space character when the contents of that character 
position are zero. Each 'Z' is counted in the size of the item. 

6-31 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

PICTURE 

6-32 

''9' 

'()' 

'/' 

Each numeral '9' in the character-string represents a character position which contains a numeral 
and is counted in the size of the item. 

Each numeral 'O' in the character-string represents a character position into which the numeral 
zero is inserted. The 'O' is counted in the size of the item. 

Each stroke '/' in the character-string represents a character position into which the stroke charnc
ter is inserted. The '/' is counted in the size of the item. 

Each comma ',' in the character-string represents a character position into which the charac1ter 
',' is inserted. This character position is counted in the size of the item. The insertion character 
',' must not be the last character in the PICTURE character-string. 

When the character period '.' appears in the character-string it is an editing symbol which repre
sents the decimal point for alignment purposes and in addition, represents a character position into 
which the character '.' is inserted. The character '.' is counted in· the size of the item. For a given 
program the functions of the period and 1.;omma are exchanged if the clause DECIMAL-POINT 
IS COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange the rules for the peri
od apply to the comma and the rules for tlhe comma apply to the period when appearing in a PllC
TURE clause. The insertion character '.' must not be the last character in the PICTURE charac
ter-string .. 

''+' '-' 'CR' 'DB' 
These symbols are used as editing sign control symbols and when used, represent the character 
position into which the editing sign controJ symbol will be placed. The symbols are mutually exclu
sive in any one character-string· and each character used in the symbol is counted in determining 
the size of the data item. 

' *' 
Each asterisk '*' in the character-string represents a leading numeric character position into which 
an asterisk is placed when the contents of that position are zero. Each'*' is counted in the size 
of the item. 

'cs' 
The currency symbol '$' in the character-string represents a character position into which a curren
cy symbol is placed. The currency symbol in a character-string is represented by either the dollar 
sign '$' or by the single character specified in the CURRENCY SIGN clause in the SPECIAL
NAMES paragraph. The currency symbol is counted in the size of the item. 



Editing Rules: 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

PICTURE 

1. There are two general methods of performing editing in the PICTURE clause, either by insertion or 
by suppression and replacement. The four types of insertion editing available are: 

a. Simple insertion 
b. Special insertion 
c. Fixed insertion 
d. Floating insertion 

There are two types of suppression and replacement editing: 

a. Zero suppression and replacement with spaces 
b. Zero suppression and replacement with asterisks 

2. The type of editing which may be performed upon an item is dependent upon the category to which 
the item belongs. Table 6-1 specifies which type of editing may be performed upon a given category: 

Table 6-1. Editing for Each Item Category 

Category 

Alphabetic 
Numeric 
Alphanumeric 
Alphanumeric Edited 
Numeric Edited 

Type of Editing 

Simple insertion 'B' only 
None 
None 
Simple insertion 'O', 'B', and '/' 
All, subject to Editing Rule 3 

3. Floating insertion, and editing by zero suppression and replacement, are mutually exclusive in a PIC
TURE clause. Only one type of replacement may be used with zero suppression in a PICTURE 
clause. 

4. Simple Insertion Editing. The ',' (comma), 'B' (space), 'O' (zero), and '/' (stroke) are used as the inser
tion characters. The insertion characters are counted in the size of the item and represent the position 
in the item into which the character is inserted. 

Any character which is not a defined PICTURE character may be used as a simple insertion charac
ter. Precedence rules for these characters and rules for determining category are the same as those 
for the simple insertion character ''O''. 

5. Special Insertion Editing. The '.' (period) is used as the insertion character. In addition to being an 
insertion character it also represents the decimal point for alignment purposes. The insertion character. 
used for the actual decimal point, is counted in the size of the item. The use of the assumed decimal 
point, represented by the symbol 'V' and the actual decimal point, represented by the insertion char
acter, in the same PICTURE character-string is disallowed. The result of special insertion editing is 
the appearance of the insertion character in the item in the same position as shown in the character
string. 

1108883 6-33 



B 1000 Systems COBOL 74 Reference Manual 
Data Division 

PICTURE 

6-34 

6. Fixed Insertion Editing. The currency symbol and the editing sign control symbols,'+','-', 'CR', 
'DB', are the insertion characters. Only one currency symbol and only one of the editing sign control 
symbols can be used in a given PICTURE character-string. The symbols 'CR' or 'DB' always repn::
sent two character positions in determining the size of the item and must represent the rightmost char
acter positions counted in the size of the item. The symbol '+' or '-', when used, must be either the 
le~ftmost or rightmost character position to be 1,;ounted in the size of the item. The currency symbol 
must be the leftmost character position to be wunted in the size of the iterq except that it can be 
preceded by either a'+' or a'-' symbol. Fixed :insertion editing results in the insertion character occu
pying the same character position in the edited item as in the PICTURE character-string. Editing sign 
control symbols produce the results shown in Table 6-2 depending upon the value of the data item. 

r 

Table 6-2. Editing uf Sign Control Symbols 

--··----,, 

Result 

Data Item Editing Symbol in 
PICTURE Character-St ring Positive or Zero 

+ 

CR 
DB 

L--

+ 
space 

2 spaces 
2 spaces 

Data Item 
Negative 

-
-

CR 
DB 

7. Floating Insertion Editing. The currency symbol and editing sign control symbols '+' or ' -' are the 
floating insertion characters and are mutually exclusive in a given PICTURE character-string. 

Floating insertion editing is indicated in a PICTURE character-string by using a string of at least two 
of the floating insertion characters. This string of floating insertion characters may contain any of the 
fixed insertion symbols or have fixed insertiion characters immediately to the right. These simple insc:~r
tion characters are part of the floating string. 

The leftmost character of the floating insertion string represents the leftmost limit of the floating sym
bol in the data item. The rightmost character of the floating string represents the rightmost limit of 
the floating symbols in the data item. 

The second floating character from the left represents the leftmost limit of the numeric data that can 
be stored in the data item. Nonzero numeric data may replace all the characters at or to the right 
of this limit. 

In a PICTURE character-string, there are only two ways of representing floating insertion editing. 
One is to represent any or all of the leading numeric character positions on the left of the decimal 
point by the insertion character. The other is to represent all of the numeric character positions in 
the PICTURE character-string by the insertion character. 

1f the insertion characters are only to the left of the decimal point in the PICTURE character-string, 
the result is that a single floating insertion character is placed into the character position immediati~ly 
preceding either the decimal point or the first nonzero digit in the data represented by the insertion 
symbol string, whichever is farther to the left in the PICTURE character-string. The character posi
tions preceding the insertion character are replaced with spaces. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

PICTURE 

If all numeric character positions in the PICTURE character-string are represented by the insertion char
acter, the result depends upon the value of the data. If the value is zero, the entire data item will contain 
spaces. If the value is not zero, the result is the same as when the insertion character is only to the 
left of the decimal point. 

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data item 
must be the number of characters in the sending data item, plus the number of nonfloating insertion 
characters being edited into the receiving data item, plus one for the floating insertion character. 

8. Zero Suppression Editing. The suppression of leading zeroes in numeric character positions is indicated 
by th1~ use of the alphabetic character 'Z' or the character '*' (asterisk) as suppression symbols in a PIC
TURE character-string. These symbols are mutually exclusive in a given PICTURE character-string. Each 
suppres'sion symbol is counted in determining the size of the item. If 'Z' is used the replacement charac
ter is the space, and if the asterisk is used the replacement character will be '*'. 

Zero suppression and replacement is indicated in a PICTURE character-string by using a string of one 
or more of the allowable symbols to represent leading numeric character positions which are to be re
placed when the associated character position in the data contains a zero. Any of the simple insertion 
characters embedded in the string of symbols or to the immediate right of this string are part of the 
string. 

In a PICTURE character-string, there are only two ways of representing zero suppression. One is to 
repre:sent any or all of the leading numeric character positions to the left of the decimal point by sup
pression symbols. The other is to represent all of the numeric character positions in the PICTURE char
acter-string by suppression symbols. 

If the suppression symbols appear only to the left of the decimal point, any leading zero in the data 
which corresponds to a symbol in the string is replaced by the replacement character. Suppression termi
nates at the first nonzero digit in the data represented by the suppression symbol string or at the decimal 
point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-string are represented by suppression sym
bols and the value of the data is not zero, the result is the same as if the suppression characters were 
only to the left of the decimal point. If the value is zero and the suppression symbol is 'Z', the entire 
data item will be spaces. If the value is zero and the suppression symbol '*', the data item will be all 
asterisks except for the actual decimal point. 
The leftmost suppression symbol ('Z' or'*') in the PICTURE character-string can only be preceded by 
the currency symbol or the sign symbols (' +' or ' - '). 

9. The symbols'+', '-', '*', 'Z', and'$', when used as floating replacement characters, are mutually exclu
sive within a given character-string. 

Precedence Rules 

Figure 6-4 shows the order of precedence when using characters as symbols in a character-string. An 'X' at an 
intersection indicates that the symbol(s) at the top of the column may precede, in a given character-string, the 
symbol(s) at the left of the row. Arguments appearing in braces indicate that the symbols are mutually exclusive. 
The currency symbol is indicated by the symbol 'cs'. 

At kast one of the symbols 'A', 'X', 'Z', '9' or '*' or at least two of the symbols '+ ', ' ' or 'cs' must be 
present in a PICTURE string. 

1108883-001 6-35 

I 



H 1000 Sy:o\tems COBOL 74 Reference Manual 
Dala Division 

PICTURE 

r----dl --I r-··-B--·------N-o-n--F-1-oa-t-in-{g-+ ~---j-+--\ -j C--R-} ~c·s-- .-·----~F-lo-a-ti-ng-------.----------------. 
Insertion Symbols Insertion Symbols Other Symbols 

0 _ I ~ _ I ) DB {:} -~:} t } t } cs cs 9 ~ s v p p 

I------'! ~-------~i---+---+-----+--- --- +----.,·-+-·-·-·-+-------------+----11---+---+----+----11--------·--
B X x x x x x x x x x x x x x x x x 

t----t---- --+-------- f--------- ------< ---- -

0 x x x x x x x x x x x x x x x x x 
t----t-----+---- t---------+---- +-- --- - t- -·· -- - t-------+-----t----t----------+------+----<---+----+---+--·--+--+-----1 

x x x x x x x x x x x x x x x x x 
t----t--- ---·- f--·--- -------t---- ·-- -- --- f-----+--·---+--------+-----1---+---·-+------+------+-----<--+-----+----

x x x x x x x x x x x x x x x x 
t----t-----+----r------1--·----- ---·------ ·- --- -·-· --- ·- - t------- - t---· ---- !------+---- ____ _, ·--------1-----+-----+---+----1--+------+---+-·---4 

x x x x x x x x x x 

·--· --- ·-·----t-· -- ... - ------·--+------+-----+----+-----+----+-----I--+---+--- --+-----+-·---

x x x x x x x x x x 

t-·-{-~-}-11--·--+---t--+! - ----+-----+---- - --+------·-+--·--- t---------11---+----+----+---t------t----t-----+--t-----+---t----

cff-,;-~-~-~ I x 

x x x x x x x x x x 
t--: t-----+---+--·---t-·- -----+------+---------- t----- t---t-·----+--·-+----l---lf------+---+----11----+----+-·--

.' CR} X X X X 
\CB 
l----+------+----1--------~-----+---+- -- -- . +-------+--1------+---+---+--f------+---+----+---l-··---i 

cs x 
1-·-··-+----+----+-··--+--·--+-----1~-- ----·-- -----+-··--+-----;..---11----+---+----+--+---+---+----+---+----+---+----t 

{:} x x x x x x x 
t------t----------t---·--t-------1--+----· - . - --+---· ... --·- --1---·- ----1------+--·-+---+--f------+---+--·--+--+----I 

x x x x x x x x x x Jz\ x 
"' l * ' ] 1---+--·-------+-----r--- ----- ---·---- -

cis J+} 
-·- ·--- . --- ·-+-- . --1 -------1----t----+------I--+---+--- -+----+----

x ·.S~ \- x 
.2 g 1-j } 

x x x x 
-1--··-----t-------- ... --.- ----i-- 1----1---·--t·---------·-+--·---+--l----+---+----+--l-----+---+----I 

- f--

x 
t------+- ----- -

x x x x u. 'i \: x 
.:.: I-· 

x x 
-- ---11---+---+----+---t----+--t-----t---t----

x x 

cs x x x x x x 
1-·---+---f---·--f-----t------+----- - . -- 1----------- --·----- ---~ ----+----t--1-----+----+-----t---+----+-·---t 

cs x x x x x x x x x x 
l----+--·--+-·-~---+----11---+----t----f--·--+--·--+-·- .. ·-1------t~--+---+--~--~-+--~---+--~---+---+--~ 

9 x x x x x x x x x x x x x x x 
1-----11--------1-----~----- --1---- . --t !---··-- -+--- -- -+-- --- f ---· ---+------+----l---+-------+-----+----1------.1 

A 
x x x x x x 

t-··----+---+-----~---+-------+- ------- ----·---·---·---·---------- ---- ·---+-· ----·-· -M --·-• -- ------+-----+----•--j-----;--+----+----+----t---t----t 

s 

x x 
........ -·-- .. +-- --+------t---+---+----+----t---t-----1 

x x x 

x x x 

1-··--v-+-x-t---x--f---x---t-x-t------t-_----_-xx--r--~ - _ ____, __ x ____ ,f--_x ____ ----· .. 

1------t---+---t-----+-·---I-- -f-----+--------+------t--------1----t------+---1----+---t---t--------11----t----t 

p xx xx xx 
i-----t-·--+-----------t---·-····· -- I ·-t- -·-1 --- ----1--------- -------t-----1---

x x 

p x i x x x x 
'---·-· _...._ __ ........_ __ , __ ....._ _____ ~ __ j ____ _,_ ______ _,_ ___ ,c... __ __:. __ ,___-'-_--'-----'"--L----'-----'----'- __,_ _ __._ __ _ 

G12333 

Figure 6-4. PICTURE Character Precedence Chart 

Nontloating insertion symbols'+' and·-·. floating in~ertion symbols 'Z'. '*', '+','-',and 'cs', and the other 
symbol 'P' appear twice in the PICTURE character precedence chart. Figure 6-4. The leftmost column and 
uppermost row for each symbol represent use on the 1-~ft of the decimal point position. The second appeara111ce 
of the symbol in the chart represents use to the right of the decimal point position. 

6-36 



Examples: 

B 1000 Systems COBOL 74 Reference Manual 
Data Division 

The following Table 6-3 demonstrates the editing function of the PICTURE Clause. 

Table 6-3. Editing Application of the PICTURE Clause 

Source Area Receiving Area 

Editing 
Picture Data Picture Edited Data 

9 (5) 12345 $ZZ,ZZ9.99 $12,345.00 
V9(5) 12345 $$$,$$9.99 $0. 12 
V9 (5) 12345 $ZZ,ZZ9.99 $ 0. 12 
9(5) 00000 $$$,$$9.99 $0.00 
9(3)V99 12345 $ZZ,ZZ9.99 $ 123.45 
9 ( 5) 00000 $$$,$$$.$$ 
9 ( 5) 01234 $ ;'o'', ;b~9 • 99 $ ;', l ' 2 3 4 . 00 
9 ( 5) 00000 $ ·;'\ ;'c , ·k ;'c ;'c • ·l\ ;'\ ;'\ ""J'c ·k -;'\ ;'\ ;'c ;'t • ;'\ ·le 

9 ( 5) 00123 $;'d'' ;~;''9. 99 $;'o'o'' 123. 00 
9(3)V99 00012 $ZZ,ZZ9.99 $ o. 12 
9(3)V99 12345 $$$,$$9.99 $123.45 
9(3,)V99 00001 $ZZ,ZZZ.99 $ . 01 
9 (5) 12345 $$$,$$9.99 $12,345.00 
9 ( 5) 00000 $ZZ,ZZZ.ZZ 
9(3)V99 00001 $$$,$$$.$$ $.01 

59 (5) (+) 12345 ZZZZ9.99+ 12345.00+ 
59 (5) (-) 00123 --99999.99 -00123.00 
9(3)V99 12345 999.00 123.00 

59(5) (-) 12345 ZZZZ9.99- 12345.00-
5 9 ( 5) (+) 12345 ZZZZ9.99- 12345.00 
9 ( 5) 12345 BBB99.99 45.00 

59(5)V (-) 12345 -ZZZZ9.99 -12345.00 
59(5) (-) 12345 $$$$$$.99CR $12345.00CR 

S99V9(3) (-) 12345 ------.99 -12.34 
59 (5) (+) 12345 $$$$$$.99CR $12345.00 
9(3)V99 12345 999.BB 123. 
9 ( 5) 12345 00999.00 00345.00 

1108883 

PICTURE 

6-37 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

REDEFINES 

REDEFINES 

The REDEFINES clause allows the same computer storage area to be described by different data description 
entries. 

General Format: 

C _______ 1e_v_e1_-n_u_m_be_r_d_at_a_-n_a_m_e_-_1.; REDEFINES data-name-2 

NOTE 
Level-number, data-name-1 and the semicoiJon are shown in the general format to 
improve clarity. Level-number and data-name-1 are not part of the REDEFINES 
clause. 

Syntax Rules: 

1. The REDEFINES clause, when specified, must immediately follow data-name-1. 
2. The level-numbers of data-name-1 and data-name-2 must be identical, but must not be 66 or 88. 
3. This clause must not be used in level 01 entries in the FILE SECTION. Refer to the DATA REC

ORDS clause, General Rule 2, in this section. 
4. Tht:: REDEFINES cl~use must not be used in level 01 entries in the COMMUNICATION SECTION. 
5. The data description entry for data-name-2 cannot contain a REDEFINES clause. Data-name-2 may 

be subordinate 1to an entry which contains a REDEFINES clause. The data description entry for data
name-2 cannot contain an OCCURS clause. However, data-name-2 may be subordinate to an item 
whose data description entry contains an OCCURS clause. In this case, the reference to data-name-· 
2 iln the REDEFINES clause may not be subscripted or indexed. Neither the original definition nor 
the redefinition can include an item whose size is variable as defined in the OCCURS clause. Refer 
to the OCCURS clause in this section. 

6. No entry having a level-number numerically lower than the level-number of data-name-2 and data-· 
name-I may occur between the data description entries of data-name-2 and data-name-1. 

General Rules: 

6-38 

1. Redefinition starts at data-name-2 and ends wh1~n a level-number less than or equal to that of data·· 
name-2 is encountered. 

2. Thie REDEFINES clause specifies the redefinition of a storage area, not of the data items occupying 
the area. Therefore, the usage of data-name-1 need not be the same as the usage of data-name-2, ex
cept that DISPLAY or group data items may not redefine elementary COMPUTATIONAL or INDEX 
dalta items which do not begin on a byte boundary. When redefinition occurs at other than the 0 l 
level, the amount of storage allocated for data-name-2 must be the same as the amount of storag1:! 
implied by the declared size and usage of data-name-1, with the following exceptions: 

a. A DISPLAY or group data item may redefine an elementary COMPUTATIONAL data item that 
begins, but does not end, on a byte boundary if the difference in size can be accounted for by 
the generation of a 4-bit filler so that the redefining item ends on a byte boundary. 

b. A DISPLAY or group data item may be redefined by an elementary COMPUTATION AL data item 
even though the actual size (including sign position, if described) is one 4-bit character less than 
the number of 4-bit characters in the storage area. The redefining item is aligned to begin on a 
byte boundary and end at the middle of the last byte of storage. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

REDEFINES 

3. Multiple redefinitions of the same character positions are permitted. The entries giving the new de
scriptions of the character positions must follow the entries defining the area being redefined, without 
intervening entries that define new character positions. Multiple redefinitions of the same character 
positions must all use the data-name of the entry that originally defines the area. 

4. The entries giving the new description of the character positions must not contain any VALUE 
clauses, except in condition-name entries. 

5. Multiple 01 level entries subordinate to any given level indicator represent implicit redefinitions of the 
same area. 

Example: 

The following exampl·e illustrates the use of the REDEFINES clause. 

01 

1108883-00 I 

WHOLE-ITEM. 
03 PART-ONE 
03 PART-TWO 

05 A 
05 B 

PI C X ( 40) . 
REDEFINES PART-ONE. 

PI C X (20) • 
PIC X(20). 

03 PART-THREE REDEFINES PART-ONE PIC X(40). 

6-39 

I 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

RENAMES 

RENAMES 

The RENAMES clalllse permits alternative, possibly overlapping, groupings of elementary items. 

General Format: 

[ ] 66 data-name-I; RENAMES data-name-2 [{
THROUGH } ] 

data-name-3 
THRU 

NOTE 
Level-number 66. data-name- I. and the semicolon are shown in the general format 
to improve clarity. Level-number and data-name- I are not part of the RENAMES 
clause. 

Syntax Rules: 

I. All RENAMES entries referring to data items within a given logical record must immediately follow 
the last data description entry of the associated record description entry. 

2. Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in 
the same logical record. and cannot be the same data-name. A 66 level entry cannot rename another 
66 level entry nor can it rename a 77. 88. or 0 I level entry. 

3. Data-name- I cannot be used as a qualifier, and can only be qualified by the names of the associated 
level OI, FD, or SD entries. Neither data-name-2 nor data-name-3 may have an OCCURS clause in 
the data description entry nor be subordinate to an item that has an OCCURS clause in the data de
scription entry. Refer to the OCCURS clau~e in this section. 

4. The beginning of the area described by data-name-3 must not be to the left of the beginning of the 
area described by data-name-2. The end of the area described by data-name-3 must be to the right 
of the end of the area described by data··name-2. Data-name-3, therefore, cannot be subordinate to 
data-name-2. 

5. Data-name-2 and data-name-3 ·may be qualified. 
6. The words THRU and THROUGH are equivalent. 
7. None of the items within the range, including data-name-2 and data-name-3, if specified, can be an 

item whose size is variable as defined in the OCCURS clause. 

General Rules: 

6-40 

I. One or more RENAMES entries can be written for a logical record. 
2. When data-name-3 is specified. data-name-I i' a group item which includes all elementary items start

ing with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data-name-
2 (if data-name-2 is a group item). and concluding with data-name-3 (if data-name-3 is an elementary 
item) or the last elementary item in data.-name-3 (if data-name-3 is a group item). 

When data-name-3 is specified: If data-name-2 is an elementary COMPUTATIONAL or INDEX data 
item, it must be positioned to begin at an 8--bit character boundary; if data-name-3 is an elementary 
COMPUTATIONAL or INDEX data item, i1 must be positioned to end at the end of an 8-bit charac
ter boundary. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

RENAMES 

3. When data-name-3 is not specified, data-name-2 can be either a group or an elementary item. When 
data-name-2 is a group item, data-name-I is treated as a group item, and when data-name-2 is an 
elementary item, data-name-1 is treated as an elementary item. 

Data-name-I assumes all the characteristics of data-name-2 as determined from the data description 
of data-name-2, including usage, justification, synchronization, editing requirements, and so on. 

Examples:: 

The following are examples of the RENAMES clause. 

01 PART-ONE. 
03 SUB-PART-ONE. 

05 SP-1 
05 SP-2 
05 SP-3 
05 SP-4 

03 SUB-PART-TWO. 
05 SP2-1 
05 SP2-2 
05 SP2-3 

PIC X. 
PIC X(5). 
PIC XXX. 
PIC X. 

PIC XX. 
PIC X(lO). 
PIC XXX. 

66 SUB-PT-THREE RENAMES SUB-PART-ONE. 
66 SUB-PT-FOUR RENAMES SUB-PART-ONE. 
66 SUB-PT-5 RENAMES SP-2 THRU SP-4. 
66 SUB-PT-6 RENAMES SP-3 THROUGH SP2-2. 
66 SUB-PT-7 RENAMES SP-1 THRU SUB-PART-TWO. 

1108883 6-41 



B 1000 Systems COBOL74 Reference Manual 
Data JDiv[sion 

SIGN 

SIGN 

The SIGN clause specifies the position and the mode of representation of the operational sign when necessary 
to describe these properties explicitly. 

General Format: 

(SIGN IS ] { LEADING } 
TRAILING -(-S-EP_A_RA~T-E_C_H_A_RA~CT_E_R_]~~~--~-] 

Syntax Rules: 

I. Thie SIGN clause may be specified only for a numeric data description entry whose PICTURE con
tains the character 'S', or a group item containing at least one such numeric data description entry. 

2. The numeric data description entries to which the SIGN clause applies must be described as usage 
DISPLAY or COMPUTATIONAL. 

3. At most, one SIGN clause may apply to any given numeric data description entry. 
4. If the CODE-SET clause is specified, any signed numeric data description entries associated with that 

file description entry must be described with the SIGN IS SEPARATE clause. 

General Rules: 

6-42 

I. The optional SIG.N clause, if present. specifies the position and the mode of representation of the op
erational sign for the numeric data description entry to which it applies, or for each numeric data de
scription entry subordinate to the group to which it applies. The SIGN clause applies only to numeri1~ 
data description entries whose PICTURE contains the character 'S'; the 'S' indicates the presenc1e 
of, but neither the representation nor, necessarily, the position of the operational sign. 

2 .. A numeric data description entry whose PICTURE contains the character 'S', but to which no option
al SIGN clause applies, has an operational sign which is positioned and represented according to th1e 
standard defauRt position and representation of operational signs. Refer to the PICTURE clause, Gen
eral Rule 8 (the 'S' symbol), in this section. 

3. If a SIGN clause, without a SEPARATE CHARACTER phrase, applies to a numeric data description 
entry, then: 

a. If the usage of the data item is DISPLAY, the operational sign is maintained and expected as a 
binary 1100 or 1101 in the zone of the LEADING or TRAILING character, and will not caus,e 
additional storage to be allocated for the data item. 

b. If the usage of the data item is COMPUTATIONAL, the operational sign is maintained and ex
pected as a binary 1100 or 1101 LEADING or TRAILING character, increasing by one 4-bit char
acter the amount of storage alJocated for the data item above that which would be allocated for 
an unsigned COMPUTATIONAL data it·em. The presence or absence of the SEPARATE CHAR
ACTER phrase has no effect upon the position or representation of the operational sign for COM
PUTATIONAL data items. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

SIGN 

4. If a SIGN clause with a SEPARATE CHARACTER phrase applies to a numeric data description en
try, then: 

a. If the usage of the data item is DISPLAY, the operational sign is maintained and expected as a 
LEADING or TRAILING character separate from, and in addition to, the numeric character posi
tions. The operational sign for negative values is the character "-" and for positive values the 
character '' + ''. 

b. If the usage of the data item is COMPUTATIONAL, the rules listed above in General Rule 3b 
apply. 

5. Every numeric data description entry whose PICTURE contains the character 'S' is a signed numeric 
data description entry. If a SIGN clause applies to such an entry and conversion is necessary for pur
poses of computation or comparisons, conversion takes place automatically. 

Examples: 

The following are examples of the SIGN clause. 

Jl 108883 

WORKING-STORAGE SECTION. 
77 NUMBl PIC S9(11) VALUE ZEROES SIGN IS TRAILING. 
77 NUMB2 PIC 59(6) VALUE ZEROES SIGN IS LEADING. 

01 GROUP- ITEM 
03 ITEM-1 
03 ITEM-2 
03 ITEM-3 
03 ITEM-4 

SIGN IS LEADING. 
PIC X(lS). 
PIC S9(4) COMP. 
PI C X(25). 
PIC S9999. 

6-43 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

SYNCHRONIZED 

SYNCHRONIZED 

The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries of the 
computer memory. 

General Format: 

c-·---·----{-~~-~-~-HR_O_N_IZEI_q __ [~_i_6_HT T_] _________ ] 
Syntax Rules: 

1. This clause may only appear with an elementary item. 
2. SYNC is an abbreviation for SYNCHRONIZED. 

General Rules: 

6-44 

1. This clause specifies that the subject data item is to be aligned in the computer to a byte boundary. 
If the previous data item did not end on a byte boundary an implicit 4-bit FILLER is generated. This 
unused filler digit is included in: 

a The size of any group item(s) to which th1,! elementary item belongs. 
b. Any redefinition of the previous data item when it is the object of a REDEFINES clause. Refer 

to the REDEFINES and the USAGE clau~es in this section. 

2. Neither RIGHT nor LEFT following SYNCHRONIZED has effect on the positioning of the data item. 
RIGHT and LEFT are handled as comment entries. 

3. Whenever a SYNCHRONIZED item is referenced in the source program, the original size of the item, 
as shown in the PICTURE clause, is used in determining any action that depends on size, such as 
justification, truncation, or overflow. 

4. If the data description of an item contains the SYNCHRONIZED clause and an operational sign, the 
sign of the item appears in the normal operational sign position. 

5. When the SYNCHRONIZED clause is specified in a data description entry of a. data item that also 
contains an OCCURS clause, or in a data description entry of a data item subordinate to a data de
scription entry that contains an OCCURS clause, then: 

a. Each occurrence of the data item is SYNCHRONIZED. 
b .. Any implicit FILLER generated for other data items within that same table are generated for each 

occurrence of those data items. 



USAGE 

B 1000 Systems COBOL 74 Reference Manual 
Data Division 

The USAGE clause specifies the format of .a data item in the computer storage. 

General Format: 

(USAGE IS] 
( COMPUTATIONAL) 
) COMP ( 
') . i5i'SPLA y ( 
l INDEX J 

Syntax Rules: 

USAGE 

1. The PICTURE character-string of a COMPUTATIONAL item can contain only '9's, the operational 
siign character 'S', the implied decimal point character 'V', and one or more 'P's. Refer to the PIC
TURE clause in this section. 

2. COMP is an abbreviation for COMPUTATIONAL. 
3. The USAGE clause may be written in any data description entry with a level number other than 66 

or 88. 
4. If the USAGE is written in the data description entry for a group item, it may also be written in the 

data description entry for any subordinate elementary item or group item, but the same USAGE must 
be specified by both entries. Items of different USAGE may appear in the same record. 

5. An index data item can be referenced explicitly only in a SEARCH or SET statement, a relation con
dition, the USING phrase of a PROCEDURE DIVISION header, or the USING phrase of a CALL 
s1tatement. 

6. The SYNCHRONIZED, JUSTIFIED, PICTURE, VA.LUE, and BLANK WHEN ZERO clauses can
not be used to describe group or elementary items described with the USAGE IS INDEX clause. 

General Rules: 

1. If the USAGE clause is written at a group level, it applies to each elementary item in the group. 
2. This clause specifies the manner in which a data item is represented in the storage of a computer. 

It does not affect the use of the data item, although the specifications for some statements in the PRO
CEDURE DIVISION may restrict the USAGE clause of the data item. 

DISPLAY data items are represented internally as contiguous 8-bit characters represented in the na
tive character set, EBCDIC. 

Elementary COMPUTATIONAL data items are represented internally as contiguous 4-bit characters 
or digits. 

3. A COMPUTATIONAL iiem is capable of representing a value to be used in computations and must 
be numeric. If a group item is described as COMPUTATIONAL, the elementary items in the group 
are COMPUTATIONAL. The group item is not COMPUTATIONAL (cannot be used in computa
tions). 

The group item is considered to be a group data item whose class is alphanumeric and whose usage 
is DISPLAY and may be referenced any place in the syntax acceptable for such an item. The size 
of the group item is considered to be in terms of DISPLAY characters aligned according· to the rules 
for DISPLAY, one character for every two 4-bit characters or digits that form a part of it. 

1108883 6-45 



B I 000 Systems COBOL74 Reference Manual 
Oata Division 

USAGE 

6-46 

4. The USAGE J[S DISPLAY clause indicates that the format of the data is a standard data format. 
5. If the USAGE clause is not specified for an elementary item, or for any group to which the item be

longs, the usage is implicitly DISPLAY. 
6. Every occurrence of a DISPLAY data item begins and ends on a byte boundary. Within a record de

s1;;ription, the declaration of a DISPLAY data item immediately following a COMPUTATIONAL or 
lNDEX data item that does not end on a byte boundary causes an automatic generation of a 4-bit 
filller between the two items. This filler area between the two data items is not included in the size 
of either item, but is included in the size of an group items to which the two items are subordinate. 
Similarly, if the last item declared within a group item at the next lowest hierarchical level is a COM
PUTATION AL or INDEX data item that does not end on a byte boundary, an automatic generation 
of a 4-bit filler occurs. This filler is included in the size of the group item. 

7. An elementary item described with the USAGE IS INDEX clause is called an index data item and 
contains a value which must correspond to an occurrence number of a table element. The elementary 
item cannot be a conditional variable. If a group item is described with the USAGE IS INDEX clause, 
the elementary items in the group are all index data items. The group is not an index data item and 
cannot be used in the SEARCH or SET statement. 

The group item is considered to be a group data item whose class is alphanumeric and whose usag1~ 
is DISPLAY and may be referenced any place in the syntax acceptable for such an item. The siz1~ 
of the group item is considered to be in terms of DISPLAY characters, four characters for each subor
dinate index data item. 

8. An index data item can be part of a group which is referred to in a MOVE or input-output statement, 
in which case no conversion takes place. 

9. An index data item may contain a signed value. An index data item occupies the same space and 
has the same- alignment as an itcim declared PICTURE S9(7) USAGE IS COMPUTATIONAL. 



B IOOO Systems COBOL74 Reference Manual 
Data Division 

VALUE 

VALUE 
The VALUE clause defines the value of constants, the initial value of working-storage items, the initial value 
of data it<;:ms in the COMMUNICATION SECTION, and the values associated with a condition-name. 

General Format: 

Format 1: 

[ 
VALUE IS 

-----------
literal 

Format 2: 

{VALUE IS t [ {THROUGH} 
literal-2 J literal-I 

VALUES ARE j THRU 

[ , Jiteral-3 
[ ) THROUGH} 

l THRU 
literal-4 ] ] 

Syntax Rules: 

1. The words THRU and THROUGH are equivalent. 
2. The VALUE clause cannot be stated for any item whose size is variable. Refer to the OCCURS 

cllause in this section. 
3. A signed numeric literal must have an associated signed numeric PICTURE character-string. 
4. All numeric literals in a VALUE clause of an item must have a value which is within the range of 

values indicated by the PICTURE clause, and must not have a value which would require truncation 
of nonzero digits. Nonnumeric literals in a VA.LUE clause of an item must not exceed the size indi
cated by the PICTURE clause. 

General Rules: 

I. The VA.LUE clause must not conflict with other clauses in the data description of the item or in the 
data description within the hierarchy of the item. The following rules apply: 

a. If the category of the item is numeric, all literals in the VALUE clause must be numeric. If the 
literal defines the value of a working-storage item, the literal is aligned in the data item according 
to the standard alignment rules. Refer to Standard Alignment Rules in Section 2. 

b. If the category of the item is alphabetic, alphanumeric, alphanumeric edited or numeric edited, all 
literals in the VA.LUE clause must be nonnumeric literals. The literal is aligned in the data item 
as if the data item had been described as alphanumeric. (Refer to Standard Alignment Rules in 
Section 2.) Editing characters in the PICTURE clause are included in determining the size of the 
data item (refer to the PICTURE clause in this section) but have no effect on initialization of the 
data item. Therefore, the VA.LUE for an edited item is presented in an edited form. 

c. Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED clause that 
may be specified. 

2. A figurative constant may be substituted in both Format I and Format 2 wherever a literal is specified. 

1108883 6-47 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

VALUE 

CONDITION-NAME RULES 

1. In :a condition-name entry, the VALUE clause is required. The VALUE clause and the condition·· 
name are the only two clauses permitted in the entry. The characteristics of a condition-name are imp·· 
licitly those of the conditional variable. 

2. Format 2 can only be used in connection with condition-names. Refer to Condition-Name in Section 
2. Wherever the THRU phrase is used, literal must be less than literal-2, literal-3 less than literal-· 
4, and so forth. 

DATA DESCRIPTION ENTRIES OTHER THAN CONDITION-NAMES 

6-48 

l. Rules governing the use of the VALUE clause differ with the respective sections of the DATA DIVJ.
SION: 

a. In the FILE SECTION, the VALUE clause may be used only in condition-name entries. 
b. In the WORKING-STORAGE SECTION and the COMMUNICATION SECTION:, the VALUE 

clause must be used in condition-name entries. The VALUE clause may also be used to specify 
the initial value of any other data item, in 'Nhich case the clause causes the item to assume the 
specified value at the start of the object program. If the VALUE clause is not used in an item 
description, the initial value is undefined. 

c. In the LINKAGE SECTION, the VALUE clause may be used only in condition-name entries. 

2. The VALUE clause must not be stated in a data description entry that contains an OCCURS clause, 
or in an entry that is subordinate to an entry containing an OCCURS clause. This rule does not apply 
to .condition-name entries. Refer to the OCCURS clause in this section. 

3. Tht:~ VALUE clause must not be stated in a data description entry that contains a REDEFINES 
clause, or in an entry that is subordinate to an entry containing a REDEFINES clause. This rule does. 
not apply to condition-name entries. 

4. If the VALUE clause is used in an entry at the group level, the literal must be a figurative constant 
or a nonnumeric literal, and the group are.a is initialized without consideration for the individual: 
elementary or group items contained within this group. The VALUE clause cannot be stated at the 
subordinate levels within this group. 

5. The VALUE clause must not be written for a group containing items for which USAGE (other than 
USAGE IS DISPLAY) is specified either explicitly or implicitly. 



B IOOO Systems COBOL74 Reference Manual 
Data Division 

WORKING-STORAGE SECTION 

WORKING-STORAGE SECTION 

The WORKING-STORAGE SECTION is optional and is that part of the DATA DIVISION set aside for inter
mediate processing of data. The difference between the WORKING-STORAGE and FILE SECTIONS is that 
the former deals with data that is not associated with an input or output file. All clauses which are used in 
normal input or output record descriptions can be used in a WORKING-STORAGE record description. 

WORKING-STORAGE STRUCTURE 

Whereas the FILE SECTION is composed of file description (FD or SD) entries and associated record descrip
tion entries, the WORKING-STORAGE SECTION is composed only of record description entries and noncon
tiguous items. The WORKING-STORAGE SECTION begins with a section-header and a period, followed by 
data description entries for noncontiguous WORKING-STORAGE items, and/or record description entries for 
WORKING-STORAGE records. 

Each WORKING-STORAGE SECTION record name and noncontiguous item name must be unique since it 
canpot be qualified. Subordinate data-names need not be unique if they can be made unique by qualification. 

General Format: 

WORKING-STORAGE SECTION. 
77 data-name-I 

88 condition-name·-1 

77 data-name-n 
0 l data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 

NONCONTIGUOUS WORKING-STORAGE 

Ite:ms in WORKING-STORAGE which have no hierarchical relationship to one another need not be grouped 
into records, provideq they do not need to be further subdivided. These items are classified and defined as 
noncontiguous elementary items. Each of these items is defined in a separate data description entry which 
begins with the special level-number 77. · 

The following record description clauses are required in each entry: 

Level:.number 77 
Data-name 
The~PICTURE clause or the USAGE IS INDEX clause. 

1108883 6-49 



B 1000 Systems COBOL 74 Reference Manual 
Data Division 

WORKING-STORAGE SECTION 

The OCCURS clause is riot meaningful on a 77 level item and causes an error at compilation time if used. 
Other data description clauses are optional and can be used to complete the description of the item if neces
sary. 

WORKING-STORAGE RECORDS 

Data elements and constants in WORKING-STORAGE which have a definite hierarchic relationship to one 
another must .be grouped into records according to the rules for the formation of record descriptions. All 
clauses which are used in normal input or output record descriptions can be used in a WORKING-STORAGE 
description, including REDEFINES, OCCURS, and COPY. 

INITIAL. VALUES 

The initial value of any item in the WORKING-STORAGE SECTION except an index data item is specifie~d 
by using the VALUE clause with the data item. The initial value of any index data item is unpredictable. 

CONDrnON-NAMES 

Any WORKING-STORAGE item may be a conditional variable with which one or more condition-names are 
associated .. Entries defining condition-names must immediately follow the conditional variable entry. Both the 
conditionail variable entry and the associated condition-name entries may contain VALUE clauses. 

CODING THE WORKING-STORAGE SECTION 

Figure 6-5 illustrates the coding of the WORKING-STORAGE 

6-50 



0 
00 

PROGRAM \Nc)'i{_~l() - S.'C)~ 00 
00 
(J..l PROGRAMMER ~c~~'-? 

PAGE LINE A B 
NO. NO. 

3 4 

Gt2334 

Burroughs COBOL CODING FORM 

~~'-~ REQUESTED BY 

DATE 

32 36 40 44 48 52 

Figure 6-5. Coding the WORKING-STORAGE SECTION 

PAGE \3 
IDENT. 

56 60 

OF S<o 

:E 
0 :a 
25 
2 
G') 

in 
-I 
0 :a 
)> 
G') 
m 
en 
m 
~ 
0 
2 

0 

8 



LINKAGE SECTION 

B 1000 Systems COBOL74 Reference Manual 
Data Di vision 

LINKAGE SECTION 

The LINKAGE SECTION is used for Inter-Program Communication to provide a facility by which a program 
can communicate with one or more programs. This communication is provided by the ability to transfer control 
from one program to another within a run unit, and the ability for both programs to have access to the same 
data items. 

The LINKAGE SECTION in an optional part of the DATA DIVISION. It is used when the object program 
is to be a called program and the CALL statement in the calling program contains a USING phrase. 

The LINKAGE SECTION is used for describing data that is available through the calling program but is to 
be referr.ed to in both the calling and the called programs. No space is allocated in the program for data items 
referenced by data-names in the LINKAGE SECTION of that program. PROCEDURE DIVISION referenc:e~ 
to these data items are resolved at object time by equating the reference in the called program to the location 
used in the calling program. In the case of index-names, no such correspondence is established. Index-names 
in the called and calling programs always refer to separate indices. 

LINKAGE SECTION STRUCTURE 

The structure of the LINKAGE SECTION is the same as that previously described for the WORKING-STOR
AGE SECTION. It begins with a section header, followed by data description entries for noncontiguous data 
items and/or record description entries. But, each item name must be unique within the called program since 
it cannot be qualified. 

Data items defined in the LINKAGE SECTION of the called program may be referenced within the PROCE
DURE rnVISION of the called program only if specified as operands of the USING phrase of the PROCE
DURE DIVISION header or are subordinate to such operands, and the object program is under the control 
of a CALL statement that specifies a USING phrase. Condition-names and/or index-names associated with 
such data-names and/or subordinate data items, may also be referenced in the PROCEDURE DIVISION. 

General Format: 

LINKAGE SECTION. 
77 data-name-I 

88 condition-name- I 

77 data-name-n 
01 data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 

6-52 



8 1000 Systems COBOL 74 Reference Manual 
Data Division 

NONCONTIGUOUS LINKAGE STORAGE 

LINKAGE SECTION 

Items in the LINKAGE SECTION that have no hierarchic relationship to one another need not be grouped 
into records and are classified and defined as noncontiguous elementary items. Each of these data items is 
defined in a separate data description entry which begins with the special level-number 77. 

The followilng data clauses are required in each data description entry: 

Level-number 77 
Data-name 
The PICTURE clause or the USAGE IS INDEX clause. 

Other data description clauses are optional and can be used to complete the description of the item if neces
sary. 

LINKAGE RECORDS 

Data eleme:nts in the LINKAGE SECTION which have a definite hierarchic relationship to one another must 
be grouped into records according to the rules for formation of record descriptions. Any clause which is used 
in an input or output record description can be used in a LINKAGE SECTION. 

INITIAL VALUES 

The VALUE clause must not be specified in the LINKAGE SECTION except in condition-name entries (level 
88). 

CODING THE LINKAGE SECTION 

Figure 6-6 .illustrates the coding of the LINKAGE SECTION. 

1108883 6-53 



I 

PROGRAM 

PAGE 
NO. 

I I 

I I 

3 4 

4 

G12335 

Burroughs COBOL CODING FORM 

REQUESTED BY 

DATE 

28 32 36 40 52 

Figure 6-6. Coding the LINKAGE SECTION 

PAGE 

IOENT. 

56 60 

c:: 
2 
;i:: 
)> 
G) 
m 
(,/) 
m n 
-I 
0 
2 

ttl 

§ 
rJ). 

"<:'.: 
~ ..... 
~ 

3 
~ 

5;' n 
~o 
~ ttl 
oO 
-· l" 
~- -.J 
~ ~ cs· 
~ ::s 
0 
;> 
""I 
0 
::s 
(') 
0 

~ 
~ 
::s c: 
~ 



Examples: 

B 1000 Systems COBOL74 Reference Manual 
Data Division 

LINKAGE SECTION 

The following two programs, IPCCALL and STATE, are sample programs using Inter-Program Communication 
(IPC). The calling program, IPCCALL, through the use of the CALL statement, passes a data item to STATE. 
The called program, STATE, has a LINKAGE SECTION, and the USING phrase specified in the PROCE
DURE DIVISION heading in which to accept the shared data. When the program STATE has completed and 
executes the EXIT PROGRAM statement, control and the new value of the data item is returned to IPCCALL. 

8URROUGHS 81800/81700 COBOL74 COMPILER· HARK 1x.o.1 (05/07/80 16:27> 
IlPCCAll. 

1108883 

000200 
000300 
000400 
01 00500 
0 00600 
000700 
()100800 
000900 
001000 
01 01100 
001200 
001600 
002200 
002300 
002400 
002SOO 
002510 
(, 02520 
002530 
002600 
002700 
002600 
002900 
003000 
003100 
003900 
004000 
004100 
004200 
004400 

IDENTIFICATION 
PROGRA~-tO. 

AUTHOR. 
DATE-WRITTEN. 
OATE-COMPILEO. 
SECURITY. NONE. 

DIVISION. 
IPCCALL. 
MAURA ALFORD. 
04/28/80. 

1980 JUNE 27 11:04 

* REMARKS. I CAll A PROGRA" 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 81985. 
OBJECT-COMPUTER. 81985. 
DUA DIVISION. 
WORKING-STORAGE SECTION. 

CALLEO STATE. 

01 U-STATE-AREA. 
os u-sTatE. 

10 U-NUMERIC-STATE 
OS U-STATE-NAME 
OS U-STATE-RETURN-STATUS 

PROCEDURE DIVISION. 
BEGIN. 

MOVE "AL• TO U-SJATE. 

P IC 99. 
PIC X<20>. 
PlC 9. 

CALL •STAT£• USING U-STATE-AREA. 
DISPLAY -u-STATE-AREA = w u-STATE-AREA. 
MOVE "CT• JO U-STAT£. 
CALL •SJAJE• USING U-STATE-ARE~. 
DISPLAY ·u-STATE-AREA = " u-STATE-AR£A. 
CANCEL •Sf ATP'. 
STOP RUN. 

6-55 



BURROUG~S 81800/81700 COBOL74 COMPILER· MARK 1x.o.1 (05/07/80 16:27) 
STATE 

IDENTJFICATION DIVISION. 
PROGRA"-IO. STATE. 
AUTHOR. TIO. 

* REMARKS. I AM CALLED 8Y A PROGRAM NAMED IPCCAtl. 
ENVIRCNM£NT DIVISION. 
CONFIGURATION SECTION. 

SOURCE-COMPUTER. B-1855. 
OBJECT-COMPUTER. B-1855. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 

000100 
000200 
000300 
000310 
000400 
000500 
000600 
000700 
000800 
000900 
001000 
001100 
001200 
001300 
001400 
001500 
001600 
0 01700 
001800 
001900 
0 02000 
002100 
002110 
003700 
003800 
003900 
004000 
004100 
004200 
004210 
004300 
004400 
004500 
0 0460') 
004700 
004800 
004810 

01 NUMBER-OF-STATE-COCES-fN-TABLE 
01 WS-STATE-A8BREV-ANO-NAMES. 

PIC 9<2> COMP VALUE 10. 

• • 
• . 
" • 
• • .. • 
w • 
• • .. • 

03 SJATE-01 PIC X<23> VALUE 
03 STATE-02 PIC X<Zl> VALUE 
03 STATE-OJ PIC XC23> VALUE 
03 STATE-04 PIC X<ZJ> VALUE 
03 STATE-05 PIC X<23l VALUE 
03 STATE~06 PIC X{23) VALUE 
03 STATE-07 PIC X(2J> VALUE 
03 SIATE-08 PIC XC23J VALUE 
03 STATE-09 PIC XC23> VALUE 
03 STATE-10 PIC XC23> VALUE 

•AL-,lABAMA 
•AK-•LASKA 
•AZ-ARIZONA 
•AR--RKANSAS 
"CA-CALIFORNIA 
iijco-coLORADO 
"CT-CONNECTICUT 
•oE- DEL A IUR E 
•nc-OISTRICT (]f 
•ft-Ft.ORI DA 

COLUMBIA". 

01 NS-STATE-TABLE REDEFINES WS-STATE-ABBREV-AND-NAMES. 
01 NS-STATE OCCURS 10 TIMES 

INDEXED BY WS-SJATE-NUMBER. 
05 ws-STATE-ABBREVIATION PIC X<2>. 
05 FILLER PIC X<t>. 
05 NS-STATE-NAME PIC X<20>. 

LINKAGE SECTION. 
01 U-STATE-AREA. 

05 U-STATE. 
10 U-N~ERJC-STATE 

05 U-STATE-NAH£ 
05 U-STATE-RETURN-STATUS 

PIC 9(2). 
PIC X<20>. 
PIC 9U>. 

• • 

c: 
2 
~ 
l> 
C) 
m 
CJ) 
m 
n 
-4 
0 
2 

0 

8 



--0 
00 
00 
00 
w 

004900 
0 05000 
005100 
005200 
005300 
005400 
005500 
005600 
005700 
005800 
005900 
006000 
006100 
006200 
006300 
006400 
006500 
006600 
006700 
006800 
006900 
007000 
007100 
007200 
007300 
007400 
00750() 
007600 
001700 
0 07800 
007900 
008000 
008100 
0 08200 
008300 
008400 

PROCEDURE DIVISION USl•G U-STATE-AREA. 

OOO-EtHRY. 
MCVE ZERO TD U-STATE-RETURN-STATUS. 
MOVE SPACES TO U-STATE-NAME. 
If U-STATE IS NUMERIC 

PERFOR~ 010-CONV~RT-NU~ERIC-CODE 
ELSE 

PERFORM 020-CONVERT-ALP~A-COOE. 

005-EXIT-PROGRAM. 
£XIT PROGRAM. 

010-CONVERT-NUMERIC-CODE. 
IF U-NUM£RIC-STATE > ZERO A~C 

~OT > NU~eER-Cf-STATE-COC£S-IN-TABLE 
SET WS-STATE-NUMBER TO U-NUH£RIC-STATE 
MOVE WS-STAT£-ABBR£VIATION <WS-STATE-NUMBER> 

TO U-STATE 
MOVE WS-STATE-NAME <WS-STATE-NUMBER> TO U-STATE-NAME 

ELSE 
IF U-NUMERIC-STATE = 98 

MOYE •xx· TO U-STATE 
ELSE 

MOVE 1 IO U-STAT£-RETURN-STATUS. 

020-C~NVERT-ALPHA-COOE. 
If u-STAT£ = •xx· 

MOVE 98 TO U-NUHERIC-STATE 
£LS£ 

SET WS-STATE-~UM6EP. TO 1 
SEARCH .. S-STATE 

AT E~C "OVE 1 TO U-STAT£-RETURN-STATUS 
WHEN U-STATf = WS-STAT£-ABBREVIATION <WS-STAT£-NUMBER> 

SET U-~UHERIC-STATE TO WS-STATE-NUHBEP 
HOVE WS-STATE-NAME <~S-STATE-NU~BERJ TC U-ST4TE-NA~E. 

!:: z 
" )> 
C> 
m 
(/) 
m n 
-t 
0 z 

--
rJ1 
'< 

:J"; 

(';, 

3 
:J"; 

g r; 
:::. -... -
- 0::: - -v-
~: ~ 
:!: . .i::.. 

g ,, 
~ 

~ 
~ 
::l 
r.. 
(';, 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

COMMUNICATllON SECTION 

The COMMUNICATION SECTION is that part of th•.! DATA DIVISION wherein the interface. areas neces
sary to communicate with data communication devices declared in the Network Controller (NC) are defined. 

In a COBOL 74 program the communication description entries (CD) represent the ·highest level of organization 
in the COMMUNICATION SECTION. The COMMUNICATION SECTION header is followed by a commu
nication description entry consisting of a level indicator (CD), a data-name, and a series of independent 
clauses. These clauses indicate the queues and subqw.!ues, the message date and time, the source, the text 
length, the status and end keys, and message count of input. Although SUB-QUEUE clauses are allowed, the 
B 1000 COBOL74 implementation does not support subqueues. Additional clauses specify the destination 
count, the text length, the status and error keys, and destinations for the output. The actual entry is terminated 
by a period. These record areas may be implicitly redefined by user-specified record description entries fol
lowing the various communication description clauses. 

COMMUNICATION DESCRIPTION STRUCTURE 

General Format: 

Format I" 

CD cd-name; 

FOR [ INITIAL ] INPUT 

6-58 

[ ( ; SYMBOLIC QUEUE IS data-name-1] 

( ; SYMBOLIC SUB-QUEUE-I IS data-name-2] 

( ; SYMBOLIC SUB-QUEUE-2 IS data-name-3] 

[ ; SYMBOLIC SUB-QUEUE-3 IS data-name-4] 

( ; ~'lESSAGE DATE IS data-name-5] 

( ; MESSAGE TIME IS data-name-6] 

( ; SYMBOLIC SOURCE IS data-name-7] 

[ ; IEXT LENGTH IS data-name-8] 

( ; .§ND KEY IS data-name-9 ] 

[; .§.TATUS KEY IS data-name-10] 

( ; MESSAGE COUNT IS data-name-11]] 

[ data-name-1, data-name-2, ... , data-name-11] 



Format 2: 

B IOOO Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

CD cd-name; FOR OUTPUT 

( ; DESTINATION COUNT IS data-name-I] 

[ ; TEXT LENGTH IS data-name-2] 

[ ; ST ATVS KEY IS data-name-3 ] 

[ ; DESTINATION TABLE OCCURS integer-2 TIMES 

[ ; INDEXED BY index-name-I [ , index-name-2] 

( ; ERROR KEY IS data-name-4 ] 

( ; SYMBOLIC DESTINATION IS data-name-5] 

... ] ] 

Syntax Rules: 

Format 1: 

1. A CD must appear only in the COMMUNICATION SECTION. 
2. Within a single program, the INITIAL clause may be specified in only one CD. The INITIAL clause 

must not be used in a program that specifies the USING phrase of the PROCEDURE DIVISION 
Header. 

3. Except for the INITIAL clause, the optional clauses may be written in any order. 
4. If neither option in the format is specified, a level 01 data description entry must follow the CD de

scription entry. Either option may be followed by a level 01 data description entry. 
5. For each INPUT CD, a record area of 87 contiguous standard data format characters is allocated. 

1108883 

This record area is defined as follows: 

a. The SYMBOLIC QUEUE clause defines data-name-I as the name of an elementary alphanumeric 
data item of 12 characters occupying positions 1 through 12 in the record. 

b. The SYMBOLIC SUB-QUEUE-I clause defines data-name-2 as the name of an elementary alpha
numeric data item of 12 characters occupying positions 13-24 in the record. 

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of an elementary alpha
numeric data item of 12 characters occupying positions 25-36 in the record. 

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of an elementary alpha
numeric data item of 12 characters occupying positions 37-48 in the record. 

e. The MESSAGE DATE clause defines data-name-5 as the name of a data item whose implicit de
scription is that of an integer of 6 digits without an operational sign occupying character positions 
49 through 54 in the record. 

f. The MESSAGE TIME clause defines data-name-6 as the name of a data item whose implicit de
scription is that of an integer of 8 digits without an operational sign occupying character positions 
55 through 62 in the record. 

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an elementary alphanumer
ic data item of 12 characters occupying positions 63 through 74 in the record. 

6-59 



B 1000 Systems COBOL74 Reference Manual 
Data Di·vision 

COMMUNICATION SECTION 

h. The TEXT LENGTH clause defines data-name-8 as the name of an elementary data item whose 
implicit description is that of an integer of 4 digits without an operational sign occupying charac
ter positions 75 through 78 in the record. 

i. The END KEY clause defines data-name-9 as the name of an elementary alphanumeric data item 
of 1 character occupying position 79 in the record. 

j. The STATUS KEY clause defines data-name-IO as the name of an elementary alphanumeric da1ta 
item of 2 characters occupying positions 80 through 81 in the record. 

k. The MESSAGE COUNT clause defines data-name-11 as the name of an elementary data item 
whose implicit description is that of an in1eger of 6 digits without an operational sign occupying 
character positions 82 through 87 in the :record. 

The second option may be used to replace the above clauses by a series of data-names which, taken in order, 
correspond to the data-names defined by these clauses. 

Use of either option results in a record whose impliciit description is equivalent to the following: 

6-60 

Imel i cit DescriEtio_n 

01 data-narne-0. 

02 data-narne-1 PI CT URE 
02 data-narne-2 PICTURE 
02 data-narne-3 PICTURE 
02 data-name-4 PICTURE 
02 da ta-n arne- 5 PICTURE 
02 data-narne-6 PICTURE 
02 data-narne-7 PICTURE 
02 data-narne-8 PICTURE 
02 data-name-9 PICTURE 
02 data-narne-10 PICTURE 
02 data-narne-11 PICTURE 

X(l2). 
X(l2). 
~<(12). 
x ( 12) . 
9(06). 
~~ (08) . 
x ( 12) . 
~)( 04) . 
x. 
xx. 
~~(06). 

NOTE 

Cornrnen t 

SYMBOLIC QUEUE 
* NOT IMPLEMENTED 
* NOT IMPLEMENTED 
* NOT IMPLEMENTED 
MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC SOURCE 
TEXT LENGTH 
END KEY 
STATUS KEY 
MESSAGE COUNT 

The information under the heading Comment is for clarification and is not part of 
the description. 

6. Record description entries following an 11\'PUT CD implicitly redefine this record and must describe 
a record of exactly 87 characters. Multiple redefinitions of this record are permitted; however, only 
the first redefinition may contain VALUE clauses. The record is always referenced according to tlile 
data descriptions defined in Syntax Rule 5. 

7. Data-name-I, data-name-2, ... , data-name-I I must be unique within the CD. Within this series, any 
data-name may be replaced by the reserved word FILLER. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

COMMUNl.CATION SECTION 

Format 2: 
1. A CD must appear only in the COMMUNICATION SECTION. 
2. If none of the optional clauses of the CD is specified, a level 01 data description entry must follow 

the CD description entry. 
3. For each OUTPUT CD, a record area of contiguous standard data format characters is allocated ac

cording to the formula: (10 + 13 x integer-2). 

a. The DESTINATION COUNT clause defines data-name-I as the name of a data item whose impli
cit description is that of an integer without an operational sign occupying character positions 1 
through 4 in the record. 

b. The TEXT LENGTH clause defines data-name-2 as the name of an elementary data item whose 
implicit description is that of an integer of 4 digits without an operational sign occupying charac
ter positions 5 through 8 in the record. 

c. The STATUS KEY clause defines data-name-3 to be an elementary alphanumeric data item of 
2 characters occupying positions 9 through 10 in the record. 

d. Character positions 11 through 23 and every set of 13 characters thereafter form table items of 
the following description: 

1) The ERROR KEY clause defines data-name-4 as the name of an elementary alphanumeric data 
item of 1 character. 

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the name of an elementary 
alphanumeric data item of 12 characters. 

Use of the above clauses results in a record whose implicit description is equivalent to the fol
lowing: 

Implicit Description 

01 data-name-0. 

02 data-name-l PICTURE 9(04). 
02 data-name-2 PICTURE 9(04). 
02 data-name-3 PICTURE XX. 
02 data-name OCCURS integer-2 TIMES. 

03 
03 

data-name-4 
data-name-5 

PI CT URE Xo 
PICTURE X(12). 

NOTE 

Comment 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 

ERROR KEY 
SYMBOLIC DESTINATION 

The information under the heading Comment is for clarification and is not part of 
the description. 

4. Record descriptions following an OUTPUT CD implicitly redefine this record. Multiple redefinitions 
of this record are permitted; however, only the first redefinition may contain VALUE clauses. That 
record is always referenced according to the data descriptions defined in Syntax Rule 10. 

5. Data-name-I, data-name-2, ... , data-name-5 must be unique within a CD. 
6. If the DESTINATION TABLE OCCURS clause is not specified, one (1) ERROR KEY and one (1) 

SYMBOLIC DESTINATION area is assumed. In this case, neither subscripting nor indexing is per
mitted when referencing these data items. 

7. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and data-name-5 may only 
be rieferred to by subscripting or indexing. 

8. There is no restriction on the value of the data ite~ referenced by data-name-1 and integer-2. 

1108883 6-61 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

General Rules: 

Format 1: 

6-62 

1. The INPUT CD information constitutes the communication between the Data Communication Sub
system and the COBOL 74 program as information about the message being transmitted. This infor
mation does not come from the terminal as part of the message. 

2. The fields SYMBOLIC SUB-QUEUE-I.. SYMBOLIC SUB-QUEUE-2, and SYMBOLIC S\JB
QUEUE-3 in the INPUT CD are nqt,implemented in B 1000 COBOL 74. However, ANSI 74 rules 
specify that these unused fields must contain spaces. Since COBOL74 initializes data to hex zeros, 
not spaces, it is necessary to explicitly define a value of spaces for all three fields to avoid a run
time error. 

3. The SYMBOLIC QUEUE referenced by data-name-1 contains a symbolic name designating a queue. 
All symbolic names must have been previously defined as a file in the Network Controller. In accor
dance with the B 1000 naming conventions, positions 11 and 12 in data-name-I must contain spaces. 

The SYMBOLIC QUEUE field in the lNPUT CD is mandatory, unless the SQN option is used at 
mn time. Refer to the B 1000 Systems Softw:\re Operation Guide, Volume 1, form number 1108982. 
Since the SQN optio_n must be sent by an MCS, use is restricted and thus, makes use of the SYM
BOLIC QUEUE field in the INPUT CD the easiest method of indicating the file name. 

4. A RECEIVE statement causes the serial return of the next message from the queue as specified by 
the entries in the CD. 

5. The INITIAL clause is specified in an INPUT CD, whenever a COBOL74 program is zipped by al) 
MCS using the SQN MCP control message. The symbolic name of the queue that demanded this 
activity is placed in the data item referenced by data-name-1 through data-name-4, the SYMBOUC 
QUEUE. In all other cases, the contents of the data item referenced by data-name-I of the CD asHo
ciated with the INITIAL clause are initialized to spaces. 

The symbolic name is inserted, or the initialization to spaces is completed prior to the execution 
of the first PROCEDURE DIVISION statement. 

The execution of a subsequent RECEIVE statement naming the same contents of the data item refer
enced by data-name-1 (SYMBOLIC QUEUE), returns the actual message that caused the program 
to be scheduled. Only at that time is the remainder of the CD updated. 

6. If the Data Communication Subsystem attempts to schedule a program lacking an INITIAL clause, 
the results are undefined. 

7. MESSAGE DATE (data-name-5) has the format YYMMDD (year, month, day), with contents repre
senting the date the message was received by the ·Data Communication Subsystem. 

The contents of the data item referenced by data-name-5 are only updated as part of the execution 
of a RECEIVE statement. 

8. The contents of MESSAGE TIME (data-name-6) have the format HHMMSSTT (hours, minutes, sec
onds, hundredths of a second) and represent the time the message was received by the Data Commu
nication Subsystem. 

The contents of the data item referenced by data-name-6 are only updated as part of the execution 
of the RECEIVE statement. 

9. During the execution of a RECEIVE statement, the data item referenced by data-name-7 (SYMBOL
IC SOURCE) is updated with the station name, as defined in the Station Section of the Network 
Controller. The SYMBOLIC SOURCE is the communications terminal that is the source of the mes
sage being transferred. However, if the station name of the communication terminal is not known, 
the contents of the data item referenced by data-name-7 will be spaces. 



B IOOO Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

After every RECEIVE, the user program must move the SYMBOLIC SOURCE station name to the 
appropriate field (SYMBOLIC DESTINATION) in the OUTPUT CD, before initiating the SEND to 

· that station. If this is not done, a run-time error occurs since there is no destination station available 
for message transfer. 

IO. TEXT LENGTH (data-name-8) contains the number of character positions filled as a result of the 
execution of the RECEIVE statement. 

11. The: contents of the data item referenced by data-name-9 (END KEY) are set as part of the execution 
of a RECEIVE statement. 
If an end of message has been detected, the contents of the data item referenced by data-name-9 
are set to 2. 

12. The STATUS KEY referenced by data-name-IO indicates the status condition of the previously 
executed RECEIVE, ACCEPT MESSAGE COUNT, ENABLE INPUT, or DISABLE INPUT state
ments. 

US(;: of this field is optional but highly recommended. Any RECEIVE or SEND error, left undetected 
because of the absence of a ST ATVS KEY check, causes the program to fall through to the next 
executable statement, in most cases, with no indication to the user that a problem exists. 
The actual association between the contents of the data item referenced by data-name- I 0 and the 
status condition is defined in Table 6-4. 

13. The MESSAGE COUNT referenced by data-name-I I indicates the number of messages that exist 
in a queue as part of the execution of an ACCEPT statement with the COUNT phrase. 

Format 2: 
1. The nature of the OUTPUT CD information is such that it is not sent to the terminal, but contains 

information about the message being transmitted. 
2. During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement, the con

tents of the data item referenced by data-name-I (DESTINATION COUNT) indicate the number of 
symbolic destinations that are to be used from the area referenced by data-name-5 (SYMBOLIC 
DESTINATION). 

The first symbolic destination is found in the first occurrence of the area referenced by data-name-
5; the second symbolic destination in the second occurrence of the area referenced by data-name-
5 ... , up to and including the occurrence of the area referenced by data-name-5 indicated by the con
tents of data-name-I. 

If, during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement, the 
value of DESTINATION COUNT (data-name-I) is outside the range of I through integer-2, an error 
condition is indi~ated and the execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT 
statement is terminated. 

3. It is the responsibility of the user to ensure that the value of DESTINATION COUNT (data-name-
1) is valid at the time of execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT state
ment. 

4. As part of the execution of a SEND statement, the Data Communication Subsystem interprets the 
contents of TEXT LENGTH (data-name-2) as user indication of the number of leftmost character 
positions of the data item referenced by the associated SEND identifier from which data is to be 
transferred. If TEXT LENGTH is zero, no characters are transferred. 

1108883 

It is important that TEXT LENGTH be given the correct value prior to each SEND of a message 
size which varies from that of the previous SEND. If TEXT LENGTH is greater than the size of 
the message actually being sent, SEND fails with a STATUS KEY value of 50. 

6-63 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

5. Each occurrence of the data item referenced by data-name-5 contains a symbolic destination (station 
name) previously defined in the Network Controller. If the SYMBOLIC DESTINATION (data-name-
5) does not contain a valid station name, SEND fails with a STATUS KEY value of 20. 

These symbolic destination names must follow the rules for the formation of system-names. In accor
dance with the B 1000 naming conventions, positions 11 and 12 in data-name-5 must contain spaces. 

6. The contents of STATUS KEY (data-·name-3) indicates the status condition of the previously 
executed SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement. 

The actual association between the contents of the data item referenced by data-name-3 and the s.tat
us condition is defined in Table 6-4. 

7 .. If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT statement, 
the MCP determines that any specified destination is unknown, or the Network Controller chooses 
to deny the program access to any destination, the contents of the data item referenced by data
name-3 (STATUS KEY) and all occurrences of the data items referenced by data-name-4 (ERROR 
KEY) are updated. 

The contents of the data item referenced by data-name-4, when equal to 1, indicate that the associ
ated value in the area referenced by data-name-5 (SYMBOLIC DESTINATION) has not beert previ
ously defined or has been denied access to this destination. Otherwise, the contents of the data item 
referenced by data-name-4 are set to zero (0). 

All Formats: 

6-64 

11. Table 6-4 indicates the possible contents of the data items referenced by data-name-10 for Format 
1, and by data-name-3 for Format 2, at the completion of each statement shown. An asterisk (*) on 
a line in a statement column indicates 1that the associated code shown for that line is possible for 
that statement. 



RECEIVE 
r 

SEND 
r 

B 1000 Systems COBOL 74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

Table 6-4. Communication Status Key Condition 

ACCEPT MESSAGE COUNT ... 

* * * 

i * 

* 

* * 

* 

* 

* * * 

G12336 

ENABLE INPUT (without terminal) 
r-

* 

* 

* 

* 

ENABLE INPUT (with terminal) ,.... 

r 

* * 

* 

* 

* 

* * 

* * 

ENABLE OUTPUT 

DISABLE INPUT (without terminal) 
r 

* 

* 

* 

* 

DISABLE INPUT (with terminal) 
.-

* 

* 

* 

* 

DISABLE OUTPUT ,... 

* 

* 

* 

* 

* 

STATUS KEY CODE 

I 
00 

10 

20 

20 

20 

30 

40 

50 

91 

No error detected. Action completed. 

One or more destinations are disabled. Action completed. 

One or more destinations unknown, or access thereto 
denied by system. Action completed for known destina
tions. No action taken for unknown destinations. 
Data-name-4 (ERROR KEY) indicates known or unknown 
(includes system denied access). 

One or more queues unknown, or access to queue denied 
by system. No action taken. 

The source is unknown, or access thereto denied by the 
system. No action taken. 

Content of DESTINATION COUNT invalid. No action 
taken. 

Password invalid. No enabling/disabling action taken. 

Character count greater than length of sending field. 
No action taken. 

No Data Communication Subsystem present. 
No action taken. 

Example: . 
The following program, DCOM74ECHO, illustrates the COMMUNICATION SECTION in a data communica-
tion program. The SYMBOLIC QUEUE, MCSREMOTE, is a name declared in the Network Controller. One I 
copy of this program can be accessed by more than one station if it is executed by means of the SMCS/ JOBS . 
file. 
1108883-001 6-65 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

6-66 

000100 IDENTIFICATION DIVISION" 
000200 PROGRAM-ID. DCOM74ECHO. 
000300 AUTHOR. TODOS. 
000400 * 
000500 * REMARKS. THIS PROGRAM lS AN ECHO TEST PROGRAM. ENTER A 
000600 * MESSAGE UP TO 12 CHARACTERS LONG AND IT WILL BE REPEATED 
000700 * BACK TO YOU. ENTER 11 ENl) 11 AND IT WILL GO TO END-OF-JOB. 
000800 * 
000900 ENVIRONMENT DIVISION. 
001000 CONFIGURATION SUCTION. 
001100 SOURCE-COMPUTER. B1000. 
001200 OBJECT-COMPUTER. BlOOO. 
001300 DATA DIVISION. 
001400 WORKING-STORAGE SECTION. 
001500 01 OUT-AREA. 
001600 03 FILLER 
001700 03 REC-AREA. 
001800 05 END-CODE 
001900 05 FILLER 
002000 * 
002100 COMMUNICATION SECTION. 
002200 CD INPUT-Q FOR INPUT~ 
002300 01 IN-Q-SPECS. 

PIC X<20> VALUE "I AM YOUR ECHO~~ 

PIC X<3>. 
PIC X<9>. 

