/ Burroughs @

- B 1800/B 1700
Systems

COBOL

REFERENCE MANUAL

k PRICED ITEM
Printed in U.S.A.

uuuuuuuuuu

Burroughs @ \

4)
B 1800/B 1700
Systems

COBOL

REFERENCE MANUAL

B ghs Corporation, Detroit, Michigan 48232

Copyright © 1978 Burrou
PRICED ITEM J
August 1978 1057197

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may

be issued from time to time to advise of changes and/or additions.

This revision incorporates information released under the following:
PCN 1057197-001 (3/8/76)

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. O. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO — West.

Section

3

TABLE OF CONTENTS

FOREWORD ceeeenenns

Burroughs Extensions to ANSI 68 COBOL et et cssseccann e

Acknowledgement

INTRODUCTION ceeees

Advantages of COBOL

Program Organization ,...

LANGUAGE FORMATION

MLl o mmcm o b ~ 4
Character Setcc0c0ee

) oo
e e e e e e 0 e oo
s e 0 e 0 e 000 .
e e e s e e e ¢ o
s s s s e . .

Characters Used for Words

Punctuation Characters

e e 0 0 0 000 0

Characters Used in Editing

Characters Used in Formulas

Characters Used in Relations

Definition of Words
Types of Words
Nouns0000000.
Verbs0000.. oo

Reserved Words

e 0 e 0000000 00

Language Description Notation

Key Words ce s e
Optional Words

Generic Terms

BracCes ... ieeeeeieeeeeoeceseoscasecsssoccnnes et e eacns ceee o

Bracketsc.....
Ellipsis ...cceeevunnnn

Period0000..

CODING FORM

e« o o 0 e e e 0 00
L) e s 0 0 0

e o 00 0 oo .
----- « o0 .
.. ¢ 6 0 0 0 0 00

. ¢ e s 0600000000 e e o 0 00
© 6 6 0 0000000000000 o e 000 00
. . e e 06 00000 00 e 6 s 0000000

LRI D] R L)
o . . o ¢ a0 o0 ® 0 06 0 0 e 0 s 00 00

Xv

™
<

»
<

PYYYIIYLRNNY Y ONT %
I
W 0 W W W N NN NH = H = N

- Section

iv

3

TABLE OF CONTENTS (Cont)

CODING FORM (Cont)

Continuation Indicator (Column 7)

Margin A (Columns 8 thru 11) et e s e e

Margin B (Columns 12 thru 72) PR

Right Margin (Column 72)o

Identification (Columns 73 thru 80)

Punctuationcceeeveennrcnnccnnnes e e et eeeeeeas

Sample Codingccccev.e ceessess e

IDENTIFICATION DIVISION cee

General ,.......coc00e0enainnass ceeeeoos
IDENTIFICATION DIVISION Structure

MONITORco0ceceeecannn et eeeccett st aectnaeaean theeeeeaan

Coding the IDENTIFICATION DIVISION
ENVIRONMENT DIVISION0000eeeunen .

General ,,........... tesecseestgeses s

9 ¢ 0 00 0 000000 080000000

ENVIRONMENT DIVISION Organization cete e st e

ENVIRONMENT DIVISION Structure
CONFIGURATION SECTIONco000vveese

SOURCE-COMPUTERc.vvvuenurnns cene

o e s 00 e o s 0 00 . .
o e s e 0 600600000 CEC RN
. . . « e o e 0 8 0 0.

OBJECT-COMPUTER cesetesisiericnonnn ciesececan N

SPECIAL-NAMESc0etivrevecnnsens

INPUT-OUTPUT SECTIONc000uueeuneenneens ceeeen e

FILE-CONTROL.....ovvveveerooeceoeonns

I=0-CONTROLvivieevncececcncnnnnn ceseresesenaaena ceee

Coding the ENVIRONMENT DIVISION

DATA DIVISIONcciiviiennnsnonoenananans I T

Generalcccc0c0ceencctsrtoccccas
DATA DIVISION Organization ,,...........

DATA DIVISION StructuUrevoceeeeeeeeees ceneeae s e se e

File and Record Conceptscoc000000
Physical Aspects of a File,..........
Conceptual Characteristics of a File
Record Conceptsccoevverrnnnnns

s e L N A NI B R]
s e s 8 00000 0 s o0 s
oo R A A .
© o e 0 a0 0000 0 00 e

5-1
5-1
5-1
5-2
5-3
5-4
5-6
5-8
5-9
5-15
5-17

TABLE OF CONTENTS (Cont)

Section Page
6 DATA DIVISION (Cont)

Level Numbers Concept e et e e 6-5
Qualification e e N 6-8

1 ¢ =Y T 6-11
SUbSCripting i i ittt it ittt it et e i i e e e e 6-12

Indexing ettt ettt P 6-14
Identifier e e e e e et e e et et e 6-15

FILE SECTION . ittt tnetttoanneenansoiesasassnonaesnnassnneessses 6-16

FILE DESCRIPTION ...ttt iiinvennsneansonsensesnnenasenssnensanss 6-16

BLOCK i vi it ittt tsennnetennas e e et e e 6-19

DATA RECORDS 4ttt ittt it iettsenanesenneennseaeetoeetnnnnnsass 6-21

FILE CONTAINS et e e e e e e 6-22

LABEL e ettt e e et e e e 6-24

RECORD . iiiiitii s tn ittt tenetentnseestentonesenseeseacensenns 6-25
RECORDING MODEttt ttiinntintenesacsscasnssscaancssnnss 6-26

VALUE OF ID ...v0cevecuccesesnososonssososossosncnssanseasss 627
VALUE OF Q-MAX-MESSAGEScieeetenrecetserssnncaansaess 6731

RECORD DESCRIPTION e ittt e e 6-32
BLANK WHEN ZERO e .. 635
CONDITION-NAME .. \\vvvinrsenneanneeennnnnn B 6-36
DATA-NAME e ettt ettt e e et e 6-39
JUSTIFIED ..,...... e ittt a ettt e e e e 6-40
LEVEL-NUMBER ettt e e et e e e e 6-42
OCCU RS i ittt ittt ittt e taatanneseensneeeeneoneannneneas 6-43
PICTURE ... 't iiiiititnnnneecnnn ittt et et e e 6-48
Categories of Data ettt 6-48
Classes Of Data ...ttt it netneinennesnnnns 6-49
Function of the Editing Symbols 6-50
Editing Rules et e tee et aa et 6-54
Precedence of Symbols e ettt et e e, 6-58

Section

6

vi

TABLE OF CONTENTS (Cont)

DATA DIVISION (Cont)

REDEFINE S &ttt ittt ettt ittt ittt ettt enaeenan
RENAMES .ttt it i ittt ittt it ettt nenenn e
USAGE . ittt ittt ittt ettt ettt e
T2 Y
WORKING-STORAGE SECTION ...ttt ittt ittt ettt eeaneensn
Organization ...ttt i e i e i e i e e
Non-Contiguous WORKING-STORAGEvitiiiriintnnneean.n
WORKING-STORAGE ReCOTdS it v ittt ittt it tntinnononunnnenn
Initial ValuesS vt v it ittt ittt ittt etonannaeasens
Condition-NamesSttt ittt neeeonnenssenesennanans
Coding The WORKING-STORAGE SECTIONcetttivtinnneonnnns

PROCEDURE DIVISTION ..t tvt ittt ittt teeein et entensaennsnas

Statement s ottt e e e e e e
Imperative Statementsttt ittt tennneaeertensas
Conditional Statementsttt enenenas
Compiler-Directing Statementsciiiiiiiiiiriinnnns

TS o o = ¥ ==
Imperative Sentencesttt ittt eet ittt ennaanss
Conditional Sentencesttt innneneieennonas
Compiler-Directing Sentencesttt enennanes
Sentence Punctuationt i e e e
Execution of Imperative Sentencesc..ivi it entnnnnees
Execution of Conditional Sentencesoviiiiiinennnnnn
Execution of Compiler-Directing Sentencescc0c...

CONTROL Relationship Between Procedures'ceeieeeeeennn
Paragraphs .. i e i e e s e e e
ST o v o 4 <

Segmentation ittt i e i e e e e i e e
Program SegmentsSttt ittt e i e e e
Segment Classification ittt

Priority NUMDbersS . it i it s e e

7-5

7-7

Section

7

TABLE OF CONTENTS (Cont)

Page

PROCEDURE DIVISION (Cont)

Declarativestii ittt ittt iseneienneennannanns e 7-13
USE Declarative ...ttt it eeteenetennornerennsennns 7-13
COPY Statement as a Declarativeciitiiiiinennnnn 7-13

Arithmetic EXpPresSSionsS ...ttt it toeeeeeeeeereneennnens 7-14
Arithmetic Operators ...ttt ittt ittt tene it toneesnennennns 7-14
Formation and Evaluation Rulesciiiiiiinneinnennens 7-15

(670 4 Yo B s i I3 ¢ O 7-17
Logical OperatorsSttt innnneeeenerteeeneneannssnnness 7-17
Relation Condition ittt ittt rnnnns 7-17
Relational Operators C e e e e 7-19
Comparison Of OpPerands i v vttt e i i ineeeeeneeoosoeeeeeeenonns 7-19
ST = o T 670 X I 1 v 1Y o 7-20
Class Condition .. .u ittt ittt ittt ettt eenennnnss 7-20
Condition-Name Conditionc.iiiiiitinnnennneneneennens 7-21
Evaluation Rules e e e e e e 7-21
Simple Conditions ...ttt ittt eeeeneeeeesoeerteennnnenn 7-22
Compound Conditions e ettt e et e et 7-22
Abbreviated Compound Conditionscuviiiieiiireenennenns 7-24

Internal Program SwitChes ...t ii it tieeeeeeeeenetneeonnennees 7-26

Statement OptionS .ottt it ittt ittt inesannsnnosnanntenesnens 7-27

Rounded Optionceeveveeeenrennns et N A
Size Error Optionoiiieeeeeerosacannacoencnnns ceves 127
Corresponding Optioncciitnveiinennerocesenoocenns 7-28

= o o1 e et e 7-29
Specific Verb Formatsttt titinnnnnnnneneeoneaeeeeean 7-30
0 55 7-31
) 7-32
1) 7-35
10 170 7-36
COMPUTE & it ittt vttt atensnn s oeatsensasenenassenneeeennnnns 7-41
810 7-42
DI P LAY &ttt it e e e e e e e e 7-46
8) 7-47
DUM P L it i e e e e e e s e e i e 7-49
B B 1 7-50
G 1 752

Section

7

viii

TABLE OF CONTENTS (Cont)

PROCEDURE DIVISION (Cont)

€. T
I
MERGEttt iiitiitttitetnstieeeaneeneennnennenns oo
Syntax Rules c e et et ee st . ce e
General Rules et resseasaaases e
MOVE et e cre et eenans et eesesanaaaannss
Elementary MOV E S Lttt et e e e e e e e
Group MOVES .. ittt it ittt ettt e ettt ettt it et e e it i
Translationttt ettt ittt it nnaanaans
Index Data TtemsSttt ittt ittt otnanenenn
Valid MOVE Combinationst iinmneennnnennnns
MUL T I P LY .ttt e e ettt ettt e e
NOTE &ttt i i e e e e e e e e e
L0)
PERFORM .ttt it e e e e e e
READ L e e e e e e e e e e
RELEASE .ottt et ettt it et e e e,
RETURN . e e e e e e e e e e e e e e e
SEARCH .ot e e e e e e e e
SEEK i e e e e e e e
D
1)
RS 0
SUBT RACT .ottt et e e e e e et e e e et e
TRACE . ittt e e e e e s
LS
L
R I E .ottt e et e e e e e e e e e
/738 1
Coding the PROCEDURE DIVISIONttt
B 1800/B 1700 COBOL READER-SORTER00eenenecnnnconnnssnns
GENET ALl it ittt e e e e e e
Independent Functionsttt et
COBOL Provisions for Reader-Sorter Handling000u..
ENVIRONMENT DIVISION REQUIREMENTS ... ittt i i oo

TABLE OF CONTENTS (Cont)

Section Page
8 B 1800/B 1700 COBOL READER-SORTER (Cont)
DATA DIVISION Requirementsuuuueeeeononoenteeeeeeeeenenen 8-5
PROCEDURE DIVISION Requirements ... i itaeeeetrnannsennneeenas 8-6
CLOSE ... ittt tntiieenensnan e e e e e e et e e e e 8-7
CONT RO .ttt ittt ettt et e eee s i oneanosnoneeseonannnseennneeeeannns 8-8
0 31 g8-10
103 3 T 5 N 5 8-12
1015 8-13
Y N 8-14
L6 8-15
Exception Condition Handlingc. i, 8-16
Reader-Sorter CharactersSttt ittt ittt neetneenns 8-21
Reader Sorter Programming Considerationsocveeeeon. 8~22
Example Program ...ttt itinee oo seeeannnneeeeeneeeensns 8-22
9 DATA COMMUNICATIONS ittt ittt ittt i ittt it i it te e 9-1
LT o> T
Specific Verb Formats ittt ittt ittt ittt 9-1
10 INTER-PROGRAM COMMUNICATION ittt ittt ettt einnnnoennnanannaes 10-1
GeNET AL i i i e e e e e e e e e e e 10-1
MEeSSage QUEBUES vt ittt ittt ittt ittt et as ettt 10-1
11 COBOL COMPILER CONTROL ... ittt ittt ittt it ittt et eaanenannaneenns 11-1
L€ 7Y 4= - T 11-1
Compilation Card Deckttt ittt it ittt e 11-1
2ComPile Card ..ttt ittt e e et e e e e 11-2
MCP Label Card ...ttt ittt ettt eneeneennnessesseneessoeennas 11-2
$Option Control Cardttt ittt ettt eeeenneneennnnens 11-3
Source Data Cardttt ittt i e e e 11-6
Label Equation Cardttt eteneneenoeeaeensennseas 11-7
12 DAT A MANAGEMEN T & ittt ittt ittt et ettt a e 12-1
COBOL Source Program SyntaXttt neeesnneeeans 12-1
IDENTIFICATION DIVISION and ENVIRONMENT DIVISION 12-1

ix

TABLE OF CONTENTS (Cont)

Section

12 DATA MANAGEMENT (Cont)

DATA DIVISION v vttt ittt ettt ittt ennsssssasonensesenonssnaesennsss
Generaliiitiiii i e e e e e e e e e

Data-Base SeCtion ittt ittt entntneeenteeseensenens

PROCEDURE DIVISIONc0000cuses .
13 INDEXED I70 ...ciiieererececensncanans

Introductionceeeeevveecsesonns
Language Conceptscviveeeevnnnss

Organizationcc000000000.

Access Modescveteeeeereeeeseeeccoosososnssasoanaacssoaes

Current Record Pointer
I-0 Status00000. e
Status Key 1ccc...
Status Key 20ievvvenns

Valid Combinations of Status Keys

The Invalid Key Condition cesciaecesaas

The AT END Condition00...

General Implementation Information ..

o 0660000 e s e o 000 . e o 000 00
® 6 0 0 ¢ 0000000000000 0000 ..
@ 6006006009008 0000 e 0 000000000
o s 000008 000 o s s 00 0000 . oo
® 5 06000000000 e o 0o 0 e o s 0 0 0
® e s 000000000 . e
5 6060006000000 000 . @ e 00 000
. @ 06 0000000000000 000000 Oy

Physical Filesiiiitiiineeeinessessassccssssnassnenns

Tag Files s e e s s esesas s

RPG and COBOL Compatibilityciitiiiinnreennennn.

Rough Tables ceseassn
Searching the Tag File
Adding Records to the Files

Environment Division for Indexed I-O

The File—Control Paragraphcceeeieveeoeceencscans ‘e

Functionceieeeeeeeeens
General Format
Syntax Rules0vvieveeenen

General Rules

The File Descriptionce0c..

Function e e e

General Format cesnn

Syntax Rulescveeennenns

s e s 0000
..........
s e e 0000000
"o e 0 e e .
o0 00 s e

oo s 0 00

L R A A B R R R B A A R IR R R B R Y

TABLE OF CONTENTS (Cont)

Section
13 INDEXED I-0 (Cont)

The VALUE OF ClaUSe ...uceetenrusconcsassosascsnsenss e
Function s e s e e e aas et s eseneseeaaoens
General Format ce e e e s ee et
Syntax Rulec.itiiiiiiieeienenoneosasososneesnsns

General RUlEScoieteereeeeoeeceosesoeoonesssoosseas

Function ettt eean cecceet s e es e ceseee N
General Formatc0ivveeunnnan. st e eeree e
Syntax Rulecieetetieeeeeeeeeesoecenesosscsnssce
General Rulesoiiienusoesnesoesonsassoasonsas
The OPEN Statementc00000.. cerececeennn ceeesene
Functiont isnereneacesneseanassannsssens
General Format cer et seeaes
SyNTaX RULE ...t ittt ie ettt eeeeenecessoesooenosnoeceasas

General Rulesciiiiiereeeceacancennnns ce s esana

Syntax Rulesctieieneeeennes Gt et e e s e e e en s e ceee

General RUlLesc.iiiiitieeeneneeeeeeneneanoeeonns

General Format000eeuee s e e e e esereneee
Syntax RUlestiiiiiteieeeenneeeeeeeonnnesnsoecnnns

General Rulesccevveevue s e e e eeaes ceeeeensane

Syntax Rules0'iiitineneeerensceonnsnnescnnns
General RULES¢000tiirevooeeonncnssnnsnnsossanss
The USE Statement cteesssasessceessosseson e
Functioncoiiiiinnnrnnnsoenns e et e

General Formatoietieneveeeneencecneens st
Syntax Rules .,....... e e e e e e s e s e v s emeeses et s s anns

General Rulesovevenee et e e e e e

TABLE OF CONTENTS (Cont)

Section Page
13 INDEXED I-0 (Cont)

The WRITE Statementcc0teeeeeoosvescsonnsosnsssss 1323

' Functionc00eevesevesesecsscnossesnsosssssassssass 13-23
General Formatcc000ueee ceescaanone ceeseseenanses 13-24
Syntax Rulescccvveveecccnas sesessassssesnns veseee. 1324
General RULESccseeiveeosescosncsssasansssasssssss 1324

Appendix A — Reserved WordsSc.eieutevoscsocsossesasssnsansossanss A-1
Appendix B — COBOL Syntax SUMMATYveeoescecseooassnsssosososnsnssns B-1
Appendix C — Compiler Error MeSSAZEScceeaecsvesnosnososacsonsa .o C-1
Appendix D — S-Language ProgramScccocceoeseasssscssoasosssososonss D-1
Table of Contentsc..vieveeneesensnsosoncoasocasssss D-i
Introductioncccecivneevecssoscnsansans seesennns .o D-1
Instruction Setciiiitieriinienonscoesosnocsencasas D-10
Arithmetic Operands and Instructions ceeeens D—-12
Data Movement Operands and Instructionsccce0000.. D-23
Branching Operands and Instructionsco00000004. . D-45
Conditional Branch Operands and Instructions D—-56
Miscellaneous Instructionsoieeeeeineecnnas cees D-63
Alphabetic Indexccceveveeenesnssssns ceraeeesen S D—-68
Appendix E — COBOL GraphicCS ...i.uevevovoensesscseesooensnsososssasosnans E-1

Index0eeeeieeeeesenerocoosoncnsascnses ther e e s e s e ceeeeseeess. Index—1

xii

LIST OF ILLUSTRATIONS

Figure Page
3-1 COBOL COdinNg FOIM auesoseeeeceeeenoenereaoesosossesesnennsess 3-2
3-2 Example of Continuation of Words and Literals ,,,............. 3-5
4-1 IDENTIFICATION DIVISION Codingcvevueensnennnn... . 4
5-1 ENVIRONMENT DIVISION Coding ,...............veveenenennnne..., 518
6-1 Level Number Construction .,,..................... ceiiei... 676
6-2 Concept of Level NUMbers ...,ceveveenenennnannnnnn., 677
6-3 Coding of Multi-Dimensioned Table , , . ., 6 et 6-13
6-4 Coding of FD and DATA RECORDS ., 6718
6-5 Coding of Condition=Name ., ceeereei.... 6738
6-6 Relationship of Class and Category .,00''eeeuuuun.. 6-50
6=7 Permissible Editing Types T
6-8 Examples of RENAMES _oeeevevuuna.... 6765
6-9 WORKING-STORAGE SECTION COding 6773
-1 Valid MOVE Statement Combinations ,,,,............. e, 7-65
7-2 PERFORM Statement Varying One Identifier , s 7-76
7-3 PERFORM Statement Varying Two Identifiers __ v 7-76
7-4 Example of SEARCH Operation Relating to Option 1 __, 7-86
7-5 SET Statement Operand CombiNationSeeeeoeeennsnn.. cee.. 1789
7-6 Coding of PROCEDURE DIVISIONiivvevennnnnnnnnenananaas 77107
8-1 Approved Character FontsSttt et ettt 8-22

11-1 Compilation Card DECK .ot eerecescneoeoeasosessseosoeacasossss 11-1

LIST OF TABLES

Table Page
6-1 Maximum Value of Integers ,.............cevvnievvennerennnaas., 6720
6-2 Recording Modes for Peripheral Devices .,00oeveuunun 6-26
6-3 Editing Symbols and Results , .,cc00ivvneue... 6755
6-4 Order of PrecedeNCe ...,e.oeeuensnsneenneneanennennan, 6759
6-5 Editing Application of the PICTURE Clause ., ,...........0..... 6-61
7-1 Combination of Symbols in Arithmetic Expressions , ,, 7-14
7-2 Relationship of Conditions, Logical Operators,

and Truth Values ., ., A e &

xiii

Tables

7-3
13-1
13-2
13-3
13-4
D-1
D-2
D-3
E-1

Xiv

List of Tables (Cont)

Page
Combinations of Conditions and Logical Operators oo 7-18
Status Key Combinations0... et e e e e s e s et en e 13-4
Tag File and Data File Names s i e s esessessensesesssessan 13-6
File Close Type and Dispositioncecceeeeeeeresesosonssoes 13—12
Permissible Statementsc.iiiieiieenriensncnnnanns 13-15
COBOL Program Layoulccceeeeeessossonscssonssnscssscaas D-2
Special RegisStersceeteesieseossotosssnsssenssssnssnsenss D-2
Editing Constants and Toggles c e e et es e acssesaseeneeans D—-37
Graphics and Related Codes S e et e s et eaeceecanasaeasaeens E-2

FOREWORD

BURROUGHS EXTENSIONS TO ANSI 68 COBOL

Programming applications are written in the COBOL language as specified in this
B 1800/B 1700 Systems COBOL Reference Manual. The source language herein de-
scribed is the USA Standard COBOL, X3.23-1968, to which Burroughs extensions
have been added. Th “ i1k Adi

ACKNOWLEDGEMENT

The information contained in this document is based on the COBOL language
initially developed in 1959 and the updated COBOLGS.

COBOL is an industry language, and as such is not the property of any company

or group of companies, or of any organization or group of organizations.

The authors and copyright holders of the copyrighted material used in this

document,

FLOW-MATIC (trademark of Sperry Rand Corporation), programming

for the UNIVAC (:) I and II. Data Automation Systems, copyrighted
1958, 1959 by Sperry Rand Corp.; IBM Commercial Translator, form
No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760,
copyrighted 1960 by Minneapolis—Honeywell,

have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. This authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar publications.

Any organization interested in reproducing the COBOL report and specifications
in whole or part, using ideas taken from this report as the basis for an in-
struction manual, or for any other purpose, is free to do so; however, all
such organizations are requested to reproduce this section as a part of the
introduction to the document. Those using a short passage, as in a book
review, are requested to mention COBOL in acknowlédgement of the source, but

need not quote this entire section.

XV

No warranty, expressed or implied, is made by any contributor or by the COBOL
committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by
the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedure for proposing changes should be directed to the Executive
Committee of the Conference on Data Systems Languages.

xvi

SECTION]

INTRODUCTION

This manual provides a complete description of COBOL (COMMON BUSINESS ORIENTED
LANGUAGE) as implemented for use on the Burroughs B 1800/B 1700 system. This
concept of COBOL embraces the adoption of the American National Standards
Institute (ANSI) 1968.

ADVANTAGES OF COBOL

The long list of COBOL advantages is derived chiefly from its intrinsic quality
of permitting the programmer to state the problem solution in English. The
programming language reads much like ordinary English prose, and can provide
automatic program and system documentation. When users adopt in-house standard-
ization of elements within files plus well-chosen data-names before attempt-

ing to program a system, they obtain maximum documentational advantages of the

language described herein.
To a computer user, the Burroughs COBOL offers the following major advantages:

a. Expeditious means of program implementation.

b. Accelerated programmer training and simplified retraining requirements.

c. Reduced conversion costs when changing from a computer of one manu-
facturer to that of another.
Significant ease of program modification.
Standardized documentation.

f. Documentation which facilitates non—technical management participation
iﬁ data processing activities.

g. Efficient object program code.

h. Segmentation capability which sets the maximum allowable program size
well in excess of any practical requirement.

i. Due to the incorporation of debugging language statements, a high de-
gree of sophistication in program design is achieved.

j. A comprehensive source program diagnostic capability.

A program written in COBOL, called a source program, is accepted as input by
the COBOL compiler. The compiler verifies that rules outlined in this

manual are satisfied, and translates the source program language into an

object program language capable of communicating with the computer and direct-
ing it to operate on the desired data. Should source corrections become neces-
sary, appropriate changes can be made and the program recompiled. Thus, the

source file always reflects the object program being operationally executed.

PROGRAM ORGANIZATION

Every COBOL program must contain these four divisions in the following order:

IDENTIFICATION
ENVIRONMENT
DATA

PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition, the program-
mer may include such optional pieces of information as the date compiled, and
programmer's name for documentation purposes. This division is completely ma-

chine-independent and thus does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains
computer descriptions and deals, to some extent, with the files the pro-

gram will use.

The DATA DIVISION contains file and record descriptions describing the data
files that the object program is to manipulate or create, and the individual
logical records which comprise these files. The characteristics or properties
of the data are described in relation to a standard data format rather than

an equipment-oriented format. Therefore, this division is to a large extent
computer—independent. While compatibility among computers cannot be absolutely
assured, careful planning in the data layout will permit the same data de-

scriptions, with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies the steps that the user wishes the computer
to follow. These steps are expressed in terms of meaningful English words,
statements, sentences, and paragraphs. This division of a COBOL program is
often referred to as the "program'" itself. In reality, it is only part of

the total program, and is insufficient by itself to describe the entire pro-
gram. This is true because repeated references must be made (either explicitly
or implicitly) to information appearing in the other divisions. This division,
more than any other, allows the user to express his/her thoughts in meaningful
English. Concepts of verbs to denote actions, and sentences to describe pro-
cedures, are basic, as is the use of conditional statements to provide alter-

native paths of action.

1-2

A program written in COBOL, called a source program, is accepted as input by
the COBOL compiler. The compiler verifies that rules outlined in this manual
are satisfied, and translates the source program language into an object pro-
gram language capable of communicating with the computer and directing it to
operate on the desired data. Should source corrections become necessary,
appropriate changes can be made and the program recompiled. Thus, the source

file always reflects the object program being operationally executed.

SECTION 2

LANGUAGE FORMATION

GENERAL

As stated in section'l, COBOL is a language based on English, and is composed
of words, statements, sentences, paragraphs, etc. The following paragraphs
define the rules to be followed in the creation of this language. The use of
the different constructs formed from the created words is covered in subsequent

sections of this document.
CHARACTER SET

The COBOL character set for this system consists of the following 53 char-—

acters:
0-9 . period or decimal point
A-2Z ; semicolon
blank or space " quotation mark
+ plus sign (left parenthesis
- minus sign or hyphen) right parenthesis
* asterisk > greater than symbol
/ slash (virgule) < less than symbol
= equal sign : colon
$ currency sign @ "at" sign

, comma

Characters Used for Words

The character set for words consists of the following 37 characters:

0-9
A-7Z
- (hyphen)

Punctuation Characters

The following characters may be used for program punctuation:

@ "at" sign space or blank
" quotation mark . period
(left parenthesis s comma (see note below)
) right parenthesis ; semicolon
NOTE

Commas may be used between statements,
at the programmer's discretion, for
enhanced readability of the source
program, Use of these characters
implies that a following statement is

to be included as a portion of an entire

statement.

Characters Used in Editing

The COBOL compiler accepts the following characters in editing:

$ currency sign + plus
* asterisk (check protect) - minus
, comma, CR credit
period DB debit
B space or blank insert Z Zero suppress

0 zero insert

Characters Used in Formulas

The COBOL compiler accepts the following characters in arithmetic expressions:

+ addition *k exponentiation
- subtraction (left parenthesis
* multiplication) right parenthesis

/ division

Characters Used in Relations

The COBOL compiler accepts the following characters in conditional relations:

equal sign

less than symbol

A

> greater than symbol

DEFINITION OF WORDS

A word is created from a combination of not more than 30 characters, selected

from the following:

A through Z
0 through 9
= hyphen

A word is ended by a space, or by a period,
not begin or end with a hyphen, A literal ceonstitutes an exception to these
rules, as explained later.)

Types of Words

COBOL contains the following word types:

a. Nouns.
b. Verbs.
c. Reserved words.

Nouns are divided into ten special categories:

e File—name ® Mnemonic—name
® Record—name e Index—name

e Data-name e Literal

®)

Condition—name Figurative constant

Procedure—nane

Special registers

Since the noun is a word, its length may not exceed 30 characters (exception:
literals may not exceed 160 characters). For purposes of readability, a noun
may contain one or more hyphens. However, the hyphen may neither begin nor end

the noun (this does not apply to literals).

File-Name. A file—-name is a name containing at least one alphabetic character
assigned to designate a set of data items. The contents of a file are divided
into logical records that in turn are made up of any consecutive set of data

items.

Record-Name. A record—name is a noun containing at least one alphabetic
character assigned to identify a logical record. A record can be subdivided

into several data items, each of which is distinguishable by a data-name.

Data-Name. A data—name is a noun assigned to identify elements within a
record or work area and is used in COBOL to refer to an element of data, or

to a defined data area containing data elements. Each data-name must contain

at least one alphabetical character.

Condition-Name. A condition-name is the name assigned to a specific wvalue,

set of values, or range of values, within the complete set of values that a
data item may assume. The data item itself is called a 'conditional variable."
The condition-name must contain at least one alphabetic character and must

be unique, or be able to be referenced uniquely through qualification. A con-
ditional variable may be used as a qualifier for any of its condition-names.

If references to a conditional variable require indexing, subscripting, or
qualification, then references to any of its condition-names also require the
same combination of indexing, subscripting, or qualification. A condition-
name is used in conditions as an abbreviation for the relation condition; its
value is TRUE if the associated condition variable is equal to one of the set

values to which that condition-name is assigned.

Procedure-Name. A procedure-name is either a paragraph-name or section-name,

and is formulated according to noun rules. The exception is that a procedure-
name may be composed entirely of numeric characters. Two procedure-names are
identical only if they both consist of the same character strings. For ex-

ample: procedure-names 007 and 7 are not equivalent.

Mnemonic—-Name. The use of mnemonic-names provides a means of relating certain

hardware equipment names to problem-oriented names the programmer may wish to
use. See the discussion of SPECIAL-NAMES in section 5.

Index-Name. An index-name is a word with at least one alphabetic character that
names an index associated with a specific table (refer to indexing in section 6).
An index is a register, the contents of which represent the character position
of the first character of an element of a table with respect to the beginning
of the table.

Literals. A literal is an item of data which contains a value identical to
the characters being described. There are three classes of a literal: numeric,

non-numeric, and undigit.
Numeric Literal

A numeric literal is defined as an item composed of characters chosen from
the digits O through 9, the plus sign (+) or minus sign (-) and the decimal

point. The rules for the formation of a numeric literal are:
a. Only one sign character and/or one or more than one decimal point
may be contained in a numeric literal for use with Sterling. The
leftmost decimal determines the seale. - P -

NOTES
A comma must be substituted for the decimal
point if the DECIMAL-POINT IS COMMA option
is used (see SPECIAL-NAMES in the ENVIRON-
MENT DIVISION).

The implied USAGE of numeric literals is
COMPUTATIONAL except when used with the
verbs DISPLAY or STOP.

b. There must be at least one digit in a numeric literal.

c. The sign of a numeric literal must appear as the leftmost character.

If no sign is present, the literal is defined as a positive value.

d. The decimal point may appear anywhere within the literal except for
the rightmost character of a numeric literal. A decimal point with-
in a numeric literal is treated as an implied decimal point. Absence
of a decimal point denotes an integer quantity. (An integer is a

numeric literal which contains no decimal point.)

e. A numeric literal used for arithmetic manipulations cannot exceed
160 digits. The following are examples of numeric literals.
13247
.005
+1.808

-.0968
7894. 54

Non—-Numeric Literal

A non—numeric literal may be composed of any allowable character. The begin-
ning and end of a non—numeric literal are each denoted by a quotation mark. Any
character enclosed within quotation marks is part of the non—numeric literal.

Subsequently, all spaces enclosed within the quotation marks are considered

part of the literal.

A non—numeric literal cannot itself exceed 160 characters. Examples of non-

numeric literals are:

Literal on Source Program Level Literal Stored by Compiler

"ACTUAL SALES FIGURE" ACTUAL SALES FIGURE
"-1234. 567" -1234. 567
"ML IMITATIONS " "LIMITATIONS"
""ANNUAL DUES" ANNUAL DUES
”AH\"BH A"B

NOTE

Literals that are used for arithmetic com-—
putation must be expressed as numeric 1lit-
erals and must not be enclosed in quotation
marks as non—numeric literals. For example,
"-7.7" and =7.7 are not equivalent. The
compiler stores the non—numeric literal as
~7.7, whereas the numeric literal would be
stored as 0077 if the PICTURE were S999V9
DISPLAY with the assumed decimal point lo-

cated between the two sevens.

Figurative Constant. A figurative constant is a particular value that has
been assigned a fixed data—name and must never be enclosed in quotation marks

except when the word, rather than the value, is desired. The figurative con-

stant names and their meanings are:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

Represents the value 0, or one or more of the
character 0, depending on the context.

Represents one or more spaces (blanks).

Represents the highest internal coding sequence

(i.e., 999) value. When HIGH-VALUES are moved to a
signed numeric computational field, the sign will

be changed to a plus sign.

Represents the lowest internal coding sequence (blanks)
value. When LOW VALUES are moved to a signed numeric
computational field, zeros will be moved into the field

and the sign will be changed to a plus.

QUOTE Represents one or more of the single character " (quotation
QUOTES mark). The word QUOTE or QUOTES does not have the same
meaning in COBOL as the symbol ". For example, if "STANDARDS"
appears as part of the COBOL source program, STANDARDS is
stored in the object program. If, however, the full
"STANDARDS" is desired in a DISPLAY statement, it can be
achieved by writing QUOTE "STANDARDS" QUOTE, in which case
the object program will print "STANDARDS'". The same
result can be obtained by writing "'"'"STANDARDS""'" in the
source program. Only the latter method can be used in

MOVE statements and conditionals.

ALL When followed by an integer numeric literal, a non-numeric
literal, or a figurative constant, the word ALL represents a
series of that literal. For example, if the COBOL statement
is MOVE ALL 1literal TO ERROR-CODE, then the resultant ERROR-
CODE would take on the following values:

ALL literal Size of ERROR—-CODE Resulting value of
ERROR—-CODE

ALL "ABC" 7 characters ABCABCA

ALL "3" or ALL 3 5 characters 33333

ALL "HI-LO" 12 characters HI-LOHI-LOHI

ALL QUOTE 3 characters trren

ALL SPACES 9 characters (nine spaces)
NOTE

The use of ALL with figurative constants,

as illustrated in the last two instances, is
redundant. MOVE ALL SPACES and MOVE SPACES
would yield the same result.

Special Registers. The B 1800/B 1700 COBOL compiler provides the following
five special PROCEDURE DIVISION register names:

DATE (Julian)

Tally

The special register TALLY is automatically provided by the COBOL compiler and
has a defined length of five COMPUTATIONAL digits. The primary use of TALLY is

2-7

in conjunction with the EXAMINE statement; however, TALLY may be used as

temporary storage or an accumulative area during the interim when EXAMINE...
TALLYING... is not being executed in a program.

Verbs

Another type of COBOL word is a verb. A verb in COBOL is a single word that

denotes action, such as ADD, WRITE, MOVE, etc. All allowable verbs in COBOL ,
with the exception of the word IF, are truly English verbs. The usage of the
COBOL verbs takes place primarily within the PROCEDURE DIVISION.