002400 * ********* 11 MCSREMOTE 11 IS THE NAME OF A REMOTE FILE DEFINED IN 
002500 * ********* THE NETWORK CONTROLLER. 
002600 03 SYMBOLIC-QUE PIC X<12) VALUE 11 MCSREMOTE 11

• 

002700 03 SY-SUB1-QUE PIC XC12) VALUE SPACES. 
002800 03 SY-SUB2-QUE PIC XC12) VALUE SPACES. 
002900 03 SY-SUB3-QUE PIC X<12) VALUE SPACES. 
003000 * ********* FOLLOWING 5 FIELDS ARE UPDATED WHEN A MESSAGE IS 
003100 * ********* RECEIVED. 
003200 03 MESS-DATE PIC 9(6). 
003300 03 MESS-TIME PIC 9C8>. 
003400 03 IN-STATION PIC XC12>. 
003500 03 IN-TEXT-LENGTH PIC 9(4). 
003600 03 END-KEY PIC X. 

II 

003700 * ********* IN-STATUS-KEY SHOWS STATUS WHEN ONE OF THE FOLLOWING 
003800 * ********* STATEMENTS IS EXECUTED: RECEIVE, ACCEPT MESSAGE 
003900 * ********* COUNT, ENABLE INPUT, DISABLE INPUT. 
004000 03 IN-STATUS-KEY PIC XX. 
004100 * ********* FOLLOWING FIELD IS UPDATED WHEN THE ACCEPT MESSAGE 
004200 * ********* COUNT STATEMENT IS EXECUTED. 
004300 03 MSG-COUNT PIC 9(6). 
004400 * 
004500 CD OUTPUT-Q FOR OUTPUT. 
004600 01 OUT-Q-SPECS. 
004700 * ********* HUM-OUT-STATIONS WITH A VALUE OF 1 SENDS TO ONE 
004800 * ********* STATION AT A TIME. 
004900 03 HUM-OUT-STATIONS PIC 9(4) VALUE 1. 



B 1000 Systems COBOL74 Reference Manual 
Data Division 

COMMUNICATION SECTION 

005000 * ********* OUT-TEXT-LENGTH IS UPDATED BY USER. 
005100 03 OUT-TEXT-LENGTH PIC 9(4) VALUE 32. 
005200 * ********* FOLLOWING FIELD IS UPDATED BY SYSTEM AFTER EXECUTION 
005300 **********OF SEND, ENABLE OUTPUT, OR DISABLE OUTPUT. 
005400 03 OUT-STATUS-KEY PIC XX. 
005500 * ********* FOLLOWING TABLE OCCURS ONLY ONCE <SENDING TO ONE 
005600 **********STATION AT A TIME>. 
005700 03 OUT-ERROR-KEY PIC X. 
005800 * ********* OUT-STATION IS UPDATED BY USER: STATION NAME <AS 
005900 **********DECLARED IN NETWORK CONTROLLER> OF THE.DESTINATION 
006000 * ********* FOR A MESSAGE. 
006100 03 OUT-STATION PIC X<12). 
006200 * 
006300 PROCEDURE DIVISION. 
006400 ABCDEF. 
006500 * ******** THE ENABLE INPUT STATEMENT IS ONLY NECESSARY IF 
006600 * ******** PASSWORD CHECKING IS DESIRED. 
006700 ENABLE INPUT INPUT-Q WITH KEY "TIO". 
006800 IF IN-STATUS-KEY NOT = 00 
006900 DISPLAY "IN-STATUS-KEY = II IN-STATUS-KEY 
007000 II s INCE MY IN-STATUS-KEY DOES NOT = 00, II 
007100 II I HAD AN ERROR. II 
007200 STOP RUN. 
007300 * 
007400 BEGINNING-OF-JOB. 
007500 MOVE SPACES TO REC-AREA. 
007600 RECEIVE INPUT-Q MESSAGE INTO REC-AREA 
007700 NO DATA GO TO BEGINNING-OF-JOB. 
007800 IF IN-STATUS-KEY NOT = 00 
007900 DISPLAY "RECEIVE WAS NOT SUCCESSFUL. IN-STATUS-KEY = 11 

008000 IN-STATUS-KEY 
008100 STOP RUN. 
008200 IF END-CODE = 11 END 11 

008300 DI SP LAY II THANK YOU FOR TALK ING TO ME! ! II 
008400 STOP RUN. 
008500 * ********* SEND MESSAGE TO STATION THAT YOU RECEIVED FROM. 
008600 MOVE IN-STATION TO OUT-STATION. 
008700 SEND OUTPUT-Q FROM OUT-AREA WITH EMI. 
008800 IF OUT-STATUS-KEY NOT = 00 
008900 DISPLAY "MY SEND WAS NOT SUCCESSFUL. 11 

009000 II MY OUT-STATUS-KEY = II OUT-STATUS-KEY 
009100 11

; MY OUT-ERROR-KEY = II OUT-ERROR-KEY 
009200 STOP RUN. 
009300 IF OUT-ERROR-KEY NOT = 0 
009400 DISPLAY "OUT-STATION HAS BEEN DENIED, OOPS!" 
009500 STOP RUN. 
009600 GO TO BEGINNING-OF-JOB. 
009700 * 
009800 END-OF-JOB. 

1108883-001 6-67 



GENERAL 

B 1000 Systems COBOL 74 Reference Manual 

SECTION 7 
PROCEDURE DIVISION 

The PROCEDURE DIVISION must be included in every COBOL74 source program. This division may con
tain declarative and nondeclarative procedures. 

Declarative sections must be grouped at the beginning of the PROCEDURE DIVISION preceded by the key 
word DECLARATIVES and followed by the key words END DECLARATIVES. Refer to the USE statement 
in this section. 

RULES OF PROCEDURE FORMATION 

A procedure is composed of a paragraph or group of successive paragraphs, a section or a group of successive 
sections within the PROCEDURE DIVISION. If one paragraph is in a section, then all paragraphs must be 
in sections. A procedure-name is a word used to refer to a paragraph or section in the source program in 
which it occurs, and consists of a section-name or paragraph-name which may be qualified. 

The end of the PROCEDURE DIVISION and the physical end of the program is that physical position in 
a COBOL 74 source program after which no further procedures appear. 

A section consists of a section header followed by zero, one, or more successive paragraphs. A section ends 
immediately before the next section or at the end of the PROCEDURE DIVISION or, in the declaratives por
tion of the PROCEDURE DIVISION, at the key words END DECLARATIVES. 

A paragraph consists of a paragraph-name, followed by a period and a space, followed by zero, one, or more 
successive sentences. A paragraph ends immediately before the next paragraph-name or section-name or at 
the end of the PROCEDURE DIVISION or, in the declaratives portion of the PROCEDURE DIVISION, at 
the: key words END DECLARATIVES. 

A sentence consists of one or more statements and is terminated by a period. 

A statement is a syntactically valid combination of words and symbols beginning with a COBOL74 verb. 

The term 'identifier' is defined as the word or words necessary to make unique reference to a data item. 

EXECUTION OF THE PROCEDURE DIVISION 

Execution begins with the first statement of the PROCEDURE DIVISION, excluding declaratives. Statements 
are executed in the order of appearance, except where the user indicates GO TO, PERFORM, CALL, condi
tional statements, and declarative procedures. 

PROCEDURE DIVISION STRUCTURE 

The PROCEDURE DIVISION is made up of the PROCEDURE DIVISION header and the PROCEDURE 
DIVISION body. Descriptions of these follow. 

1108883 7-I 



PROCEDURE DIVISION 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

PROCEDURE DIVISION HEADER 

The PROCEDURE DIVISION is identified by and must begin with the following header: 

r-·--_____ ] L_ PROCEDURE DIVISION [USING data_-n_am_e-_1 _.[_, _d_a_ta_-n_a_m_e_-2_J_._·_· _J ______ _ 

PROCEDURE DIVISION BODY 

The body of the PROCEDURE DIVISION must conform to one of the following two formats. 

Format I: 

·------------------

Format 2: 

[DECLARATIVES. 

{section-name SECTION [segment·number). declarative-sentence 

[paragraph-name. [sentence) ... ] ... } ... 

END DECLARATIVES.] 

l section-name SECTION [segment-number). 

[paragraph-name. [sentence) ... ] ... } ... 

r---·--_____ _ L_ {paragraph-name. [sentence) ... } ... 

7-2 

---] 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

STATEMENT AND SENTENCES 

STATEMENTS AND SENTENCES 
There are thtee types of statements: conditional statements, compiler-directing statements, and imperative 
statements. 

There are three types of sentences: conditional sentences, compiler-directing sentences, and imperative sen
tences. 

CONDITIONAL STATEMENTS 

A conditional statement specifies that the truth value of a condition is to be determined and that the subse
quent action of the object program is dependent on this truth value. 

A conditional statement is 

I. An IF, SEARCH, or RETURN statement. 
2. A READ statement that specifies the AT END or INVALID KEY phrase. . 
3. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE phrase. 
4. A START, REWRITE, or DELETE statement that specifies the INVALID KEY phrase. 
5. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that specifies the 

SIZE ERROR phrase. 
6. A RECEIVE statement that specifies a NO DAT A phrase. 
7. A STRING, UNSTRING, or CALL statement that specifies the ON OVERFLOW phrase. 

Example: 

The following syntax for the IF statement is an example of a conditional statement. 

[~~~-~-1-F~c-o_n_d-it-io_n_a_l~~{_:_:_t:_:_e_:_~--~-T_E_N~C--E-}~{~:_:_~_:_:_N_s~-a_:_;_:_:_.~_-:_E_N_C~E-}_ 
Statement-I or statement-2 can be either imperative or conditional statements. If statement-I or statement-2 
is conditional, then these conditions within the conditional statement (IF statement) are considered to be 
nested. 

1108883 7-3 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

STATEMENT AND SENTENCES 

CONDITIONAL SENTENCES 

A conditional sentence is a conditional statement, optionally preceded by an imperative statement, terminated 
by a period. 

Examples: 

IF AGE IS GREATER THAN VOTE-AGE GO TO PARTY-TYPE, 
ELSE ADD l TO DONT-COUNT, GO TO GET-NEXT-PERSON. 

IF SALES IS EQUAL TO QUOTA , MGVE SALESMAN TO 
PROMOTION-LI ST, ELSE MOVE SALESMAN TO BAD-LI ST. 

COMPILER-DIRECTING STATEMENTS 

A compiler-directing statement consists of a compiler-directing verb and its operands. The compiler-directing 
verbs are COPY and USE (refer to the COPY statement and the USE statement in this section). A compiler
directing statement causes the compiler to take a specific action during compilation. 

COMPILER-DIRECTING SENTENCES 

A compiler-directing sentence is a single compiler-directing statement terminated by a period. 

Example: 

MYFILE. COPY "FAMILY/MYFILE ON MYPACK". 

IMPERATIVE STATEMENTS 

An imperative statement indicates a specific unconditional action to be taken by the object program. An imper
ative statement is any statement that is neither a conditional statement nor a compiler-directing statement. A111 
imperative statement may consist of a sequence of imperative statements, each possibly separated from the 
next by a separator. The imperative verbs are: 

7-4 

ACCEPT 
ADD (l) 
ALTER 
CALL(3) 
CANCEL 
CLOSE 
COMPUTE (I) 
DELETE (2) 
DISABLE 
DISPLAY 
DIVIDE (l) 
ENABLE 
EXIT 

GENERATE 
GO 
INITIATE 
INSPECT 
MERGE 
MOVE 
MULTIPLY (I) 
OPEN 
PERFORM 
READ (5) 
RECEIVE (4) 
RELEASE 
REWRITE 12) 

SEND 
SET 
SORT 
START (2) 
STOP 
STRING (3) 
SUBTRACT (I) 
SUPPRESS 
TERMINATE 
UNSTRING (3) 
WAIT 
WRITE (6) 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

STATEMENT AND SENTENCES 

The numbers in parentheses following some of the vt~rbs have the following meaning: 

Number Meaning 

1 Without the optional SIZE ERROR phrase. 
2 Without the optional INVALID KEY phrase. 
3 Without the optional ON OVERFLOW phrase. 
4 Without the optional NO DAT A phrase. 
5 Without the optional AT END phrase or INVALID KEY phrase. 
6 Without the optional INVALID KEY phrase or END-OF-PAGE phrase. 

When ·'imperative-statement' appears in the general format of statements, it refers to a statement that begins 
with an imperative verb and specifies an unconditional action to be taken. An imperative statement may con
sist of a s'equence of imperative statements. Imperative statements must be ended QY a period, or an ELSE 
phrase associated with a previous IF statement, or a WHEN phrase associated with a previous SEARCH state
ment. 

IMPERATIVE SENTENCES 

An imperative sentence is one or more imperative statements terminated by a period. An imperative statement 
can contain either a GO TO statement or a STOP RUN statement which, if present, must be the last statement 
in the sentence. 

Examples: 

1108883 

ADD 1 TO ITEM-COUNT, GO TO READ-NEXT-ITEM. 
DI SPLAY 11TH IS IS THE END 11

, STOP RUN. 

7-5 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CONTROL RELATIONSHIP BETWEEN PROCEDURES 

CONTROL RELATIONSHIP BETWEE:N PROCEDURES 

In COBOL74, imperative and conditional sentences describe the procedure that is to be accomplished. The 
sentences are written successively, according to the ruJes of the coding form (Section 3), to establish the se
quence in which the object program is to execute the procedure. In the PROCEDURE DIVISION, names are 
used so that one procedure can reference another by naming the procedur~ to be referenced. In this way, 
the sequence in which the object program is to be executed may be varied simply by transferring control to 
a named procedure. 

In procedure execution, control is transferred only to the beginning of a paragraph or section. Control is 
passed to a sentence within a paragraph only from the sentence written immediately preceding it. If a proc1e
dure is named, control can be passed to it from any sentence which contains a GO TO or PERFORM, followed 
by the name of the procedure to which control is to be transferred. 

PARAGRAPHS 

So that the source programmer may group several sentences to convey one idea (procedure), paragraphs have 
been included in COBOL74. In writing procedures in accordance with the rules of the PROCEDURE DIVI
SION and the requirements of the coding form (Section 3), the programmer begins a paragraph with a name!. 
The name consists of a word followed by a period, and the name precedes the paragraph it names. A 
paragraph is terminated by the next paragraph-name. The smallest grouping of the PROCEDURE DIVISION 
which is named is a paragraph. 

Programs may contain identical paragraph-names, provided they are resident in different sections. If suc:h 
paragraph-names are not qualified when used, the current section is assumed. Paragraph-names may be use:d 
in GO TO, PERFORM, and ALTER statements. 

SECTIONS 

A section .consists of zero, one, or more successive paragraphs and must be named when designated. The sec
tion-name is followed by the word SECTION, a priority number which is optional, and a period. If the section 
is a DECLARATIVE section, the DECLARATIVE sentence USE or COPY follows the section header and 
begins on the same line. Under all other circumstances, a sentence may not begin on the same line as a se1c
tion-name. The section-name applies to all successive paragraphs until another section-name is found. 

Since paragraph-names and section-names both have the same designated position on the reference format (po
sition A)., section-names, when specified, are written on one line followed by a paragraph name on a subs·e
quent line. 

7-6 



:SEGMENTATION 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

SEGMENTATION 

COBOL74 segmentation is a facility that provides a means by which the user may communicate with the com
piler to specify object program overlay requirements. 

COBOL74 segmentation deals only with segmentation of procedures. As such, only the PROCEDURE DIVI
SION and the ENVIRONMENT DIVISION are considered in determining segmentation requirements for an 
object program. 

Segmentation provides the facility of intermixing sections with different segment-numbers and allows the fixed 
portion of the source program to contain segments that may be overlaid. 

PROGRAM SEGMENTS 

Although it is not mandatory, the PROCEDURE DIVISION for a source program is usually written as a con
secutive group of sections, each of which is composed of a series of closely related operations that are de
signed to collectively perform a particular function. However; when segmentation is used, the entire PROCE
DURE DIVISION must be in sections. In addition, each section must be classified as belonging either to the 
fixed portion or to one of the independent segments of the object program. Segmentation does not affect the 
need for qualification of procedure-names to ensure uniqueness. 

FIXED PORTION 

The fixed portion is defined as that part of the object program which is logically treated as if it were always 
in memory. This portion of the program is composed of two types of segments: fixed permanent segments 
and fixed overlayable segments. 

A fixed permanent segment is the main program segment and may be overlaid in the same manner as if it 
were a fiixed overlayable segment. A fixed overlayable segment is a segment in the fixed portion which, al
though logically treated as if it were always in memory, can be overlaid by another segment to optimize 
memory utilization. Variation of the number of fixed permanent segments in the fixed portion can be accom
plished by using a special facility called the SEGMENT-LIMIT clause (refer to SEGMENT-LIMIT in this sec
tion). Such a segment, if called for by the program, is always made available in the last used state. 

INDEPENDENT SEGMENTS 

An independent segment is defined as part of the object program which can overlay, and can be overlaid by, 
either a fixed overlayable segment or another independent segment. An independent segment is in initial state 
whenever control is transferred (either implicitly or explicitly) to that segment for the first time during the 
execution of a program. On subsequent transfers of control to the segment, an independent segment is also 
in initial state when: 

1. Control is transferred to that segment as a result of the implicit transfer of control between 
consecutive statements from a segment with a different segment-number. 

2. Control is transferred to that segment as the result of the implicit transfer of control between a SORT 
or MERGE statement, in a segment with a different segment-number, and an associated input or out
put procedure in that independent segment. 

3. Control is transferred explici11:ly to that segment from a segment with a different segment-number (with 
the exception noted in step 2 below). 

1108883 7-7 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

SEGMENTATION 

On subsequent transfer of control to the segment, an independent segment is in the state when last used. 

1. Control is transferred implicitly to that segment from a segment with a different segment-number (ex
cept as noted in paragraphs 1 and 2 above). 

2. Control is transferred explicitly to that segment as the result of the execution of an EXIT PROGRAM 
statement. 

Refer to Explicit and Implicit Transfers of Control in Section 2 for additional information. 

SEGMENTATION CLASSIFICATION 

Sections which are to be segmented are classified, using a system of segment-numbers and the following crite
ria. 

I. Logic requirements: Sections which must be available for reference at all times, or which are refer
red to frequently, are normally classified as belonging to one of the permanent segments. Sections 
'Which are used less frequently are normally classified as belonging either to one of the overlayable 
fixed segments or to one of the independent segments, depending on logic requirements. 

2. Frequency of use: The more frequently a section is referred to, the lower the segment-number; the 
less frequently it is referred to, the higher the segment-number. 

3. Relationship to other sections: Sections which frequently communicate with one another should be 
given the same segment-numbers .. 

SEGMENTATION CONTROL 

The logical sequence of the program is the same as the physical sequence except for specific transfers of con
trol. If any reordering of the object program is required to handle the flow from segment to segment, according 
to the rules, the compiler provides control transfers to maintain the logical flow specified in the source pro
gram. The compiler also provides all controls necessary for a segment to operate whenever the segment is 
used. Control may be transferred within a source program to any paragraph in a section. It is not mandatory 
to transfer control to the beginning of a section. 

7-8 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

STRUCTURE OF PROGRAM SEGMENTS 

SEGMENT .. NUMBERS 

SEGMENTATION 
SEGMENT-NUMBERS 

Section dassification is accomplished by means of a system of segment-numbers. The segment-number is in
cluded in the section header. 

General Format: 

[.~~~-~~~----~S-ec_t_io_n_-_na_m~e--~S_E_c_T_I_o_N __ .~_l_s_e_gm~e-n_t-_n_um~b-e_r_J_.~~~--~--~--~--.J 
Syntax Rlllles: 

1. The segment-number must be an integer ranging in value from 0 through 126. 
2. If the segment-number is omitted from the sectHon header, the segment-number is assumed to be zero. 
3. Sections in the declaratives must contain segment-numbers less than 50. 

General Rules: 

1. All sections which have the same segment-number constitute a program segment. Sections with the 
same segment-numbers need not be physically contiguous in the source program. 

2. Segments with segment-numbers 0 through 49 belong to the fixed portion of the object program. 
3. Segments with segment-numbers 50 through 126 are independent segments. 

1108883 7-9 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

SEGMENTATION 

SEGMENT-LIMIT 

Ideally, alll program segments having segment-numbers ranging from 0 through 49 should be specified as perma
nent segments. However, when insufficient memory is available to contain all permanent segments plus the 
largest overlayable segment, it becomes necessary to decrease the number of permanent segments. The SEG
MENT-LIMIT feature provides the user with a means of reducing the number of permanent segments in a 
program, while still retaining the logical properties of fixed portion segments (segment-numbers 0 through 49). 

General Format: 

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DI
VISION and has the following format: 

r----______ J j__ [, SEGMENT-LIMIT IS. se_gm_en_t_-n_u_m_b_e_r_J __________ , __ _ 

Syntax Rules: 

l. Segment-number must be an integer ranging in value from 1 through 49. 

General Rules:-

1. When the SEGMENT-LIMIT clause is specified, only those segments having segment-numbers from 
0 up to, but not including, the segment-number designated as the segment-limit, are considered as per-
manent segments of the object program. 

2. Those segments having segment-numbers from the segment-limit through 49 are considered as overlay
able fixed segments. 

3. When the SEGMENT-LIMIT clause is omitted, all segments having segment-numbers from 0 through 
49 are considered as permanent segments of the object program. 

Example: 

All segments whose priority number is less than that specified in SEGMENT-LIMIT are gathered into a single 
segment, regardless of physical location in the source program. All other segments equal to or greater than 
that specified in SEGMENT-LIMIT are gathered into overlayable segments according to equal priority num
ber, regardless of physical location in the source program. 

The use of the gathering technique allows programmers to create tailored segments which reduce disk access 
times. 

7-10 



Example: 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

Program A: SEGMENT-LIMIT equals 17. 

Non-Gathered 

Segment Description Size in Digits 

00-16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Main body of the program 
Used frequently 
Used frequently 
Used infrequently 
Used at EOJ only 
Used frequently 
Used at BOJ only 
Used frequently 
Used for infrequent test 
Used infrequently 

Gathered 

4,000 
1,000 
5,000 
4,000 

500 
2,000 
1,000 

500 
1,500 
3,000 

SEGMENTATION 
SEGMENT-LIMIT 

Segment Description Size in Digits 

00-16 
17 
18 
19 
20 
17 
19 
17 
20 
20 

Main body of the program 
Used frequently 
Used frequently 
Used infrequently 
Used at EOJ only 
Used frequently (was segment 21) 
Used at BOJ only (was segment 22) 
Used"frequently (was segment 23) 
Used for infrequent test (was segment 24) 
Used infrequently (was segment 25) 

Results of Gathering 

4,000 
1,000 
5,000 
4,000 

500 
2,000 
1,000 

500 
1,500 
3,000 

Segment Description Size in Digits 

00-16 
17 
18 
19 
20 

Main body of the program 
Used frequently 
Used infrequently 
Used infrequently 
Used infrequently 

4,000 
3,500 
5,000 
5,000 
5,000 

"Fall through" is performed in the sequence shown in the Non-Gathered example, and not as appears in the 
Results of Gathering example. This preserves the logical integrity of the original program. 

1108883 7-11 



SEGMENTATION 
SEGMENT-LIMIT 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

The COBOL74 interpreter automaticalJy checks to see whether an overlay being called for by an object pro-· 
gram is a]ready present in memory. If present, no disk access is required and the program is not interrupted. 
If the overlay is not present, the COBOL 74 interpreter interrupts the program and accesses the disk for the 
desired overlayable portion of the program. The COBOL74 interpreter uses overlay segments directly from 
the program library where the object program was compiled to, and is called in as an overlay in the initial 
generated code every time it is required by the operating program. 

RESTRICTIONS ON PROGRAM FLO\/\/ 

When segmentation is used, the following restriction is placed on the ALTER statement. 

THE ALTER STATEMENT 

A GO TO statement in a section whose segment-numbier is greater than or equal to 50 must not be referred 
to by an ALTER statement in a section with a different segment-number. 

All other uses of the ALTER statement are valid and are performed even if the GO TO to which the ALTER 
statement refers is in a fixed overlayable segment. 

7-12 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

PROCEDURE DIVISION 

THE PROCEDURE DIVISION HEADER 

The PROCEDURE DIVISION is identified by, and must begin with, the following header: 

[ 
PROCEDURE DIVISION [USING data-name-I [, data-name-2] ... ] 

-----------

The USING phrase is present only if the object program is to function under the control of a CALL statement, 
and the CALL statement in the calling program contains a USING phrase. 

Each of the operands in the USING phrase of the PROCEDURE DIVISION header must be defined as a 
data item in the LINKAGE SECTION in the DATA DIVISION of the program in which this header occurs. 
and must have a 01 or 77 level-number. 

Within a callled program, LINKAGE SECTION data items are processed according to the data descriptions 
given in the called program. 

When the USING phrase is present, the object program operates as if data-name-I of the PROCEDURE DIVI
SION header in the called program and data-name-1 in the USING phrase of the CALL statement in the call
ing program refer to a single set of data that is equally available to both the called and calling programs. The 
descriptions of data must define an equal number of character positions·; however, they need not be the same 
name. In lik1e manner, there is an equivalent relationship between data-name-2, .. ., in the USING phrase of 
the called program and data-name-2, .. ., in the USING phrase of the CALL statement in the calling program. 
A data-name must not appear more than once in the USING phrase in the PROCEDURE DIVISION header 
of the called program; however, a given data-name may appear more than once in the same USING phrase 
of a CALL statement. 

If the USING phrase is specified, the INITIAL clause must not be present in any CD entry. Refer to Syntax 
Rule 2, Format 1, of the Communication Description entry (CD), Section 6. 

1108883 7-13 



DECLARATIVES 

DECLARATIVES 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

Declaratives are procedures which operate unde:r the control of the input~output system or the DEBUG 
facility. Declaratives consist of compiler-directing sentences and associated procedures. Declaratives, if used, 
must be grouped together at the beginning of the PROCEDURE DIVISION. The group of declaratives must 
be preceded by the key word DECLARATIVES, and must be followed by the-words END DECLARATIVES. 
Each DECLARATIVE consists of a single section and must conform to the rules for procedure formation. 
The next source statement following the END DECLARATIVES statement must be a section-name:~ or 
paragraph-name. 

USE DECLARATIVE 

A USE declarative is used to supplement the standard procedures provided by the input-output system. The 
USE sientence immediately following the section-name identifies the condition calling for the execution of the 
USE procedures. Only the PERFORM statements may reference all or part of a USE section. The USE sen
tence alone is never executed. Within a USE procedure, there must be no reference to the main body of the 
PROCEDURE DIVISION. The construct for the USE declarative is as follows: 

[------- section-name SECTION. USE................. J 
paragraph-name. First p_ro_c_e_d_u_re_-_st_a_te_m_e_nt_. _· _· _· ---------~-

Complete rules for writing the formats for USE are stated under the USE statement in this section. 

USE FOR DEBUGGING DECLARATIVE 

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the associated 
debugging section. The construct of the USE FOR DEBUGGING statement is: 

[ section-name SECTION. USE FOR DEBUGGING... -----, 
______ _J 

Complete rules for writing the format for USE FOR DEBUGGING are stated in Section 10 (DEBUG) of this 
manual .. 

7-14 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ARITHMETIC EXPRESSIONS . 
ARITHMETIC EXPRESSIONS 

An arithmetic expression can be an identifier of a numeric elementary item, a numeric literal, such identifiers 
and literals separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, 
or an arithmetic expression enclosed in parentheses. Any arithmetic expression may be preceded by a unary 
operator. The permissible combinations of variables, numeric literals, arithmetic operators, and parentheses 
are given in Table 7-1. 

Those identifiers and literals appearing in an arithmetic expression must represent either numeric elementary 
items or numeric literals on which arithmetic may be performed. 

ARITHMETIC OPERATORS 

There are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic 
expressions .. They are represented by specific characters that must be preceded by a separator and followed 
by a separator. 

Binary Arithmetic 
Operators Meaning 

+ 

* * 

Unary Arithmetic 
Operators 

+ 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Meaning 

The effect of multiplication by 
the numeric literal + 1 
The effect of multiplication by 
numeric literal -1. 

FORMATION AND EVALUATION RULES 

1. Panentheses may be used in arithmetic expressions to specify the order in which elements are to be 
evaluated. Expressions within parentheses are evaluated first, and within nested parentheses 
evaluation proceeds from the least inclusive set. When parentheses are not used, or parenthesized ex
pressions are at the same level of inclusiveness, the following hierarchical order of execution is im
plied: 

1108883 

1st - Unary plus (+)and minus (-) 
2nd - Exponentiation 
3rd - Multiplication and division 
4th - Addition and subtraction 

7-15 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

ARITHMETIC EXPRESSIONS 

7-16 

2. Parentheses are used either to eliminate ambiguities in logic where consecutive operations of the same 
hierarchical level appear, or to modify the: normal hierarchical sequence of execution in expressions 
where it is necessary for deviation from the normal precedence. When the sequence of execution is 
not specified by parentheses, the order of e~xec:ution of consecutive operations of the same hierarchical 
l1evel is from left to right. The following expressions are ordinarily considered to be ambiguous. 

A I B * C A/B/C A **B **C 

These expressions are permitted in COBOL74 and are interpreted as if written, respectively: 

(A I B) * C (A I B) /C (A * * B) * * C 

Without parenthesizing, the following example 

A+B/C+D **E *F-G 

is interpreted as 

.. 
A + (B I C) + ((D * * E) * F) - G . 

The sequence of operations working from the innermost parentheses to the outermost. That is, first 
exponentiation, then multiplication and divisiion, and finally addition and subtraction are performed. 

3. The ways in which operators, variables, and parentheses may be combined in an arithmetic express.ion 
are summarized in Table 7-1, which illustrates that 

a. The letter 'P' indicates a permissible pair of symbols. 
b. The character '-' indicates an invalid pair. 
c. The word Variable indicates an identifier or literal. 

Table 7-1. Combination of Symbols in Arithmetic Expressions 

First 
Symbol 

Variable 

Variable * I 

* I ** + - P 
Unary + or - P L 

.l_~-~~"'--~-p---

Second Symbol 

* * - + Unary 

p -

- p 
- -

- p 
p -

+ or - ( 

p 
-
p 
p 
-

) 

p 
-

-

-
p 

4. An arithmetic expression may only begin with the symbol '(', '+', '-', or a variable and may only 
end with a ')' or a variable. There must be a one-to-one correspondence between left and right paren
theses of an arithmetic expression such that each left parenthesis is to the left of the corresponding 
right parenthesis. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ARITHMETIC EXPRESSIONS 

5. The following rules apply to evaluation of exponentiation in an arithmetic expression: 

a. If the value of an expression to be raised to a power is zero, the exponent must have a value 
not greater than zero. Otherwise, the size error condition exists. Refer to the SIZE ERROR phrase 
in this section. 

b. If the evaluation yields both a positive and a negative real number, the value returned as the result 
is the positive number. 

c. If no real number exists as the result of the evaluation, the size error condition exists. 

6. When no resultant-identifier is associated with an expression, an intermediate data item is used to 
store the value of the arithmetic expression. 

INTERMEDIATE DATA ITEM 

An intermediate data item is a signed numeric data item containing the values developed in the course of 
evaluating an arithmetic expression prior to the final value being moved to the resultant-identifier, if any. The 
length of this data item is determined by the compiler throughout the calculation. 

1108883 7-17 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

COND~TIONAL EXPRESSIONS 

Conditional expressions identify conditions that are tested to enable the object program to select between alter
nate paths of control depending upon the truth value of the condition. Conditional expressions are specified 
in the IF, PERFORM, and SEARCH statements. Then! are two categories of conditions associated with condi
tiona] expressions: simple conditions and complex conditions. Each may be enclosed within any number of 
paired parentheses, in which case the category is not changed. 

SIMPLE CONDITIONS 

The simple conditions are the relation, class, condition-name, switch status, and sign conditions. A simple con
dition has a truth value of TRUE or FALSE. The inclusion in parentheses of simple conditions does not 
change the simple truth value. 

Relation Condition 

A relation condition causes a comparison of two operands, each of which may be the data item referenced 
by an identifier, a literal, or the value resulting from an arithmetic expression. A relation condition has a truth 
value of TRUE if the relation exists between the operands. Comparison of two numeric operands is permitted 
regardless of the formats specified in respective USAGE clauses. However, for all other comparisons the oper
ands must have the same usage. If either of the operands is a group item, the nonnumeric comparison rules 
apply. 

General Format: 

l identifier- I l 
literal-I 
arithmetic

expression-1 

IS [NOT] 
IS [NOT] 
IS [NOT] 
IS [NOT] 
IS [NOT] 
IS [NOT] 

GREATER THAN 
LESS THAN 
EQUAL TO 

> 
< 
= 

NOTE 

l identifier-2 l 
literal-2 
arithmetic

expression-2 

The required relational characters '>', '<', and '=' are not underlined to avoid 
confusion with other symbols such as ':2::' (greater than or equal to). 

The first operand (idt 'tifier-1, literal- I, or arithmetic-expression-I) is the subject of the condition; the second 
operand (identifier-2, literal-2, or arithmetic-expression-2) is the object of the condition. The relation condition 
must contain at least one reference to a variable. 

The relational operator specifies the type of comparison to be made in a relation condition. A space, comma, 
semicolon, right parenthesis, closing quotation mark, or closing commercial at sign (@) must precede the first 
reserved word comprising the relational operator. A space, comma, semicolon, left parenthesis, opening quota
tion mark, or opening commercial at sign (@) must follow the last reserved word comprising the relational 
operator. If the relational operator consists of mor'e than one reserved word, then a space, comma or semico
lon must be used to separate each pair of consecutive reserved words comprising the relational operator. When 
used, NOT and the next key word or relational character are one relational operator that defines the 

7-18 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

comparison to be executed for truth value; for example, NOT EQUAL is a truth test for an unequal 
comparison; NOT GREATER is a truth test for an equal or less comparison. The meaning of the relational 
operators is as follows: ' 

Relational Operator 

IS [NOT] GREATER THAN 
IS [NOT] > 

IS [NOT] LESS THAN 
IS [NOT] < 

IS [NOT] EQUAL TO 
IS [NOT] = 

NOTE 

Meaning 

Greater than or not greater than 

Less than or not less than 

Equal to or not equal to 

The required relational characters '>', '<', an.d '=' are not underlined to avoid 
confusion with other symbols such as ·~· (greater than or equal to). 

COMPARISON OF NUMERIC OPERANDS 

For operands whose class is numeric, a comparison is made with respect to the algebraic value of the oper
ands. The length of the literal or arithmetic expression operands, in terms of number of digits represented, 
is not significant. Zero is considered a unique value regardless of the sign. 

Comparison of these operands is permitted regardless of the manner in which usage is described. Unsigned 
numeric operands are considered positive for purposes of comparison. 

COMPARISON OF NONNUMERIC OPERANDS 

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with respect 
to a specified collating sequence of characters. Refer to OBJECT-COMPUTER in Section 5 for additional in
formation. ][f one of the operands is specified as numeric, it must be an integer data item or an integer literal. 
The following conditions apply: 

1. If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric operand 
is treated as though it were moved to an elementary alphanumeric data item of the same size as the 
numeric data item (in terms of standard data format characters), and the contents of this alphanumeric 
data item are compared to the nonnumeric operand. Refer to the MOVE statement and the PICTURE 
character 'P' in this section. 

2. If the nonnumeric operand is a group item, the numeric operand is treated as though it were moved 
to a group item of the same size as the numeric data item (in terms of standard data format charac
ters), and the contents of this group item are compared to the nonnumeric operand. Refer to the 
MOVE statement, and the PICTURE character 'P' for additional information. 

3. A noninteger numeric operand cannot be compared to a nonnumeric operand. 

The size of an operand is the total number of standard data format characters in the operand. Numeric and 
nonnumeric operands ·may be compared only when usage is the same. 

1108883 7-19 



B 1000 Systems COJBOI. .. 74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

There are two cases to consider: operands of equal size and operands of unequal size. 

l. Operands of equal size. If the operands are of equal size, comparison effectively proceeds by compar
ing characters in corresponding character positions starting from the high order end and continuing 
until either a pair of unequal characters is encountered or the low order end of the operand is reached, 
whichever comes first. The operands are deti;:!rmined to be equal if all pairs of characters compare 
equaHy through the last pair, when the low order end is reached. 

The first encountered pair of unequal characters is compared to determine a relative position in the 
collating sequence. The operand that contains the character that is positioned higher in the collating 
sequence is considered to be the greater operand. 

2. Operands of unequal size. If the operands are of unequal size, comparison proceeds as though the 
shorter operand were extended on the right by sufficient spaces to make the operands of equal size. 

COMPARISONS INVOLVING INDEX-NAlvfES AND/OR INDEX DATA ITEMS 

Relation tests may be made between: 

l. Two index-names. The result is the same as if the corresponding occurrence numbers were compared. 
2. An index-name and a data item (other than an index data item) or literal. The occurrence number 

that corresponds to the value of the index-name is compared to the data item or literal. 
3. An index data item and an index·-name or another index data item. The actual values are compared 

without conversion. 

The comparison of an index data item with a literal or with any data item not specified above, is 
not allowed. 

Class Condition 

The class condition determines whether the operand is numeric, consisting entirely of the characters 'O', 'I', 
'2', '3', ... , '9', with or without the operational sign. or alphabetic, consisting entirely of the characters 'A', 
'B', 'C', ... , 'Z', and space. 

General Format: 

[ ___ i_d_e_n_ti_fier IS (NOT J_{_~_~P~~-~A_R_ri~_T_I_c_} ________ , ___ ] 

The usage of the operand used with the ALPHABETIC test must be DISPLAY. The usage of the operand 
used with the NUMERIC test must be DISPLAY or COMPUTATION AL. When used, NOT and the next 
key word specify one class condition that defines the class test to be executed for truth value; for example, 
NOT NUMERIC is a truth test for determining that an operand is nonnumeric. 

The NUMERIC test cannot be used with an item whose data description describes the item as alphabetic or 
as a group item composed of elementary items whose data description indicates the presence of operatio111al 
sign(s). lf the data description of the item being tested does not indicate the presence of an operational sign, 
the item being tested is determined to be numeric only if the contents are numeric and an operational sign 
is not present. If the data description of the item does indicate the presence of an operational sign, the item 

7-20 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

.. 
being tested is determined to be numeric only if the contents are numeric and a valid operational sign is pres
ent. The position and representation of valid operational signs is discussed in the PICTURE clause, General 
Ruic 8, the S symbol, and the SIGN c.Iause in Section 6. 

The ALPHABETIC test cannot be used with an item whose data description describes the item as numeric. 
The item being tested is determined to be alphabetic only if the contents consist of any combination of the 
alphabetic characters 'A' through 'Z' and the space character. 

Condition-Name Condition (Conditional Variable) 

In a condition-name condition, a conditional variable is tested to determine whether or not the value is equal 
to one of the values associated with a condition-name. 

General Format: 

[ condition-name 
----------

If the condition-name is associated with a range or ranges of values, then the conditional variable is tested 
to determine whether or not the value is within this range, including the end values. 

The rules for comparing a conditional variable with a condition-name value are the same as those specified 
for relation conditions. 

The result of the test is TRUE if one of the values corresponding to the condition-name equals the value of 
the associated conditional variable. 

Switch-Status Condition 

A switch-status condition determines the ON or OFF status of a switch. The switch-name and the ON or OFF 
value associated with the condition must be named in the SPECIAL-NAMES paragraph of the ENVIRON
MENT DIVISION. 

General Format: 

[ 
condition-name ----i ___________ _1 

The result of the test is TRUE if the switch is set to the specified position corresponding to the condition
name. 

1108883 7-21 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CONDIT~ONAL EXPRESSIONS 

Sign Condition 

The sign condition determines whether or not the algebraic value of an arithmetic expression is less than, 
greater than, or equal to zero. 

Genera) Format: 

[
-·------·-----------·-.. ·---·-

arithmetic-expression IS 

--·M-------· 

) POSITIVE f J 
(NOT] I_ ~~~~TIVE f 

·-----

When used, NOT and the next key word specify one sign condition that defines the algebraic test to be 
executed for truth value; for example, NOT ZERO is a truth test for a nonzero (positive or negative) value. 
An operand is positive if the value is greater than zero, negative if the value is less than zero, and zero if 
the value is equal to zero. The arithmetic expression must contain at least one reference to a variable. 

COMPLEX CONDITIONS 

A complex condition is formed by combining simple conditions, combined conditions, and/or complex condi
tions with logical connectors (logical operators AND and OR) or negating these conditions with logical negation 
(the logical operator NOT). The truth value of a complex condition, whether parenthesized or not, is that truth 
value which results from the interaction of all the stated logical operators on the individual truth values of 
simple conditions, or the intermediate truth values of conditions logically connected or logically negated .. 

The logical operators with meanings follow. 

Logical Operator Meaning 

AND Logical conjunction; the truth value is TRUE if both of the 
conjoined conditions are TRUE; FALSE if one or both of 
the conjoined conditions is FALSE. 

OR Logical inclusive OR; the truth value is TRUE if one or 
both of the included conditions is TRUE; FALSE if both 
included conditions are FALSE. 

NOT Logical negation or reversal of truth value; the truth value 
is TRUE if the condition is FALSE; FALSE if the 
condition is TRUE. 

The logical operators must be preceded by a space and followed by a space. 

7-22 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Examples: 

The following are illustrations of complex conditions: 

AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20. 

AGE IS GREATER THAN 24 OR MARRIED. 

STOCK-ON-HAND IS LESS THAN DEMAND OR STOCK-SUPPLY IS 
GREATER THAN DEMAND+ INVENTORY. 

A IS EQUAL TO B, AND C IS NOT EQUAL TOD, ORE IS NOT 
EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I * J. 

STOCK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS 
THAN 100 OR STK-NUMBER EQUAL TO 62879). 

It is not necessary to use the same logical connective throughout the complex expression. 

Negated Simple Conditions 

A s1imple condition is negated through the use of the logical operator NOT. The negated simple condition ef
fects the opposite truth value for a simple condition. Thus, the truth value of a negated simple condition is 
TRUE only if the truth value of the simple condition is FALSE; the truth value of a negated simple condition 
is FALSE only if the truth value of the simple condition is TRUE. The inclusion in parentheses of a negated 
simple condition does not change the truth value. 

General Format: 

[ NOT simple-condition 
, _____________ _____, 

Combined and Negated Combined Conditions 

A combined condition results from connecting conditions with one of. the logical operators AND or OR. 

General Format: 

[ 
condition { { A

0
RND } d't' } 

-------con 11-on _··· -------' 

1108883 7-23 



B 1000 Systems COHOL74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Where condition may be: 

1. A simple condition. 
2. A. negated simple condition. 
3. A combined condition. 
4. A negated combined condition. The NOT logical operator followed by a combined condition enclosed 

within parentheses. 
5. Combinations of the above, specified according to the rules summarized in Table 7-2. 

Although parentheses need never be used when eiither AND or OR (but not both) is used exclusively in a 
combined condition, parentheses may be used to effect a final truth value when a mixture of AND, OR, and 
NOT is used. Refer to Table 7-2 and Condition Evaluation Rules in this section for additional information. 

Table 7-2 indicates the ways in which conditions and logical operators may be combined and parenthesized. 
There must be a one-to-one correspondence between left and right parentheses such that each left parenthesis 
is to the left of the corresponding right parenthesis. 

Table 7-2. Combinations of Conditions, Logical Operators, and Parentheses 

--
Location in In a left-to-right sequence of 
Conditional elements: 

Guv en the following Expression 
element :lement, when not Element, when not 

first, may be last, may be 
First Last immediately immediately 

preceded by only: followed by only: 

-- ---
s imple-condition Yes Yes OR, NOT, AND, ( OR, AND,) 

simple-condition, simple-condition, 
OR or AND No No ) NOT, ( 

---
simple-condition, 

NOT Yes No OR, AND, ( ( 
_ __, -----I 

simple-condition, 
( Yes No OR, NOT, AND, ( NOT, ( 

-- ----
simple-condition, 

) No Yes ) OR, AND, ) 
··-

The element pair OR NOT is permissible but the pair NOT OR is not permissible. NOT ( is permissible 1but 
NOT NOT is not permissible. 

7-24 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

ABBREVIATED COMBINED RELATION CONDITIONS 

When simple or negated simple relation conditions are combined with logical connectives in a consecutive se
quence such that a succeeding relation condition contains a subject or subject and relational operator that is 
common with the preceding relation condition, and no parentheses are used within such a consecutive se
quence, any relation condition except the first may be abbreviated by: 

I. The omission of the subject of the relation condition. 
2. The omission of the subject and relational operator of the relation condition. 

General Format: 

[, ___ re·.1-a-t-io-n--c-o-n-d-it-io_n __ {_{_~_~_D_}_[_N_O_T_J ___ [_r_e_la-ti_o_n-al_-o_p_e-ra_t_o_r J __ o_b_1_e-ct_}_· _· _· ___ __, 

Within a sequence of relation conditions, both of the above forms of abbreviation may be used. The effect 
of using such abbreviations is as if the last preceding stated subject were inserted in place of the ·omitted sub
ject, and the last stated relational operator were inserted in place of the omitted relational operator. The result 
of such implied insertion must comply with the rules of Table 7-2. This insertion of an omitted subject and/ 
or relational operator terminates once a complete simple condition is encountered within a complex condition. 

In abbreviated relation conditions, an arithmetic expression beginning with a left parenthesis may not be the 
object of an abbreviation where both the subject and the relational operator are implied. An arithmetic expres
sion may be the object if it does not begin with a left parenthesis or if the relational operator is stated. 

The interpretation applied to the use of the word NOT in an abbreviated combined relation condition is as 
follows: 

I. If the word immediately following NOT is GREATER, '>', LESS, '<', EQUAL, or '=', then the 
NOT participates as part of the relational operator. 

2. The NOT is interpreted as a logical operator and the implied insertion of subject or relational operator 
results in a negated relation condition. 

Examples of abbreviated combined and negated combined relation conditions and expanded equivalents follow. 

1108883 7-25 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Examples: 

Abbreviated Combined 
Relation Condition 

a > b AND NOT < c OR d 

a NOT EQUAL b OR c 

NOT a = b OR c 

NOT (a GREATER b OR < c) 

NOT (a NOT > b AND c 
AND NOT d) 

IFA=BORC 

IF A< B OR= CORD 

Expanded Equivalent 

((a> b) AND (a NOT< c)) OR (a NOT< d) 

(a NOT EQUAL b) OR (a NOT EQUAL c) 

(NOT (a = b)) OR (a = c) 

NOT ((a GREATER b) OR (a < c)) 

NOT ((((a NOT> b) AND (a NOT> c)) 
AND (NOT (a NOT> d)))) 

IF I\= BORA c 

IF A< BORA= CORA D 

CONDITION EVALUATION RULES 

Parentheses may be used to specify the order in which individual conditions of complex conditions are to be 
evaluated when necessary to depart from the implied evaluation precedence. Conditions within parentheses 
are evaluated first, and, within nested parentheses, evaluation proceeds from the least inclusive condition to 
the most inclusive condition. When parentheses are not used, or parenthesized conditions are at the same level 
of inclusiveness, the following hierarchical order of logical evaluation is implied until the final truth value is 
determined. 

7-26 

1. Values are established for arithmetic expressions. Refer to Formation and Evaluation Rules in this 
section. 

2. Truth values for simple conditions are establlished in the following order: 

relation (following the expansion of any abbreviated relation condition) 
class 
condition-name 
switch-status 
sign 

3. Truth values for negated simple conditions are established. 
4. Truth values for combined conditions are established: 

AND logical operators, followed by 
OR logical operators. 

5. Truth values for negated combined conditions are established. 
6. When the sequence of evaluation is not completely specified by parentheses, the order of evaluation 

of consecutive operations of the same hi1~rarchical level is from left to right. 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CONDITIONAL EXPRESSIONS 

Example: 

To evaluate 

Cl AND (C2 OR NOT (C3 OR C4) 

reduce as follows: 

let C5 equal "C3 OR C4", resulting in 
Cl AND (C2 OR NOT C5) 

let C6 equal "C2 OR NOT C5", resulting in 
Cl AND C6. 

1108883 7-27 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

COMMON PHRASES 

COMMON PHRASES 

In the statement desc1iptions that follow, several phrases appear frequently: the ROUNDED phrase, the SIZE 
ERROR phrase, and the CORRESPONDING phrase. 

In the foBowing discussion, a resultant-identifier is that identifier associated with a result of an arithmetic oper
ation. 

ROUNDED PHRASE 

If, after decimal point alignment, the number of places in the fraction of the result of an arithmetic operation 
is greater than the number of places provided for the fraction of the resultant-identifier, truncation is relative 
to the size provided for the resultant-identifier. When rounding is requested, the absolute value of the result
ant-identifier is increased by adding a one into the low-order digit whenever the absolute value of the next 
least significant digit of the intermediate data item i~, greater than or equal to five. 

When the low-order integer positions in a resultant-identifier are represented by the character 'P' in the picture 
for that resultant-identifier, rounding or truncation oc1,;urs relative to the rightmost integer position for which 
storage is allocated. 

SIZE ERROR PHRASE 

If, after decimal point alignment, the absolute value of a result exceeds the largest value that can be contained 
in the associated resultant-identifier, a size error condition exists. Division by zero always causes a size error 
condition. The size error condition applies only to the final results of an arithmetic operation and does not 
apply to intermediate results, except in the MULTIPLY and DIVIDE statements, in which case the size error 
condition applies to the intermediate results as well. If the ROUNDED phrase is specified, rounding takes 
place before checking for size error. When a size error condition occurs, the subsequent action depends on 
whether or not the SIZE ERROR phrase is specified. 

7-28 

1. If the SIZE ERROR phrase is not specified and a size error condition occurs, the resultant value is 
stored in each of the receiving fields left truncated where required. Values of resultant-identifier(s) 
for which no size error condition occurs are unaffected by size errors ·that occur for other resultant
identifier(s) during execution of this operation. 

If division by zero is the cause of the size error condition, the execution of the program is abnormally 
terminated. 

2. If the SIZE ERROR phrase is specified and a size error condition occurs, then the values of resultant
identifier(s) affected by the size errors are not altered. Values of resultant-identifier(s) for which no 
size error condition occurs are unaffected by size errors that occur for other resultant-identifier(s) dur
ing execution of this operation. After completion of the execution of this operation, the imperative 
statement in the SIZE ERROR phrase is executed. 

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT statement with the 
CORRESPONDING phrase, if any of the individual operations produces a size error condition, the 
imperative statement in the SIZE ERROR phrase is not executed until all of the individual additions 
and subtractions are completed. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CORRESPONDING PHRASE 

COMMON PHRASES 

For the purpose of this discussion, d I and d2 must each be identifiers that refer to group items. A pair of 
data items, one from d I and one from d2 correspond if the following conditions exist: 

I. A data item in d I and a data item in d2 are not designated by the key word FILLER and have the 
same data-name and the same qualifiers up to, but not including, dl and d2. 

2. At least one of the data items is an elementary data item in the case of a MOVE statement with the 
CORRESPONDING phrase. Both of the data items are elementary numeric data items in the case 
of the ADD statement with the CORRESPONDING phrase or the SUBTRACT statement with the 
CORRESPONDING phrase. 

3. The description of dl and d2 must not contain level-number 66, 77, or 88 or the USAGE IS INDEX 
clause. 

4. A data item that is subordinate to dl or d2 and contains a REDEFINES, RENAMES, OCCURS, or 
USAGE IS INDEX clause is ignored, as well as those data items subordinate to the data item that 
contains the REDEFINES, OCCURS, or USAGE IS INDEX clause. However, dl and d2 may have 
REDEFINES or OCCURS clauses or be subordinate to data items with REDEFINES or OCCURS 
clauses. Refer to the OCCURS clause in Section 6. 

Refer to the ADD statement in this section for an example of CORRESPONDING. 

1108883 7-29 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

STATEMENT FORMATS 

GENERAL RULES FOR STATEMENT FORMATS 

The following paragraphs describe general rules for statement formats. 

ARITHMETIC STATEMENTS 

The arithmetic statements are ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT and have several 
common features: 

1. The data descriptions of the operands need not be the same; any necessary conversion and decimal 
point alignment is supplied throughout the cak-:ulation. 

2. The maximum size of each operand is 18 decimal digits. 
3. Each arithmetic operation is evaluated using an intermediate data item for the result of the operation. 

The contents of the intermediate data item are moved to the resultant-identifier according to the rules 
for the MOVE statement. Rounding is performed and the size error condition is determined only dur
ing this MOVE operation. Refer to Intermediate Data Item, Rounded Phrase, Size Error Phrase, and 
the MOVE Statement in this section for addi!l:ional information. 

OVERLAPPING OPERANDS 

When a :sending and a receiving item in an arithmetic statement or an INSPECT, MOVE, SET, STRING, 
or UNSTRING statement share a part, but not all, assigned storage areas, the result of the execution of such 
a statement is undefined. 

MULTIPLE RESULTS IN ARITHMETIC STATEMENTS 

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multiple results. Such 
statements behave as though they had been written in the following ways: 

7-30 

I. A statement which performs all arithmetic necessary to arrive at the result to be stored in the receiiv
ing items, and stores that result in a temporary storage location. 

2. A sequence of statements transferring or combining the value of this temporary location with a single 
result. These statements are considered to be written in the same left-to-right sequence in which the 
multiple results are listed. 

The result of the statement 

ADD A, B, C, .TO C, D(C), E 

its equivalent to: 

ADD A, B, C GIVING TEMP 
ADD TEMP TO C 
ADD TEMP TO D(C) 
ADD TEMP TOE 

where TEMP is an intermediate result item provided by the compiler. 



8 1000 Systems COBOL74 Reference Manual 
Procedure Division 

INCOMPATIBLE DATA 

STATEMENT FORMATS 

Except for the class condition (refer to Class Condition in this section). when the contents of a data item are 
referenced in the PROCEDURE DIVISION and the contents of that data item are not compatible with the 
class specified for that data item by the PICTURE clause. then the result of such a reference is undefined. 

NUMERIC FUNCTIONS 

A numeric function can be specified as a sending operand in an arithmetic statement, a MOVE statement, or 
an arithmetic expression. 

OFFSET Function 

The OFFSET function represents the number of characters preceding a data item in a logical record. 

General Format: 

OFFSET (data-name) 

Syntax Rules: 

l. Data-name must be described in the DATA DIVISION. 
2. Data-name can be qualified. 

General Rules: 

l. OFFSET (data-name) represents the number of characters preceding the data item referenced by data
name in the logical record in which data-name is defined. If data-name references a packed numeric data 
item not aligned on a character boundary, OFFSET (data-name) represents the number of characters pre
ceding the character in which data-name begins. If data-name is a record-name or a 77-level item, the 
value of OFFSET (data-name) is zero. 

2. The internal representation of OFFSET is the same as that of an index data item; that is, it occupies 
the same space and has the same alignment as an item declared PICTURE S9(7) USAGE IS COMPUTA
TIONAL. 

1108883-001 7-31 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CATEGORIES OF VERBS 

CATEGORIES OF VERBS 

The verbs available for use with the COBOL 74 ccnnpiler are categorized below. Although the word IF is not 
a verb in the English language. it is utilized as such in the COBOL74 language. Its occurrence is a vital feature 
in the PROCEDURE DIVISION. 

Category 

Arithmetic 

Compiler Directing 

Conditional 

Data Movement 

Ending 

7-32 

Verb 

ADD 
COMPUTE 
DIVIDE 
INSPECT 
MULTIPLY 
SUBTRACT 

COPY 
USE 

ADD 
CALL 
COMPUTE 
DELETE 
DIVIDE 
IF 
MULTIPLY 
READ 
RECEIVE 
RETURN 
REWRITE 
SEARCH 
START 
STRING 
SUBTRACT 
UN STRING 
WRITE 

ACCEPT 
INSPECT 
MOVE 
STRING 
UNSTRING 

STOP 

Option 

TALLYING 

SIZE ERROR 
OVERFLOW 
SIZE ERROR 
INVALID KEY 
SIZE ERROR 

SIZE ERROR 
END or INV AUD KEY 
NO DATA 
END 
INVALID KEY 

INVALID KEY 
OVERFLOW 
SIZE ERROR 
OVERFLOW 
INVALID KEY or END-OF-PAGE 

DATE. DAY. or TIME 
REPLACING 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CATEGORIES OF VERBS 

Category Verb Option 

Input-Output 

Inter-Program 
Communication 

Ordering 

Procedure Branching 

Table Handling 

ACCEPT 
CLOSE 
DELETE 
DISABLE 
DISPLAY 
ENABLE 
OPEN 
READ 
RECEIVE 
REWRITE 
SEND 
START 
STOP 
WRITE 

CALL 
CANCEL 

MERGE 
RELEASE 
RETURN 
SORT 

ALTER 
CALL 
EXIT 
GO TO 
PERFORM 

SEARCH 
SET 

SPECIFIC VERB FORMATS 

identifier 

literal 

The specific verb formats, together with a detailed discussion of the restrictions and limitations associated with 
eaclh, appear on the following pages in alphabetic sequence. 

1108883 7-33 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ACCEPT 

ACCEPT 

The ACCEPT statement causes low volume data to b•.! made available to the specified data item. 

General Format: 

Format 1 :: 

1----____ J L_ ACCEPT identifier [ FROM __ {_m_n_e_m_o_n_ic_-n_a_m_e_}_J ________ _ 

Format 2: 

ACCEPT identifier FR0~1 

DATE 
DAY 
TIME 

Syntax Rules: 

1 .. The mnemonic-name in Format 1 must also be specified in the SPECIAL-NAMES paragraph of the 
ENVIRONMENT DIVISION and must be associated with the hardware-name ODT. 

2. An item declared in the LINKAGE SECTION cannot be used with the ACCEPT statement. 

General Rules: 

Format 1: 

1. The ACCEPT statement causes the transfer of data from the hardware device. This data replaces the 
contents of the data item named by the identifier. 

2. The maximum number of characters that 1;an be transferred is unlimited. 
3. If the FROM phrase is not given, the device that is used is the ODT. 
4. When the operator enters the AX message in response to the ACCEPT, continuation of the object 

prngram begins with the next executable stat1ement in sequence. 

Format 2:: 

7-34 

5. The ACCEPT statement causes the information requested to be transferred to the data item specified 
lby identifier according to the rules of the MOVE statement. 

DATE, DAY, , and TIME, are conceptual data items 
and are not described in the COBOL74 program. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ACCEPT 

6. DATE is composed of the data elements year of century, month of year, and day of month. The se
quence of the data element codes are from high order to low order (left to right), year of century, 
month of year, and day of month (YYMMDD). July 1, 1968 would be expressed as 680701. DATE, 
when accessed by a COBOL74 program, behaves as that described in the COBOL74 program as an 
unsigned elementary numeric integer data item, six digits in length. 

7. DAY is composed of the data elements year of century and day of year. The sequence of the data 
element codes are from high order to low order (left to right) year of century, day of year (YYDDD). 
July 1, 1968 is expressed as 68183. DAY, when accessed by a COBOL74 program, behaves as if de
scribed in a COBOL74 program as an unsigned elementary numeric integer data item, five digits in 
length. 

8. TIME is composed of the data elements hours, minutes, seconds, and hundredths of a second. 
(HHMMSSTH). TIME is based on elapsed time after midnight on a 24-hour clock basis~ 2:41 p.m. 
is expressed as 14410000. TIME, when accessed by a COBOL74 program, behaves as if described 
in a COBOL74 program as an unsigned elementary numeric integer data item, eight digits in length. 
The minimum value of TIME is 00000000; the value of TIME is 23595990. \,.,, ...... , ............. ,,,,,,,,,,,,, ..................... . 

1108883 7-35 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ACCEPT MESSAGE COUNT 

ACCEPT MESSAGE COUNT 

The ACCEPT MESSAGE COUNT statement causes the number of messages in a queue to be made available. 

General Format: 

r----_____ _ l_ ACCEPT cd-name _M __ E_ss_A_G_E __ c_o_u_N_T ______ ~----~~~-J 
Syntax Rules: 

I. Cd-name must reference an input CD. 

General Rules: 

7-36 

I. The ACCEPT MESSAGE COUNT statement 1.;auses the MESSAGE COUNT field specified for cd
name to be updated to indicate the number of messages that exist in a queue. 

2 .. Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of the area specified 
by the communication description entry mt~t contain the name of the symbolic queue to be tested. 
Testing the condition causes the contents of the data items referenced by data-name-10 (STATUS 
KEY) and data-name-11 (MESSAGE COUNT) of the area associated with the communication entry 
to be appropriately updated. Refer to the Communication Description (CD) in Section 6. 



ADD 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

ADD 

The ADD statement causes two or more numeric operands to be summed and the result to be stored. 

General Format: 

Format 1: 

ADD { 

identifier- I } 

literal-I [ 

, identifier-2 J 
, literal-2 

TO identifier-m [ROUNDED] 

[ , identifier-n [ROUNDED ] ] 

Format 2: 

ADD 

Format 3: 

[; ON SIZE ERROR imperative-statement J 

{ 

identifier- I } 

literal-I 

' { identifier-2 } [ , identifier-3 J 
literal-2 , literal-3 

GIVING identifier-m [ ROUNDED ] [ , identifier-n [ ROUNDED] ] ... 

[; ON SIZE ERROR imperative-statement] 

{ 

CORRESPONDING l 
ADD 

CORR 
identifier-I TO identifier-2 [ROUND:-----------1 

[ ; ON SIZE ERROR imperative-statement J J 
L-------------------

Syntax Rrnles: 

I. In Formats I and 2, each identifier must refer to an elementary numeric item, except that in Format 
2 each identifier following the word GIVING must refer to either an elementary numeric item or an 
ek~mentary numeric edited item. In Format 3, each identifier must refer to a group item. 

2. Each literal must be a numeric literal. 
3. CORR is an abbreviation for CORRESPONDING. 

1108883 7-37 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ADD 

General Rules: 

1. Additional rules and explanations relative to th1s statement are giverr in the appropriate p~ragraphs. 
Refer to Intermediate Data Item, CORRESPONDING ·Phrase, ROUNDED Phrase, SIZE ERROR 
Phrase, Arithmetic Statements, Overlapping Operands, and Multiple Results in Arithmetic Statements 
in this section. 

2. If Format 1 is used, the values of the operands preceding the word TO are added together, then th~~ 
sum is added to the current value of identifiier-111 storing the result immediately into identifier-n. This 
process is repeated, respectively, for each operand following the word TO. 

3.. If Format 2 is used, the values of the operands preceding the word GIVING are added together, then 
the sum is stored as the new value of each identifier-m, identifier-n, ... ; the resultant-identifiers. 

4. If Format 3 is used, data items in identifier-I are added to and stored in corresponding data items. 
in identifier-2. 

5. The compiler ensures that enough places are carried so that significant digits are not lost during execu
tion. 

Examples: 

Assume as initial values: X=2, Y= 10, Z= 15, TOT=50, and SUB=30. 

Format 1:: 

ADD XTO TOT. resul1s TOT=52 
ADD X, Y, Z, TO TOT, SUB. results TOT=77, SUB =57 

Format 2: 

ADD X, Y GIVING TOT. results TOT= 12 
ADD X, Y, Z GIVING TOT, SUB. results TOT=27, SUB=27 

Format 3: 

For Format 3, assume the following structures have the initial value in parentheses. 

01 

7-38 

NOW 
02 AL 

03 
03 

02 ME 
02 HE 

FO ( 8) 
RD ( l 0) 

(20) 
(5) 

01 LATER 
05 AL 

06 FO (10) 
06 XY ( l 0) 

05 AB (10) 
05 HE (10) 



Therefore the statement 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ADD CORRESPONDING NOW TO LATER. 

results in: 

02 LATER 
05 AL 

06 
06 

05 AB 
05 HE 

FO ( 18) 
xv ( ( l 0) 

( l 0) 
( 15) 

The only data items whose values changed are FO and HE. 

1108883 

ADD 

7-39 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

ALTER 

ALTER 

The ALTER statement modifies a predetermined sequence of operations. 

General Format: 

[ 

ALTER procedure-name-I TO [PROCEED TO] procedure-name-2 ] 

___ . ____ [._,_Pr_o_c_ed_u_r_e_-n_a_m_e_-3 __ m __ l_P_Ro.c,E_,E_,o_m_o_J_p_ro_c_e_du_r_e_-n_a_m_e_-4_J_._·_· ______ _ 

Syntax Rulles: 

1. Each procedure-name-I, procedure-name-3, ... , is the name of a paragraph that contains a single sern
tence consisting of a GO TO statement without the DEPENDING phrase. 

2. Each procedure-name-2, procedure-name-4, .. ., is the name of a paragraph or section in the PROCE
DURE DIVISION. 

General Rules: 

7-40 

1. Execution of the ALTER statement modifies. th•~ GO TO statement in the paragraph named procedure
name-1, procedure-name-3, ... , so that subsequent executions of the modified GO TO statements cause 
transfer of control to procedure-name-2, procedure-name-4, .. ., respectively. Modified GO TO statc!
ments in independent segments may, under some circumstances, be returned to initial states. Refer 
to Independent Segments in this section. 

All other uses of the ALTER statement are valid and are performed even if procedure-name-I, proce
dure..:name-3 is in an overlayable fixed segment. Refer to Segmentation in this section. 



CALL 

B I 000 Systems COBOL 74 Reference Manual 
Procedure Division 

CALL 

The CALL statement causes control to be transferred from one object program to another, within the run unit. 

General Format: 

Format I: 

f identifier- I } 
CALL \ 

~ literal-I 
[USING data-name-I [ , data-name-2 J ... J 

[ ; ON OVERFLOW imperative-statement J 

Format 2: 

Format 3: 

Syntax Rules: 

Format 1 Only: 

l. Literal-I must be a nonnumeric literal in the form "B" for a single file name, "B/C" for a multi-file
id and file-id, "B ON A" for a single file on a specific disk, or "B/C ON A" for a multi-file-id and 
file-id on a specific disk. Ref er to the B 1000 Systems Software Operation Guide, Volume 1, Form Num
ber 1108982, for the formation of file names. 

2. Identifier-I must be defined as an alphanumeric data item. 
3. The USING phrase is included in the CALL statement only if there is a USING phrase in the PROCE

DURE DIVISION header of the called program. The number Of operands in each USING phrase must 
be identical. 

4. Each of the operands in the USING phrase must have been defined as a data item in the FILE SEC
TION,. WORKING-STORAGE SECTION, COMMUNICATION SECTION, or LINKAGE SECTION, 
and must have a level-number of 01 or 77. Data-name-I, data-name-2, .. ., may be qualified when refer
ring to data items defined in the FILE SECTION or the COMMUNICATION SECTION. 

1108883-00 I 7-41 

I 



CALL 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

General Rules: 

Format I Only: 

7-42 

1. The program whose name is specified by the value of literal-I or identifier-I is the called program; the 
program in which the CALL statement appears is the calling program. 

2. The execution of a CALL statement causes control to pass to the called program. 
3. A called program is in initial state the first time· it is called within a run unit and the first time iit is 

called after a CANCEL operation to the called program. 

On all other entries into the called program, the state of the program remains unchanged from the 
state when last exited by an EXIT PROGRAM statement. This includes all data fields, the status and 
positioning of all files, and all alterable switch settings. 

4. If, during the execution of a CALL statement, it is determined that the available portion of object time 
memory is incapable of accommodating the program specified in the CALL statement, and the ON 
OVERFLOW phrase is specified, no action is taken and the imperative-statement is executed. 

If the above condition exists and the ON OVERFLOW phrase is not specified, the run unit is sus
pended until such time as the necessary portion of object time memory to accommodate the program 
specified in the CALL statement is avajlable. 

5. Called programs may contain CALL statements. However, a called program must not contain a CALL 
statement that directly or indirectly calls the calling program. Program A can CALL Program B, and 
Program B can CALL Program C, but Program C cannot CALL A or B, and Program B cannot 
CALL A. 

6. The data-names, specified by the USING phrase of the CALL statement, indicate those data items avail
able to a calling program that may be ref erred to in the called program. The order of appearance of 
the data-names in the USING phrase of the CALL statement and the USING phrase in the PROCE
DURE DIVISION header is critical. Corresponding data-names refer to a single set of data which is 
available to the called and calling programs. The correspondence is identified by position, not by name. 
In the case of index-names, no such correspondence is established. Index-names in the called and calling 
programs always refer to separate indices. 

7. The CALL statement may appear anywhere \Vithin a segmented program. When a CALL statement ap
pears in a section with a segment-number greater than or equal to 50, that segment is in the last used 
state when the EXIT PROGRAM statement returns control to the calling program. 

Example of Format I: 

Assume the called program name is PROGONE, and the PROCEDURE DIVISION header is: 

PROCEDURE DIVISION USING A, B, C. 

The calling program contains: 

CALL "PROGONE" USING X, Y, A. 
ADD X, Y, A GIVING TOTAL. 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CALL 

When the CALL is executed a correspondence is set up between-the two sets of data-names such that (A 
and X), 1(B and Y), and (C and A) ref er to the same data items regardless of the fact that both sets contain 
an A as a data-name. If PROGONE changes the values of A, B, and C to new values, these data items 
are available to the calling program in X, Y, and A, respectively. 

When PROGONE is exited by a CANCEL or EXIT PROGRAM, control returns to: 

ADD X, Y, A GIVING TOTAL. 

1108883-001 7-43 

I 

I 

I 

I 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CANCEi. 

CANCEL 

The CANCEL statement releases the memory ar,eas occupied by the referred to program. 

General Format: 

[ 
{ 

identifier-I 
CANCEL 

literal- I 

-------
'

·l.· [ , identifier-2 J J 
f , literal-2 

-~ 

Syntax Rules: 

1. Literal-I, literal-2, ... , must be a nonnumeric literal in the form "B" for a single file name, "B/C" 
for a multi-file-id and file-id, "B ON A" for a single file on a specific disk, or "B/C ON A" for a 
multi-file-id and file-id on a specific disk. Refer to the B 1000 Systems Software Operation Guide, Vol
ume I, Form Number 1108982, for the formation of file names. 

2. Identifier-I, identifier-2, .... must each be defined as an alphanumeric data item such that values ~;an 
be a program name. 

General Rules: 

7-44 

1. Subsequent to the execution of a CANCEL statement, the program that has been cancelled ceases 
to have any logical relationship to the run unit in which the CANCEL statement appears. A subse
quently exec:uted CALL statement naming the same program results in that program being initiated 
in the initial state. 

2. A program named in the CANCEL statement must not refer to any program that has been called and 
has not yet executed an EXIT PROGRAM statement. 

3. A logical relationship to a cancelled subprogram is established only by execution of a subsequent 
CALL statement. 

4. A called program. is cancelled either by being referred to as the operand of a CANCEL statement 
or by the termination of the run unit of which the program is a member. 

5. No action is taken when a CANCEL statement is executed naming a program that has not been called 
in this run unit or has been called and is, at present, cancelled. Control passes to the next statement. 



CLOSE 
General Format: 

B I 000 Systems COBOL 74 Reference Manual 
Procedure Division 

CLOSE 

The CLOSE statement terminates the processing of a file, or a reel/unit of a file, and also may specify the dispo
sition of the file and the device to which it is assigned. 
-------------------·-------------------------- ----

{ REEL} [WITH NO REWIND] 
UNIT FOR REMOVAL 

NO REWIND "" 
~QCK 

CLOSE file-name- I WITH 

{ RE Et.· } [WITH NO REWIND] 
UNIT FOR REMOVAL 
--· NO REWIND 

LOCK 
······ ······ ,··,·.· .... 

file-name-2 WITH 

Syntax Rules: 

1. The REEL or UNIT phrase must only be used for sequential files. 
'-'L.J'-l'uL.J st:att~m~~nt need not all have the same organization or access. 

General Rules: 

Except where otherwise stated in the following general rules, the terms reel and unit are synonymous and com
pletely interchangeable in the CLOSE statement. 