Reserved Words

The third type of COBOL word is a reserved word. Reserved words have a specific
function in the COBOL language and cannot be used out of context, or for any
purpose other than the one for which they were intended. Reserved words are

for syntactical purposes and can be divided into three categories:

a. Connectives.
b. Optional words.
c. Key words,

A complete list of reserved words in COBOL used by the compiler is included

in appendix A,

Connectives. Connectives are used to indicate the presence of a qualifier

or to form compound conditional statements. The connectives OF and IN are

used for qualification. The connectives AND, AND NOT, OR, or NOT are used

as logical connectives in conditional statements. The comma is used as a
series connective to separate two or more operands.

Optional Words. Optional words are included in the COBOL language to improve
the readability of the statement formats. These optional words may be inclu-
ded or omitted, as the programmer wishes., For example, IF A IS GREATER THAN
B... is equivalent to IF A GREATER B..... Therefore, the inclusion or omission
of the words IS and THAN does not influence the logic of the statement.

Key Words. The third kind of reserved words is referred to as being a key
word. The category of key words includes the verbs and required words needed
to complete the meaning of statements and entries. The category also includes
words that have a specific functional meaning. In the example shown in the

previous paragraph, the words IF and GREATER are key words.

LANGUAGE DESCRIPTION NOTATION

COBOL reference manuals have almost universally adopted a particular form of
notation. This manual uses that notation as described in the paragraphs that
follow.

Key Words

All underlined upper case words are key words and are required when the
functions of which they are a part are utilized. Their omission will cause

error conditions at compilation time. An example of key words is as follows:

IF data-name IS [NOT] {.NLJM_EB_I_Q }

ALPHABETIC

The key words are IF, NOT, NUMERIC, and ALPHABETIC.

Optional Words

All upper case words not underlined are optional words and are included for
readability only and may be included or excluded in the source program. In
the example above, the optional word is IS.

Generic Terms

All lower case words represent generic terms which must be supplied in that
format position by the programmer. Integer—1l and integer-2 are generic terms

in the following example:

FILE-LIMIT IS integer—1l THRU integer-2

Braces

When words or phrases are enclosed in braces { 1}, a choice of one of the
entries must be made. In reference to the key words example above, either
NUMERIC or ALPHABETIC must be included in the statement.

Brackets

Words and phrases enclosed in brackets[] represent optional portions of a
statement. If the programmer wishes to include the optional feature, he may
do so by including the entry shown between brackets. Otherwise, it may be
omitted. In terms of the example above, the word enclosed in brackets is op~
tional. However, if the programmer wishes to distinguish between NUMERIC and
ALPHABETIC, he must choose one of the words enclosed in braces.

Ellipsis

The presence of three consecutive periods (...) within any format indicates
that the data immediately preceding the notation may be successively repeated,
depending upon the requirements of problem solving.

Period

When a single period is shown in a format, it must appear in the same position

whenever the source program calls for the use of that particular statement.

SECTION 3

CODING FORM

GENERAL

The format of the COBOL coding form (figure 3-1) has been defined by CODASYL,
by-ANSI, and by common usage. The B 1800/B 1700 COBOL compiler accepts this
standard format. Should program interchange be a major consideration, the
user is directed to the ANSI standard.

The same coding form format is used for all four divisions of a COBOL program.
These divisions must appear in proper order: IDENTIFICATION, ENVIRONMENT,
DATA, and PROCEDURE.

SEQUENCE FIELD (CARD COLUMNS 1-6)

The sequence field may be used to sequence the source program. Normally a
numeric sequence is used; however, the B 1800/B 1700 compiler allows any com-
binations of characters. A warning message is given if there is a sequence
error. The B 1800/B 1700 compiier provides for insertion or replacement of
card images during compilation, controlled by the sequence field. (See section
on ""COBOL COMPILER CONTROL," section 11.)

CONTINUATION INDICATOR (COLUMN 7)

Column 7 has several functions as follows:

e e
d. The letter L followed by a '"library-name' entry causes all suc-

ceeding source card data to be placed into the COBOL Library File
during compilation. Termination of the action takes place when an
L card is encountered followed by spaces.

BURROUGHS COBOL CODING FORM

w
f ADDITIONS. DELETIONS AND CHANGES
N PROGRAM COBOL DIVISION PAGE oF
PROGRAMMER DATE IDENT. 73)
N W N TS U T W .
PAGE | LINE A [=
NO. NO.
1 3la [] [] 22 32 42 52 [X] 2
—— — —
T v T T L 1
T L Lo LJI[lJlLJ%LJ]111!11+JlllJlALJ{JJIILIl4l]LJllllllLlJlllllll|111
1
1A ! 114lll_Ll1;11}J1xllllu%411111111%¢1ll:|14411111111111{1111111111
1
LA rt 111 111L11||1{J_|allilLJ{JilllLllnTllnlel111111111111|11r11IILLnilL
1
11l: llllllJIJLlLJIJlllllLllﬁJ_lllllLlLl%lIillll]l{_LJlllllllllllllJlllj
Lt ! 114 LLllIlllllLll_LleLLJ'llllllILJ%JIJ_IIIIll%lllllllll%llllllllL
{
I L L4 L4ll|llllilllllIlll%l!lllJl‘ll%__LlJ;JlllLi_%llAJlJJllllllllllelJ
1]
L 11 L1 11111111_1{41|1|4L11‘}4L11111L1j|41_1‘411111111ltll1111+1111L1111L
1
1 - 111 111114|L1j1411114411+L1L-L111111[411llLALJjA_LJLllllll%jlllllJll
1
1.1 P ! J 11111L1||%J||¢Ll|1j_}41|||111151|11111L¢=114111111{1144111111
1
1.1 J 1)y l1lllllllllellllllllrlllllllllTll-llLLlJlellLllllllJl_LlIILJIIIJ‘
1
S W [lllllLlll_lrLl.ll’lll+lllllllll%jllllllllﬁlllLJLllll%llllLllllL
|
lll: IlllJlllil‘_lrl'LllLJllTllllllLlLl%lllllll111LLllllllll}llIllllllJ
1.1 l:) 111411111471llll'LLL%lllIIAILlTIIILJlllJJ_‘LiLLJlJLALJJI_lIILLJliIl
I | l: Lot 1144111Ll{LlllllllL%llJllllll%llLLLLLll%JlJllllll‘}lllllllll
11 1: L1 L1141J_1LL1rJ1111L11|%41111n111%114111;41%L1111|5111L1|41L1111L
o 1'1lI]_LLlllllTll‘illllllrlllllg;llI%lllllllJlﬁlllllLLJJ_lJl_Ll_lelllll
1
1.1 l: Lo L lIlIlllll%illllLl'l%JlilllILl%ilLlLJlJl’LLiLJLllLJJ';LlllLllJJ
rlll:J,,wljllllllllll%ilLllllLL%llllilll.%lllllllll%l'lllllll}llllllllll
o bt L4 1111:1111;111111111%LL|1||111111L11414_11_L14_LL41J_1{1144111111
i T !
lll: Lol Lln;nlllljj'111411|1+1||111111}L111111411LL11|11111%1A11L11114
| I U Ll!l[llll:l|LJ]IIIll[LlLllJJLilLlJlllIll{llLlLllLillljllLlllll
]
1 1 - Lo 1llLlJJIl%LJLilJLJ_L%LlLLJAllllljllllILJ*‘lelllilii%_LlllJ;llll
] T
lll: i1 L11114111+J|Lllllll+llllllllljililllliL"LJlllLJJLlllllLllllll
111: [W x;lelt\n%lxL4141L4+1111111114111111111@11111111%1(11111111
J 8 Lt 4 WS NS TS NS W U NS W U MU N (N UENNS WD W N VN W0 S N N 0 (NS WA U AU TN (NN N USURS WY U (NS NN TN W (500 U0 A (S SN N SN AN 0 WS (S VL SO W0 WS SO SO WO N O I W0 Y §
Figure 3—-1. COBOL Coding Form

e. The presence of a hyphen (-) indicates that the last word or literal
on the previous card was not complete, and is continued on this card

beginning beyond margin A.

Words and numeric literals may be split at any point by placing a hyphen in
column 7 of the following card. Any rightmost blank spaces on a card are
ignored as are the leftmost blank spaces on the continuation card.

Non—numeric literals are split in a slightly different fashion. On the ini-
tial card, starting from the quotation mark, all information through column 72
ig taken as part of the literal; and on the next card a quote mark must be

used to indicate the start of the second part of the literal.

MARGIN A (COLUMNS 8 THRU 1)

DIVISION, SECTION, and PARAGRAPH headers must begin in margin A. A division
header consists of the division name (IDENTIFICATION, ENVIRONMENT, DATA, or
PROCEDURE), followed by a space, then the word DIVISION followed by a period.

A section header consists of the section—name, followed by a space and then
the word SECTION, followed by an optional priority number, followed by a period

A paragraph header consists of the paragraph—name followed by a period. The
first sentence of the paragraph may appear on the same line as the paragraph
header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph
headers are fixed and only the headers shown in this manual are permitted.
Within the PROCEDURE DIVISION, the section and paragraph headers are defined
by the user.

MARGIN B (COLUMNS 12 THRU 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers should start
in margin B.

RIGHT MARGIN (COLUMN 72)

The text of the program must appear between columns 8 and 72, inclusive. A

word or statement may end in column 72.

IDENTIFICATION (COLUMNS 73 THRU 80)

The identification field may contain any information desired by the user. The
field is ignored but is reproduced on the output listing by the compiler. This

field normally contains the program name.

w
w

PUNCTUATION

The following rules of punctuation apply to the writing of COBOL programs
for the B 1800/B 1700.

a.

C.

d.

A sentence is terminated by a period followed by a space. A
period may not appear within a sentence unless it is within a
non-numeric literal or is a decimal point in a numeric literal or
PICTURE string.

Two or more names in a series may be separated by a space or by a
comma. If used, commas can appear only where allowed.

Semicolons (;) are used only for readability and are never required.

A space must never be embedded in a name; hyphens should be used in-

stead. (A hyphen may not start or terminate a name.) For example:

NET-PAY

SAMPLE CODING

An extract sample from a source program, showing the continuation of both

words and non-numeric literals, is illustrated in figure 3-2,.

BURROUGHS COBOL CODING FORM

ADDITIONS, DELETIONS AND CNANEE(S
PROGRAM COBOL ODIVISION PAGE oF
Clgy\rru\su\.k-r o) |
FROGRAHMER% DATE IDENT. 73 o0
AN O B S N |
PAGE LINE A [] =
NO. NO.
3{4 e({T| 8 1 |2 22 32 42 T2
1 X ;
Lol IFTLE-CoNTRAOL, . %SliiL,E{LJTl PRI ANTITNG FT MW
] v
L | L1 T anLTer%mﬁn'ﬁE'xnklﬁlEJPt%Squlnl1114 | Ll Ll i
1
. R B U U Y R N U %SElLlElC!-rl IMIAQSTT]ElRAI—:N‘lﬁU\Tﬂ %ALSISIIQ"SI ariey IQ{ESKI T T RES 1 11
-
L]t L 111isl?lVIEll‘%lkiLlTIEJL'zl'\)lAmE%IP\jKIEJAL-ILll%lllll!lllllljlllllll{lllllllltl
1
L1 1! L4 lllllllll%lllllllel;lllJLllll{lllllllll%lJLJLllLll[ll11][1111
|
11 ll | - LLJILJIIL%llllJllLL{lJLlllllJ%l|lllLlll:lllllll(l{llll]lllll
|]
L lat wlojglKI-l”G'I”lsml(ElA&{ExJ&EICW1I©@¢-4JLIILllLJ%lllllllllllLllllJLlﬁLlllJJllll
] !
11]t Lt d 11 llJlLL%lJlJJllll{llLJll111%1411111lllfiJllllLLl%J'llllllll
i
1t tlat, ﬂ“EJ—LHEM"1~L"}LIIFIEJBLAJLISL91%111llllllp@llllNlL’(M'—illllillLl%Ll BN Ee
1
U L v R A S S A A 0 B W S A 1{‘1Q’£1‘71—Lh&1311%14|IINLNLM%Ell‘laAZ)LJAl{AA11111111
]
I I L BT R U S N S SR AR ‘jH’ls-léi-l'?l?'lllJrLJ’PlIlcilc'lquglllllilll{l)lllllll%illlJllll
|
-
1 P | § W U U G W U S S S S ll'llLLllLllllllquQI?lllllllllllllllllllillll]lllllll
] T T)| 1 T
I L xxnlx11:'lLLxxl-anquﬁl?!-ll1111LJLL¢111111111111111111L111L11
' T T 1 ¥ "
Ll) (R A AR 10151 INO N~ 1N1uﬂix_" LT I’PlIlC-leXICJBIODI L VARVWE oy AL G
| !
11 L il S T lllHlAKHCmEIRFSLIVIAILII&hlLl$1Q1\1+l N J%LlllLllLJ%lllLLllLl:lllllllll
]
11 P ! Lt 4 lllllJllL%]l‘llll!l:lllllllll%llllLllll%lJlLJllll%llllllllll
|
1 Jl/lll I Y U G N W S N NS SRS U N TR (N TS U U A U VN N NN WA U W SN NN R U SN U S N U G U N G U S U S G U U N UNN U U U U W N N G |
1 T T 1 T T
L1 l' | - lllllllll%ijlllllll% llll|l;=llllll]llTlL'liJllLl%JllllllLl
1 :
P ﬂgpﬁE;DJAxﬁEl;D];VLl&IQNPI1111%1||llx111%1111¢1141f11-111LL||1|11111111
|
11 l: 11 1 lllllll'll{'llLlJJllllLllLl|ll=lllllllJl%LJlLJLllI%lLLLJlJlIL
1.1 l' Fltlgldch— l»l?lARJAGIRIA%PLHL’l 1l 1t 1.1 IMQVIEI lzsqlslﬁl lr) T S N U N | Ll 1 % i1 ¢+ 1 1 1 3 1 1 %Ll i 1.1 3 1 1 &1
)
[W e U I B T A S G IS S | T - 111&1'10101 T NUM—, .L‘IIT. i de S S T T T W TN W WAL B A
]
L1 | W 11 L1t 11 IIF TH’A-:En = ;T.l‘-\lql‘\llel -rol nFlIlg-ﬁTr—l ?A\ lllllLl%llLJlllLl
])
FUNEE NUL N o AR B @thlpiﬂg'll 11(11{L4|11|1||=111111111%1111111¢1%1|1111111
- :
11 1s U N C VON T UA T U A 00 WA U VS V0 YU TG U U U WS U U S U N Y A W U G W U WA S U U W U U Y S U0 U WA W0 U 0 O O O A

Figure 3-2.

Example of Continuation of Words and Literals

SECTION 4

IDENTIFICATION DIVISION

GENERAL

The first part or division of the source program is the IDENTIFICATION DIVISION.
Its function is to identify the source program and the resultant output of its
compilation. In additon, the date the program was written, the date the com-
pilation was accomplished, plus other pertinent information may be included

in the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division is as follows:

IDENTIFICATION DIVISION.
(PROGRAM-ID. Any COBOL word.]
[AUTHOR. Any entryJ
[INSTALLATION. Any entry.]
[DATE-WRITTEN. Any entry.]
(DATE-COMPILED.

[SECURITY. Any entryJ

[REMARKS, Any entry. Continuation lines must
be coded in Area B of the coding formJ

The following rules must be observed in the formation of the IDENTIFICATION
DIVISION:

a. The IDENTIFICATION DIVISION must begin with the reserved words
IDENTIFICATION DIVISION followed by a period.

b. All paragraph-names within this division must begin in Area A
of the coding form.

c. An entry following a paragraph-name cannot contain periods, with the
exception that a period must be present to denote the end of that
entry.

When DATE-COMPILED is included, t matically inserts the time

and the date of compilation in the form

of MM/DD/YY.

With the exception of the DATE-COMPILED paragraph, the entire division is

copied from the input source program by the compiler and listed on the output
listing for documentation purposes only.

CODING THE IDENTIFICATION DIVISION

Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be
coded in the source program.

Note that continued lines must be indented to
margin B, or beyond.

BURROUGHS COBOL CODING FORM

ADOITIONS. DELETIONS AND CHANGES

PROGRAM -b C COBOL DIVISION PAGE of
|bE~-ﬂf:\u—n°m wWisiam aDING |]
PROGRAMMER D DATE 1DENT 73 [
EE I SR A s |
PAGE | LINE A s =
NO. NO .
3la s|lT| @ 2 22 32 42 52 62 2
1 ' 4 [1 |
L1 gt ll)lEl“Tl:leiqlkanQM%m:vlllsltlol“l'%1llLllALJ%llLllllll{lllllllll%llilllllll
1
L1l | [PROGIRAM-TD, ., 11%&quEﬁa—ﬁﬁSEN?QKJANNKAEh1 T S T T T Y A o
1
LAl i Alb\mﬂrQKhl11L1L\L1U¢%51°JU}"—AU|-1111€1L1111|11f11|111111111111|x1L11r1111111111
1
p ! MﬁTNMLAmimNphﬁuRRpmwahs%Qqaﬂqﬁmnnqﬂ N 0 B Y W O O A O
1
Lt l SR U 0 N N0 WD W W O S O #&D}ﬂsﬁmﬂbnchﬁ.ll S T T W T O Y T A W O
1
11] DATE|-WRET TTrEMN., {61 WUNE, 1’317f‘\"1-111Allll%LLnllj11 T U N O T B W
1 '
1 gt :DLAIIJE‘IQDMPIILIEDU%IlIllllll’xlllllLilllLlLlllll%]llllllll%llllllllll
]
[Slilclugxmyl-lllllLEJVlElLLL'I‘IL%Allilllll%llilllllJ%lllLiLlll%JllllllllL
] I
WETEE. . S 11111411tP§E DOLCUMENTTAT N Qﬂﬁlxnl L1 T S
i
Ll] IREMARKES., | | [THE EXRST PART OF MHE PROGRAM PRXNTS) .eg mﬁf—_‘_lé.&lglg_s_l__ﬁﬂbl_‘
1
11 J 1 LL]SAILIglﬁl Q‘_U}_Q] .A L |_’A|EE|§| = ST |$|‘gﬁ1—|§5ﬁ§ﬁ[| EQ&& ' ||||||||| L 111 11111
]
ETEE . N e L TH Ex SECOND, RNQFT' IED(l?Qﬁxsxﬁ%El$l TOBRESE, o } N BAR } 110
i
1l : JR B E%qup¢h F¥;2®&Aﬂ1-'1 D S T T G 0
I L TSN 0 U T W T Y VW S U T W W SN S T W S VA W O O O O W R B 1
I
11 431 1 Lo dd IlllJlL'l%llll]llll%lllllllll%llllllllj%LllLllLll:lJllllllll
i
TO A L AR YO0 A0 WS WA U 00 A U G WS WA N NN YN S U U U WY SO U YU Y NS U Y U U W WO U O W WS WA U U A 0 U0 U WY U W N S0 W W G 0 W A 0 U O G O |
1 T LI T T T
Illl 1.1 .4 D WY U UN NS NN W U NS SN U O (N (R VO (N VRS NN VUNUS WO (N N NN AN U NN A WU S VSN SN R DU N N T T N WO S N U U R N G U U I U VN T SN .
I T 1 T T T
lll' 1l 1 1 Ill‘lllll%lllllllll%ll!ll‘lll%JLlllllll,}l"llllll%ljlllllll‘
1
P4l RS S S O G T Y S S S G S O S S S S S W S S O B
1
.1 l: 1.1 1 lllllllll:'lllllLLLillIJll|l|=l|11LLlll{lllllllllillllllllll
L1l TS S S S U S S T S S W S S S WS A Y T 0 Y B 0 A
i
lll' S -\ 1llllllll}llllllLll;lllllllll%lllllllLl#lllllL]ll;l]lllllll
1
11 14 i1 1) W S S T D G U (N U VORI SUNS T NN S U WS SIS W N U U GNUS SN SN N A SN N N WS W SN U N T TN N SN W U N T WU U U T N A S N B Y S S T S e N
] T T B 1 1
11 4! Lo -:1111111;1|||111111‘11|l|1llllTILIIIIlllflllllllll%LJ11111111
1
J TN N e R eSS

Figure 4-~1. IDENTIFICATION DIVISION Coding

SECTION 5

ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a COBOL source program.

Its function is to specify the computer being used for the program compilation,
to specify the computer to be used for object program execution, to associate
files with the computer hardware devices, and to provide the compiler with
pertinent information about disk storage files defined within the program.
Furthermore, this division is also used to specify input—output areas to be
utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION
contains the overall specifications of the computer. The INPUT-OUTPUT SECTION
deals with files to be used in the object program.

ENVIRONMENT DIVISION STRUCTURE

The structure of this division is as follows:

ENVIRONMENT DIVISION.
[[CONFIGURATION SECTION.]
[SOURCE-COMPUTER . . .]

[OBJECT-COMPUTER . . .]
[SPECIAL-NAMES . . .]
[INPUT-QUTPUT SECTION.]
[FILE-CONTROL . . .]
[I-O-CONTROL . . .]]

The following rules must be observed in the formulation of the ENVIRONMENT
DIVISION:

a. The ENVIRONMENT DIVISION must begin with the reserved words
ENVIRONMENT DIVISION followed by a period.
b. All entries other than the ENVIRONMENT DIVISION source line are op-

tional but, when used, they must begin in Area A of the coding form.

CONFIGURATION SECTION

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be

used for program compilation (SOURCE~COMPUTER), the system to be used for
program execution (OBJECT-COMPUTER), and the special-names paragraph, which
relates hardware names used by the B 1800/B 1700 COBOL compiler to the mnemonic-
names in the source program,

SOURCE-COMPUTER

SOURCE-COMPUTER

The function of this paragraph is to allow documentation of the configuration

used to perform the COBOL compilation.
The format of this paragraph has the following two options:

Option 1:

SOURCE-COMPUTER. COPY library—name
[, REPLACING word-1l BY word-2

[, word—-3 BY word—4]] .

Option 2:

SOURCE- COMPUTER. { any entry })

This paragraph is for documentation only.

OBJECT-COMPUTER

OBJECT-COMPUTER

The function of this paragraph is to allow a description of the configuration

used for the object program.
The format of this paragraph has the following two options:

Option 1:

OBJECT-COMPUTER. COPY library—name

[, REPLACING word-l1 BY word-2

[, word-3 BY word-4]]

Option 2:

[, SEGMENT-LIMIT IS priority number]

Priority numbers used in the SEGMENT-LIMIT clause must be positive integers
with a value from 1 to 49. The SEGMENT-LIMIT clause specifies the limit of
the fixed segment for sections numbered from O to 49. See SEGMENT CLASSIFICA-
TION, PROGRAM SEGMENTS, and PRIORITY NUMBERS.

sed in the same OBJECT

OBJECT-COMPUTER

11 res ‘ ’ declared amount
ing records to the limit of the de~

SPECIAL-NAMES

SPECIAL-NAMES

The function of this paragraph is to allow the programmer to assign a signifi-
cant character for all currency signs, to declare decimal points as being
commas and to provide a means of relating implementor hardware—names to user

specified mnemonic—names.

The format of this paragraph has the following two options:

Option 1:

SPECIAL-NAMES. COPY 1library—name

[REPLAQING word-1 BY word-2

[word-3 BY word—4] ...].

Option 2:

SPECIAL-NAMES, [CURRENCY SIGN IS literal]
[[, implementor-name IS mnemonic-name] . . .]

[, DECIMAL-POINT IS COMMA] .

This paragraph is required if all decimal points are to be interchanged with
commas and/or if all currency signs are to be represented by a character other

than a dollar sign ($).

This literal is limited to a single character and must not be one of the

following:

a. Numeric digits O through 9.
b. Alphabetic characters A, B, C, D, J, K, P, R, S, V, X, Z, or blank.

1A
.

c. Special characters * + = | | ; ()

The clause DECIMAL-POINT IS COMMA signifies that the functions of comma and
period are to be exchanged in the PICTURE character—string and in numeric
literals,

If implementor-name is specified, it must be one of the allowable B 1800/

B 1700 COBOL hardware-names which may be specified in FILE-CONTROL paragraph

For example:

PUNCH IS CARD-PUNCH-EBCDIC

SPECIAL-NAMES

The mnemonic-name device can be directly referred to in the ASSIGN clause.

The SPECIAL-NAMES paragraph statement ends with a period as a delimiter.

Periods between clauses are not allowed.

INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION

The INPUT-QOUTPUT section contains information concerning files to be used
by the object program, the manner of recording used or to be used, and the

presence of any multiple-file tape or disk.

9}
i
w0

FILE-CONTROL

FILE-CONTROL

The function of this paragraph is to name each file, to identify the file
medium, and to specify a particular hardware assignment. The paragraph also

specifies alternative input-output areas.

The format of this paragraph has the following three options:

Option 1:
FILE-CONTROL. COPY library—name
- word—-2
[REPLACING {32€2—iame—1} BY | data-name-2
literal-1
- word—4
[, {ggid-iame-3} BY data—-name—4] ...]
a literal—-2
Option 2:

FILE-CONTROL.

SELECT [QPTIONAL] file-name-1 ASSIGN TO hardware-name-1

[FOR ULTIPLE REEL

NO AREA
[’E§§EBYE {integer-Z} [ALTERNATE [{AREAS}]]}
. _ END

,[FILE-LIMIT IS {11tera1 1 } THRU Titeral-2
FILE-LIMITS ARE data-name-1 THROUGH - _
——————anse s data-name-2
r {literal-m } {THRU } {literal-n }]]
[’ ldata-name-m THROUGH data-name-n e

RANDOM
EACCESS MODE IS {EEEﬁEﬁTIAL }]

[LACTUAL KEY IS data-name-3]

[, PROCESSING MODE IS SEQUENTIAL] . [SELECT] . . .

FILE-CONTROL

Option 3:
FILE-CONTROL. TAPES
. integer-3 TAPE
SELECT sort-file-name ASSIGN TO [data—name—4] gs; 0 DISK

Option 1 may be used when the system's library contains the library-name entry.
See COPY verb, section 7.

The files used in a program must be the subject of only one SELECT statement.
If it is to be OPENed INPUT-OUTPUT or I-0, it must be present in the MCP
Disk Directory.

The OPTIONAL clause is applicable to input files only. 1Its specification
is required for input files that are not necessarily present each time the

object program is executed.

The ASSIGN clause must be used in order for the MCP to associate the file

with a hardware peripheral device. The allowable entries for hardware-name-1

are:
CARDY96 PUNCH
CASSETTE QUEUE
DISK (or DISC) READER
DISK-DFC1 READER-SORTER
DISK-DFC2 REMOTE
DISK-DPC1 TAPE (7 or 9 channel MCP to assign)
DISK-DPC2 TAPE-MTC1
DISK-HPT TAPE-MTC2
DISKPACK TAPE-MTC3
TAPE-MTC4
PRINTER TAPE-MTCS5
PT-PUNCH TAPE-7 (7 channel only)
PT-READER TAPE-9 (9 channel only)

opti

T autput files to be placed on a printer.
] p 1n ing. The BACKUP optlon will
: h backup dlsk files for suosequenu

510

FILE-CONTROL

th speaial 'foms

With the exception of the ASSIGN clause which must immediately follow the
SELECT clause, the rest of the clauses in this paragraph may appear in any

order.

The MULTIPLE REEL clause is for documentation only. This function is performed
by the MCP.

The RESERVE clause allows a variation of the number of input or output physical
record buffers to be supplied by the MCP at the time the file is opened. Each
alternate area reserved requires additional memory to be utilized, and will be
the size of a physical record as defined in the FD statement of the DATA
DIVISION for that specific file. Up to 63 alternate areas may be specified.

The RESERVE clause has an additional function when used for QUEUE files. 1In
this case, it is used to specify the number of messages to be contained in

memory. If more messages are allowed in the QUEUE than are allowed in memory,
the remaining messages will be placed on disk. (See the discussion of QUEUES
in Section 10). ’

FILE-CONTROL

No alternate areas are reserved when the NO option is specified or if the

entire option is omitted.

The MCP will keep track of record data being passed to or from the buffer and

the record work area.

The programmer can use the READ or WRITE statements without regard to the

buffering action taking place.

The FILE-LIMIT clause is invalid if specified for a sort file description (SD)
entry. The FILE-LIMIT clause for input and output files associated with the
SORT verb will not be effective during execution of the SORT unless an input/

output procedure is declared.
The FILE-LIMIT clause specifies the following:

a. For SEQUENTIAL access, logical records are obtained from, or placed
sequentially in, the disk storage file by the implicit progression
from segment to segment. The AT END imperative statement of a READ
statement is executed when the logical end of the last segment of the
file is reached and an attempt is made to READ another record. The
INVALID KEY clause of a WRITE statement is executed when the end of
the last segment is reached and an attempt is made to WRITE another

record. The END option specifies that the compiler is to determine
the upper limit of an existing file. No ACTUAL KEY entry is neces-

sary for the SEQUENTIAL mode.

b. For RANDOM access, logical records are obtained from, or placed
randomly in, the disk storage file within the specified FILE-LIMIT,
The contents of ACTUAL KEY not within the specified limit will cause
the execution of the INVALID KEY branch. in the READ and the WRITE
statements. The ACTUAL KEY entry must be specified.

In the FILE-LIMIT clause, each pair of operands associated with the key word
THRU represents a logical segment of a file. The logical beginning of a
disk storage file is considered to be that address represented by the first
operand of the FILE-LIMIT clause; the logical end is considered to be that
address as specified by the last operand of the FILE-LIMIT clause.

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the order in which
they are specified. For example:

FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7

This example will result in the sequential access of records 1, 2, 3, 4, 5,
10, 11, 12, 3, 4, 5, 6 and 7 in that order.

(11
!

Ja

N

FILE-CONTROL

The data-names used with the FILE-LIMIT clause must be defined with a PICTURE
OF 9(8) COMPUTATIONAL.

For the ACCESS MODE SEQUENTIAL clause, the disk storage records are obtained
or placed sequentially. That is, the next logical record is made available
from the file on a READ statement execution, or a specific logical record is
placed into the file on a WRITE statement execution. The ACCESS MODE
SEQUENTIAL clause is assumed if ACCESS MODE RANDOM is not specified.

Values of the ACTUAL KEY data-name-3 are controlled by the programmer, includ-.
ing any execution of the USE FOR KEY CONVERSION statement. The value may
range from 1 to n, where n equals the number of records in the file or as
reflected by the FILE-LIMITS clause. The ACTUAL KEY signifies the relative
position of a record within the file and is equated to a data-name at any
level which is defined with a PICTURE OF 9(8) COMPUTATIONAL. ACTUAL KEY is
not used for ACCESS MODE SEQUENTIAL files.

:‘ﬁze;?AC’I‘UAL KEY for remote file doe‘s’“ not; hava to be deflned at the 01 1eve1 e
hol ever, the group 1ength must be 18 bytes. E If ACTUAL KEY is omitted, message
length will bé taken from the message length being written,

The PROCESSING MODE IS SEQUENTIAL clause is for documentation only.

All integers must be of positive values.

5-13

FILE-CONTROL

The sort-file-name in Option 3 is the SD level file-name to be used by the

SORT or MERGE verbs. Option 3 may also be used to specify the number of tapes
to be used as work files for TAPE SORT.

If data-name-4 is specified, it must be defined as an integer. If this state-
ment specifies tape work files and ‘integer-3/data-name-4 is omitted, the
default number of work tapes, three (3), will be used. Three is also the

minimum allowable number of work tapes. The maximum number of work tapes

which may be specified is (8).

1-O-CONTROL

I-O-CONTROL

The function of this paragraph is to specify memory area, to be shared by
different files during object program execution and the point in time that a

rerun procedure is to be established.
The construct of this paragraph is:

Option 1:

CONTROL COPY library—name

I-O0-CONTROL
[REPLACING word-1l Y word-2

, word-3 BY word- 4] ...].

| |

Option 2:

I-O-CONTROL.

[; SAME [RECORD] AREA FOR file-name-2 [file—name-3]]

. DISKPACK disk-pack-id
f’ MULTIPLE FILE {mbr multi-file-id]

L R

CONTAINS file-name-5 [POSITION integer-2]

[, file-name—6 [POSITION integer-—3]] ‘e].

The I-O-CONTROL paragraph may be omitted from the program if the paragraph
does not contain any of the clause entries.

The SAME AREA clause in this COBOL compiler is used to assign the same address
to the record work areas of all files named in the clause. This area will be
in the overlayable data area of the program when data segmentation is used.

Due to the Virtual Memory concept employed in the design of the system, a given
file's file information block (FIB), buffer, and ALTERNATE AREAS will not exist

5-15

1-O-CONTROL

in memory until an OPEN statement in the PROCEDURE DIVISION has been executed.
At OPEN time, the MCP allocates sufficient memory outside of the limits of

the Base and Limit registers to contain these areas. The record work area

of the file is called into the overlayable data area of the program whenever

it is referenced by the program. When the file is programmatically CLOSEd, the
memory being used to contain the file's FIB, buffer and ALTERNATE AREAS will be
returned to the MCP.

COBOL restricts the OPENing of files defined as residing in the SAME AREA

of memory to one file at a time. This system ignores that logic and the re-

sult saves memory over the conventional intent by not using memory to contain
FIB record area, buffers, or ALTERNATE AREAS until a file is actually OPENed

by the program.

When the RECORD option of the SAME AREA clause is used, only the record area
is shared and the associated alternate areas for each file remain independent.
In this case, any number of the files sharing the same record area may be
OPEN at one time, but only one of the records can be processed at a time.

The use of the RECORD option may decrease the physical size of a program as
well as increase the speed of the object program. To illustrate this point,
consider file maintenance. If the SAME RECORD AREA is assigned to both the
old and new files, a MOVE will be eliminated which transfers each record from
the input area to the output area. The records do not have to be defined in
detail for both files. Definition of a record within one file and the simple
inclusion of an 01 level entry for the other file will suffice.

Because these are record areas, in fact, in the same memory location, one set
of data—names is sufficient for all processing requirements, without requiring
qualification,.

The MULTIPLE FILE clause specifies that disk files reside on a removable disk
cartridge or disk pack, or two or more tape files are resident on one magnetic
tape. All files resident on a multi-file (that are required in a program)
must be represented in the source program by a SELECT statement and a FD entry
for each file.

For tape, the file-name entries do not have to be defined in the program in
the sequence in which the files appear on the multi-file tape. However, the
MCP will read the label of the next file on tape, check the label against the
file requested, and, if that file is not the one requested, the MCP will re-

wind the multi-File tape and sfart searching foy i from The bheginning of Tape,

a-la

1-O-CONTROL

When the MULTIPLE FILE clause is used to identify a file on a removable disk
cartridge or disk pack, the MCP will use the specified disk-pack-id to locate
that file. File-name entries are FD file-names in the program indicated as

residing on the specified disk cartridge or disk pack.

The '"multi-file-id" is the name contained in the physical tape label of a
magnetic tape containing multi-files, where file-name entries are ¥D file-

names in the program indicated as residing on the multi-file tape.

All files named in the MULTIPLE FILE TAPE clause have an implied SAME AREA

clause.
Multi-files, or any file contained within the multi-file may be OPTIONAL.

The POSITION clause is for documentation only,
CODING THE ENVIRONMENT DIVISION

An example of ENVIRONMENT DIVISION coding is provided in figure 5-1.