1. A CLOSE statement may only be executed for a file in an open mode. 
2. For the purpose of showing the effect of various types of CLOSE statements as applied to various stor

age media, all files are divided into the following categories: 

a. Sequential non-reel/unit. A sequential file whose input or output medium is such that the concepts 
of rewind and reel/unit have no meaning. This category includes mass storage files. A CLOSE state
ment executed for a non-reel/unit file may affect the disposition of the device to which it is assigned. 
However, the assignment and control of the physical device on which certain non-reel/unit files {in
cluding mass storage files) reside, is regarded to be the exclusive right of the operating system. Conse
quently, CLOSE statements executed for these files affect only the disposition and association of the 
physical file with the logical file, not the disposition of the physical device. 

1108883-001 7-45 

I 

I 

I 



I 

CLOSE 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

b. Sequential single-reel/unit. A sequential file that is entirely contained on one reel/unit. 
c. Sequential multi-reel/unit. A sequential file that is contained on more than one reel/unit. 
d. Indexed and Relative Files. Indexed and Relative files are labeled mass storage files. 

3. The results of executing each type of CLOSE for each category of file are summarized in Table 7-3. 

Table 7-3. Relationship of Categories of Files and Formats of the CLOSE Statement 

CLOSE 

CLOSE 
Statement 
~ormat 

CLOSE WITH LOCK 

CLOSE WITH NO REWIND 

CLOSE REEL/UNIT 

CLOSE REEL/UNIT 
FOR REMOVAL 

CLOSE REEL/UNIT 
WITH NO REWIND 

Sequential 
Non-Re1el/Unit 

C,H 

C,E.,I,J 
----

x 
-----

x 
-----

x 
---~----

x 

File Category 

Sequential 
Single

Reel/Unit 

C,G,H 

C,G,E,I,J 

C,B,H 

x 
x 

x 

Sequential 
Multi

Reel/Unit 

C,G,A,H 

C,G,E,A,I,J 

C,B,A,H 

F,G 

F,D,G,J 

F,B 

Indexed & 
Relative 

Files 

Cl,H 

Cl,I,E 

The definitions of the symbols in the table are given in the following pages. Where the definition depends on 
whether the file is an input, output, or input-output file, alternate definitions are given; otherwise, a definition 
applies to input, output, and input-output files. 

'A' Previous Reels/Units Unaffected 

In1mt Files 

All reels/units in the file prior to the current reel/unit are processed according to the standard reel/unit 
swap procedure, except those reels/units controlled by a prior CLOSE REEL/UNIT statement. If the cur
rent reel/unit is not the last in the file, the reels/units in the file following the current one are not processied. 

7-46. 



Output Files: 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CLOSE 

All reels/units m the file prior to the current reel/unit are processed according to the standard reel/unit 
swap procedure, except those reels/units controlled by a prior CLOSE REEL/UNIT statement. 

'B' No Rewind of Current Reel 
The current reel/unit is left in its current position. 

'C' Close File 

Input Files and Input-Output Files: 

If the file is positioned at the end and label records are specified for the file, the labels are processed 
according to the standard label convention. 

If label records are specified, the label records must be present. Label records that are not specified are 
ignored. 

Closing operations are executed. If the file is positioned at the end and label records are not specified 
for the file, label processing does not take place, but other closing operations are executed. If the file 
is positioned other than at the end, the closing operations are executed, but there is no ending label pro
cessing. 

UL. Output Files 

If label records are specified for the file, the labels are processed according to the standard label conven
tion. The behavior of the CLOSE statement when label records are specified but not present. or when 
label records are not specified but are present, is undefined. Closing operations are executed. If label 
records are not specified for the file, label processing does not take place, but other closing operations 
are executed. 

'Cl' CLOSE FILE 
The CLOSE operation marks the logical file as closed. 

'D' Reel/Unit Removal 

The current reel/unit is rewound and released to the system. However, the reel or unit may be accessed 
again, in its proper order of reels or units within the file, if a CLOSE statement without the REEL or 
UNIT phrase is subsequently executed for this file followed by the execution of an OPEN statement for 
the file. 

'E' File Lock 

The logical file is marked so it cannot be reopened during execution of the program. If the file is a mass I 
storage file, it is made a permanent file before being made unavailable. If the file is assigned to a tape 
device, the physical unit is made not ready. 

1108883-001 7-47 



I 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

CLOSE 

'F' Close Reel/Unit 

Input F'iles: 

The following operations take place: 

l. A reel/unit swap. 
2. The standard beginning reel/unit label procedure is executed. 

The next executed READ statement for that file makes available the next data record on the new 
reel/unit. 

Output :Files 

The following operations take place: 

I. The standard ending reel/unit label procedure is executed. 
2. A reel/unit swap. 
3. The standard beginning reel/unit label procedure is executed. 

The next executed WRITE statement that references that file directs the next logical data record to 
the next reel/unit of the file. 

'G' Rewind 
The current reel is positioned at its physical beginning. 

'H' File Retention 

7-48 

The association between the logical file and the physical file is retained. Subsequent reopening of th1e file 
may not require the operating system to search for the physical file. 



'X' Illegal 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

CLOSE 

This is an illegal combination of a CLOSE option and a file category. If the CLOSE statement specifies 
the REEL/UNIT phrase, the CLOSE statement has no effect, and the file is not closed. If the CLOSE 
:statement does not specify the REEL/UNIT phrase, any optional disposition is ignored, but the file is 
closed. 

4. If a file is in the open mode when a STOP RUN statement is executed, when a CANCEL statement 
is exe1;;uted for the program containing that file, or when an abnormal termination occurs, the action 
taken is to close the file as if a simple CLOSE statement had been executed. 

5. If the OPTIONAL phrase has been specified for the file in the FILE-CONTROL paragraph of the 
ENVIRONMENT DIVISION and the file is not present, the standard end-of-file processing is not per
formed for that file. 

6. If a CLOSE statement without the REEL or UNIT phrase has been executed for a file. no other state
ment (except the SORT or MERGE statements with the USING or GIVING phrases) that references 
that file can be executed, either explicitly or implicitly, unless an intervening OPEN statement for that 
file is executed. 

7. The WITH NO REWIND, FOR REMOVAL, 11111~1..... ... w JI ll~llilllnti"fl 
phrases have no effect at' object time if they d~ ~ot apply to the storage media on which the file re
sides. 

8. The execution of a CLOSE statement has no effect upon the contents or the availability of the file 
record area. 

1108883-001 7-49 



B l 000 Systems COBOL 74 Reference Manual 
Procedure Division 

COMPUTE 

COMPUTE 

The COMPUTE statement assigns to one or more data items the value of an arithmetic expression. 

General Format: 

[ COMPUTE identifier-I [ROUNDEi?] [,identifier-2 [ROUNDED]] . . . J 
=arithmetic-expression [;ON SIZE ERROR imperative-statement ] 

---

Syntax Rules: 

I. Identifiers that appear only to the left of = must refer to either an elementary numeric item or an 
elementary numeric edited item. 

General Rules: 

7-50 

I. Additional rules and explanations relative to this statement are given in the appropriate paragraphs. 
Refer to Intermediate Data Item, ROUNDED Phrase, SIZE ERROR Phrase, Arithmetic Statements, 
Overlapping Operands, and Multiple Results in Arithmetic Statements in this section. 

2. An arithmetic expression consisting of a single identifier or literal provides a method of setting the 
values of identifier-I, identifier-2, and so forth, equal to the value of the single identifier or literal. 
(Refer to Arithmetic Expressions in this section.) 

3. If more than one identifier is specified for the result of the operation (those identifiers preceding the 
equal sign). the value of the arithmetic expression is computed, and the resultant value is then stored 
as the new value of each successive identifier, such as identifier-I, identifier-2, and so on. 



COPY 

B I 000 Systems COBOL 74 Reference Manual 
Procedure Division 

The COPY statement incorporates text from a library into a COBOL74 source program. 

COPY 

COBOL 74 libraries contain library texts that are available to the compiler for copying at compile time. The effect 
of the interpretation of the COPY statement is to insert text into the source program, where it is treated by the 
compiler as part of the source program. Other than the use of dollar options, (NEW, DELETE, MERGE, and 
so forth; refer to Section 11, COBOL 74 Compiler Control), libraries must be created by means other than the 
COBOL 74 compiler. 

Additionally, the COPY statement can replace all occurrences of a given literal, identifier, word or group of 
words in the library text. with alternate text. during the copying process. 

General Format: 

COPY { file-id [ { ?: } multi-file-id ] · · · } 

REPLACING I · { ==pseudo-text-I==) 
identifier- I ( 
literal-I ( BY 
word-I J l 

==p~eudo-text-2== ) ) ] 
identifier-2 ( ( 
literal-2 ( ( · · · 
word-2 J } 

Syntax Rules: 

I. If more than one COBOL74 library is available during compilation, file-id must be qualified by the 
multi-file-id identifying the COBOL74 library in which the text associated with file-id resides. 

Within one COBOL74 library, each file-id must be unique. 
i 

File-id specifies the external jl!entification of a file in the COBOL74 library. 

Multi-file-id specifies the external identification of a volume-id. or directory-id. which is the name of 
the COBOL 74 library. 

2. The COPY statement must be a space by the separator period. 
3. Pseudo-text-I must not be null, may not consist solely of the character space(s) or of comment lines. 
4. Pseudo-text-2 may be null. 
5. Character-strings within pseudo-text-I and pseudo-text-2 may be continued. However, both characters 

of a pseudo-text delimiter must be on the same 
0

line. For more details refer to Indicator Area for con
tinuation of lines, Section 3. 

6. Word-I or word-2 may be any single COBOL74 word. 
7. A COPY statement may occur in the source program anywhere a character-string or a separator may 

occur, except that a COPY statement must not occur within a COPY statement nor in the library text. 

1108883-001 7-5 I 

I 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

COPY 

General Rules: 

7-52 

I. The compilation of a source program containing COPY statements is logically equivalent to processing 
all COPY statements prior to the processing of the resulting source program. 

2. The effect of processing a COPY statement is that the library text associated with file-id is copied 
into the source program, logically replacing the entire COPY statement, beginning with the reserved 
word COPY and ending with the punctuation character period. inclusive. 

3. If the REPLACING phrase is not specified., the library text is copied unchanged. 

If the REPLACING phrase is specified, the library text is copied and each properly matched occur
rence of pseudo-text-I. identifier- I, word-· I, and literal-I in the library text is replaced by the corre
sponding pseudo-text-2, identifier-2. word-2, or literal-2. 

4. For purposes of matching, identifier-I. word-I, and literal-I are treated as pseudo-text containing only 
identifier- I, word- I. or literal- I. respectively. 

5. The comparison operation that determines text replacement is explained in the following paragraphs. 

Any separator comma, semicolon and/or space(s) preceping the leftmost library text-won:l is copied 
into the source program. Starting with the leftmost library text-word and the first pseudo-text- I. iden
tifier-I, word-I, or literal-I that was specified in the REPLACING phrase, the entire REPLACING 
phrase operand that precedes the reserved word BY is compared to an equivalent number of 
contiguous library text-words. 

Pseudo-text- I. identifier-1. word- I, or literal-1 match the library text only if. the ordered sequt::nce 
of text-words that forms pseudo-text- I. idenrifier- I, word- I. or literal- I is equal, character for charac
ter, to the ordered sequence of library text-words. For purposes of matching, each occurrence of a 
separator comma or semicolon in pseudo-text- I or in the library text is considered to be a single 
space, except when pseudo-text- I consists solely of either a separator comma or semicolon, in which 
case it participates in the match as a text-word. Each sequence of one or more space separators is 
considered to be a single space. 

If no match occurs, the comparison is repeated with each next successive pseudo-text-I, identifier
], word- I. or literal- I, if any. in the REPLACING phrase until either a match is found or there is 
no next successive REPLACING operand. 

When all the REPLACING phrase operands have been compared and no match has occurred, the 
leftmost library text-word is copied into the source program. The next successive library text-word 
is then considered as the leftmost library text-word, and the comparison cycle starts again with the 
first pseudo-text-I. identifier-1. word-I, or literal- I specified in the REPLACING phrase. 

Whenever a match occurs between pseuclo-ti.~xt-1, identifier- I, word- I, or literal- I and the library text, 
the corresponding pseudo-text-2, identifier-2, worcl-2, or literal-2 is placed into the source program. 
The library text-word immediately following the rightmost text-word that participated in the match 
is then considered as the leftmost library text-word. The comparison cycle starts again with the first 
pseudo-text- I, identifier-I. word-I. or li1:eral-I specified in the REPLACING phrase. 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

COPY 

The comparison operation continues until the rightmost text-word in the library text has either 
participated in a match or been considered as a leftmost library text-word and participated in a com
plete comparison cycle. 

6. A comment line occurring in the library text and pseudo-text-I is interpreted, for purposes of match
ing, as a single space. Comment lines appearing in pseudo-text-2 and library text are copied into the 
source program unchanged. 

7. Debugging lines are permitted within library text and pseudo-text-2. Debugging lines are not permitted 
within pseudo-text-I; text-words within a debugging line participate in the matching rules as if the 'D' 
did not appear in the indicator area. If a COPY statement is specified on a debugging line, then the 
text that is the result of the processing of the COPY statement appears as though it were specified 
on debugging lines with the following exception. Comment lines in library text appear as comment 
lines in the resultant source program. 

8. The text produced as a result of the complete processing of a COPY statement must not contain a 
COPY statement. 

9. The syntactic accuracy of the library text cannot be independently determined. The syntactic accuracy 
of the entire COBOL74 source program cannot be determined until all COPY statements have been 
completely processed. 

I 0. Library text must conform to the rules for ·coBOL 74 reference format. 
11. For purposes of compilation, text-words, after replacement, are placed in the source program accord

ing to the PT~l~~ for referenc~ f.<?.~.1!1~~.'.. R~fer to Field Definit,i911s fqr reference fOr~at, Section 3. 

is specified and the optional multi-file-id and pack-id clauses are not present, 
the internal name of the library text and the default external identification. 

Examples: 

The following items illustrate uses of the COPY statement. 

FD INV-FILE COPY "MASTER/INVENTORY ON MYPACK11
• 

FD PAYROLL COPY 11 LASTYR/PAYROLL 11 HEPLACING 11 197911 BY 11 1980''. 

COPY ''I NPUTF I LE' 1
• 

COPY 11 MARYANN/FILE 11 REPLACING ==(-A,B)== BY ==XYZ==. 

COPY 11THISFILE ON MYPACK11 REPLACING AAA BY INPUT-DATA. 

1108883 7-53 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

DELETE 

DELETE 

The DELETE statement logically removes a record from a mass storage file. 

Genera] Format: 

DELETE file-name RECORD ( ; IN_v_A_L_I_D_K_E_Y_i_m_p_e_ra_t_iv_e_-s_ta_t_e_m_e_n_t _J ______ J 
Syntax Rules: 

1. The INVALID KEY phrase must not be specified for a DELETE statement which references a file 
in sequential access mode. 

2. The INVALID KEY phrase must be specified for a DELETE statement which references a file not 
in sequential access mode and for which an applicable USE procedure is not specified. 

3. A DELETE statement cannot be used with a SORT or MERGE file or with a Sequential File. 

General Rules: 

7-54 

1. The associated file must be open in the I-0 mode at the time of the execution of the DELETE state
ment. Refer to the OPEN Statement in this section. 

2. For files in the sequential access mode, the last input-output statement executed for file-name prior 
to the execution of the DELETE statement must have been a successfully executed READ statement. 
The record that was accessed by that READ statement is logically removed from the file. 

3. For a file in random or dynamic access mode, if the file is Relative, the record identified by the 
Relative Key data item is deleted; if the file is Indexed, the record identified by the Prime Record 
Key is deleted. If the file does not contain the record specified by the key, an INVALID KEY condi
tion exists. Refer to the Invalid Key condition in Section 5. 

4. After the successful execution of a DELETE statement, the identified record has been logically re
moved from the file and can no longer be accessed. 

5 .. The execution of a DELETE statement does not affect the contents of the record area associated with 
file-name. 

6. The current record pointer is not affected by the execution of a DELETE statement. 
7. The execution of the DELETE statement causes the value of the specified FILE STATUS data item, 

if any, associated with file-name to be updated. Refer to I-0 Status in Sectton 5. 



DISABLE 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

DISABLE 

The DISABLE statement inhibits data transfer between the specified output queue and destinations for output 
or !between specified sources and input queue for input. 

General Format: 

[ DISABLE { :;PT;TERMINAL) } cd-name WITH~ {::::::~:er-I} __ ] 

Syntax Rules: 

1. Cd-name must reference an input CD when the INPUT phrase is specified. 
2. Cd-name must reference an output CD when the OUTPUT phrase is specified. 
3. Literal-I or the contents of the data item referenced by identifier-I must be defined as alphanumeric, 

containing at least 1 but not more then IO characters. 

General Rules: 

1. The DISABLE INPUT <cd-name> statement provides a logical disconnection between the Data 
Communication Subsystem and the specified sources or destinations. When this logical disconnection 
is already in existence, or is to be handled by some other means external to this program, the 
DISABLE statement is not required in this program. The logical path for the transfer of data between 
the COBOL74 programs and the Data Communication Subsystem is not affected by the DISABLE 
statement. 

When the logical disconnection specified by the DISABLE statement is already in existence, is to 
be handled by some means external to this program, or is denied, the status key data item in the 
area referenced by CD-name is t.Ipdated. Refer to Communication Description Structure (CD) in Sec
tion 6. 

2. When the INPUT phrase with the optional word TERMINAL is specified, input to a specific terminal 
is disabled. Only the contents of the data item referenced by data-name-7 (SYMBOLIC SOURCE) 
of the area referenced by cd-name are meaningful. 

3. When the INPUT phrase without the optional word TERMINAL is specified, the logical paths for 
all of the sources associated witb the queue specified by the contents of data-name-1 (SYMBOLIC 
QUEUE) of the area referenced by cd-name are deactivated. 

4. When the OUTPUT phrase is specified, the logical path for destination, or the logical paths for all 
destinations, specified by the contents of the data item referenced by data-name-5 (SYMBOLIC DES
TINATION) of the data referenced by cd-name are deactivated. 

5. The KEY phrase provides a password facility. 

1108883 

An additional area of interaction between the DISABLE and the Data Communication Subsystem is 
the password. Within the message is a 10-byte field which contains a character string. It is the option 
of an MCS (Message Control System), to compare the password specified by literal-I or identifier
] to a master password. The data. referenced by literal-1 or identifier-] is transferred to the MCS ac
cording to the rules of the MOVE statement. The password is received in an alphanumeric data item 
1 to 10 characters in length. 

7-55 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

DISPLAY 

DISPLAY 

The DISPLAY statement causes low volume data to be transferred to an appropriate hardware device. 

General Format: 

DISPLAY ( l 
id en tifier-1 ) 

literal-I ) [ 

, identifier-2 ] 

, literal-2 

[ UPON mnemonic-name J 

Syntax Rules: 

I. The mnemonic-name is associated with a hardware device in the SPECIAL-NAMES paragraph in the 
ENVIRONMENT DIVISION and must be associated with the hardware-name ODT. 

2. Each literal may be any figurative constant, except ALL. 
3. If the literal is numeric, then it must be an unsigned integer. 
4. DISPLAY cannot use an item decJared in th·~ LINKAGE SECTION. 

General Rules: 

7-56 

I . The DISPLAY statement causes the contents of each operand to be transferred to the hardware device 
1in the order listed. 

2. The maximum number of characters that can be transmitted is unlimited. 
3. If a figurative constant is specified as one of the operands, only a single occurrence of the figurative 

constant is displayed. 
4. When a DISPLAY statement contains more than one operand, the size of the sending item is the sum 

of the sizes associated with the operands, and the values of the operands are transferred in the se
quence in which the operands are encountered. If the data transferred does not fit on one line, carriage 
returns and line feeds are supplied so that the data is extended to other lines of print. 

.5. If the UPON phrase is not used, the device used is the ODT. 



DIVIDE 

B l 000 Systems COBOL 74 Reference Manual 
Procedure Division 

DIVIDE 

The DIVIDE statement divides one numeric data item into others and sets the values of data items equal to 
the quotient and remainder. 

General Formats: 

Format l: 

-·--------------------------------------,,,_, ___ _ 

DIVIDE 
{ 

identifier- I } 
INTO identifier-2 

literal- I 

( ; identifier-3 [ ROUNDED ] ] ... 

[ROUNDED] 

[ ; ON ~ ERROJS imperative-statement J 
.1...--------------------------------------~-·--·-·· 

Format 2: 

DIVIDE 
<~ identifier-I } { BY } f identifier-2 } 

t literal- I INTO { literal-2 

GIVING identifier-3 [ROUNDED] 

( , identifier-4 [ROUNDED ] ] ... 

[ ; ON SIZE ERROR imperative-statement] 

'----------------------------------------------..... 

Format 3: 

----------------------------------------·--·· 

{ 
identifier- I ~ 

DIVIDE 
literal-I 

{ 
BY t { identifier-2 } 

INTO J literal-2 

GIVING identifier-3 (ROUNDED] 

REMAINDER identifier-4 

( ; ON SIZE ERROR imperative-statement] 

'---------------------------------------~--~ 

1108883 7-57 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

DIVIDE 

Syntax Rtiles: 

1. Each identifier must refer to an elementary nt1meric item, except that any identifier associated with 
the GIVING or REMAINDER phrase must refer to either an elementary numeric item or a:n elemen
tary numeric edited item. 

2. Each literal must be a numeric literal. 

General Rules: 

7-58 

1. Additional rules and explanations relative to this statement are given in the appropriate paragraphs. 
Refer to Intermediate Data Item, Arithmetic Statements, Overlapping Operands, and Multiple Results 
in Arithmetic Statements in Section 7. Also, refer to General Rules 4 through 6 below for a discussion 
of the ROUNDED phrase and the SIZE ERROR phrase as they pertain to Format 3. 

2. When Format I is used, the value of identifier-2 is divided by either the value of identifier-I or literal
I. The value of the dividend (identifier-2) is replaced by this quotient; and similarly for identifier-I 
or literal-I and identifier-3, and so forth. 

3. When Format 2 is used, the ,value of identifier-I or literal-I is divided by the value of identifier-2 or 
Hteral-2, and the result is stored in identifier-3, identifier-4, and so on. 

4. lFormat 3 is used when a remainder from the division operation is desired, namely identifier-4. The 
remainder in COBOL74 is defined as the result of subtracting the product of the quotient (identificr-
3) and the divisor from the dividend. If identifier-3 is defined as a numeric edited item, the quotient 
used to calculate the remainder is an intermediate field which contains the unedited quotient. If 
ROUNDED is used, the quotient used to calculate the remainder is an intermediate field which con
tains the quotient of the DIVIDE statement, truncated rather than rounded. 

5. ln Format 3, the accuracy of the REM,AINDER data item (identifier-4) is defined by the calculation 
described above. Appropriate decimal alignm•:!nt and truncation (not rounding) is performed for the 
content of the data item referenced by identifier-4, as needed. 

6. When the ON SIZE ERROR phrase is used in Format 3, the following rules pertain: 

a. If the size error occurs on the quotient, no remainder calculation is meaningful. The contents of 
the data items referenced by both identifier-3 and identifier-4 remain unchanged. 

b. If the size error occurs on the remainder, the contents of the data items referenced by identifiier-
4 remain unchanged. However, as with other instances of multiple results of arithmetic statements, 
the user is responsible for performing the necessary analysis to determine which situation has actu
ally occurred. 



ENABLE 

B I 000 Systems COBOL 74 Reference Manual 
Procedure Division 

ENABLE 

The ENABLE statement allows data transfer between specified output queues and destinations for output or 
between specified sources and input queues for input. 

General Format: 

ENABLE 
OUTPUT 

{ 

identifier- I } 
cd-name WITH KEY 

literal- I [ {

INPUT (TERMINAL] } 

----------·-·-------

Syntax Rules: 

1. Cd-name must reference an input CD when the INPUT phrase is specified. 
2. Cd-name must reference an output CD when the OUTPUT phrase is specified. 
3. Literal-] or the contents of the data item referenced by identifier-I must be defined as alphanumeric 

containing I to 10 characters, inclusive. 

General Rules: 

I. The ENABLE INPUT <cd-name> statement provides a logical connection between the Data Commu
nication Subsystem and the specified sources or destinations. When this logical connection is already 
in existence, or is to be handled by some other means external to this program, the ENABLE state
ment is not required. The logical path for the transfer of data between the COBOL74 programs and 
the Data Communication Subsystem is not affected by the ENABLE statement. 

When the logical connection specified by the ENABLE statement is already in existence, (only if a 
RECEIVE is done instead), or is to be denied, the status key data item in the area referenced by 
CD-name is updated. Refer to the Communication Description Structure (CD) in Section 6. 

2. The INPUT phrase with the optional word TERMINAL is used to ENABLE a previously disabled 
(DISABLE) terminal. Only the contents of the data item referenced by data-name-7 (SYMBOLIC 
SOURCE) of the area referenced by cd-name are meaningful. 

3. When the INPUT phrase without the optional word TERMINAL is specified, the logical paths for 
all of the sources associated with the queue specified by the contents of data-name-I (SYMBOLIC 
QUEUE) of the area referenced by cd-name are activated. 

4. When the OUTPUT phrase is specified, the logical path for destination, or the logical paths for all 
destinations, specified by the contents of the data item referenced by data-name-5 (SYMBOLIC DES
TINATION) of the area referenced by cd-name are activated. 

5. The KEY phrase provides a password facility. 

An additional area of interaction between the ENABLE and the Data Communication Subsystem is 
the password. Within the message is a JO-byte field which contains a character string. It is the option 
of thie MCS (Message Control System), to compare the password· specified by literal-1 or identifier
] to a master password. The data referenced by literal-I or identifier-] is transferred to the MCS ac
cording to the rules of the MOVE statement. The password is received in an alphanumeric data item 
of I to 10 characters in length. 

1108883 7-59 



EXIT 

EXIT 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

The EXIT statement provides a means of documenting the logical end point for a series of sections or 
paragraphs that may be executed under the control of a PERFORM statement. 

General Format: 

EX_IT_·------------------------~---~J 
Syntax Rules: 

l. The EXIT statement must appear in a sentence alone. 
2. The EXIT sentence must be the on1y sentence in the paragraph. 

General Rules: 

7-60 

I. An EXIT statement serves only to enable the user to assign a procedure-name to a given point in 
a program. Such an EXIT statement has no other effect on the compilation or execution of the pro
gram. 



EXIT PROGRAM 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

The EXIT PROGRAM statement marks the logical end of a called program. 

General Format: 

EXIT PROGRAM 

[ ___________________________ E_x_IT __ P_R_o_G_R_A_M_. ____________________ ~.~----l 
Syntax Rules: 

I. The EXIT PROGRAM statement must appear in a sentence alone. 
2. The EXIT PROGRAM sentence must be the only sentence in the paragraph. 

General Rules: 

I. An execution of an EXIT PROGRAM statement in a called program causes control to be passed to 
the calling program. If the program is not called, control passes through the EXIT PROGRAM state
ment to the first sentence of the next paragraph. 

1108883 7-61 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

GO TO 

GO TO 

The GO TO statement causes control to be transferred from one part of the PROCEDURE DIVISION to an
other. 

General Format: 

Format I: 

GO TO [ procecl ure-name-1 J J 
·~~~~~·~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~·~~~ 

Format 2: 

[ __ _ 

GO TO procedure-name-I [, procedure-name-2] ... , procedure-name-n ] 

DEPENDING ON identifier 

---· 

Syntax Rules: 

I. Identifier is the name of a numeric elementary item described without any positions to the right of 
the assumed decimal point. 

2. When a paragraph is referenced by an ALTER statement, that paragraph can consist only of a 
paragraph header followed by a Format I GO TO statement. 

3. A Format I GO TO statement, without proc•.!dure-name-1, can only appear in a single statement 
paragraph. 

4. If a GO TO statement, represented by Format 1, appears in a consecutive sequence of imperative 
statements within a sentence, it must appear as the last statement in that sequence. 

General Rules: 

7-62 

1. When a GO TO statement, represented by Format I is executed, control is transferred to procedure
name-1 or to another procedure-name if the GO TO statement has been modified by an ALTER state
ment. 

2. If procedure-name-I is not specified in Format 1, an ALTER statement, referring to the GO TO stak~
ment, must be executed prior to the execution of this GO TO statement. Otherwise, the program is 
abnormally terminated. · 

3. When a Format 2 GO TO statement is executed, control is transferred to the procedure-name whose 
ordinal position in the list following the GO TO corresponds to the value of the identifier being I, 
2, ... , n. If the value of the identifier is anything other than the positive or unsigned integers I, 2, 
.... , n, then no transfer occurs and control passes to the next statement in the normal sequence for 
execution. 



IF 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

IF 

The IF statement causes a condition to be evaluafed. The subsequent action of the object program depends 
on whether the value of the condition is TRUE or FALSE. 

General Format: 

IF condition; 
NEXT SFNTENCE 

j ; ELSE statement-2 ~ 

l ; ELSE NEXT SEN TEN cd [ l statement-] l 
------· J 

Syntax Rules: 

I. Statement-I and statement-2 represent either an imperative statement or a conditional statement, and 
either may be followed by a conditional statement. 

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal period 
of the sentence. 

General Rules: 

I. When an IF statement is executed, the following transfers of control occur: 

a. If the condition is TRUE, statement-I is executed, if specified. If statement-I contains a procedure 
branching or conditional statement, control is explicitly transferred in accordance with the rules 
of that statement. Refer to Categories of Statements in this section. If statement-I does not contain 
a procedure branching or conditional statement, the ELSE phrase, if specified, is ignored and con
trol passes to the next executable sentence. 

b. If the condition is TRUE and the NEXT SENTENCE phrase is specified instead of statement
I, the ELSE phrase, if specified, is ignored and control passes to the next executable sentence. 

c. If the condition is FALSE, statement-I or NEXT SENTENCE is ignored, and statement-2, if spec
ified, is executed. If statement-2 contains a procedure branching or conditional statement, control 
is explicitly transferred in accordance with the rules of that statement. Refer to Categories of State
ments in this section. If -statement-2 does not contain a procedure branching or conditional state
ment, control passes to the next executable sentence. If the ELSE statement-2 phrase is not 
specified, statement-I is ignored and control passes to the next executable sentence. 

d. If the condition is FALSE, and the ELSE NEXT SENTENCE phrase is specified, statement-I 
is ignored, if specified, and control passes to the next executable sentence. 

2. Statement-I and/or statement-2 may contain an IF statement. In this case, the IF statement is nested. 

1108883 

IF statements within IF statements may be considered as paired IF and ELSE combinations, proceed
ing from left to right. Thus, any ELSE encountered is considered to apply to the immediately preced
ing IF that has not been already paired with an ELSE. 

7-63 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

INSPECT 

INSPECT 

The INSPECT statement provides the ability to tally (Format 1), replace (Format 2), or tally and replace (For
mat 3) occurrences of single characters or groups of 1;haracters in a data item. 

General Formats: 

Format I: 

INSPE~J' identifier-I TALLYING ! , identificr-2 FOR f f 
{

ALL } { identifier-3} ) 
LEADING literal-1 ;( 

CHARACTERS ) 
[{ BEF~RE} INITIAL { i~entifier4}] l .. j ... 

AFTER hteral-2 f 

Format 2: 

INSPECT identifier-1 REPLACING -----

CHARACTERS BV { i?entifier-6 } 
;;;..=.;;~__...;;;.~ - hteral-4 [{ BEF~RE }' INITIAL { i?entifier-7}] 

AFTE:R hteral-5 

Format 3: 

INSPECT identifier-I TALL YING ----
) { { ALL {. identifier-3}} 
) , iJentifier-2 FOR , LEADING literal-I 
l CHARACTERS 

REPLACING 

7-64 

{ 
identifier-6 } CHARACTERS BY 
literal-4 [{

BEFORE} 
,AFTER 

[{
BEFORE } INITIAL { i?enti

1
fier-7} J l ...l .. 

AFTER htera -5 ) \ 

INITIAL { 
identifier-7 }] 
literal-5 



B I 000 Systems COBOL 74 Reference Manual 
Procedure Division 

INSPECT 

Syntax Rules: 

Al.I Formats 

1. Identifier-I must reference either a group item or any category of elementary item, described (either 
implicitly or explicitly) as usage is DISPLAY. 

2. Identifier-3 ... identifier-n must reference either an elementary alphabetic, alphanumeric, or numeric 
item described (either implicitly or explicitly) as usage is DISPLAY. 

3. Each literal must be nonnumeric and may be any figurative constant, except ALL. 

Formats I and 3 only 

4. Identifier-2 must reference an elementary numeric data item. 
5. If either literal-I or literal-2 is a figurative constant, the figurative constant refers to an implicit one 

character data item. 

Formats 2 and 3 only 

6. The size of the data referenced by literal-4 or identifier-6 must be equal to the size of the data refer
enced by literal-3 or identifier-5. When a figurative constant is used as literal-4, the size of the figura
tive constant is equal to the size of literal-3 or the size of the data item referenced by identifier-5.. 

7. When the CHARACTERS phrase is used, literal-4, literal-5, or the size of the data item referenced 
by identifier-6, identifier-7 must be one character in length. 

8. When a figurative constant is used as literal-3, the data referenced by literal-4 or identifier-6 must be 
one character in length. 

General Rules: 

I. Inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE 
or AFfER phrase, and the mechanism for tallying and/or replacing) begins at the leftmost character 
position of the data item referenced by identifier-I, regardless of class, and proceeds from left to 
right to the rightmost character position as described in General Rules 4 through 6 which follow. If 
identifier-I is signed, the sign character is not inspected. 

2. For use in the INSPECT statement, the contents of the data item referenced by identifier-I, identifi
er-3, identifier-4, identifier-5, identifier-6, or identifier-7 are treated as follows: 

a. If any of identifier- I, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is described 
as alphanumeric, the INSPECT statement treats the contents of each such identifier as a charac
ter-string. 

b. If any of identifier-I, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is described 
as alphanumeric edited, numeric edited or unsigned numeric, the data item is inspected as though 
redefined as alphanumeric (refer to General Rule 2a) and the INSPECT statement had been writ
ten to reference the redefined data item. 

c. If any of identifier-I, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is described 
as signed numeric, the sign character of the data item is not inspected. 

3. In General Rules 4 through 11 all references to literal-I, literal-2, literal-3, literal-4, and literal-5 apply 
equally to the contents of the data items referenced by identifier-3, identifier-4, identifier-5, identifier-
6, and identifier-7, respectively. 

4. During inspection of the contents of the data item referenced by identifier-I, each properly matched 
occurrence of literal-I is tallied (Formats l and 3) and/or each properly matched occurrence of literal-
3 is replaced by literal-4 (Formats 2 and 3). 

1108883 7-65 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

INSPECT 

7-66 

5. The comparison operation, to determine the occurrences of literal- I to be tallied and/or occurrences 
of literal-3 to be replaced, occurs as follows· 

a. The operands of the TALL YING and REPLACING phrases are considered in the order specified 
in the INSPECT statement from left to right. The first literal- I, literal-3 is compared to an equal 
number of contiguous characters, starting with the leftmost character position in the data item 
referenced by identifier- I. Literal-I, literal-3" and that portion of the contents of the data item ref
erenced by identifier-I match only if equal, character for character. 

b. If no match occurs in the comparison of the first literal- I, literal-3, the comparison is repeated 
with each successive literal-I, literal-3, if any, until either a match is found or there is no next 
successive literal-I, literal-3. When there is no next successive literal-I, literal-3, the character 
position in the data item referenced by identifier- I immediately w the right of the leftmost charac
ter· position considered in the last comparison cycle is considered as the leftmost character posi
tion, and the comparison cycle begins again with the first literal- I, literal-3. 

c. Whenever a match occurs, tallying andl/or replacing takes place as described in General Rules 8 
through 10. The character position in the data item referenced by identifier-I, immediately to the 
right of the rightmost character position that participated in the match, is now considered to be 
the leftmost character position of the dlata item referenced by identifier- I. The comparison cycle 
starts again with the first literal-I, lite:ral-3. 

d. The comparison operation continues until the rightmost character position of the data item refer
enced by identifier- I has participated in a match or has been considered as the leftmost character 
position. When this occurs, inspection is terminated. 

e. If the CHARACTERS phrase is specified, an implied one character operand participates in the 
cycle described in steps 5a through 5d above, except that no comparison to the contents of the 
data item referenced by identifier- I takes place. This implied character is always considered to 
match the leftmost character of the contents of the data item referenced by identifier-I participat
ing in• the current comparison cycle. 

6. The comparison operation defined in General Rule 5 is affected by the BEFORE and AFTER phrases 
as follows: 

a. If the BEFORE or AFTER phrase is not specified, literal-I, literal-3 or the implied operand of 
the CHARACTERS phrase participates in the comparison operation as described in General Rule 
5. 

b. If the BEFORE phrase is specified, the associated literal-I, literal-3 or the implied operand of 
the CHARACTERS phrase participates only in those comparison cycles which involve that por
tion of the contents of the data item referenced by identifier-I from the leftmost character position 
up to, but not including, the first occurrence of literal-2, literal-5 within the contents of the data 
item referenced by identifier-I. The position of this first occurrence is determined before the first 
cycle of the comparison operation described in General Rule 5 is begun. If, on any comparison 
cycle, literal-I, literal-3 or the implied operand of the CHARACTERS phrase is not eligible to 
participate, it is considered not to match the contents of the data item referenced by identifo:!r-
1. If there is no occurrence of literal-2, literal-5 within the contents of the data item referenced 
by identifier-I, the associated literal-I, literal-3, or the implied operand of the CHARACTERS 
phrase participates in the comparison operation as though the BEFORE phrase had not bt:~en 
specified. 



Example: 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

Assume that identifier- I contains ABCDEFGH. 

Phrase 

none 
BEFORE "G" 
BEFORE "DEF" 
BEFORE "FOE" 
BEFORE "A" 

Range of Inspection 

A through H 
A through F 
A through C 
A through H 

Null 

INSPECT 

c. If the AFTER phrase is specified, the associated literal-I, literal-3 or the implied operand of the 
CHARACTERS phrase may participate only in those comparison cycles which involve that por
tion of the contents of the data item referenced by identifier-I from the character position immedi
ately to the right of the rightmost character position of the first occurrence of literal-2, literal-
5, within the contents of the data item referenced by identifier-1 and the rightmost character posi
tion of the data item referenced by identifier- I. The position of this first occurrence is determined 
before the first cycle of the comparison operation described in General Rule 5 is begun. If, on 
any comparison cycle, literal-I, literal-3 or the implied operand of the CHARACTERS phrase is 
not eligible to participate, it is considered not to match the contents of the data item referenced 
by identifier-I. If there is no occurrence of literal-2, literal-5 within the contents of the data item 
referenced by identifier-I, the associated literal-I, literal-3, or the implied operand of the CHAR
ACTERS phrase is never eligible to participate in the comparison operation. 

Example: 

Assume that identifier- I contains ABCDEFGH. 

Phrase 

none 
AFTER "C" 
AFTER "BCD" 
AFTER "DCE" 
AFTER "H" 

Range of Inspection 

A through H 
D through H 
E through H 

Null 
Null 

Format I: 

7. Thie contents of the data item referenced by identifier-2 are not initialized by the execution of the 
INSPECT statement. 

8. Th~~ rules for tallying are as follows: 

1108883 

a. If the ALL phrase is specified, the contents of the data item referenced by identifier-2 are incre
mented by I for each occurrence of literal- I matched within the contents of the data item refer
enced by identifier- I. 

INSPECT word TALL YING count FOR ALL ''BA". 

word 
word 

BARBARA 
HBAABCT 

count 
count 

2 
I 

7-67 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

INSPECT' 

b. If the LEADING phrase is specified, the contents of the data item referenced by identifier-2 arc 
incremented by I for each contiguous occurrence of literal-I matched within the contents of the 
data item referenced by identifier- I, provided that the leftmost such occurrence is at the point 
where comparison began in the first comparison cycle in which literal-I was eligible to participate. 

INSPECT word TALL YING count-I FOR LEADING "N" BEFORE INITIAL "O", count-2 
FOR LEADING "A" BEFORE INITIAL "R". 

word 
word 

PATTERSON 
MCKINNON 

cou111t-I 
cou111t-I 

0 
2 

count-2 
count-2 

I 
0 

c. If the CHARACTERS phrase is specifit::d, the contents of the data item referenced by identifier-
2 are incremented by I for each character matched (refer to General Rule 5e) within the contents 
of the data item referenced by identifier- I. 

INSPECT word TALLYING count FOR CHARACTERS. 

word 
word 

KOMP 
HARRINGTON 

count 
count 

4 
IO 

Format 2:: 

7-68 

9. The required words ALL, LEADING, and FIRST are adjectives that apply to each succeeding BY 
phrase until the next adjective appears. 

10. The rules for replacement are as follows: 

a. When the CHARACTERS phrase is specified, each character matched (refer to General Rule 5c) 
in the contents of the data item referenced by identifier-I is replaced by literal-4. 

INSPECT word REPLACING CHARACTERS BY "M". 

word 
word 

MMMGOOD 
KOUNT2IO 

count 
count 

MMMMMMM 
MMMMMMMM 

b. When the adjective ALL is specified, each occurrence of literal-3 matched in the contents of the 
data item referenced by identifier-I is replaced by literal-4. 

INSPECT word REPLACING ALL "R" BY "Z" BEFORE INITIAL "B". 

word 
word 

ROBERTS 
RCHRBR 

after 
after 

ZOBERTS 
ZCHZBR 

c. When the adjective LEADING is specified, each contiguous occurrence of literal-3 matched in 
the contents of the data item referenced by identifier-I is replaced by literal-4, provided that the 
leftmost occurrence is at the point where comparison began in the first comparison cycle in which 
literal-3 was eligible to participate. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

INSPECT word REPLACING LEADING "S" BY "X" AFTER INITIAL "O". 

word 
word 

SPORTS 
CROSS 

after 
after 

SPORTX 
CROXX 

INSPECT 

d. When the adjective FIRST is specified, the leftmost occurrence of literal-3 matched within the 
contents of the data item referenced by identifier-I is replaced by literal-4. 

Format 3: 

INSPECT word REPLACING FIRST "A" BY "S". 

word 
word 

ABCA 
TVANAR 

after 
after 

SBCA 
TVSNAR 

1 I. A Format 3 INSPECT statement is interpreted and executed as though two successive INSPECT 
statements specifying the same identifier-I had been written: one statement is a Format I statement 
with TALL YING phrases identical to those specified in the Format 3 statement. The other statement 
is a Format 2 statement with REPLACING phrases identical to those specified in the Format 3 state
ment. The general rules given for matching and counting apply to the Format I siatement; the general 
rules given for matching and replacing apply to the Format 2 statement. 

Examples: 

INSPECT word TALLYING count-I FOR LEADING "L" BEFORE INITIAL "A'', count-2 FOR LEAD
ING "A" BEFORE INITIAL "L". 

word 
word 

LARGE 
ANALYST 

count-I 
count-I 

I 
0 

count-2 
count-2 

0 
I 

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E" AFTER 
INITIAL '·'L". 

word = CALLAR 
word = SALAMI 
word = LATTER 

count = 2 
count = I 
count = I 

after = CALLAR 
after = SALEMI 
after = LETTER 

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X". 

word 
word 

1108883 

ARXAX 
HAND AX 

after = GRXAX 
after = HGNDGX 

7-69 



B 1000 Systems COBOL74 Reference Manual 
Procedme Division 

INSPECT' 

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL "A" BY 
''B''. 

word = ADJECTIVE 
word = JACK 
wont = JU JMAB 

count = 6 
count = 3 
count = 5 

after = BDJCTIVE 
after = JBCK 
after = JUJMBB 

INSPECT word REPLACING ALL "X" BY "Y", '"B" BY "Z", "W" BY "Q" AFTER INITIAL "R". 

word = RXXBQWY 
word = YZACDWBR 
word = RA WRXEB 

after = RYYZQQY 
after = YZACDWZR 
after = RA QR Y EZ 

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A". 

before: 2 X Z A B C D 
after: B B B B B A B C D 

INSPECT word REPLACING ALL "S" BY "H", "B" BY "A", "P" BY "L", "C" BY "E" .. 

word = SBPC after = HALE 
wordl = HOPPOWPOG after = HOLLOWLOG 

7-70 



MERGE 

B 1000 Systems COBOL74 Reference. Manual 
Procedure Division 

MERGE 

The MERGE statement combines two or more files on a set of specified keys. and during the process makes 
records available. in merged order. to an output procedure or an output file. 

General Format: 

MERGE file-:name-1 

{ 

ASCENDING } 
ON KEY data-name-I [ , data-name-2 ] 

DESCENDING 

[
ON { ASCENDING } KEY data-name-3 ( , data-name-4] ... ] 

DESCENDING 

( COLLA TING SEQUENCE IS alphabet-name ] 

USING fi.le-name-2 [{PURGE l] , file-name-3 [{ PURGE }] [ file-name4 [j PURGE t l] 
RELEASE RELEASE {RELEASE(j 

OUTPUT PROCEDURE IS procedure-name-I [{;;UGH } procedure-name-2 l 
9 IVING file-name-5 

Syntax Rules: 

L File-name- I must be described in a sort-merge file description (SD) entry in the DAT A DIVISION. 
2. Procedure-name- I represents the name of an output procedure. 
3. File-name-2. file-name-3, file-name-4, and file-name-5 must be described in a file description entry 

(FD). not in a sort-merge file description entry (SD). in the DATA DIVISION. The actual size of the 
logical record(s) described for file-name-2, file-name-3, file-name-4, and file-name-5 must be equal to 
the actual size of the logical record(s) described for file-name- I. If the data descriptions of the elemen
tary items that make up these records are not identical, it is the programmer's responsibility to de
scribe the corresponding records in such a manner so as to cause an equal number of character posi
tions to be allocated for the corresponding records. 

4. The words THRU and THROUGH are equivalent. 
5. Data-name-I. data-nam€-2. data-name-3. and data-name-4 are KEY data-names and are subject to the 

following rules: 

a. The data items identified by KEY data-names must be described in records associated with file
name- I. 

1108883-001 7-71 

I 

I 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

MERGE 

b. KEY data-names may be qualified. 
c. The data items identified by KEY data-names must not be variable length items. 
d. If file-name-I has more than one record description, then the data items identified by KEY data

names may all be described within one of the record descriptions or in any combination of record 
descriptions. It is not necessary to redescribe the KEY data-names in each record description. 

e. None of the data items identified by KEY data-names can be described by an entry which either 
contains an OCCURS clause or is subordinate to an entry which contains an OCCURS clause. 

6. No more than one file-name from a multipl1~ file reel can appear in the MERGE statement. 
7. File-names must not be repeated within the MERGE statement. 
8. MERGE statements may appear anywhere except in the Declarative portion of the PROCEDURE DI

VISION or in an input or output procedure associated with a SORT or MERGE statement. 
9. As many as eight file-names may be specified in the USING clause. 

General Rules: 

7-72 

I. The MERGE statement merges all records contained on file-name-2, file-name-3, and file-name-4. The 
files referenced in the MERO E statement must not be open at the time the MERGE statement is 
executed. These files are automatically opened and closed by the MERGE operation with all imp:licit 
functions performed. such as the execution of any associated USE procedures. The terminating func
tion for all files is performed as if a CLOSE statement. without optional phrases. had been executed 
for each file. 

2. The data-names following the word KEY are listed from left to right in the MERGE statement in order 
of decreasing significance without regard to division into KEY phrases. In the format, data-name-I 
is the major key. data-name-2 is the next most significant key, and so forth. 

a. When the ASCENDING phrase is specified, the merged sequence will be from the lowest value 
of the contents of the data items identified by the KEY data-names to the highest value, according 
to the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified. the merged sequence will be from the highest value 
of the contents of the data items ident1ified by the KEY data-names to the lowest value. according 
to the rules for comparison of operands in a relation condition. 

3. The collating sequence that applies to the comparison of the nonnumeric key data items specified is 
determined in the following order of precedence: 

a. First. the collating sequence establish1~d by the COLLA TING SEQUENCE phrase. if specified, 
in that MERGE statement. 

b. Second. the co11ating sequence establishEd as the program co11ating sequence. 

4. The output procedure must consist of one or more paragraphs or sections that appear contiguously 
in a source program and do not form a part of any other procedure. In order to make merged records 
available for processing. the output procedure must include the execution of at least one RETURN 
statement. Control must not be passed to the output procedure except when a related SORT or 
MERGE statement is being executed. The output procedure may consist of any procedures needed 
to select. modify. or copy the records that . .ire being returned one at a time in merged order. from 
file-name- I. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

The restrictions on the procedural statements within the output procedure are as follows: 

MERGE 

a. The output procedure must not contain any transfers of control to points outside the output proce
dure. ALTER. GO TO, and PERFORM statements in the output procedure are not permitted to 
refer to procedure-names outside the output procedure. COBOL74 statements that cause an implied 
transfer of control to declaratives are allowed. 

b. The output procedures must not contain any SORT or MERGE statements. 
c. The remainder of the PROCEDURE DIVISION must not contain any transfers of control to points 

inside the output procedures. ALTER. GO TO. and PERFORM statements in the remainder of 
the PROCEDURE DIVISION are not permitted to refer to procedure-names within the output pro
cedures. 

5. If an output procedure is specified. control passes to it during execution of the MERGE statement. 
The compiler inserts a return mechanism at the end of the last paragraph or section in the output 
procedure. When control passes the last statement in the output procedure. the return mechanism pro
vides for termination of the merge, and then passes control to the next executable statement after the 
MERGE statement. Before entering the output procedure. the merge procedure reaches a point at 
which it can select the next record in merged order when requested. The RETURN statements in the 
output procedure are the requests for the next record. 

6. If the GIVING phrase is specified. all the merged records in file-name- I are automatically written on 
file-name-5 as the implied output procedure for this MERGE statement. 

7. When. according to the rules for the comparison of operands in a relation condition. the contents of 
all the key data items of one data record are equal to the contents of the corresponding key data items 
of one or more other data records. the order of return of these records: 

a. Follows the order of the associated input files as specified in the MERGE statement. 
b. Is such that all records associated with one input file are returned prior to the return of records 

from another input file. 

8. When the records in the files referenced by file-name-2. file-name-3 .... are not ordered as described 
in the ASCENDING or DESCENDING KEY clauses. MERGE takes place as previously described 
but with all improperly ordered data records being placed on the output file or returned to the output 
procedure immediately after being read from respective input files. As a result. when such a condition 
exists, the output from the MERGE statement is not in a strict ASCENDING or DESCENDING KEY 

1108883-001 7-73 

I 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

MOVE 

MOVE 

The MOVE statement transfers data. in accordance with the rules of editing. to one or more data areas. 

General Format: 

Format I: 

[ MOVE { 
identifier- I } 
literal 

TO identifier-2 [, i<lentifier-3 J 

Format 2: 

[
---- { CORRESPONDING } J MOVE identifier-I TO identifier-2 

CORR 

·-------------------- ------------------~----

Syntax Rules: 

I. Identifier- I and literal represent the sending area; identifier-2. identifier-3 ..... represent the receiving 
area. 

2. CORR is an abbreviation for CORRESPONDING. 
3. When the CORRESPONDING phrase is used, both identifiers must be group items. 
4. An index data item cannot appear as an operand of a MOVE statement. Refer to the USAGE clause 

in Section 6. 

General Rules: 

7-74 

I. ff the CORRESPONDING phrase is used. selected items within identifier-I are moved to selected 
items within identifier-2, according to the rult.!s given in the CORRESPONDING phrase. The results 
are the same as if the user had referred to e .. 1ch pair of corresponding identifiers in separate MOVE 
statements. 

2. The data designated by the literal or identifier-I is moved first to identifier-2. then to identifier-3. and 
so on. The rules governing identifier-2 also apply to the other receiving areas. Any subscripting or 
indexing associated with identifier-2 .... $, is evaluated immediately before the data is moved to the 
respective data item. 

Any subscripting or indexing associated with identifier- I is evaluated only once. immediately before 
data is moved to the first of the receiving operands. The result of the statement: 

MOVE a (b) TO b, c (b) 

is equivalent to: 

MOVE a (b) TO temp 
MOVE temp TO b 
MOVE temp TO c (b) 

Temp is an intermediate result item provided by the compiler. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

,MOVE 

3. Any MOVE in which the sending and receiving items are both elementary items is an elementary 
move. Every elementary item belongs to one of the following categories: numeric, alphabetic, alphanu
meric, numeric edited, alphanumeric edited. These categories are described in the PICTURE clause 
in Section 6. Numeric literals belong to the category numeric, and nonnumeric literals belong to the 
category alphanumeric. The figurative constant ZERO belongs to the category numeric. The figurative 
constant SPACE belongs to the category alphabetic. All other figurative constants belong to the 
category alphanumeric. 

The following rules apply to an elementary move between the categories: 

a. The figurative constant SPACE, a numeric edited, alphanumeric edited, or alphabetic data item 
must not be moved to a numeric or numeric edited data item. 

b. A numeric literal, the figurative constant ZERO, a numeric data item or a numeric edited data item 
must not be moved to an alphabetic data item. 

c. A noninteger numeric literal or a noninteger numeric data item must not be moved to an alphanu
meric or alphanumeric edited data item. 

d. All other elementary moves are legal and are performed according to the rules given in General 
Rule 4. 

4. Any necessary conversion of data from one form of internal representation to another takes place dur
ing legal elementary moves, along with any editing specified for the receiving data item: 

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any neces
sary space filling takes place as defined under Standard Alignment Rules in Section 2. If the size 
of the sending item is greater than the size of the receiving item, the excess characters are trun
cated on the right after the receiving item is filled. If the sending item is described as being signed 
numeric, the operational sign is not moved. If the operational sign occupied a separate character 
position (refer to the SIGN clause in Section 6), that character is not moved and the size of the 
sending item is considered to be one less than the actual size (in terms of standard data format 
characters). 

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and any 
necessary zero-filling takes place as defined under the Standard Alignment Rules, except where 
zeroes are replaced because of editing requirements. 

l 108883 

I) When a signed numeric item is the receiving item, the sign of the sending item is placed in 
the receiving item. Refer to the SIGN clause in Section 6. Conversion of the representation 
of the sign takes place as necessary. If the sending item is unsigned, a positive sign is generated 
for the receiving item. 

2) When an unsigned numeric item is the receiving item, the absolute value of the sending item 
is moved and no operational sign is generated for the receiving item. 

3) When a data item described as alphanumeric is the sending item, data is moved as if the sending 
item were described as an unsigned numeric integer. 

c. When a receiving field is described as alphabetic, justification and any necessary space-filling takes 
place as defined under the Standard Alignment Rules. If the sizP of the sending item is greater 
than the size of the receiving item, the excess characters are truncat~J on the right after the receiv
ing item is filled. 

7-75 



MOVE 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

5. Any move that is not an elementary move is treated exactly as if it were an alphanumeric to alphanu
meric elementary move, except that there is no conversion of data from one form of internal represen
tation to another. In such a move, the receiving area is filled without consideration for the individual 
1elementary or group items contained within either the sending or receiving area, except as noted in 
General Rule 4 of the OCCURS clause in Section 6. 

6. The validity of the various types of MOVE statements is summarized in Table 7-4. The general rule 
reference (for example, 4c) indicates the rule that prohibits the move or the behavior of a valid move. 

Table 7-4. A Valid MOVE Statement 

ALPHA 

ALPHA 

ALPHA 

'ategory of 
Sending 

Data Item 

BETIC 

NUMERIC 

NUMERIC EDITED $GER c 
NINTEGER 

NU MER 

NU MER IC EDITED 

Alphabetic 

Yes/4c 

Yes/4c 

Yes/4c 

No/3b 

No/3b 
No73D 

VALID MOVE COMBINATIONS 

( :ategory of Receiving 

Alphanumeric 
Edited 

Alphanumeric 
---+-

Yes/4a 

Yes/4a 

Yes/4a 

Yes/4a 

No/3c 
Yes/4a 

---L-

Data Item 

Numeric Integer 
Numeric Non integer 
Numeric Edited 

No/3a 

Yes/4b 

No/3a 

Yes/4b 

Yes/4b 
No/3a 

Figure 7-1 shows the valid combinations of sending and receiving fields permitted in COBOL74. 

7-76 

--



RECENING 

SENDING 

ALPHABETIC 

GROUP 
AN 

ELEM (a) 

AE 

DISPLAY INTEGER 
NUMERIC 
(DN OR LIT) REAL 

CMP INTEGER (b) 

NUMERIC REAL 

NE 

a - also non-numeric literal 

b - also undigit literal 

NON-NUMERIC NUMERIC 
MOVE MOVE 

Q) ,/ 

Q) ,/ 

G) ,/ 

© ,/ 

G) ,/ 

@ ,/ 

G) y I 

* ILLEGAL 
t 

G12337 

AN DISPLAY NUMERIC CMPNUMERIC 
ALPHABETIC AE NE 

GROUP ELEM INTEGER REAL INTEGER REAL 

CD (i) CD @ * * * * * 
(i) (i) (i) (i) CD Q) G) G) CD 
Q) CD CD ® Q) Q) Q) Q) (J) 
(i) (i) 05 (6) * * * * * 
* Q) Q) ® Q) Q) Q) Q) G) 

* Q) * * @ Q) @ Q) (j) 

* CD CD © (2) Q) Q) @ (j) 

* G) * * G) Q) @ G) G) 

* CD CD @ * * * * * 

PROPER ZONES 
ZERO ZERO ANY SENDING STRIPPED OR 

LEFT JUST. BY SPACE FILL ON FILL ON NECESSARY ZONES SUPPLIED BY 
JUST. DECIMAL FILL RIGHT LEFT TRANSLATION STRIPPED INTERPRETER 

,/ ,/ ,/ 

,/ ,/ ,/ 

,/ ,/ ,/ 

,/ ,/ ,/ ,/ 

,/ ,/ ,/ ,/ 

,/ ,/ / 
,/ / 

Figure 7-1. Valid MOVE Statement Combinations 

EDITING 
PERFORMED 

,/ 

/ 
,/ 

s 
0 
< m 



8 1000 Systems COBOL74 Reference Manual 
Procedure Division 

MULTIPLY 

MULTllPLY 

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items equal 
to the results. 

General Format: 

Format I: 

MULTIPLY { identifier-l} BY identifier-2 [ROUNDED] l 
literal-1 

[, identifier-3 [ROUND FD]] . . . (;ON SIZE ERROR imperative-statement] 
·----- ···-·-···-· -···-·-------· ____ _J 

Format 2: 

MULTIPLY { 
identifier-I } 
literal-1 

BY 

[, identifier-4 [ROUNDED l] 

{ 
ident 1 fier-2 } 
literal-2 

GIVING identifier-3 [ROUNDED! 

[:ON SIZE FRROR imperative-statement] 

Syntax Rules: 

l. Each identifier must refer to a numeric elementary item, except that in Format 2 each identifier fol
lowing the word GIVING must refer to eitlher an elementary numeric item or an elementary numeric 
edited item. 

2. Each literal must be a numeric literal. 
3. The composite of operands. determined by superimposing all receiving data items of a given state

ment, aligned on decimal points, must not: exceed 18 digits. 

General Rules: 

7-78 

I. Refer to ROUNDED Phrase, SIZE ERROR Phrase. Arithmetic Statements, Overlapping Operands, 
and Multiple Results in Arithmetic Statements in this section for additional rules and information. 

2. When Format I is used: the value of identifier-I or literal-I is multiplied by the value of identifier-
2. The value of the multiplier (identifier-2) is replaced by this product; similarly for identifier-I or liter
al-I and identifier-3. and so forth. 

3. When Format 2 is used, the value of identifii~r-1 or literal-I is multiplied by identifier-2 or literal-2 
and the result is stored in identifier-3. identifier-4. and so on. 



OPEl\J 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

OPEN 

The OPEN statement initiates the processing of files. It also performs checking and/or writing of labels and 
other input-output operations. 

General Format: 

INPUT 

OUTPUT 
OPEN 

I -0 

EXTEND 

Syntax Rules: 

file-name-I 

[. file-name-2 

file-name-3 
[ , file-name-4 

file-name-5 
[ , file-name-6 

file-name-7 
file-name-8 

[ il~~~~E~I~~ ........... J 

[ ~~~~~~EWIND ] J 
[WITH NO REWIND] 
[WITH NO REWIND] 
[' 
[ 

] 
] 

1. The REVERSED and the NO REWIND phrases can only be used with sequential files. Refer to CLOSE 
in this section for additional information. 

2. The 1-0 phrase can be used only for mass storage files. 

I 

3. The EXTEND phrase can be used only for sequential files. I 
4. The EXTEND phrase must not be specified for multiple file reels. Refer to the 1-0-CONTROL 

Paragraph in Section 5. 
5. The files referenced in the OPEN statement need not all have the same organization or access. 

General Rules: 

1. The successful execution of an OPEN statement determines the availability of the file and results in the 
file being in an open mode. 

2. The t:::xecution of an OPEN statement does not affect either the contents or availability of the file's rec
ord area. 

1108883-001 7-79 

I 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

OPEN 

7-80 

3. When a given file is not in an open mode, no statement (except for a SORT or MERGE statement with 
the USING or GIVING phrases) that references that file, either explicitly or implicitly, can be execut,ed. 

4. An OPEN statement must be successfully executed prior to the execution of any of the permissible input
output statements. In Table 7-5, I, R, or S at an intersection indicates that the specified statement, used 
in the access mode given for that row, may be used with the corresponding file organization and open 
mode given at the top of the column. 



OPEN 

File Access 
Mode 

Sequential 

Random 

Dynamic 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

Table 7-5. Permissible Statements 

Open 
Mode 

Statement Input Output Input-Output 

READ IRS I R S 
WRITE IRS 
REWRITE IRS 
START IR IR 
DELETE I R 

READ IRS IRS 
WRITE IRS IRS 
REWRITE IRS 
START 
DELETE IR 

READ I R IR 
WRITE I R I R 
REWRITE I R 
START I R I R 
DELETE I R 

The letters I, R, and S have the following meanings: 

I = Indexed 

R = Relative 

S = Sequential 

Extend 
--

s 

5. A ffle may be opened with the INPUT, OUTPUT, EXTEND, and I-0 phrases in the same program. 
Following the initial execution of an OPEN statement for a file, each subsequent OPEN statement 
execution for that .~~ .. l}?.;>~le must be preceded by the execution of a CLOSE statemenL without the 
REEL, UNIT, or }4~('.f~ phrase, for that file. 

6. Execution of the OPEN statement does not obtain or release the first data record. 
7. If label records are specified for the file, the beginning labels are processed as follows: 

a. When the INPUT phrase is specified. the execution of the OPEN statement causes the labels to 
be checked in accordance with conventions for input label checking. 

b. When the OUTPUT phrase is specified, the execution of the OPEN statement causes the labels 
to be written in accordance with conventions for output label writing. 

lf label records arc not specified, it is possible by operator intervention to equate the file to one 
with labels. in which case the label records are ignored. 

8. The file description entry for file-name- I, file-name-2, file-name-5, file-name-6, file-name-7. or file
name-8 must be equivalent to that used when this file was created. 

1108883-001 7-80A I 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

OPEN 

9. If an input file is designated with the OPTIONAL phrase in the SELECT clause, the object program 
causes an interrogation for the presence or absence of this file. If the file is not present. the first 
READ statement for this file causes the AT END condition to be executed only when the operator 
has responded with an "OF" system message. Refer to the READ Statement in this section. 

10. The REVERSED and NO REWIND phrases can only be used with sequential single reel/unit files. 
Refer to CLOSE in this section. 

11. The REVERSED and WITH NO REWIND phrases are ignored if they do not apply to the storage 
media on which the file resides. 

12. If the storage media for the file permits rewinding, the following rules apply: 

a. When neither the REVERSED, the EXTEND, nor the NO REWIND phrase is specified. execution 
of the OPEN statement causes the file to be positioned at the beginning. 

b. When the NO REWIND phrase is specified, execution of the OPEN statement does not cause the 
file to be repositioned; the file must be already positioned at the beginning prior to execution of 
the OPEN statement. 

c. When the REVERSED phrase is specified, the file is positioned at the end by execution of the 
OPEN statement. 

13. When the REVERSED phrase is specified, the subsequent READ statements for the file make the 
data records of the file available in reversed order starting with the last record. 

14. For files being opened with the INPUT or I-0 phrase, the OPEN statement sets the current record 
pointer to the first record currently existing within the file. For indexed files, the prime record key 
is established as the key of reference and is used to determine the first record to be accessed. If no 
records exist in the file, the current record pointer is set such that the next executed Format I READ 
statement for the file results in an AT END condition. 

15. When the EXTEND phrase is specified, the OPEN statement positions the file immediately following 
the last logical record of that file. Subsequent WRITE statements referencing the file will add records 
to the file as though the file had been opened with the OUTPUT phrase. 

16. When the EXTEND phrase is specified and the LABEL RECORDS clause indicates label records are 
present, the execution of the OPEN statement includes the following steps: 

a. The beginning file labels are processed only in the case of a single reel unit file. 
b. The beginning reel/unit labels on the last existing reel/unit are processed as though the file was 

being opened with the INPUT phrase. 
c. The existing ending file labels are processed as though the file is being opened with the INPUT 

phrase. These labels are then deleted. 
d. Processing then proceeds as though the file had been opened with the OUTPUT phrase. 

17. The 1-0 phrase permits the opening of a mass storage file for both input and output operations. Since 
this phrase implies the existence of the file, it cannot be used if the mass storage file is being initially 
created. 

18. When the 1-0 phrase is specified and the LABEL RECORDS clause indicates label records are pres
ent, the execution of the OPEN statement includes the following steps: 

a. The labels are checked in accordance with conventions for input-output label checking. 
b. The new labels are written in accordance with conventions for input-output label writing. 

19. Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is cre
ated. At that time the associated 

1108883-001 7-81 



OPEN 

7-82 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 



PERFORM 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

PERFORM 

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return control 
implicitly whenever execution of the specified procedure is complete. 

General Format: 

Format I: 

THRU ~ [ 
PERFORM procedure-name-I [{THROUGH l. procedure-name-2] 

-·-----------i 

Format 2: 

['ERFORM procedure-name-I [ {=UGH} procedure-name-2] 
~ identifier-1 ~ 

l integer-1 j Tl~ 
Format 3: 

PERFORM procedure-name-I 
[ 

J THROUGH ~. procedure-name-2] UNTIL condition-I 
lTHRU j 

'-----------------------------------------··-----

1108883 7-83 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

PERFORM 

Format 4: 

-------- -----------------------------

PERFORM procedure-name-I 
j THROUGH} ] 
]. procedure-name-2 
( THRU 

VARYING 
t identifier-2 } {' identifier-3 } 
\ FROM index-name-2 
~index-name-I_ literal-I 

BY j identifier-4 } 

( literal-2 
UNTIL condition- I ---

[AFTER 
~ identifier-5 ji { identifier-6 } 

, FROM index-name-4 
(_ index-name-3 !1 literal-3 

BY { identifier-7 } 

literal-4 
!JNTIL condition-2 J 

Syntax Rules: 

7-84 

I. Each identifier represents a numeric elementary item described in the DATA DIVISION. In Format 
2, identifier-I must be described as a numeric integer. 

2. Each literal represents a numeric literal. 
3. The words THRU and THROUGH are equivalent. 
4. If an index-name is specified in the VAR YING or AFTER phrase, then: 

a. The identifier in the associated FROM and BY phrases must be an integer data item. 
b. The literal in the associated FROM phrase must be a positive integer. 
c:. The literal in the associated BY phrase must be a nonzero integer. 

5. I:f an index-name is specifed in the FROM phrase, then: 

a. The identifier in the associated VARYING or AFTER phrase must be an integer data item; 
b. The identifier in the associated BY phras 1~ must be an integer data item. 
c. The literal in the associated BY phrase must be an integer. 

6. Literal in the BY phrase must not be zero. 
7. Condition- I, condition-2 may be any conditional expression as described in Conditional Expressions 

in this section. 
8. Where procedure-name- I and procedure-name--2 are both specified and either is the name of a proce

dlure in the declarative section of the program, then both must be procedure-names in the same dec
larative section. 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

PERFORM 

General Rules: 

1. The data items referenced by identifier-4 and identifier-7 must not have a zero value. 
2. If an index-name is specified in the VARYING or AFTER phrase, and an identifier is specified in 

the associated FROM phrase, then the data item referenced by the identifier must have a positive val
ue. 

3. When the PERFORM statement is executed, control is transferred to the first statement of the proce
dure named procedure-name-1, except as indicated in General Rules 6b, 6c, and 6d which follow. This 
transfer of control occurs only once for each execution of a PERFORM statement. For those cases 
where a transfer of control t0 the named procedure does take place, an implicit transfer of control 
to the next executable statement following the PERFORM statement is established as follows: 

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, then the return 
is after the last statement of procedure-name-1. 

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified, then the return is 
after the last statement of the last paragraph in procedure-name-1. 

c. If procedure-name-2 is specified and it is a paragraph-name, then the return is after the last state
ment of the paragraph. 

d. If procedure-name-2 is specified and it is a section-name, then the return is after the last statement 
of the last paragraph in the section. 

4. No particular sequential relationship is required to exist between procedure-name-I and procedure
name-2. There may be more than one logical path of program control through the performed range 
of procedures. A common method, though not a required one, of documenting the terminal paragraph 
of a performed range of procedures is through the use of the EXIT statement. 

5. An implicit return mechanism is established at the end of a performed range of procedures and is acti
vated by the execution of a PERFORM statement. Program control reaching an active return 
mechanism always returns to the activating PERFORM statement. A return mechanism permanently 
deactivates by transferring ,program control back to a PERFORM statement. An active return 
mechanism is temporarily deactivated by the execution of a PERFORM statement. Program control 
always passes through a nonactive return mechanism to the next executable statement following the 
PERFORM range. 

6. The PERFORM statements operate as follows with General Rule 5 applying to all formats: 

1108883 

a. Format I is the format of the basic PERFORM statement. A procedure referenced by this type 
of PERFORM statement is executed once and then control passes to the next executable statement 
following the PERFORM statement. 

b. Format 2 is the format of the PERFORM ... tIMES statement. The procedures are performed the 
number of times specified by integer-1 or by the initial value of the data item referenced by identifi
er- I for that execution. If, at the time of execution of a PERFORM statement, the value of the 
data item referenced by identifier-1 is equal to zero or is negative, control passes to the next 
executable statement following the PERFORM statement. Following the execution of the proce
<iures the specified number of times, control is transferred to the next executable statement fol
lowing the PERFORM statement. 

During execution of the PERFORM statement, references to identifier-1 cannot alter the number 
of times the procedures are to be executed from that which was indicated by the initial value of 
identifier- I. 

7-85 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

PERFORM 

7-86 

c. Format 3 is the format of the PERFORM .... UNTIL statement. The specified procedures are per
formed until the condition specified by the UNTIL phrase is TRUE. When the condition is TRUE, 
control is transferred to the next executable statement after the PERFORM statement. If the condi
tion is TRUE when the PERFORM statement is executed, no transfer to procedure-name-I takes 
place, and control is passed to the next executable statement following the PERFORM statement. 

d. Format 4 is the format of the PERFORM .. VAR YING statement. This variation of the PERFORM 
statement is used to augment the values n!ferenced by one or more identifiers or index-names in 
an orderly fashion during the execution of a PERFORM statement. In the following discussion, 
every reference to identifier as the object of the VARYING, AFTER, and FROM (current value) 
phrases also refers to index-names. When index-name appears in a VARYING and/or AFTER 
phrase, it is initialized and subsequently augmented according to the rules of the SET statement. 
When index-name appears in the FROM phrase, identifier, when it appears in an associated 
VARYING or AFTER phrase, is initialized according to the rules of the SET statement. Subse
quent augmentation is described in the following paragraphs. 