5-17

1]

W

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM COBOL DIVISION PAGE Of
EM'J\RONN\ENT' -D\u\s\ow C@S&ANQ;., [[
PROGRAMMER ODATE IDENT s []
\(SA\J'N L4141 11
PAGE LINE A L z
MO . NO.
1 3 sl7]e e 22 32 a2 52 62 72
; T T T T |
N EIMIVLRONIMERJITT:DI%VIDS:OIN[-ILLA%_JJllILJIl%lllllll]l%lllllllLl%lLlelllll
1
iade | ICONFRGURAMNYTON, SECTUDAN.L L it p et byt i1l TR
]
il 5#NDURS§J7ﬁ¥5mNPKYﬁEﬁQ-11 ﬁ&*ﬂf7@¥%-xx N T S T W B S B S B W BB
i
Ll : OBIELT ~COMBUWTIER . | B! /(2 < TN E lSJ_E_ﬁlMIE%”n'I—lLlDMII'rl IS 1UQe1 11 1| O
Pyt SﬁﬂEK:E@iirﬂ¢E®466u~%l L ﬂhﬁciﬁNvﬂLrﬂTkXImYﬁ,ﬂlsfJQﬁJNﬂ1ﬁ.|1 R T T T O W Y
H
51[' lllJLlllllllfl1llilllLJIlJlLllllllLllllJJlll]l'lllllllll%liLllllll
1
by ALM_%,_M]:N.P.U\'T’r-,v@ﬂ/\ﬁPM"ﬁ -Q;F.Qmml\‘uull}J T U U A S U U T S T O A W O
NN ,,Lm.}m 1IETLE-CONTIRAOL umfégﬂ-iEanﬁ 1QQT%IMJL#:JI&B§L_J&§J§F§NJ huge FTTHP%S el 114111ty
Pt L DELECT M&ﬁﬁfﬁ&ﬁ%—ﬁﬁtﬂqui PaSSTEN TSy gbihstJ,il N T G T 0 A A W W
i
Jea et Ll vl 1LFJQLM3*#fEMJZT143}& A {W“ﬁhuqllﬁmoﬁﬁ SO S T G T B 0 O W S
i
N bl LNCICIEIS;% MSD E| __“_RLAIMDPMI ACTVAA L %KJ_EP/I CDIJSKl-lQ%QM'URAQH-l [N U B B S S W
i
i :: L 5,151'-151(;4—5;LMiA',Lsm..E@K‘l'VTAPnEA] 55515-11511\1 e, _p—lN?le'L TN T S U U T Y A Y T O B 0 S B W
M.j,mxm}‘ v SELEST ERRORATAPE, ASSIEN S rnﬁﬁﬂﬁllﬂﬁﬁSti?hu§+4gﬂu_ﬁﬁuﬂﬁiﬁﬂ&ﬂﬂﬂgLJﬂﬂ§§di§u¢_
IR RS L S:EILLMA;_LE_:LGMME_FAI”IFl;_:lLlEJ 11 1.}.‘*&1&@1@.’:\1_._19_'_&_454_1_;4“ DS . N .
i
1o 1 : L ISENLECT, 1&%%8&&@951 %AuslsleM 1T J'DLSJKuj N T B S Y W
o 1t 1\1JLlil1111%11'1111ll;llllll111%11¢111L11511111L1111'11l1111114
H H
L | l: Ii‘lOA-CQMLILROILl—lLIl'lllill,LA‘.%llllilllllg.lllllIIL'LLJlllllLJ%llllllllll
I : JEEN SLA.lM.JEJ,_...‘JRIE..LQ,.QLE{D_J__AJE.LE A JE_Q;Ei DALL IS’ULZJM‘FE:I,L_;,JgJ,gAlR_QJg"LTJ]:{A\IP'E! U Y G H HY U W S O
it Lli”U&FﬁR&ﬁLﬁ&&ﬁL@i@ ACK “MULTIPAK" ONTALNS . SR I I I .
i .
- I: S0 QRN S W S W W JQISITLERL"{F'Ilthl lDlElTAil%LI-ICIH‘ANLGIEISI-[LFIIILLEJ l-sllJHJHlA}EIH’I-lFIIJLIEI’1 i i U N N B S W WS U G ¥
i |‘ ,,L.ﬁl,\.l.,.dd,i‘141,1111ll%lllllllll%llllll]ll’llllllLll%ll_lllLlll{lllJllLlll
i
»__‘_i . | : | U S U U W S W W O 1....1..1* O U SN (R W N WU N W } J R S G S N | 1.4 1 =) T U U N S W | # 4 1.4 1 1 1 1 1 % R SN WU U N S S B .
ii,i:, Aod ke 1,1._1.,.,11_1111%1;1111111+|71,11|L111%11111111L{,|1111,11,11%1111111111
I T J”..q:, [b Joddo o b % IR W T U T W | *,,_L,._]_..).,-L__L..L 1.1 1 %J B G S TS U T T N % | T O T T | %1 NN T W e |
gl t B N NN NN NN NN NN I

Figure 5-1.

ENVIRONMENT DIVISION Coding

GENERAL

SECTION 6

DATA DIVISION

The third part of a COBOL source program is the DATA DIVISION which describes

all data that the object program is to accept as input, and to manipulate,

create,

gories:

.

Cc.

or produce as output. The data to be processed falls into three cate-

Data which is contained in files and which enters or leaves the in-

ternal memory of the computer from a specified area or areas.

Data which is developed internally and placed into intermediate stor-

age, or placed into a specific format for output purposes.

Constants which are defined by the programmer.

DATA DIVISION ORGANIZATION

The DATA DIVISION is subdivided into two sections:

a.

The FILE SECTION defines the contents of data files which are to
be created or used by an external medium. Each file is defined
by a file description, followed by a record description or a series

of file-related record descriptions.

The WORKING-STORAGE SECTION describes records, constants, and non-
contiguous data items which are not part of an external data field,
but which are developed and processed internally.

DATA DIVISION STRUCTURE

DATA DIVISION STRUCTURE
The general structure of the DATA DIVISION is as follows:

DATA DIVISION.
FILE SECTION,
] [;file-description-entry

} [record-description-entry]
!sort-description—entry

-
[WORKING-STORAGE SECTION.

[77-1evel-description-entry]]

record-description—entry

Each section of the DATA DIVISION is optional and may be omitted from the
source program if not needed. However, if a section is included, it must be
incorporated in order of appearance shown above. These sections are described

on the following pages.

The file description defines information pertaining to the physical aspects
of a file. Such items as number of records in a block, identification of
records @n the file, the presence or absence of labels, etc., are included
to describe the entire file,

The record description presents logical characteristics of each record, This
includes the layout of items within each record type, size of various items
in the record, indication of the range of values for each item, picture

of the contents of each item, whether the item is signed or not, and the
usage of an item within the program., All of these parameters may be utilized
to define logical characteristics of each record.

The WORKING—-STORAGE SECTION is comprised of internal record descriptions and
individual unrelated items, which are described as record entries, or parts

of record entries.

In summary, the DATA DIVISION contains information pertaining to the data to
be used by the program: the files used, the records contained in each file,
and items comprising each record; in addition, working storage and constants

may be specified,

FILE AND RECORD CONCEPTS

FILE AND RECORD CONCEPTS

The approach taken in defining file information is to distinguish between the
physical aspects of the file and the conceptual characteristics of the data
contained within the file.

Physica! Aspects of a File

The physical aspects of a file describe the data as it appears on the input

or output media and include such features as the following:

a. The mode in which the data file is recorded on the external medium,

b. The grouping of logical records within the physical limitations of
the file medium.

c. The means by which the file can be identified.
Conceptual Characteristics of a File

The conceptual characteristics of a file explicitly define each logical entity
within the file itself. 1In a COBOL program, the input or output statements

It is important to distinguish between a physical record and a logical record.
For COBOL a logical record is a group of related information, uniquely identi-
fiable, that is treated as a unit.

A physical record is a physical unit of information whose size and recording
mode are convenient to a particular computer for the storage of data on an
input or output device. The size of a physical record is hardware-dependent

and bears no direct relationship to the size of the file of information con-
tained on a device.

A logical record may be contained within a single physical unit; or several
logical records may be contained within a single physical unit. There are
several source-language methods available for describing the relationship
of logical records and physical units. Once the relationship has been
established, the control of the accessibility of logical records as related
to the physical unit is the responsibility of the operating system. In this
manual, reference to records means to logical records, unless the term
"physical record” is specifically used.

The concept of a logical record is not restricted to files but may be applied
to all sections of the DATA DIVISION.

FILE AND RECORD CONCEPTS

Record Concepts

The record description consists of a set of DATA DESCRIPTION entries which
describe the characteristics of a particular record. Each DATA DESCRIPTION
entry consists of a level-number followed by a data—name, followed by a
series of independent clauses, as required.

Example:
01 ITEM-ONE PICTURE IS X(6).
The maximum size of a record description (i.e., the sum of the maximum sizes

of all the items subordinate to an 01 level item) is restricted to 65,535
bits (8K bytes).

LEVEL NUMBERS CONCEPT

LEVEL NUMBERS CONCEPT

The concept of hierarchy is inherent in the structure of a logical record.
This concept arises from the need to specify subdivisions of a record for
the purpose of data reference. Once a subdivision has been specified, it
may be further subdivided to permit more detailed data referral. 1In other
words, level numbers define the interrelationship of the items comprising

the record and allow the programmer to access individual items or groups
of items.

The most basic (least generic) subdivisions of a record, that is, those not
further subdivided, are called elementary items; consequently, a record is
said to consist of a sequence of elementary items, or the record itself may
be an elementary item,

In order to refer to a set of elementary items, the elementary items may
be combined into groups. Each group consists of a named sequence of one or
more elementary items. Groups, in turn, may be combined into groups of two

or more groups, etc. Thus, an elementary item may belong to more than one
group,

In COBOL, the item relationship is specified by the use of a series of level

numbers. These numbers must not contain more than two characters, and may
range from 1 thru 49. (Special level numbers of 66, 77, and 88 are discussed
later.)

Each record of a file begins with the level number 1 (which may also be
written as 01). This number is reserved for the record name only, as the
most generic grouping. Less inclusive groupings are given higher numbers
(not necessarily successive) up to a limit of 49. Figure 6-1 illustrates a

form of level construction,

The smallest elements of the description are called elementary items. 1In
figure 6-1, EMP-NO, EMP-COST-CENTER, EMP-LAST-NAME, EMP-FIRST-INITIAL, and
EMP-M-INITIAL are all elementary items, as well as EMP-H-MONTH, EMP-H-DAY,
EMP-H-YEAR, EMP-GROSS, EMP-HOSPITAL, EMP-LIFE, EMP-FICAT, EMP-STATE-TAX,
EMP-WITHHOLDING, EMP-LMONTH and EMP-LDAY. ©None of these items are further

subdivided; therefore, they are called elementary items.

Each elementary item belongs to one or more groups. In the example, EMP-
HOSPITAL is a part of the EMP-INSURANCE group. EMP-INSURANCE, in turn, is
part of the EMP-DEDUCTIONS group, which is part of the EMP-PAY-DATA group.
Therefore, a group is defined as being composed of all group and elementary

items described under it, until a level number equal to or less than the

1))
1

BURROUGHS COBOL CODING FORM

1d3ONOO SYIIWNN 13AN

o ADDITIONS. DELETIONS AND CHANGES
PROGRAM COBOL OIVISION PAOE of
Lever Numaer Comsreuction 1 (
PROGRAMMER 3 DATE IDENT. 78 0
ARBAA U T S G T . 1
PAGE LINE A [] =
NO. NO.
1 ala e[7]8 1| 22 32 42 52 62 T2
1 1 l [T T —
L lgt Ot L EMPLOVYVEE—~TNEO .. 1 1 1 4 L by bbb b b b4 b b b
N } t 1= T 1
Ly} 11103111lllll{E&M{EL“lMpllll{llllLlJll%l?lIlc}lql(lsl)l-ljlllllll=llllllllll
1 |
L dor JEREREE = & YN SR U S U S %EMEPL‘IQDISTT'L"IC{EIMH—]E!% Ly Pre 99., % T T T O T S W Y Y T
1
| : L1 Lo 1 14EWMH-HQAmNEh1 Y T Y T W
[Ll OS anMPl-nLlﬁisiTl-lN;hMEn R S R I(.l|| T T O O O S B W
i
[Lo L OS] 1111 %EM?I‘IPIERSTTI’P:IMIEIILALI L1y PIC %K., T TN S Y B S
I !
J I Lol L OS %Exw?l":MﬂItNIﬂ}Ll’nLl I T T l‘PLIiCl et S S T T Y W O
[}
1 - JE . 0514 T W N T | %EIMT)J‘J lNlQulP(LL%-islﬁlLﬂAlﬁ\/l 1 % 1 lﬂLC-A |9|(1Q|)|'V19|q1-1 i1 LLLi[;LJ j I S Y |
1
Lt 11105111141llz'EMlpl‘l-Df‘]—LHIIR:Eh-lxlx|11+||11111L4}L11111111}1111114111
i
11 11! T IO YR S IIELM’R“‘IHn’lMONLT'sﬂl T T B A ¥Bra 94.. BT U Y Y T W O
1
P4t L1 1@15]11111451’\/\1\9;—1145')%\/1{141141|:|=11?1Irc1 191‘?1-|+|111441111r111L111111
]
1 1 i : 11 1 lqgi U N =EIMP!~lHl~lvlsller | Y S N U J U | % 1 l’P‘:@L lQI il'l % S U U S N U N S | = I i1 1111111
111: 111013111111:;LELM?‘x’RAVA—lDAFIAuIII111%|44111141+||1|1||1141A1L111111
L1 | : ot 1 QSI N WS W U § TElM‘Pl'»’TGfaplsls % | S A S U U 1 111 1 l?lILl IQRCL@L)%quIqI‘I | S U TS B | %LL | D WD W S Y S O |
1.1) ! J I Y 1 lolsl 411§ 1 }EIM‘DIEIDIWCL l{zolMJSI'Ll 1.1 1 } J I U U | % | W N T U N N | l+l i S U U U U |
1
Ll !t L IlLlOlqllIITIEIM!'P"l::NISIu\?lANQEI-IllILl%LllllllLJJ]LilllLlllJ'lllllllLll
]
L1 12 : b b gty g }EIM'PI‘IlesIPVIIT{A’ILJ Lol 1y rPIIICx lql(Jq'DJTVLqJ T TG T W T A B Y W
Lty : [N A SRS I =EMPP1LLLLF1€1 T N S P Lreg AQIQ41)11V1qvq|-| R E A U G A A I A I |
F O Lo lLJLoquI1L%EIWR_ITI.AD(LEISI°iJIIllllLJTLlllllllJ_Lfll'lllliJ%ulLllliLl
1
1.1 1 : W | 1) W W S| lll'l A1 J'EMPI—IFIIC'IAl 1 + | S N N N W N T B | { 1 l‘lel 1 IC#I){VﬁJ 1=4 1 & i 1 t %LL i W U W S S '
11 P! i) FE N S 1[1\1 1 lElMpl"lsl-rlA-rLEl"ng.AXI T I T B : 1 LﬁI;gL 1?1(1"(1)4\/3191'1 1 11 1 1 % J U N S U IO N G B I |
1 J
1 l i [} W T RS S S G | l'l'l i YIEA&'PJ—IMII-‘-IHI&Q"‘H}I:“GI i 1 1 1 ; L lPl:CI quqLQAi;vlql(Ial)l'l 1 L. L % L1 41 1 1.1
]
1.1 1.4 ;1LQ.3111|1|11A[Mg‘uhﬁsrlﬁ?lrEnVIxsnh}HALLJ‘|111||1|11|1||1||1L1=1111111411
1
Lt bt T = L. I 1:EIMP1"’!L1-AMqu-‘—%H'IIIIII L1y e IQHUL%L41|1 T B A Y O
i
il d Lo 11q4|1111115”\19'11{'1—»QAH1|1111111111||§lL§LLq|qA‘111111111111L14L111111

Figure 6-1.

Level Number Construction

LEVEL NUMBERS CONCEPT

group level number is encountered. In the example, EMP—-PAY-DATA group in-
cludes all items to, but not including, EMP-LAST-REVIEW (which has an equal
level number). Likewise, EMP-DEDUCTIONS group includes all subsequent items
up to, but not including, EMP-LAST-REVIEW (which has a level number less than
EMP-DEDUCTIONS) .

Level numbers used in defining successively smaller groupings, working toward
an elementary item, are given in larger values., Although it is not necessary
that they be consistent or consecutive, a level number must not exceed 49, A
level number immediately following the last elementary item of a group must
have a value of less than or equal to the level number for that group and equal
to the level number of some previous group. An exception is that level number
1 (or 01) is reserved exclusively for identifying the beginning of a record
description.

In the above example, the rule prohibits EMP—-ANNUAL-SALARY from having a level
number of 2 (or 02). Likewise, the entry name EMP-LAST-REVIEW could not have
had a level number of 10 or 06 because, in the example, no previous group ap-
pears with either of these levels. As a completely separate group, it could
only have a level number the same as that of the major groups previously shown.
Figure 6-2 illustrates another way to visualize the concept of level numbers
by using the same example.

A

4 \©
EMPLOYEE INFORMAT!ION
o
Comml ‘ ~ =g
-
£ 0] EMPLOYEE- |ANNUAL-| DATE PAY DATA < >
MN |S NAME SALARY|HIRED| 2
PU|T —As f—A—v" A &
L .“3'1 c NORMAL DEDUCTIONS
92 1E GROSS
ER M e —A N 2
E TE' INSURANCE TAXES
R o
IR RN EANN TR TR NN SRR IR R NN SRR IR AE s
[e] =< z z£0O
2 o % := 2 %o & 3 % 2 & £ &%
» O » vy Zz z=<3 2 w o > = T =
r I = -~ C pur} =) c m =
o ! J 'm P T > 3 v I =z
=< O z =N = - >) ! o
m m > 2 ' ' = - - -
m Zz z 3z o] & 5 ot =
z o m 3 F 3 » 0m 3
c o rp» P> w pm
z r 3] o
) < z
m
2

Figure 6-2, Concept of Level Numbers

QUALIFICATION

QUALIFICATION

Every user—defined name explicitly referenced in a COBOL source program must
be uniquely referenced either because no other name has the identical spelling
and hyphenation or because it is unique within the context of a REDEFINES
clause, or because the name exists within a hierarchy of names such that
reference to the name can be made unique by mentioning one or more of the
higher-level names in the hierarchy. These higher—level names are called
qualifiers and this process that specifies uniqueness is called qualification.
Identical user—defined names may appear in a source program; however, unique-
ness must then be established through qualification for each user-defined name
explicitly referenced, except in the case of redefinition, All available

qualifiers need not be specified so long as uniqueness is established.

The hierarchy of qualification is as follows: names associated with a level
indicator are the most significant; then names associated with level-number
01, then those names associated with level-number 02, ... , 49, A section-
name is the highest (and the only) qualifier available for a paragraph-name.
Thus, the most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names and conditional variables,
as well as paragraph-names and data-names, may be made unique by qualifica-
tion. The name of a conditional variable can be used as a qualifier for any

of its condition-names.

Regardless of the available qualification, no name can be both a data-name

and a procedure~name.

Qualification is performed by following a data-name or a paragraph-name by
one or more phrases composed of a qualifier preceded by IN or OF, 1IN and
OF are logically equivalent.

The format for qualification consists of two options which are shown below:

Option 1:
{lﬂ data-name-2 e [{l— file—name]
OF OF
{data-name-l }
condition—name
IN _——
{QE } file—name

6-8

QUALIFICATION

Option 2:

218

paragraph—name { } section—name

The rules for qualification are as follows:

a. Each qualifier must be of a successively higher level and within
the same hierarchy as the name it qualifies.

b. The same name must not appear at two levels in a hierarchy so that
the name would appear to qualify itself.

c. If a data-name or a condition-name is assigned to more than one
data item in a source program, the data-name or condition-name
must be qualified each time it is referred to in the PROCEDURE
DIVISION, ENVIRONMENT DIVISION, and DATA DIVISION (except REDEFINES

where, by definition, qualification is unnecessary).

d. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referenced

within its own section.

e. A data-name cannot be subscripted or indexed when it is being used

as a qualifier,

f. A name can be qualified, even though it does not need qualification;
if there is more than one combination of qualifiers that ensures

uniqueness, then any such set can be used.

In the example below, all item descriptions (except the data-name PREFIX)
are unique, In order to refer to either PREFIX item, qualification must be
used. Otherwise, if reference is made to PREFIX only, the compiler would
not know which of the two is desired. Therefore, in order to move the
contents of one PREFIX into the other PREFIX, the PROCEDURE DIVISION must
be coded with one of the following sentences:

MOVE PREFIX IN ITEM-NO TO PREFIX OF CODE-NO,

MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE.

MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO.
MOVE PREFIX IN TRANSACTION-TAPE TO PREFIX IN MASTER-FILE.

o 0 T W

QUALIFICATION

Example:
01 TRANSACTION-TAPE . . . 01 MASTER-FILE
03 ITEM-NO . . . 03 CODE-NO .
05 PREFIX . . . 05 PREFIX .
05 CODE . . . 05 SUFFIX .
03 QUANTITY . . . 03 DESCRIPTION .

6-10

TABLES

TABLES

Frequently, the need arises to describe data that appears in a table (i.e.,
array, list, etc.). For example, a master record might contain 16 total
fields, and these might be described as TOTAL-ONE, TOTAL-TWO, etc. However,
this requires 16 data-names, and each total must be individually referenced
in the PROCEDURE DIVISION. A more powerful way to describe the field is:

TOTAL . . . OCCURS 16 TIMES.

Elements of a table are referenced thru the use of subscripting or indexing.

An element of a table is represented by an occurrence number.

The elements of a table may contain subordinate fields. For example:

02 TOTAL . . . OCCURS 16 TIMES.
03 TOTAL-A . . . PICTURE 9(6).
03 TOTAL-B . . . PICTURE 9(6) OCCURS 3 TIMES.

Also, as shown above, OCCURS may be nested to describe tables of more than
one dimension by applying an OCCURS clause to a subordinate name. Standard
COBOL 1imits tables to three-dimensions.

In the WORKING-STORAGE SECTION, initial values of elements within tables may
be specified as follows. The table may be described as a record by a set of
contiguous data description entries, each of which specifies the VALUE of an
element, or part of an element, of the table, 1In defining the record and its
elements, any data description clause (USAGE, PICTURE, etc.) may be used to
complete the definition, where required. This form is required when the
elements of the table require separate handling due to synchronization, USAGE,
etc. The hierarchical structure of the table is then shown by use of the
REDEFINES entry and its associated subordinate entries. The subordinate
entries following the REDEFINES entry, which are repeated due to the OCCURS
clause, must not contain VALUE clauses.

Example:

01 W-S-TOTS.
03 FILLER PC X(24) VALUE IS ZEROS.
03 CARDIMAGE-VALUES PC X(80).

01 R-TOTS REDEFINES W-S-TOTS.
03 TOT PC 9(4) OCCURS 26 TIMES.

SUBSCRIPTING

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual element
within a table of like elements that have not been assigned individual data-
names. (Refer to the OCCURS clause.)

The subscript can be represented by a numeric literal that is an integer,
or by a data—name. The data-name must be a numeric elementary item that rep-

resents an integer. The data—name may be qualified.

The subscript may be signed and if signed must be positive. However, the sub-
script cannot be computational-3 or J-signed. The lowest permissible subscript
value is 1. This value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are
2, 3, The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in the OCCURS
clause, Violation of this rule will cause the object program to terminate

with an INVALID SUBSCRIPT message.

The subscript, or a set of subscripts, identifying the table element 1is en-—

closed in parentheses. The table element data—name appended with a subscript
is called a subscripted data—name or an identifier. When more than one sub-
script appears within a pair of parentheses, the subscripts may be separated
by commas and are written in the order of successively less inclusive dimen-

sions of the data organization,

The general construct for subscripting is:

data—name }
condition—name

(subscript [ysubscript] ...)

For example, in figure 6-3, to reference the first volume, EN-VOLUME (1) is
written. If data~name N contains the number of the volume desired, EN-VOLUME
(N) is written., 1If the data item PAGE-NO contains the number of the page
desired, then EN-HEADING (N, PAGE-NO) would reference the 12-character

page heading.

Where qualification and subscripting are both required, the qualification is
shown first, followed by the subscripting. For example, EN-PAGE OF
ENCYCLOPEDIA (N, PAGE-NO). EN-PAGE (N, 3) OF ENCYCLOPEDIA is incorrect.

For further restrictions, refer to the discussion of identifiers in this
section,

€1-9

BURROUGHS COBOL CODING FORM

ADDITIONS,

DELETIONS AND CHANGES

PROGRAM COBOC DIVISION PAGE oF
Murt- Dimemsiomen Thnie — ! {
PROGRAMMER DATE IDENT 73 0
—BEV U W W W U S

PAGE | Line a 0 -

NO . NO .
. rie n e 22 32 a2 52 62 72
] N ' [T ‘T

1 lg ! q‘llEI”IQI\/lciLJQ‘PAEl])‘I&Alnlllllll%IJJLIILJ__l_{,llllll111%1llllllll_lrllllllllJL
1

1 jg ! L1 198y) 111:,%501—1V101L1M11\/\1E1 bt QI ICINRS, %AOL__LTLM_ELéLs_ e i L e e e
[

a1t Ll 11/10111111%5”1—1END&%|1¢111 lel141%mL1>(l(16131'1111lellll1
[

L cee b aler) ENEPASE +_¢_L19&&JA&_§L +_Q_L_1§ME.QL_A_+_L_1_LJ_1_1_1_LJ.+_LL_L_I_LJ_J_LJ__1_

[Ll 1111!15111@3) LHElkT.DIlNCﬂxjnlll11:1|L¢LJL1x|1ﬁ:lCLJXD§XD<L.1}11 L1g
[}

Lt 1t J lLl]llslllLiElNL"Ll HQIP‘JS-EIQA‘IF>1“J OC RS ;5 |"TIIME|S|'1111 TR S S S W S
1

11)s A IR Y L&OI.}ENHTTED(TH|1%1;1111|1n{:1lelxxxg”lInQnXA(l?ngQ)nr-ln11111111
]

11 1t J F T LIII%IJl]lll[‘i\‘}llellllL‘LIlJLLLllliLAlLlJlll%lllllJllll
I !

11 1! JE 1 1O U0 0 N U S O U N U W S A W (N G U D W YO N W VU S U N T N U VAt G O " S S S A W A Uy U S 1 A Y W TS A T W O W
T 1 T t T T

1441 [B N U S ST T TG G G S G VS S 0 0 T W S T T Y O
1

11 it [N B Lol AN S S S M W G R T W W W T W B
t

S L b1y T T U S U T T T W G A Y W U 0 B W W O
] B T 1

L ! e S o A
1

11! S I R U T U U S T U U W T G Y T T W W W S0 W 0 W
]

1 1 1 i Y 't 1 1 11 1 11 { 1 § I S T U U B S | % B D WO N N | 1 1 1 % | U T WD Y I N B e | ’ | S S S W T N | % j U S VS U SN U U S
1

11 ! IR U T LLlllrl1'111111%'1L1111|11%111111111%11111J111%1L11111111
i .

Lot T T N S S WG S S S S O WS S S G W W W O
1

1L L oo) lLLl%Lllllllll%lllJllLl.;ILllllLJl}l‘lJlJLLl%JlLLJlllll
1

[[G| e N U T T S W O S S 5 W B S S S W
i

1.1 p ! o1 o S llll{’llllllLl%Lllllllll_l[lllllllll%lllllllllillllllllln
T

1 P DY B s llll%l11lilLLL%Lllllllll‘LllllllLll{lllllllll%LlLllllllL
]

1 l 1]) |) N W J I S % I G S W O S W S | {) WS W WS B W SO W W %) W VY WY U0 SN T W | i J S S W T S S . ; WO SN N SN T S
]

1.1 1 [} U U S | § N S U N U W S R U UUUNS WS W U S SN SN Y S N SN G UH S N G N W U U S N S NN N N AU W S N S T U U SN SR W U S B S S T
1 L T 1 T T

l_1 . 11 4 O . 1111;111|11111{111111111+111111lll%[illllllllrLllllllAAi
]

[[B T O U 0 VA G U S U O VA G G VO T U0 U VS W S Y Y G S5 U S W 0 S0 G0 U0 W S0 WY U0 S W0 W0 A S 0 WA U G A O O S B O |

Figure 6-3.

Coding of Multi—-Dimensioned Table

ONILdI¥IOSANS

INDEXING

INDEXING

References can be made to individual elements within a table of like elements
by specifying indexing for that reference. An index is assigned to that level
of the table by using the INDEXED BY clause in the definition of a table. A

name given in the INDEXED BY clause is known as an index—-name and is used to

refer to the assigned index. The value of an index corresponds to the occur-
rence number of an element in the associated table. An index must be initial-
ized before it is used as a table reference.

value by either a SET or a PERFORM statement.

An index can be given an initial

Direct indexing is specified by using an index—name in the form of a subscript.
Relative indexing is specified when an index—name is followed by the operator
+ or —, followed by an unsigned integer numeric literal all delimited by the
balanced pair of separators left parenthesis and right parenthesis following
the table element data—name. The occurrence number resulting from relative
indexing is determined by incrementing (where the operator + is used) or
decrementing (where the operator - is used), by the value of the literal, the
occurrence number represented by the value of the index. When more than one
index—name is required, they are written in the order of successively less-

inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table ele-
ment, the value contained in the index referenced by the index—name associated
with the table

nor to a value

element must neither correspond to a value less than one (1)
greater than the highest permissible occurrence number of an

element of the

resultant from

associated table.

relative indexing.

This restriction also applies to the value

The general construct for indexing is:

data—name

(9
condition-name] -

(

index—name [[

literal-1

\

+

] literal—%

3

P

L\

index-name[[

literal-3

+

)
] 1itera1-4]

o))
1
e
W™

IDENTIFIER

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not unique in
a program, must be followed by a syntactically correct combination of quali-

fiers, subscripts, or indices necessary to ensure uniqueness.
The construct for identifiers has two options which are as follows:

Option 1:

data-name-1 [{%% } data-name-Z] v

[(subscript-1 [, subscript—n]...l]

Option 2:

o
Zlg

data-name-1 [{

index—name-—1 [
<

literal-1

} data—name—z]

j} litera1-2]] [[index'name—z [{t} literal—z{lH..j

literal-3

ey

Restrictions on qualification, subscripting, and indexing are as follows:
a. The commas as shown in both options are optional.
b. The data-name-2 must not itself be subscripted nor indexed.
c. Indexing is not permitted where subscripting is not permitted.

d, An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause
permit storage of the values of index-names as data without con-

version. Such data items are called index data items.

e. Where more than one occurrence number is required for a data—name
reference, it is illegal to use a data—name for one occurrence num—~
ber and an index-name for another. However, literals and index-

names may be mixed.

6-15

FILE SECTION

FILE SECTION

This section contains descriptions of the files used by the object program.

File Description

The function of the File Description sentence is to furnish information to the

compiler concerning the physical structure, identification, and record names

pertaining to a given file.

The construct of this sentence contains four options:

Option 1:
FD file-name-1 COPY library-name
word-2]
REPLACING {g:idzl me_l} BY |data-name-2
a-na literal-1
word-4
{ggig:iame-S} BY data-name-4]...
literal-2
Option 2:

FD file-name-1 :

v L . ATIONS
[, BLOCK CONTAINS [integer-3 TO] integer-4 [CHARACTERS]]

[; RECORD CONTAINS [integer-5 TQ] integer-6 CHARACTERS]

VA) o (1D 1s |[literal-1/] literal-2 [L [1itera1-3ﬂ
*| VALUE IDENTIFICATION

data-name-1
[SAVE-FACTOR IS integer-7]

, RECORD IS OMITTED | _ _]}]
[, LABEL {ﬁiﬁﬁﬁﬁs ARE} {STANDARD [data—name 2 [, data-name 3..J

. RECORD IS } B _
L DATA {ﬁﬁi@ﬁﬁs ARE data-name-4 [, data-name 5..J] .

FILE SECTION

Option 3:
SD sort-file-name COPY library-name
[word-1 word-2
REPLACING {] BY data-name-2
e data-name-1 — literal-1l
word-4
[{goid—S _3} BY [data-name-4l] ..] .
|l data-name - [literal-2 |
Option 4;

SD sort-file-name

. : _ . _ RECORDS]
; BLOCK CONTAINS [integer-3 TO] integer-4 [CHARACTERS }

RECORD IS }
RECORDS ARE

; DATA { data-name-1 [data-name-2] ...}

=

A level indicator of FD or SD identifies the beginning of a File Description
or a Sort File Description and must precede the file statement. Both entries
should commence under Area A of the coding form. Only one period is allowed
in the entry and it must follow the last clause specified.

Options 1 and 3 can be used when the Systems library contains the library-
name entry; otherwise, Option 2 and/or Option 4 must be used.

In many cases, the clauses within the File Description or Sort File Description
sentence are optional. Their order of appearance is immaterial. Each clause

is discussed in detail.

Figure 6-4 illustrates the use of the File Description sentence followed by
data record entries.
NOTE
The two 01 levels implicitly redefine
the record area. The DATA RECORDS clause
is treated by the compiler as being for
documentation purposes only and does not

cause an explicit redefinition of the area.

6-17

81-9

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

NOIL1D3S 3114

PROGRAM F\@ Seﬁ—r‘o,\) EMP‘H‘ . COBOL ODIVISION PAOGE
PROGRAMMER DATE IDENT
\)w_\e
raGE | LINE A L
NO. NO .
sfa sl7]8 e 22 32 .2 52 62
11 L: EILE |5E|C1"13§Qh\-x1;1411111111;LLJA11;111111111111;11|111|11§
Ll ED STER~FILE BLOGK, CONTATNG, 3 REUQRDE | | I.J_J_L_L_L_J_LHLJ._LL_L_L_L_A_u_L_'
{011 E L VIBL e ©F, ﬂ:lml s 1?1E121$1"|/1"%Mhéﬂ'|5|?¢"1 1%&.'__’_5_1215&13:&21 %’pl-l Ly
11 J: th5MP1L1'~1?1E1C1-1‘1'A11111|n{111111111%111111111%111111111:
L1l : T e YR S S B %ﬁMPLI“lNIWMBE'_Ql L JPlIlcl ACE Do O B
[N : L1 0151.1 S S fDlEIPL.rl O T G S S W W lptlcl Ai991.1 4 R W
SR : e LS L FELLLER 41 T U B W x’PIQ A T S O S
14l : L OS a P\p;&*xQQbLE_L Ll %PIIC: AKX o e S A W
| 1: 11051441111L%FLJ:1L4L45RAl1*11L111111LL4RLQDQ(16|Q>1.%111111111%
111 : S [EXTRACTI-, TLES | FLLE ’CIQN-’TAIINJSJ OO0 LEE:C;QRIJ)&-l Ly
1.1 1: Onhnm@m-lRAElCl-*4Ltill"11#1111[111L|LL111111117;|11111114=
SRS L1 (OSSO R-CODEL | 1 L?Iﬂl LS 8 I A A A A AR
Ll : L1 OS] -__Q‘AEM?lL‘:LLJMLqu_@L| I 1P111C1 @I T N W A R
I L1 5 vt FO L ev - | L 1 |P£Q; gX(@?l)n-L Ly
L4 E FDD,A}ZLE_EI:&EJBQ&G’ V_L&LL_J!ALEL_AF faun) |"1’P151R151"1r/1"1"2151%?1'r1 Ly
I : L1 [DIATOA TRQCQB“M RODN |~ L;Nﬁ,é HhE 5&&&;" LINES -1 N T B W
1.1 1 : Qll_,L BLE&J@‘&LM—MSI" I W TS W U S S S B f R SO S S G S W S {
L1t : il Eob\/’lthiA)lEISIOI La1 L : Loy TR T S YWY W W B SO B
1l ! L JO8 a %AOB‘ICQLB[EI | ?qu l\)(l(ll“'b 1-51(14‘1)1-1 T S S O W
A1 1 E P QO S | ng T U T S W S | {EMRLIﬂQOMNﬂ’% J | [RIICL 121(1S> 81'1 D S W Y % S W U I S W S U | %
L1l : L QS %HILAL{ERI T S S . g st ey lxx(ﬂ%? -0 ST TN S T S B W
lll: I 1111x11Ll% llllllll%lllllllll%lllll!lll%LlLJlllll%
lll: i dd Alljlllll%lnllllllL]LLiiLlllll%lllllllll%lllllllll%
J.1 1: lLlJLlillllL{lllllllll}iL]Llllll:lllllllll{lllLlJlll%
L1 da TS U Y SN TS VAU VY S WY VA0 U G (N U0 U S 0 0 VU S U0 Y U0 W N Y Y WY G W S W S U S0 G 0 W U G0 0 U0 W W O |

Figure 6-4. Coding of FD and DATA RECORDS

BLOCK

BLOCK

The function of this clause is to specify the size of a physical record
(block).

The construct of this clause is:

BLOCK CONTAINS [integer-1 TO] integer-2 [@——TRfIﬁBSERS]

Integer-1 and integer-2 must be positive integer values.
This clause is required if the block contains more than one logical record.

When only integer-2 is used, it will represent logically blocked, fixed-length,
records if its value is other than 1. When the integer-1 TO integer-2 option
is used, it will represent the minimum to maximum size of the physical record
and indicates the presence of blocked variable-length records. Integer-1 is
for documentation purposes only.

The maximum value of the integer used in this clause is shown in table 6-1
and refers to the number of characters in a block.
The word CHARACTERS is an optional word in the BLOCK clause. Whenever the

key word RECORDS is not present, the integers represent characters.

For object program efficiency, the use of blocked records is recommended. The
physical size of the block should be as large as possible depending on memory
availability.

Blocks of records are read into the input buffer area by the MCP, and the
delivery of each record to the record work—area of the program (required by
an explicit READ statement) is completed.

Blocking or deblocking of records is automatically performed by the MCP.