Identifier-2 and all occurrences, if any, of identifier-5 are set, in the order of occurrence in the 
PERFORM statement, to the value of the .literal or the current value of the identifier in the associ
ated FROM phrase. Condition-I is then evaluated. 

If any condition, other than the last, is FALSE on any occasion when it is evaluated, the next 
condition is evaluated immediately. 

If the last condition is FALSE when evaluated, the sequence of procedures, procedure-name-I 
through procedure-name-2, is executed once. The last BY value is then added to the associated 
identifier-2 or identifier-5 and the condition evaluated again. 

If condition-I is TRUE when evaluated, control is transferred to the next executable statement 
after the PERFORM statement. If condition-I is TRUE the first time it is evaluated, the remaining 
conditions are not evaluated and the sequence of procedures, procedure-name-I through pro 1ce
dure-name-2, is not executed. 

If any condition-2 is TRUE when evaluated, these actions take place: first, the associated identifi
er-5 is set to the value of literal-3 or the current value of identifier-6 in the associated FROM 
phrase. Second, the identifier of the immediately preceding AFTER or VARYING phrase is incre
mented by the associated BY value, and the condition specified in that preceding phrase is then 
evaluated. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

PERFORM 

Figure 7-2 is a flowchart for the VARYING phrase of a PERFORM statement having one condition. 

K 108883 

G12338 

ENTRANCE 

Set 
identjfier-2 equal to 
current FROM value 

Execute 
procedure-name-1 THAU 

procedure-name-2 

AugmentD 
identifier-2 with 

current BY value 

Exit 

Figure 7-2. PERFORM VARYING with One Condition 

7-87 



PERFOHM 

B l 000 Systems COBOL 74 Reference Manual 
Procedure Division 

Figure 7 .. 3 is a flowchart for the VARYING phrase of a PERFORM statement having two conditions. 

G12339 

7-88 

ENTRANCE 

L __ J Set identifier-2 and 
identifier-5 to current . 

FROM values 

>TRUE 

>TRUE 

Execute 
procedure-name-1 THBU 

procedure-name-2 

Augment 
identifier-5 with 
current BY value 

J 
J 

,, 
Set 

identifier-5 to its 
current FROM value 

Augment 
identifier-2 with 
current BY value 

Figure 7-3. PERFORM VAFlYING with Two Conditions 

Exit 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

PERFORM 

7. A procedure executed under the control of a PERFORM statement may execute PERFORM state
ments. There is no requirement that the range of procedures executed under the control of the nested 
PERFORM statement be declared totally within, or disjoint from, the range of procedures executed 
by the first PERFORM statement. The permanent deactivation of an active return mechanism causes 
the last return mechanism temporarily deactivated to again become active, allowing overlapping PER
FORM ranges. or two or more PERFORM ranges that have a common exit point, to logically execute 
the same as disjoint PERFORM ranges. 

Transferring program control, by means of a GO TO statement, from a range of procedures being 
executed under control of a PERFORM statement does not cause the return mechanism to be deacti
vated. Subsequently transferring program control back into the PERFORM range causes control to 
return to the PERFORM statement, provided that the return mechanism is still active. Repeatedly 
branching from a PERFORM range without allowing control to ever reach an active return mechanism 
may cause the program to terminate abnormally by exhausting the resources allocated to account for 
return mechanisms. 

1108883-00 I 7-89 



8 1000 Systems COJBOL,74 Reference Manual 
Procedure Division 

READ 

READ 

For sequential access. the READ statement makes a\ ailable the next logical record from a file. For random 
access. the READ statement makes available a spec.ficd record from a mass storage file. 

General Format: 

Format I: 

L=--~~~~-~~~(:::~L:~_~_:_~--~-t~-t-em_~_n:_~_T_O_i_d_en-t-if-ie_r_] ________ J 
Format 2: 

--------------------------------------

READ file-name RECORD [ INTO identifier J 
[ : _KEY IS da~:a-name ] 

[ ; }NV ALIQ. KEY imperative-statement J 

Syntax Rules: 

7-90 

l. The INTO phrase must not be used when th'~ input file contains logical records of various sizes as indi
cated by their record descriptions. The storage area associated with identifier and the storage area which 
is the record area associated with file-name must not be the same storage area. 

2. For an Indexed File, data-name must be the name of a data item specified as a record key associated 
with file:name. 

3. Data-name may be qualified. 
4. Format 1 must be used for all files in seqt:.ential access mode. 
5. The NEXT phrase must be specified for Relarive and Indexed Files in dynamic access mode when records 

are to be retrieved sequentially. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

READ 

6. Format 2 is used for files in random access mode or for files in dynamic access mode when records 
are to be retrieved randomly. 

7. The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE procedure 
is sp1ecified for the file-name. 

lf,1·11111~1,,:11.1:1,:·:;1~· . · I 
General Rules: 

1. The associated file must be open in the INPUT or I-0 mode and must not be a SORT or MERGE 
file. Refer to the OPEN statement in this section. 

2. The record to be made available by a Format 1 READ statement files I 
is determined as follows: 

a. The record, pointed to by the current record pointer, is made available provided that the current 
record pointer is positioned by the START or OPEN statement and the record is still accessible 
through the path indicated by the current record pointer. If the record is no longer accessible, which 
may be caused by the deletion of the record or a change in an alternate record key, the current 
record pointer is updated to point to the next existing record within the established key of reference 
and that record is then made available. 

1108883-00 l 7-90A 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

READ 

b. If the current record pointer was positioned by the execution of a previous READ statement, the 
current record pointer is updated to point to the next existing record in the file with the established 
key of reference, and that record is then made available. 

3. The execution of the READ statement causes the value of the FILE ST A TUS data item, if any, associ
ated with file-name to be updated. Refer to I-0 Status in Section 5. 

4. Regardless of the method used to overlap access time with processing time, the concept of the READ 
statement i111::~11111!··11111:·:,ll''i:' · ·· · · ... ,,,,. is unchanged in that a record is available to the object I 
program prior to the execution of any statement following the READ statement. 

5. Whe:n the logical records of a file are described with more than one record description, these records 
automatically share the same storage area; this is equivalent to an implicit redefinition of the area. The 
contents of any data items which lie beyond the range of the current data record are undefined at the 
completion of the execution of the READ statement. 

6. If the INTO phrase is specified, the record being read is moved from the record area to the area 
specified by identifier according to the rules specified for the MOVE statement without the CORRE
SPONDING phrase. The sending area is considered to be a group item whose size is equal to the 
maximum record size for this file. 

The implied MOVE does not occur if the execution of the READ statement was unsuccessful. Any 
subscripting or indexing associated with identifier is evaluated after the record has been read and imme
diately before it is moved to the data item. 

7. Whe:n the INTO phrase is used, the record being read is available in both the input record area and 
the data area associated with identifier. 

8. If, at the time of execution of a Format 1 READ statement, the position of current record pointer 
for that file is undefined, the execution of that READ statement is unsuccessful. 

9. If, at the time of the execution of a Format 1 READ statement, no next logical record exists in the 
file, the AT END condition occurs, and the execution of the READ statement is considered unsuccess
ful. Refer to I-0 Status in Section 5. 

10. When the AT END condition is recognized, the following actions are taken in the specified order: 

a. A value is placed into the FILE ST A TUS data item, if specified for this file, to indicate an AT 
END condition. Refer to I-0 Status in Section 5. 

b. If the AT END phrase is specified in the statement causing the condition, control is transferred to 
the AT END imperative statement. Any USE procedure specified for this file is not executed. 

c. If the AT END phrase is not specified, then a USE procedure must be specified, either explicitly 
or implicitly for this file, and that procedure is executed. 

When the AT END condition occurs,. execution of the input-output statement which caused the con
dition is unsuccessful. 

11. Following the unsuccessful execution of any READ statement, the contents of the associated record area 
and the position of the current record pointer are undefined. For Indexed Files, the key of reference 
is allso undefined. 

12. When the AT END condition has been recognized., a Format $1 READ statement for that file must not I 
be (~xecuted without first executing one of the following: 

a. A successful CLOSE statement followed by the execution of a successful OPEN statement for that 
file. 

1108883-001 7-91 



8 1000 Systems COBOt74 Reference Manual 
Procedure:' Division 

READ 

7-92 

b. A successful START statement for the file. 
c. A successful Format 2 READ statement for that file. 
d. A SEEK statement. 

13. For a file for which dynamic access mode is specified. a Format I READ statement with the NEXT 
phrase specified causes the next logical record to be retrieved from that file as described in the pre
ceding General Rule 2. 

14. For an Indexed File being sequentially accessed. records having the same duplicate value in an alter
nate record key. which is the key of reference, are made available in the same order in which they 
are released by execution of WRITE statements. or by execution of REWRITE statements which 
create such duplicate values. 

15. For an Indexed File. if the KEY phrase is specified in a Format 2 READ statement, data-name is 
established as the key of reference for tlhis retrieval. If the dynamic access mode is specified, this 
key of reference is also used for retrievals by any subsequent executions of Format 1 READ state
ments until a different key of reference is established for the file. 

16. For an Indexed File. if the KEY phrase is not specified in a Format 2 READ statement, the prime 
record key is established as the key of reference for this retrieval. If the dynamic access mode· is 
specified. this key of reference is also used for retrievals by any subsequent executions of Format 
I READ statements until a different key of reference is established for the file. 

17. Execution of a Format 2 READ statement on an Indexed File causes the value of the key of refer
ence to be compared with the value contained in the corresponding data item of the stored records 
in the file. until the first record having an equal value is found. The current record pointer is posi
tioned to this record which is then made available. If no record can be so identified, the INV AUD 
KEY condition exists and execution of the READ statement is unsuccessful. Refer to the INVALID 
KEY Condition in Section 5. 

18. If the end of a reel or unit is recognizc:d during execution of a READ statement, and the logical 
end of the file has not been reached. the following operations are executed: 

a. The standard ending reel/unit label procedure. 
b. A reel/unit swap. 
c. The standard beginning reel/unit label procedure. 
d. The first data record of the new reel/unit is made available. 

19. If a Sequential File described with the OPTIONAL phrase is not present at the time the file is 
opened. then at the time of execution of the first READ statement, the AT END condition occurs 
and the execution of the READ statemt::nt is unsuccessful. The standard end-of-file procedures are 
not performed. Refer to the FILE-CONTROL Paragraph. and 1-0 Status in Section 5; OPEN State
ment. and USE Statement in Section 7. Exc·cution of the program then proceeds as specified in gen
eral rule 10. 

20. In a Sequential File. if the ACTUAL KEY phrase is specified for a file whose access mode is se
quential. the execution of a Format I READ statement updates the contents of the ACTUAL KEY 
data item to the ordinal number of the logical record accessed. 

211. The execution of a Format 2 READ statement accesses the record specified by the contents of the 
ACTUAL KEY data item. 

22. If. upon the execution of a Format 2 READ statement. the contents of the ACTUAL KEY data item 
are less than l or greater than the ordinal number of the last record written to the file. the READ 
statement is unsuccessful and the INVALID KEY condition exists. 

23. In a Relative File. if the RELATIVE KEY phrase is specified. the execution of a Format I READ 
statement updates the content of the RELATIVE KEY data item so that it contains the relative rec
ord number of the record made available. 



1108883-001 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

READ 

7-93 



B JOOO Systems COBOL74 Reference Manual 
Procedure Division 

RECEIVE 

RECEIVE 

The RECEIVE statement makes available to the COBOL74 program a message and other pertinent information 
about that data from a queue. The RECEIVE statement allows for a specific imperative statement when no 
data is available. 

General Format: 

L. ______ R_E_C_E_I_V_E ___ c_d_-name -~-~-s:-~\2 __ G~:~_A_;_:_T_io_m_p_e_::_ie_i:_:_:_::_:_~_m_e_n_t_J ________ J 
Syntax Rules: 

I. Cd-name must reference an input CD. 

General Rules: 

7-94 

I. The contents of the data items specified by data-name-I (SYMBOLIC QUEUE) of the area referenced 
by cd-name designate the queue containing the message. Refer to the Communication Description 
Structure (CD) in Section 6. 

2. The message is transferred to the receiving character positions of the area referenced by identifier
! aligned to the left without space fill. 

3. When. during the execution of a RECEIVE statement, the data is made available in the data item 
referenced by identifier- I, control is transferred to the next executable statement, whether or not the 
NO DATA phrase is specified. 

4. When, during the execution of a RECEIVE statement, the data is not made available in the data item 
referenced by identifier-I: 

a. If .the NO DATA phrase is specified. thf RECEIVE operation is terminated with the indication 
that action is complete (refer to General Rule 5), and the imperative statement in the NO DATA 
phrase is executed. 

b. If the NO DATA phrase is not specified. execution of the object program is suspended until data 
is made available in the data item referenced by identifier- I. 

c. If the queue is unknown or access is denied to the queue. control passes to the next executable 
statement, whether or not the NO DATA phrase is specified. Refer to Table 6-3, Communication 
Status Key Condition. in Section 6. 

5. The data items identified by the input CD are appropriately updated at each execution of a RECEIVE 
statement. Refer to the Communication Des;;ription Structure (CD) in Section 6. 

6. [f a message is the same size as the area referenced by identifier- I, the message is stored in the area 
referenced by identifier- I. 

7. If a message size is less than the size of the area referenced by identifier- I, the message is aligned 
to the leftmost character position of the area referenced by identifier- I with no space fill. 

8. If a message size is greater than the size of the area referenced by identifier-I, the message fills the 
area referenced by identifier- I left to right. ~.tarting with the leftmost character of the message. The 
remainder of the message is discarded. 



A.ELEASE 

B JOOO Systems COBOL74 Reference Manual 
Procedure Division 

The RELEASE statement transfers records to the initial phase of a SORT operation. 

General Format: 

[ 
RELEASE record-name [FROM identifier] 

, ________ _ 
Syntax Rules: 

1. A RELEASE statement may only be used within the range of an input procedure associated with a 
SORT statement for a file whose Sort-Merge file description entry contains record-name. Refer to 
SORT in this section. 

2. Record-name must be the name of a logical record in the associated Sort-Merge file description entry 
and may be qualified. 

3. Record-name and identifier must not refer to the same storage area. 

General Rules: 

1. The execution of a RELEASE statement causes the record named by record-name to be released to 
the initial phase of a sort operation. 

2. If the FROM phrase is used, the contents of the identifier data area are moved to record-name, then 
the contents of record-name are released to the sort file. Moving takes place according to the rules 
specified for the MOVE statement without the CORRESPONDING phrase. 

3. The execution of a RELEASE statement has no effect upon either the contents or accessibility of 
the record area. If the sort-merge file is named in a SAME RECORD AREA clause, the logical record 
is also available to the program as a record of other files referenced in the same SAME RECORD 
AREA clause as the associated sort-merge file, as well as to the file associated with record-name. 
When control passes from the input procedure, the file consists of all those records which were placed 
in it by the execution of RELEASE statements. 

1108883 7-95 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

RETURN 

The RETURN statement obtains either sorted records from the final phase of a SORT operation or merged 
records during a MERGE operation. 

General Format: 

---] 
Syntax Rules: 

1. File-name must be described by a Sort-Merge file description entry in the DATA DIVISION. 
2. A RETURN statement may only be used withi!ll the range of an output procedure associated with a 

SORT or MERGE statement for file-name. 
3. The INTO phrase must not be used when the input file contains logical records of various sizes as 

indicated by their record descriptions. The storage area associated with identifier and the record area 
associated with file-name must not be the same storage area. 

General Rules: 

7-96 

I. When the logical records of a file are described with more than one record description, these records 
automatically share the same storage area. which is an implicit redefinition of the area. 

2 .. The execution of the RETURN statement causes the next record, in the order specified by the KEY 
clause in the SORT or MERGE statement, to be transferred to the record area. 

It is the responsibility of the COBOL74 programmer to account, if necessary, for the size of the 
logical record returned. 

3. If the INTO phrase is specified, the current record is moved from the input area to the area specified 
by identifier according to the rules for the MOVE statement without the CORRESPONDING phrase, 
with the sending area considered to be a group item having a fixed size equal to the maximum record 
size. The implied MOVE does not occur if ther1! is an AT END condition. Any subscripting or index
ing associated with identifier is evaluated after the record has been returned and immediately before 
it is moved to the data item. 

4.. When the INTO phrase is used, the data is available in both the input record area and the data area 
associated with identifier. 

5. If no next logical record exists for the file at ttie time of the execution of a RETURN statement, the 
AT END condition occurs. 

When the AT END condition occurs, no transfer of data to the record area takes place and the con
tents of the record area are undisturbed. After the AT END condition occurs, the contents of the 
record area are still accessible. After the execution of the imperative-statement in the AT END 
phrase, no other RETURN statement may be executed as part 9f the current output procedure. 



REWRITE 

B 1000 Systems COB0~74 Reference Manual 
Procedure Division 

The REWRITE statement logically replaces a record existing in a mass storage file. 

General Format: 

[; INVALID KEY imperative-statement] 

REWRITE 

[ 

REWRITE record-name [FROM identifier] 

--~~-------' 

Syntax Rulies: 

l. Record-name and identifier must not refer to the same storage area. 
2. Record-name is the name of a logical record in the FILE SECTION of the DATA DIVISION and 

may be qualified. 
3. The INVALID KEY phrase must not be specified for a REWRITE statement which references a file 

in sequential access mode. 
4. The INVALID KEY phrase must be specified in the REWRITE statement for files in the random or 

dynamic access mode for which an appropriate USE procedure is not specifieq. 

General Rull es: 

l. The file associated with record-name must be a mass storage file and must be open in the 1-0 mode 
at the time of execution of this statement. It cannot be a SORT or MERGE file. Refer to the OPEN 
statement in this section. 

2. For files in the sequential access mode, the last input-output statement executed for the associated 
file prior to the execution of the REWRITE statement must be a successfully executed READ state
ment. The record that is accessed by the READ statement is logically replaced. 

3. The number of character positions in the record referenced by record-name must be equal to the 
number of character positions in the record being replaced. 

4. The execution of the REWRITE statement has no effect upon the contents or accessibility of the 
record area. If the associated file is named in a SAME RECORD AREA clause, the logical record 
is available to the program as a record of other files appearing in the same SAME RECORD AREA 
clause as the associated 1-0 file, as well as to the file associated with record-name. 

5. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITJF: statement without the FROM phrase. The contents 
of the record area before execution of the implicit MOVE statement have no effect on the execution 
of the REWRITE statement. 

6. The current record pointer is not affected by the execution of a REWRITE statement. 
7. The execution of the REWRITE statement causes the value of the FILE STATUS data item, if any, 

associated with the file to be updated. Refer to 1-0 STATUS in Section 5. 
8. For a Relative File accessed in either random or dynamic access mode, the record specified by the 

contents of the RELATIVE KEY data item associated with the file is the one rewritten. If the file 
dot!s not contain the record specified by the key, the INVALID KEY condition exists. Refer to the 
Invalid Key in Section 5. The updating operation does not take place and the data in the record area 
is unaffected. 

1.108883 7-97 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

REWRITE 

7-98 

9 .. In a Sequential File, contents of the ACTUAL KEY data item, if specified, are ignored during the 
exi~cution of the REWRITE statement and are not updated by execution of that statement.. 

10. For an Indexed File in the sequential access mode, the record to be replaced is specified by the value 
contained in the prime record key. When the REWRITE statement is executed, the value contained 
int the prime record key data item of the record to be replaced must be equal to the value of the 
priime record key of the last record read from this file. 

11. For an Indexed File in the random or dynamic access mode, the record to be replaced is specified 
by the prime record key data item. 

12. In an Indexed File, the contents of alternate record key data items of the record being rewritten may 
differ from those in the record being replaced. The contents of the record key data items are utilized 
during the execution of the REWRITE statement in such a way that subsequent access of the record 
may be made based upon any of those specified record keys. 

13 .. ln an Indexed File, the INVALID KEY condition exists when: 

a. The access mode is sequential and the value contained in the prime record key data item of the 
record to be replaced is not equal to the value of the prime record key of the last record read 
from this file. 

b. The value contained in the prime record key data item does not equal that of any record stored 
in the file., or 

c. The value contained in an alternate record key data item for which a DUPLICATES clause has 
not been specified is equal to that of a re cord already stored in the file. 

The updating operation does not take place and the data in the record area unaffected. Refer to 
the Invalid Key in Section 5. 



SIEARCH 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

SEARCH 

The SEARCH statement is used to search a table for a table element that satisfies the specified condition and 
to adjust the associated index-name to indicate that table element. 

General Formats: 

Format l: 

Format 2: 

SEARCH identifier-I [
VAR YING { ~dentifier-2 }] 

mdex-name-1 

[;AT END imperative-statement-I] 

; WHEN condition- I 

[;WHEN condition-2 

{ 
imperative-statement-2 } 
NEXT SENTENCE 

{ 
imperative-statement-3} J 
NEXT SENTENCE 

SEARCH ALL identifier-I [; AT END imperative-statement-1 l 

1108883 

;WHEN 
(data-name-I {IS EQUAL TO} 
} IS= 

l condition-name-I 

[ 

jdt 
? {ISEQUALTO} a e-name-_ IS = 

ANO 

-- l condition-name-2 

{ 
imperative-statement-2 } 
NEXT SENTENCE 

NOTE 

{ 

identifier-3 } ) 
literal-I ( 
arithm etic-expres.•ion-1 j 

{ 
identifier4 } l ] 
literal-2 
arithm etic-expression-2 j 

To avoid confusion with other symbols, the required relational character '.=' is not 
underlined. 

7-99 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Di vision 

SEARCH 

Syntax Rules: 

I. In both Formats I and 2, identifier- I must not be subscripted or indexed, but its description must 
contain an OCCURS clause and an INDEXED BY clause. The description of identifier-I in Format 
2 must also contain the KEY lS phrase in its OCCURS clause. 

2. Idcntifier-2, when specified, must be described as USAGE IS INDEX or as a numeric elementary item 
without any positions to the right of the assumed decimal point. 

3. In Format I, condition-I, condition-2, and so on, may be any condition as described in Conditional 
Expressions in this section. 

4. In Format 2, all referenced condition-names must be defined as having only a single value. The data
name associated with a condition-name must appear in the KEY clause of identifier-I. Each· data .. 
name-I, data-name-2 may be qualified. Each data-name-I, data-name-2 must be indexed by the first 
index-name associated with identifier- I along with other indices or literals as required, and must be 
referenced in the KEY clause of identifier- I. Idcntifier-3, identifier-4, or identifiers specified in arith
metic-expression-I, arithmetic-expression-2 mus1 not be referenced in the KEY clause of identifier-· 
I or be indexed by the first index-name associated with identifier- I. 

In Format 2, when a data-name in the KEY clause of identifier-I is referenced, or when a condition-· 
name associated with a data-name in the KEY dause of identifier-I is referenced, all preceding data·· 
names in the KEY clause of identifier- I or their associated condition-names must also be referenced. 

General Rules: 

7-100 

1. If Format 1 of the SEARCH statement is used, a serial type of search operation takes place, starting 
wi:th the current index setting. 

a .. If. at the start of execution of the SEARCH statement, the index-name associated with identifier
! contains a value that corresponds to an occurrence number that is greater than the highest per
missible occurrence number for identifier- I, the operation is terminated immediately. The number 
of occurrences of identifier- I, the last of which is the highest permitted, is discussed in the OC
CURS clause. Refer to the OCCURS clause 1n Section 6. Then, if the AT END phrase is specified, 
imperative-statement- I is executed, and tlhc AT END phrase is not specified, control passes to the 
next executable sentence. 

b. If, at the start of execution of the SEARCH. statement, the index-name associated with identifier
! contains a value that corresponds to an occurrence number that is not greater than the highest 
permissible occurrence number for identifier-I, the SEARCH statement operates by evaluating the 
conditions in the order in which written, making use of the index settings, wherever specified, to 
determine the occurrence of those items to be tested. If none of the conditions are satisfied, the 
index-name for identifier- I is incremented tc• obtain reference to the next occurrence. The process 
is then repeated using the new index-name settings unless the new value of the index-name settings 
for identifier-1 corresponds to a table element outside the permissible range of occurrence values, 
in which case the search terminates as ind11cated in General Rule la. If one of the conditions :ls 
satisfied upon its evaluation, the search terminates immediately and the imperative statement asso
ciated with that condition is executed; the index-name remains set at the occurrence which caused 
the condition to be satisfied. 

2. In a Format 2 SEARCH statement, the results of the SEARCH ALL operation are predictable only 
when the data in the table is ordered in the same manner as described in the ASCENDING/DE~ 
SCENDING KEY clause associated with the description of identifier-I. 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

SEARCH 

3. If Format 2 of the SEARCH statement is used, a binary search type of operation takes place; the 
initial setting of the index-name for identifier-I is ignored and its setting is varied during the search 
operation according to accepted binary techniques, with the restriction that at no time is it set to a 
value exceeding the value which corresponds to the last element of the table, or which is less than 
the value that corresponds to the first element of the table. The length of the table is discussed in 
the OCCURS clause. Refer to the OCCURS clause in Section 6. If any of the conditions specified 
in the WHEN clause cannot be satisfied for any setting of the index within the permitted range, con
trol is passed to imperative-statement-I of the AT END phrase, when specified, or to the next execut
able sentence when not specified. In either case, the final setting of the index is the value which corre
sponds to an occurrence number which is one greater than the last element of the table. 

If all the conditions can be satisfied, the index indicates an occurrence that allows the conditions to 
be satisfied, and control passes to imperative-statement-2. 

When the contents of the key(s) referenced in the WHEN clause are not sufficient to identify a unique 
table element, the index indicates the occurrence closest to the beginning of the table which satisfies 
the condition. 

4. After execution of imperative-statement-I, imperative-statement-2, or imperative-statement-3, that 
does not terminate with a GO TO statement, control passes to the next executable sentence. 

5. In Format 2, the index-name that is used for the search operation is the first or only index-name that 
appears in the INDEXED BY phrase of identifier-I. Any other index-names for identifier- I remain 
unchanged. 

6. In Format I, if the VARYING phrase is not used, the index-name that is used for the search operation 
is the first or only index-name that appears in the INDEXED BY phrase of identifier-I. Any other 
index-names for identifier-I remain unchanged. 

7. In Format I, if the VARYING index-name-I phrase is specified, and if index-name-I appears in the 
INDEXED BY phrase of identifier-I, that index-name is used for this search. If this is not the case, 
or if the VARYING identifier-2 phrase is specified, the first or only index-name given in the IN
DEXED BY phrase of identifier- I is used for the search. In addition, the following operations occur: 

a. If the VARYING index-name-I phrase is used, and if index-name-I appears in the INDEXED BY 
phrase of another table entry, the occurrence number represented by index-name- I is incremented 
by the same amount and at the same time as the occurrence number represented by the index
name associated with identifier-I is incremented. 

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index data item. then the 
data item referenced by identifier-2 is incremented by the same amount and at the same time as 
the index associated with identifier-I is inc!remented. If identifier-2 is not an index data item. the 
data item referenced by identifier-2 is incremented by the value I at the same time as the index 
referenced by the index-name associated with identifier-I is incremented. 

8. If identifier- I is a data item subordinate to a data item that contains an OCCURS clause providing 
for a multidimensional table, an index-name must be associated with each dimension of the table 
through the INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name associ
ated with identifier-I (and the data item identifier-2 or index-name-I, if present) is modified by the 
execution of the SEARCH statement. To search an entire multidimensional table it is necessary to 
execute a SEARCH statement several times. Before each execution of a SEARCH statement, SET 
statements must be executed whenever index-names must be adjusted to appropriate settings. 

ll 108883 7-101 



SEARCH 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

Figure 7-4 contains a flowchart of the Format I SJEARCH operation containing two WHEN phrases. 

G12340 

7-102 

START 

increment index-name for 
identifier-1 (index-namie-1 

if applicable) 

;ncrement ;ndex-name-1 ] 
(for a different table) * 

or identifier-2 

~-------------------------~ 

... -

imperative
statement-1 

imperative
statement-2 

imperative
statement-3 

* THESE OPERATIONS ARE OPTIONS INCLUDED ONLY WHEN 

SPECIFIED IN THE SEARCH STATEMENT. 

* 

• * EACH OF THESE CONTROL 'TRANSFERS IS TO THE NEXT 

EXECUTABLE SENTENCE UNLE:SS THE IMPERATIVE-STATEMENT 

ENDS WITH A GO TO STATEMENT. 

Figure 7-4. SEARCH with Two WHEN Phrases 

** 



1108883 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

7-103 



SEND 

SEND 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

The SEND statement causes a message to be released to one or more output queues. 

General Format: 

SEND cd-name [FROM identifier-I] 
) WITH identifier-2 } 

{WITH EMI 

{ BEFORE} ADVANCING 
AFTER 

{ { 
~dentifier-3 } 
integer 

{ 
mnemonic-name } 
PAGE 

[ LINE ] } 
LINES 

Syntax Rules: 

I. Cd-·name must reference ·an output CD. 
2. Id·entifier-2 must reference a one-character integer without an operational sign. 
3. When identifier-3 is used in the ADVANCING phrase, it must be the name of an elementary integer 

item. 
4. When the mnemonic-name phrase is used, it must be associated with a CHANNEL number. The mne·· 

monic-name is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. 
5. Integer or the value of the data item referenced by identifier-3 may be zero. 

GeneraL Rules: 

1. When a receiving communication device such as a printer, display screen, or card punch, is oriented 
to a fixed line size: 

a. Each message begins at the leftmost character position of the physical line. 
b .. A message that is smaller than the physical line size is released so as to appear space-filled to 

the right. 
c .. Excess characters of a message are not ttruncated. Characters are packed to a size equal to that 

of the physical line and then sent to the device. The process continues on the next line with the 
excess characters. 

2. When a receiving communication device (paper tape punch, or another computer) is oriented to handle;: 
variable length messages, each message begins on the next available character position of the commu·· 
nications device. 

3. As part of the execution of a SEND statement, the data item referenced by data-name-2 (TEXT 
LENGTH) of the area referenced by cd-name is the user's indication of the number of leftmost char·· 
acter positions of the data item referenced by identifier- I from which data is to be transferred. 

7-104 



B IOOO Systems COB01:74 Reference Manual 
Procedure Division 

SEND 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area referenced 
by cd-name are zero, no characters of the data item referenced by identifier-I are transferred. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area referenced 
by cd-name are outside the range of zero through the size of the data item referenced by identifier
I inclusive, an error is indicated by the value of the data item referenced by data-name-3 (STATUS 
KEY) of the area referenced by cd-name, and no data is transferred. Refer to Table 6-3, Communica
tiion Status Key Condition, in Section 6. 

4. As part of the execution of a SEND statement, the contents of the data item referenced by data-name-
3 (STATUS KEY) of the area referenced by cd-name are updated. Refer to Communication Descrip
tion Structure (CD) in Section 6. 

5. The effect of having special control characters within the contents of the data item referenced by iden
tifier-I are undefined. 

6. The contents of the data item referenced by identifier-2 indicate that the contents of the data item 
referenced by identifier-I are to have associated with them an ending indicator. 

The content of the data item referenced by identifier-2 must contain a 2. Thus, the contents of the 
data item referenced by identifier-I is associated with an end of message indicator or EMI. 

If the content of the data item referenced by identifier-2 is other than a 2, an error is indicated by 
the value in the data item referenced by data-name-3 (STATUS KEY) of the area referenced by cd
name, and no data is transferred. 

7. The ADV AN CI NG phrase allows control of the vertical positioning of each message on a communica
tion device where vertical positioning is applicable. If vertical positioning is not applicable on the de
vilce, the vertical positioning specified or implied is ignored. 

8. On a device where vertical positioning is applicable and the ADVANCING phrase is not specified, 
automatic advancing is provided to act as if the user has specified AFTER ADVANCING 1 LINE. 

9. If the ADVANCING phrase is implicitly or explicitly specified and vertical positioning is applicable. 
the following rules apply: 

a. If identifier-3 or integer is specified, characters transmitted to the communication device are reposi
tioned vertically downward the number of lines equal to the value associated with the data item 
referenced by identifier-3 or integer. 

b. If mnemonic-name is specified, characters transmitted to the communication device are positioned 
to the line number corresponding to the ·CHANNEL number. 

c. If the BEFORE phrase is used, the message is represented on the communication device before 
vertical repositioning according to General Rules 9a and 9b. 

d. If the AFTER phrase is used, the message is represented on the communication device after verti
cal repositioning according to General Rules 9a and 9b. 

e. If PAGE is specified, characters transmitted to the communication device are represented on the 
device BEFORE or AFTER (depending upon the phrase used) the device is repositioned to the 
next page. If PAGE is specified but page has no meaning in conjunction with a specific device, 
then page advancing is provided to act as if the user has specified BEFORE or AFTER ADVANC
ING 1 LINE. 

1108883 7-105 



SET 

B I 000 Systems COBOL74 Reference Manual 
Procedure Division 

SET 

The SET statement establishes reference points for table handling operations by setting index-names associated 
with table elements. 

General Format: 

Format I: 

[ --·---S-E_T_{_. __ ::_:_:_:_~n_i:_~_-l_e-_1_}_[_: _::_:_:_:_i~-~::: __ 2_] _____ T_O __ {_l~-~-=_:_:_~e-~'m ___ 3e--3_} _______ ] 

Fonnat 2: 

[_ .• { 
identifier-4 } ] 

integer-2 

---

SET index-name-4 [, index-name-5] 
{

UP BY t 
. . . DOWN BY f 

Syntax Rules: 

I. All references to index-name-1, identifier-I, and'index-name-4 apply equally to index-name-2, identifi-
eir-2, and index-name-5, respectively. 

2. Identifier-I and identifier-3 must name index data items, or elementary items described as an integer. 
3. Identifier-4 must be described as an elementary numeric integer. 
4. Integer-I and integer-2 may be signed. Integer-1 may be zero. 

General Rules: 

1. Index-names are considered related to a given table and are defined by being specified in the IN
DEXED BY clause. 

2. If index-name-3 is specified, the value of the index before the execution of the SET statement should 
correspond to an occurrence number of an element in the associated table. 

7-106 

If index-name-4, index-name-5 is specified, the value of the index both before and after the execution 
of the SET statement should correspond to an occurrence number of an element in the associated 
table. If index-name-I, index-name-2 is specified, the value of the index after the execution of the 
S1ET statement should correspond to an occurrence number of an element in the associated table. 



B IOOO Systems COBOc74 Reference Manual 
Procedure Division 

SET 

1 t is permissible to set index-name-I, index-name-2, index-name-4, index-name-5. to any value with 
the fullmving restrictions: 

"-- :r ov'<:rl1ow occurs. the value in the index-name is left-truncated according to the arithmetic rules 
~·r a siz.e error condition without a SIZE ERROR phrase. Refer to the SIZE ERROR phrase in 

';,;, "cction. 
\Vhcn a statement using the index-name to refer to a table element is executed. the value in the 
irn..ic\. or the value produced by relative indexing must fall within the range specified by the OC-

L HS clause defining the table. Otherwise. an abnormal termination of the program occurs. Refer 
:(; lndexing in Section 2. 

'v\/h(·n. a Format I SET statement is executed. the following actions occur: 

a. l. ndex-name-1 is set to a value causing it to refer to the table element that corresponds in occur
rence number to the table element referenced by index-name-3. identifier-3. or integer- I. If identifi
er-3 is an index data item. or if index-name-3 is related to the same table as index-name- I. no con
version takes pince. 

h. ff identifier- I is an index data item. it may be set equal to either the contents of index-name-3 
or identifier-3. where identifier-3 is also an index data item. No conversion takes place in either 
ca:-,e. 

c. If identifier- I is not an index data item, it may be set only to an occurrence number that corre
sponds to the value of index-name-3. Neither identifier-3 nor integer-I can be used in this case. 

d. The process is repeated for index-name-2, idcntifier-2. etc .. if specified. Each time. the value of 
inde.x-name-3 or identifier-3 is used as it was at the beginning of the execution of the statement. 
any subscripting or indexing associated with identifier-I. and so forth. is evaluated immediately be
fore th1-~ value of the respective data item is changed. 

4. ln Format 2. the contents of index-name-4 are incremented (UP BY) or decremented (DOWN BY) 
hy a value that corresponds to the number of occurrences represented by the value of integer-2 or 
identificr-4: thereafter. the process is repeated for index-name-5, and so on. Each time. the value of 
idcntifier-4 is used as it was at the beginning of the execution of the statement. 

5. J)at:a in Table 7-6 represents the validity of various operand combinations in the SET statement. The 
gcn1~ral rule reference (for example. 3b) indicates the applicable general rule. 

Table 7-6. SET Statement Combinations 

r-,.---.. ·-·--···-.. ·---~·-
1 Sending It ~ 

Receiving Item 

~ 

ntq~cr Litera 

i ntcger Data 

Index-Name 

Index Data It 

1108883-001 

_ Integer Data Item Index-Name 

1 No/3c Yalid/3a 

Item N0/3c Yalid/3a 

Yalid/3c Yalid/3a 

cm No/3c Yalid/3a * 

*No conversion takes place 

Index Data Item 

No/3b 

No/3b 

Valid/3b * 
Valid/3b * 

7-107 



SORT 

SORT 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

The SORT statement creates a sort file two ways: first, by executing input procedures or, second. by transfer
ring records from another file. The records are then sorted on a set of specified keys, and in the final phase 
of the sort operation, made available in sorted order, to some output procedures or to an output file. 

General Format: 

SORT file-name-I 

{ 

!\SCENDIN(!_ t 
ON 

, DESCENDING \ 
KEY data-name- I [ , data-name-2] 

[
ON { ASCENDING } :KEY data-name-3 [ , data-name-4 J ... J 

DESCENDING 

[COLLATING SEQUENCE IS alphabet-name J 

IN_!'UT PROCEDURE IS procedure-name-I [ {::::UGH } procedure-name-2 J 

USING file-name-2 [. file-name-3 

Ol}TPUT PROCEDURE IS procedure-name-:: [ { ::::UGH } procedure-name-4 J 

GIVING file-name-4 ---

7-108 



Syntax Rules: 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

SORT 

I. File-name-I must be described in a sort-merge file description (SD) entry in the DAT A DIVISION. 
2. Procedure-name-I represents the name of an input procedure. Procedure-name-3 represents the name 

of an output procedure. 
3. File-name-2 and file-name-4 must be described in a file description entry (FD), not in a Sort-Merge 

file description entry (SD), in the DAT A DIVISION. The actual size of the logical record(s) described 
for file-name-2 and file-name-4 must be equal to the actual size of the logical record(s) described for 
file-name- I. If the data descriptions of the elementary items that make up these records are not identi
cal, iit is the programmer's responsibility to describe the corresponding records so as to cause an equal 
number of character positions to be allocated for the corresponding records. 

4. Data-name-I, data-name-2. data-name-3, and data-name-4 are KEY data-names and are subject to the 
following rules: 

a. The data items identified by KEY data-names must be described in records associated with file-
name-I. 

b. KEY data-names may be qualified. 
c. The data items identified by KEY data-names must not be variable length items. 
d. If file-name- I has more than one record description, then the data items identified by KEY data

names may all be described within one of the record descriptions or in any combination of record 
descriptions. It is not necessary to redescribe the KEY data-names in each record description. 

e. None of the data items identified by KEY data-names can be described by an entry which contains 
an OCCURS clause or which is subordinate to an entry which contains an OCCURS clause. 

5. The words THRU and THROUGH are equivalent. 
6. SORT statements may appear anywhere except in the declaratives portion of the PROCEDURE DIVI

SION or in an input or output procedure associated with a SORT or MERGE statement. 
7. No more than one file-name from a multiple file reel can appear in the SORT statement. 

General Rules: 

I. The PROCEDURE DIVISION may contain more than one SORT statement appearing anywhere ex
cept: 

a. J[n the declaratives portion. 
b. In the input and output procedures associated with a SORT or MERGE statement. 

2. The data-names following the word KEY are listed from left to right in the SORT statement in order 
of decreasing significance without regard to how they are divided into KEY phrases. In the format, 
data-name- I is the major key, data-name-2 is the next most significant key. 

a. When the ASCENDING phrase is specified, the sorted sequence is from the lowest value of the 
contents of the data items identified by the KEY data-names to the highest value, according to 
the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the sorted sequence is from the highest value of 
the contents of the data items identified by the KEY data-names to the lowest value, according 
to the rules for comparison of operands in- a relation condition. 

1108883-001 7-109 



I 

B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

SORT 

7-110 

3. The collating sequence that applies to the comparison of the non numeric key data items specified 
is determined in the following order of prei:edence: 

a. First. by the collating sequence established by the COLLA TING SEQUENCE phrase, if 
specified, in the SORT statement. 

b. Second, by the collating sequence established as the program collating sequence. 

4. The input procedure must consist of one or more paragraphs or sections which appear contiguously 
in a source program and which do not form a part of any output procedure. In order to transfer 
records to the file referenced by file-name- I, the input procedure must include the execution of at 
least one RELEASE statement. Control must not be passed to the input procedure except when a 
related SORT statement is being executed. The input procedure can include any procedures needed 
to select. create. or modify records. The restrictions on the procedural statements within the input 
procedure are as follows: 

a. The input procedure must not contain any SORT or MERGE statements. 
b. The input procedure must not contain any explicit transfers of control to points outside the input 

procedure. ALTER, GO TO, and PERFORM statements in the input procedure are not permitted 
to refer to procedure-names outside the input procedure. COBOL 74 statements that cause an implied 
transfer of control to declaratives are allowed. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers of control to points 
inside the input procedure. ALTER, GO TO, and PERFORM statements in the remainder of the 
PROCEDURE DIVISION must not refer to procedure-names within the input procedure. 

Violations of these restrictions on procedural statements concerning input procedures are not syntaxed 
by the compiler. It is the responsibility of the programmer to ensure that these restrictions are enforced. 

5. If an input procedure is specified, control is passed to the input procedure before file-name-I is se
quenced by the SORT statement. The compiler inserts a return mechanism at the end of the last 
paragraph or section in the input procedure. Vvhen control passes the last statement in the input proce
dure, the records released to file-name-I are sorted. 

6. The output procedure must consist of one or more paragraphs or sections which appear contiguously 
in a source program and which do not form part of any input procedure. In order to make sorted 
records available for processing, the output procedure must include the execution of at least one RE
TURN statement. Control must not be passed to the output procedure except when a related SORT 
statement is being executed. The output procedure may consist of any procedures needed to select, mod
ify, or copy the records that are being return1ed, one at a time in sorted order, from the sort file. The 
restrictions on the procedural statements witl1in the output procedure are as follows: 

a. The output procedure must not contain any SORT or MERGE statements. 
b. The output procedure must not contain any explicit transfers of control to points outside the output 

procedure. ALTER, GO TO, and PERFORM statements in the output procedure are not permitted 
to refer to procedure-names outside the output procedure. COBOL 74 statements that cause an im
plied transfer of control to declarativ 1es are allowed. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers of control to points 
inside the output procedure. ALTER, GO TO, and PERFORM statements in the remainder of the 
PROCEDURE DIVISION are not permitted to refer to procedure-names within the output proce
dure. 



B JOOO Systems COBOL74 Reference Manual 
Procedure Division 

SORT 

7. If an output procedure is specified, control passes to it after file-name-1 is sequenced by the SORT 
statement. The compiler inserts a return mechanism at the end of the last paragraph or section in the 
output procedure. When control passes the last statement in the output procedure, the return 
mechanism provides for termination of the sort and then passes control to the next executable statement 
after the SORT statement. Before entering the output procedure, the sort procedure reaches a point 
at which it can select the next record in sorted order when requested. The RETURN statements in the 
output procedure are the requests for the next record. 

8. If the USING phrase is specified, all the records in file-name-2 are transferred automatically to file
name-I. At the time of execution of the SORT statement, file-name-2 must not be open. The SORT 
statement automatically initiates the processing of, makes available the logical records for, and termi
naties the processing of file-narne-2. These implicit functions are performed such that any associated 
USE procedures are executed. The terminating function for all files is performed as if a CLOSE state
ment, without optional phrases, had been executed for each file. The SORT statement also automatical
ly performs the implicit functions of moving the records from the file area of file-narne-2 to the file 
area for file-name-I and the release of records to the initial phase of the SORT operation. 

9. If the GIVING phrase is specified, all the sorted records in file-name-I are automatically written on 
file--name-4 as the implied output procedure for this SORT statement. At the time of execution of the 
SORT statement file-name-4 must not be open. The SORT statement automatically initiates the process
ing, releases logical records to and terminates the processing of file-name-4. These implicit functions 
are performed so that any associated USE procedures are executed. The terminating function is per
formed as for a CLOSE statement, without optional phrases, had been executed for the file. The SORT 
statement also automatically performs the implicit functions of the return of the sorted records from 
the final phase of the SORT operation and the moving of the records from the file area for file-name-
1 the file area for file-name-4. 

1108883-001 7-111 

I 



START 

B 1000 Systems COBOL74 Reference Manual 
Procedur1,:! Division 

The START statement provides a basis for logical positioning within an indexed or relative file, for subsequent 
sequential retrieval of records. 

General Format: 
____ " ________________________ _ 

ST ART file-name KEY 

IS EQUAL TO 
IS 
IS GREATER THAN 
IS> 
IS NOT LESS THAN 
IS NOT < 

[ ; INVALID KEY imperative-statement] 

NOTE 

data-name 

The required relational characters '>', '<', and '=' are not underlined to avoid 
confusion with other symbols such as :::=:::', meaning greater than or equal to. 

Syntax Rules: 

I. File-name must be the name of an Indexed or Relative File. 
2. File-name must be the name of a file with sequential or dynamic access. 
3. Data-name may be qualified. 
4. The INV AUD KEY phrase must be specifo.:!d if no applicable USE procedure is specified for file

name. 
5. lf file-name is the name of an Indexed File, and if the KEY phrase is specified, data-name may refer

ence a data item specified as a record key associated with file-name. Data-name may reference any 
data item of category alphanumeric subordinate to the data-name of a data item specified as a record 
key associated with file-name whose leftmost character position corresponds to the leftmost character 
position of that record key data item. 

6. Data-name, if specified for a Relative File. must be the data item specified in the RELATIVE KEY 
phrase of the associated file control entry. 

General Rules: 

I. File-name must be open in the INPUT or l-0 mode at the time that the ST ART statement is executed. 
Refer to the OPEN statement in this sectio:-i. 

2. If the KEY phrase is not specified, the relational operator 'IS EQUAL TO' is implied. 
3. The type of comparison specified by the relational operator in the KEY phrase occurs between a key 

associated with a record in the file referenced by file-name and a data item as specified in General 
Rule 5. If file-name references an indexed fih~ and the operands are of unequal size, comparison pro
ceeds as though the longer operand were truncated on the right, so that its length is equal to that 
of the shorter operand. All other nonnumeric comparison rules apply except that the presence of the 
PROGRAM COLLA TING SEQUENCE clau:ie has no effect on the comparison. Refer to Comparison 
of Nonnumeric Operands in this section. 

7-112 



B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

START 

a. The current record pointer is positioned to the first logical record currently existing in the file 
whose key satisfies the comparison. 

b. If the comparison is not satisfied by any record in the file, an INVALID KEY condition exists, 
the execution of the START statement is unsuccessful, and the position of the current record 
pointer is undefined. Refer to Invalid Key Condition in Section 5. 

4. The execution of the START statement causes the value of the FILE STATUS data item, if any, asso
ciated with file-name to be updated. Refer to I-0 Status in Section 5. 

5. For an Indexed File using the KEY phrase, the comparison described in General Rule 3 uses the data 
item referenced by data-name. 

6. For an Indexed File not using the KEY phrase, the comparison described in General Rule 3 uses the 
data item referenced in the RECORD KEY clause associated with file-name. 

7. For a Relative File, the comparison described in General Rule 3 uses the data item referenced by the 
RELATIVE KEY clause associated with file-name. 

8. Upon completion of the successful execution of the ST ART statement, a key of reference is estab
lished and used in subsequent Format 1 READ statements as follows: 

a. If the KEY phrase is not specified, the prime record key specified for file-name becomes the key 
of reference. 

b. If the KEY phrase is specified, and data-name is specified as a record key for file-name, that rec
ord key becomes the key of reference. 

c. ff the KEY phrase is specified, and data-name is not specified as a record key for file-name, the 
record key whose leftmost character position corresponds to the leftmost character position of the 
data item specified by data-name, becomes the key of reference. 

d. Refer to the READ statement in this section. 

9. For an Indexed File, if the execution of the START statement is not successful, the key of reference 
is undefined. 

1108883 7-113 



STOP 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

The STOP statement causes a permanent or temporary suspension of the execution of the object program. 

General Format: 

[_ .• STOP gt~~I} I 
______ ,I 

Syntax Rules: 

I. The literal may be numeric, nonnumeric, or any figurative constant except ALL. 
2. If the literal is numeric, then it must be an unsigned integer. 
3. If a STOP RUN statement appears in a consecutive sequence of imperative statements within a sen

tence, it must appear as the last statement in that sequence. 

General Rules: 

I. If the RUN phrase is used, then the ending procedure established by the installation and/or the com
piler is instituted. 

2. If STOP literal is specified, the literal is displayed on the Operator Display Terminal (ODT), and the 
program issues an ACCEPT message. When the operator enters the AX message, continuation of the 
object program begins with the next executable statement in sequence. 

7-114 



STRING 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

STRING 

The STRING statement concatenates partial or complete contents of two or more data items into a single data 
item. 

General Format: 

{ 

identifier-I } ( identifier-2] 
STRING , 

literal-I . _ literal-2 

{ 

identifier-3 } 
DELIMITED BY literal-3 

SIZE 

' {. identifier-4 } [' identifier-5 J ... 
literal-4 literal-5 

{

. identifier-6 } 
DELIMITED BY literal-6 

SIZE 

INTO identifier-7 ( WITH POINTER identifier-8 ] 

[; ON OVERFLOW imperative-statement] 

Syntax Rules: 

I. Each literal may be any figurative constant without the optional word ALL. 
2. All literals must be described as nonnumeric literals, and all identifiers, except identifier-8, identifier-

9, and identifier-IO, must be described implicitly or explicitly, as usage is DISPLAY. 
3. Identifier-7 must represent an alphanumeric data item without editing symbols or the JUSTIFIED 

clause. 
4. ldentifier-8 must represent an elementary numeric integer data item of sufficient size to contain a value 

equal to the size of the area referenced by identifier-7 plus I. The symbol 'P' may not be used in 
the PICTURE character-string of identifier-8. 

5. Where identifier-I, identifier-2, .. ., or identifier-3 is an elementary numeric data item, it must be de
scribed as_ an if1:~~~er without the ~y11.1b~~ 'P' in the P~.~TURE c.~~r.~~~~r-strin . 

General Rules: 

I. All references to identifier-I, identifier-2, identifier-3, identifier-9, literal-I, literal-2, literal-3, and inte
ger-I apply equally to identifier-4, identifier-5, identifier-6, identifier-IO, literal-4, literal-5, literal-6 and 
integer-2, respectively, and all recursions thereof. 

1108883 7-115 



B 1000 Systems COBOc74 Reference Manual 
Procedure Division 

STRING 

2. Identifier-I, literal-I, identifier-2, literal-2, represent the sending items. Identifier-7 represents the re
ceiving item. 

3. Literal-3, identifier-3, indicate the character(s) delimiting the move. If the SIZE phrase is used, the 
complete data item defined by identifier-I. literal-I, identifier-2, literal-2, is moved. When a figurative 
constant is used as a delimiter, it stands for a single character nonnumeric literal. 

4. When a figurative constant is specified as litera]-I, literal-2, literal-3, it refers to an implicit one char
acter data item whose usage is DISPLAY. 

5. When the STRING statement is executed, the transfer of data is governed by the following rules: 

a. Those characters from literal-I, literal-2, or from the contents of the data item referenced by iden
tifier-I, identifier-2, are transferred to the contents of identifier-7 according to the rules for alpha
numeric to alphanumeric moves: however, no space-filling is provided. Refer to the MOVE State
ment in this section. 

b .. If the DELIMITED phrase is specified without the SIZE phrase, the contents of the data item 
referenced by identifier-I, identifier-2, or th1;! value of literal-I, literal-2, are transferred to the re
ceiving data item in the sequence specified in the STRING statement beginning with the leftmost 
character and continuing from left to right until the end of the data item is reached, or until the: 
character(s) specified by literal-3, or by the contents of identifier-3 are encountered. The charac
ter(s) specified by literal-3 or by the data item referenced by identifier-3 (}.re not transferred. 

c If the DEUMITED phrase is specified with the SIZE phrase, the entire contents of literal-I, liter
al-2, or the contents of the data item referenced by identifier-I, identifier-2, are transferred, in 
the sequence specified in the STRING statement, to the data item referenced by identifier-7 until 
all end of the data item referenced b identifier-7 is reached. 

6. If the POINTER phrase is specified, identifier-8 is explicitly available to the programmer, and he 
i:s responsible for setting its initial value. The initial value must not be less than I. 

7. If the POINTER phrase is not specified, the following General Rules 8, 9, 10, I I, and 12 apply as 
if the user had specified identifier-8 with an initial value of I. 

8. When characters are transferred to the data item referenced by identifier-7, the moves behave as 
though the characters were moved one at a time from the source into the character position of the 
data item referenced by identifier-7 designated by the value associated with identifier-8. Identifier-
8 is increased by one before the move of the next character. The value associated with identifier-· 
8 is changed during execution of the STRING statement only by the behavior specified in this general 
rule. 

9. At the end of execution of the STRING statement, only the portion of the data item referenced by 
identifier-7 that was referenced during the execution of the STRING statement is changed. All other 
portions of the data item referenced by identifier-7 contain data that was present before this execu
tion of the STRING statement. 

10. If at any point at or after initialization of the STRING statement, but before execution of the 
STRING statement is completed, the value associated with identifier-8 is either less than I or greater 
than the number of character positions in the data item referenced by identifier-7, no additional data 
is transferred to. the data item referenced by identifier-7, and the imperative statement in the ON 
OVERFLOW phrase is executed, if specified. 

I J. If the ON OVERFLOW phrase is not specified, when the conditions described in General Rule 10 
are encountered, control is transferred to ithe next executable statement. 

7-116 



B IOOO S) -,tcrn-, ( '( >IH >L7.f Ri:fcrL'lh:c l\lanual 
PrnL·i:du ri: Di\' i sit Hl 

STRING 

12. Integer-I, identifier-9, indicate the number of characters to be moved. 

1108883 

Examples: 

Assume that: 

NOW = A, B, C, D ... Z (26 characters) 
CHNG = GHI 
LATER = LLL 
AFTR = A, B, C, D ... Z (26 characters) 
THEN = TTTT 

I. STRING LATER, "NEW", THEN, SPACE DELIMITED BY SIZE INTO AFTR 

After execution AFTR contains: 

2. MOVE I TO HERE. 
STRING THEN, "NEXT", SPACE, LATER DELIMITED BY SIZE; NOW DELIMITED BY 

CHNG INTO AFTR WITH POINTER HERE 

After execution AFTR contains: 

ITITITITJNJEJxJTJ JLJLJLJAJBJcJDjEfFfslTlulvlwJxlylzf 
{ not changed } 

3 .. MOVE 8 TO HERE. 
STRING THEN, "NEXT", SPACE, LATER DELIMITED BY SIZE; NOW DELIMITED BY 

CHNG INTO AFTR WITH POINTER HERE 

After execution AFTR contains: 

8 

IAIBlcfnfEfFIGITITITfTfNIEfxfTI JLfLJLJAJBfcfDJEIFJzl 
{ not changed } 

7-117 



SUBTRACT 

SUBTR:ACT 

B 1000 Systems C< >B< >L74 Reference Manual 
Procedure Division 

The SUBTRACT statement is used to subtract one or the sum of two or more numeric data items from one 
or more items, and set the values of one or more items equal to the results. 

General Format: 

Format l" 

SUBTRACT 
j identifier-I } 

{ literal-I 
[

, identif:er-2·,] 
FROM identifier-m [ROUNOFO] 

, hteral-_ _ 

[, iuentifier-n [ROUNDED] J . . . [;ON ;~IZE ERROR imperative-statement J 

Format 2: 

Format 3: 

7-118 

___ , __________________ ----

{ 

identifier-I } 
SUBTRACT 

literal-I [

, identifier-2] 

, literai-2 
{ 

identifier-m } 
... FROM 

literal-m 

GIVING identifier-n [ROUNDE121 (,identifier-a [ROUNDED] J ... 
[;ON SIZE ERROR imperative-statement J 

{

CORRESPONDING} 
SUBTRACT 00.R.R identifier-I FROM identifier-2 [ROUNDED] 

[ ; ON SIZE ERROR imperative-statement ] 



Syntax Rules: 

B IOOO Sysrcms COBOL74 Reference l\1anual 
Procedure Division 

1. Each identifier must refer to a numeric elementary item except that 

SUBTRACT 

a. In Format 2, each identifier following the word GIVING must refer to either an elementary numer
ic item or to an elementary numeric edited item. , 

b. In Format 3, each identifier must refer to a group item. 

2. Each literal must be a numeric literal. 
3. CORR is an abbreviation for CORRESPONDING. 

General Rules: 

I. Additional rules and explanations related to this statement are given in the appropriate paragraphs. 
Refer to Intermediate Data Item, ROUNDED Phrase, SIZE ERROR Phrase, CORRESPONDING 
Phrase, Arithmetic Statements, Overlapping Operands, and Multiple Results in Arithmetic Statements 
in this section. 

2. In Format 1, all literals or identifiers preceding the word FROM are added together, and this total 
is subtracted from the current value of identifier-m . .The result is immediately stored into identifier
m, and this process is repeated respectively for each operand following the word FROM. 

3. In Format 2, all literals or identifiers preceding the word FROM are added together, the sum is sub
tra.cted from literal-m or identifier-m, and the result of the subtraction is stored as the new value of 
identifier-n, identifier-a, etc. 

4. If Format 3 is used, data items in identifier-1 are subtracted from and stored into corresponding data 
items in identifier-2. 

Examples: 

Assume as initial values X=2, Y=lO, Z=15, TOT=50, and SUB=30. 

Format 1: 

SUBTRACT X FROM TOT. 
SUBTRACT X, Y, Z, FROM TOT, SUB. 

Format 2: 

SUBTRACT X, Y FROM SUB GIVING TOT. 
SUBTRACT X, Y,FROM Z GIVING TOT, SUB. 

1108883 

results TOT=48 
results TOT=23, SUB=3 

results TOT=l8 
results TOT=3, SUB=3 

7-119 



SUBTRACT 

B IOOO Systems COBOL74 Rdcrcncc Manual 
PrnccJurc Division 

For Format 3 assume that the following structures have the initial value in parentheses. 

The following statement 

01 NOW 
02 AL 

03 FO (8) 
03 RD (10) 

02 CR (20). 
02 TR (5) 

SUBTRACT CORRESPONDING NOW FROM LATER. 

results in 

02 LATER 
05 AL 

06 
06 

05 AB 
05 TR 

FO (2) 
XY ( ( 10) 

( 10) 
(5) 

01 LATER 
05 AL 

06 FO (10) 
06 XY ( 10) 

05 AB ( 10) 
05 TR (10) 

Note, the only data names whose values changed are FO and TR. 

7-120 



Ul\ISTRING 

B IOOO Systems COBOL74 Reference l\·1anual 
Procedure Division 

UNSTRING 

The UNSTRING statement causes contiguous data in a sending field to be separated and placed into one or 
more receiving fields. 

General Format:-

Format I: 

UNSTRING identifier-I 

[ 

DELIMITED BY [ALL] { identifier-2} [,OR [ALL] { identifier-3} J . . . l 
literal- I literal-2 

INTO identificr-4 [,DELIMITER IN identifier-5 l [,COUNT IN identifier-6] 

[ , identifier-7 (, DELIMIT ER IN id en tifier-8] [ , COUNT IN identifier-9 ] J 
[WITH POINTER identifier-IO] [TALLYING IN identifier-I I] 

[;ON OVER PLOW imperative-statement J 

Format 2: 

UNSTRING identifier- I 

INTO identifier-4 

[ , identifier-7 

{ 

identifier- I 2 } 
FOR 

integer-I 

FOR { 
'.dentifier-13 } J ... 
mteger-2 

(WITH POINTER identifier-I 0] (TALL YING IN identifier-I I] 

[; ON OVERFLOW imperative-statement] 

1108883 7-121 



B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

UNSTRING 

Syntax Rules: 

I. Each literal must be a nonnumeric literal. In addition, each literal may be any figurative constant with
out the optional word ALL. 

2. J[dentifier-I, identifier-2, identifier-3, identifier-5, and identifier-8 must be described, implicitly or ex
plicitly, as alphanumeric data items. 

3. Identifier-4 and identifier-7 may be described as either alphabetic, alphanumeric, or numeric and muist 
be described as usage is DISPLAY. However, the alphabetic symbol 'B' and the numeric symbol 'P' 
may not be used in the PICTURE character-string. 

4. Identifier-6, identifier-9, identifier-IO, and identifier-I I must be described as elementary numeric inte
ger data items (except that the symbol 'P' may not be used in the PICTURE character-string) . 

.5. :No identifier may name a level 88 entry. 
6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the DELIMITED 

BY phrase is specified. 
7. ldentifier-I2 and identifier-13 must be described as elementary numeric integer data items (except that 

the symbol 'P' may not be used in the PICTURE character-string). 

General Rules: 

7-122 

I. All references to identifier-2, literal-I, identifier-4, identifier-5, identifier-6, identifier-I2, and integ~:!r
I, apply equally to identifier-3, literal-2, itdentifier-7, identifier-8 identifier-13, and integer-2, respec
tively, and all recursions thereof. 

2. Identifier-I represents the sending area. 
3. Identifier-4 represents the data receiving area. Identifier-5 represents the receiving area for delimiters. 
4. Literal-I or the data item referenced by identifier-2 specifies a delimiter. In Format-2, integer-I or 

the data item referenced by identifier-12 specifies a count of the number of characters within identifi
er-] which is moved to identifier-4. If the number of characters remaining in the data item referenced 
by identifier- I is less than the number of characters specified by integer-I or the data item referenced 
by identifier-I2, then the short field is transferred according to General Rule 13c. 

5. Identifier-6 represents the count of the number of characters within the data item referenced by iden
tifier-I isolated by the delimiters for the move to identifier-4. This value does not include a count 
of the delimiter character(s). 

6. The data item referenced by identifier-IO contains a value that indicates a relative character position 
within the area defined by identifier- I. 

7. The data item referenced by identifier- I I is a counter that records the number of data items acted 
upon during the execution of an UNSTRING statement. 

8 .. When a figurative constant is used as a delimiter, it stands for a single character nonnumeric literal. 

When the ALL phrase is specified, one 01::currence or two or more contiguous occurrences of literal
I (figurative constant or not) or the contents of the data item referenced by identifier-2 are treated 
as only one occurrence, and this occurrence is moved to the receiving data item according to General 
Rule 13d. 

9. When any examination encounters two contiguous delimiters, the current receiving area is either 
space or zero filled according to the description of the receiving area. 

10.. Literal- I or the contents of the data item referenced by identifier-2 can contain any character in the 
computer's character set. 

11. Each literal- I or data item referenced by identifier-2 represents one delimiter. When a delimiter con
tains two or more characters, all of the characters must be present in contiguous positions of the 
sending item, and in the order given to be recognized as a delimiter. 

12. When two or more delimiters are specified in the DELIMITED BY phrase, an 'OR' condition exists 
between them. Each delimiter is compar1;!d to the sending field. If a match occurs, the characte:r(s) 



B IOOO Syskms COBOL 74 Reference Manual 
Procedure Division 

UNSTRING 

in the sending field are considered to be a single delimiter. No characteP(s) in the sending field can 
be considered a part of more than one delimiter. 

Each delimiter is applied to the sending field in the sequence specified in the UNSTRING statement. 
13. When the UNSTRING statement is initiated, the current receiving area is the data item refer
enced by identifier-4. Data is transferred from the data item referenced by identifier- I to the data 
item referenced by identifier-4 according to the following rules: 

a. If the POINTER phrase is specified, the string of characters referenced by identifier- I is examined 
beginning with the relative character position indicated by the contents of the data item referenced 
by identifier-IO. If the POINTER phrase is not specified, the string of characters is examined be
ginning with the leftmost character position. 

b. If the DELIMITED BY phrase is specified, the examination proceeds left to right until a delimiter 
specified by the value of literal-I or the data item referenced by identifier-2 is encountered. Refer 
to General Rule I 1. If the DELIMITED BY phrase is not specified, the number of characters 
examined is equal to the size of the current receiving area. However, if the sign of the receiving 
item is defined as occupying a separate character position, the number of characters examined 
is one less than the size of the current receiving area. 

If the end of the data item referenced by identifier-I is encountered before the delimiting condi
tion is met, the examination terminates with the last character examined. 

c. The characters examined, excluding any delimiting characters(s), are treated as an elementary al
phanumeric data item, and are moved into the current receiving area according to the rules for 
the MOVE statement. Refer to the MOVE statement in this section. 

d. If the DELIMITER IN phrase is specified, the delimiting character(s) are treated as an elementary 
alphanumeric data item and are moved into the data item referenced by identifier-5 according to 
the rules for the MOVE statement. Refer to the MOVE statement for additional information. If 
the delimiting condition is the end of the data item referenced by identifier-I, then the data item 
referenced by identifier-5 is space-filled. 

e. If the COUNT IN phrase is specified, a value equal to the number of characters examined, ex
cluding any delimiter character(s), is moved into the area referenced by identifier-6 according to 
the rules for an elementary move. 

f. If the DELIMITED BY phrase is specified, the string of characters is further examined beginning 
with the first character to the right of the delimiter. If the DELIMITED BY phrase is not 
specified, the string of characters is further examined beginning with the character to the right 
of the last character transferred. 

g. After data is transferred to the data item referenced by identifier-4, the current receiving area is 
the data item referenced by identifier-7. The behavior described in General Rules 13b through 13f 
is repeated either until all the characters are exhausted in the data item referenced by identifier
) or until there are no more receiving areas. 

I4. The initialization of the contents of the data items associated with the POINTER phrase or the 
TALL YING phrase is the responsibility of the user. 

15. The contents of the data item referenced by identifier-IO are incremented by one for each character 
examined in the data item referenced by identifier-I. When the execution of an UNSTRING state
ment with a POINTER phrase is completed, the contents of the data item referenced by identifier-
10 will be a value equal to the initial value plus the number of characters examined in the data item 
referenced by identifier- I. 

16. When the execution of an UNSTRING statement with a TALLYING phrase is completed, the con
tents of the data item referenced by identifier-11 contains a value equal to its initial value plus the 
number of data receiving items acted upon. 

1108883 7-123 



H IOOO Systems COBOL74 Reference Manual 
Prncedure Division 

UNSTRING 

17. A.ny of the following situations causes an overflow condition: 

a. An UNSTRING statement is initiated, and the value in the data item referenced by identifier
IO is less than I or greater than the size of the data item referenced by identifier-I. 

b. If, during execution of an UNSTRING statement, all data receiving areas have been acted upon, 
and the data item referenced by identifier·· I contains characters that have not been examined .. 

c. An UNSTRlNG is initiated, and the value in the data item referenced by identifier-12 is less than 
I or greater than the size of the data item referenced by identifier-I. 

d. If, during execution of an UNSTRING statement, all data receiving areas have been acted upon, 
and the number of characters acted upon is less than the value of identifier-12 or integer-I. 

18. An overflow condition occurs if during the execution of an UNSTRING, the value of the pointer 
item (identifier- IO) becomes less than or greater than the number of characters in the sending item, 
or if all the receiving items have been acted upon and the sending item still contains data characters 
that have not been examined. 

When an overflow condition exists, the UNSTRING operation is terminated. If an ON OVERFLOW 
phrase has been specified, the imperative statement included in the ON OVERFLOW phrase is 
executed. If the ON OVERFLOW phrase is not specified, control is transferred to the next 
executable statement. 

I 9. The evaluation of subscripting and indexing for the identifiers is as follows: 

a. Any subscripting or indexing associated with identifier-I, identifier-IO, identifier-IC is evaluated 
only once, immediately before any data is 1ransferred as a result of the execution of the UNSTR
ING statement. 

b. Any subscripting or indexing associated with identifier-2, identifier-3, identifier-4, identifier-5, 
identifier-6 is evaluated immediately before the transfer of data into the respective data item. 

Examples: 

Assume that ALPHA == ABCHXEFGXXZXIJKL, that the size of each of the receiving data items -- ITEM-
1, ITEM-2, or ITEM-4 is equal to 5, and that ITEM-3 is equal to 4. 

I. UNSTRING ALPHA INTO ITEM-I, ITEM-2, ITEM-3, ITEM-4 

2. UNSTRING ALPHA DELIMITED BY "X" JNTO ITEM-I. ITEM-2, ITEM-3 

3. UNSTRING ALPHA DELIMITED BY ALL ·'X" INTO ITEM-I, ITEM-2, ITEM-3 

4. UNSTRING ALPHA DELIMITED BY "X" OR "H" INTO ITEM-I, ITEM-2, ITEM-3 

After execution the contents of the receiving fields an~ as follows. 

7-124 

ITEM - I ITEM - 2 ITEM - 3 ITEM - 4 

I. (Afslclttlxl ~~~ lzlxlI J IKILI I I I 
2· fAlslclttl I IEIFlclJJ I I I 
3· fAfslclttl I @HJ]] fzl I 
4· IAlslcl I 11 I I []] IEIFlc 



USE: 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

USE 

The USE statement specifies procedures for input-output error handling that are in addition to the standard 
procedures provided by the input-output control system. 

General Format: 

Syntax Rules: 

USE AFTER STANDARD 

( file-~ame-1 
)INPUT 

t 
OUTPUT 
1-0 
EXTEND 

f EXCEPTION } 

tERROR 

[, file-name-2] 

PROCEDURE ON 

1. A USE statement, when present, must immediately follow a section header in the Declaratives Section 
and must be followed by a period followed by a space. The remainder of the section must consist 
of zero, one, or more procedural paragraphs that define the procedures to be used. 

2. The USE statement only defines the conditions calling for the execution of the USE procedures, and 
is never executed. 

3. The same file-name can appear in a different specific arrangement of the format. Appearance of a file
name in a USE statement must not cause the simultaneous request for execution of more than one 
USE procedure. 

4. The words ERROR and EXCEPTION are synonymous and may be used interchangeably. 
5. The files implicitly or explicitly referenced in a USE statement need not all have the same organization 

or access. 
6. EXTEND can only be used for Sequential Files. 

General Rules: 

1. The designated procedures are executed two ways: first, by the input-output system after completing 
the standard input-output error routine, or second, upon recognition of the INVALID KEY or AT 
END conditions when the INVALID KEY phrase or AT END phrase has not been specified in the 
input-output statement. 

2. After execution of a USE procedure, control is returned to the routine that caused the USE proce
dures to be invoked. 

3. Within a USE procedure, there must not be any reference to any nondeclarative procedures. Con
versely, in the nondeclarative portion, there must be no reference to procedure-names that appear in 
the declarative portion, except that PERFORM statements may refer to a USE statement or to the 
procedures associated with such a USE statement. 

4. Within a USE procedure, there must not be the execution of any statement that causes the execution 
of a previously invoked USE procedure that has not yet returned control to the invoking routine. 