6-19

BLOCK

Table 6-1, Maximum Value of Integers

1/0 MEDIUM MAXIMUM BLOCK SIZE - CHARACTERS

READER 80/96

PUNCH 80/96

TAPE Limited only by the amount of
memory available.

DISK Limited only by the amount of
memory available,

PRINTER One print line.

PT-READER Limited only by the amount of
memory available.

PT-PUNCH Limited only by the amount of
memory available.

Every explicit WRITE statement causes compiler—generated object code to notify
the MCP that a write is to be done. The MCP accumulates the number of logical
records necessary to create a specified block size and writes the block. When
a file is CLOSEd, the records left in the output buffer area, if not a full
block, will be written as a short block by the MCP before the file is physi-
cally CLOSEd, The transfer of records to the buffer is automatic, and is a
function of the MCP.

The user must specify the actual size of variable—length records in the first
four bytes of each record. This four-character indicator is counted in the

physical size of each record.

The BLOCK clause is not applicable to the READER, PT-PUNCH, PT-READER, or
READER-SORTER peripherals.

This clause may be omitted for unblocked files.

When a file is assigned to disk, the user should be aware that the physical
disk segment size is 180 bytes and that all READ and WRITE statements are, in
effect, in multiples of this size. The hardware must write (or read) in seg-
ments; therefore, it is preferred that the block size used be a multiple of
180 bytes.

DATA RECORDS

DATA RECORDS

The function of this clause is to document the names of the logical record(s)
actually contained within the file being described.

The construct of this clause is:

DATA

{ RECORD IS } data-name-1 [,data-name-2]...

RECORDS ARE

This statement is only for documentation purposes. The compiler will obtain
this information from 01 level record description entries.

The presence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes,

different formats, etc. The order in which they are listed is not significant.

6-21

FILE CONTAINS

6-22

FILE CONTAINS

s

S

6-23

LABEL

LABEL

The function of this clause is to specify the presence or absence of file
label information as the first and last record of an input or output file.

The construct for this clause is:

OMITTED l
RECORD IS STANDARD
lRECORDS ARE data—name—-1 [,data-name-2] ...‘

S

LABEL

STANDARD specifies that labels exist for the file or device to which the file
is assigned. It also specifies that output labels conform to the standards

as implemented.

STANDARD, when specified for disk files, indicates that the 20-character
contents of the VALUE OF ID clause will be inserted into the disk file header.
Should VALUE OF ID be omitted, the first 10 characters of the FD or SD file-
name will be inserted into the second 10 characters of the disk file header.
When the LABEL clause is not specified, LABEL RECORD STANDARD is assumed.

Data-name—-1, data-name-2,..., are names of label records and must not appear
in the DATA RECORDS clause, or be the subject of a record description asso-
ciated with the file,

OMITTED specifies that physical labels do not exist for the specific input
file to which the file is ASSIGNed. During object program execution, the
operator will be queried by the MCP as to which unit possesses the input data.

The operator must reply with '"mix—index'" UL -"unit-mnemonic" control message.

OMITTED specifies that labels are not to be created for the specific output
file ASSIGNed.

The B 1800/B 1700 standard label for tape is in a format compatible with the

proposed USASI standard label for information exchange.

RECORD

RECORD

The function of this clause is to specify minimum and/or maximum variable

record lengths.

The construct of this clause is:
RECORD CONTAINS [integer-l 29] integer-2 CHARACTERS

Integer-1 and integer-2 must be unsigned non-zero integer values,

If integer-1 and integer-2 are specified, the variable-length record technique

is utilized.

If only integer-2 is specified the compiler will treat the clause as being
documentation only. The record size will be determined by the structure of
the largest record description. If the largest record description is not

equal to the value of integer-2, a warning message will be produced.

If integer-1 and integer-2 are specified, they refer to the minimum and maxi-
mum size of the variable-length records to be processed. At least one record
description must reflect the maximum size record length as specified in the
RECORD CONTAINS clause.

The user must specify the actual size of variable-length records in the first
four bytes of each record. The four-character variable-size indicator is

counted in the physical size of each record.

; be contained on disk or magnetic tape files.

¢}

y ¥
Variable-length files are also limited to sequential access, and may only be
OPENed INPUT or OUTPUT.

6-25

RECORDING MODE

RECORDING MODE

The function of this clause is to specify the recording mode for peripheral

devices, where a choice can be made.

The construct for this clause is:

STANDARD
RECORDING MODE IS NON-STANDARD
ASCII

RECORDING MODE IS STANDARD is assumed if this clause is absent from the FD
sentence. The MCP automatically checks the parity of input magnetic tapes
and will read the tape in the intelligent mode. For this reason, this clause

is not required for input tapes.

The MCP will automatically assign RECORDING MODE IS STANDARD on 9-channel mag-
netic tape drives if a SELECT clause indicates TAPE, even though the program-
mer has designated the unit as being NON-STANDARD.

Binary files are read or written, with no possibility of translation.

The records of a file which is specified RECORDING MODE ASCII are USAGE
ASCII by default.

The recording modes for the peripheral devices are provided in table 6-2.

Table 6-2. Recording Modes for Peripheral Devices

DEVICE STANDARD NON-STANDARD
TAPE-7 Odd Parity Even Parity
TAPE-9 Odd Parity -

DISK Memory Image -
READER EBCDIC Binary
PUNCH EBCDIC or BCD Binary
PT-READER BCL Binary
PT-PUNCH BCL Binary
PRINTER BCL -

VALUE OF ID

VALUE OF ID

The function of this clause is to define the identification value assigned, or
to be assigned, to a file of records and to declare the length of time that a

file is to be saved.
The construct of this clause is:

VALUE IDENTIFICATION (literal-1/] 1literal-2 |/[literal-3]
OF IS
yA 1D

- data-name-1

[SAVE-FACTOR IS integer-1]

This clause may be used when the label records are present in the file being
described. If this clause is not present, the compiler will take the VALUE OF
ID from the first 10 characters of the file—name (FD or SD) and place that ID
in the ID entry of the label where the value of the main direetory entry would
normally be found. The file—name must be uniquely constructed so that the MCP
will be able to recognize the files.

Example:
FD SCHEDULE-DISK1 Would create a VALUE OF ID as
FD SCHEDULE-DISK2 SCHEDULE-D for both files and
cause a duplicate file action
by the MCP.
To make them unique:
FD DISKOUTPAY Would create a VALUE OF ID as
FD DISKOUTTAX DISKOUTPAY and one of DISKOUTTAX,

thus causing no MCP confusion

during object program execution,

The multiple file tape name will be taken from either the MULTIPLE FILE clause
in the I-O0-CONTROL paragraph; the value of literal-2 when literal-2 is followed
by a slash and literal-3; or the second 10 characters of data-name-1l. The file
name of a multiple file tape file will be taken from the contents of literal-2
when only one literal is specified; from literal-3 if both literal-2 and
literal-3 are specified; or from the last 10 characters of data—name—1l. The
file name for a single file tape will be taken from the contents of literal-2,

or from the second 10 characters of data—name-1.

If literals are used, and contain non-blank characters, then the first charac-

ter in the literal must be a non-blank character.

All non-disk files,are limited to a maximum of two names.

VALUE OF ID

The pack~id name of a disk file will be taken either from the multi-file clause
in the I-O-CONTROL paragraph, or from the value of literal-l. The main di-
rectory (family) name will be taken from literal-2 (in the case of systems
disk or if I-O-CONTROL is used to specify user disk), from literal-2 (in the
case of user disk without I-O-CONTROL or if literal-2 is followed by a slash
(/)). The sub-directory entry (file—name) will be taken from the value of
literal-3. Literal-3 cannot be used when literal-1l and literal-2 are both
blank., When using the literal option, if three literals are used, they repre-
sent pack=id, main directory (family), and sub-directory (file—name), respec-
tively. If two literals are used they represent main directory and sub-
directory. If only one literal is used it represents the main directory entry.

PACK~-ID MAIN DIRECTORY SUB-DIRECTORY
[literal-1 /] literal-2 [/ [literal-3]]
can be specified in can come from FD or forces literal-1l / and
I-O-CONTROL and forces SD name literal-2 to be speci-
literal—-2 to be speci- fied

fied
Examples:

VALUE OF ID IS "USER1"/"PAYROLL"/"DEDUCTS".
VALUE OF ID IS "WORKPACK1"/"TRANS"/.

VALUE OF ID IS "PAYROLL"/"MASTER".

VALUE OF ID IS "ITEMS".

VALUE OF ID IS "MSTTAPE" SAVE-FACTOR IS 031.

The data—name—1l option should only be used if file names are to be built under
program control, as this option overrides file equates and I-0O-CONTROL name as-—
signments for that file. When data-name-1l is used it must be defined as being
30 characters in length and alphabetic or alphanumeric.

When the data-name-1 option is used for disk files, the disk-pack—id must be
included in the description. The compiler will use the first 10 characters of
the data—name as the disk—pack—id each time the file is opened. If the file is

on or is to be created on systems disk, the first 10 characters must be blank.

01 DATA-NAME-1, Overrides I-0-CONTROL or use of
FD or SD name for that file.

03 PACK-ID PC X(10). Pack-id name for user disk must be
blank for system disk or non—disk
files.

03 MAIN-DIRECTORY PC X(10). Cannot be blank at open time.

03 SUB-DIRECTORY PC X(10). A non—blank entry here requires a

non-blank entry for MAIN-DIRECTORY.

Examples:

01 FILE-IDENTIFICATION.
03 PACK-ID
03 MAIN-DIRECTORY
03 SUB-DIRECTORY

01 DATA-NAME-1.
03 PACK-ID
03 MAIN-DIRECTORY

03 SUB-DIRECTORY

01 FILE-ID.
03 PACK-ID
03 MAIN-DIRECTORY
03 SUB-DIRECTORY

01 VA-NAME.
03 PACK-ID
03 MAIN-DIRECTORY

03 SUB-DIRECTORY

01 SOME-DATA-NAME.

03 BACKUP-PACK-NAME

03 WHICH-SYSTEM
03 FOR-WHAT-DAY

PC
PC
pC

PC
PC

PC
PC
PC

PC

NOTE

X(10)
X(10)
X(10)

X(10)
X(10)

~
-t
(=]
N

N
¥

X(10)
X(10)
X(10)

X(10)
X{10)
X(10)

X(10)
X(10)
X(10)

VA
VA
VA

VA
VA
VA

VA
VA

VA
VA
VA

VALUE OF ID

"USER1BBBEE"
"PAYROLLYBR'!
"DEDUCTSpBRB"

"WORKPACK1p"

"TRANSBBBBE"
SPACES

SPACES.
"PAYROLLb%]Z‘”
"MASTERBYBBK"

SPACES.

" ITEMSBBBBE"
SPACES.

SPACES.
SPACES.
SPACES.

Names must be moved in prior to OPEN.

6-29

VALUE OF ID

When SAVE-FACTOR is specified for output magnetic tape files integer-1 repre-
sents the number of days the file is to be saved before it can be purged and
used for other purposes by the system; integer-l is limited to an unsigned
integer not to exceéed three digits in length with values from 001 to 999.

SAVE-FACTOR, when declared for a disk file, is for documentational purposes,
due to the fact that files residing on disk should only be purged by mutual
consent within an EDP organization and can only be performed as a physical
action by the systems operator, or the automatic RMOV option of MCP.

If SAVE-FACTOR is not specified, tapes are automatically assigned a SAVE-FACTOR

of zero days.

VALUE OF Q-MAX-MESSAGES

VALUE OF Q-MAX-MESSAGES

The function of this clause is to specify the maximum number of messages
allowed in a QUEUE,

The construct of this clause is:

VA
{ } OF Q-MAX—-MESSAGES IS integer—8
VALUE

Integer—8 is limited to three digits in length with values ranging from 001

through 255 inclusive.

If this clause is omitted, the value of Q-MAX-MESSAGES is set to 2 by the MCP
when the file is OPENed.

6-31

RECORD DESCRIPTION

RECORD DESCRIPTION

This portion of a COBOL source program follows the file description entries
and serves to completely identify each data element within a record of a

given file.
The construct of these entries contain the following four options:

Option 1:

01 data-name-1; COPY library-name

word-2

REPLACING | %OoTd-1 BY data-name-3

data-name-2 — .
literal-1
word-4
,{word-S } BY data-name-5 .
data-name-4 literal-2
Option 2:
levelenumber {FILLER [;REDEFINES data-name-2]
data-name-1

PC

;{ PIC IS (allowable PICTURE characters)
PICTURE

r DISPLAY 3 .

;[USAGE 1S])

[.[0C
{ CURS } [integer-1 TO]integer-2 TIMES [DEPENDING ON data-name-3]

——————

RECORD DESCRIPTION

ASCENDING
[{ﬁ@§€ﬁﬁﬁTﬁG } KEY IS data-name-4 [,data-name-5] ...]
[INDEXED BY index-name-1 [,index—name-Z]] ...]
NE- LEFT
;1 SYNC {ﬁTGHT}
|| SYNCHRONIZED
- A8)] |
. JUST RIGHT
| JUSTIFIED
. [BZ
| BLANK WHEN ZERO
L
(VA IS] .
’{VKLUE }[ARE literal-1l].

Option 3:
66 data-name-1 RENAMES data—name=2 EEEE data-name-3
- —— THROUGH

Option 4:

VA .IS
88 condit ion-name {23 } [AREJ literal-1 [{‘THRU } literal—z]

VALUE | THROUGH
: THRU .
[Jiteral-B [{TﬁﬁﬁUGH} 11tera1-4]]... .

The optional clauses shown may occur in any order, with the exception that if
REDEFINES is used it must follow data—name-1l.

The record description must be terminated by a period.

Level-numbers in Option 2 may be any number from 1-49 or 77. The optional
clauses may be written in any order, with two exceptions: the data—-name-1l or
FILLER clause must immediately follow the level-number; the REDEFINES clause,

when used. must immediately follow the data—-name—1l clause.

6-33

RECORD DESCRIPTION

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED must occur

on elementary item level only.

The PICTURE clause must be specified for every elementary item except an index

data item, in which case use of the clause is prohibited.

Option 1 can be used when the COBOL library contains the record description
entry. Otherwise, one of the other options must be used,.

In Option 4, there is no practical limit to the number of literals in the

condition—name series.

The SYNCHRONIZED clause is for documentation only.

6-34

BLANK WHEN ZERO

BLANK WHEN ZERO

The function of this clause permits the blanking of an item when its value

is zero.

The construct of this clause is:

{‘EﬁANK WHEN ZERO }

This clause overrides the zero—suppress float-sign functions in a PICTURE.
If the value of a field is all zeros, the BZ clause will cause the field to
be edited with spaces. However, it does not override the check protect
function (zero suppression with asterisks) in a PICTURE,

The BZ clause can only be used in conjunction with an item on an elementary

level.

BLANK WHEN ZERO may be associated only with PICTUREs describing numeric or

numeric edited fields.

The category of the item is considered to be numeric edited.

CONDITION-NAME

CONDITION-NAME

Condition—name is a special name which the user may assign to a value or
values within a data element. This value may then be referred to by the

specified condition—name.

The construct of this clause is:

o VA [IS] . THRU .
88 condition-name {VKLUE} ARE literal-1 [{TﬁﬁﬁUGH} 11tera1—2]

. THRU .
Ellteral—S [{TﬁﬁﬁUGH} 11tera1—4]]

Since the testing of data is a common data processing practice, the use of
conditional variables and condition-names supplies a shorthand method which
enables the writer to assign meaningful names (condition-names) to particular

code values that may appear in a data-field (conditional variable),.

A condition-name can be associated with any item containing a level—number,

except the following:
a. Another condition-name.
b. A level 66 itemn.

c. A group containing items with descriptions including JUSTIFIED, or
USAGE (other than USAGE IS DISPLAY).

d. An index data-item.
e. A data-item with the name FILLER.
When defining condition-names, the following rules must be observed:

a. If reference to a conditional variable requires subscripting, then

references to its condition—names also require subscripting.

b. A conditional variable may be used as a qualifier for any of its

condition—names.
c. Condition—-names can only appear in conditional statements.

d. Whenever the THRU phrase is used, literal-l must be less than
literal-2, literal-3 less than literal—-4, etc.

CONDITION-NAME

e. The characteristics of a condition—name are implicitly those of its

conditional variable.

The following example illustrates a conditon—name. If THIS-YEAR identi-

fies the 12 months of a year, whereas its subordinate data items are defined

as JANUARY, FEBRUARY, etc., and the values assigned to each month range from

01 to 12, then it follows that JUNE would have the assigned value of 06. Using
the condition—name JUNE, the programmer can utilize it in conditional state-
ments as follows:

IF JUNE GO TO .
which is logically equivalent to the statement:

IF THIS-YEAR IS EQUAL TO 06 GO TO .

. . .

6-37

8E-9

BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM C M COBOL DIVISION PAOE ' OoF
ONDIT IO Armes e]
PROGRAMMER DATE IDENT 73
—Dﬁ\l\b — 414 L4 1

PaGE A .

NO .