1108883-001 7-125 



WAIT 

7-126 

B 1000 Systems COBOL 74 Reference Manual 
Proc1~dure Division 



1108883-001 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

WAIT 

7-l 26A 



B IOOO Systems COBOL74 Reference Manual 
Prm.:edurc Division 

WRITE 

WRITE 

The WRJ[TE statement releases a logical record for an output file. It can also be used for vertical positioning 
of lines within a logical page. 

General Format: 

Format I: 

WRITE record-name [FROM identifier- I ] 

[ ADVANCING I { ~dentifier-2 } [LINE ] !] {BEFORE} , mteger-1 LINES 

AFTER { mnemonic-name } 
PAGE 

[ I END-OF-PAGE~} 
AT { 

EOP . 
imperative-statement J 

Format 2: 

[ WRITE record-name (FROM identifier-I] J 
_IN_V~A_L_l_D~_K_E_Y~1-·1n_p_e_r_a_ti_v_e-_s_ta_t_e_m_e_n_t_J~~----------~· [; 

Format 3: 

Syntax Rules: 

l. Record-name and identifier-I must not n~ference the same storage area. 
2. When mnemonic-name is specified, it mu.st be associated with a CHANNEL number. The mnemonic

name is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. 
3. The record-·name is the name of a logical record in the FILE SECTION of the DATA DIVISION and 

may be qualified. 
4. When identifier-2 is used in the ADVANCING phrase, it must be the name of an elementary imeger 

data item. 
5. Integer-I or the value of the data item referenced by identifier-2 may be zero. 
6. If the END-OF-PAGE phrase is specified, th:~ LINAGE clause must be specified in the file description 

entry (FD) for the associated file. 
7. The words END-OF-PAGE and EOP are equivalent. 

7-1263 



B 1000 Systems COBOL 74 Reference Manual 
Procedure Division 

WRITE 

8. The ADVANCING mnemonic-name phrase cannot be specified when writing a record to a file whose 
file description entry contains the LINAGE clause. 

9. Format 1 must be used if the ACTUAL KEY phrase is not specified in the file-control entry for the 
file associated with record-name. Format 2 must be used if the ACTUAL KEY phrase is specified in 
the file-control entry for the file associated with record-name. 

10. Format 2 is used for Relative and Indexed Files and also Sequential Files in the Random access mode. 
11. In Format 2, the INVALID KEY phrase must be specified if an applicable use procedure is not specified 

for the associated file. 

1108883-001 7-126C 

I 



General Rules: 

B IOOO Systems COBOL74 Reference Manual 
Procedure Division 

These rules follow under the following headings: 

Mass and Non-Mass Storage Files 

Non-Mass Storage Files 

Mass Storage Files 
a) Scquentia1 Files 
b) Indexed Files 
c) Relative Files 

Mass and Non-Mass Storage Files 

WRITE 

1. The: associated file must be open in the OUTPUT, INPUT-OUTPUT, or EXTEND mode at the time 
of the execution of this. statement, artd must not be a SORT or MERGE File. Refer to the OPEN state
ment in this section. 

2. The: execution of a WRITE statement has no effect upon either the contents or accessibility of the rec
ord area. If the associated file is named in the SAME RECORD AREA clause, the logical record is 
also available to the program as a record of other files referenced in the same SAME RECORD AREA 
clause; the associated output file and the file associated with record-name. 

3. The results of the execution of the WRITE statement with the FROM phrase is equivalent to the execu
tion of 

a. The statement: 

MOVE identifier-I TO record-name 

according to the rules specified for the MOVE statement, followed by 

b. The same WRITE statement without the FROM phrase. 

The contents of the record area before the execution of the implicit MOVE statement have no effect 
on the execution of this WRITE statement. 

4. The current record pointer is unaffected by the execution of a WRITE statement. 
5. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any, associ

ated with the file to be updated. Refer to I-0 Status in Section 5. 
6. The maximum record size for a file is established when the file is created and must not subsequently 

be changed. 
7. The number of character positions on a mass storage device required to store a logical record in a file 

ma.y or may not be equal to the number of character positions defined by the logical description of 
that record in the program. 

8. The execution of the WRITE statement releases a logical record to the operating system. 

1108883-001 7-127 

I 



B IOOO Systems COBOL74 Reference Manual 
Procedure Divisilrn 

WRITE 

Non-Mass Storage Files 

7-128 

9. Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the vertical position
ing of each line on a representation of a printed page. If the ADVANCING phrase is not used, auto
matic advancing is provided to act as if the user had specified AFTER ADVANCING l LINE. If 
the ADVANCING phrase is used, advancing is provided as follows: 

a. If identifier-2 is specified. the page is advanced the number of lines equal to the current value 
of identifier-2. 

b. If integer-I is specified, the page is advanced the number of lines equal to the value of integer
). 

c. If mnemonic-name is specified. the page is advanced to the line number corresponding to the 
CHANNEL number. 

d. If the BEFORE phrase is used. the line is written before the page is advanced according to rules 
9a. 9b, and 9c. 

e. If the AFTER phrase is used, the liine is written after the page is advanced according to rules 
9a, 9b. and 9c. 

f. If PAGE is specified. the record is written on the logical page BEFORE or AFTER (depending 
on the phrase used) the device is repositioned to the next logical page. If the record to be written 
is associated with a file containing a LINAGE clause, the repositioning is to the first line that 
can be written on the next logical page as specified in the LINAGE clause. If the record to be 
written is associated with a file which does not contain a LINAGE clause, the repositioning is 
to CHANNEL I or line I of the next logical page when appropriate for the hardware device. 

If PAGE has no meaning in conjunction with a specific device. then advancing is provided by 
the compiler to act as if the user had specified BEFORE or AFTER ADVANCING I LINE. In 
either case. page positioning depends on the phrase used. 

IO. If the logical end of the page is reached during the execution of a WRITE statement with the END
OF-PAGE phrase. the imperative-statement specified in the END-OF-PAGE phrase is executed. The 
logical end is specified in the LINAGE clause associated with record-name. 

11. An end-of-page condition is reached whenever the execution of a given WRITE statement with the 
END-OF-PAGE phrase causes printing or spacing within the footing area of a page body. This occurs 
when the execution of such a WRITE statement causes the LINAGE-COUNTER to equal or exceed 
the value specified by integer-2 or the data item referenced by data-name-2 of the LINAGE clause, 
if specified. In this case. the WRITE statement is executed and then the imperative statement in the 
END-OF-PAGE phrase is executed. 

An automatic page overflow condition is reached whenever the execution of a given WRITE state
ment (with or without an END-OF-PAGE phrase) cannot be fully accommodated within the current 
page body. 

Overflow occurs when a WRITE statement. if executed. causes the LINAGE-COUNTER to exceed 
the value specified by integer- I or to ex,,;eed the data item referenced by data-name- I of the 
LINAGE clause. In this case. the record is written (depending on the phrase used) on the logical 
page before or after the device is repositioned to the first line that can be written on the next log1ical 
page as specified in the LINAGE clause. The imperative statement in the END-OF-PAGE clause. 
if specified. is executed after the record is written and the device has been repositioned. 

If integer-2 or data-name-2 of the LINAGE clause is not specified. no end-of-page condition distinct 
from the page overflow condition is detected. In this case, the end-of-page condition and page over
flow condition occur simultaneously. 



B IOOO Systems ( '( >BOl-:74 Reforem:e Manual 
ProcL"Jure Division 

WRITE 

If integer-2 or data-name-2 of the LINAGE' clause is specified, but the execution of a given WRITE 
statement would cause LINAGE-COUNTER to simultaneously exceed the value of both integer-2 
(or the data item referenced by data-name-2) and integer-I (or the data item referenced by data-name-
1), then the operation proceeds as if integer-2 or data-name-2 had not been specified. 

12. After the recognition of an end-of-reel or an end-of-unit of an output file that is contained on more 
than one physical reel/unit, the WRITE statement performs the following operations: 

a. The standard ending reel/unit label procedure. 
b. A reel/unit swap. 
c. The standard beginning reel/unit label procedure. 

Mass Storage Files 

13. When the INVALID KEY condition is recognized, the execution of the WRITE statement is unsuc
cessful. The contents of the record area are unaffected and the FILE STATUS data item, if any, 
associated with the file-name of the associated file is set to a value indicating the cause of the condi
tion .. Execution of the program proceeds according to the rules stated for the INVALID KEY condi
tion. Refer to I-0 Status in Section 5. 

SEQUENTTAL FILES: 

14. When an attempt is made to write beyond the externally defined boundaries of a Sequential File. 
an exception condition exists and the contents of the record area are unaffected. The following action 
takes place: 

a. The value of the FILE ST ATVS data item, if any, of the associated file is set to a value indicating 
a boundary violation. Refer to I-0 Status in Section 5. 

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly specified for 
the file. that declarative procedure is then executed. 

c. ff a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implicitly specified 
for the file, the result is undefined. 

15. If the ACTUAL KEY phrase is specified for a mass storage file whose access mode is sequential. 
the successful execution of a Format 2 WRITE statement updates the contents of the ACTUAL KEY 
data item to the ordinal number of the logical record written. 

16. For a mass storage file whose access mode is sequential, the execution of a Format 2 WRlTE state
ment releases the record area to the next logical record in the file. 

17. For a mass storage file whose access mode is sequential, the INVALID KEY condition exists when 
a maximum logical size is specified for the file and no more logical records may be written. 

18. For a mass storage file whose access mode is random, the execution of a Format 2 WRITE statement 
releases the record area to the logical record of the file specified by the contents of the ACTUAL 
KEY data item. 

19. For a mass storage file whose access mode is random, an INVALID KEY condition exists when 
the value of the ACTUAL KEY data item is less than 1 or greater than the ordinal number of the 
last logical record allowed for the file, provided that the maximum logical size of the file is specified. 

1108883-001 7-129 



WRITE 

B 1000 Systems COBOL74 Reference Manual 
Procedure Division 

b~ ~~)µ~ q~~~e r~~~ ~~ 29~~~t~{f tO j gu~µe file ~amilY~ tne CQnte~ts of ·.~~~ j&f:;J:~~~ ~~'.l ~~~~ ~~~lfi 

.~~·~~Fi}lt~~··•••·.~·~~~··•••••~~~··•••··•q~~~~··•••••~t~····•••~~?!{~~~··•.~1'e:•····i~?~~·.···Q'····~~~··.·•~fl~r~~~·····•~()··•·.·~~~~~·••••···~~~·••••••·~~~~~~~··•·••••~·~··••·•••~!•·•••·•'I•······~~~~ leatied~•An I~liiliHll> H'Ei-Y:conditiqn exists .. if thevahie.•Qf.the AC'.t'UA:t KBY.••dltai item is. JjsS tnan 
~"e 9r 1t:~ater tllau the lm~~mum nunibeir or·· s111mt¢(Ji1 ~It¢ ~~ill'~ 

(tbe-<ift~~~ c~n~in:tiJ~e ~axi~umnumber <Jf n1~s~~g's it .e~I1 ~tore)t and. ~onti11ues with.t'e ~~xt e~~eut
a,bl¢ ln$ttuc~iQn. ·•• Xf the WITH.· NO WAIT option is not specified and a Q .. Full C()J:l<Utio~1 QC¥UJ'S; the 
pl;ogttal'U is susp¢nded until the write operation is completed. 

22. ·A WRITE statement causes the program to·wait until·a buffer·is available to store th¢ recntd.Suspen .. 
sion of the program can be prevented for a port file by using the WITH NO WAIT phrase. A status 
key vab1e 'oit<9SJs returned ,when no buffer is available for the logical record. 

23~ If an ~C:Tt)J~t J'.B:Y Clause is specified for a port file~ the. user is responsible for updating lhe vahiie 

7-130 

of t~e ~~~llfAljl(;~~ data.it~m with an ilp~:ropriat~ value~ A. 'YR.~!E~t~te~~n~ f~~srs thev~l~! •of 
t~~ ~~~~~~> ··1'~~···· dat' ite~ Jo the}~O syst7n1 whifh . f9'nv:!~~~ ~~e ~es~~g~ t~. t~~ ~e$~!;~ ~~bfile •. J[f 
the AClUA:t.; I\El>value is '.zero; ·a ''broadcast'' write operatb>n i$ •· perf9ri;ne4.• •. For a uroadcast write 
ovel'ati<ln, the message is sent to alfopened .~ubfil¢s ()f the port me~ 

If no A.c;:TUAL K6¥ dause Js>speciiied for the port file, t)j~. port file ffiµ:sf )l~v~ ~Qly one subfile. AU 
mes$ag~s are written to that ·subfile. 



INDEXED FILES: 

B IOOO Systems C< >HOL74 Reference Manual 
Procedure Division 

WRITE 

24. For an Indexed File, execution of the WRITE statement causes the contents of the record area to be 
rele:ased. The contents of the record keys are utilized such that subsequent access of the record key 
may be made based upon any of those specified record keys. 

25. The value of the prime record key must be unique within the records in the Indexed File. 
26. In an Indexed File, the data item specified as the prime record key must be set by the program to the 

desired value before the execution of the WRITE statement. 
27. If the sequential access mode is specified for an Indexed File, records must be released in ascending 

order of prime record key values. 
28. If random or dynamic access mode is specified for an Indexed File, records may be released in any 

program-specified order. 
29. When the ALTERNATE RECORD KEY clause is specified in the file control entry for an Indexed File, 

the value of the alternate record key may be nonunique only if the DUPLICATES phrase is specified 
for that data item. In this case, the storage of records is such that when records are accessed sequential
ly, the order of retrieval of those records is the order in which they are released. 

30. The INVALID KEY condition exists under any of the following circumstances: 

a. When sequential access mode is specified for a file opened in the output mode, and the value of 
the prime record key is not greater than the value of the prime record key of the previous record. 

b. When the file is opened in the output or 1-0 mode, and the value of the prime record key is equal 
to the value of a prime record key of a record already existing in the file. 

c. When the file is opened in the output or 1-0 mode, and the value of an alternate record key for 
which duplicates are not allowed equals the corresponding data item of a record already existing 
in the file. 

d. When an attempt is made to write beyond the externally-defined boundaries of the file. 

RELA TJVE FILES: 

31. When a Relative File is opened in the output mode, records may be placed into the file in one of the 
following ways: 

a. lf the access mode is sequential, the WRITE statement causes a record to be released. The first rec
ord has a relative record number of 1 and subsequent records released have relative record numbers 
of 2, 3, 4, and so on. If the RELATIVE KEY data item has been specified in the file control entry 
for the associated file, the relative record number of the record just released is placed into the REL
ATIVE KEY data item during execution of the WRITE statement. 

b. If the access mode is random or dynamic before the execution of the WRITE statement, the value 
of the RELATIVE KEY data item must be initialized in the program with the relative record number 
to be associated with the record in the record area. That record is then released by execution of 
the WRITE statement. 

32. Wh1en a Relative File is opened in the 1-0 mode and the access mode is random or dynamic, records 
are to be inserted in the associated file. The value of the RELATIVE KEY data item must be initialized 
by the program with the relative record number to be associated with the record in the record area. 
Execution of a WRITE statement then causes the contents of the record area to be released. 

33. The INVALID KEY condition exists under any of the following circumstances: 

a. When the access mode is random or dynamic, and the RELATIVE KEY data item specifies a record 
which already exists in the file. 

b. When an attempt is made to write beyond the externally defined boundaries of the file. 

1108883-001 7-l 30A 



B 1000 Systems COBOL 74 Reference Manual 

1108883-001 8-1 



8-2 

B 1000 Systems COBOL 74 Reference Manual 
Fi le Attributes 



ll l 08883-00 l 

B 1000 Systems COBOL 74 Reference Manual 
File Attributes 

8-2A 

I 
I 

I 

I 

I 



8-2B 

B 1000 Systems COBOL 74 Reference Manual 
File Attributes 



CHANGE 

B 1000 Systems COBOL 74 Reference Manual 
File Attributes 

File Attribute 
Change 

The CHANGE statement allows the procedural 

Gene ml Format: 

are invalid are ignored. 

1108883-001 8-3 



8-4 

B 1000 Systems COBOL 74 Reference Manual 
Fi le Attributes 



1108883-00] 

B 1000 Systems COBOL 74 Reference Manual 
File Attributes 

I 

8-5 



I 

I 

B 1000 Systems COBOL 74 Reference Manual 
File A~tributes 



1108883-00 ll 

8 1000 Systems COBOL 74 Reference Manual 
File Attributes 

8-7 



I 

I 

I 

I 

I 

I 
8-8 

B 1000 Systems COBOL 74 Reference Manual 
File Attributes 



1108883-001 

B IOOO Systems COBOL74 Reference \!lanual 
hie Attributes 

8-9 



8-10 

B 1000 sv ..... klll'- ( '( HH >L74 RckrL'llCL' \Ltntt;tl 
l ik .\ttrihulL'...., 

in the B 1000 Systems Software 



1108883-001 

B 1000 Systems COBOI.74 Reference '-1anual 
File /\ttributcs 

8-11 



B 1000 Systems COBOL74 Reference Manual 

1108883 9-1 



9-2 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 



1108883 

B 1000 Systems COBOL74 Reference Manual 
Data Base Management 

9-3 



9-4 

B 1000 Systems COBOL 74 Reference Manual 
Data Base fivfanagement 



B 1000 Systems COBOL74 Reference Manual 
Data Base Management 

~ ... · ... ·.•.·.·····:··.••.:·:··········:.• .. ~.i ... •.• .. : .• :.: .•. ~.k .. •.•.··.·····Q·.·.•.:~ .. •.•.~.·.· .... t•.:.• .. T .•. T .•..•..•.••.•.. •.•.·•.·.:·····]············ • .•. ~PRmB~ 

Ge.t1¢~'' Rµ~es: 

{ 

set~name l 
···~t-f!Ulef 

Data Base 
SET SELECTION EXPRESSIONS 

t,::~,f:tTctt:nk~11f «4~~~~·-~~•~•,;l~ .. a;ilio~,.~.~lso allows •. specifl-

2. The .. acljectives .. Fl~~~~ ~~~~t ~~~I~ ~R~ ~~~--~~11~11~~~~7~~~~ ~ ~-r~sWrT:~~~ucptially._ By stat~ 
in~ F(INP rt~~! t~ll~~~~ ~~ ~I~~ ~~~~· ~~ ll~ll·IR~! l~!~~r-~~~l l,1~ ~l~Q ~RIP~~ allrecords 
~4fer~?9e~••·.h~r··~·~·~·•••·~~~ ~~ ~~~~T~i~~~l-~~fi~~~tlr~~~l~l~I! ~l.jl~I[~~! ~)rd~~i,e of ·•·.~he · .. ~.t~ucture. 

3, lf~e:it~7t •. f~~~!: ~~~~~ ~m~~\ r:P~~~<:llt)f ~~ ITI~Bj~~~~~l<mri~<~pecified. ··•tile record retrieved is 
t~~~: •.. ~~~~f~~~ ~¥?~~~ ~~~~~~~I p~~~:•·:t~f:the···named:··:··~~~~~~~~7~ 

4. }h¢ a.~J~¢~;Y'K~ f?l~Stol(f ~~~IX #ll·P· PRlQR are n()t ~J~~~~~ ~'!~ ~ key".~1lmiition <lf a set selection ex-
~·y~~~~i~~· . . .: : >· < i····· .. · ... ·.·.. . ··.·. ·. .::. ·:··:.·· • • < 

S. ~f:,~;·~ ~~~~::H~~r~~~ifl.~.~~:·,\~~r>Qfdqta set after aq ~lill ~~ u PlNP NEXT ·or ·LOCK NEXT. the 
· lrs,t n.tet)rdJ is found<cir h¥tked. · · 

1108883-001 9-5 



I 

B 1000 Sv-,1crn-, ( OBOL7.+ Rdcrrncc \lanual 
l ):tu B~1.., .. · \lanaµcmcnt 

Oata Base 
KEY CONDITION 

KEY CONDITION 

The key-condition option specifies values to be used 10 locate sped fie record:s in a data set referenced by a partic~ 
ular set or subset. 

There are two categories of key conditions: simple key •. ;onditions and compiex key conditions. Each may be en
closed \Vithi1) any number or paired parentheses, in w !1it::h case the category is not changed. 

Simple Key Condition 

General Format: 

Syntax Rules: 

1. Data-name must be a data·-narne in the key. 
2. Relational-operator is any relational operator CJJ, \.kscribcd in the subsection entitled Relation Condhlon 

in Section 7. 

General Rules: 

l. H an AT key~condition is used, then the tfr~t n:cord satisfying that condition is retrieved. By using 
NEXT with key~condition in an iterative loop, all records '>atisfying the kcy~condition are retrieved. Or~ 
der of retrieval is not spedfied. 

CompJe>c Key Condition 

The rulesJor forming a complex key condition arc the same as those for comph:x con~litions \Vtth three excep~ 
tions: 

L Each reference to "condition'' must be taken to mean '·key condition.'' 
2. AU items of the key must be in Mder. 
J. The connecti'Ve used in complex key conditions must be AND. 

Generalized Sele.ction Expression 

The g<~11eralized selection expression feature allow~. program" w request rccon.b from a path, while \pedfying as 
much en as little 1nformat ion about tbc key for that path as b available. 

The use of l.'.omplex keys in a FIND verb l..'.an be l'•Jdcd as follows: 

'J-6 

FIND FTR AT 
GROUP-CODE :c GROUPNC AND 
COUNTRY-oiSTRICT = CISTNO AND 
BRANCH = BRANCHNO AND 
SEQ= SEA. 



1108883-00 l 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 



EXCEPTION TYPE 

1108883-00 I 

B 1000 Systems COBOL74 Reference Manual 
Data Base Management 

Data Base 
EXCEPTION CATEGORIES 

9-7 



9-8 

B IOOO S\ -..tL'llh < < >B, >I J-l RL·krL'llL.L' \Lt1111;tl 

DaL.t B.t'>L' \Ll11;igL'llWnt 



B 1000 Systems COBOL74 Reference Manual 
Data Base Management 

Data Base 
EXCEPTION CATEGORIES 

Table 9 .. 1. Exception Category Names i\n1d Values (Cont} 

Category 

Names 

NOTLOCKED 

OPEN ERROR 

1108883-001 

Value 

5 

i1 

Meaning 

Path state must be·valid or created. 

Data base not initialized. 

Already opened by this program. 

when six data bases 

9-9 



I 

I 

Q-10 

B 1000 Sy"ltcms COBOL 74 Reference Manual 
Data Hase Management 



1108883-00 i 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-11 



I 

9-12 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-13 



I 

9-14 

B 1000 Systems COBOL 74 Reference Manual 
Data Bas1: Management 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-15 



I 

B 1000 Systems COBOL 74 Reference Manual 
Data Ba~e Management 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-! 7 



I 

9-18 

B 1000 Systems COBOL 74 Reference Manual 
Data Hase Management 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-19 



I 

9-20 

B 1000 Systems COBOL 74 Reference Manual 
Data BasC' Management 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-21 



13 IOOO Systems COBOL74 Reference Manual 
Data Ba~;c Management 

Data Base 
STORE 

STORE 

The STORE statement is used to return a moditfod record to the data set or to place a newly created re1;;ord 
into the data set. 

General Format: 

c ~·----·-S_T_o_R_E_. ___ d_a_ta-set~name (_o_N __ E_X_c_E_PT_:. _1o_N_· s_ta_t_em_en_t_J ____ . __ J 

9-22 

t ~he data stored is<i~: th.~ record area of the named data set, Prior to being stored. the data is cbec:ked 
fotvalidity (if specified in IDASOL,J .. ffany validi~y checks fail. the STORE operation terminates with 
arr·.exception. 

2 ... l~ the~a~t..p~e~ioq~ '~eratibn on the data··S€!t ~'~'. ~ ~~~j\tB .. or·a RECREATE. the data becomes 
a new rec()rd in· tile ~da.tzt set·· in . a locked stat(!, Th<? 9t.1rn:nt record path is. defined to refer· to the new 

t:~~(j~~- .... > ·. .· . . < > 
3 ....•. ~~ ~~~ .ti!~r~7~~ r~~~ir~ path .. is defined and the chrr~nt r~c~rd is .Jocked· by this ptogram.·t°:e .data. re~ 

~I~~~~ ~~F i~~~~e~t rec~r~ in the data set. The recor<f remains . locked. If the current r~c~1~d path is 
<.l~'ned P:qt~~J(;l~~@~. (~~r example. as it wot:ild be if the n.~cord had been retrieved ysirig l?l.NOJ. the 
Qperatit)ll terniinat~s wit~ ~n except.ion. 

4.>Tne following additional actions are performed~ depertditil on the prior operation: 

l~ ~i~c~ this is n.o~ .~ •. n.~w. record. it aln~~dr exists in aU automatic sets. 
2)<lf items involv~d ~? theJnserti~m conditions of any subsets have •changed. the conditions •must 

l>e re .. evaluated .. ro~ ,e~9~ automatilc subset already containing. the record. if the condition is 
no b)nger lll~t. th~ r7~p11~ is removed from. that subset. r.or eafll futomatic subset not alre;ady 
containing the: ref~Fd\. i~ t~~ eondi1tion is m~t~the record .i~ i~s~rted i~to that subset. 

3J I~ a key of tfq a~~~~~i~ s¢t t)f subset is modified such that the· recor<J must be moved to a 
d.~~f~r~ot position i~ J~e tlrder of. that s~!t or .subset. the record is µ~Jeted from the set or. subset 
an9 r~inserte(j in tb~ ~roll~r ·position. It is illegal tn modify. a key. if duplicates are not allowed. 

4J 'fpe>system does not ~et)tder manual subsets. It is the programmer's responsibility to maintain 
sl1.eb subsets. 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Data Base Management 

I 

9-23 



GENERAL 

B 1000 Systems COBOL 74 Reference Manual 

SECTION 10 
DEBUG 

The Debug section provides a means by which the user can describe a debugging algorithm, including the con
dhions under which data items or procedures are to be monitored during the execution of the object program. 

The decisions of what to monitor and what information to display on the output device are explicitly in the 
domain of the user. The COBOL74 debug facility simply provides a convenient access to pertinent information. 

LANGUAGE CONCEPTS 

The features of the COBOL74 language that support the Debug section are: 

I. A compile-time switch called WITH DEBUGGING MODE. 
2.' An object-time switch. 
3. A USE FOR DEBUGGING statement. 
4. A special register called DEBUG-ITEM. 
5. Debugging lines. 

DEBUG··ITEM 

The reserved word DEBUG-ITEM is the name for a special register generated automatically. Only one DE
BUG-ITEM is allocated per program. The names of the subordinate data items in DEBUG-ITEM are also re
served words. 

A COMPILE-TIME SWITCH 

Tlie WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER paragraph. It serves 
as a compile-time switch over the debugging statements written in the program. 

Al\I OBJECT-TIME SWITCH 

An object-time switch (SW9), dynamically .activates the debugging code inserted by the compiler. This switch 
cannot be addressed in the program; it is controlled outside the COBOL74 environment. If the switch is ON 
(SW9 = I), all the effects of the debugging language written in the source program are permitted. If the switch 
is OFF (SW9 = 0), all the effects described in the USE FOR DEBUGGING statement are inhibited. Recompi
lation of thie source program is not required to provide or take away this facility. 

The object-1time switch has no effect on the execution of the object Rrogram if the WITH DEBUGGING 
MODE clauise was .not specified in the source program at compile time. 

1108883 10-1 



DEBUG 
DEBUGGING LINES 

DEBUGGING LINES 

B 1000 Systems COBOL74 Reference Manual 
De:: bug 

A debugging line is any line with the letter D in the indicator area (column 7), of the line. Any debugging 
line that consists solely of spaces from columns 8 to 72 is considered the same as a blank line. 

The contents of a debugging line must be such that a syntactically correct program is formed with or without 
the debugging lines being considered as comment lines. 

A debugging line is considered to have all the characteristics of a comment line, if the WITH DEBUGGING 
MODE clause is not specified in the SOURCE-COMPLTER paragraph. 

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that each 
continuation line must contain the letter D in the indicator area, and character-strings may not be broken 
across two lines. 

The OBJECT-COMPUTER paragraph must precede any debugging line in a program. 

10-2 



B 1000 Systems COBOL 74 Reference Manual 
Debug 

ENVIRONMENT DIVISION 

DEBUG 
ENVIRONMENT DIVISION 

To use the debugging fe~tures, you must specify the WITH DEBUGGING MODE clause in the ENVIRON
MENT DIVISION. 

WITH DEBUGGING MODE 

The WITH DEBUGGING MODE clause indicates that all debugging sections and all debugging lines are to 
be compiled. Refer to Debugging Lines and USE FOR DEBUGGING in this section. If this clause is not 
specified, all debugging lines and sections are compiled as comment lines. 

General Format: 

[~~~~s_o_u_R_c_E_-e_o_M_P_u_T_E_R_. ____ co_m_p_u_t_er_-n_a_m,_e ___ [_w_1_T_H_D __ E_Bu __ G_G_1N_G __ M_o __ n_E_J ________ --A] 

General Rules: 

I. If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER paragraph of the 
CONFIGURATION SECTION of a program, all USE FOR DEBUGGING statements and all debug
ging lines are compiled. 

2. If the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph 
of the CONFIGURATION SECTION of a program, any USE FOR DEBUGGING statements and all 
associated debugging sections, and any debugging lines are compiled as comment lines. 

1108883 10-3 



B 1000 Systems COBOL74 Reference Manual 
Debug 

DEBUG 
PROCEDURE DIVISION 

PROCEDURE DIVISION 
Within the: PROCEDURE DIVISION, procedures and data-names can be selectively monitored through the 
USE FOR DEBUGGING statement. 

USE FOR DEBUGGING 
The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the associated 
debugging section. 

General Format: 

section-name SECTION [ segment-number ] . 

l c[:~~~e~EFERENCES 0 F] 
USE FOR DEBUGGING ON file-name-1 

[· 
cd-name-2 

proced ure-name-1 
ALL PROCEDURES 

(ALL REFERENCES OF] 
file-name-2 

identifier·2] 

proced ure-name-2 
b.LL PROCEDURES 

identifier-I l 

Syntax Rules: 

10-4 

I. Debugging section(s), if specified, must appear together immediately after the DECLARATIVES 
header. 

2. Except in the USE FOR DEBUGGING statement, there must be no reference to any nondeclarative 
procedure within the debugging section. 

3. Statements appearing outside of the set of debugging sections must not reference procedure-names 
defined within the set of debugging sections. 

4. Except for the USE FOR DEBUGGING statement, statements appearing within a given debugging 
section may reference procedure-names defined within a different USE procedure only with a PElll 
FORM statement. 

5. Procedure-names defined within debugging sections must not appear within USE FOR DEBUGGING 
statements. 

6. Any given identifier, cd-name, file-name, or procedure-name may appear in only one USE FOR DE
BUGGING statement and may appear ornly once in that statement. 

7. The ALL PROCEDURES phrase can appear only once in a program. 
8. When the ALL PROCEDURES phrase is specified, procedure-name-I, procedure-name-2, ... mrnst 

not be specified in any USE FOR DEBUGGING statement. 
9. ff the data description entry of the data item referenced by identifier-I, identifier-2, ... , contains an 

OCCURS clause or is subordinate to a data d•!scription entry that contains an OCCURS clause, ide:n
tifier-1, identifier-2, ... , must be specified. .w:ithout the subscripting or indexing normally required. 

JO. References to the special register DEBUG-ITEM are restricted to references from within a debugging 
:section. 



B 1000 Systems COBOL74 Reference Manual 
Debug 

DEBUG 
PROCEDURE DIVISION 

General Rules: 

I. In the following general rules all references to cd-name-I, identifier-I, procedure-name-I, and file
name-I apply equally to cd-name-2, identifier-2, procedure-name-2, and file-name-2, respectively. 

2. Automatic execution of a debugging section is not caused by a statement appearing in a debugging 
section. 

3. When file-name-I is specified in a USE FOR DEBUGGING statement, that debugging section is 
executed: 

a. After the execution of any OPEN or CLOSE statement that references file-name-I, and 
b. After the execution of any READ statement (after any other specified USE procedure) not result

ing in the execution of an associated AT END or INVALID KEY imperative statement, and 
c. After the execution of any DELETE or ST ART statement that references file-name- I. 

4. When procedure-name-I is specified in a USE FOR DEBUGGING statement, that debugging section 
is executed: 

a. Immediately before each execution of the named procedure; 
b. Immediately after the execution of an ALTER statement which references procedure-name-I. 

5. Th~ ALL PROCEDURES phrase causes the effects described in General Rule 4 to occur for every 
procedure-name in the program, except those appearing within a debugging section. 

6. When the ALL REFERENCES OF identifier-1 phrase is specified, that debugging section is executed 
for every statement that explicitly references identifier-I at each of the following times: 

1108883 

a. In the case of a WRITE or REWRITE statement, immediately before the execution of that 
WRITE or REWRITE statement and after the execution of any implicit move resulting from the 
presence of the FROM phrase. 

b. In the case of a GO TO statement with a DEPENDING ON phrase, immediately before control 
is transferred and prior to the execution of any debugging section associated with the procedure
name to which control is to be transferred. 

c. In the case of a PERFORM statement in which a VAR YING, AFTER, or UNTIL phrase refer
ences identifier-I, immediately after each initialization, modification, or evaluation of the contents 
of the data item referenced by identifier-I. 

d. In the case of any other COBOL74 statement, immediately after execution of that statement. 

If identifier-I is specified in a phrase that is not executed or evaluated, the associated debugging 
section is not executed. 

10-5 



B 1000 Systems COBOL74 Reference Manual 
Debug 

DEBUG 
PROCEDURE DIVISION 

10-6 

7. When identifier-I is specified without the ALL, REFERENCES OF phrase, that debugging section 
is executed at each of the following times: 

a. In the case of a WRITE or REWRITE statement that explicitly references identifier- I, immediate
ly before the execution of that WRITE or REWRITE statement and after the execution of any 
implicit move resulting from the presence 1of the FROM phrase. 

b. In the case of a PERFORM statement in which a VARYING, AFTER, or UNTIL phrase refer
ences identifier-I, immediately after ·each initialization, modification, or evaluation of the contents 
of the data item referenced by identifier-I. 

c. Immediately after the execution of any other COBOL74 statement that explicitly referenc~s andl 
causes the contents of the data item referenced by identifier-I to be changed. 

If identifier-I is specified in a phrase that is not executed or evaluated, the associated debugging 
section is not executed. 

8. The associated debugging section is not executed for a specific operand more than once as a resu]t 
of the execution of a single statement, regardless of the number of times that operand is explicitly 
specified. In the case of a PERFORM statement which causes iterative execution of a referenced 
procedure, the associated debugging section is executed once for each iteration. 

Within an imperative statement. each individual occurrence of an imperative verb identifies a 
sieparate statement for the purpose of debugging. 

9. When cd-name-I is specified in a USE FOR DEBUGGING statement, that debugging section is 
executed: 

a. After the execution of any ENABLE, DISABLE, and SEND statement that references cd-name:
I, 

b. After the execution of a RECEIVE statement referencing cd-name-I that does not result in the 
execution of the NO DAT A imperativc~-statement, and 

c:. After the execution of an ACCEPT MESSAGE COUNT statement that references cd-name-1. 

10. A reference to file-name-I, identifier- I, pro·cedure-name-I, or cd-name-1 as a qualifier does not con
stitute reference to that item for the debugging described in the previous general rules. 

1 I. Associated with each execution of a debugging section is the special register DEBUG-ITEM, whiclil 
provides information about the conditions that ·caused the execution of a debugging section. DEBUG
ITEM has the following implicit description: 

01 DEBUG-ITEM. 
02 DEBUG-LINE PICTURE IS X(6). 
02 Fl LLER PICTURE IS x VALUE SPACE. 
02 DEBUG-NAME PICTURE I'"' .) X(30). 
02 FILLER PICTURE I'" .) x VALUE SPACli:. 
02 D EBUG-SUB-1 PICTURE I .:· ,,) s9999 Sl.GN IS LEADING SEPARATE 

CHARACTER 
02 FILLER PICTURE IS x VALUE SPACE. 
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE 

CHARACTER 
02 FILLER PICTURE I ·1· .) x VALUE SPACE. 
02 DEBUG-SUB-3 PICTURE 11:• ,,) S9999 SIGN IS LEADING SEPARATE 

CHARACTER 
02 FILLER PICTURE. 11· ,) x VALUE SPACE. 
02 DEBUG-CONTENTS PICTURE. IS X(n). 



B 1000 Systems COBOL74 Reference Manual 
Debug 

DEBUG 
PROCEDURE DIVISION 

12. Prior to each execution of a debugging section, the contents of the data items referenced by DEBUG
ITEM are space-filled. The contents of data items subordinate to DEBUG-ITEM are then updated. 
according to the following General Rules, immediately before control is passed to that debugging sec
tion. The contents of any data item not specified in the following general rules remain spaces. 

Updating is accomplished in accordance with the rules for the MOVE statement, the sole exception 
being the move to DEBUG-CONTENTS when the move is treated exactly as an alphanumeric to 
alphanumeric elementary move with no conversion of data from one form of internal representation 
to another. 

13. DEBUG-LINE is a data item that identifies the particular source statement that caused the debugging 
section to be executed. It contains the line number of the source image, a number which starts from 
1 and is incremented by I for every source image compiled. This line number is printed on the source 
listing during compilation. 

14. DEBUG-NAME contains the first 30 characters of the name that caused the debugging section to 
be executed. 

All qualifiers of the name are separated in DEBUG-NAME by the word IN or OF. Subscripts/in
dices, if any, are not entered into DEBUG-NAME. 

15. If the reference to a data item that causes the debugging section to be executed is subscripted or 
indexed, the occurrence number of each level is entered in DEBUG-SUB-I, DEBUG-SU B-2. DE
BUG-SUB-3 respectively as necessary. 

If the data item is subscripted with more than three subscripts or indices, only the occurrence num
bers of the first three levels are entered into the DEBUG-ITEM. 

16. DEBUG-CONTENTS is a data item that is large enough to contain the data required by the following 
General Rules 17 through 25. 

17. If the first execution of the first nondeclarative procedure in the program causes the debugging sec
tion to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the first statement of that procedure. 
b. DEBUG-NAME contains -the name of that procedure. 
c. DEBUG-CONTENTS contains 'START PROGRAM'. 

18. If a reference to procedure;..name-1 in an ALTER statement causes the debugging section to be 
executed, the following conditions exist: 

a. DEBUG-LINE identifies the ALTER statement that references procedure-name-I. 
b. DEBUG-NAME contains procedure-name- I. 
c. DEBUG-CONTENTS contains the applicable procedure-name associated with the TO phrase of 

the ALTER statement. 

19. If the transfer of control associated with the execution of a GO TO statement causes the debugging 
section to be executed, the following conditions exist: 

1108883 

a. DEBUG-LINE identifies the GO TO statement whose execution transfers control to procedure
name-1. 

b. DEBUG-NAME contains procedure-name-1. 

10-7 



B 1000 Systems COBOL74 Reference Manual 
Debug 

DEBUG 
PROCEDURE DIVISION 

10-8 

20. If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT or MERGE statement 
causes the debugging section to be executed, the following conditions exist: 

a. DEBUG-UNE identifies the SORT or MERGE statement that references procedure-name-I. 
b. DEBUG-NAME contains procedure-name-1. 
c .. DEBUG-CONTENTS contains: 

1) 'SORT INPUT' if the reference to procedure-name-I is in the INPUT phrase of a SORT state·
ment. 

2) 'SORT OUTPOT' if the reference to procedure-name-I is in the OUTPUT phrase of a SORT 
statement. 

3) 'MERGE OUTPUT' if the referenc·e to procedure-name-I is in the OUTPUT phrase of a 
MERGE statement. 

21. If the transfer of control from the control mechanism associated with a PERFORM statement caused 
the debugging section associated with procedure-name-I to be executed, the following conditions ex
ist: 

:a. DEBUG-LINE identifies the PERFORM statement that references procedure-name-I. 
b. DEBUG-NAME contains procedure-name-I. 
c. DEBUG-CONTENTS contains 'PERFORM LOOP'. 

22. ff procedure-name-I is a USE procedure thal is to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the statement that causes execution of the USE procedure. 
b. DEBUG-NAME contains procedure-name-I. 
c. DEBUG-CONTENTS contains 'USE PROCEDURE'. 

23. lf an implicit transfer of control from the previous sequential paragraph to procedure-name-I cause:s 
the debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the previous statement. 
b. DEBUG-NAME contains procedure-name-I. 
c. DEBUG-CONTENTS contains 'FALL THROUGH'. 

24. If references to file-name-I, cd-name-I cause the debugging section to be executed, then: 

a. DEBUG-LINE identifies the source statement that references file-name-I, cd-name-I. 
b. DEBUG-NAME contains the name of fik-name-1, cd-name-1. 
c. For READ, DEBUG-CONTENTS contains the entire record read. 
d. For all other references to file-name-I, DEBUG-CONTENTS contains spaces. 
e. For any reference to cd-name-I, DEBUG-CONTENTS contains the contents of the area associ

ated with the cd-name. 

25. If a reference to identifier-I causes the debugging section to be executed, then: 

a. DEBUG-LINE identifies the source statement that references identifier-I. 
b. DEBUG-NAME contains the name of identifier-I, and 
c. DEBUG-CONTENTS contains the contents of the data item referenced by identifier- I at the time 

that control passes to the debugging section (refer to General Rules 6 and 7). 



Example: 

B 1000 Systems COBOL 74 Reference Manual 
Debug 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. DEBUGTEST. 
000300 * 
000400 * THIS PROGRAM IS AN EXAMPLE OF THE COBOL74 DEBUGGING AIDS. 

DEBUG 

000500 * NOTE THAT THE "WITH DEBUGGING MODE" STATEMENT IN THE SOURCE 
000600 * COMPUTER PARAGRAPH INSTRUCTS THE COMPILER THAT DEBUGGING 
000700 * STATEMENTS ARE TO BE COMPILED INTO THE OBJECT CODE. SETTING 
000800 * SW9=1 AT EXECUTION TIME ENABLES THE EFFECTS DESCRIBED IN 
000810 * THE "USE FOR DEBUGGING" STATEMENT. 
000900 * 
001000 ENVIRONMENT DIVISION. 
001100 CONFIGURATION SECTION. 
001200 SOURCE-COMPUTER. B1985 WITH DEBUGGING MODE. 
001300 OBJECT-COMPUTER. B1985. 
001400 INPUT-OUTPUT SECTION. 
001500 FILE-CONTROL. 
001600 SELECT PRINTFILE ASSIGN TO PRINTER. 
001700 D SELECT DBGFILE ASSIGN TO PRINTER. 
001800 DATA DIVISION. 
001900 FILE SECTION. 
002000 FD PRINTFILE. 
002100 01 PRINT-REC PIC XC132). 
002200 D FD DBGFILE. 
002300 D 01 DEBUG-REC PIC XC132). 
002400 WORKING-STORAGE SECTION. 
002500 77 ALFA PIC 9 VALUE 4. 
002600 77 BRAVED PIC 99 VALUE 16. 
002700 77 CHARLIE PIC 99. 
002800 D 77 FLAG PIC 9. 
002900 D 88 NEED-IT VALUE ZERO. 
003000 77 ANN PIC 99 VALUE 20. 
003100 01 BARBARA. 
003200 03 CHERYL. 
003300 05 DIANNE PIC 99 VALUE 16. 
003400 77 ELVA PIC 9(18). 
00'.3500 77 FRAN PIC XC32) VALUE "TEST PROGRAM FOR COBOL 74 MANUAL". 
003600 77 GOLDIE PIC 9 VALUE 1. 
003700 01 HEIDI. 
003800 03 ILENE PIC 9(8) OCCURS 5 TIMES. 
003900 03 JANIS PIC 9. 
004000 * 
004100 PROCEDURE DIVISION. 
004200 DECLARATIVES. 
004300 D-BUG SECTION. 
004400 USE DEBUGGING ON 
004500 ALL REFERENCES OF CHARLIE 
004600 ALL REFERENCES OF BRAVED 
004700 ALL PROCEDURES. 

1108883-001 10-8A 



DEBUG 

10-8B 

B 1000 Systems COBOL 74 Reference Manual 
D1.!bug 

004800 * RECORD DESCRIPTION FOR DEBUG-ITEM. 
004900 * 
005000 * 01 
005100 * 
005200 * 
005300 * 
005400 * 
005500 * 
005600 * 
005700 * 
005800 * 
005900 * 
006000 * 
006100 * 
006200 * 
006300 * 
006400 * 
006500 * 

DEBUG-ITEM. 
02 DEBUG-LINE 
02 FILLER 
02 DEBUG-NAME 
02 FILLER 
02 DEBUG-SUB-1 

02 FILLER 
02 DEBUG-SUB-2 

02 FILLER 
02 DEBUG-SUB-3 

02 FILLER 
02 DEBUG-CONTENTS 

006600 DEBUG-OUT. 
006700 IF NEED-IT 
006800 OPEN OUTPUT DBGFILE 
006900 MOVE 1 TO FLAG" 

PIC XC6). 
PIC X VALUE SPACE. 
PIC XC30>. 
PIC X VALUE SPACE. 
PIC S9C4> SIGN IS LEADING 

SEPARATE CHARACTER. 
PIC X VALUE SPACE. 
PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
PIC X VALUE SPACE. 
PIC S9C4> SIGN IS LEADING 

SEPARATE CHARACTER. 
PIC X VALUE SPACE. 
PIC X<n>. 

007000 WRITE DEBUG-REC FROM DEBUG-ITEM. 
007100 END DECLARATIVES. 
007200 WORK SECTION. 
007300 START-IT. 
007400 SUBTRACT ALFA FROM BRAVEO GIVING CHARLIE. 
007500 DIVIDE BRAVEO BY CHARLIE GIVING ALFA. 
007600 SUBTRACT ALFA FROM BRAVEO GIVING CHARLIE. 
007700 FOLLOW-UP. 
007800 SUBTRACT 4 FROM ANN. 
007900 DIVIDE ANN INTO DIANNE GIVING JANIS. 
008000 ACCEPT ILENE <GOLDIE> FROM TIME. 
008100 OPEN OUTPUT PRINTFILE. 
008200 WRITE PRINT-REC FROM FRAN. 
008300 WRITE PRINT-REC FROM ILENE <GOLDIE>. 
008400 WRITE PRINT-REC FROM JANIS. 
008500 CLOSE-SHOP. 
008600 CLOSE PRINTFILE RELEASE. 
008700 D CLOSE DBGFILE RELEASE. 
008800 STOP RUN. 



B 1000 Systems COBOL74 Reference Manual 
Debug 

The output from the file DBGFILE follows. 

000074 WORK 
000074 START-IT 
000074 BRAVEO 
000074 CHARLIE 
000075 BRAVEO 
000075 CHARLIE 
000076 BRAVEO 
000076 CHARLIE 
000076 FOLLOW-UP 
000084 CLOSE-SHOP 

DEBUGGING AND DIAGNOSTIC FACILITIES 

The following compile-time facilities are available: 

DEBUG 
DIAGNOSTICS 

START PROGRAM 
FALL THROUGH 
16 
12 
16 
12 
16 
15 
FALL THROUGH 
FALL THROUGH 

I. Syntax error messages are printed before the line in error prior to the PROCEDURE DIVISION and 
after the line in error thereafter. A pointer indicates the location of the possible error. 

2. Warning messages are optionally printed before the line in error prior to the PROCEDURE DIVISION 
and after the line in error thereafter. A pointer indicates the location of the possible error for some 
of these messages. 

3. Various informational messages are printed. 
4. No code is generated if syntax errors are present. 

All error messages are specific and are sufficient to determine the cause of the error. 

1108883-00 I 10-9 



DEBUG 
COMPILER LIMITS 

COMl?:ILER LJMITS 

8 1000 Systems COBOL74 Reference Manual 
Debug 

The ma:~imum compiler limits are: 

16;777 . .215 
Source,. im~ges. 

16,383 
l><ttf)*nal':Oe$ - includes all data-names. one for each FD. SD. and CD. and o:ne for each ··section·· m 
the Pt\.TA DIVISION (for example, WORKING~STORAGE SECTION). 

Ml.383 
fl>'r<)cedure~names 

128 

10-10 

PI$RiF(jRM range ·- PERFORM A THRU C and PERFORM B THRU C count 



l 108883 

B IOOO Systems COBOL74 Reference Manual 
Debug 

DEBUG 
LIMITS 

10-11 



B 1000 Systems COBOL74 Reference Manual 

1108883 11-1 



11-2 

B 1000 Systems COJBOL 74 Reference Manual 
COBOL 74 Compiler Control 



1108883-00]1 

B 1000 Systems COBOL 74 Reference Manual 
COBOL 74 Compiler Control 

l 1-2A 

I 

I 

I 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
COBOL 74 Compiler Control -

11-3 



11-4 

B 1000 Systems COBOL 74 Reference Manual 
COBOL74 Compiler Control 



1108883 

B 1000 Systems COBOL74 Reference Manual 
COBOL74 Compiler Control 

11-5 



11-6 

B 1000 Systems COBOL, 74 Reference Manual 
COBOL74 Compiler Control 

Needed 



I 108883-00 I 

B 1000 Systems COBOL 74 Reference Manual 
COBOL 74 Compiler Control 

I 

J 1-7 



B 1000 Systems COBOL 74 Reference Manual 

APPENDIX A 

RESERVED WORDS 

All reserved words known to the B 1000 COBOL 74 compiler are listed in this Appendix, which includes notations 
(X) of the DIVISION(s) wherein the words are used. Also, the notation (X) indicates that the word is used for 
DATA MANAGEMENT (DMSII). 

1 I 08883-00 l 

RESERVED 
WORD 

ALPHABETIC 
ALSO 
ALTER 
ALTERNATE 
AND 
ARE 
AREA 
AREAS 
ASCENDING 
ASSIGN 
AT 

BLOCK 
BOTTOM 

BY 

CALL 
CANCEL 
CD 
CF 

IDEN 

REASON FOR RESERVATIONS 

DIVISION 
ENVI DATA PROC DMSll 

x 
x 

x 
x 

x 
x 

x 
x 

x x 
x 

x x 

x x 

x 
x 

x 
x 

A-1 

I 



A-2 

B 1000 Systems COBOL74 Reference Manual 
Append'lX ·A 

--·----
REASON FOR RESERVATIONS 

RESERVED 
WORD DIVISION 

IDEN ENVI DATA PROC 

CHARACTER x 
CHARACTERS x x x 
CLOCK-UNITS x 
CLOSE x 
COBOL 
CODE x 
CODE-SET x 
COLLATING x x 
COLUMN x 

COMMUNICATION x 
COMP x 
COMPUTATIONAL x 
COMPUTE x 
CONFIGURATION x 
CONTAINS x x 
CONTROL x 
CONTROLS x 
COPY x x x x 
CORR x 
C 'ORR ES PON DI NG x 

DATE x x 
DATE-COMPILED x 
DATE-WRITTEN x 

DE x 
DEBUG-CONTENTS x 
DEBUG-ITEM - x 
DEBUG-LINE x 
DEBUG-NAME x 
DEBUG-SU B-1 x 
DEBUG-SUB-2 x 
DEBUG-SU B-3 x 
DEBUGGING x x 
DECIMAL-POI NT x 

DMSll 



1108883 

B 1000 Systems COBOL 74 Reference Manual 
Appendix A 

RESERVED 
WORD 

DECLARATIVES 
DELETE 
DELIMITED 
DELIMITER 
DEPENDING 
DESCENDING 
DESTINATION 
DETAIL 
DISABLE 
DISPLAY 
DIVIDE 
DIVISION 

DOWN 
DUPLICATES 
DYNAMIC 

EGI 
ELSE 
EMI 
ENABLE 
END 

ENVIRONMENT 
EOP 
EQUAL 
ERROR 
ESI 
EVERY 
EXCEPTION 
EXIT 
EXTEND 

FILE 
FILE-CONTROL 
FILLER 
FINAL 

FIRST 
FOOTING 

IDEN 

x 

REASON FOR RESERVATIONS 

DIVISION 
ENVI 

x 
x 

x 

x 

x 

x 
x 

DATA 

x 
x 
x 
x 

x 

x 

x 

x 

x 

PROC 

x 
x 
x 
x 
x 
x 

x 
x 
x 
x 

x 

x 
x 
x 
x 
x 

x 
x 
x 
x 

x 
x 
x 

DMSll 

A-3 



A-4 

B 1000 Systems COBOL74 Reference Manual 
Appendix A 

!REASON FOR RESERVATIONS 
RESERVED 

WORD 

FROM 

GENERATE 
GIVrnG 
GO 
GREATER 
GROUP 

HEADING 
HIGH-VALUE 
HIGH-VALUES 

1-0 
1-0--CONTROL 
IDENTIFICATION 
IF 
IN 
INDEX 
INDEXED 
INDICATE 

INSPECT 
INSTALLATION 
INTO 
INVALI 

IS 

.JUST 

.IUSTIFIFD 

KEY 

LABEL 
LAST 
LEADING 
LFFT 

IDEl\I 
--

x 

x 

--

+-'-

DIVISION 
ENVI DATA PROC 

x x 

x 

x 
x 
x 
x 

x 

x 
x x 
x x 

x 
x 

x 
x 

x 
x x 

x 

x x x 

x 
x 

x x x 

x 
x 
x x 
x 

DMSll 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 
Appendix A 

REASON FOR RESERVATIONS 
RESERVED 

WORD DIVISION 
IDEN ENVI DATA PROC 

LENGTH x 
LESS x 
LIMIT x 
LIMllTS x 
LINAGE x 
LI NA GE-COUNTER x 
LINE x x 
LI NE-COUNTER x 
LINES x x 
LINKAGE x 
LOCK x 
LOW-VALUE x x 
LOW-VALUES x x 
MEMORY x 
MERGE x 
MESSAGE x x 
MODE x 
MODULES x 
MOVE x 
MULTIPLE x 
MULTIPLY x 
NATIVE x 
NEGATIVE x 
NEXT x x 
NO x 

NUMBER x 
NUMERIC x 
OBJECT- x 
COMPUTER 
OCCURS x 
ODT x 
ODT- INPUT- PRESEN x 
OF x x x 
OFF x 
OFFER x 
OFFSET x 
OMITTED x 
ON x x x 
OPEN x 
OPTIONAL x 
OR x 
ORGANIZATION x 
OUTPUT x x 
OVERFLOW x 

DMSll 

I 

I 

A-5 



I 

A--6 

B 1000 Systems COBOL 74 Reference Manual 
Appendix A 

REASON FOR RESERVATIONS 
RESERVED 

WORD DIVISION 
IDEl'J ENVI DATA PROC 

,..._. 
PAGE x x 
PAGE-COUNTER x 
PERFORM x 
PF x 
PH x 
PIC x 
PICTURE x 
PLUS x 
POINTER x 
POSITION x 
POSITIVE x 
PRINTING x 
PRIOR 
PROCEDURE x 
PROCEDURES x 
PROCEED x 
PROGRAM x x 
PROGRAM-ID x 
PUR'..GB x 

t---· 

QUEUE x 
QUOTE x x 
QUOTES x x 
RANDOM x 
RD x 
READ x 
READ-OK x 
RE8;D~W&ITE x 
RECEIVE x 
RECORD x x x 
RECORDS x x 
RE€REATE 
REDEFINES x 
REEL x x 
REFERENCES x 
RELATIVE x 
RELEASE x 
REMAINDER x 
REMOVAL x 
REMOVE x 
RENAMES x 
REPLACING x 
REPORT x 
REPORTING x 
REPORTS x 
RERUN x 

DMSll 

x 

x 



1108883 

B 1000 Systems COBOL74 Reference Manual 
Appendix A 

REASON FOR RESERVATIONS 
RESERVED 

WORD DIVISION 
IDEN ENVI DATA PROC 

RESERVE x 
RESET x 
RETURN x 
REVERSED x 
REWIND x 
REWRITE x 
RF x 
RH x 

RIGHT x 
ROUNDED x 
RUN x 

SAME 

SD x 
SEAR.CH x 
SECTION x x 
SECURITY 

SEGMENT x 
SEGMENT-LIMIT x 
SELECT x 
SEND x 
SENTENCE x 
SEPARATE x 
SEQUENCE x x 
SEQUENTIAL x 
SET x 
SIGN x x 
SIZE x x 
SORT x x 
SORT-MERGE x 
SOUR Cf: x 
SOURCE-COMPUTER x 
SPACE x x 
SPACES x x 
SPECIAL-NAMES x 

STANDARD x x 
STANDARD-I x 
START x 
STATUS x 
ST~)P x 

DMSll 

A-7 



A-8 

B 1000 Systems COBOL74 Reference Manual 
Appendix A 

RESERVED 
WORD 

SUB-QUEUE-1 
SUB-QUEUE-2 
SUB-QUEUE-3 
SUBTRACT 
SUM 
SUPPRESS 
SYMBOLIC 
SYNC 
SYNCHRONI?:ED 

TALLYING 
TAPE 
TERMINAL 
TERMINATE 
TEXT 
THAN 
THROUGH 
THRU 
TIME 

TYPE 

UNIT 
UN STRING 
UNTIL 
UP 

UPON 
USAGE 
USE 
USING 

REASON FOR RESERVATIONS 

DIVISION 
IDEN ENVI DATA PROC 

x 

x 
x 

x 

x 
x 
x 

x 

x 
x 
x 

x 

x 
x 

x 

x 
x 

x 

x 

x 

x 
x 

x 
x 
x 
x 

x 

x 
x 

DMSll 



I I 08883-00 I 

B 1000 Systems COBOL 74 Reference Manual 
Appendix A 

RESERVED 
WORD 

VALUE 
VALUES 
VARYING 

WITH 
WORDS 
WORKING-
STORAGE 
WRITE 
WRITE-OK 

ZERO 
ZEROES 
ZEROS 
ZIPSB 

+ 

* 
/ 

** 
> 
< 

IDEN 

REASON FOR RESERVATIONS 

DIVISION 
ENVI DATA 

x 
x 

x 
x 

x 

x 

x 
x 
x 

PROC 

x 

x 

x 
x 

x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 
x 

DMSll 

I 

I 

A-9 



B 1000 Systems COBOL 74 Reference Manual 

APPENDIX B 

COBOL74 SYNTAX SUMMARY 

This appendix contains the composite language skeleton of COBOL74. Shaded items indicate extensions to 
the American National Standard, 1974 (ANSI-74). 

GENERAL FORMAT FOR IDENTIFICATION DIVISION 

IDENTIFICATION DIVISION. 
PROGRAM-ID. program:nanle. 

[AUTHOR. [comment-entry] ... ] 
[INSTALLATION. [comment-entry ] ... ] 
[DATE-WRITTEN. [comment-entry ] . ~. ] 
[DATE-COMPILED. [comment-entry] ... ] 
[SECURITY. [comment-entry ] ... ] 

GENERAL F:ORMAT FOR ENVIRONMENT DIVISION 

Format I: 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. source-computer-entry 
OBJECT-COMPUTER. object-computer-entry 

[SPECIAL-NAMES. special-names-entry] 
[INPUT-OUTPUT SECTION. 
FILE-CONTROL. { file-control-entry } ... 

[1-0-CONTROL. input-output-control-entry ] 

[ ____________________ so __ u_R_c_E_-e_o_M __ Pu_T_E_R-._--c-o_m_p_u_te_r-_n_am __ e. ______________ ~. 
Format 2: 

[ ____ s_o_u_R_c_E_-e_o_M_PUT_E_R_. __ c_om_pu_t_er_-n_a_m_e ___ [_w_I_T_H_D_E_B_u_G_G_IN_G_M_o_D_E_J_. ___ _ 

OBJECT-COMPUTER. computer-name [,MEMORY SIZE integer 

ll 108883 

[ , PROGRAM COLLA TING SEQUENCE IS alphabet-name ] 

[ , SEGMENT-LIMIT !§_ segment-number ] . 

{
WORDS }] 
CHARACTERS 
MODULES 

B-1 



SYNTAX 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

SPECIAL-NAMES. 

B-2 

SPECIAL-NAMES . 

} 
IS mnemonic-name 

( , ON STATUS IS condition-name-I 

[,OFF STATUS IS condition-name-2]] 

IS mnemonic-name 

(, OFF STATUS IS condition-name-2 

[ , ON ST A TUS IS condition-name-I ] ] 

ON ST A TUS IS condition-name- I 
[ , OFF STATUS IS condition-niame-2] 

OFF STATUS IS condition-namie-2 
[ , O~ STATUS IS condition-name-I ] 

, alphabet-name IS 

STANDARD-I 
NATIVE 
ASCII 
EBCDIC 

[ 

. {THROUGH } literal-2 J 
literal-I THR U 

ALSO literal-3 1
[ ~ i\.LSO literal-4 ] .. . 

[ literal~S [ ~~~t:::) [ l~t~fSt literal-8 J ... ] ] 

( , CURRENCY SIGN IS literal-9 ] 

( , DECIMAL-POINT IS COMMA]. 



B 1000 Systems COBOL74 Reference Manual 
Appendix B 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

INPUT-OUTPUT SECTION. 
Fl LE-CONTROL. 

SELECT [OPTIONAL] file-name 

ASSIGN TO ---

[ [
AREA J] : RESERVE integer-3 
AREAS 

. I : 9RGANIZA TION IS SEQUENTIAL 

[ 
' SEQUENTIAL I : ACTUAL KEY IS data-namc-2 I '~·J 

: ACCESS MODE IS · 
- (RANDOM: ACTUAL KEY IS data-namc-2 

: ORGANIZATION IS RELATIVE 

[ 

(SEQUENTIAL 
} l RANDOM A 

: ACCESS MODE IS .' f l ,, DYNAMIC' 

: ORGANIZATION IS INDEXED 

I . RLLA TIVL KLY IS data-namc-31 ~ l 
. Rl'LATIVF KEY IS data-name-3 I 

1 [ ACCESS MODL IS 
~ SEQUENTIAL f J 
) RANDOM 
~ DYNAMIC ~ 

: RECORD KEY IS data-name-4 

[ : ~\LTERNATE RECORD KEY IS data-namc-5 (WITH DUPLICATES I I ... j 
[: FILE STATUS IS data-name-I I. 

1108883 

SYNTAX 

I 

B-3 



SYNTAX 

I-0-CONTROL. 

l-0-CO NTRO L. 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

[

RECORD J 
SORT 
SORT-MERGE 

AREA FOR file-name-3 {, file-name-4 f .. · l · · · 
GENERAL FORMAT FOR DATA DIVISION 

DATA DIVISION. 

DATA DIVISION. 

[

FILE SECTION. l 
[

file-description-entry [record-description-entry] . . . ] 
sort-merge-file-description-entry (record-description-entry) . . . · · · 

B-4 

[

WORKING-STORAGE SECTION. 

[ 
77-level-des~rip_tion-entry ] 
record-descnption-entry 

[

LINKAGE SECTION. ..,l 

[ 
77-level-desc_rip.tion-entry ] 
record-descnption-entry 

[

COMMUNICATION SECTION. 

[communication-description-entry r record-description-entry] . .. ] ... ] 



B 1000 Systems COBOL 74 Reference Manual 
Appendix B 

SYNTAX 

FD file-name 

[FD fil!e-name 

[; BLOCK CONTAINS [integer-I TO] integer-2 {RECORDS } J 
CHARACTERS 

( ; RECORD CONTAINS [ integer-3 TO] integer-4 CHARACTERS] 

[;LABEL {

RECORD IS t 
RECORDS ARE f {

STANDARD} J 
OMITTED 

[ {

data-name-I } 
;. VALUE OF attribute-name-I IS 

literal-1 

[ { 
data-name-2 } J 

, attribute-name-2 IS 
literal-2 

] ... 
{

RECORD IS } 
data-name··J [, data-name-4] 

RECORDS ARE 
... J 

[ 

; LINAGE IS { data-name-5} 

integer-5 [ { 
data-name-6} J 

LINES , WITH FOOTING AT . 
mteger-6 

[
' LINES AT TOP { data-name-7} J 

-- integer-7 . [ { 
data-name-8 I J ] 

, LINES AT BOTTOM . i' 
. mteger-8 J 

( ; CODE-SET IS alphabet-name] . 

{ record-description-entry } . . . ] 

I108883 B-5 



SYNTAX 

SD file-name 

B 1000 Systems COBOL74 Reference Manual 
App·endix B 

[SD file-name 

(; RECORD CONTAINS [ integer-I TO] integer-2 CHARACTERS] 

... J [ {

RECORD IS } 
; DAT A data-name- I f , data-name-2] 

RECORDS ARE 

{ record-description-entry } . . . ]/ ... 

B-6 



B 1000 Systems COBOL74 Reference Manual 
Appendix B 

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

Format 1: 

1108883 

level-number { data-name-I } 

FILLER 

[; REDEFINES data-name-2] 

[ {::~URE} IS characteMtring 1 

[ I COMPUTATIONAL) ] 
( USAGE IS] COMP ( 

DISPLAY ( 
INDEX ) 

; OCCURS [ integer- I TO ] integer-2 TIMES 

[DEPENDING ON data-name-3 ] 

[ {
ASCENDING } KEY IS data-name-4 [, data-name-5] ... ] ... 
DESCENDING 

[ 
[ 
[ 
f 

[INDEXED BY index-name-I [, index-name-2] ... ] 

(SIGN IS] {LEADING .} (SEPARATE CHARACTER] ] 
TRAILING 

I 

{ 
SYNCHRONIZED } [ LEF1: 1 ] 

SYNC · RIGHT J 

{ 
JUSTIFIED } J 

RIGHT 
JUST 

BLANK WHEN ZERO ] 
VALUE IS literan-:-

SYNTAX 

B-7 



SYNTAX 

Format 2: 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

[_ __ 6_6_-d_a_t_a--n_a_m_e_--l :_R_E_· N_A_M_E_S_d_a-ta-na me-:.! [{
THROUGH} ] data-name-3 
THRU 

Format 3: 

{VALUE IS } 
88 condition-name: literal- I 

VALUES ARE 
[{THROUGH} 

THRU 
literal-:!] 

[ , literal-3 
[ { TIIROUGIJ} 

THRU 
literal-4 J ] .. 

WORKING-STORAGE SECTION. 

WORKING-STORAGE SECTION. 
77 data-name-I 

88 condition-name-I 

77 data-name-n 
0 I data-name-2 

02 data-name-.3 

66 data-name-m RENAMES data-name-3 
01 data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 

B-8 

---] 



8 1000 Systems COBOL74 Reference Manual 
Appendix 8 

SYNTAX 

LINKAGE SECTION. 

LINKAGE SECTION. 
77 data-name-I 

88 condition-name- I 

77 data-name-n 
01 data-name-2 

02 data-name-3 

66 data-name-m RENAMES data-name-3 
OI data-name-4 

02 data-name-5 
03 data-name-n 

88 condition-name-2 

COMMUNICATION SECTION. 

Format I: 

CD cd-name; 

FOR ( INITIAL ] INPUT 

1108883 

[ ( ; SYMBOLIC QUEUE IS data-name-I) 

[ ; SYMBOLIC SUB-QUEUE-I IS data-name-2) 

( ; SYMBOLIC SUB-QUEUE-2 IS data-name-3] 

[ ; SYMBOLIC SUB-QUEUE-3 IS data-name-4] 

( ; MESSAGE DATE IS data-name-5] 

( ; MESSAGE TIME IS data-name-6] 

( ; SYMBOLIC SOURCE IS data-name-7] 

( ; TEXT LENGTH IS data-name-8] 

[ ; END KEY IS data-name-9] 

(; STATUS KEY IS data-name-IO] 

[ ; MESSAGE COUNT IS data-name-I I]] 

[ data-name-I, data-name-2, ... , data-name-I I J 

B-9 



SYNTAX 

Format 2: 

8 IOOO Systems COBOL 74 Reference Manual 
Appen<li:x. 8 

CD cd-name; FOR OUTPUT 

( ; ,DESTINATION COUNT IS data-name-I] 

( ; TEXT LENGTH IS data-name-2] 

(;.STATUS KEY IS data-name-3] 

[ ; DESTINATION TABLE OCCURS integer-2 TIMES 

[ ; INDEXED BY index-name-I [ , index-name-2] ... ] J 
(; ERROR KEY IS data-name-4] 

[ ; SYMBOLIC DESTINA TIOI\[ IS data-name-5] 

GENER.AL FORMAT FOR PROCEDURE: DIVISION c-- PROCEDURE DIVISION (USING data·-name-1 [, data-name-2] ... ] . 

Format I: 

[DECLARATIVES. 

{section-name SECTION [segment-numberJ. declarative-sentence 

[paragraph-name. [sentence) ... ] ... } ... 

END DECLARATIVES.] 

l 

l 

{section-name SECTION [segment-number]. j 
[paragraph-name. [sentence] ... ] . . . } ... 

·~~~- -~~~~~~~~~~~~~--~~ 

Format 2: 

~·~~~~-~~~-{_p_a_ra_gr_a_p1_1-_n_am_e_. [~._en_t_en_c_'e_J_._·_·_}_·_·_·~~~~~~~~~~J 

B-10 



B 1000 Systems COBOL74 Reference Manual 
Appendix B 

DECLARATIVES. 

r-
section-name SECTION ( segment-number ] 

USE FOR DEBUGGING ON 

( cd-name-1 
) (ALL REFERENCES 0 F] 

l 
file-name- I 
proced ure-name-1 
ALL PROCEDURES 

[ALL REFERENCES OF] 
, file-name-2 

[ 

cd-name-2 

identifier-2 l 
proced ure-name-2 
ALL PROCEDURES 

GENERAi. FORMAT FOR VERBS 
Format 1: 

[ ACCEPT identifier [FROM {mnemonic-name} J 

Format 2: 

ACCEPT identifier FROM 

MESSAGE COUNT 

SYNTAX 

id en tifier-1 ~ 

~ 

[ 
ACCEPT cd-name 

-----~----

Format 1 · 

ADD { identifier-I } [ , identifier-2 J 
literal-I , literal-2 

TO identifier-m [ ROUNDED ] 

[ , identifier-n [ ROUNDED ] ] 

[ ; ON SIZE ERROR imperative-statement J 

1108883-001 B-11 



SYNTAX 

Format 2: 

Format: 3: 

I 
L 

Format I: 

Format 2: 

Format 3: 

ADD 

B 1000 Systems COBOL74 Reference Manual 
App.:ndix B 

f identifier- I } 

l 1iteral-l 

, { identifier-2 } [ , identifier-3 J 
literal·-2 , literal-3 

GIVING identifier-m [ ROL~_l)ED] [ , identifier-n [ ROUNDED] ] ... 

[: ON SIZE ERROR imperntiv 1~-statement] 

~ CO R R I-S POND I N< ; l 
ADD i.kntifier-1 TO identifier-.2 I ROUNDIJ) I 

l CORR \ 

[ : ON SI/I· I· RROR imper.Hive-statement J 

' identifier- I } 
CALL \ 

~ literal-I 
[ USINC! data-name-I [ , <lata-name-2 ] ... J 

l 
___ _J 

[ ; ON OVERFLOW imperative-~.tatement J 

_____ ] 

[ ___ _ ___ ] 
B-12 



B IOOO Systems COBOL 74 Reference Manual 
Arrendix B 

CANCEL 
literal-I , literal-2 

SYNTAX 

[ 
{ 

identifier-I } [ , identifier-2 J 
----·-- J 

1108883-001 B-12A 



CLOSE file-name- I 

, file-name-2 

8 IOOO Systems COBOL74 Reference Manual 
Appendix 8 

{ REEL} [WITH NO REWIND] 
UNir FOR REMOVAL 

WITH 

[ 

COMPUTL identifier-I [ ROUNDLD [ [.identifier-~ [ ROUNDl-D I J ... 
=arithmetic-expression [:ON SIZL. LRROR imperative-statement J 

-----

COPY { file-id [ { f: } multi-file··id ] · · · } 

[ 

{ { ~=ps~u.do-text-1 ==} 
) 1dentif1er-l 

REPLACING ) ' literal-I BY 

{ word-I l 
~=ps~u.do-text-2== ) ) ] 
1denttf1er-2 ( ( 
literal-2 ( l · · · 
word-2 J 

[ DELETE file-name RECORD [ ; ~~ KEY imperative-statement] 

1108883-001 

SYNTAX 

I 

I 

J 

B-13 



SYNTAX 

B 1000 Systems COBOL74 Reference Manual 
Appendix 8 

DISABLE cd-name WITH KEY 
OUTPUT literal-I [ { 
INPUT [TERMINAL] } { identifier-I } J 

---------------------~· ----------------------------------------------

Format 1: 

DIVIDE 

Format 2: 

DIVIDE 

B-14 

J id1.:'ntifit'T- I i 
DISPLAY 

l literal-I \ l . id en t i fie r -.2 ] 

. literal-.2 

[ UPO i'~ mnemonic-name J 

---------------------------------

J INTO identifier-2 
( identifier- I } 

{ literal- I 
(ROUNDED] 

(; i9cntifier-3 [ ROUNDED )] ... 

[ ; ON SIZE ER.ROR imperative-statement J 

<t identifier-I } ~i !!I l f identifier-2 } 

l literal-I it QffO ( { literal-2 

GIVING identifier-3 (ROUNDED] 

( , identifier-4 [ROUNDED ] ] ... 

[ ; ON ~IZE ERROR imperative-statement] 



Format 3: 

[ 

8 IOOO Systems COBOL74 Reference Manual 
Appendix B 

{ 

identifier- I } 
DIVIDE 

literal- I 

~ BY t { identifier-2 } 

( INTO f literal-2 

GIVING identifier-3 [ROUNDED] 

REMAINDER identifier-4 

[ ; ON SIZ~ ERROR imperative-statement J 

ENABLE { 
INPUT (TERMINAL] } { identifie. r-1 } 

cd-name WITH KEY 
OUTPUT -- literal-I 

SYNTAX 

L EXIT. _J 
-----------

[ 
Format 1 : 

[ 
Format 2: 

[ 
[_ 
1108883 

EXIT PROGRAM. 

GO TO [ proced ure-name-1 J 

GO TO proced ure-name-1 [ , proced ure-narne-2 J ... , proced ure-name-n 

DEPENDING ON identifier 

.!..!: condition; 
(statement- I ~ 

( Nl-'XT SFNTFNCT ~ 

~ : F LSI: statement-~ I 

(; FLSF NFXT SLNTl·:t\ctJ 

J 
J 

B-15 



B 1000 Systems C0130L74 Reference Manual 
Appendix B 

SYNTAX 

Format I: 

INSPE~:.! identifier-I TALL YING ! , identifier-2 FOR 
~ ( { Al~L . ~ { i~lcntificr-J l. jl 
) • ) Ll:ADING f htcr:.il-1 ' l 
{ ( CHARACTERS : 

INITLl\L ) idcntifier-+l] l 
l l1tcr:.il-~ ( ~ 

Format 2: 

I NSPF(I identifier- I R FPI .ACI NC 

UIARAlTLRS BY j identifier-(, l 
·------ - \ liter:.il-4 ( [

JBF·F·C)RJ-' l INITIAL j ide11tific1-7}] 
) AH I·. R ( ) liter:.il-'\ 

~ .. ( ~~l~~DING l \ { identifier-)} BY { identifier-< l 
t l j7 IRST \ t · literal-3 literal~~ f 

Format 3: 

INSPECT identifier-I TALL YING 

f 
l 

-~ ~ A~L , j identifier-3\ ~ 
, iuenlil'ier-2 FOR ) , ) LLADING l hter:.il-1 ( 

\ {CHARACTERS ' 

REPLACING -----

[
j BL_F~RE} l~ITl:\l. I 1de11t1l1L'1-7 l.] 
) Al·TLR ) literal-'\ I 

[{ 
BL.1-'~RE ~ INITIAL } idcntii'ier-..+ ·.~ J l l 
Al-TLR I I litcral-4 I \ · · · j 

CHARACTERS BY { identifier-b } 
literal-4 [ 

f BLFORL l 
l AFff R ( 

INITIAL J iJentif~er-7 }] 
) literal-) 

( 1( A~L _ ) { 
) I Lt.:'ADIN . ( } { id. entifier-5 } BY { id. ent ifier-h } ) ·,,r.imie_;, )' { ~ J { hteral-3 - hteral-4 [{ 

BU·ORL } . . { identilicr-7 l] I 
Al.··rLR INI I IAL ~ . l 
__ L_ literal-) I I 

B-16 

l r 

) 



B 1000 Systems COBOL74 Reference Manual 
Appendix B 

SYNTAX 

MERGE filie-name-1 

ON \ KEY data-name-1 
{ 

ASCENDING ) 

DESCENDING ' 
[ , data-name-2 ] ... 

{ 

ASCENDING } 
KEY data-name-3 [ , data-name-4] 

DESCENDING 
... ] 

( COLLA TING SEQUENCE IS alphabet-name ] 

USING file-:name-2 , file-name-3 --- , file-name-4 .•• [l PURGE }] [{PURGE }] [ [\PURGE ll] 
RELEASE RELEASE RELEASE 

OUTPUT PROCEDURE IS procedure-name-I J proced ure-name-2 
[ 

l THROUGH f 1 
~ THRU ' 

GIVING file-name-5 ---

Format I: 

[ 
MOVE { identifier- I } 

literal 

-------
TO identifier-2 [, identifier<~ J ... 

Format 2: 

identifier-I TO identifier-2 
[ 

MOVE { CORRLSPONDING } 
CORR , 

------- •. _J 
Format I: 

MULTIPLY { 
identifier-I } 
literal- I BY identifier-2 I ROUNDED I 

[, identifier-J [ROUNDFDI] [;ON SIZF FRROR imperative-statl'ment] 

1108883-001 

-1 
B-17 

I 

I 



I 

SYNTAX 

Format 2: 

B 1000 Systems COBOL 74 Reference Manual 
Appendix B 

MULTIPLY { i?entifier-1 } BY 
hteral-1 - { 

11·cJtentlit~L'r-2 } GIVING identifier-3 IROUNDLDI 
11 era --

Format I: 

[ 
Format 2: 

[, identifier-4 [ROUNDED J] [;ON SIZI·: F RROR imperative-statemt·nt] 

INPUT 

[. 
OUTPUT 

OPEN [ ' 
I -0 

[ ' 
EXTEND 

file-name·· I 

file-name··2 

file-name ·3 
file-name4 

file-name-5 
file-name-6 

] 
] 

---------------··----

PERFORM procedure-name- I [,~THROUGH f. procedure-name-2] 

(THRU ' 

I P-ERtQEM procedure-name-I 
[ 

~ TH ROlJ(a-f l ] 
) ( procedure-name-~ 
{THRU ) 

~ identifier-1 l 

l integer-1 ~ -=J 
Format 3: 

---------------

PERFORM procedure-name-I 
[ 

{ THROU.Gll l procedurc-name-2] UNTIL comlition-1 

lTHR!J j 

B-18 



Format 4: 

Format I: 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

PERFORM procedure-name-I [ 
f THROUGH f J t THRU f procedure-name-2 

VARYING 
~ identifier-2 } {, identifier-3 } 
~ FROM index-name-2 
~index-name-I literal-I 

f identifier-4 } 
BY , 
- t literal-2 

UNTIL condition-I 

[AFTER 
~ identifier-5 } { identifier-6 } 

FROM index-name-4 
(, index-name-3 --- literal-3 

BY { identifier-7 } 

literal-4 
UNTIL condition-2 J ... 

[ ; AT §ti.Q imperative-statement] 

SYNTAX 

L READ file-name [NEXT] RECORD [ INTO identifier J 

, ______ _____. 

Format 2: 

READ file-name RECORD [ INTO identifier ] 

[ ; KEY IS data-name ] 

[ ; INV AUD KEY imperative-statement J 

Format 3: 

1108883-001 B-19 



Format 4: 

B 1000 Systems COBOL 74 Reference Manual 
Appendix B 

[ ; .'\JO QALi imperative-statement J 

SYNTAX 

----] 
---------------------

[----_-_ -__ _:CEIVE cd-namc MESSAGE INTO identifier-I 

B-20 



B I 000 Systems COBOL 74 Reference Manual 
Appendix B 

SYNTAX 

[ 
RELEASE record-name [FROM identifier] 

·-------------' 

[ RETURN file-name RECORD [lliIQ identifier J : AT t@ imperative-statement 

[; INVALID KEY imperative-statement] [ 

REWRITE record-name [FROM identifier] 

·-----------' 

Format I: 

Format 2: 

SEARCH identifier-I [
VARYING {~dentifier-2 }] 

mdex-name-1 

[;AT END imperative-statement-I] 

; WHEN condition-I 

[;WHEN conJition-2 

{ 
imperative-statem.en t-2 } 
NEXT SENTENCE 

{ 
imperative-statement-3} J 
NEXT SENTENCE 

SEARCH ALL identifier-I [;AT END imperative-statement-1 l 

( {IS EQUAL TO} J data-name-I IS = 

t condftion-name-1 

[ 

~ { IS. =EQUAL TO} date-name-2 
AND IS 

-- t condition-name-~ 
{ 

imperative-statement-2 } 
NEXT SENTENCE 

{ 

identifier-3 } ) 
literal-1 ( 
arithmetic-expression- I ) 

{ 
identifier-4 } ) l 
literal-2 ( 
ari thm etic-e xpressio n-~ ) 

L---------------------------_J 
1108883-00 l B-20A I 



Format I: 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

SEND cd-name [ ~ identifier-I] 
~ WITH identifier-2 ~ 

{WITH EMI ,. 

{ BEFORE } ADVANCING 
AFTER , 

t { ~dentifier-3 } t integer 

{ 
mnemonic-name } 
PAGE 

TO 
mdex-name-1 , index-name-2 _ 

[
LINE ] ~ 
LINES ( 

{ 

identifier-3 ) 
index-name-3} 
integer- I Y 

SYNTAX 

[ 

SET { identifier-I } [, identifier-2 ·1 

'---·--
Format 2: 

·[, ______ _ 
{ 

UP BY } ( identifier4 } 
SET index-name4 [, index-name-5 J ) 

. . . pOWN BY t integer-2 

---- -- ----·]· -· 

-----·----

1108883-00 I B-21 



I 

SYNTAX 

SORT 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

file-name- I 

{

ASCENDING f 
ON 

DESCENDING \ 
KEY data-name- I [ , data-name-2] 

[

ON { ASCENDING l 
DESCENDING ' 

KEY data-name-3 [ , data-name-4 ] ... J 
[COLLATING SEQUENCE. IS alphabet-name J 

INI~UT PROCEDURE IS procedure-name-I -t THROUGH ~ procedure-name-2 J 
_ ~ THRU J 

USlNG file-name-2 --- , file-name-3 
:;] I ... 

OUTPUT PROCEDURE IS procedure-name-3 [ ·' THROUGH } procedure-name-4] 
--- ~ THRU 

I GIVING file-name-4 

B-22 

ST ART file-name KEY 

---------------·----

IS EQUAL TO 
IS = 
IS GREATER THAN 
IS> 
IS NOT LESS THAN 
IS NOT < 

data-name 

[ ; INVALID KEY imperative-statement] 

-------------------



B IOOO Systems COBOL74 Reference Manual 
Appendix B 

literal [ 
STOP {RUN } 

·-------

{ 
identifier-I } [' identifier-2] 

STRING --- literal-I . _ literal-2 

{ 

identifier-3 } 
DELIMITED BY literal-3 

SIZE 

' { identifier-4 ( [' identifier-5 J ... 
literal-4 ~ literal-5 

{

. identifier-6 } 
DELIMITED BY literal-6 

SIZE .. 

INTO identifier-7 [WITH POINTER identifier-8] 

[; ON OVERFLOW imperative-statement] 

Format I: 

SYNTAX 

-----------------------~ 

SUBTRACT {

identifier-I } 

literal-I 
[

, identifier-2J 

, literal-2 
FROM identifier-m I ROUNDl:n I 

[, i<lentirier-n [ROUNDED I J . . . (:ON SIZ_L ERROR imperative-statement] 

1108883 B-23 



SYNTAX 

Formal 2: 

Format 3: 

Format ll: 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

{ 

iJentifier-1 } 
SUBTRACT 
---- literal-I [

, iden.tirier-2] _ j identifo:r-m } 
... l·ROM • 

, literil-2 ~ literal-m 

GIVING identifier-n [ ROUNDLD I [,identifier-a I ROUNDED I J ... 
[:ON SIZE ERROR imperative-statement] 

----------------·-----

{

CORRESPONDING} 
SUBTRACT CQRR identifier-I FROM identifier-2 [ROUNDED] 

[ ; ON SIZE ERROR imperative-statement ] 

UNSTRING identifier-I 

[

DELIMITED BY [ALL] ~identifier-2t [,OR [ALLI {identifier-3}] ··· ] 

t literal-I ( literal-2 

INTO idcntificr4 [,DELIMITER IN identifier-51 [,COUNT IN identifier-6] 

[, identificr-7 [,DELIMITER IN identif1er-8] [,COUNT IN identifier-9] J 
[WITH POINTER identifier-IO] [TALLYING IN identifier-I I] 

[;ON OVERf<LOW imperative-statement] 

B-24 



Format 2: 

1108883-001 

B I 000 Systems COBOL 74 Reference Manual 
Appendix B 

UNSTRING identifier-I 

identifier-4 
FOR { identifier-12 } 

mtcger-1 

[ , identifier-7 FOR { 
identifier-13 } ] ... 

, mteger-2 

(WITH POINTER identifier-I 0] (TALLYING IN identifier-I I] 

[; ON OVERFLOW imperative-statement J 

USE AFTER STANDARD 

( file-name- I 
) INPUT 
· OUTPUT 
) 1-0 
( EXTEND 

f EXCEPTION·} 

(ERROR 

r' file-name-2 J 

PROCEDURE ON 

SYNTAX 

B-25 



SYNTAX 

Format II: 

WRITE 

[ 
[ 

Format 2: 

B 1000 Systems COHOL74 Reference Manual 
Appendix B 

record-name [FROM ide ntifier-1 ] 

ADVANCllNG I ~ ~dentifier-2 } [LINE ] 
{BEFORE t , integer-I LINES 

AFTER ~ ~ mnemonic-name } 
PAGE , __ 

AT 
~END-OF-PAGE l 
( EOP ' 

imperative-statement J 
I l 

[
---------W-R-IT_E __ [_r,_ec_~~IN~VamALeID_[_F_R_O_M_1_·d_e-nt-if-ie-·r--l-] __________ J 

KEY imperative-statement J 

Format 3: 

B-26 



B 1000 Systems COBOL74 Reference Manual 
Appendix B 

SYNTAX 

GE:NERAL FORMAT FOR DATA BASE MANAGEMENT DATA DIVISION 

GENERAl FORMAT FOR DATA BASE MANAGEMENT PROCEDURE 
DIVISION 

1108883-001 B-26A I 



1108883 

B 1000 Systems COBOL74 Reference Manual 
Appendix B 

B-27 



SVNTA)( 

B-28 

B 1000 Systems COBOL 74 Reference Manual 
Appendlix B 



B 1000 Systems COBOL74 Reference Manual 

APPENDIX C 
COBOL74 GRAPHICS 

Table C-1 lists the 8-bit EBCDIC internal code together with the USASCII-7, 80-column card codes and the 
associated control or special codes or graphics. Table C-2 presents similar information, but restricted to and 
in sequence of the USASCil-7 code. Table C-3 explains all the control or special codes. 

Column headings, have the following meanings in Tables C-1 and C-2: 

Column 
Heading 

A 
B 
c 
D 
E 
F 

Meaning 

EBCDIC sequence number and decimal value 
EBCDIC hexadecimal representation 
ASCII-7 sequence number and decimal value 
ASCII-7 hexadecimal representation 
80-column card code 
Graphic or code 

Hexadecimal[ representation means that standard convention is followed for the 8-bit internal codes. These 
codes are shown translated ·as pairs of hexadecimal numbers in the following examples. 

Examples: 

A 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1108883 

Hex 
Number 

Pair 

@39@ 
@BE@ 
@OF@ 

8-Bit 
Internal Code 

8421 8421 

0 0 I 1 
1 0 1 l 
0 0 0 0 

l 0 0 1 
1 1 1 0 
1 1 1 1 

Table C-1. B 1000 Codes in EBCDIC Sequence 

B c D E F 

00 0 00 12 0-1-8-9 NUL (Null) 
01 1 01 12 1-9 SOH (Start of Heading) 
02 2 02 12 2-9 STX (Start of Text) 
03 3 03 12 3-9 ETX (End of Text) 
04 12 4-9 
05 9 09 12 5-9 HT (Horizontal Tab) 
06 12 6-9 
07 127 7F 12 7-9 DEL (Delete) 
08 12 8-9 
09' 12 1-8-9 
OA 12 2-8-9 
OB 11 OB 12 3-8-9 VT (Vertical Tab) 
oc 12 oc 12 4-8-9 FF (Form Feed) 

C-1 



A B 

13 OD 
14 OE 
15 OF 

16 IO 
17 11 
18 12 
19 13 
20 14 
21 15 
22 16 
23 17 
24 18 
25 19 
26 lA 
27 IB 
28 IC 
29 ID 
30 1E 
31 IF 

32 20 
33 21 
34 22 
35 23 
36 24 
37 25 
38 26 
39 27 
40 28 
41 29 
42 2A 
43 2B 
44 2C 
45 2D 
46 2E 
47 2F 
48 30 
49 31 
50 32 
51 33 
52 34 
53 35 
54 36 
55 37 

C-2 

B IOOO Systems COBOL74 Reference Manual 
Appendix C 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

c D 

13 OD 
14 OE 
15 OF 

16 IO 
17 11 
18 12 
19 13 

8 08 

24 18 
15 19 

28 IC 
29 lD 
30 IE 
31 lF 

--

IO OA 
'23 17 
?.7 lB 

5 05 
6 06 
7 07 

22 16 

4 04 

-
E 

12 5-8-9 
12 6-8-9 
12 7-8-9 

F 

CR (Carriage Return) 
SO (Shift Out) 
SI (Shift In) 

12- 11-1-8-9 DLE (Data Link Escape) 
DC l (Device Control 1) 
DC2 (Device Control 2) 
DC3 (Device Control 3) 

11-1-9 
11-2-9 
11-3-9 
11-4-9 
11-5-9 
11-6-9 
11-7-9 
11-8-9 
11-1-8-9 
11-2-8-9 
11-3-8-9 
11-4-8-9 
11-5-8-9 
11-6-8-9 
11-7-8-9 

11-0-1-8 
0-1-9 
0-2-9 
0-3-9 
0-4-9 

-9 

NL (New Line) 
BS (Backspace) 

CAN (Cancel) 
EM (End of Medium) 

FS (File Separator) 
GS (Group Separator) 
RS (Record Separator) 
US (Unit Separator) 

0-5-9 LF (Line Feed) 
0-6-9 ETB (End of Transmission Block) 
0-7-9 ESC (Escape) 
0-8- 9 

-9 0-1-8 
0-2-8 -9 
0-3-8 -9 
0-4-·8 -9 
0-5-·8 -9 ENQ (Enquiry) 
0-6-·8 -9 ACK (Acknowledge) 
0-7-·8 -9 BEL (Bell) 

12-ll-O-l·-8-9 
1-9 
2-9 SYN (Synchronous Idle) 
3-9 
4-9 
5-9 
6-9 
7-9 EOT (End of Transmission)O 



A I B 

56 38 
57 39 
58 3A 
59 3B 
60 3C 
61 3D 
62 3E 
63 3F 

64 40 
65 41 
66 42 
67 43 
68 44 
69 45 
70 46 
71 47 
72 48 
73 49 
74 4A 
75 4B 
76 4C 
77 4D 
78 4E 
79 4F 

80 50 
81 51 
82 52 
83 53 
84 54 
85 55 
86 56 
87 57 
88 58 
89 59 
90 5A 
91 5B 
92 5C 
93 5D 
94 5E 
95 5F 
96 60 
97 61 
98 62 
99 63 

1108883 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

c D E F 

8-9 
1-8-9 
2-8-9 
3-8-9 

20 14 4-8-9 DC4 (Device Control 4) 
21 15 5-8-9 NAK (Negative Acknowledge) 

6-8-9 
26 IA 7-8-9 

32 20 (No Punches) (SPACE) 
12 0-1-8-9 
12 0-2-9 
12 0-3-9 
12 0-4-9 
12 0-5-9 
12 0-6-9 
12 0-7-9 
12 0-8-9 
12 1-8 

91 5B 12 2-8 [ (LEFT BRACKET) 
46 2E 12 3-8 . (PERIOD, DECIMAL POINT) 
60 3C 12 4-8 < (LESS-THAN SIGN) 
40 28 12 5-8 ( (LEFT PARENTHESIS) 
43 2B 12 6-8 + (PLUS SIGN) 
33 21 12 7-8 I (VERTICAL. BAR) 

38 26 12 & (AMPERSAND)· 
12-11-1-9 
12-11-2-9 
12-11-3-9 
12-11-4-9 
12-11-5-9 
12-11-6-9 
12-11-7-9 
12-11-8-9 

11-1-8 
93 5D 11-2-8 ] (RIGHT BRACKET) 
36 24 11-3-8 $ (DOLLAR SIGN) 
42 2A 11-4-8 * (ASTERISK) 
41 29 11-5-8 ) (RIGHT PARENTHESIS) 
59 3B 11-6-8 ; (SEMICOLON) 
94 5E 11-7-8 l I (LOGICAL NOT) 
45 2D 11 - (MINUS, HYPHEN) 
47 2F 0-1 I (SLASH) 

11-0-2-9 
11-0-3-9 

C-3 



A I B 

100 64 
101 65 
102 66 
103 67 
104 68 
10.S 69 
106 6A 
107 6B 
108 6C 
109 60 
110 6E 
1 1 1 6F 

112 70 
113 71 
114 72 
115 73 
116 74 
117 75 
118 76 
119 77 
120 78 
121 79 
122 7A 
123 7B 
124 7C 
125 7D 
126 7E 
127 7F 

128 80 
129 81 
130 82 
131 83 
132 84 
133 85 
134 86 
135 87 
136 88 
137 89 
1.38 8A 
139 8B 
140 8C 

141 I 8D 
142 8E 
143 8F 

C-4 

B 1000 Systems COBOLi'4 Reference Manual 
Appendix C 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

I c I 

124 
44 
37 
95 
62 
63 

96 
58 
35 
64 
39 
61 
34 

97 
98 
99 

100 
101 
102 
103 
104 
105 

I 

oT E 

7C 
2C 
25 
5F 
3E 
3F 

60 
3A 
23 
40 
27 
3D 
22 

61 
62 
63 
64 
65 
66 
67 
68 
69 

11-0-4-
1 1-0-5-
11-0-6-
11-0-7-
11-0-8-

0- 1-
12-11 

9 
9 
9 
9 
9 
8 

0-2 .. 8 
8 
8 
8 
8 

0-4-· 
0-5-
0-6-
0-7·· 

12-11-0 
12-11-0-1 ·-
12-11-0-2-

9 
9 
9 
9 
9 
9 
9 
9 

12-11-0-3-
12-11-0-4·-
12-11-0-5-
12-11-0-6-
12-11-0-7-
12-11-0-8-

1-8 
2-8 
3-8 
4-8 
5-8 
6-8 
7-8 

12 0-1-8 
12 0-1 
12 0-2: 
12 0 ~, 

-.) 

12 0-4 
12 0 ,. -J 

12 0-6 
12 0 ~, 

-1 

12 0-8 
12 0-9 

F 

, (COMMA) 
% (PERCENT ,SIGN) 
·- (UNDERSCORE) 
> (GREATER-THAN SIGN) 
? (QUESTION MARK) 

! (EXCLAMATION POINT) 

: (COLON) 
# (NUMBER OR POUND SIGN) 
(ii, (AT SIGN) 
' (APOSTROPHE) 
= (EQUAL SIGN) 
" (QUOT A TION MARK) 

a 
b 
c 
d 
e 
f 
g 
h 
i 



A B 

144 90 
14.S 91 
146 92 
147 93 
148 94 
149 95 
150 96 
151 97 
152 98 
153 99 
154 9A 
155 9B 
156 9C 
157 9D 
158 9E 
159 9F 

160 AO 
161 Al 
162 A2 
163 A3 
164 A4 
165 A5 
166 A6 
167 A7 
168 A8 
169 A9 
170 AA 
171 AB 
172 AC 
173 AD 
174 AE 
175 AI: 

176 BO 
177 Bl 
178 B2 
179 B3 
180 B4 
181 B5 
182 B6 
183 B7 
184 B8 
185 B9 
186 BA 

I 

1108883 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

I c D E F 

12-11-1-8 
106 6A 12-11-1 j 
107 6B 12-11-2 k 
108 6C 12-11-3 I 
109 6D 12-11-4 m 
110 6E 12-11-5 n 
I 11 6F 12-11-6 0 

112 70 12-11-7 p 
I 13 71 12-11-8 q 
114 72 12-11-9 r 

12-11-2-8 
I 2-11-3-8 
12-11-4-8 
12-11-5-8 
12-11-6-8 
12-11-7-8 

11-0-1-8 
126 7E 11-0-1 ¢ (CENTS SIGN) 
115 73 11-0-2 

--
s 

116 74 11-0-3 t 
117 75 11-0-4 u 
118 76 11-0-5 v 
119 77 11-0-6 w 
120 78 I 1-0-7 x 
121 79 11-0-8 y 
122 7A 11-0-9 z 

11-0-2-8 
11-0-3-8 
11-0-4-8 
11-0-5-8 
11-0-6-8 
11-0-7-8 

12-11-0-1-8 
I 12-11-0-1 
I 12-11-0-2 I 

12-11-0-3 
12-11-0-4 
12-11-0-5 
12-11-0-6 
12-11-0-7 
12-11-0-8 
12-11-0-9 
12-11-0-2-8 

I I 

C-5 



~le 
187 BB 
188 BC 
189 BD 
190 BE 
191 BF 
192 co 
193 Cl 
194 C2 
195 C3 
196 C4 
197 C5 
198 C6 
199 C7 
200 C8 
201 C9 
202 CA 

i 203 CB 
204 cc 
205 CD 
206 CE 
207 CF 

208 DO 
209 . Dl 
210 D2 
211 D3 
212 D4 
213 D5 
214 D6 
215 D7 
216 D8 
217 D9 
218 DA 
219 DB 
220 DC 
221 DD 
222 DE 
223 DF 

224 EO 
225 El 
226 E2 
227 E3 
228 E4 
229 E5 

C-6 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

c D E F 

12-11-0-3-t 
12-11-0-4-P 
12-11-0-5-t 
12-11-0-6-l 
12-11-0-7 -l 

123 7B 12 0 { (LEFT BRACE) 
65 41 12 I A 
66 42 12 2 B 
67 43 12 3 c 
68 44 12 4 D 
69 45 12 5 E 
70 46 12 6 F 
71 47 12 7 G 
72 48 12 8 H 
73 49 12 9 I 

125 7D } (RIGHT BRACE) 
74 4A 11 I J 
75 4B 11 2 K 
76 4C 11 3 L 
77 40 11 4 M 
78 4E 11 5 N 
79 4F 11 6 0 
80 50 11 7 p 

81 51 11 8 Q 
82 52 11 9 R 

92 5C "'- (REVERSE SLASH) 

83 53 0 ..... 
-~. s 

84 54 0-3 T 
85 55 0-4 u 
86 56 0 ,. __ , v 



A B 

230 E6 
231 E7 
232 E8 
233 E9 
234 EA 
235 EB 
236 EC 
237 ED 
238 EE 
239 EF 
240 FO 
241 Fl 
242 F2 
243 F3 
244 F4 
245 F5 
246 F6 
247 F7 
248 F8 
249 F9 
250 FA 
251 FB 
252 FC 
253 FD 
254 FE 
255 FF 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont) 

c D E F 

87 57 0-6 w 
88 58 0-7 x 
89 59 0-8 y 

90 5A 0-9 z 

48 30 0 0 
49 31 1 1 
50 32 2 2 
51 33 3 3 
52 34 4 4 
53 35 5 5 
54 36 6 6 
55 37 7 7 
56 38 8 8 
57 39 9 9 

Table C-2 lists the 8-bit EBCDIC internal code together with the USASCII-7, and 80-column card codes in 
sequence of the USASCil-7 code. 

Table C-2. B 1000 Codes in ASCll-7 Sequence 

A B c D E F l 
0 00 0 00 12 0-1-8-9 NUL (Null) 1 
1 01 I 01 12 1-9 SOfl (Start of Heading) I 

I 2 02 2 02 12 2-9 STX (Start of Text) I 3 03 3 03 12 3-9 ETX (End of Text) I 55 37 4 04 7-9 EOT (End of Transmission) 
45 2D 5 05 0-5-8-9 ENQ (Enquiry) 
46 2E 6 06 0-6-8-9 ACK (Acknowledge) 
47 2F 7 07 0-7-8-9 BEL (Bell) 
22 16 8 08 11-6-9 BS (Backspace) 
5 05 9 09 12 5-9 HT (Horizontal Tab) 

37 25 10 OA 0-5-9 . LF (Line Feed) 
I ~' 

1108883 C-7 



A B 

11 OB 
12 oc 
13 OD 
14 OE 
15 OF 
16 10 
17 11 
18 12 
19 13 
60 3C 
61 30 
50 32 
38 26 
24 18 
25 19 
63 3F 
39 27 
28 IC 
29 ID 
30 IE 
31 IF 
64 40 
79 4F 

127 7F 
123 7B 
91 5B 

108 6C 
80 50 

125 70 
77 40 
93 50 
92 5C 
78 4E 

107 68 
96 60 
75 4B 
97 61 

240 FO 
241 Fl 
242 F2 
243 F3 
244 F4 
245 F5 
246 F6 
247 F7 
248 F8 

C-8 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-2. B 1000 Codes. in· ASCll-7 Sequence (Cont) 

I c I 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

ol 
OB 
oc 
OD 
OE 
OF 
10 
1 I 
12 
13 
14 
15 
16 
17 
18 
19 
IA 
lB 
IC 
ID 
IE 
IF 

I 

12 3 -8-9 
12 4 -8-9 
12 5 -8-9 
12 6 -8-9 
12 7 -8-9 
12- 11-1 -8-9 

11- 1 -9 
11-2 -9 
11-3 -9 

4 -8-9 
5 -8-9 
2 -9 
c 1-6-9 
-9 11-8 

11-1 -8-9 
7 -8-9 
0 -7-9 

11-4 -8-9 
I 1-:1 
11-t 
11-7 

20 j lNO PUt 

·-8-9 
1-8-9 
-8-9 
~CHES] 

21 12 
22 
23 
24 
25 
26 12 
27 
28 12 
29 
2A 
2B 12 
2C 
20 
2E 12 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 . 

I '-8 
7 -8 
3 -8 

11-3 -8 
( 

' -
' -

1 1-: 
1 }_L 

t 
( 

11 

)-4-:·~ . 

i-8 
i-8 
i-8 
~-8 

)-8 
l-2-H 

3 -8 
,_ 1 ( 

( ) 

L 

( 

~ 

F 

VT (Vertical Tab) 
FF (Form Feed) 
CR (Carriage Return) 
SO (Shift Out) 
SI (Shift In) 
OLE (Data Link Escape) 
DC 1 (Device Control I) 
DC2 (Device Control 2) 
DC3 (Device Control 3) 
DC4 (Device Control 4) 
NAK (Negative Acknowledge) 
SYN (Synchronous Idle) 
ETB (End of Transm. Block) 
CAN (Cancel) 
EM (End of Medium) 
SUB (Substitute) 
ESC (Escape) 
FS (File Separator) 
GS (Group Separator) 
RS (Record Separator) 
US (Unit Separator) 
(SPACE) 
I (VERTICAL BAR) 
" (QUOTATION MARK) 
# (NUMBER OR POUND SIGN) 
$ (DOLLAR SIGN) 
% (PERCENT SIGN) 
& (AMPERSAND) 
' (APOSTROPHE) 
( (LEFT PARENTHESIS) 
) (RIGHT PARENTHESIS) 
* (ASTERISK) 
+ (PLUS SIGN) 
, (COMMA) 
- (MINUS SIGN, HYPHEN) 
. (PERIOD) 
I (SLASH) 
0 
I 
2 
3 
4 
5 
6 
7 
8 



A B 

249 F9 
122 7A 
94 5E 
76 4C 

126 7E 
110 6E 
111 6F 
124 7C 
193 CI 
194 C2 
195 C3 
196 C4 
197 C5 
198 C6 
199 C7 
200 C8 
201 C9 
209 DI 
210 D2 
211 D3 
212 D4 
213 D5 
214 D6 
215 D7 
216 D8 
217 D9 
226 E2 
227 E3 
228 E4 
229 E5 
230 E6 
231 E7 
232 E8 
233 E9 
74 4A 

224 EO 
90 5A 
95 5F 

109 6D 
121 79 
129 81 
130 82 
131 83 
132 84 
133 85 

1108883 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-2. B 1000 Codes in ASCll-7 Sequence (Cont) 

c D E F 

57 39 9 9 
58 3A 2-8 : (COLON) 
59 3B 11-6-8 ; (SEMICOLON) 
60 3C 12 4-8 < (LESS-THAN SIGN) 
61 3D 6-8 = (EQUAL SIGN) 
62 3E 0-6-8 > (GREATER-THAN SIGN) 
63 3F 0-7-8 ? (QUESTION MARK) 
64 40 4-8 (lD (AT SIGN) 
65 41 12 I A 
66 42 12 2 B 
67 43 12 3 c 
68 44 12 4 D 
69 45 12 5 E 
70 46 12 6 F 
71 47 12 7 G 
72 48 12 8 H 
73 49 12 9 I 
74 4A 11-1 J 
75 4B 11-2 K 
76 4C 11-3 L 
77 4D 11-4 M 
78 4E 11-5 N 
79 4F 11-6 0 
80 50 11-7 p 

81 51 11-8 Q 
82 52 11-9 R 
83 53 0-2 s 
84 54 0-3 T 
85 55 0-4 u 
86 56 0-5 v 
87 57 0-6 w 
88 58 0-7 x 
89 59 0-8 y 

90 5A 0-9 z 
91 5B 12 2-8 [ (LEFT BRACKET) 
92 5C ""- (REVERSE SLASH) 
93 5D 11-2-8 ] (RIGHT BRACKET) 
94 5E 11-7-8 l I (LOGICAL NOT) 
95 5F 0-5-8 _ (UNDERSCORE) 
96 60 1-8 
97 61 12 0-1 a 
98 62 12 0-2 b 
99 63 12 0-3 c 

100 64 12 0-4 d 
lOl 65 12 0-5 e 

---

C-9 



,.... 
A B 

134 86 
135 87 
136 88 
137 89 
145 91 
146 92 
147 93 
148 94 
149 95 
150 96 
151 97 
152 98 
153 99 
162 A2 
163 A3 
164 A4 
165 A5 
166 A6 
167 A7 
168 AS 
169 A9 
192 co 
106 6A 
208 DO 
161 Al 
7 07 

C-10 

B 1000 Systems COBOL 7.i Reference Manual 
Appendix C 

Table C-2. B 1000 Codes in ASCll-7 Sequence (Cont) 

c D 

102 66 
103 67 
104 68 
105 69 
106 6A 
107 6B 
108 6C 
109 6D 
110 6E 
11 1 6F 
112 70 
113 71 
114 72 
115 73 
116 74 
117 75 
118 76 
119 77 
120 78 
121 79 
122 7A 
123 7B 
124 7C 
125 7D 
126 7E 
127 7F 

I 

12 I 

12 
12 
12 
12-11-

0-6 
0-7 
0-8 
0-9 
1 

12-11-2 
12-11-3 
12-11-4 
12-11-5 
12-11-6 
12-11-7 
12-11-· 8 
12-11-

11-· 
11-· 
11-· 
11 .. 

9 
0-2 
0-3 
0-4 
0-5 
0-6 
0.-7 
0-8 
0-9 
0 

11--
11·· 
11 .. 
11 .. 

12 
12-11 

11 .. 
12 

0-1 
7-9 

f 
g 
h 

j 
k 
1 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 

F 

{ (LEFT BRACE) 

} . (RIGHT BRACE) 
¢ (CENTS SIGN} 
DEL (Delete) 



B 1000 Systems COBOL 74 Reference Manual 
Appendix C 

Table C-3 explains all of the control and special codes. The symbols are presented in the order of appearance 
in Table C-1 and C-2. 

Table C-3. Description of Control and Special Characters 

Symbol Name/Function 

NUL Null: The all zeros character which may serve to accomplish time fill and media fill. 

SOH Start of Heading: A communication control character used at the beginning of a sequence of 
characters which constitutes a machine-sensible address or routing information. Such a 
sequence is referred to as the .. heading." An STX character has the effect of terminating a 
heading. 

STX Start of Text: A communication control character which precedes a sequence of characters 
which are to be treated as an entity and which are entirely transmitted to the ultimate 
destination. Such a sequence is referred to as .. text." STX may be used to terminate a 
sequence of characters started by SOH. 

ETX End of Text: A communication control character used to terminate a sequence of characters 
:started with STX and transmitted as an entity. 

EOT End .of Transmission: A communication control character used to indicate the conclusion of 
a transmission which may have contained one or more texts and any associated headings. 

ENQ 

ACK 

BEL 

Enquiry: A communication control character used in data communication systems as a 
irequest for a response from a remote station. It may be used as a "Who Are You" (WRU) 
to obtain identification, or may be used to obtain station status, or both. 

Acknowledge: A communication control character transmitted by a receiver as an affirmative 
response to a sender. 

Bell: A character for use when there is a need to call for human attention. It may control 
alarm or attention devices. 

BS: Backspace: A format effector that controls the movement of the printing mechanism one 
print position backward on the same print line. 

HT Horizontal Tabulation: A format effector that controls the movement of the printing 
mechanism to the next position in a series of predetermined positions along the print line. 

LF Line Feed: A format effector that controls movement one line at a time. 

VT Vertical Tabulation: A format effector that controls movement to the next in a series of 
predetermined lines. 

FF Form Feed: A format effector that controls the movement of the printing position to the first 
predetermined printing line on the next form or page. 

CR Carriage Return: A format effector that controls the movement of the print mechanism to the 
first print position on the same print line. 

SO Shift Out: A control character indicating that the code combinations that follow shall be 
interpreted as outside of the character set of the standard code table until a Shift In 
character is detected. 

SI Shift In: A control character indicating that the code combinations that follow shall be 
interpreted according to the standard code table. 

1108883 C-11 



Symbol 

OLE 

DCI 
DC2 
DC3 
DC4 

NAK 

SYN 

ETB 

CAN 

EM 

SUB 

ESC 

FS 
GS 
RS 
us 
sp 

DEL 

C-12 

B 1000 Systems COBOL74 Reference Manual 
Appendix C 

Table C-3. Description of Contro~ and Special Characters (Cont) 

Name/Function 

Date Link Escape: A communication control character that will change the meaning of a 
limited number of contiguously following characters. It is used exclusively to provide 
supplementary controls in data communication networks. 

Device Controls: Characters for the control of ancillary devices associated with data 
processing or telecommunication systems, more especially switching DC4 devices ON or 
OFF. If a single "stop" control is required to interrupt or turn off ancillary devices, OC4 is 
the preferred assignment. 

Negative Acknowledge: A communication control character transmitted by a receiver as a 
negative response to the sender. 

Synchronous Idle: A communication control character used by a synchronous transmission 
system in the absence of any other character to provide a signal from which synchronism 
may be achieved or retained. 

End of Transmission Block: A communication control character used to indicate the end of a 
block of data for communication purpose:s. ETB is used for blocking data where the block 
:structure is not necessarily related to th<::~ processing format. 

Cancel: A control character used to indicate that the data with which it is sent is in error 
and is to be disregarded. 

End of Medium: A control character associated with the sent data which may be used to 
identify the physical end of the medium, or the f'fld of the used, or wanted, portion of 
information recorded on a medium. The position L .. this character does not necessarily 
correspond to the physical end of the medium. 

Substitute: A character that may be substituted for a character which is determined to be 
invalid or in error. 

Escape: A control character intended to provide code extension (supplementary characters) in 
general information interchange. The Escape character itself is a prefix affecting the 
interpretation of a limited number of contiguously following characters. 

File Separator, Group Separator, Record Separator, and Unit Separator. These information 
separators may be optionally used within data, except that their hierarchical relationship shall 
be such that PS is the most inclusive, then GS, then RS, and US is least inclusive. The 
content and length of a File, Group, Record, or Unit are not specified. 

Space: A normally non-printing graphic character used to separate words. It is also a format 
effector which controls the movement of the printing position, one printing position forward. 

Delete: This character is used primarily to "erase" or "obliterate" erroneous or unwanted 
characters in perforated tape. In the strict ~.ense, DEL is not a control character. 



INTRODUCTION 

B 1000 Systems COBOL 74 Reference Manual 

APPENDIX D 
GLOSSARY 

The terms in this glossary are defined in accordance with meaning as used m this document describing 
COBOL74 and may not have the same meaning for other languages. 

Data Base Management definitions are not included in this glossary. Refer to the B 1000 Systems Data Man
agement Sys1tem IL (DMSII), reference manual for these definitions. 

DEFINITIONS 

Abbreviated Combined Relation Condition 
The combined condition that results from the explicit omission of a common subject or a common subject 
and common relational operator in a consecutive sequence of relation conditions. 

Access Mode 
The manner in which records are to be operated upon within a file. 

Actual Decimal Point 
The physical representation. using either of the decimal point characters period (.) or comma (.). of the 
decimal point position in a data item. 

Actual Key 
A key whose contents identify a logical record m a sequential file. 

Alphabet-Name 
A user-defined word. in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that as
signs a name to a specific character set and/or collating sequence. 

Alphabetic Character 
A character that belongs to the following set of letters: A, B, C, D, E, F. G, H. I. J, K, L, M. N, 
0, P. Q, R. S. T. U. V, W. X, Y, Z, and the space. 

Alphanumeric Character 
Any character in the computer character set. 

Alternate Record Key 
A key, other than the prime record key, whose contents identify a record within an Indexed File. 

Arithmetic Expression 
An arithmetic expression can be an identifier or a numeric elementary item, a numeric literal, such identi
fiers and literals separated by arithmetic operators, two arithmetic expressions separated by an arithmetic 
operator, or an arithmetic expression enclosed in parentheses. 

1108883-001 D-1 



I 

B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Arithmetic Operator 
A single character. or a fixed 2-character combination. that belongs to the following set: 

Character 

+ 

* 

* * 

Meaning 

Addition 
Subtraction 
l\foltiplication 
Division 
Exponentiation 

Ascending Key 
A key upon the values of which data is ordered starting with the lowest value of key in accordance with 
the rules for comparing data items. 

Assumed Decimal Point 
A decimal point position which does not involve the existence of an actual character in a data item. The 
assumed decimal point has logical meaning but no physical representation. 

At End Condition 

Block 

A condition caused: 

1. During the execution of a READ statement for a sequentially accessed file. 
2. During the execution of a RETURN statement, when no next logical record exists for the associated sort 
or merge file. 
3. During the execution of a SEARCH statement, when the search operator terminates without satisfying 
the condition specified in any of the associated WHEN phrases. 

A physical unit of data that is normally composed of one or more logical records. For mass storage files, 
a block may contain a portion of a logical record. The size of a block has no direct relationship to the 
siz1e of the file within which the block is contained or to the size of the logical record(s) that are eit!her 
continued within the block or that overlap the block. The term is synonymous with physical record. 

Burroughs Network Architecture (BNA) 

A system which provides a means to perform cliHributed data processing such as remote data base access, 
file transfer, remote task initiation and control, logical 1/0, interprocess communication, and resource shar
ing. 

Called Program 
A program which is the object of a CALL statement combined at object time with the calling program 
to produce a run unit. 

Calling Program 
A program which executes a CALL to another program. 

Cd-Name 
A user-defined word that names an MCS interface area described in a communication description entry 
within the COMMUNICATION SECTION of the DAT A DIVISION. 

Character 
The basic indivisible unit of the language. 

D-2 



Character Position 

B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

A character position is the amount of physical storage required to store a single standard data format 
character described as usage is DISPLAY r 

Character-String 
A sequence of contiguous characters which form a COBOL74 word, a literal. a PICTURE character
string, or a comment-entry. 

Class Condition 
The proposition, for which a truth value can be determined, that the content of an item is wholly alpha
betic or is wholly numeric. 

Clause 
A clause is an ordered set of consecutive COBOL74 character-strings whose purpose is to specify an 
attribute of an entry. 

COBOL74 Character Set 
The complete COBOL74 character set consists of the 52 characters listed below: 

COBOL74 Word 
Refer to Word. 

Collating Sequence 

Character 

0,1, ... ,9 
A,B, .... Z 

+ 

* 

$ 

( 
) 
> 
< 
(li' 

Digit 
Letter 

Meaning 

Space (blank) 
Plus sign 
Minus sign (hyphen) 
Asterisk 
Stroke (virgule, slash) 
Equal sign 
Currency sign 
Comma (decimal point) 
Semicolon 
Period (decimal point) 
Quotation mark 
Left parenthesis 
Right parenthesis 
Greater than symbol 
Less than symbol 
Commercial at 

The sequence in which the characters are acceptable in a computer are ordered for purposes of sorting, 
merging, and comparing. 

Column 
A character position within a print line. The columns are numbered from I, by 1, starting at the leftmost 
character position of the print line and extending to the rightmost position of the print line. 

1108883 D-3 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Combined Condition 
A condition that is the result of connecting two or more conditions with the AND or the OR logical 
operator. 

Comment-Entry 
An entry in the IDENTIFICATION DIVISION that may be any combination of charact_ers from the com
puter character set. 

Comment Line 
A source program line represented by an asterisk in the indicator area of the line and any characters 
from the computer's character set in Area A and Area B of that line. The comment line serves only 
for documentation in a program. A special form of comment line represented by a stroke(/) in the indica
tor area of the line and any characters from the computer's character set in area A and area B of that 
line cause page ejection before printing a comment. 

Communication Description Entry 
An entry in the COMMUNICATION SECTION of the DATA DIVISION that is composed of the level 
indicator CD, followed by a cd-name, and then followed by a set of clauses as required. It describes 
the interface between the Data Communication Subsystem and the COBOL74 program. 

Communication Device 
A mechanism (hardware or hardware/software) capable of sending data to a queue and/or receiving data 
from a queue. This mechanism may be a computer or a peripheral device. One or more programs contain
ing communication description entries and residing within the same computer define one or more of these 
mechanisms. 

Communication Section 
The section of the DATA DIVISION that describes the interface areas between the MCS and the pro
gram, composed of one or more CD desc1ip1tion entries. 

Compile Time 
The time when a COBOL74 source program 1s translated to a COBOL74 object program by the 
COBOL 74 compiler. 

Compiler-Directing Statement 
A statement that begins with a compiler-directing verb and causes the compiler to take a specific action 
during compilation. 

Complex Condition 
A condition in which one or more logical operators act upon one or more conditions. Refer to the terms 
Negated Simple Condition, Combined Condition, and Negated Combined Condition. 

Computer-Name 
A system name that identifies the computer upon which the program is to be compiled or run. 

Condition 

D-4 

A status of a program at execution time for which a truth value can be determined. Where the term 
'condition' (condition-I, condition-2, ... ) appears in this language in or in reference to 'condition' (condi
tion-I, condition-2, ... ) of a general format. it is a conditional expression consisting of either a simple 
condition optionally parenthesized, or a combined condition consisting of the syntactically correct combi
nation of simple conditions, logical operators, and parentheses, for which a truth value can be deter
mined. 



Condition-Name 

B 1000 Systems COBOL74 Reference Manual 
Appendix D 

A user-defined word assigned to a specific value, set of values, or range of values, within the complete 
set of values that a conditional variable may possess; or the user-defined word assigned to a status of 
a switch or device. 

Condition-Name Condition 
The prop,osition, for which a truth value can be determined, that the value of a conditional variable is 
a member of the set of values attributed to a condition-name associated with the conditional variable. 

Conditional Expression 
A simple condition or a complex condition specified in an IF, PERFORM, or SEARCH statement. Refer 
to the terms Simple Condition and Complex Condition. 

Conditional Statement 
A conditional statement specifies that the truth value of a condition is to be determined and that the 
subsequent action of the object program is dependent on this truth value. 

Conditional Variable 
A data item one or more values of which has a condition-name assigned to it. 

Configuration Section 
A section of the ENVIRONMENT DIVISION that describes overall specifications of source and object 
computers. 

Connective 
A reserved word that is used to: 

I. Associate a data-name, paragraph-name, condition-name, or text-name with the qualifier. 
2. Link two or more operands written in a series. 
3. Form conditions (logical connectives). Refer to the term Logical Operator. 

Contiguous Items 
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite hierar
chic relationship to each other. 

Counter 
A data item used for storing numbers "or number representations in a manner that permits these numbers 
to be increased or decreased by the value of another number, or to be changed or reset to zero or to 
an arbitrary positive or negative value. 

Currency Sign 
The character '$' of the COBOL74 character set. 

Currency Symbol 
The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. If no 
CURR.ENCY SIGN clause is present in a COBOL74 source program, the currency symbol is identical 
to the currency sign. 

Current Record 
The record which is available in the record area associated with the file. 

1108883 D-5 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Current Record Pointer 
A conceptual entity that is used in the selection of the next record. 

Data Clause 
A clause that appears in a data description entry in the DATA DIVISION and provides information de
scribing a particular attribute of a data item. 

Data Communication Subsystem 
Consists of a Network Controller and one or more programs (optional MCS). The Network Controller 
is responsible for handling all the details of 1the data communications line discipline. 

Data Description Entry 
An entry in the DATA DIVISION that is composed of a level-number followed by a data-name, if re
quired, and then followed by a set of data clau5es, as required. 

Data Itent 
A character or a set of contiguous characters (excluding in either case literals) defined as a unit of data 
by the COBOL74 program. 

Data-Name 
A user-defined word that names a data item described in a data description entry in the DATA DIVI
SION. When used in the general formats, data-name represents a word which can neither be subscripted, 
indexed, nor qualified unless specifically permitted by the rules for that format. 

Debugging Line 
A debugging line is any line with D in the indk~ator area of the line. 

Debugging Section 
A debugging section is a section that contains a USE FOR DEBUGGING statement. 

Declaratiives 
A set of one or more special purpose sections, written at the beginning of the PROCEDURE DIVISION, 
the first of which is preceded by the key woird DECLARATIVES and the last of which is followed by 
the key words END DECLARATIVES. A declarative is composed of a section header, followed by a 
USE compiler directing sentence, followed by a set of zero, one or more associated paragraphs. 

Declarative-Sentence 
A compiler-directing sentence consisting of a single USE statement terminated by the separator period. 

Delimiter 
A character or a sequence of contiguous characters that identify the end of a string of characters and 
separates that string of characters from the follmwing string of characters. A delimiter is not part of the 
string of characters that it delimits. 

Descending Key 
A key upon the values of whith data is ordered starting with the highest value of key down to the lowiest 
value of key, according to the rules for compa1ing data items. 

Destination 
The symbolic identification of the receiver of a transmission from a queue. 

D-6 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Digit Position 
A digit position is the amount of physical storage required to store a single digit. This amount may vary 
depending on the usage of the data item describing the digit position. 

Division 
A set of zero, one or more sections of paragraphs, called the division body, that are formed and com
bined :in accordance with a specific set of rules. There are four divisions in a COBOL74 program: IDEN
TIFICATION, EI\:VIRONMENT, DATA, and PROCEDURE. 

Division H(;~ader 
A combination of words followed by a period and a space that indicates that beginning of a division. 
The division headers are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION [USING data-name-I [data-name-2] ... ] 

Dynamic Access 
An access mode in which specific logical records can be obtained from or placed into a mass storage 
file in a nonsequential manner (see Random Access) and obtained from a file in a sequential manner (see 
Sequential Access), during the scope of the same OPEN statement. 

Editing Character 
A single character or a fixed two-character combination belonging to the following set: 

Elementary Item 

Character 

B 
0 
+ 

CR 
DB 
z 
* 
$ 

I . 

Space 
Zero 
Plus 
Minus 
Credit 
Debit 

Meaning 

Zero suppress 
Check protect 
Currency sign 
Comma (decimal point) 
Period (decimal point) 
Stroke (virgule, slash) 

A data item that is described as not being further logically subdivided. 

End of PROCEDURE DIVISION 
The physical position in a COBOL74 source program after which no further procedures appear. 

Entry 
Any diescriptive set of consecutive clauses terminated by a period and written in the IDENTIFICATION 
DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL74 source program. 

1108883 D-7 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Environment Clause 
A clause that appears as part of an ENVIRONMENT DIVISION entry. 

Execution Time 
See Object Time. 

Extend Mode 
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that 
file and before the execution of a CLOSE statement for that file. 

Figurative Constant 
A compiler-generated value referenced through the use of certain reserved words. 

File 
A collection of records. 

File Clause 
A dause that appears as part of any of the following DATA DIVISION entries: 

File description (FD) 
Sort-Merge file description (SD) 
Communication description (CD) 

FILE-CONTROL 
The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source pro
gram are declared. 

File Description Entry 
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD, 
followed by a file-name, and then followed by a set of file clauses as required. 

File-Name 
A user-defined word that names a file described in a file description entry within the FILE SECTION 
of the DATA DIVISION. 

File Organization 
The permanent logical file structure established at the time that a file is created. 

File Section 
The section of the DATA DIVISION that contains file description entries and Sort-Merge file description 
entries together with associated record descriptions. 

Format 
A specific arrangement of a set of data. 

Group Item 
A named contiguous set of elementary or group items. 

Hexadecimal Literal 

D-8 

A character-string bounded by @ signs. The string of characters must consist of one or more characti;!rs 
chosen from the set of hexadecimal digits consi:.,ting of the digits 0 through 9, A, B, C, D, E, and F. 
The characters A through F are the hexadecimal digit representation for the decimal values 10 through 
15. 



High Order End 

B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

The leftmost character of a string of characters. 

1-0-Control 
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for spe
cific input-ou~put techniques, rerun points, sharing of same areas by several data files, and multiple file 
storage on a single input-output device are specified. 

1-0 Mode 
The state of a file after execution of an OPEN statement, with the 1-0 phrase specified, for that file 
and before the execution of a CLOSE statement for that file. 

Identifier 
A data-name, followed as required by the syntactically correct combination of qualifiers, subscripts, and 
indices necessary to make unique reference to a data item. 

Imperative Statement 
A statement that begins with an imperative verb and specifies an unconditional action to be taken. An 
imperative statement may consist of a sequence of imperative statements. 

Index 
A computer storage position or register, the contents of which represent the identification of a particular 
element in a table. 

Index Data Item 
A data item in which the value associated with an index-name can be stored. 

Index-Name 
A use~r-defined word that names an index associated with a specific table. 

Indexed Data-Name 
An identifier that is composed of a data-name, followed by one or more index-names enclosed in paren
theses. 

Indexed File 
A file with indexed organization. 

Indexed Organization 
The permanent logical file structure in which each record is identified by the value of one or more keys 
within that record. 

Input File 
A file that is opened in the input mode. 

Input Mode 
The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that 
file and before the execution of a CLOSE statement for that file. 

Input-Output 
A file that is opened in the 1-0 mode. 

1108883 D-9 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

INPUT-OUTPUT SECTION 
The section of the ENVIRONMENT DIVISION that names the files and the external media required 
by an object program and which provides information required for transmission and handling of data dur
ing execution of the object program. 

Input Procedure 
A set of statements that is executed each time a record is released to the sort file. 

Integer 
A numeric literal or a numeric data item that does not include any character positions to the right of 
the assumed decimal point. Where the term 'integer' appears in general formats, integer must not be a 
numeric data item, and must not be signed nor zero unless explicitly allowed by the rules of that forma1t. 

Intermediate Data Item 
A signed numeric data item provided by the compiler that contains the results developed in. the course 
of an arithmetic operation prior to the final r,esult being moved to the resultant-identifier, if any. 

Invalid Key Condition 

Key 

A condition, at object time, caused when a specific value of the key associated with an Indexed or 
Relative File is determined to be invalid. 

A data item which identifies the location of a record, or a set of data items which serve to identify the 
ordering of data. 

Key of Reference 
The key, either prime or alternate, currently being used to access records within an Indexed File. 

Key Word 
A reserved word whose presence is required when the format in which the word appears is used in a 
source program. 

Language-Name 
A system name that specifies a particular programming language. 

Level Indicator 
Two alphabetic characters that identify a specific type of file or a position in hierarchy. 

Level-Number 
A user-defined word which indicates the position of a data item in the hierarchical structure of a logical 
record or which undicates special properties of a data description entry. A level-number is expressed as 
a one- or two-digit number. Level-numbers in the range 1 through 49 indicate the position of a data item 
in the::: hierarchical structure of a logical record. Level-numbers in the range 1 through 9 may be written 
either as a single digit or as a zero followed by a significant digit. Level-numbers 66, 77, and 88 identify 
special properties of a data description entry. 

Library-Name 

D-10 

A user-defined word that names a COBOL74 library that is to be used by the compiler for a given source 
program compilation. 



Library-Text 

B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

A sequence of character-strings and/or separators in a COBOL 74 library. 

Line Number 
An integer that denotes the vertical position of a report line on a page. 

Linkage Section 
The section in the DATA DIVISION of the called program that describes data items available from the 
calling program. These data items may be referred to by both the calling and called program. 

Literal 
A character-string whose value is implied by the ordered set of characters comprising the string. 

Logical Operator 
One of the reserved words AND, OR, or NOT. In the formation of a condition, AND and/or OR can 
be us1ed as logical connectives. NOT can be used for logical negation. 

Logical Record 
The most inclusive data item. The level-number for a record is 01. 

Low Order End 
The rightmost character of a string of characters. 

Mass Storage 
A storage medium on which data may be organized and maintained in both a sequential and nonsequen
tial manner. 

Mass Storage Control System (MSCS) 
An input-output control system that directs, or controls, the processing of mass storage files. 

Mass Storage File 
A collection of records that is assigned to a mass storage medium. 

MCS 
Refer to Message Control System. 

Merge File 
A colllection of records to be merged by a MERGE statement. The merge file is created and can be used 
only lby the merge function. 

Message 
Data associated with an end of message indicator or an end of group indicator. Refer to Message Indica
tors. 

Message Control System (MCS) 
A communication control system that supports the processing of messages. 

Message Count 
The count of the number of complete messages that exist in the designated queue of messsages. 

1108883 D-11 



B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

Message lndicators 
EGI (end of group indicator), EMI (end of message indicator), and ESI (end of segment indicator) are 
conceptual indications that serve to notify the MCS that a specific condition exists. 

Within the hierarchy of EGI, EMI, ESI, an EGI is conceptually equivalent to an ESI, EMI, and EGL 
An EMI is conceptually equivalent to an ESI and EMI. Thus, a segment may be terminated by an EMI 
or EGL 

Message Segment 
Data that forms a logical subdivision of a message normally associated with an end of segment indicator. 
Refer to Message Indicators. 

Mnemonic-Name 
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified name. 

MSCS 
Refer to Mass Storage Control System. 

Native Character Set 
The character set associated with the computer for which object code is generated. 

Native Collating Sequence 
Thi~ collating sequence associated with the native character set. 

Negated Combined Condition 
The NOT logical operator immediately followed by a parenthesized combined condition. 

Negated Simple Condition 
The NOT logical operator immediately followed by a simple condition. 

Network Controller 
The Network Controller program is a data communications operating system and is responsible for han
dling all of the details of the data communications line discipline. 

Next Executable Sentence 
The next sentence to which control will be transferred after execution of the current statement is com
plete. 

Next Record 
The record which logically follows the current record of a file. 

Noncontiguous Items 
Elementary data items, in the WORKING-STORAGE and LINKAGE SECTIONS, which bear no hierar
chic relationship to other data items. 

Nonnumeric Item 

D-12 

A data item whose description permits its contents to be composed of any combination of characters 
taken from the computer's character set. Certain categories of nonnumeric items may be formed from 
more restricted character sets. 



B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

Nonnumeric Literal 
A character-string bounded by quotation marks. The string of characters may include any character in 
the computer's character set. To represent a single quotation mark character within a nonnumeric literal. 
two contiguous quotation marks must be used. 

Numeric Character 
A character that belongs to the.following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

Numeric Item 
A data item whose description restricts its contents to a value represented by characters chosen from 
the digits 0 through 9; if signed, the item may also contain a +, -, or other representation of an 
operational sign. 

Numeric Literal 
A literal composed of one or more numeric characters that also may contain either a decimal point, an 
algebraic sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if 
present,, must be the leftmost character. 

OBJECT-COMPUTER 
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, within 
which the object program is executed, is described. 

Object of Entry 
A set of operands and reserved words, within a DATA DIVISION entry, that immediately follows the 
subject of the entry. 

Object Program 
A set or group of executable instructions and other material designed to interact with data to provide 
problem solutions. In this context, an object program is generally the result of the operation of a 
COBOL74 compiler on a source program. Where there is no danger of ambiguity, the word 'program' 
alone may be used in place of the phrase 'object program'. 

Object Time 
The time at which an object program is executed. 

ODT 
Operator Display Terminal. 

Open Mode 
The state of a file after execution of an OPEN statement for that file and before the execution of a 
CLOSE statement for that file. The particular open mode is specified in the OPEN statement as either 
INPUT, OUTPUT, I-0, or EXTEND. 

Operand 
Whereas the general definition of operand is 'that component which is operated upon,' for the purposes 
of this manual, any lower-case word or words that appear in a statement or entry format may be consid
ered to be an operand and, as such, Imply reference to the data indicated by the operand. 

Operational Sign 
An algebraic sign, associated with a numeric data item or a numeric literal, to indicate whether its value 
is positive or negative. 

1108883 D-13 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Optional Word 
A n~served word that is included in a specific format only to improve the readability of the language 
and whose presence is optional to the user when the format in which the word appears is used in a 
source program. 

Output Fille 
A file that is opened in either the output mode or extend mode. 

Output Mode 
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase 
specified for that file and before the execution of a CLOSE statement for that file. 

Output Procedure 

Page 

A st:~t of statements to which control is given during execution of a SORT statement after the sort ful1lc
tion is completed, or during execution of a MERGE statement after the merge function has selected the 
next record in merged order. 

A v1ertical division of a report representing a physical separation of report data, the separation being 
based on internal reporting requirements and/or external characteristics of the reporting medium. 

Page Body 
That: part of t:he logical page in which lines can be written and/or spaced. 

Page Footing 
A report group that is presented at the end of a. report page. 

Page Heading 
A report group that is presented at the beginning of a report page. 

Paragraph 
In 1the PROCEDURE DIVISION, a paragraph-name followed by a period and a space and by zero, one, 
or more sentences. In the IDENTIFICATION and ENVIRONMENT DIVISIONS, a paragraph header 
followed by zero, one, or more entries. 

Paragraph Header 

D-14 

A reserved word, followed by a period and a space that indicates the beginning of a paragraph in the 
IDENTIFICATION and ENVIRONMENT DIVISIONS. The permissible paragraph headers are: 

In the. I DENTI FI CAT I (}.j DIVIS I ON: 
PROGRAM- ID. 
AUTHOR. 
INSTALLATION. 
DATE•WRITTEN. 
DATE-COMPILED. 
SE CURI TY. 



B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

In the ENVIRONMENT DIVISION: 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
1-0-CONTROL. 

Paragraph-Name 
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION. 

Phrase 
A phrase is an ordered set of one or more consecutive COBOL 74 character-strings that form a portion of 
a COBOL 74 procedural statement or of a COBOL 74 clause. 

Physical Record 
Refer to Block. 

Port File 
A type of file used by the Burroughs Network Architecture (BNA) system to provide paths between two 
or more processes. 

Prime Record Key 
A key whose contents uniquely identify a record within an Indexed File. 

Procedure 
A paragraph or group of logically successive paragraphs, or a section or group of logically successive sec
tions, within the PROCEDURE DIVISION. 

Procedure-Name 
A user-defined word which is used to name a paragraph or section in the PROCEDURE DIVISION. It 
consists of a paragraph-name (which may be qualified) or a section-name. 

Program-Name 
A user-defined word that identifies a COBOL 74 source program. 

Pseudo-Text 
A sequence of character-strings and/or separators bounded by, but not including, pseudo-text delimiters. 

Pseudo-Text Delimiter 
Two contiguous equal sign ( = ) characters used to delimit pseudo-text. 

Punctuation Character 
A charai:~ter that belongs to the following set: 

Character 

(u 

1108883-001 

Meaning 

Comma 
Semicolon 
Period 
Quotation mark 
Left parenthesis 
Right parenthesi_s 
Space 
Equal sign 
Commercial at 

D-15 

I 



B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

Qualified Data-Name 
An identifier that is composed of a data-name followed by one or more sets of either of the connectives 
OF and IN followed by a data-name qualifier. 

Qualifier 
1. A data-name which is used in a reference together with another data-name at a lower level in the 

:same hierarchy. 
2. A section-name which is used in a reference together with a paragraph-name specified in that section. 
3. A library-name which is- used in a reference together with a text-name associated with that library. 

Queue 
A logical collection of messages awaiting transmission or processing. 

Queue Name 
A symbolic name that indicates to the MCS the logical path by which a message or a portion of a com
pleted message may be accessible in a queue. 

Random Access 
An access mode in which the program-specified value of a key data item identifies the logical record 
that is obtained from. deleted from or placed into a Relative or Indexed file. 

Record 
Refer to Logical Record. 

Record Area 
A storage area allocated for the purpose of processing the record described in a record description entry 
in the FILE SECTION. 

Record Description 
Refer to Record Description Entry. 

Record Description Entry 
The total set of data description entries associated with a particular record. 

Record Key 
A key. either the prime record key or an alternate record key, whose contents identify a record within 
an Indexed File. 

Record-· Name 
A user-defined word that names a record described in a record description entry in the DAT A DIVI
SXON. 

Reference Format 
A format that provides a standard method for describing COBOL74 source programs. 

Relation 
Refer to Relational Operator. 

D-16 



Relation Character 

B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

A character that belongs to the following set: 

Relation Condition 

Character Meaning 

> Greater than 
< Less than 

Equal to 

The proposition, for which a truth value can be determined, that the value of an arithmetic expression 
or data item has a specific relationship to the value of another arithmetic expression or data item. Refer 
to Relational Operator. 

Relational Operator 
A reserved word, a relation character, a group of consecutive reserved words, or a group of consecutive 
reserved words and relation characters used in the construction of a relation condition. The permissible 
operators and their meanings are: 

Relational Oeerator Meaning 

IS [NOT] GREATER THAN Greater than or not greater than 
IS (NOT] > 
IS [NOT] LESS THAN 
IS (NOT] < Less than or not less than 
IS [NOT] EQUAL TO 
IS [NOT] Equal to or not equal to 

Relative File 
A file with relative organization. 

Relative Key 
A key whose contents identify a logical record in a Relative File. 

Relative Organization 
The permanent logical file structure in which each record is uniquely identified by an integer value great
er than zero, which specifies the record's logical ordinal position in the file. 

Reserved Word 
A COBOL74 word specified in the list of words which may be used in COBOL74 source programs, but 
which must not appear in the programs as user-defined words. 

Resultant-Identifier 
A user-defined data item that 1s to contain the result of an arithmetic expression. 

Run Unit 
A set of one or more object programs which function, at object time, as a unit to provide problem solu
tions. 

1108883 D-17 



B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

Section 
A set of zero, one, or more paragraphs or entries. called a section body, the first of which is preceded 
by a section header. Each section consists of the section header and the related section body. 

Section ·Header 
A combination of words followed by a period and a space that indicates the beginning of a section in 
the ENVIRONMENT, DATA. and PROCEDURE DIVISIONS. 

In the ENVIRONMENT and DATA DIVlSIONS. a section header is composed of reserved words fol
lowed by a period and a space. The permissible section headers are: 

In the ENVIRONMENT DIVISION: 

CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

In the DATA DIVISION: 

IFILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
COMMUNICATION SECTION. 

In the PROCEDURE DIVISION, a section header i~. composed of a section-name, followed by the reserved 
word SECTION, followed by a segment-number (optional), followed by a period and a space. 

Section-Name 
A user-defined word which names a section in the PROCEDURE DIVISION. 

Segment-Number 
A user-defined word which classifies sections in the PROCEDURE DIVISION for purposes of segmenta
tion. Segment-numbers may contain only the characters 'O', 'I', ... , '9'. A segment-number may be ex
prc~ssed as a 1-, 2-, 3-, or 4-digit number. 

Sentence 
A sequence of one or more statements, the last of which is terminated by a period followed by a space. 

Separator 
A punctuation character used to delimit chara1.;ter-strings. 

Sequential Access 
An access mode in which logical records are obtained from or placed into a file in ·a consecutive prede
cessor-to-successor logical record sequence determined by the order of the records in the file. 

Sequential File 
A file with sequential organization. 

D-18 



Special Character 

B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

A character that belongs to the following set: 

Special-Character Word 

Character 

+ 

I 

$ 

" 

> 
< 
@ 

Meaning 

Plus sign 
Minus sign 
Asterisk 
Stroke (virgule, slash) 
Equal sign 
Currency sign 
Comma (decimal point) 
Semicolon 
Period (decimal point) 
Quotation mark 
Left parenthesis 
Right parenthesis 
Greater than symbol 
Less than symbol 
Commercial at 

A reserved word which is an arithmetic operator or a relation character. 

SPECIAL-NAMES 
The name of an ENVIRONMENT DIVISION paragraph in which names are related to user specified mne
monic-names. 

Special Registers 
Compiler-generated storage areas whose primary use is to store information produced in conjunction with 
the user of specific COBOL 74 features. 

Standard Data Format 
Describes the characteristics of data in a COBOL 74 DATA DIVISION under which the characteristics or 
propertie~s of the data are expressed by the appearance of the data on a printed page of infinite length and 
breadth. Standard Data Format is not a form oriented to the manner in which data is stored internally 
in the computer, or on a particular external medium. 

Statement 
A syntactically valid combination of words and symbols written in the PROCEDURE DIVISION beginning 
with a verb. 

Sub-Queue 
A logical hierarchical division of a queue. 

Subfile 
The unique connection to an individual process in a Burroughs Network Architecture (BNA) port file. 

Subject of Entry 
An operand or reserved word that appears immediately following the level indicator or the level-number 
in a DAT A DIVISION entry. 

Subprogram 
Refer to Called Program. 

1108883-001 D-19 

I 



B 1000 Systems COBOL74 Reference Manual 
Appendix D 

Subscript 
An integer whose value identifies a particLillar element in a table. 

Subscripted Data-Name 
An identifier that is composed of a data-name followed by one or more subscripts enclosed in parenthe
ses. 

Switch-Status Condition 
The proposition. for which a truth value can be determined, that a switch. capable of being set to an 
'on' or 'off status. is set to a specific status. 

System Name 

Table 

A COBOL74 word which is used to communicate with the operating environment. 

A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the 
OCCURS clause. 

Table Element 
A data item that belongs to the set of repeated items comprising a table. 

Terminal 
The originator of a transmission to a queue. or the receiver of a transmission from a queue. 

Text-Name 
A user-defined word which identifies library text. 

Text-Word 
Any character-string or separator. except space, in a COBOL74 library or in pseudo-text. 

Truth Value 
The representation of the result of the evaluation of a condition in terms of one of two values: 

TRUE 
FALSE 

Unary Operator 

Unit 

A plus ( +) or a minus (-) sign, which precedes a variable or a left parenthesis in an arithmetic expression 
and which has the effect of multiplying the expression of +I or -I, respectively. 

A module of mass storage. 

User-Defined Word 
A COBOL 74 word that must be supplied by the user to satisfy the format of a clause or statement. 

Variable 

D-20 

A data item whose value may be changed by execution of the object program. A variable used in an 
arithmetic expression must be a numeric elementary item. 



Verb 

Word 

B 1000 Systems COBOL 74 Reference Manual 
Appendix D 

A word that expresses an action to be taken by a COBOL 74 compiler or object program. 

A character-string of not more than 30 characters which forms a user-defined word. a system-name. or 
a reserved word. 

WORKING-STORAGE SECTION 
The section of the DATA DIVISION that describes working-storage data items. composed either of non
contiguous items or of working-storage records or of both. 

77·-Level-Description-Entry 
A data description entry that describes a noncontiguous data item with the level-number 77. 

1108883 D-21 



GENERAL 

B JOOO Systems COBOL74 Reference Manual 

APPENDIX E 
COBOL74 S-L.ANGUAGE 

B 1000 COBOL74 S-language provides the virtual machine interface between the code generated by the 
COBOL74 compiler and the COBOL74 interpreter. This appendix includes a description of the format of 
COBOL74 S-instructions and an exptanation of each operator as a member of one of the following classes: 

ARITHMETIC 
DATA MOVEMENT 
BRANCHING 
CONDITIONAL BRANCHING 
MISCELLANEOUS 
CHARACTER STRINGS 
INTERPROGRAM COMMUNICATION 

S··LANGUAGE PROGRAMS 

All COBOL74 S-language programs have a base register and a limit register associated with them. The area 
between the base and the limit is to be used as data space only. All program code, organized in segment form, 
is stored at any available location in memory, according to the memory management algorithms used by the 
B 1000 operating system. 

The data space includes a nonoverlayable area which contains various parameters such as edit masks, literals, 
and record areas. 

Various parameters, necessary for the running of the S-language object code are stored beyond the Limit Reg
ister in the Run Structure Nucleus (RSN). 

1108883 E-1 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appe111dix E 

A typical COBOL 74 program layout m memory is shown in Figure E-1. 

BASE REGISTER r 

I 

EDIT TAI JLE (8 CHAS) 

SPECIAL 

COLLATE T 
(2• 

DATANAi 
SY 

RE GI STE RS 

.E ADDRESS ABL 
i Bl TS) 

MONITOR ME 
MBC >LS 

STATIC MEMO RY 
EDr r MA SKS DAT A SEGMENT ZERO 

ORY { ----
DYNAMIC MEM 

LIMIT REGISTER 

G12342 

NONOVI 
USER'S 

ERL 
DAl 

AYABLE 
"A AREA 

TRASH (INTER! "1EC llATE RESULTS) 

LITEB AL POOL 

ALTER T; ~BL E (IF ANY) 

s 'K TAC 

NOT. ~SS 11GNED 

RF.INS' TAT 
ST AND RUM 

DATA D ICT 

S-co 

EINFO 
RUCTURE 

ION ARY 

DE 

t 

--
1 -

--

Figure E-1. COBOL74 Program Layout 

Special registers are listed in Table E-1. 

Table E-1. :SpE!Cial Registers 

Address !Name Picture 

0 SWI 9 CMP 

7 SW8 9 CMP 
49 OM-STATUS 9 (2) 

E-2 

EX 

STACK BASE 

STACK LIMIT 

TENDABLE LIMIT 
REGISTER 

( BOJ ATTRIBUTE) 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

CONTAINER SIZE 

Container size is a field size in bits necessary to contain the maximum value required for that field. For exam
ple. a container size of five bits allows a field size to house a 32-bit address (0-3 J ). 

All container sizes in the COBOL74 S-Machine are fixed length and shown in Table E-2. 

Table E-2. Container Sizes 

Abbreviation Container Length 

OP Opcode 9 bits 
LEN Data length op 14 bits 
DISP Data displacement 20 bits 
SEG Data segment number IO bits 
BADDR Branch address 21 bits 
DADDR Data address 20 bits 

$ .. INSTRUCTION FORMAT 

Each COBOL 74 S-instruction consists of an S-operator followed by arguments consisting of a variable number 
of bits. The format and interpretation of these arguments are specified by the S-operator and are described 
in detail by the specification of the individual operators" An example of one such instruction format is illus
trated below. 

S-OPERA TORS 

OPI 
(9) 

OPND 
(Variable) 

COP 
(Variable) 

[ Lcop Information or Literal 

COP Information or Literal 

All S-operators are encoded in a 9-bit S-operator field denoted as OPJ. 

COP AND OPND 

A COP is an inline descriptor pointing to a data item or a literal. An operand (OPND) may be an inline COP 
or an inline literal. All data items are placed in data segment zero. 

There are three types of descriptors: a short COP. a long COP with segment numbers. and a long COP without 
segment numbers. 

1108883 E-3 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

Short COP 

Format: 

0 1 7 24 

GI DAT A LEN_G_T_H_~I _· D_I_S_P_I 

6 17 

A short COP cannot be generated for subscripts, indexes, IPC data, or literals. Because a short COP dof~s 
not contain information on data types, it can be used only with the following S-operators: 

MVA CPN 
MVN CPZ 
MVZ INC 
CPA INCi 

Long COP with No Segment Number 

Format: 

0 2 6 10 24 44 

G-~1-4_/_8_1 _M_SI_L ___ l_o_A_T_A LENGTH DISP rest unchanged 

LITERAL 

This COP can be used for any data except IPC data. A description of the fields is found in the following sec
tion on In-line Descriptors. 

Long COP with Segment Number 

0 . 2 6 10 24 34 54 

[ii I 4/8 I MSIL I DATA LENGTH I SEG I DISP I rest unchanged 

This COP can be used for IPC data only. It cannot be used for literals. Descriptions of the fields are provided 
in the fo1lowing section on In-line Descriptors. 

E-4 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

COBOL74 IN-LINE DESCRIPTORS 

An in-line descriptor must provide for the following capabilities: 

I. Multidimensional tables with unlimited subscripting/indexing (the real limit is 48). 
2. Run-time bounds-checking on ~ach dimension of a table. 
3. Variable length data items with an OCCURS DEPENDING clause. 
4. Shared data addressing. 
5. The specification of CODE-SET. 

A variable length data item may be declared in COBOL74 by using an OCCURS DEPENDING clause. 

Example: 

01 /Ji. 
02: B PIC X. 
02 C OC 5 TO 10 TIMES DEPENDING ON V@ 

03 D PIC X OC 20 TIMES. 

In this data structure, A is a variable length item whose length is determined as follows: 

LENGTH [A] = LENGTH [B] + ( V * LENGTH [C] ) 

where 5 LEQ V LEQ I 0 

When A is referenced, only that part of it defined by the calculated length is used in any operation. 

When C or D is referenced, the length is not variable, but V must be bound-checked to verify that the re
quested table element exists. 

The Restrictions: 

I. A data description entry that contains an OCCURS DEPENDING clause may only be followed by 
entries that are subordinate to it. 

2. The OCCURS DEPENDING clause cannot be specified in a data description entry that describes an 
item whose size is variable. 

These restrictions ensure· that the description of the first subscript/index associated with a variable is the only 
one that contains an OCCURS DEPENDING clause. 

IMPLEMENTATION STRATEGY 

COBOL74 S-language employs a continue flag to tell the interpreter that more COP information is specified. 

The same bounds-checking information is needed when referencing either a variable length item or the first 
dimension of a subscripted variable contained in a variable length item. Dimension information required for 
the subsequent dimensions is different from that which is required for the first dimension. 

When a variable length item is referenced, the COP of the OCCURS DEPENDING operand is provided fol
lowing the COP of data-name. The operand is bound-checked to verify that it is within the specified integer 
range. 

1108883 E-5 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

MULTIPLE-ENTRY-FLAG 

The MULTlPLE-ENTRY-FLAG is TRUE when indicatmg that multiple entry attributes are associated with 
this entry and FALSE when indicating otherwise. Wh1~n TRUE. the next entry(s) contain(s) the necessary OC
CURS DEPENDING and/or subscripting or indexing attribute information. 

SHARED-DA TA-FLAG 

The SHARED-DATA-FLAG is TRUE when indicating that this entry was a data item passed by a CALL 
statement of another program and FALSE when indicating otherwise. When TRUE. IPCD-INDEX specifies 
the location of the !PC.DICTIONARY descriptor for this entry. 

LITERAL-FLAG 

If this flag is set. then a literal follows after the DATA LENGTH field. 

DATA LENGTH 

The data length field is 14 bits wide and contains the length of the data in digits. If this field is the length 
of a variable length item. the data length field contains the length of that part of the table which is not variable. 
The actual length is calculated at run time by the interpreter (refer to Depending Attributes in this section). 

SEGMENT NUMBER 

Segment number is expressed in binary and specifies the data segment number of the operand. It is IO bits, 
in length. 

DISPLACEMENT 

Displacement is expressed in binary and specifies the digit displacement of the data from the base of the data 
segment. All data is stored beginning at an address which modulo 4-bit must equal zero. The container size 
is 20 bits. 

DEPENDING-FLAG 

The DEPENDING-FLAG is TRUE when indicating th;1t an OCCURS DEPENDING operand is associated 
with this variable and FALSE when indicating otherwise. When TRUE. the bounds-checking and factor infor
mation follow in the entry. This is followed by any subscripting or indexing information that may be necessary. 

DEPENDING ATIRIBUTES 

When the DEPENDING-FLAG is TRUE. the attributes of the DEPENDING operand are encoded in LOW
ER-BOUND-0, UPPER-BOUND-0. and FACTOR-0. which are binary fields. LOWER-BOUND-0 and UPPER
BOUND-0 contain the integer range of the DEPENDING operand while FACTOR-0 contains the digit dis
placement between elements of the table. 

The value of the DEPENDING operand is verified to be greater than or equal to LOWER-BOUND-0 and 
less than or equal to UPPER-BOUND-0. If the value is outside the range. then an error communicate is issued. 

E-6 



B I 000 Systems COBOL 74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

If CONTINUE-FLAG-0 is FALSE, then the value of the DEPENDING operand is multiplied by FACTOR-
0 and is added to the data length specified in the primary COP entry, and decoding of the multiple entry attri
butes terminates. In this case, the data length specified in the COP entry is the fixed part of the table. 

If CONTINUE;.FLAG-0 is TRUE, then subscripting or indexing information follows. One is subtracted from 
the value of the DEPENDING operand and the result is multiplied by FACTOR-0 to form a new upper-bound. 
In this case, FACTOR-I and UPPER-BOUND-I are omitted from the entry because the equivalence of those 
factors is represented by FACTOR-0 and NEW. UPPER.BOUND. 

SUBSCRIPT-FLAG 

If the SUBSCRIPT-FLAG is FALSE, it specifies that indexing information follows and that the factor associ
ated with each dimension of the table is omitted. If it is TRUE, it specifies that subscripting information fol
lows for each dimension of the table. 

Factor and upper-bound fields are binary. Factor is the digit displacement between elements of the table. Up
per-bound is the maximum digit displacement allowed for this dimension of the table. UPPER-BOUND-0 dif
fers from the other upper-bound fields in that it represents the maximum value of the DEPENDING operand. 

SUBSCRIPTING 

Subscripting requires a factor and an upper-bound for each dimension of the variable. The continue-flag is 
TRUE until the last dimension is reached. When the continue-flag becomes FALSE, decoding is terminated. 

Each subscript value is obtained and 1 is subtracted from it. If the result is less than zero, an error communi
cate is issued; otherwise, the result is multiplied by the associated factor and the product is compared to the 
corresponding upper-bound. If the product exceeds the upper-bound, an error communicate is issued: other
wise, the product is added to the address displacement. 

INDEXING 

Because an index value is premultiplied by the associated factor, the factor required for subscripting is omitted 
from the attributes. An upper-bound is required for each dimension of the variable. The continue-flag is TRUE 
until the last dimension is reached. When the continue-flag becomes FALSE, decoding is terminated. 

Each index value is obtained, and if it is less than zero or greater than the upper-bound, an error communicate 
is issued; otherwise, the value is added to the address displacement. The format of the index consists of a 
4-bit sign followed by seven 4-bit decimal digits. 

1108883-001 E-7 



I 

B 1000 Systems COBOL 74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

IN-LINE COP ENTRY FORMAT 

The format of an in-line COP entry is as follows: 

E-8 

0 4 

4/8 
MULTIPLE 

ENTRY 
FLAG 

4 = 4-BIT 
8 = 8-BIT 

5 6 

SHARED 
SIGNED DATA 

FLAG 

0 = No Sign 
I = Sign 

7 

LITERAL 
FLAG 

8 

DATA LENGTH 
IN 

DIGITS 

22 

22 32 52 -4--- Bit Position -__,,;,p-.--l SEGMENT # DISPLACEMENT IN 
OR 

IPCD INDEX DIGITS 

DEPENDING- COP-0 LOWER- UPPER-
FLAG BOUND-0 BOUND-0 
( 1) (20 BITS) (20 BITS) 

FACTOR-0 
(14 BITS) 

CONTINUE
FLAG-0 
(1) 

·~--------------------------------_,_~-----------· 

L OCCURS DEPENDING Value 

Omitted if DEPENDING-FLAG=O 

Omitted if DEPENDING-FLAG= 1 

--~~----c=---_~-~--l ______ _ 
SUBSCRIPT- COP-1 FACTOR-I UPPER-
FLAG 04 BITS) BOUND-I 
( 1) (20 BITS) 

CONTINUE
FLAG-1 
(1) 

L 
[ l_ O-m-1-.tt_e_d-if-I-nd_e_x-in_g ______ _ 

Subscript or Index Value 

0 == INDEXING 
I == SUBSCRIPTING 

COP-N FACTOR-N UPPER- CONTINUE-
( 14 BITS) BOUND~N FLAG-N 

(20 BITS) (I ) 

__ _,[ ___ T""L--o-m-it-te_d_ir Indexing 

Subscript or Index Value 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

INSTRUCTION SET 

The following list contains the name, mnemonic, and arguments for each instruction in the COBOL74 S-Lan
guage which are discussed in more detail within this appendix. 

ARITHMETIC 

INCREMENT 
ADD 
DECREMENT 
SUBTRACT 
MULTIPLY 
DIVIDE 

Name 

DIVIDE SPECIAL 
INCREMENT BY ONE 
DECREMENT BY ONE 

DATA MOVEMENT 

Name 

MOVE ALPHANUMERIC 
MOVE SPACES 
MOVE NUMERIC 
MOVE ZEROS 
CONCATENATE 
EDIT 
EDIT WITH EXPLICIT MASK 

BRANCHING 

1108883 

Name 

BRANCH ON OVERFLOW 
SET OVERFLOW 
BRANCH UNCONDITIONALLY 
PERFORM ENTER 
PERFORM EXIT 
ENTER 
EXIT 
GO TO DEPENDING 

ALTERED GO TO PARAGRAPH 
ALTER 

Mnemonic 

INC 
ADD 
DEC 
SUB 
MULT 
DIV 
DIVS 
INCI 
DECI 

Mnemonic 

MVA 
MYS 
MVN 
MVZ 
CAT 
EDIT 
EDTE 

Mnemonic 

BOFL 
SOFL 
BUN 
PERF 
PXIT 
NTR 
XIT 
GOTO 

GPAR 
ALTR 

Arguments 

OPNDI, COPI 
OPND I, COP I, COP2 
OPNDI, COPI 
OPNDI, OPND2, COPI 
OPND I, COP I, COP2 
OPND I, COP I, COP2 
OPND I, COP I, COP2 
COPI 
COPI 

Arguments 

COPI, OPNDI 
COPI 
COPI, OPNDl 
COPI 
N, COPI, OPNDO, .. ., OPNDN 
OPNDI, COPI, DADDR 
OPNDI, COPl, MASK 

V, BADDR 
v 
BADDR 
K, BADDR 
K 
BAD DR 

Arguments 

COPl, L, DBADDRO, ... , 
DBADDRL 
DAD DR 
DADDR, ACON 

E-9 



B 1000 Systems COBOL.74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

CONDITIONAL BRANCHING 

Name 

COMPARE ALPHANUMERIC 
COMPARE NUMERIC 
COMPARE FOR ZEROS 
COMPARE FOR SPACES 
COMPARE FOR CLASS 
COMPARE REPEAT 
COMPARE COLLATE 

MISCELLANEOUS 

Name 

COMMUNICATE 
LOAD COMMUNICATE REPLY 
CONVERT 
MAKE PRESENT 
FILE STATUS 

Mnnmonic 

CMPA 
CMPN 
CMPZ 
CMPS 
CMPC 
CMPR 
CPC 

COMM 
LDCR 
CONY 
MAKP 
FIST 

Arguments 

OPNDI. OPND2. R. BADDR 
OPNDI. OPND2. R. BADDR 
COP I. R. BADDR 
COPI. R. BADDR 
COPI. C. BADDR 
OPNDI. COPI. R. BADDR 
OPNDI. COP2. R. BADDR 

COPI 
DAD DR 

Arguments 

COPI. DADDR. N 
COPI. DADDR 
RW. COPI 

CHARACTER STRING HANDLING 

Name 

DESCRIPTOR SETUP 
INSPECT SETUP 

INSPECT 
STRING 

DELIMITER SETUP 
UNSTRING 

Mnemonic Arguments 

DSET DADDR. COPI 
ISET VI. V2. FLAC. DAD DR I. COP I. 

COP2. DADDR2. OPNDI 
INSP VI. DAD DR I. DADDR2 
STRI Z. OPNDI. DADDRI. COPI. 

OPND2. BADDR 
DLIM VI. V2. DADDRI. COPI 
UNST F. M. Z. C. J, BADDR. 

DADDRI. COPI. DADDR2 ..... 

INTERPROGRAM COMMUNICATION 

E-10 

Name 

IPC DICTIONARY 

Mnemonic Arguments 

IPCD V.. COPI. BADDRI 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

OPTIMIZED OPERATION CODES 

Eight operators have been optimized for improved performance: CPA, CPN, CPZ, INC, INCL MNA, MNV. 
and MVZ. The optimized OP codes include the following data as a part of the OP code: 

I. The type of data item (S-bit or 4-bit). 
2. Signed or unsigned data. 
3. Information about the logical size of operands if the OP code has two operands. 

The following notation is used to describe the OP codes. 

CPA 

Symbol 

s 
s 

> 

Meaning 

S-bit or 4-bit data item. 
Signed or unsigned data item. 
TRUE if the LOGICALSIZES of two operands are equal. 
TRUE if the LOGICALSIZE (OPNDI) is greater the 
LOGICALSIZE (OPND2). 

OP code: (<l (1)011 lOO(<t CAT SS = 

The LOGICALSIZE of the second operand is greater than the LOGICALSIZE of the first operand. 

CPN 

OP code: (<t (1)01 JO(<i CAT SSSS = 

The LOGICALSIZE of the second operand is always greater than the LOGICALSIZE of the first oper
and. 

CPZ 

OP code: ((i (l)Ol I IOlO(<t CAT SS 

INC 

OP code: ((i:(l)OOl((i CAT SSSS CA (<D(l)ll((i. 

INC1 

OP code: ((i'(l) 0111 IOO((t CAT SS 

1108883 E-1 I 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

MVA 

OP code: ((L(l)OOl({L CAT 88SS => 

The first operand is the destination, and the second operand is the source. 

MVN 

OP code: (ci:(l)OIO@ CAT 88SS=> 

The first operand is the destination, and the second operand is the source. 

MVZ 

OP code: (ci;(I )0 I I 10 I I (cL CAT 8S 

ARITHMETIC OPERANDS AND INSTRUCTIONS 

In general. operands can have any of the following formats: 

1. Unsigned 4-bi t. 
2. Unsigned 8-bit. 
3. Signed 4-bit (sign is MSD). 
4. Signed 8-bit (sign over MSD). 

Any restrictions concerning the types of operands permitted in an operation are specified under the description 
of the par1ticular operation. 

All fields are addressed by pointing to the most significant bit of the most significant unit which, in the case 
of a signed field, is the sign. 

All fields are considered to be comprised of decimal integers. 

The absolute value is stored if the receiving field is unsigned. 

Unsigned fields are considered positive. 

When a signed format is .specified for the receiving field of any arithmetic operation, the sign position is set 
to 1100 for a positive result and to 1101 for a negative result. 

4-bit operands are interpreted in units of 4 bits. When a signed operand is specified, the sign is interpreted[ 
as a separate and leading (leftmost) 4-bit unit which is not included in the statement of length. 

8-bit operands are interpreted in units of 8 bits. When a signed operand is specified, the sign is interpreted 
as being contained in the leftmost 4 bits of the leftmost 8-bit unit. 

The length of the operand field specifies the number of 4-bit units. 

E-12 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

When 8-bit units are specified for the receiving field of an arithmetic operation, the leftmost 4 bits of each 
8-bit unit, except the unit carrying a sign, is set to 1111. 

The value of an 8-bit unit is carried in the rightmost 4 bits of the unit. Its value is as defined below for the 
4-bit unit. The leftmost 4 bits, except for a sign, are ignored. The value and sign interpretation of a 4-bit unit 
are as follows: 

4-bit 
Unit Value Sign 

0000 0 + 
0001 l + 
0010 2 + 
0011 3 + 
0100 4 + 
0101 5 + 
0110 6 + 
0111 7 + 
1000 8 + 
1001 9 + 
1010 Undefined + 
1011 Undefined + 
1100 Undefined + 
1101 Undefined 
1110 Undefined + 
1111 Undefined + 

In addition and subtraction operations, results generated when the size of the result field is not sufficient to 
~ontain the result are not specified. When the result field is longer than the length of the result, leading zero 
units are stored. 

In three-address add, three-address subtract, and multiply operations, total or partial overlap of the first two 
operands i:s permitted. Results generated when the result field totally or partially overlaps either of the operand 
fields, are not specified. 

In two-address add and subtract, total overlap is permitted. Results generated when the result field partially 
overlaps the first operand field are not specified. Total overlap implies that the two fields are identical. 

No overlap of operands or result fields is permitted in divide operations. Results generated under any condition 
of overlap are not specified. 

1108883 E-13 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appcndr'X E 

ADD THREE ADDRESS 

OP: 08 

Format: 

ADD OPNDl, CO!Pl, COP2 

Function: 

Algebraically add an addend denoted by OPND I to an augcnd denoted by COP I and store the sum in tlhe 
field denoted by COP2. OPND I. COP I. and COP2 must be 4-bit items. 

E-14 



B 1000 Systems COBOJ_,74 Reference Manual 
Appendix E 

SUBTRACT THREE ADDRESS 

OP: 10 

Format: 

SUB OPNDI, OPND2, COPI 

Function: 

COBOL74 S-LANGUAGE 

Algebraically subtract a subtrahend denoted by OPND I from a minuend denoted by OPND2 and store the 
difference in the field denoted by COPI. OPNDL OPND2. and COPI must be 4-bit items. 

1108883 E-15 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

ADD TWO ADDRESS 

Format: 

INC OPNDI, COPl 

Function: 

Algebraically add an addend denoted by OPNDI to an augend denoted by COPI and store the sum in the 
field denoted by COP 1. 

INC is an optimized S-OP. OPNDI and COPI must have the same data unit type. OPNDI and COPI both 
must be either 4-bit data items or 8-bit data items. The format of the OP code is 0108855. For example, if 
both OPNDJ and COPI are unsigned 8-bit items. then the OP code is 010110011 or 179. 

E-16 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

SUBTRACT TWO ADDRESS DEC 

OP: 09 

DEC OPNDl, COPl 

Function: 

COBOL74 S-LANGUAGE 

Algebraically subtract a subtrahend denoted by OPND I from a minuend denoted by COP I and store the differ
ence in the field denoted by COP!. OPNDI and COP! must be 4-bit items. 

1108883 E-17 



COBOL74 S·LANGUAGE 

MULTIPLY 

OP: 11 

Format: 

B 1000 Systems COE:OL74 Reference Manual 
App,endix E 

MUL 1r OPNDI, COPI, COP2 

Function: 

Algebraically multiply a multiplicand denoted by COP I by a multiplier denoted by OPND I and store the prod
uct in the field denoted by COP2. 

The result field length is the sum of the lengths of the two operands and must be denoted by COP2. OPNDI 
and COPI must be 4-bit items. 

The result: field is always either a signed 4-bit format or an unsigned 4-bit format. 

E-18 



DIVIDE 

OP: 12 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

DIV OPNDI, COPI, COP2 

Function: 

COBOL74 S-LANGUAGE 

Algebraically divide a dividend denoted by COPI by a divisor denoted by OPNDI and store the quotient in 
the field denoted by COP2. Store the remainder in the field denoted by COPJ. 

The result field length is the difference of the lengths of the two operands and must be denoted by COP2. 

Results are not specified if the length of the dividend is not greater than the length of the divisor. 

If the absolute value of the divisor is not greater than the absolute value of an equivalent number of leading 
digits of the dividend. the result is undefined. 

Division by zero results in a fatal error communicate to the MCP. 

OPNDI. CO:PI. and COP2 must be 4-bit items. 

The sign of the remainder is that of the original dividend. 

The dividend field is always either signed 4-bit format or unsigned 4-bit format. 

1108883 E-19 



COBOL74 S-LANGUAGE 

DIVIDE SPECIAL 

OP: 16 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

DIVS OPNDl, COPXl, COPX2 

Function: 

[ DIVS J 

This operation is performed in exactly the same manner as the standard divide (DIV) operator, except that 
when a divisor equal to zero is encountered, an overflow toggle is set and processing is alJowed to continue. 
The overflow toggle can be manipulated by the SOFL and BOFL S-operators. 

E-20 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

INCREMENT BY ONE 

OP: 240-243 

Format: 

INCi COPl 

Function: 

COBOL74 S-LANGUAGE 

Algebraically add the positive integer I to an augend denoted by COPl and store the sum in the field specified 
by COPl. 

INCL is an optimized S-OP and the OP code includes information regarding the data type of COPl. COPl 
may be a short COP: the format of the OP code is Ol l l 1008S. 

OP Code Type of Data SS 

240 4-bit unsigned 00 
241 4-bit signed 01 
242 8-bit unsigned IO 
243 8-bit signed 11 

1108883 E-21 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

DECREMENT BY ONE 

OP: 14 

Format: 

DECI COPI 

Function: 

Algebrakally subtract the positive integer I from a minuend denoted by COP I and store the difference in tlhe 
field specified by COPI. COPI must be a 4-bit itc!m. 

E-22 



B IOOO Systems COBOL74 Reference Manual 
Appendix E 

DATA MOVEMENT OPERANDS AND INSTRUCTIONS 

COBOL74 S-LANGUAGE 

In general. fields involved in data movement operations can have any of the following formats: 

I. Unsigned 4-bit. 
2. Unsigned 8-bit. 
3. Signed 4-bit (sign is MSD). 
4. Signed 8-bit (sign over MSD). 

Any restrictiions as to the type of fields permitted in an operation are specified under the description of the 
particular operation. 

Refer to Arithmetic Operands and Instructions in this appendix for a description of the four types of fields. 

Totally or partially overlapped fields are not permitted. unless specified by the description of the individual 
instruction. 

1108883 E-23 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

MOVE ALPHANUMERIC 

OP: 64-n7 Format: 

MVA COPl, OPNDl 

Function: 

[ MVA J 

Move 8-bit or 4-bit units from the source field denoted by OPND I to the 8-bit or 4-bit destination field denoted 
by COPI. 

If the destination field is signed, it receives either the sign of the source if the source is signed, or 1100 if 
the source is unsigned. 

If the data type of the source field is 4-bit and the data type of the destination field is 8-bit. each 4-bit unit 
is moved to the destination with 11 I I. 

If the data type of the source field is 8-bit and the data type of the destination is 4-bit. the rightmost 4 bits 
are moved. 

If the dat:a type of the source field is the same as the data type of the destination field, each unit is moved 
unchanged to the destination. 

If the destination length is greater in size than the source length, the destination field is filled in on the right 
with trailing spaces (0 JOO 0000) if the destination type is 8-bit; otherwise, it is filled in on the right with zeros 
(0000). 

If the destination length is lesser in size than the source length, the source data is truncated on the right. 

Overlapp1ing operand fields are permitted if the data type of both fields is the same. It can be assumed that 
the source is moved 24 bits (six digits or three characters) at a time into the destination field and that the 
move is from left to right. 

MVA is an optimized S-OP, and COPI and OPNDI may be short COP descriptors. The OP code contaiins 
information regarding the data types. The format of the OP code is 00188SS =>. For example, if both source 
and destination fields are signed 8-bit items of equal length, then the OP code is 001I11110, or 126. 

E-24 



MOVE SPACES 

OP: 15 

Format: 

MVS COPl 

Function: 

B IOOO Systems COBOL74 Reference Manual 
Appendix E 

FiH the destination field denoted by COPI with spaces (OIOO 0000). 

COBOL74 S-LANGUAGE 

The data type of the destination field is ignored and is assumed to be unsigned 8-bit. 

1108883 E-25 



COBOL74 S-LANGUAGE 

MOVE NUMERIC 

OP: 128-·191 

Format: 

MVN CO Pl, OPN:O 1 

Function: 

B 1000 Systems COBOL 74 Reference Manual 
Appendix E 

EJ 

Move 8-biit or 4-bit units from the source field denoted by OPNDI to the 8-bit or 4-bit destination field denoted 
by COPl .. 

If the destination field 1s signed. it receives either the sign of the source if the source is signed. or 1100 if 
the source is unsigned. 

If the destination field is unsigned. the sign of the source is ignored. 

If the data type of the destination field is 8-bit. the leftmost 4 bits of each 8-bit unit. except for the sign posi
tion. if signed. are set to 1111 regardless of the data type of the source field. 

If the data type of the destination field is 4-bit. the leftmost 4 bits of each source 8-bit unit are ignored and 
only the rightmost 4 bits are moved: if the source fie:ld is a 4-bit field. each 4-bit unit is moved unchanged. 

If the destination length is greater in size than the source length. the destination field is filled in on the left 
with leadiing zeros of appropriate type ( 1111 0000). 

If the source length is greater in size than the destination length. the source data 1s truncated on the left. 

A sign is placed in the leftmost 4 bits of a field. whether 4-bit or 8-bit. 

Overlapping operand fields are permitted if the data type of both fields is the same. It can be assumed that 
the sourci~ is moved 24 bits (six digits or three characters) at a time into the destination field and that the 
move is from left to right. 

MVN is an optimized S-OP. Consequently. COP I and OPND I may be short COP descriptors. The OP code 
contains information regarding the data types. The format of the OP code is 01088SS =>. For example. if 
both source and destination fields are unsigned and the source field is 4-bit data and the destination field is 
8-bit data and the destination length is greater in size rhan the source length. then the OP code is 01010000 I. 
or 161. 

E-26 



MOVE ZEROS 

OP: 236-239 

Format: 

MVZ COPl 

Function: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

Fill the destination field denoted by COP I with zeros of the appropriate type (1111 0000 or 0000 if 4-bit). 

If the destination field is signed. I 100 is placed into the sign position. 

MVZ is an optimized S-OP. COPI can be a short COP. The format of the OP code is 011101185. 

Op code Data Type as 
236 4-bit unsigned 00 
237 4-bit signed 01 
238 8-bit unsigned IO 
239 8-bit signed 11 

1108883 E-27 



COBOL74 S-LANGUAGE 

CONCATENATE 

OP: 32 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

CAT N, COPl, OPNDO, ... , OPNDN 

Function: 

[CAT J 

Move each of the N +I fields denoted by OPNDO through OPNDN. in the order specified. into an output string 
starting at the field denoted by COP I. 

The number of source fields is specified by the 4-bit binary value N. The value N ranging from 0000 to 1111 
is used to indicate I to 16 source fields. 

Each field is moved according to the rules specifii~d for MOVE ALPHANUMERIC. 

If the destination length is greater in size than the combined source length, the destination field is filled on 
the right with trailing spaces (0100 0000). 

If the desttination length is lesser in size than the combined source lengths, the source data is truncated on 
the right.. 

E-28 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

EDIT INSTRUCTIONS AND EDIT MICRO-OPERATORS 

No restrictions are placed on the data type of the source field of an edit operation. 

The data type of the destination field of an edit operation must be unsigned 8-bit. 

If the destination length is greater in size than the source length, the source data is assumed to have leading 
zero fill on the left. 

If the source length is greater in size than the destination length, the source data is truncated on the left. 

The operation is terminated by an edit micro-operator and not by exhaustion of either the source or destination 
fields. 

1108883 E-29 



COBOL74 S-LANGUAGE 

EDIT 

OP: 17 

Format: 

B 1000 Systems COBOL'74 Reference Manual 
Appendix E 

EDIT OPNDI, COJPI, DADDR 

Function:: 

[EDIT J 

Move data from the source field. denoted by OPND I. to the destination field. denoted by COP I. under the 
control of the micro-operator string contained at the location denoted by the DADDR. 

The argument DADDR is an unsigned binary value which specifies the digit displacement of the micrn-operator 
string relative to the data segment zero base. The container size of DADDR is DISPB. 

E-30 



8 IOOO Systems COBOL74 Reference Manual 
Appendix E 

EDIT WITH EXPLICIT MASK 

OlP: 21 

Format: 

EDTE OPNDl, COPI, MASK 

Function: 

COBOL74 S-LANGUAGE 

Move data from the source field denoted by OPNDJ to the destination field denoted by COPJ under the con
trol of the micro-operator string immediately following COPJ. The format of the explicit micro-operator string 
is the same as a literal. 

1108883 E-31 



B 1000 Systems,-COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

EDIT MICRO-OPERATORS 

The edit micro-operators used in an edit instruction a!Ae: 
Operator Mnemonic 

0000 R 
0001 R 
0010 R 
0011 R 
0100 N 
0101 T 
0110 T 
0111 T 
1000 T 
1001 T 
1010 0000 
1010 0001 
1010 0010 
1010 0011 
Others 

MVD 
MVC 
MVS 
FIL 
SRO 
INU 
INM 
INS 
INF 
EFM 
ENZ 
EOM 
szs 
CCP 

Operation 

\fove digits 
!\1ove characters 
Move suppress 
Fill suppress 
Skip reverse destination 
Insert unconditionally 
lnsert on minus 
llnsert suppress 
lnsert float 
End float mode 
End nonzero 
End of mask 
Start zero suppress 
Complement check protect 
Undefined 

"R" indicates a 4-bit binary value used as a repeat count. The value 0000 represents no repeat; do it once. 

"N" indicates a 4-bit binary value used to skip over a number of destination 8-bit units. The value 0000 repre
sents no skip. 

"T" indicates a 4-bit binary value which is: 

1. Used to index into a table of editing constan1 s. 
2. Used to indicate a conditional selection betwt:en two table constants. 
3. lJ sed to indicate an editing constant in line v 1ith the edit-operator string. 

The next edit-operator follows the constant. 

The following table indicates the normal table editing ,;onstants as well as the conditional and unconditional 
selection of constants associated with the value of T. 

EDITING CONSTANTS 

Table Entry Mnemonic Unconditional or 
T EBCDIC Conditional Constant 

0000 "+ ,, PLU 
0001 " " ' "I MIN 
0010 "" *'"' AST 
0011 DPT 
0100 CMA 
0101 "$'' CUR 
01 IO "O" ZRO 
01 I I BLK 
1000 SPM Either entry 0 or I 
1001 SBM Either entry 7 or 1 
1010 LIT In-line 8-bit constant 

E-32 



B 1000 Systems COBOL 74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

Associated with the edit instructions are three toggles denoted as S for sign, Z for zero suppress, and P for 
check protect. Initially, the Z and the P toggles are assumed to be set to the zero state and are set and reset 
as specified by the description of the individual micro-operators. The S toggle is set to 0 if the source field 
sign is positive. and to I if the source field sign is negative. Unsigned fields are considered positive. 

MOVE DIGIT 

Set Z to I. to end the zero suppress state. Move an appropriate unit (4-bit digit or 8-bit character) from the 
source field to the destination field. If a 4-bit unit is moved, append the four bits (1111) to the left before 
storing in the destination. If an 8-bit unit is moved, the four bits (1111) are substituted for the leftmost four 
bits of the 8-bit unit. 

MOVE CHARACTER 

Set Z to l, to end the zero suppress state. Move an appropriate unit (4-bit digit or 8-bit character) from the 
source field to the destination field. If a 4-bit unit is moved, append the four bits 1111 to the left before storing 
in the destination. If an 8-bit unit is moved, it is moved unchanged. 

MOVE SUPPRESS 

The micro-operator MOVE DIGIT is performed if the 4-·bit unit, or the rightmost four bits of the 8-bit unit 
of the source field are not equal to 0000. 

If the appropriate four bits of the source field unit are equal to 0000 the suppress toggle Z is inspected. If 
Z equals 1, indicating nonsuppress mode, the micro-operator MOVE DIGIT is pe1formed. If the suppress tog
gle Z equals 0, the check protect toggle P is inspected. If P = 0, indicating noncheck protect mode, move 
the table entry containing the 8-bit code for blank to the destination field. If P = 1, move the table entry 
containing the 8-bit code for asterisk to the destination field. 

Z=l 
Z=O 
Z=O 

P=O 
P=l 

SOURCE NOT 
SOURCE 
SOURCE 
SOURCE 

FILL SUPPRESS 

0 Move digit 
0 Move digit 
0 Move table entry 7 (Blank) 
0 Move table entry 2 (Asterisk) 

If P = 0, indicating noncheck protect mode, move the table entry containing the 8-bit code for blank to the 
destination field. If P = 1, move the table entry containing the 8-bit code for asterisk to the destination field. 

p = 0 
p = 1 

Move table entry 7 (Blank) 
Move table entry 2 (Asterisk) 

SKIP REVERSE DESTINATION 

Adjust the address pointer of the destination field to skip backward (lower address) N 8-bit units. 

1108883 E-33 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

INSERT UNCONDITIONALLY 

Move the table entry T as indicated below to the destination field. 

S===O 
S=== I 
S:==O 
S=I 

T=0 ... 7 
T=8 
T=8 
T=9 
T=9 
T=IO 

INSERT ON MINUS 

Move table entry T 
Move table entry 0 (Plus) 
Move table entry I (Minus) 
Move table entry 7 (Blank) 
Move table entry I (Minus) 
Move in-line table entry 

Move the 1table entry T as indicated below to the desrination field. 

S=I T=0 ... 7 Move table .entry T 

* P=O Move table entry 7 (Blank) 

* P=I Move table entry 2 (Asterisk) 
S=I T=8 Move table entry I (Minus) 
S=I T=9 Move table entry I (Minus) 
S=I T=IO Move in-line table entry 

*: S == 0 or only source digits/characters equal to zero (minus zero) have been moved. 

INSERT SUPPRESS 

Move the table entry T as indicated below to the destination field. 

E-34 

Z=I 
Z=O 
Z=O 
Z·=I 
Z=I 
Z=I 
Z=I 
Z=I 

P=O 
P=I 

S=O 
S=I 
S=O 
S=I 

T=0 ... 7 

T=8 
T=8 
T=9 
T=9 
T=IO 

Move table entry T 
Move table entry 7 (Blank) 
Move table entry 2 (Asterisk) 
Move table entry 0 (Plus) 
Move table entry I (Minus) 
Move table entry 7 (Blank) 
Move table entry I (Minus) 
Move in-line table entry 



8 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S·LANGUAGE 

INSERT FLOAT 

Move the table entry T and/or petform the micro-operator MOVE DIGIT as indicated below. 

Z=I 
Z=O 
Z=O 
Z=O 
Z=O 
Z=O 
Z=O 
Z=O 
Z=O 

SOURCE =0 
SOURCE =0 
SOURCE NOT=O 
SOURCE NOT=O 
SOURCE NOT=O 
SOURCE NOT=O 
SOURCE NOT=O 
SOURCE NOT=O 

END FLOAT MODE 

P=O 
P=I 
T=0 .. 7 
T=8 S=O 
T=8 S=I 
T=9 S=O 
T=9 S=I 
T=IO 

Move digit 
Move table entry 7 (Blank) 
Move table entry 2 (Asterisk) 
Move table entry T, then move digit 
Move table entry 0 (Plus) then move digit 
Move table entry I (Minus) then move digit 
Move table entry 7 (Blank) then move digit 
Move table entry I (Minus) then move digit 
Move in-line table entry, then move digit 

Move the table entry T as indicated below to the destination field. 

Z=O 
Z=O 
Z=O 
Z=O 
Z=O 
Z=O 
Z=I 

T=0 ... 7 
S=O T=8 
S= I T=8 
S=O T=9 
S= I T=9 

T=IO 
No Operation 

END NON-ZERO 

Move table entry T 
Move table entry 0 (Plus) 
Move table entry 1 (Minus) 
Move table entry 7 (Blank) 
Move table entry I (Minus) 
Move in-line table entry 

Terminate the micro-operator operations if any nonzero source character/digit has been moved; otherwise. con
tinue with the next in-line operator. 

END OF MASK 

Terminate the micro-operator operations. 

START ZERO SUPPRESS 

Set Z to the zero state. 

COMPLEMENT CHECK PROTECT 

Complement the state of P. 

1108883 E-35 



B 1000 Systems COBOLi'4 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

BRANCHING OPERANDS AND INS1rRUCTIONS 

A branch address argument BADDR has the following format: 

Displacement 
(21 bits) 

BTYPE 
(l) 

Segment Number 
(7) I Pre~ent if BTYPE = 

0: Relative to the current code 
segment base (intrasegment branch) 

I : Relative to a new code segment base 
(intersegment branch) 

Displacement is an unsigned binary value which specifies the bit displacement of an instruction relative to a 
segment base. The container size of the displacement 01nd BTYPE combined is a program parameter. 

E-36 



B I 000 Systems COBOL 74 Reference Manual 
Appendix E 

BRANCH UNCONDITIONALLY 

OP: 03 

Format: 

BUN BADDR 

Function: 

Obtain the next instruction from the location specified by BADDR. 

1108883 

COBOL74 S-LANGUAGE 

E-37 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL 74 Reference Manual 
Appendix E 

BRANCH ON OVERFLOW 

OP: 23 

Format: 

BOFL V, BADDR 

Function: 

[BOFL J 

If the overflow toggle equals V. a transfer to the addre~.s (BADDR) given in the instruction occurs; otherwise, 
control is passed to the next sequential instruction. 

The overflow toggle is unchanged. The length of V 1s one bit. 

E-38 



B IOOO Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

SET OVERFLOW TOGGLE 

OP: 07 

Format: 

SOFL V 

Function: 

Set the overflow toggle to V. 

The length of V is one bit. 

NOTE 
The overflow toggle is set to I if a DIVIDE BY ZERO is encountered in the DI
VIDE SPECIAL S-operator. 

1108883 

SOFL 

E-39 



B 1000 Systems COBOL.74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

PERFORM ENTER 

OP: 06 

Format: 

PERF' K, BADDR 

Function: 

Create a stack entry with the following format: 

Displacement 
(24) 

Segment No. 
(7) 

K 
(12) 

Insert a displacement value. relative to the active code segment base and pointing to the next sequential S
instruction. into the stack. 

Insert the current code segment number into the stack. Insert the value of K from the instruction into the 
stack. 

Adjust the stack pointer to point to the next possible entry. 

Obtain the next instruction from the location specified by BADDR. 

E-40 



PERFORM EXIT 

OP: 34 

Format: 

PXIT K 

Function: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

Compare the K contained in the instruction to the K in the current stack entry and, if unequal. proceed to 
the next in-line S-instruction. If equal. adjust the stack pointer to point to the previous entry and obtain the 
next S-instruction from the information contained in the removed stack entry. 

1108883 E-41 



COBOL74 S-LANGUAGE 

ENTER 

OP: 18 

Format: 

NTR BADDR 

Function: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

Same function as PERF. K is assumed to be equal to zero. 

E-42 



EXIT 

OP: 19 

Format: 

XIT 

Function: 

B IOOO Systems COBOL74 Reference Manual 
Appendix E 

Same function as PXIT. K is assumed to be equal to zero. 

1108883 

COBOL74 S-LANGUAGE 

E-43 



COBOL74 S-LANGUAGE 

GO TO DEPENDING 

OP: 39 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

GOTD COPI, L, DBADDRO, ... , DBADDRL 

Function: 

EJ 

Compare the JO-bit binary value L with the variabl'~ specified by COP I. The variable is first converted to a 
binary value. Modulo 2 to the 24th power. 

If the binary value of the variable is less than zero or greater than L. the next instruction is obtained from 
the location specified by DBADDRO. The variable can be signed. 

If the binary value of the variable is in the range zero through L. it is used as an index to select from the 
list of DBADDRs the appropriate DBADDR to be us,1:!d to obtain the next instruction. 

DBADDR and BADDR have the same format with the exception that DBADDR always contains the segment 
number. Although segment number is unnecessary for those DBADDRs with BTYPE equal to zero, in order 
to index into the list of DBADDRs, all of the DBADDRs must be of equal length. The container size of 
DBADDR is BDISPBI + 7. 

E-44 



8 1000 Systems COBOL74 Reference Manual 
Appendix E 

ALTERED GO TO PARAGRAPH 

OP: 35 

Format: 

GPAR DADDR 

Function: 

Obtain the next instruction from the location specified by the address ACON. 

The address constant ACON has the same format as a BADDR. 

COBOL74 S-LANGUAGE 

GPAR 

The argument DADDR is an unsigned binary value which specifies the digit displacement of the ACON relative 
to the data segment zero base. 

The container size of DADDR is DISPB. 

1108883 E-45 



COBOL74 S-LANGUAGE 

ALTER 

OP: 36 

Format: 

ALTR DADDR, ACON 

Function: 

B 1000 Systems COBOL74 Reference Manual 
Appendnx E 

Copy the address constant ACON into the data area specified by the argument DADDR. 

The address constant ACON has the same format as a BADDR. 

The argument DADDR is an unsigned binary value which specifies the digit displacement of the ACON relative 
to the data segment zero base. 

The container size of DADDR is DISPB. 

E-46 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

CONDITIONAL BRANCH OPERANDS AND INSTRUCTIONS 

If tlhe condition A (R) B is TRUE a transfer to the address (BADDR) given in the instruction occurs~ other
wise. control is passed to the next sequential instruction. The relation (R) is defined as follows: 

R Meaning 

000 Undefined 
001 GTR 
010 LSS 
011 NEQ 
JOO EQL 
IOI GEQ 
I JO LEQ 
111 Undefined 

Overlap of fields is permitted. "A" is the first operand denoted in the instruction. If an instruction has only 
one operand. then the assumed field is the A field. 

1108883 E-47 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COMPARE ALPHANUMERIC 

OP: 224-231 

Format: 

CMPA OPNDl, OPND2, R, BADDR 

Function: 

Compare the two operand fields according to binary values. 

[cMPA J 

The comparison is performed left to right with any shorter operand assumed to be right-filled with blank char
acters (OWO 0000 if EBCDIC or 0010 0000 if ASCH). 

The fields are considered equal when the equal size portions are equal and the longer field (if one is longer) 
has trailing blanks. 

An 8-bit data format is assumed for both fields with no checking to verify otherwise. Signed fields have the 
most significant four bits (the sign) modified to the appropriate numeric zone (1111 for EBCDIC, 0011 for 
ASCII) before being compared. This modification is not permanent and is done so that the sign does not affect 
the result of an alphanumeric comparison. 

CMPA is an optimized! S-OP. Consequently, OPNDl and OPND2 may be short COPs. The LOGICALSIZE 
of OPND2 is always greater than or equal to the LOGICALSIZE of OPNDl. The format of the OP code is 
011 IOOSS 

E-48 



B 1000 Systems COBOL 74 Reference Manual 
Appendix E 

COMPARE NUMERIC 

OP: 192-223 

Format: 

CMPN OPNDl, OPND2, R, BADDR 

Function: 

COBOL74 S-LANGUAGE 

CMPN 

Compare the two operand fields according to the algebraic values, considering the two fields to be comprised 
of decimal integers. 

When the field sizes are different, the longer field is tested for leading zeros (0000). There is no restriction 
as to data type. In comparing an 8-bit character, only the rightmost four bits of the character are considered; 
the other biits are ignored. 

Two fields of all zeros are equal regardless of sign. 

Unsigned fields are considered positive. Sign conventions are the same as for arithmetic operands. 

Results generated by invalid digit values are undefined. 

CMPN is an optimized S-OP. OPNDl and OPND2 can be short COPS. The LOGICALSIZE of OPNDl 1s 
always less than the LOGICALSIZE of OPND2. The format of the OP code is Ol 1088SS 

1108883 E-49 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COMPARE FOR ZEROS 

OP: 232-235 

Format: 

CMPZ COPI, R, BADDR 

Function: 

~MPZ] 

Compare two operand fields according to algebraic values. assuming the first field to be comprised of all zeros 
(0000). 

There is no restriction as to data type. In comparing an 8-bit character only the rightmost four bits of the 
character are considered. The other bits are ignored. 

Two fields of all zeros are equal regardless of sign. 

Unsigned fields are considered positive. Sign conventions are the same as for arithmetic operands. 

Results generated by invalid digit values are undefined. 

CMPZ is an optimized S-OP. COPI can be a short COP. The format of the OP code is Ol I 10108S. 

OP code Data Type BS 

232 4-bit unsigned 00 
233 4-bit signed 01 
234 8-b1it unsigned 10 
235 8-bit signed ] ] 

E-50 



B IOOO Systems COBOL74 Reference Manual 
Appendix E 

COMPARE FOR SPACES 

OlP: 37 

Format: 

CMPS COPl, R, BADDR 

Function: 

COBOL74 S-LANGUAGE 

CMPS 

Compare two operand fields according to binary values. assuming the first field to be comprised of all spaces 
(0100 0000). 

The comparison is performed left to right. 

Unsigned 8-bit format is assumed with no checking to verify otherwise. 

This operator is not sensitive to collate table address and is valid only for the native collating sequence. 

1108883 E-51 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

COMPARE FOR CLASS 

OP: 38 

Format: 

CMPC COPl, C, .BADDR 

Function: Compare the operand field and determine whether the field .is: 

C=OO Completely alphabetic 
0 I Completely numeric 
JO Not completely alphabetic 
I 1 Not completely numeric 

If the condition being tested is TRUE. a transfer to the address BADDR given in the instruction occurs; other
wise, control is passed to the next sequential instruction. 

In the alphabetic test, each character is range-checked for 1100 000 I through I 100 100 I, I 10 I 000 I through 
I 101 1001, 1110 0010 through I I 10 1001. and for 0100 0000. Unsigned 8-bit format is assumed with no checking 
to verify otherwise. 

In the numeric test each character is range-checked for l I 1 I 0000 through 1I11 1001. Signed or unsigned 8-bit 
format is permitted. The four bits in the sign position of a signed 8-bit field are ignored. The sign position 
is the leftmost 4 bits of the most significant character. 

E-52 



COMPARE REPEAT 

OP: 45 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

CMPR OPNDl, COPl, R, BADDR 

Function: 

Compare the two operand fields according to binary value. 

COBOL74 S-LANGUAGE 

I CMPR I 

If the COLLATE TABLE ADDRESS is nonzero, each character in the operands must be translated before 
comparison. This is accomplished by using each 8-bit character from OPNDI and COPI, multiplied by eight, 
as an index into the translation table located at the address given by the COLLATE TABLE ADDRESS to 
obtain the character to be compared. 

Comparison proceeds from left to right. 

The field !lengths are considered equal by repeating OPND 1. 

Both fields are assumed to have unsigned 8-bit data type. 

The size of COPI must be evenly divisible by the size of OPNDl; otherwise, the results of the compare may 
be erroneous. 

1108883 E-53 



COBOL74 S-LANGUAGE 

COMPARE COLLATE 

OP: 04 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

CPC OPNDI, COPI, R, BADDR 

Function: 

If the COLLATE TABLE ADDRESS is nonzero. this program is using a non-native collating sequence and 
the operands must be translated into the program collating sequence before comparison. This is accomplished 
by using each 8-bit character from OPND i and COP 1 .. multiplied by eight. as an index into the translation 
table located at the address given by the COLLATE TABLE ADDRESS to obtain the character to be com
pared. 

The comparison is performed left to right with any shorter operand assumed to be right-filled with blank char
acters. The blanks are translated if this program is using a nonnative collating sequence. 

The fields are considered equal when the equal size portions are equal and the longer field (if one is longer) 
has trailing blanks. 

An 8-bit data format is assumed for both fields with no checking to verify otherwise. Signed fields have the 
most significant four bits (the sign) modified to 1111 before any necessary translation is done. This modification 
is not permanent and is done so that the sign will not affect the result of an alphanumeric comparison. 

E-54 



8 1000 Systems COBOL74 Reference Manual 
Appendix E 

MISCELLANEOUS INSTRUCTION 

COMMUNICATE 

OP: 33 

Format: 

COMM COPI 

Function: 

COBOL74 S-LANGUAGE 

COMM 

Move the length and address fields from the COPI entry to the RS.COMMUNICATE.MSG.PTR field located 
in the program RS.NUCLEUS. converting them enroute. The origin field is unchanged. 

The length is converted from a digit or character length to a bit length. The address is stored as an absolute 
bit address. 

1108883 E-55 



COBOL74 S-LANGUAGE 

8 1000 Systems COBOL74 Reference Manual 
Appcnd11 x E 

LOAD COMMUNICATE REPLY 

OP: 41 

Format: 

LDCR DADDR 

Function: 

ILDCR J 

The LDCR reply does the mapping of RS.RMSG.F'2 and the last logical I/O status values as follows: 

E-56 

RS.RMSG.P2 Value Value Stored at DADDR 

0 Good Complete 
I AT END 
2 I/O Error 
3 Incomplete I/O 
4 Duplicate Record OK 

LAST LOGICAL 1/0 STATUS 
Bit 0 Exception Descriptor Follows 

Value of 0 
Value of I 

I Boundary Violation 
2 Duplicate Key 
3 Sequence Error 
4 Variable Length Record Error 
5 Invalid Key 
6 Reserved 
7 Parity Error 
8 Reserved 
9 AT END I EOP 

I 0 Short Block 
12 Reserved 
13 Break On Output 
14 Reserved 
15 Timeout 

16-23 Reserved 

0 
I 
2 
3 
0 

Value Stored at DADDR 

2 
Examine following bits 

I 
I 
I 
2 
I 

2 

Not requested 
2 

2 

2 



CONVERT 

OP: 40 

Format: 

CONV COPl DADDR N 

Function: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

CONV 

Co111vert the operand denoted by COPI from a decimal value to an unsigned 24-bit binary value, truncating 
or zero-filling on the left if necessary. Place the result at the location specified by DAD DR. N represent the 
number of bits of converted value to store at DADDR. 

The operandi must be either unsigned 4-bit or unsigned 8-bit units. 

Refer to MAKE PRESENT for definition of DADDR. 

1108883 E-57 



COBOL7'4 S-LANGUAGE 

MAKE PRESENT 

OP: 42 

Format: 

MAKP COPI, DADDR 

Function: 

B 1000 Systems COBOL 74 Reference Manual 
Appendix E 

Load the data segment specified by COP I and place the base relative address of the data area specified by 
COPI into the 24-bit location specified by DADDR. 

DADDR is an unsigned binary value which specifics a digit displacement from the data segment zero base. 

The container size of DADDR is DISPB. 

E-58 



FILE STATUS 

OP: 57 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

JFSTA, WRIT, COP 

Function: 

COP contains the translated value of the status of the last IO. WRIT which indicates whether the last 1/0 was 
a READ or a WRITE. 

The translation from COMMUNICATE REPLY (RE.RMSG .P2) or the last logical 1/0 status values to File 
Status Codes will be according to the following table: 

Communicate Reply 
(Values returned by MCP) 

0 Good Complete 
I AT END I EOP 

2 1/0 Error 
3 Incomplete VO 
4 Duplicate Record OK 

Last Logical 1/0 Status 
Bit 0 Exception Description Follows 

value of 0 
value of I 

I Boundary Violation 
2 Duplicate Key 
3 Sequence Error 
4 Variable Length Record Error 
5 Invalid Key 
6 Reserved 
7 Parity Error 
8 Reserved 
9 At END/EOP 

I 0 Start Block 
11 Reserved 
12 Reserved 
13 Break On Output 
14 Reserved 
15 Timeout 

16-23 Reserved 

File Status Codes 

00 
IO (READ) 
34 (WRITE) 
Examine 1/0 status 

02 

File Status Codes 

99 
Examine following bits 
24 
22 
21 
92 
23 

30 

Not requested 
91 

97 

% 

For any Communicate Reply or last logical 1-0 status value that does not have a File Status code, the condi
tion is masked out with the result mask specified by the communicate. An EOP will result in a 34 instead 
of the expected (and correct) 00. 

1108883 E-59 



COBOL74 S-LANGUAGE 

B IOOO Systems COBOL74 Reference Manual 
Appendix E 

CHARACTER STRING S-OPS. 

DESCRIPTOR SETUP 

OP: 50 

Format: 

DSET DADDR, COP 

Function: 

Build a descriptor of COPI at the location specified by DADDR. 

[oSET J 

The format of a descriptor (DESC) is that of a COP entry after the OCCURS DEPENDING value has been 
applied and after subscripts or indices have been evaluated to derive an ultimate displacement. 

The current B 1000 format for a descriptor is as follows: 

DESC (64) 

DATA-
TYPE 

(4) 

LENG TH
IN
DIGITS 
(14) 

MULTIPLE-
ENTRY-
FLAG 
(1) 

SEGNO
OR-IPCD
INDEX 
(10) 

SIGNED SHARED-
DATA-
FLAG 

(I) (I) 

DliSPLACEMENT 
IN mGITS 

(20) 

LITERAL-
FLAG 

(1) 

FILLER 

(12) 

The MULTIPLE.ENTRY.FLAG and LITERAL.FLAG are equal to zero in the above format. 

E-60 



INSPECT SETUP 

OP: 51 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

ISET Vl, V2, FLAC, DADDRl, COPl, COP2, DADDR2, OPND 

Function: 

Build an INSPECT.TABLE entry at DADDRI. 

COBOL74 S-LANGUAGE 

VI specifies whether this is the last entry (VI= I) or not. V2 indicates whether BEFORE, V2= I, or AFTER, 
V2=2 or both, V2=3, were specified. FLAC indicates the mode of INSPECTION. 

FLAC 0 indicates FIRST 
FLAC I indicates LEADING 
FLAC 2 indicates ALL 
FLAC = 3 indicates CHARACTERS 

DADDRI indicates the location for this INSPECT TABLE entry. COPI indicates the number of characters 
to be tallied or replaced when FLAC is not equal to 3. 

COP2 is the count field for tallying or the replacement string. DADDR2 is the location of the source field 
description if BEFORE/AFTER is specified. 

OPND is the delimiter if BEFORE/AFTER is specified. 

Set INELIGrnLE.FLAG=O. 

If V2=0, set AFTER.FLAG =O and examine the source field for the delimiter specified by OPNDI. If a match 
is found, set ELIGIBLE.POSITION to the character position of the beginning of the first occurrence of the 
delimiter. If a match is not found. set ELIGIBLE.POSITION=O and AFTER.FLAG= I. This. in effect. makes 
the entry eligible for all characters of the source field. 

If V2= I, set AFTER.FLAG= 1 and examine the source field for the delimiter specified by OPNDl. If a match 
is found, set ELIGIBLE.POSITION to the character position to the right of the first occurrence of the delimit
er. If a match is not found, set INELIGIBLE.FLAG= 1. 

If V2=3, set ELIGIBLE.POSITION=O and AFTER.FLAG= 1. This, in effect, makes the entry eligible for all 
characters of the source field. 

1108883 E-61 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

The description of the INSPECT TABLE is as follows: 

INSPECT.POINTER is the first 24 bits of the Inspect Table which is used to save a pointer into the source 
string in case inspection is interrupted. This field is followed by a variable number of entries with the following 
format: 

INSPECT.TABLE.ENTRY (148) 

-----
LAST- INELIGIBLE- AFTER-
ENTRY- FLAG FLAG 
FLAG 
(1) (1) (1) 

---
ELIGIBLE- FLAC DESCI DESC2 FILLER 
POSITION 

(13) (2) (64) (64) (2) 

Unused 

Count field or 
replacement 
string 

Characters to be 
tallied or replace 
(not meaningful if 
FLAC=3) 

O=FIRST 
!=LEADING 
2=ALL 
3=CHARACTERS 

- lPosition at which DESCI becomes 
eligible for comparison in 
conjunction with the AFTER.FLAG 

O=BEFORE 
!=AFTER 

E-62 

O=ELIGIBLE 
I =INELIGIBLE 

-- O=More entries 
l =Last entry 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

INSPECT 

OP: 52 

Format: 

INSP V, DADDRI, DADDR2 

Function: 

Inspect the source field specified at DADDR2, tallying or replacing a variable number of 8-BIT character(s). 
The location of the character(s) to be tallied or replaced and the location of count field or replacement string 
is specified in the Inspect Table specified by DADDR I. 

Eligibility of an entry is established as follows: 

I. If INELIGIBLE.FLAG= I. this entry is ineligible. 
2. If AFTER.FLAG=O and the current character position is not less than ELIGIBLE.POSITION. this 

entry is no longer eligible and it is made ineligible: otherwise. the entry is eligible. 
3. If AFTER.FLAG= I and the current character position is less than ELIGIBLE.POSITION. this entry 

is ineligible: otherwise the entry is eligible. 
4. When looking for a match and the number of characters left in the source is less than the size of 

the data item specified by DESC I. this entry is made ineligible. 

NOTE 
An entry is made ineligible by setting INELIGIBLE.FLAG= I. 

The comparison operation to determine the occurrences of the operands to be tallied or replaced occurs as 
follows: 

I. The entries in the INSPECT.TABLE are considered in the order in which they are specified. 
2. If the entry is eligible. DESCI is compared against an equal number of contiguous characters. starting 

with the leftmost character of the source field. 
3. If no match occurs or if the entry is ineligible. the comparison is repeated for each successive entry. 

if any. until either a match is found or there is no next successive entry. When there is no successive 
entry. the character position immediately to the right of the leftmost character position considered in 
the last comparison cycle is considered as the leftmost character position. and the comparison cycle 
begins with the first table entry. 

4. Whenever a match occurs. tallying or replacing takes place. The character position immediately to 
the right of the rightmost character position that participated in the match is now considered to be 
the leftmost character position of the source field and the comparison cycle starts again with the first 
table entry. 

5. The comparison operation continues until there are no eligible entries in the table or until the right
most character position of the source field has participated in a match or has been considered as the 
leftmost character position. When this occurs. the inspection is terminated. 

1108883 

NOTE 
It is intended that this process be interruptable at the beginning of the cycle. INS
PECT .POINTER is the first 24 bits of the Inspect Table. and is used to save and 
restore the pointer into the source field in case an interrupt occurs. 

E-63 



B IOOO Systems COBOL74 Reference Manual 
Appendix E 

COBOLJ4 S-LANGUAGE 

A detailed description of the inspection cycle is as follows: 

E-64 

I. Set current position P=INSPECT.POINTER. 
2. Point to the first entry in the Inspect Talble. 
3. If the entry is ineligible. go to step 5. 
4. Do the following according to the contents of FLAC: 

a. If FIRST is specified. look for a match. 

If a match is not found. go to step 5. 

If a match is found. make the entry 1ineligible. tally or replace and go to step 7. 

b. If LEADlNG is specified. make the entr'y' ineligible. 

If (AFTER.FLAG = 0 AND P NOT = I) OR (AFTER.FLAG 
OSITION). go to step 5. 

Look for a match. 

If a match is not found. go to step 5. 

I AND P NOT= ELIGIBLE.P-

If a matc:h is found. tally or replace contiguous occurrences of DESC I and go to step 7. 

c. If ALL is specified. look for a match. 

If a match is not found. go to step 5. 

If a match is found. tally or replace and go to step 7. 

d. If CHARACTERS is specified. tally or replace and go to step 6. 

5. Get the next table entry. If there is a next entry. go to step 3. 

[f INELIGIBLE.FLAG= I for all the table ·~ntries. terminate the process. 

6. Increment P by I. 
7. If P > size of the source string. terminate the process; otherwise. go to step 2. 



STRING 

OP: 53 

Format: 

B 1000 Systems COBOL74 Reference Manual 
Appendix E 

STRI Z, OPNDI, DADDRI, COPI, OPND2, BADDR 

Function: 

COBOL74 S-LANGUAGE 

Move a variable number of 8-bit characters from the source field denoted by OPND I to the destination field 
specified at DAD DR I using the value specified in COP I as a character offset into the destination field. Z indi
cates how OPND2 is to be used: 

O=OPND2 is the number of characters to move 
I =OPND2 is the delimiting character(s) 
2=0PND2 is omitted - the number of characters to move is the size of OPNDI 

BADDR spt!cifies the next statement if overflow occurs. 

An overflow condition is caused if at anytime during execution the value in the pointer field is less than I 
or greater than the size of the destination string. 

If an overflow condition exists, the operation is terminated and the next instruction address is obtained from 
BADDR. 

The transfer of data is governed by the following rules: 

I. Characters are moved from the source field to the destination field in accordance with the rules for 
MOVE ALPHANUMERIC (MY A), except that no space fill is provided. The contents of COPI are 
incremented by I for each character transferred. 

2. If V =0, characters are transferred until the end of the source field is reached, or until the number 
of characters specified by OPND2 are transferred. 

1108883 

If V =I, characters are transferred until the end of the source field is reached, or until the delimiting 
character(s) specified by OPND2 are encountered. The delimiting character(s) specified are not trans
ferred. 

E-65 



B 1000 Systems COBOL74 Reference Manual 
ApJPendix E 

COBOL'.74 S-LANGUAGE 

DELIMITER SETUP [ DLIMJ 

OP: 54 

Format: 

DLIM: Vl, V2, DA.DORI, COPl 

Function 

Build a delimiter table entry at the location specified by DAD DR I. VI= I specifies that this is the last entry. 
V2= I indicates that ALL was specified. COP I is the delimiter. 

The table used by the Unstring S-operator contains a variable number of entries with the following format: 

DELIMITER. TABLE. ENTRY (68) 

LAST-ENTRY-FLAG 
(1) 

ALL-FLAG 
(1) 

DESCl 
(64) 

FILLER 
(2) 

L Lunused 

Delimiter descriptor 

- O=More entries 
l =Last entry 

O=Single occurrence of delimiter 
I =All occurrences of delimiter treated as one 

When z,= I. DADDR3 specifies the location of the Delimiter Table and the following comparison cycle occurs: 

E-66 

I. The entries in the Delimiter Table are processed in the order specified. 
2. The delimiter is compared against an equal number of characters of the source field, starting with the 

leftmost character. 
3. If no match occurs. the comparison is repeated for any successive entry until a match is found or 

until there is no next successive entry. When there is no successive entry. the character position to 
the immediate right of the leftmost character position considered in the last comparison cycle is con
sidered as the leftmost character position. and the comparison cycle begins with the first table entry. 

4. Whenever a match occurs. examination stops and the comparison cycle is discontinued. 
5. The comparison operation continues until there are no more entries in the table or until the rightmost 

character position of the source field has participated in a match or has been considered as the left
most character position. When this occurs. examination is terminated. 



8 IOOO Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

UNSTRING 

OP: 55 

Format: 

UNST F', M, Z, C, J, BADDR, DADDRl, COPl, 
DADDR2, OPNDI, DADDR3, COP2, COP3, DADDR4 

Function: 

Move a variable number of 8-bit characters from the source field specified at DADDR 1 to the destination field 
denoted by COP I using the value specified at DADDR2 as a character offset into the source field. 

Any of the following situations cause an overflow condition: 

I. F=2 or F=3 and the value in the pointer field is less than I or greater than the size of the source 
string. 

2. Z=O and the value in OPNDI is Jess than I or greater than the size of the source string. 
3. Upon completion of the operation. F= I or F=3 and either of the following occurs: 

a. The source field contains characters that have not been examined. 
b. Z=O and the number of characters transferred is less than the number of characters specified by 

OPNDI. 

If an ove1ilow condition exists. the operation is terminated and the next instruction address is obtained from 
BADDR. 

The transfer of data is governed by the following rules: 

I. The string of source characters is examined beginning with the relative character position in the point
er field. 

2. The number of characters examined is determined as follows: 

a. llf Z= I, the examination proceeds from left to right until either a delimiter in the Delimiter Table 
specified by DADDR3 is encountered or until the end of the string is encountered. 

If the end of the string is encountered before the delimiting condition is met, examination termi
nates with the last character to be examined. 

If two contiguous delimiters arc encountered. the number of characters examined 1s zero. 

b. If Z=2, the number of characters is the size specified by COPI. 

3. The characters, thus examined. are moved to the destination field as follows: 

1108883 

a. llf C=O. the characters are moved in accordance with the rules of the MOVE NUMERIC (MVN) 
S-operator. 

E-67 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

E-68 

If the number of characters to be moved is zero. the destination field is zero-filled. 

lb. If C= I. the characters are moved according to the rules of the MOVE ALPHANUMERIC (MVA) 
S-operator. 

If J =I. the characters are moved right-justified. 

If the number of characters to be moved is zero. the destination field is space-filled. 

4. If the delimiter receiving field is present. the delimiting character(s) are moved to it according to the 
rules of the MOVE ALPHANUMERIC (MVA) S-operator. If the delimiting condition is the end of 
the string. then it is space-filled. 

5. If the count field is present. the number of characters examined is moved to it according to the rules 
of the MOVE NUMERIC (MVN) S-operator.. 

6. If the tallying field is present, I is added to the contents according to the rules of the Increment By 
One (INC I) S-operator. 

7. If Z=O, Z=2 or the delimiting condition is the end of the string, the pointer field is set to point to 
the character to the right of the last character transferred in step 3. 

If Z =I, the pointer field is set as follows: 

a. If the ALL.FLAG=O for the matched d1;!limiter. it points to the character to the right of the delim
iter. 

b. If the ALL.FLAG= I for the matched delimiter. the string is examined for contiguous occurrences 
of the delimiter and it points to the right of the last such occurrence. 



B 1000 Systems COBOL74 Reference Manual 
Appendix E 

INTER-PROGRAM COMMUNICATION 

IPC DICTIONARY 

Format: 

lPCD V COP BADDR 

Functions: 

COBOL74 S-LANGUAGE 

The execution of the IPCD S-OP results in the construction and insertion of an 80-bit system descriptor for 
the COP in the IPC.DICTIONARY at the displacement address specified by V. The base address of the 
IPC.DICTIONARY is adjacent to program RSN and can be found in RS.IPC.DICTIONARY.SPACE as an 
absolute address. The BADDR contains the address of the first IPCD S-op which references an operand that 
lies in an overlayable data segment. This address is required by the interpreter when checkerboarding has oc
curred and a necessary data segment does not fit into dynamic memory without overlaying another required 
data segment. 

The Inter-Program Communication (IPC) Module provides a facility to transfer control from one program to 
another and the ability for both programs to have access to the same data items. Language is not a barrier 
in IJPC. The names of the programs to which control is to be passed may or may not be known at compile 
time. Additionally, this module provides the ability to determine the availability of memory for the program 
to which control is being passed. 

The definition of a 'run unit' is critical to the implementation of the CALL/CANCEL mechanism described 
in the ANSI Standard. The beginning-of-job (BOJ) of any program by an execute instruction does not establish 
a run unit. A run unit is established only when an executed program initiates another program through the 
CALL communicate. That called program is now a member of the run unit associated with that program that 
was originally executed. Likewise, any program called by a program within the run unit becomes part of that 
run unit and remains in that run unit until terminated or cancelled (CANCEL). A job cannot be a member 
of more than one run unit. The following figure represents seven programs (A through G) which have been 
called· within a run unit. 

A A was executed 

I ., Current Path 

Previous~ 
Path 

·B~ 
D c 

I 
F G E 

1108883 E-69 



COBOL74 S-LANGUAGE 

B 1000 Systems COBOL.74 Reference Manual 
Appendix E 

The connecting links are generated by and represent the last used path. and the link exists until a return (EXIT 
PROGRAM) is accomplished. Once a called program has been exited (D. F. G). it remains suspended in the 
current state. The only path that is of interest is the path last traversed. 

The current path is important in order to check the validity of a CALL or CANCEL statement; a program 
may not call or cancel itself or any of its predecessors. The other links are unimportant. as any program in 
the run unit can call or delete other existing programs (with the exceptions previously mentioned) or can call 
new programs. 

If. for example. program E cancels program D. then the run unit consists of all of the following programs 
and appears as: 

A 

f 

B 

I 
c 

I 
E 

Unattached 
Programs 

F,G 

A call to any of these programs results in a transfer of control to the existing state. whereas a call to any 
other program (including D) causes an initial state copy to be invoked before control is transferred. The termi
nation (by STOP RUN or ABORT) of any program m a run unit results in the removal of all programs in 
that run unit from memory. 

The calling program may specify one or more data items to which the called program has access. The shared 
data may be any 01 or 77 level item (including items whose addresses have been received through a CALL) 
described in the calling program. The data items may be named and defined differently in each program. Addi
tionally. storage for the shared data is never allocated in the called program; the address is always pas5.ed 
to the called program. 

The IPC.DICTIONARY is a list of SYSTEM.DESCRIPTORS built by the program to describe the parameh~rs 
to be passed with a CALL. This dictionary is within the space defined by RS.IPC.DICT in the RS.NUCLEUS 
of the callling program. The length of this dictionary is passed in the CALL communicate. The MMCP verifies 
that the number and length of parameters passed match the IPC.PARAMETER.LIST of the CALLed program. 

The· IPC.PARAMETER.LIST is a series of 24-bit fields that contain the length in bits of the parameters re
quired for a given program. The original copy is generated by· the compiler and resides at the end of the code 
file. The MCP can locate this list through a 24-bit field in the Program Parameter Block (the PROG.IPC.PTR 
contains the relative disk address in the code file of the IPC.PARAMETER.LIST). The number of entries in 
the list is obtained from a 16-bit field in the PPB (PROG.IPC.SIZE). After the program has been successfu11ly 
called. the !PC.PARAMETER.LIST is appended to the RS.NUCLEUS (and the first element contains the 
number of entries) in order to facilitate future caHs •Jn this program. 

After the MCP verifies that the number and length of parameters are correct. it updates this field to allow 
access to the shared data. The interpreter uses this field just as it would use the address of a data dictionary. 
that is. to obtain the absolute address of the IPC.DICTIONARY. 

E-70 



8 IOOO Systems COBOL74 Reference Manual 
Appendix E 

COBOL74 S-LANGUAGE 

Figure E-2 illustrates the manner in which data is linked between the calling program and the called program. 

CALLING PROGRAM WITH SHARED 
AND SEGMENTED DATA 

BR 

STATIC MEMORY 

DYNAMIC MEMORY 

LR 
RS. IPC. DICT. SPACE 

DATA DICTIONARY 

- IPC DICTIONARY f..4--l --
G12343 

CALLED PROGRAM 

BR 

STATIC MEMORY 

LR 
RS. IPC. DICT 

[ 
RS. IPC. PARM. LIST 

-- IPC. PARAM. LIST --

Figure E-2. Memory Layout 

Accessing shared data should be almost identical to accessing segmented data. One difference is that the read
ing and writing take place outside the program base-to-limit area and. therefore. the base-limit check must be 
inhibited. This implies that any COP for a parameter must have a flag (SHARED.DATA.FLAG) which sup
presses the base-limit test and indicates that there is a following IO-bit field (IPCD.INDEX) which supplies 
an index into the IPC.DICTIONARY. With the absolute address obtained from the IPC.DICTIONARY. the 
interpreter can proceed as if it has an absolute address for a normal data item. 

1108883 E-71 



B 1000 Systems COBOL 74 Reference Manual 
Appendix F 

APPENDIX F 

PROGRAMMING EXAMPLES 

EXAMPLE OF QUEUE AND REMOTE FILES 

The following example illustrates the use of a queue file, a remote file, and the WAIT statement. To execute 
this program, file equate or modify the file RMTE with the SIMPLE.HEADERS and NUMBER.OF.STATIONS 
(NST) file attributes. After receiving the first message from a station, the station becomes attached to the pro
gram. Enter any ODT console command and the answer is displayed on the terminal. The terminal acts like a 
remote ODT. A blank message sends the program to end of job. 

The program has a trace capability which can be set by executing the program with SWITCH 1 = 1. This produces 
a listing of all messages transmitted. Through the use of the Logical Station Number (DTA-LSN) which is at
tached with ea.ch message, the program is able to respond to the correct station from which the message was 
received. The program uses the RR program attribute to eliminate restictions on the allowable command set. Re
fer to the B 1000 Systems System Software Operation Guide, Volume l, form number 1108982, for an explana
tion of the RR program attribute, session numbers, and the job spawning mechanism. 

I 108883-001 

NOTE 
Since this program uses the LS command, the program cannot be executed with its 
JLS boolean set. Therefore, if this program is to be executed with the SMCS program, 
the execute information must be entered in the SMCS/ JOBS file and the ON com
mand entered from a terminal or executed from the ODT. Refer to the B 1000 Sys
tems System Software Operation Guide, Volume 1, form number 1108982. 

F-1 



F-2 

B 1000 Systems COBOL 74 Reference Manual 
Appendix F 

000100$NEWID "ODT.91" 
000200$WARNSUPR 
000300*XREF 
000400 IDENTIFICATION DIVISION. 
000500 PROGRAM-ID. SIMPLE-74. 
000600 AUTHOR. TIO. 
000700 DATE-WRITTEN. 08-01-80. 
000800 DATE-COMPILED. 
000900 SECURITY. NONE. 
001000 ENVIRONMENT DIVISION. 
001100 CONFIGURATION SECTION. 
001200 SOURCE-COMPUTER. B-1985. 
001300 OBJECT-COMPUTER. B-1985. 
001400 SPECIAL-NAMES. 
001500 SW1 IS ON STATUS SW-1 
001600 SW2 IS ON STATUS SW-2 
001700 SW3 IS ON STATUS SW-3. 
001800* 
001900* SW 1 = IF ON TRACE INPUT-OUTPUT. 
002000* SW 2 = 
002100* SW 3 = 
002200* 
002300 INPUT-OUTPUT SECTION. 
002400 FILE-CONTROL. 
002500 SELECT RMTE ASSIGN TO REMOTE RESERVE 3 AREAS. 
002600 SELECT Q ASSIGN TO QUEUE 
002700 FILE STATUS IS FILE-STATUS 
002800 ACTUAL KEY IS Q-KEY 
002900 RESERVE 10 AREAS. 
003000 SELECT ALINE ASSIGN TO PRINTER RESERVE 2 AREAS. 
003100 I-0-CONTROL. 
003200 SAME RECORD AREA FOR RMTE, Q. 
003300 DATA DIVISION. 
003400 FILE SECTION. 
003500 FD RMTE. 
003600 01 RMTE-DATA-MESSAGE. 
003700 02 DTA-MESSAGE-TYPE 
003800 02 DTA-VARIANT 
003900 02 DTA-LSN 
004000 02 DTA-TEXT-SIZE 
004100 02 DTA-REMOTE-FILE-NO 
004200 02 DTA-TIME 
004300 02 DTA-TRAN-NO 
004400 02 DTA-ERROR 
004500 02 DTA-TALLYS 
004600 02 DTA-TOGGLES 
004700 02 DTA-TERMINAL-TYPE 
004800 02 FILLER 
004900 02 DTA-TEXT 
005000 01 REMOTE-RECORD-IN 
005100 01 REMOTE-RECORD-OUT 
005200 FD Q 
005300 VALUE OF MAXSUBFILES 14 
005400 VALUE OF MAXCENSUS 100. 

PIC 99. 
PIC 9. 
PIC 999. 
PIC 9(4). 
PIC 999. 
PIC 9(7). 
PIC 999. 
PIC XX. 
PIC 9(9). 
PIC 9(8). 
PIC 99. 
PIC X(6). 
PIC X<400>. 
PIC X<450). 
PIC X<140>. 



B 1000 Systems COBOL 74 Reference Manual 
Appendix F 

005500 01 QUEUE-RECORD. 
005600 05 SPAWN-HEADER. 
005700 10 MSG-TYPE 
005800 88 SPO-OUTPUT-TEXT 
005900 10 FILLER 
006000 10 JOB-NUMBER 
006100 10 USERCODE 
006200 10 SESSION 
006300 10 TIME-STAMP 
006400 10 MESSAGE-SIZE 
006500 10 USERCODE-INDEX 
006600 10 FILLER 
006700 05 MESSAGE-TEXT 
006800 FD ALINE. 
006900 01 PRINT-RECORD 
007000 WORKING-STORAGE SECTION. 
007100 77 FALSE-SET 
007200 88 TRUE-SET 
007300 77 REMOTE-EXCEPTION 
007400 88 AT-END-TRUE 
007500 77 MONITOR-FILE-STATUS 
007600 88 MONITOR-FILE-OPEN 
007700 77 RESULT 
007800 77 I 
007900 77 FILE-STATUS 
008000 88 Q-EMPTY 
008100 88 Q-FULL 
008200 77 Q-KEY 
008210 77 IDENTIFIER-2 
008220 77 IDENTIFIER-6 
008230 77 IDENTIFIER-12 
008300 01 QUE-MESSAGE. 
008400 05 FILLER 
008500 05 FILLER 
008600 05 ZIP-LSN 
008700 05 FILLER 
008800 05 ZIP-SESSION 
008900 05 FILLER 
009000 05 ZIP-MESSAGE 
009100 01 MESSAGE-BUILDER. 
009200 05 FILLER 
009300 05 MSG 
009400 05 FILLER 
009500 
009600 01 TEMPORARY-MESSAGE. 
009700 05 TEMP-MSG 
009800 
009900 
010000 
010100 PROCEDURE DIVISION. 
010200 DECLARATIVES. 
010300 EXCEPTION-Q SECTION. 

PIC 99. 
VALUE 04. 

PIC X. 
PIC 9(4). 
PIC 9<10). 
PIC 9(5). 
PIC 9(6). 
PIC 9(4). 
PIC 9(4). 
PIC X<14>. 
PIC X<3S0) .. 

PIC X<132>.. 

PIC 9 

PIC 9 

PIC 9 

PIC 99 
PIC 9 
PIC XX 

PIC 9(8) 
PIC 99 
PIC 99 
PIC 99 

COMP VALUE 0. 
VALUE 1. 

COMP VALUE 0. 
VALUE 1. 

COMP VALUE O. 
VALUE 1. 

COMP. 
COMP. 
VALUE 11 00 11

• 

VALUE 11 94 11
• 

VALUE 11 95" .. 
COMP VALUE O. 
VALUE 2. 
VALUE 6. 
VALUE 12. 

PIC X<4> VALUE "QU Q". 
PIC X(8) VALUE 11 /tUt00000 11

• 

PIC 9(3) VALUE ZERO. 
PIC X<12) VALUE II LS RR 0 sz II 

PIC 999. 
PIC X VALUE SPACE. 
PIC X(400). 

PIC 9(6) COMP VALUE, @3C27D2@. 
P IC X <80). 
PIC 9<14) 

COMP VALUE @27E23C27D21103@. 

PIC X<80) OCCURS 5. 

010400 USE AFTER STANDARD EXCEPTION PROCEDURE ON Q. 
010500 Q-EXCEPT. 

1108883-00 l F-3 



F-4 

B 1000 Systems COBOL 74 Reference Manual 
Appendix F 

010600 DISPLAY "QUEUE FILE ERROR CONDITION, LSN = 11 DTA-LSN. 
010700 
010800 EXCEPTION-REMOTE SECTION. 
010900 USE AFTER STANDARD EXCEPTION PROCEDURE ON RMTE. 
011000 REMOTE-EXCEPT. 
011100 MOVE "REMOTE FILE EXCEPTION" TO DTA-TEXT. 
011200 MOVE 1 TO REMOTE-EXCEPTION. 
011300 END DECLARATIVES. 
011400 
011410 
011500 INITIAL-SECTION SECTION 1. 
011600 BEGIN-SECTION. 
011700 OPEN I-0 RMTE. 
011800 OPEN INPUT Q. 
011900 IF SW-1 
012000 MOVE 1 TO MONITOR-FILE-STATUS 
012100 OPEN OUTPUT ALINE. 
012110/ 
012200 MAIN-SECTION SECTION 0. 
012300 OUTER. 
012400 PERFORM LOOP UNTIL TRUE-SET. 
012500 LOOP. 
012600 WAIT UNTIL READ-OK ON RMTE 
012700 READ-OK ON Q <1> 
012704 READ-OK ON Q <IDENTIFIER-2> 
012708 READ-OK ON Q <3> 
012712 READ-OK ON Q (4) 
012716 READ-OK ON Q <S> 
012720 READ-OK ON Q <IDENTIFIER-6) 
012724 READ-OK ON Q <7> 
012728 READ-OK ON Q (8) 
012732 READ-OK ON Q <9> 
012736 READ-OK ON Q <10) 
012740 READ-OK ON Q <11) 
012744 READ-OK ON Q <IDENTIFIER-12) 
012748 READ-OK ON Q <13> 
012752 READ-OK ON Q (14) 
012800 GIVING RESULT. 
012810 DISPLAY "RESULT IS TRUE FOR 11 RESULT. 
012900 IF RESULT = 1 
013000 PERFORM HANDLE-REMOTE-MESSAGE ELSE 
013100 PERFORM HANDLE-QUEUE-MESSAGE UNTIL Q-EMPTY. 
013200 MOVE ZERO TO FILE-STATUS. 
013300 HANDLE-REMOTE-MESSAGE. 
013400 READ RMTE AT END MOVE 1 TO REMOTE-EXCEPTION. 
013600 IF MONITOR-FILE-OPEN 
013700 MOVE RMTE-DATA-MESSAGE TO PRINT-RECORD 
013800 WRITE PRINT-RECORlt. 
013900 IF AT-END-TRUE 
014000 MOVE 0 TO REMOTE-EXCEPTION 
014100 ELSE 
014200 PERFORM PROCESS-REMOTE-MESSAGE. 
014300 PROCESS-REMOTE-MESSAGE. 
014400 MOVE DTA-LSN TO ZIP-SESSION. 



014~}00 
01H,OO 
014~700 

014000 
014900 
015()00 
015100 

B 1000 Systems COBOL 74 Reference Manual 
Appendix F 

IF DTA-TEXT = SPACES GO TO EOJ. 
MOVE DTA-TEXT TO ZIP-MESSAGE, TEMPORARY-MESSAGE. 
MOVE DTA-LSN TO ZIP-LSN. 
CALL SYSTEM ZIPSB USING, QUE-MESSAGE. 
PERFORM WRITE-REMOTE-FILE. 
IF MONITOR-FILE-OPEN WRITE PRINT-RECORD 

FROM QUE-MESSAGE. 
015200 HANDLE-QUEUE-MESSAGE. 
015~~00 READ Q WITH NO WAIT AT END DISPLAY "NO MESSAGE". 
015400 IF MONITOR-FILE-OPEN AND <NOT Q-EMPTY> 
015500 MOVE QUEUE-RECORD TO PRINT-RECORD 
015600 WRITE PRINT-RECORD. 
015700 IF SPO-OUTPUT-TEXT AND <NOT Q-EMPTY> 
015800 MOVE MESSAGE-TEXT TO TEMPORARY-MESSAGE 
015900 PERFORM WRITE-REMOTE-FILE. 
016000 WRITE-REMOTE-FILE. 
016100 MOVE SPACE TO RMTE-DATA-MESSAGE. 
016200 MOVE 00 TO DTA-MESSAGE-TYPE. 
016300 MOVE 90 TO DTA-TEXT-SIZE. 
016400 MOVE ZIP-SESSION TO DTA-LSN. 
016500 PERFORM WRITE-REMOTE VARYING I FROM 1 BY 1 UNTIL I = 6. 
016600 WRITE-REMOTE. 
016700 MOVE TEMP-MSG<I> TO MSG. 
016800 IF MSG NOT = SPACES 
016900 MOVE MESSAGE-BUILDER TO DTA-TEXT 
017000 WRITE REMOTE-RECORD-OUT. 
017100 FINAL-SECTION SECTION 1. 
017'.200 EOJ. 
017300 IF MONITOR-FILE-OPEN CLOSE ALINE. 
017400 CLOSE RMTE. 
017500 CLOSE Q. 
017600 STOP RUN. 
017700 END-OF-JOB. 

1108883-001 F-5 



B 1000 Systems COBOL 74 Reference Manual 
Appendix G 

APPENDIX G 

COBOL68 REMOTE FILES AND COBOL74 QUEUE FILES 

COBOL68 REMOTE FILES AND COBOL74 
QUEUE FILES ON THE B 1000 

Many differences exist between the B 1000 COBOL68 (Burroughs traditional) method of handling data communi
cations functions and the COBOL74 method (which reflects both the ANSI X3.23-1974 and Burroughs Stan
dards). 

This appendix specifically describes the two methods of message communication between the COBOL application 
program and the system, when more than one program opens the same remote file name (COBOL68) or refer
ences the same symbolic queue name (COBOL 74). 

Figure G-1 is a block diagram of the COBOL68 remote file concept. 

PROGRAM 
A 

REMOTE FILE 
NAME=XYZ 
NUMBER=1 

PROGRAM 
B 

REMOTE FILE 
NAME=XYZ 
NUMBER=2 

MESSAGE CONTROL SYSTEM 

NETWORK CONTROLLER 
DEFINITION 

FILE XYZ: FAMILY L,M,N 

[ J 
[ L ] 
[ J 

[--J [ 
[ M ] [ 
[ J [ 

J 
N ] 

J 

.......... ......... \ . .......... .......... \ . ......... ......... \ 
Figure G-1 . COBOL68 Data Communications 

1108883-001 G-1 



B 1000 Systems COBOL 74 Reference Manual 
Appendix G 

COBOL68 programs declare remote files. Each timi;: a COBOL68 program opens a remote file, regardless of the 
remote file name, a unique file is created, opened, and assigned to that program. Thus, it is possible (under con
trol of a message control system (MCS)) to run multiple copies of the same program from different stations, 
or declare the same remote file name in different programs, with a guarantee from the system that messages to 
and from individual programs will be correctly isolated to the appropriate program. This is handled by assigning 
a unique remote file number to each remote file opened, even if the remote file names are the same. 

ln Figure G-1, program A opens the remote file named XYZ, and the Network Definition Language (NDL) as
signs to that file remote file number 1, which is the data communication system's method of identification. Pro
gram B opens the remote file named XYZ, and NDL assigns to that file remote file number 2 (or some other 
unique number). Since the network controller definition requires specification of a remote file name (not a num
ber)~ it is possible to control multiple, unique physical remote files, by specifying one remote file with its associ
ated station list in the network controller. 

The controlling MCS is responsible for approving or denying the second and any subsequent open of the same 
remote file name. The approval or denial of the open is determined by a variety of factors, such as authentication 
of the LSN list. 

If there is no MCS, the second and any subsequent open of the same remote file name results in a denial of 
the open from the network controller, with the mess.age FILE LOCKED. 

In COBOL68, a program may initiate communication to a specific terminal, which was approved in its remote 
file open, and that terminal remains assigned to the program. This is done by association of a Relative Station 
Number (RSN) within a station list for that remote file, as defined in the network controller. 

The rulles stated here for COBOL68 programs actually apply to all B 1000 languages except COBOL 74. Figure 
G-2 is a block diagram of the COBOL 74 remote fik concept. 

G-2 



B 1000 Systems COBOL74 Reference Manual 
Appendix G 

PROGRAM 
A 

QUEUE 
NAHE=XYZ 
NUHBER=1 

I 
NETWORK CONTROLLER 
J>EFI NI TI ON 

HCS <optional> 

FILE XYZ: FAMILY LrMrN 

[ J [ •J 
[ L ] [ H ] 

[ ] [ •J 

PROGRAM 
B 

J 

[ 

[ 
[ 

\ 
] 

N J 
J 

........... ......... \. • •••• a II a •• ...... " .. -~ . ......... ......... \ 
Figure G-2. COBOL74 Data Communications 

1108883-00 l G-3 



B 1000 Systems COBOL74 Reference Manual 
Appendix G 

In COBOL 74 programs, the concept of remote files does not exist. The user specifies a symbolic queue file name, 
and, by means of the associated CD definition, messages are passed to and from an actual physical file. The 
actual file is identified by the symbolic queue name. The symbolic queue name must be the name of a remote 
file as defined in the network controller. When the COBOL 74 program does the first RECEIVE or ENABLE 
INPUT operation, the system looks for a COBOL 74 queue file already open, with the same name as the symbolic 
queue name specified in the appropriate CD of this COBOL 74 program. If no such queue file is open, the system 
opens the file, with the name as specified in the symbolic queue name. If such a queue file is already open, 
messages to and from this program are directed to the queue file of the same name. 

In Figure G-2, program A, under control of the .appropriate CD, references symbolic queue name XYZ, and 
the system creates, opens, and assigns to this queue file the number 1. Program B, under control of the appropri
ate CD, references symbolic queue name XYZ, indicating that messages are to be assigned to the physical queue 
(number 1) created by actions taken in program A. Since both programs A and B share the queue file, the MCS 
is optional, at least for this function. 

The end result of this is what appears to the user to be a mixup of messages among different COBOL 74 programs 
defining the same queue name. This is as defined by both ANSI X3.23-1974 and Burroughs standards. Both stan
dards state that file sharing is to be invoked when multiple programs define the same queue file name. A 
COBOL74 program reading from this queue file always reads the top message in the queue. 

If file sharing is not the desired result, the COBOL 74 programmer must take specific steps to avoid this feature. 
One method is to avoid the ANSI X3.23-1974 standard and use Burroughs remote files (as in COBOL68). If 
adhering to ANSI X3.23-1974 and Burroughs standards is important, then each COBOL 74 program's symbolic 
queue name must map onto a remote file declared with the same name (each unique) in the network controller. 

The preceding action complicates the assignment of stations, since the COBOL 74 program must also know the 
name of the station as defined in the network controller in order to initiate communication to any particular 
station. In COBOL 74, there is no direct path between a program and a station. Station identification must be 
passed along as part of the message from or to the COBOL 74 program. Station identification is most easily estab
lished by initiating communication with a RECEIVE operation, which inserts the station identification into the 
appropriate field in the CD. 

COBOL68 REMOTE FILES AND COBOL74 QUEUE FILES UNDER 
CONTROL OF AN MCS 

Use of an MCS can change some of the rules defined in previous paragraphs, as an MCS can be given power 
at a level higher than, and thus overruling, that of the COBOL program. 

SUPERVISORY MESSAGE CONTROL SYSTEM (SMCS) 

Under SMCS, multiple COBOL68 programs can op•en the same remote file name, creating individual remote files 
with the same name but unique numbers. SMCS approves the second and any subsequent open of the same re
mote file name. Refer to the B 1000 Systems Burroughs Network Architecture (BNA) Installation and Operations 
Reference Manual, form number 1127578, for additional information. 

Likewise under SMCS, multiple COBOL 74 programs can reference the same queue file name, but, in this case, 
the programs physically share the same queue file (both name and number are the same). SMCS approves the 
second and any subsequent attachment of COBOL74 messages to an already established queue file. 

G-4 



B 1000 Systems COBOL 74 Reference Manual 
Appendix G 

GENERALIZED MESSAGE CONTROL SYSTEM (GEMCOS) 

Under GEMCOS (as under SMCS), multiple COBOL68 programs can open the same remote file name, creating 
individual remote files with the same name but unique numbers. GEMCOS approves the second and any subse
quent open of the same remote file name. 

GEM COS does not allow the COBOL 74 queue file sharing function to work in a GEM COS controlled environ
ment. GEMCOS intercepts the second and any subsequent open of the same queue file name and denies it. Prior 
to the Mark 10.0 system software release, this was done in order to protect the GEMCOS recovery function. 
Prior to the Mark 10.0 system software release, NDL data messages did not carry the job number for COBOL 74 
programs. The effect of this was the inability of GEMCOS to determine the job from which a message originated, 
in order to restore that message during a recovery. In the Mark 10.0 release of NDL, this restriction was removed, 
as follows. 

If the REMOTE.FILE.NO field in the data message header is blank, the five bytes used for the TRAN.NO and 
ERROR fields are used to hold the job number of the COBOL 74 program issuing the SEND. Refer to Section 
7 in the B 1000 Systems Network Definition Language (NDL) Reference Manual, form number 1073715. 

1108883-001 G-5 



1108883-001 

B 1000 Systems COBOL 74 Reference Manual 

INDEX 

'9 1 PICTURE symbol• 6-29 
+integer option .. 11-6 
'A' PICTURE symbol• 6-29 

abbreviated combined relation ccPditions ... 7-25 
ABOfH exception. 9-7,. 9-10,. 9-t ,,. 9-14 

ACCEPT HESS AG£ COUNT stat eJPent" 7-36,. 10-6 
ACCEPT statement,. 5-6,. 1-34,. 1-114,. B-11 
ACCESS HOOE clause,. 5-11,. s-1 e,. 7-103,. 8-3 

UYhAMIC• 5-18,. 8-3 
indexeo ·fi tes• 5-11 
NA~DCH• 5-18,. B-3 
relative f ites, s-11 
SEQUENTIAL• S-18,. 7-IJ3,. 3-3 
SeQuential files,. 5-11,. 5-12• 5-19,. 5-20 

ACTUAL KEY clause,. s-10,. 5-1g,. 7-97,. 1-103,. B-3 

ADO,. 6-11 
ADD statement• l-30,. 7-17 

CORRESPONDING CCORR>• 7-37 
multiple results" 7-30 

ADVANCING PAGE phrase• 6•15 
ADVANCING phrase" 7-104,. 7-126• E-21,. B-25 

AFTER phrase,. 10-5,. B·l'J,. B-21,. E-25 
INSPECT statement,. 7-64 
PERFORM statement, 7-34 
SEhD statement, 7-104 
WRITE statement .. 7-12& 

algebraic ~iqns. 2-15 
al1gnment of data, 2-15 

ACCEPT state~ent• 7-35 
~OVE statement,. 7-75 

ALL,. 7-64• 7-99, 1-114,. 7-12'1 
ALL PROCEDURES ghrase• 1()··411 10-5, B-11 
ALL REFERENCES Of phrase• 10·4• 10-6, 8-11 
alphabet-name clause ... 5-5, B-17 

CODE-SET clause,. 6-9 

ALPHABETIC test. 7-20 
ALSC phrase. s-5, 9-2 
ALTER statement .. 7-40,. 1-110, 10•7• S-12 

segmentation .. 7-12 
USE FOR OE BUGGING stat e'llent_. 10-5 

alternate keys, co~piler limit• 10-11 
ALTERhATE RECORD KEY clau.se,. 5-1811 8-3 
AND• 1-99, 9•6• 11-3 

abbreviated combined relatior conditions. 7-25 
combined/comglex conditions• 1-22 
negated combined conditions. 7-23 

AREA• AREAS, 5-17 
area A• area a. 3-3 
AREA FOR,. 5-21 
AREALENGTH attribute• e-1,. 8·5 
AREAS attribute, s-1, a-5 
arithaetic expression, 1-15, E-l.3 

CO~PUTE statement, 7-50 
relation condition, 7-18 
sign condition,. 1-22 

arithmetic operators. 1-1s 
arithmetic statements, 7•30 
arithmetic-statement• B-27 



I 

I 

I 

I 

2 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

ASCENCING KEY phrase• 6-19• ~-7,. B-17,. S-22 
~ERGE state~ent• 7-71 
CCCURS clause• &-26 
SEARCH statement~ 7-lJO 
SORT statement• 7-108 

ASCE~DING/OESCENDIN{i KEY• 7-100 
ASCII• 5-5,. 8-f>, B-2'. 
ASCIILAEEL attribute• 6-& 
ASSIGN clause, 5-17r B-3 

AT.• 9•5,. 9•6 
AT ENC condition• 5-tb. 7-90. 1-99. 1-125,. 10-5~ a-20 
AT ENC-Of-PAGE phrase~ 7-126 
AT EOP phrase• 7-126 
ATTERR attribute, 6-2· 8-5 
ATTRIBUTE, 8-2 
attribute-name. 8-5 

AUDIT• 9-10, 9-14 
AUDIT clause. 0-27 
AUOITEO attribute. a-2A. a-s 
AUDITERROR exception• 9-7, 9-10, 9-11• 9-lJ, 9-14, 

9-2t. S-23 
A UT HOR par a graph, 4 •• l,, B- 1 
AVAILABLE phrase. s-13, r-79, 7-82· e-18 
AWAITINGHOST attribute• 8-2A,. 8-7 

'B' PICTURE symbol• 6··29 

BACKUPKINO attribute• 8-2, 8-S 
BAC~UPPERHITTED attribute, 8-2,. e-5 
BEF CRE Qhr a se.. a-21" :6-25 

INSPECT statement~ 7-54 
SEND statement .. 7-104 
WRITE statement• 1-12& 

BEGI~-JRANSACTION statement• 9-7,. 9-10• 9-14,. 
9-19• B-27 

BINARY• 8•6 
binary arithmetic operators .. 7-15 

blant< lines,. 3-4 
BLANK WHEN ZERO clause• 6-19,. 9-21,. 8-7 

PICTURE clause .. &-29 
USAGE IS INDEX clause• 6-ftS 
VALUE clause. 6-47 

BLOCK attribute. a-1,. 8-5 
BLOCK CONTAINS clause• f>-4,. 6-8 • t3-5 
BLOCKEO attribute• 8-2A, 8-9 
BLOCKSIZE attribute• 8-1 .. 13-5,. e-6 
BLOCKSTRUCTURE attribute• s-z, e-5,. 8-6 

BNA,. 5-10• 0-2 

Boolean expressions. 11-4 

braces .. 2-1 
brac~ets• 2-2 

B Uf f E RS at t r i bu t e ,. 8 - 1 ,. 3 - ·5 

av. 1-64• 1-e4, 1-121 

CALL statement• 7-41,. B-12 
CUMP• 1-41 
OV ERfl OW,. 7-41 
SYSTEM, 7•41 
USING phrase• 7-41 
ZIPSB,. 7-41,. B-12 



1108883-00 I 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

CALL SYSTEM DUMP,. CALL SYSTE~ zyp,. B-12 
CANCEL statement• 7-44~ B-12 

CALL statement• 7-42 
imperative statement .. 7-4 

categories of verbs,. 7••32 

CCI options. 11-4 
co, 6•24• B-9, B-10 
CO entry11 6-56 
cd-na11e, 6-5& 

CENSUS attribute .. a-2, 8-6 

CHANGE statement .. 8-3 
CHANGEDSUBFILE• 8-2• 8-6 
CHA'11\EL nn• 5-5,. 8-2 
CHANNEL number• 7-104, 7•126 

character• 2-2 
arithmetic .. 2-4 
editing, 2-4 
punctuation• 2-3 
relation conditionsr 2-4 
set .. 2-3 

character-string. 2-5 
CHARACTERS. 5-4, 7-64• B-16 

class conditions• 1-20 
ctasses of data .. 2-14 
CLEAR,. 11-3 
CLOSE statement .. 7-45, 9-7, 9-11. 10-s. B-27 

im~erative statement .. 7-4 
USE FOR DE BUGG ING stat e11enb 10-S 

CLOSEC attribute• 8•2A,. 8-l 
CLOSEERROR exception. 9-7, 9-11 
CLOSEPENCING .. a-2A. a-7 
CODE option• 11-5 
code segments .. compiler I i11iit. 10-10 
CODE-SET clause. 6-4,. 6-~, B-5 
COOEfllE attribute• 8-6 
coding 

form. 3-1 
Environment Division. 5•22 
file Section .. 6-6 
Inoentification IJivisior., 4-2 
Linkage Section .. 6-53 
korking-Storage Section"' 6-50 

COLLATING SEQUENCE clause, 5•4• 7-112• 8-t 
COLLATING SEQUENCE phrase. 1-11 .. 7-1os. B-17. 0-22 

COMMA. 5-5. 8-2 
co1111on phrases .• 7-28 
communication description structure. 6-56 
Communication Section_. G-56, e-1., B-9 
communication-description-entry .. 8-4 
c 011 p i l e r a c or d ,. 11-2 
compiler control• 11-1 
C 011 p i l er C on t 'r o l 1111 a g e C C C I l ,. 1 1- 3 
COMPILER LIMITS. 10-10 
compiler options, 11-3 
compiler-directing sentences• 7-4 
compiler-directing stateme~ts. 7-4 
complex conditions• 7-22 
complex key condition• 9-6 
COMPUTE statement .. 7-50, E·13 

imperative statement- 7-4 

3 

I 
I 

I 
I 



I 

I 

4 

B 1000 Systems COBOL74 Reference Manual 

INDE.X (Cont) 

conceptual character is t 11 c s of a fit e • 2-1 3 
condition-name• 2-1. ;~-u;,. 6-4·'3• 6-50 
condition-names conditions• 1-21 
con<litional 

expressions. 7-16 
sentences. 7-4 
statements• 7-3 
var i ables• 7 -2 1 

conditions 
abbreviated combined retatior conditions. 7-25 
combined conditions. 7-23 
comolex conditions,. 1-22 
condition-name con di ti ons. 1-21 
evaluation rules. 7-l& 
negatf}d s'impl~ c;onditi ons. T-23 
relat1on cond1t1ons1 7-18 
sign conditions. 7-22 
simple conditions• 7-18 
switch-status condit ~ons,. 1-21 

C on f i g u r a t i on s e c t i o n " :.i - 2 " 1 o- 3 • a- 1 
connectives. 2-8 
control relationship between crccedure5• 7-& 
CONTRCLCECK attribute• d-6 
COPY statement• 7-51 

comoiler-directing statemant• 7-St 

COR~ESPONCING CCORH> phrase• 6-~. 7-28• 7-118, 
E- 12. a-11. s-124 

ADD statement• 7-37 
~OVE statement• 7-74 

CORRESPONDING ohrase. 6-B 
COUNT• 1-121,. B-24 

CREATE statement• 9-tz, 9-16• 9-18• 9-20• 9-22, B-27 
CREATE/TABLE utility• 6-9 
CREATIONOATE attribute• 8-1, 8-5 
CRUNCH• 7-45• 7-4&• 7-108• 7-111.• 8-17• B-22 

CURREN CY s I G N clause. 5 -5, a- 2 
CUR RE H , 9 - 2 l 
current record pointe'r• 5-11 

DELETE statement• 7-54 
CPEN statement• 7-81 
READ statement• 7-90, 7-91, 1-92, 7-93 
REWRITE statement• 7-97 
START statement• 7-113 
WRITE state•ent• 1-127 

C UR RE NT Bl 0 CK at tr i b u t: e • '3 -1 • 8 - 5 

D AS Cl ,. 9-1 2 • 9 - 2 2 
DASDL VERif r,. 9-7 

OAT A• 1•91u 8•6 
DATA BASE HANAGEMENTv 9-1 
data base structure. 9-2 
data comm sample program• 6-&6 
DATACGHPRESSION attribute• 8-2A• 8-6 
data description 

entries other than concition-~ames. 6-48 
entry. 6-19 

data dictionary entdes co11gi ler limit• 10-10 
Data Civision .. &-1,. ;r-11.2&. 9-2. B-4 
DATA REtORDS clause, 6-4? 6•10• E-5, B·& 
Data-Base Section,. 9-2~ B-26 
data-name. 2-&,. &-22 
data-names compiler Liunit,. 10-tc 
data·set-na•e,. B-2& 
OATAE~ROR exception, 9-7,. 9-10,. 9-12• 9-14• 9·17• 

9-20. 9-23 



B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

OAT£11 7•34. B-11 
DATE-COMPILED,. 4-2• B-1 
DATE-WRITTEN• B-1 
DAY11 1-34,. B-11 

OB• 9•2 

DEACTIVATED attribute• 8·2A• B-7 
DEACTIVATIONPENOING,. 8-2A,. B-7 
DEADLOCK exception• 9-8• 9-lJ, q-13, 9-14• 9-18 

DEBUG ERRMESS option• 11-5 
DEBUG TIME oQtion. 11-5 
OE8UG·CONTENTS• 10-7 
DEBUG-ITEM• 10-4• 10-6 
DEBUG-LINE• 10-7 
DEBUG-NAME• .10-7 
DEBUG-sua-1. 10-7 
OEBUG-sua-2. 10-7 
OEBUG-SUB-3• 10-7 
DEBUGGING HOOE• 10-l 
debugging sample program• 10 .. BA 

DECIMAL-POINT IS COMMA clause• 5-5,. E-2 
declarative-sentence. s-10 
declaratives• 7-14• e-10,. E·l 1• E-1.3 .. e-27 

USE declarative• 7-14 
USE FOR DEBUGGING declarative. 7-14 

DECLARE• 11-4 
DELETE option. 11-5 
DELETE statement• 7-54,. 9-8,. 9-12 .. 9-13,. 9-16,. 

9-19,. 10-5 
selection expression, 9-4 
USE FOR DEBUGGING statement,. 10-5 

DELIMITED BY phrase, 7-115· 1-121,. B-23. B-24 
DELIMITER• 1-121,. B-24 
DENSITY attribute, a-2. 8-5 
OEPENDENTSPECS attribute• a-z~ a-5 
D£PENOING phrase• 6-19• 6-26,. 7-62• 10-5, 3-7,. B-15 
DESCENDING KEY phrase• 6-19, 6-26, 7-71, 7-108P 

a-7, B-22 
DESTINATION COUNT clause• 6-57,. B-10 
DESTINATION TABLE OCCURS clause• 6-57, 8-10 

DIRECTION attribute. a-2. a-6 
DISABLE statement• 7-55, 10··5,. P.-14 

ENABLE statement• 7-59 
USE FOR OEBUGG ING stat em en t,. 10-6 

displacement compiler timitP 10-10 
DISPLAY statement• 5-6. 7-56· 7-115,. 7-122. 8-3P B-14 

figurative constant• 2-9 
SPECIAL-NAMES paragraph,. 5-6 
i•perative statement" 7-4 

DIVIDE statement, 1-57,. a-14,. B-15 
COMPUTE statement• 7-50 
conditional statements• 7-3 
i•perative statement• 7-4 
SIZE ERROR phrase• 7-57 

DHCATEGORY attribute, 9-7 
OMERROR exception 9-7,. 9-8 
DHSTATUS attribute• 9-7 

DONTEACKUP attribute• 8-5 
DONTCARE attribute• 8-5 
DOUBLE option, 11•5 
DOWN BY phrase• 7-106• 6•21 

1108883-00 I 5 

I 

I 



I 

I 

6 

B 1000 Systems COBOL 74 Reference Manual 

INDl:X (Cont) 

OUPLICAT£S exception• 1-a, 9-10,. 9-14• 9-17, 9-23 
DUPLICATES phrase. -5-16,. 5-19 

EBCDIC• 5-5, 8-G, B-2 
EBCDICLABEL attribute• 6-6 

ellipsis• 2-2 
ELSE NEXT SENTENCE phrase• 7-63 
ELSE phrase• 7-&J, B-15 

ENABLE statament• 7-59, 10•6,. 9-15 
USE FOR DEBUGGING statement. 10-6 

END DECLARATIVES. 1-1, B-10 
END KEY clause• &-53, S-9 
END-OF-PAGE Qhrase7•126• B-25 
ENO-TRANSACTION statement• 9-7, 9-14, 9-19• B-27 
Environ•ent Division~ 5-1, 1-12e, 8-1 

EOP phrase. 7-126• B-25 

EQUAL• 1-99, 9-G 
E QU Al I 0 • 8 - 2 
EQUAL TO relation, 7-lB 
EQY • 11-3 

ERRUR KEY clause. 6-57~ S-10 
ERROR PaOCEOURE· 1-12s~ B-25 

EXCEPTIO~ PROCEDURE. 1-12s. a-zs 
exception type• 9-7 
EXIT PROGRAM statement~ 7-61, B-15 

CALL statement• 7-42 
CANCEL statement• 1-4~ 

EXIT statamant• 7-GO. 9-15 
imperative statement• 7-4 

explicit attributes, 2-23 
explicit Procedure Civisior references• 2-22 
explicit specifications. 2-22 
ex~licit transfers of control• 2-z2 
EXTEND phrase. 7-79. 7-125• 9-1 P 
external fite-naMe• 11-3 
EXTMO£E attribute• 8-2,. 8-6 

f AT AL ER R 0 R e x c e pt io n • 9 -8 • 9 - 1 0 t hr u 9- 1 3 , 
9-15 t hr tJ 9-21. 9-23 

ro. 6-24· a-s 
fEOLEVEL option. 11-7 

figurative constant• 2-8 
FILE ATTRIBUTES. 8-1 

alphanumeric attribute-names• 8-1 
CHANGE statement• 8-3 
FILE ATTRIBUTE l[,£NTIFI£R,. ::3-1 
FILE ATTRIBUTE-NAME OESCRIPT10NS. 8-5 
•ne•onic attribute-names. B-2 
nu•er ic attr ibute!-name S• 3-1 
VALUE Of clause• 8-4 

file description entry. &-4 
file Section6-3. 7-126. 9-2, B-4 
FILESTATE attribute• 8-2A• 8-7 
FILE STATUS clause. 5-12, 5-ta. 7-127• B-3 
FILE-CONTROL Paragra1ph• 5-17• 8-1, B-2 
f:ite-na11e. 2-6 
fllEKIND attribute• a-2, 8-6 
flLESECTION attribute• 8-1. B-6 



1108883-00 I 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

selection expression .. 9-4 

FIRST,. 7-64,. 9-4• 9-5,. B-16• E-26 
FIXED attribute• 8-5 
fixed portion, 1-1 

FLEXIBLE attribute• 8-2,. 8-6 
FOR, 1-115• 7-121 
for•at punctuation. 2-2 
f ORWARD,. 8-6 

FRAHESIZE attribute• 8-1, 8-5, 8-6• 8-7 
FREE state•ent• 9-8,. 9-11• 9•12,. 9-14, 9-16 
FROM• 7-84• 7-95,. 7-97, 7-104• 7-118• 7-126,. 9-21• io-5,. e-u 
Gen er a I. i z e d S el e c t i on E xp r e s $ io n,. 9 - 6, 9- 6 A 
generated code• 11-1 
generic terms. 2-1 

G .l V I NG p hr a s e ,. 7- 5 7 ,, 1- 11 • 7- 10 8 , T-1 18 ,. B- 1 2 • B- 2 2 
ADO statement• 1-11 
DIVIDE statement• 7-57 
~ERGE statement• 7•71 
MULTIPLY state~ent• 7•78 
SORT statement .. 7-108 
SUBTRACT statement• 7-118 

G l o s s ar y ,. D -1 

GO JO statement• 7-62,. 1-101,. 1-110,. 10-5,. 8-15 
ALTER statement• 7-40 
imperative statement• 7-4 
MERGE state•ent• 7-73 
PEfifORH statement• 1-~9 
SEARCH statement,. 7-101 
SORT statement• 7-110 
USE FOR DEBUGGING statement• 10-5 

GREATER THAN relation, 7-18 

HEADER• 5-10 
hexadecimal literals, 2-1·1 

HIGH-VALUE• 5-6 
HOSTNAHE• 8-1, 8-8 

I-O phrase• 7-79,. 1-112,. 1-125,. e-18 
I-0-CCNTROL paragraph, 5•21• E-t,. B-4 
I-O status. 5-12 

Identification Division• E-1• 4-1 
identification field• 3-4 
identifier• 2-lG 

If statement• 7-63. B-15 
conditional statement• 1-1 
imperative statement• 7-4 

imperative sentences. 7-5 
~i mp er at i v e st at em en t s ,. 7 - 4 
implicit attributes• 2-23 
implicit Procedure Divisior references. 2-22 
implicit specifications• 2-22 
'impUcit transfers of control, 2-22 

7 

I 

I 
I 

I 

I 
I 



8 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

IN Qualifier connective, 1-121. 8-2, 8-3, 9-2, 8-26 
incompatible data, 7-31 
independent segm~nts .. !-7 
index data items relation conoi ti on• 7-20 
index-name .. 2-1 
index-names compiler limit,. 10-11 
index-names relation condition .. 7-20 
INDEXED BY clause• 6-19• 6·2&• 7-too. 7-106• B-7• 0-10 
INDEXED FILES, 5-9, 7-12~ 
indexing .. 2-21 
indicator area. 3-t 
INITIAL clause, &-5&, 7-54, ~-9, B-16 
in i ti al values" 6 -5 o" 6 -5 3 
INITIALVALUE., 9-12 
INPUT, 7-59., 7-79, 7-112• 7•125 
input f i l es• 11-1 
I NP UT P R 0 C E CU RE p hr a s e • 7 - 1 0 '3 , F.- 2 2 
INPUT-OUTPUT, 7-127 
Input-Output S~ction• 5-9. 8-4• e-t~ B-2 

indexed I/O• 5-9 
relative 110. 5-9 
sequential l/Q, 5-9 
sort-merge, 5-10 

INSERT statement .. 9-8, 9-1r. 9-19, B-27 
INSPECT statement, 7-63, E-15 

imperative statement• 7-4 
overlapping operands, 7-30 

INSTALLATION. 9-1 
integer option• 11-& 
INTEGAITYERROR exception• 9-B, 9-to, 9-12• 9-13, 

9-14,. 9-t5. 9-18. 9-23 

intermediate data item• 7'-17 
internal file-name• 11-3 
INTN~HE a~tribute .. 8-1• 8-6 
INJU, 7-57, 7-90,. 7-94., 7-96• 7-115• 7-121• 9-17 
INTfiINSICFILE attribute, 6-6 
INUSE exception• 9-6. 9-13 
INVALID KEY condition• 5··16• 7-54, 7-90. 1-97,. 

7•112• 7-12&• 10-5, B··u, E-19, a-22, S-26 

INVOKE phrase• 9-2. 8•26 

IOEfiROR exception. 9-8· 9-10 thr~ 9-21, 9-23 

IPC para11eters compiler l in~it• to-to 

JS,. s-5, 8-2 
IS > relation. B-22 
IS = relations-20. 0-22 
IS EQUAL TO relation,. 7-~>9.a~ 1-112,. B-22 
IS GREATER THAN relation~ 7-112• B-22 
IS NOT < relation• B-22 
IS NOT LESS THAN relation, 1-112, B-22 
IS NOT relation. 7-112 

J US TI F IE D c l au s e • 6 - 1 9 • C. - ;'. h f:J - 7 

KEY· 7-59,. 1-11. 7-90,. 1-100. 1-1oa,. 7-112, B-17 
KEY COHCITION, 9-6 
Key Words, 2-1. 2-8 
KEYCHANGED exception• 9-9, 9-10• 9-14• 9-23 

KIND attribute• a-2. 8-6 

LABEL attribute, s-2, 8-& 
LABEL RECORDS clause' 6-4P 6-tt. 8-5 

OMITTED• 8-5 
STANDARD option. B-5 



1108883-001 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

l anguaqe concepts, 2-1 
LAST,. 9-4# 9-5,. B-26 
LASTR£CORO attribute• 8-t. 8-7 

LEADl~G,. 7-64,. B-16 
LEFT• 8-7 
LESS THAN relatjon• 7-18 
Level-Numbers ... 2-2, 2-14• 6-24 
tevels. 2-13 
levels data description concept~• 2-14 

LIBNARY Clll ootion• 11-2 
LIBRDOLLAR option,. 11-5 

LIMITERROR exception• 9-B, 9-10• 9-14, 9-17• S-23 

LINAGE clause. 6-4, 6-12• 7-126• e-s 
general rules. 6-14 

LINAGE-COUNTER. S-161 G-15 
LINE• 1-104• 7-126• 8-21 
LINES,. 7-104• 7-126,. B-21• B-5 
LINES AT BOTTOM clause. G-4,. 6-12,. B-5 
LINES AT TOP clause. 6-4• 6-12• E-5 
LINES WITH FOOTING clause,. 6-4 
Lin~age Section• 6-52• a-4,. 3-9 

linkage records• 6-53 
noncoritiguous linkage storage. 6-53 
structure• 6-52 

LISTl option• 11•5 
LIST option• 11-5 
LISTDELETEO option• 11-5 
LISTOOLLAR option• 11-5 
LISTOMITTEO option• 11-5 
LISTP option, 11-s 
literats. numeric and nonnu~eric• 2-10 
literals, hexadecimal• 2-11 

LOCK phrase• 7-79 
LOCK stateNent• 9-5,. 9-a. 9-12. 9-13, 9-16. 9-ta, 

9-22• 8•27 
selection expression. 9-4 

logic at record and file concept S• 2-13 
LOW-VALUE, 5-6 

HAP option. 11-5 

mass and non-mass storage files• 7-127 

HAXCE~sus. a-2. 8-8 
HAX~ECS1Z£ attribute• 8-1,. 8•6• 6-7 
HAXSUBFILES, 6-2• 8-8 

HCP• 11-2 
MCSRE.tWJE, 6-65 

MEMORY.• 7•108 
HEHCflY SIZE clause• 5-4, B-t. 9-22 
MERGE option• 11-6 
MERGE statement, S-&,. 5-17• 7-71, 1-109,. 7-127• 

8- 4 • 1 O- 7 • B- 3,, B- 17 
i•~erative statement• 7-4 
OPEN stateMent• 1-19 
USE FOR DEBUGGING statement• 10-6 

MESSAGE COUNT clause• 6-56,, U-9. B-11 
MESSAGE DATE clause• 6-55, B-9 
ME~SAGE INTO clause. 7-94• B-19 
MESSAGE TIME clause. 6-55,. B-9 

9 



I 

I 

I 

10 

B 1000 Systems COBOL74 Reference Manual 

INIOEX (Cont) 

HIN~ECSIZE attribute" B-l /1 8•611 8-7 
miscellaneous compiler control cptions• 11-7 

mnemonic-name" 2-1 

MODULES" 5-4 
HOVE CORRESPONDING CMOVE CORR> statement• 9-3 
HOYE statement. 6-811 1-11. 1-123, B-17 

CORRESPONDING CCORR> phrase" 1-29, 7-74 
i•perative statement• 7-4 
overlapping operands. 7•30 

•ulti•fite-id• B-13 
multiple results in arithmetic 
MULTIPLY state•ent11 7-78• E-17 

conditional statement• 7-3 
imperative statment• 7-4 
aultiple results• 7-30 
SIZE ERROR phrase• 7-28 

MUSTBACKUP attribute" S-2A11 fJ-5 

MYHOSTNAME attribute• 8-t. 8-9 
HYNAME, 8-1, 8-9 
HYUSE11 8-2A,. 8-9 

statements,. 7-30 

NATIVE alphabet-name" 5-). B-2 

negated co•bined conditions" 7-23 
negated simple conditions" 7-23 
NEGATIVE arithmetic-expression• 7-22 
NEW option, 11-G 
NEWfILE attribute, 8-2, 8-7 
NEWIO option• 11-6 
NEXT. 7-90, 9-4, 9-5, 9-&,, 9-8,. 9-1911 B-26 
NEXT SENTENCE phrase" 7-63• 7-99, B-15, B-20 
NEXTRECORO attr 1bute• 6-t • 8-7 

NO CATA phrase. 7-94, 10-6• 8•19 
NO-AUDIT clause• 9-to. 9·14• B-27 
noncontiquous working-storage. f-49 
nonnumer~c literal option. 11-6 
nonnumeric literals" 2-10 
NORECGRD exception• 9-6, 9-13, 9-15, 

normal Boolean options• 11-5 
NOT combined/complex conditions• 7-22 
NOT EQUAL TO relation. 8-2 
NOT relation. 6-2, 11-1, 
NOT relational oper~tor• 1-11 
NOT siqn condition" 7•22 
NOTFOUNC exception• 9-6, 9-13, 9-1511 9-18• 9-21 
NOT LOCKED exception• 9-9. 9-l 011 9-l 4• 9-23 
nouns. 2-6 
N 0 WA IT , 1-45 , 7 - 4 9 ,. 7 - 90 " 7- 9 3 " 7 - 13 0 " B -1 3 • 

B-19• B-126 

NULL• 9-7. 9-12. 9-zo 
nu 11 er i c l it er al s • 2 ... 1 O 
NUMERIC test• 7-20 

0 BJ EC T- C 0 MP UTE R p ar a1 gr a p h 5 -4 , E-1 

OCCURS clause~ 6-19~ 6-2&, 7-101• 7-107, 10-411 B-7 
USE FOR DEBUGGING statement• 10-4 

OCCURS value compiler limit• 10-10 

oor. s-6 
OOT-INPUT-PRES£NT11 7-126, 8-25 



1108883-001 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

Of qualifier connective• a-2. 8-3. 9-2, B-26 
Off STATUS clause. 5-5. B-2 
OFFER• 7-79, 7-82, E-18 
OFFERED attribute• 8-2A• 8-7 
Off SET tune ti on. 7-31 

OHIT o~tion .. 11-6 
OMITTED attribute• 8-6 

ON E~fiOR option, 7-71, 7-106 
ON EXCEPTION phrase. 7•1251 9-10 thr~ 9-22• B-25• B-27 
ON OVERFLOW phrase• 1-115, 1-121, B-24 
ON SIZE ERROR phrase, 7-50,. 7-57,. 1-78• 7•118 
ON STATUS phrase• 5-5, B-2 

OPEN,. 7-112,. 10-5 
o PEN attribute,. a -2,. a-1., 8 -1 
OPEN INQUIRY statement• 9-19, 8•28 
0 PE N st a t e 11 e n t ,. 1-7 9 ,. 9 -1 9 

CLOSE statement .. 7-48 
i•perative statement• 7-4 
LINAGE clause• 6-14 
~£AD statement• 7•91 
REWRITE statement• 7-97 
START statement• 1-112 
USE FOR DEBUGGING statement• 10-S 
WRITE statement• 7-120 

OPEN UPCATE statement• 9-19- 8•28 
OPENEC attribute• 8•2A• 6-7 
OPENERROR excptn• 9-9• 9-to, 9-12 thru 9-21, 9-23 
operands .. 7-19 
operations on data items• 9-·-~ 
operations on structures. 9-·J 
OPTIONAL attribute, 8•2• 8•7 
OPTIOhAL phrase. s-19, B-3 
optional words, 2-1. 2-8 
opt ions. 11-3 

OR• 7•121,. .11-3 
abtreviated combined relatio~ conditions .. 7-25 
combined/complex conditions .. 7-22 
negated combined conditions .. 7-23 

organization• 5-10 
ORGANIZATION IS INDEX£0 clause, 5-ta, B-3 
ORGANIZATION IS RELATIVE clause. 5-ta. B-3 
ORGANIZATION IS SEQUENTIAL clause. s-1a. B-3 

OTHERUS[,. 8-2A• 8-9 

OUT clause• 5-5, B-2 
OUTPUT,. 7-59,. 7-79, 1-125, 7-127 
output files. 11-1 
output listngs. 11-1 
OUTPUT PROCEDURE• 7-71• 7-108, P-17• B-22 

OVE~FLOW phrase. 7-115• 7-121• El2• e-23, B-24 
CALL statement• 7-41 

overlapping operands .. 7-30 

•pt PICTURE symbol• 6-29 

PAGE• 7-104 .. 7-126• B-21• 8·25 
PAGE option• 11-G 
paragraph-name .. 2-7 
gar agraphs• 7-& 
PARITY attribute, e-2. 8-7 

I 

I 

I 

I 

11 



I 

I 

12 

B 1000 Systems COBOL74 Reference Manual 

INDE>C: (Cont) 

PERFORM· 1-110. 10-5. a-1a. B-19 
PERFORM statement, 7-83 

imQerative state~ent• 7•4 
USE FOR DEBUGGIN1G ·state11ent"' 10-5 
USE statement• 7•125 

physical aspects of a file• 2-1~ 

PICTURE CPIC> clause• 6-29• 1-21, 1-122, B-7 
editing rules• &·lJ 
general rules• 6-3j 
precedence rules. 6-.H 
syntax rules• &-33 

POINTER• 7•115• 1-121~ B-24 
POP• 11-3 
port files• 7-49, 7-79, 7-82• 7-90A, 7-93, 7-126C, 

1-1 :rn, 8-6. B-3, 0-15 

lP OS IT IVE, 1-2 2 

PRICR• 9-4, 9-5. 9-8, 3-26 
Procedure Division. 1-1. 1-109. 9-2· 10-9 
PROCEtURE DIVISION USING phrise. 8-10 
Procedure Division bodv• 7-2 
Proceoure Divis ion header• 1-2, 7-13 
Qrocedure-names comgiler limit• 10-10 
PROCEED TO phrase• 6-12 
PR06RAM COLLATING SEQUENCE clause, 5-4. 7-1121 B-1 
progra• divisions• 1-1 
program organization,. 1-1 
orogram segments• 1-1 
PROGRAM-ID. paragraph• 4-1, B-1 

pseu~o-text" B-13 

ounctuat ion• 3-4 
PURGE• 7-71,. 7-108• 8•22 
PURGE ON ERROR clause, 7-71, 7-108 

qualification- 2-18,. 9-3 

queue file, 5•101 7-90A• 7•91• 1-93,. 7•126C• 
1-121,. 1-129. r-130. a-2e,. a-3. G-1 

qu~ue file family· s-10 
queue file program example" r-1 
Q-Emptv• S-14, 5-15 
Q-futl. s-14. 5-15 

REAO,. 7-103• 10-5 
REAC statement• 1-90,. T-llJ 

CLOSE statement,. 7•48 
DELETE statement. 7-54 
OPEN statement. 7•80 
REWRITE statement• 7-8 0 
USE FOR DEBUGGING statement• 

REAC-OK,. 7•126,. B-25 
REACOhLY exception• 9-9,. 9-10,. 

RECEIVE• 10•6 
RECEIVE statement• 7-94,. E-19 

10-5 

USE FOR DEBUGGING stat e•ent. 10-6 

receiving data item,. 6-23 
RECORD. 7-90, 7-96• 7•103 
RECORC attribute" 8-1,. 6-7 
record concepts• 2-13 
RECC~C CONTAINS clause. G-4,. 6-t6,. B-5• B-& 
RECORD KEY clause~ 5-10• S-13• 5-19~ 7-113• B-3 
r e c or d - d e s c r i gt j o n- e n t r y • B -r. 



1108883-001 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

rec or o•name,. z-6 
RECREATE statement• 9-lZ• 9-16• 9-18• 9-20• 9-22• B-28 
REDEFINES clause• 6-19, G-21• &-38• B-7 
referenced field length co•pi ler li11it• 10-10 
RELATIVE FILES, 7-130 
RELATlVE KEY clause. 5-18. s-19,. B-3 
Relation Conditions• 7-18 
RELEASE, 7-45, 7•71• 7-108 
RELEASE statement• 7-95. B-2G 

imperative statement• 7-4 

REHAINOER phrase• 7-57, a-15 
remote files• 5-10, s-19,. a-3,. c;-1 I 
remote fil~ program example• F-1 
REMOVE statement• 9-B,. ~-19, 9-?.1,. B-28 
RENAMES clause, 6-20,. 6-40• 3-8 
REPLACING phrase• 7-51• 7-64~ a-13,. B-16 
required headers• 1-2 
RESERVE AREA/AREAS clause. 5-17• B-3 
reserved words• 2-8,. A-t 
RESET,. 11-3 
RETUR~ state~ent• 7-96. 7-110 

conditional statements• 1-3 

REVERSE, 8-6 
REVERSED• 7-79, B-16 
REW INC,. 7•79 
REWRITE statement• 7-97,. 10-5. P-20 

OPEN statement• 7-80 
USE FOR DEBUGGING statement• 10-6 

RIGHT• B-7 
right margin• 3-3 

ROUNDED phrase. 1-za. 1-37,, 7-5 c, 1-57., 1-1a, 
7•118• B-11 

RUN phrase. 1-114, B-22 

•s• PICTURE symbol• 6-29 

SAHE AREA clause,. B-4 
SAME RECORD AREA clause .. s-21,. 7-127• B-4 
SAHE SORT AREA clause• 5-21• E-4 
SAHE SORT-MERGE AREA clause• 5-21, B-4 
sample coding• 1-4 
SAVE,. 7-71,. 7-108 
SAVE OQtion. 11-2 
SAYEFACTOR attribute• a-1. 8-7 

SO. 6-5. 6-24• 7-109• B-G 

SEARCH statement• 7-99,, B-20 
conditional statement 7-3 

SECTION. a-10. a-11 
section priority number. compiler limit• 10-10 
section-na•e• 2-7 
sections• 7-6 
SECURITY paragraph• B-1 

ER~OR exception. 9-9. 9•19 

SECURITYTYPE attribute• ~-2A• 6-9 
SEEK statement• 7•103• B-21 
segment numbers• 7-9 
SEGMENT-LIMIT• 5-4,. 7-to. B-1 
seg•~nt-nu•ber. B-10 
seq•entation• 7-7 
segaentation classification, 1-e 
seg•entation control• 7-8 
SELECT clause, 5-17• B-3 

I 

13 



I 

I 

14 

B 1000 Systems COBOL 74 Reference Manual 

INOl:X (Cont) 

selection-expression• 9-4 
SEND• 10-6 
SENC statement• 5-1;,. 7-1()4,. B-21 

SPECIAL NAMES f;uagrapti,. 5-5 
USE FOR DEBUGGING statement. 10-6 

sending data ite•• 6~23 
SEPARATE CHARACTER clause, &-19,. 6-42,. B-7 
s e p ar at or s, 2 - 4 
SEQCHECK OQtion• 11-G 
SEQUENCE• 7-71,. 7-106 
sequence area. 3-1 
SEQUENCE optio~,. 11-6 
SEQUENTIAL FILES• 7-12? 
SERIALNO attribute,. 8-t,. 8-7 
SET• 11-3 
SET option• B-21 
SET overlapping operands• 7-30 
set selection expr1es~sion,. 9-5,. e-26 
SET statement. 7-106 

i•perative statement• 7-4 
overlapping operands• 7-30 
SEARCH statement~ 1-101 

SHUTTINGDOWN,. 8-2A, 8-7 

SIGN clause• 6-42• 1-21 
sign condition. 1-22 
SIGN IS LEADING clause• &-19,. B-7 
SIGN IS TRAILING clause. 6·11,. E-7 

simple conditions. 1-1~ 
si•ple header. 5-10 
simQle ker conditon• 9-& 
SIZE ERROR phrase. 1-23,. 1-31,. 1-16. 1-101. 7-11a. 

e-11. s-14. s-15,. s-11. a-24 
con di t i on a l stat e 111 en t,. 7 - 5 

SIZE phrase• 7-116• 8-23 

SORT statement• 5-t&,. 5-17,. 7-10 e,. 1-127,. 8-4• 
10-7, B-3. B-22 

imperative statement,. 7-108 
OPEN statement• 7·7~ 
seg•entation. 7-7 
USE FOR DEBUGGING stat emenh 10-6 

Sort-Herge file descriotio~ entry .. 6-5 
source images compiler limit• 10-10 
source progra•• 11-3 
SOURCE-COMPUTER pa 1raqraph • 5- 3., 10- 3, B-1 

special registers,. 2-10 
special-ch~racter words. 2-10 
SPECIAL-NAMES paragraph,. 5-5,. B-1, B-2 

switch-status c~nditian .. 7-21 

SQecific verb formats,. 7-33 
STACK SIZE clause• 5•4• B-1 
STANOARD-1 phrase. 5-5,. B-2 
STA~T statement• 1-112,. 10-s~ B-22 

OPEN statemen~ .. 7-80 
RE.AD state11ent• 1-113, 7-90 
USE FOR DEBUGGING statement• 10-7 

STATISlICS option" 11-& 
Status Key 1,. 5-12 
Status Key 2, 5-13 
STATUS KEY clause. 6-56. 6-57· 1-105, 9-9, s-10 



1108883-001 

B 1000 Systems COBOL74 Reference Manual 

INDEX (Cont) 

STOP state•ent• 1-114 
figurative constant. 2-8 
imperative statement• 7-4 

STORE state•ent• 9-12• 9-18• 9-19• 9-22• B-28 
STRING overlapping operands. 7-30 
STRING statement• 1-115• B-23 

figurative constant• 2-8 
imperative state•ent• 7-4 
overlapping operands• 7-30 

SUBFILE• D-19 
subscri~ting. 2-20 
SUBTRACT statement• 7-116• B-23• B-24 

CORRESPONDING <CORR) phrase. 1-2a. 7-118 
imperative statement• 7-4 

SUMMARY option. 11-7 

switch-name. 5-:> 
switch-status condition• 1-21 

SYMBOLIC DESTINATION clause. 5-57. e-10 
SYMBOLIC QUEUE clause. 6•56• E-9 
SYMBOLIC SOURCE clause. G-56. B-9 
SYMBOLIC SUB-QUEUE clause. B•9 
SYMBOLIC SUB-QUEUE-I• G-56 
SYMBOLIC SUB-QUEUE-2• 6-56 
SYMBOLIC SUB-QUEUE-3• 6-56 
SYNC clause. 6-44• 9-14• B-27 
SYNCHRONIZED CSYNC> clause. G-19• 6-44, B-7 
SYNTAX option,. 11·2 
SYSTE~ERROR exception. 9-9, ~-19 

TAG-KEY1 7-1oa. B-22 
TAG-SFARCH· 1-1oa .. e-22 
TALLYING chrase• 7•64• 7•121• B-16• B-24 
terminal paragraphs compiler li1it1 10-10 
lER~INAL phrase• 7-59,. e-14,. B-15 
TEXT LENGTH clause• 6•56• 6-57• B-9· B-10 
THROUGH CTHRU>· 5-5,. 1-11, 1-a1. 7-a4,. 7-108 .. 0-2. B-6 

TIME,. 7-34,. B-11 
TIMER• 7-34• B-11 
TIMES, 6-57• 7-83• B-7 
TITLE attribute• a-1,.·s-4, a-a 
ro. 1-106,. e-1 
TODAYS-DATE. 7-34,. B-11 
TODAYS-NAME, 7-34,. B-11 

TRANSLATE attribute .. a-2A. a-11 
translate table• G-9 
TRANSLATE/ASCII f ite• G-9 
TRANSLATING attribute• 8·2A• 8-11 
translation. 6-9 

unigue PICTURE Strings compiler 
UNSTRING statement7-121, B•24 

figurative constant• 2-8 
imperative statement, 7-4 
overlapping operands• 7•30 

UNTIL phrase. 1-a3,. 7-64• to-s. 
UP SY phrase• 7-106• B-21 
UPDATE,. 9•7 
UPDATEf IlE attribute• 8-2, 8-8 
UPON phrase• 7-56. B-14 

limit• 10-10 

s-1a. 0-19 

15 

I 

I 

I 



I 

I 

16 

B 1000 Systems COBOL74 Reference Manual 

INIDEX (Cont) 

USAGE IS COMPUTATIONAL clause, 6-19, 6-45• B-7 
USAGE IS DISPLAY clause• 6-19, 6-45• B-7 
USA GE IS INOEX clause. G·· 1'9 • 6- lt5• 1-100, B-7 
USE AFTER phrase• 7-125 
USE FOR DEBUGGING state•ent• 1-14, 10-4• 10-5, B-11 
USE statement• 7-125• B-25 

AFTER STANDARD ERROR PROCEDUPE clause. 7-125 
AFTER STANDARD EXCEPTIO~ PROCEDURE clause. 7-125 
coapiler-directing statements• 7-4 
de,ctarative stateaent111 t-14 
DELETE statement• 7-5.r. 
INVALID KEY condit ion111 5-t 6 
READ· statement• 1-9z 
REWRITE state•ent• 1-~1 

USEDATE attribute• s-1. ~-8 
user defined options. 11-4 
USING ~hrase• 7-71• 7-103, B-17 

•v• PICTURE sy•bol· 6-29 

YALllE clause. 6-19• 6-41• B-8 
VALUE Of clause, G-5, 6-17• 6-4• B-6 
VALUE Of TITLE attribute• 8-4 
VARIABLE attribute• 8-5 
VARYING phrase. 7-84· 7-99, to-~. B-19· B-20 

verbs• 2-7, 7-32 
VERSIONERROR exception• 9-9, 9-19 

VIA,. 9-1.., 8-Zf> 

VOID option. 11-7 
VOLUME INDEX attribute, 8-1 • S -s 
WAIT statement• 7-1Z6• B-25 

WARNfATAl option• 11•7 
WARNSUPP option• 11-7 

WHEM• 1-99• 7-101• B-20 

WHERE, 9-zz 

WITH. 7-104 
WITH CE8UGGING HOOE• 10-3, B-1 
WITH CUPLICATES clause. 5-ta. B-3 
WITH EHi clause. 7-104• B-21 
WITH FOOTING AT clause&-4, e-s 
WITH KEY clause• 7-59 
WITH LOCK ACCESS phrase• 7-79, f-18 
WITH NO REWIND phrase. 1-79,, E-18 
WITH POINTER phrase• 7-115• 7-t?t. B-ZJ• B-24 

word• 2-6 
WORDS, 5-4 
WORKING-STORAGE records• 6-50 
WORKING-STORAGE section- 6-49, 9-2, B-4• B-8 

WRITE statement• 5-6. 7-103. 1-126. 10-5, B-26 
conditional statment~ 1-3 
i•perative ~tate•en~- 7-4. 7-lZ& 
INDEXED FILES• 7•129 
CPEN state•ent• 7-81 
RELATIVE FILES~ 7-130 
SEQUENTIAL FILES• 7-1!9 
SPECIAL-HA HES Q.aragr a1p h• 5-6 • 7-126 
USE FOR DEBUGGING state•ent• 10-6 

WRITE-OK• 7-126• B-25 



1108883-00 l 

B 1000 Systems COBOL 74 Reference Manual 

INDEX (C'_.ont) 

•x• PICTURE sr•bol, &•29 
XREF option~ . t-7 
XSEQ option• 11-7 

YOUl~AME• 8-1• 8-11 
YOURUSERCODE• 8-1 • 8-H 

ZERO• 7-22 

ZIPSB, 1-41• B-12 
.ep 

17 



Printed in U.S.A. June 1981 1108883 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-10a
	05-10b
	05-11
	05-12
	05-12a
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-080a
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-090a
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	07-124
	07-125
	07-126
	07-126a
	07-126b
	07-126c
	07-127
	07-128
	07-129
	07-130
	07-130a
	08-01
	08-02
	08-02a
	08-02b
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-06a
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-08a
	10-08b
	10-09
	10-10
	10-11
	11-01
	11-02
	11-02a
	11-03
	11-04
	11-05
	11-06
	11-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-12a
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-20a
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-26a
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	E-51
	E-52
	E-53
	E-54
	E-55
	E-56
	E-57
	E-58
	E-59
	E-60
	E-61
	E-62
	E-63
	E-64
	E-65
	E-66
	E-67
	E-68
	E-69
	E-70
	E-71
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	G-03
	G-04
	G-05
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	xBack