' e 22 32 a2 52 62

d \ ' T |

i1 b lJll'lll;JJrllLJllllJ{lllllllll{lLllllJLl#lllllilllélllll.liiJL
L1 R 1;11--11;1}111|1L4L1+L11&11LLL%LLJLLl11!%11111411L%11111 11
1 TERP TN S T G G S B S S S A1111411L1%1111|1111%11¢L11411
] L1 qu_L_i_J_.l_.L_.L_J_{s!'?&L-b.LEI L1 Q'PLLS; ﬁh TS T G S Y S T Y SV
L1 A L1 8% FIRST -GRADE 11 VA ' T T S T G T T Y W B Y B A
i1 il MMEMJWM%%
11 TN SR Lu__l_&#ﬁm:fm&&_ﬁt IR ' ot 13-1 1 } S T T W W
e gl a1 B% %F‘:Ollﬁ&'ﬁﬂx:&&@ﬁl L a ViR lq'lr-l T G S S S S B S W
11 [N SRS S S 1%1%L15Iﬁﬁm—é|&ﬁ€bEl L dVUN Y U T W R T S
11 el e 1 188 ’é]ﬁ @g&jps, Lo YA 61:1.11L11L471|111|11|1%1A111 11

1 d N MJM?‘ ADE, I L Viby 171-1 U S S T T W T B O Y B

i1 I T T) U S U S § 1?8 +81 ! lﬁ&&&[}El ,} 1 1 IJ_l;LVA l?{rl‘l) T W I T S W | _Jr U U U U S T % 11 1 1 1 11
11 Ll ot LJM-&M’&R‘@lEl ol 1V1A1 ﬂ{:l S T G VO Y T Y U 0 S W Y Y W
[L1 14111JL&8L%IIOH-1HL'761RIA‘ME}4LIllllel I"Ololllll.ll%lllllJJlJJTlJlel_Jll
i1 v_;._L_l.,,_‘J.__l_l_J_l_l_lmL'_L_-’IﬂL:élﬁﬁgglii [AVLPQ xlwllul W VR TN W W W | } [V T TG W U I N 1 LAIL) 1 1 11 I

11 Lot R U D N | le%l !'l&l‘““l‘ﬁl@%{ [| 1VLP\ l'%éuL | I D W 1ﬁ11 S U U D S S % O G U | i1 1

1.1 VSR U WP Ny U U S Lgng%GKADQL:L&S;BJQQLI Lot AVLAA 1.'+ THRW 1_61:1 1+1 S A T T W O W Lt

| % OO D TN U U U U N S lg‘lgl J\LRI-IHI]G'HI 11 l' Lo+ 11 1 lVlAlLMlEl L”l'll J?l\l It]’+ | LA S U U S S | % 44111 11 1 1
Ll bl a1 B8 1""111@31 l$le’lQO£1Ll L 1VHL1U\E| O TR Y nh&.l Lt

I T IR S &&MM%MM&_
1.1 FEt S S S S N U | % Lol 4 b gl ' . % U |

1 l I U § L | W G S N S W ¢ f 1) I N N N S 1 ll S S | i1 1 ‘ N S | I { J I Y S N R N LJI 11 It 1 1 1
! N AgLJALlllll*l AJ_LJILI[JI_LIJIIILLL%LLJILJlll:l‘LLlliJlL‘%lllllIJLI
1.1 [lLllellLllIlllllll%lilllllll%llllllIll%lllllllll%llllllll
1 i PN WPV N S N U0 U VNN WS N WAL A W S S U VS U H0 VR0 U0 00 Y WU U U S0 U S Y GG T 1A U5 Y G0 N W0 U0 A0 U0 S0 N0 N0 Y WY N0 WS N0 S W0 U0 W0 S0 W0 W O O O |

Figure 6-5. Coding of Condition~Name

JWVN-NOILIONOD

DATA-NAME

DATA-NAME

The purpose of this mandatory clause is to specify the name of each data
element to be used in a program. If a data element requires a definite label,
a data-name is assigned. Otherwise, the word FILLER can be used in its

place.

The construct of this clause is:

[FILLER }
1data—name—1

The word FILLER can be used to name a contiguous description area that does

not require programmatic reference.

This entry must immediately follow a level-number other than an 88 level.
FILLER is only applicable to elementary levels.

A data-name need not be unique if it can be made unique through qualification

by use of data-names on higher levels than itself.

6-39

JUSTIFIED

JUSTIFIED

The JUSTIFIED clause specifies non—-standard positioning of data within a
receiving data item.

The format for the JUSTIFIED clause is as follows:

JUSTIFIED
JUST RIGHT

The JUSTIFIED clause cannot be specified for a numeric—-edited data item or
for an item described as numeric. The JUSTIFIED clause cannot be specified

for an item whose size is variable, for group items or for an index—data—name.
The following are the standard rules for positioning within an area:

a, Numeric data is aligned by decimal point (either implicit or explicit),
with zeros filling any unused positions on either end, as required.
In the absence of an explicit decimal point indication, the decimal
point is assumed to be in the next position to the right of the units
digit, ZEdited numeric data items are aligned by decimal point, with
zero fill or truncation at either end as required within the receiv-
ing character positions of the data item, except where editing require-
ments cause replacement of the leading zeros.

b. Alphabetic or alphanumeric receiving data items are aligned at the
leftmost character position in the data item, with space fill or
truncation to the right.

When the receiving data items are described with the JUSTIFIED clause and it
is larger than the sending item, the data is aligned at the rightmost char-

acter position in the data item, with leading space fill,

Example:
SENDING RECEIVING
pic x(5) |a]l1]2]|3]c] pic x(7) | | |aj1]z2]3]c]

When the receiving item is described with the JUSTIFIED clause and it is

smaller than the sending item, the left-most characters are truncated,

Example:
SENDING RECEIVING
pic x(7) |al1l2]|3]|c|p]|E] pic x(5) |2]|3]c|D]|E|

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item, data
is placed into the area, with space fill to the left,

JUSTIFIED

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item and the
receiving field is smaller than the sending field, truncation will occur from

the left.

When standard justification is desired, the JUSTIFIED clause is not required.

Justification is considered only when data is moved into an area.

LEVEL-NUMBER

LEVEL-NUMBER

The function of this clause is to show the hierarchy of data within a logical
record. Its further function is to identify entries for condition-names, non-

contiguous constants, working-storage items, and for re-grouping.

The construct of this clause is:

level-number {ELLLEB }

data—~name-1

A level-number is the first required element of each record and data-name
description entry.

Level-numbers may be as follows:

a. O01 to 49

record description and WORKING-STORAGE entries.

b. 66 - RENAMES clause used as a record description or WORKING-
STORAGE entry.

c. 77 - applicable to WORKING-STORAGE only as non-contiguous

items and must precede all other level-numbers.

d. 88 - condition-name clause used as a record description or
WORKING-STORAGE entry.

Level-numbers 01 through 49 are used for record or WORKING-STORAGE descriptions.
Level-number 01 is reserved for the first entry within a record description.
Level-number 66 is reserved for RENAMES entries. Level-number 77 is used for
miscellaneous elementary items in the WORKING-STORAGE SECTION when these items
are unrelated to any record. They are called non-contiguous items since it
makes no difference as to the order in which they actually appear. Level-
number 88 is used to define the entries relating to condition-names in record
descriptions or WORKING-STORAGE entries.

For additional information on level-numbers, see LEVEL NUMBER CONCEPT.

OCCURS

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated data,
and it supplies information required for the application of subscripts and
indices.

The construct for this clause has the following two options:

Option 1:
{%%%URS] integer—-2 TIMES
ASCENDING } _ - - -]
[{DESCENDING KEY IS data-name-2 [,data-name-3] ...
[INDEXED BY index-name-1l [,index-name-2] ...]
Option 2:
{:ocuCURs} integer-1 TO integer—2 TIMES [DEPENDING ON data-name-1]
ASCENDING - - _ -
[{DESCEND N‘} KEY IS data-name-2 [,data—-name-3] ...] -

[INDEXED BY index-name-1 [,index-name-2] ee]

Integer—1 and integer—2 must be positive integers. If both are used, the value
of integer-1 must be less than infeger—-2., The value of integer—1l may be zero,
but integer—-2 cannot be zero.

The data descriptio

1 of data-name—1 must describe a positive integer.

Data—name—2 must either be the name of the entry containing the OCCURS clause

or the name of an entry subordinate to the entry containing the OCCURS clause.

Data—name—-3, etc., must be the name of an entry subordinate to the group item
which is the subject of this entry.

Data-name—-1, data—-name—2, and data—-name—3 may be qualified.
The OCCURS clause cannot be specified in a data description that:

a. Has an 0l, 66, 77, or 88 level—number.

b. Describes an item whose size is variable., The size of an item is
variable if its data description, or any item subordinate to it,
contains option 2 of the OCCURS clause,

OCCURS

The OCCURS clause is used in defining tables and other homogeneous sets of
repeated data. Whenever the OCCURS clause is used, the data—name which is the
subject of this entry must be either subscripted or indexed whenever it is re-
ferred to in a statement other than SEARCH. Further, if the data—name asso—
ciated with the OCCURS clause is the name of a group item, then all data-
names belonging to the group must be subscripted or indexed whenever they

are used as operands,

Except for the OCCURS clause itself, all data description clauses associated
with an item whose description includes an OCCURS clause applies to each oc-—

currence of the item described.

In option 1, the value of integer—2 represents the exact number of occurrences

of items within the table.

In option 2, the value of integer-1 represents the minimum number of oc-
currences, and integer-2 represents the maximum number of occurrences. This
does not imply that the length of the table is variable but that the number
of occurrences is variable. When option 2 is specified in a data description
entry, only items subordinate to the data item described with the option 2
OCCURS may follow in the Record Description. Thus, the following is illegal:

01 DATA-1.
05 TAB-1 OCCURS 1 TO 50 DEPENDING ON CNT.
10 TAB-2 PIC 9(5).
05 TAB-3 PIC 9(5).

Any unused character positions resulting from the DEPENDING option will appear

in the external media.

The DEPENDING option is for documentation and serves only to document the end
of the occurrences of data items. The value of data—name—1 is the count of
the number of occurrences of items, and its value should not exceed integer-2.
The user must employ his own tests to determine how many occurrences of the
item are actually valid and present in the record.

If data—name—1l in the DEPENDING option is an entry in the same record as the
current data description entry, data-name-1l should not be the subject of, or
be subordinate to, an entry whose description includes option 2 of an OCCURS
clause,

OCCURS

An entry which contains option 2, or has a subordinate entry which contains
option 2, cannot be the object of the REDEFINES clause. For example, the
following is illegal:

01 W-S-TABLE.

02 TAB-SIZE OCCURS 1 TO 5 TIMES DEPENDING ON DEP-NAME.
02 RED-TAB REDEFINES TAB-SIZE.

The KEY IS option is used to indicate that the repeated data is arranged in
ascending or descending order according to the values contained in data—name-
2, data—name-3, and so on. The data—names are liisted in descending order of
their significance.

If data—name—2 is not the subject of this entry, then the following applies:

a. All of the items identified by the data—names in the KEY IS phrase
must be within the group item which is the subject of the OCCURS
entry.

b. None of the items identified by data—-names in the KEY IS phrase can
be described by an entry which either contains an OCCURS clause or is

subordinate to an intervening entry which contains an OCCURS clause.

The following example illustrates a use of the OCCURS clause to provide nested
descriptions. A reference to ITEM-4 requires the use of three levels of sub-

scripting; e.g., ITEM~4 (2, 5, 4). A reference to ITEM-3 requires two sub-

b
scripts; e.g., ITEM-3 (I,J),.

.

2 ITEM; OCCURS 2 TIMES:...
3 ITEM-1;...
3 ITEM-2; OCCURS 5 TIMES;...
4 ITEM-3;...
4 ITEM-4; OCCURS 5 TIMES;...
5 ITEM-5;...
5 ITEM-6;

.

In the example above, there are 50 ITEM—-4 quantities.

OCCURS

The following example shows another use of the OCCURS clause. Assume that
the user wishes to define a record consisting of five AMOUNT items, followed
by five TAX items. Instead of the record being described as containing 10

individual data items, it could be described in the following manner:

1 TABLE;...
2 AMOUNT; OCCURS 5 TIMES;...
2 TAX; OCCURS 5 TIMES;...

The above definition would result in memory allocated for five AMOUNT fields
and five TAX fields. Any reference to these fields is made by addressing
the field by name AMOUNT or TAX followed by a subscript denoting the parti-

cular occurrence desired. (See the discussion on subscripts, page 6-12.)

An INDEXED BY clause is required if the subject of this entry, or an item
within it, is to be referred to by indexing. If indexing is to be used, each
table dimension must contain an INDEXED BY clause. The index—-names identified

by the clause must not be defined elsewhere in the program and must be unique.
The ASCENDING/DESCENDING KEY option is for documentation only.

The operands in the INDEXED BY option are index—names or indices. The operands
of an INDEXED BY option must appear in association with an OCCURS clause and
are usable only when referencing that level of the table. In the use of three-
level indexing, each level must have an INDEXED BY option and in a given
indexing operation, only one operand from each option may be used.

Other than its use as an index into an array, an index~name may be referred

to only in a SET, SEARCH, PERFORM, or in a relation condition. All index—names
must be unique. Index—names have an assumed construction of PC S9(6)
COMPUTATIONAL.

Using an index-name associated with one row of a table for indexing into
another row of a table will not cause a syntax error, but will, in most
cases, cause incorrect object-time results, since it is the index—name that

contains the information pertinent to the element sizes.
When using an index—-name series (e.g., INDEXED BY A, B, C):
a, The indexes should be used only when referencing the associated row.

b. All "assumed" references are to the first index—-name in a series.

Others in the series are affected only during an explicit reference.

OCCURS

Indexing into a table follows much the same logic as subscripting. There is
a limit of three indexes per operand (e.g., A (INDEX-1, INDEX-2, INDEX-3)).
The use of a relative index allows modification of the index—name without
actually changing the value of the index—name.
Example:

A (INDEX-1 + 3, INDEX-2 - 4, INDEX-3)
An index—-name followed by a + or - integer indicates relative indexing, which

causes the affected index to be incremented or decremented by that number of

elements within the table,
A data—-name whose USAGE is defined to be INDEX is an index—data—name.

Condition—names, PICTURE, VALUE, SYNCHRONIZED, or JUSTIFIED canhnot be associated

with an index—data—name.

The COBOL compiler will assign the construction of a PC S9(6) COMPUTATIONAL

area for each index—data—name specified.

It is not permissible to relationally compare an index—data—name against a

PICTURE

PICTURE

The PICTURE clause describes the general characteristics and editing require-

ments of an elementary item.

The general construct for the PICTURE clause is as follows:

PICTURE
PIC IS character-string

The following are rules for the PICTURE clause:
a. A PICTURE clause can only be used at the elementary item level.

b. A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allowable

combinations determine the category of the elementary item.

c. The maximum number of symbols allowed in the character-string is 30.
When an unsigned integer enclosed in parentheses immediately follows
a symbol, the integer specifies the number of consecutive occurrences
of that symbol. This may not be used for those symbols limited to

one occurrence per picture,

d. A PICTURE clause must appear in every elementary item except those
items whose USAGE is declared as INDEX.

Record descriptions do not have to conform to the physical characteristics
of an ASSIGNed hardware—name. The flow of input-output data will terminate
at the end of the prescribed PICTURE size. For example:

READER (can read 80 columns) description can be PICTUREd

from 1 through 80,

PUNCH (can punch 80 columns) description can be PICTUREd
from 1 through 80.

CARD96 (can read or punch 96 columns) description can be
PICTUREd from 1 through 96.

PRINTER (120/132 character lines) description can be
PICTUREd from 1 through maximum,

Categories of Data
There are five categories of data that can be described with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

These categories are described as follows:

PICTURE

ALPHABETIC

To define an item as alphabetic, its PICTURE character-string can only contain
the symbol A, and its contents, when represented externally, must be any com-
bination of the 26 letters of the alphabet and the space from the COBOL charac-

ter set.

NUMERIC

To define an item as numeric, its PICTURE character-string can only contain
the symbols 9, P, S, J, K, and V. Its contents, when represented externally,
must be a combination of the numerals O, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The

item may include one operational sign.

ALPHANUMERIC

To define an item as alphanumeric, its PICTURE character-string is restricted
to certain combinations of the symbols A, X, 9, and the item is treated as if
the character-string contained all X's, Its contents, when represented exter-
nally, are any of the allowable characters in the COBOL character set. A

PICTURE character-string which contains all 9's or all A's does not define an

alphanumeric item.

ALPHANUMERIC EDITED

To define an item as alphanumeric edited, its PICTURE character-string is
restricted to certain combinations of the symbols A, X, 9, B, and 0 (zero)

given by the following rules:

a. The character-string must contain at least one B and one X, or at

least one 0O (zero) and one X, or

b. The character-string must contain at least one 0 (zero) and one A.

NUMERIC EDITED

To define an item as numeric—edited, its PICTURE character—-string is restricted
to certain combinations of the symbols B, P, V, Z, 0, 9, , (comma), . (period),
*, +, =, CR, DB, and the currency sign ($). The PICTURE character string must

contain at least one symbol other than V. and 9. The allowable combinations

are determined from the order of precedence of symbols and the editing rules.

Classes of Data

The five categories of data items are grouped into three classes: Alphabetic,
Numeric, and Alphanumeric. For Alphabetic and Numeric, the classes and cate-
gories are synonymous. The Alphanumeric class includes the categories of

Alphanumeric Edited, Numeric Edited and Alphanumeric (without editing). Every

6—49

PICTURE

elementary item belongs to one of the classes and further to one of the cate-
gories. The class of a group item is treated at object time as Alphanumeric
regardless of the class of elementary items subordinate to that group item.
Figure 6-6 depicts the relationship of the class and categories of data items,

LEVEL OF ITEM CLASS CATEGORY
Alphabetic Alphabetic
Elementary Numeric Numeric

Numeric-editied

Alphanumeric Alphanumeric-edited
Alphanumeric
Group Alphanumeric Alphanumeric

Figure 6-6. Relationship of Class and Category

Function of the Editing Symbols

An unsigned non-zero integer which is enclosed in parentheses following the

symbols A, X, 9, P, Z, * B, 0, +, =, the comma, or the currency sign ($)

indicates the number of consecutive occurrences of the symbol. Note that the

following symbols may appear only once in a given PICTURE clause: S, J, V, K,
(period), CR, and DB.

The functions of the symbols used to describe an elementary item are explained

as follows:

A The symbol A in the character-string represents a character position

which can contain only a letter of the alphabet or a space.

B Each symbol B in the character-string represents a character position

into which the space character will be inserted.

'd

PICTURE

The letter P indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when the
point is not within the number that appears in the data item. The
scaling position character P is not counted in the length of the
data item. Scaling position characters are counted in determining

the maximum number of digit positions %:f

in numeric edited items
or NUMERIC items which appear as operands in arithmetic statements.
The scaling position character P can appear only to the left or right
as a continuous string of P's within a PICTURE description. Since
the scaling position character P implies an assumed decimal point

(to the left of P if P's are leftmost PICTURE characters, and to

the right of P if P's are rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the leftmost or right-
most character within such a PICTURE description. The character P
and the insertion character "." (decimal point) cannot both occur in

the same PICTURE character string.

The letter S is used in a character-string to indicate the presence

of an operational sign and must be written as the leftmost character
in the PICTURE. The S is not counted in determining the length of

the elementary item unless USAGE is CMP. If USAGE is DISPLAY, S in-
dicates the sign is carried as an overpunch in the most-significant
position. J and S are mutually exclusive. For CMP, S indicates the
sign is carried in the leading digit of the field. The four zone bits
in EBCDIC and CMP are set to a "D'", for negative, and to a "C" for po-

sitive. Wherever possible, S should be used rather than J or K.
NOTE

Any value other than D will be assumed positive.

ixi the character

in the length Qf the item. If USAGE Is. CO&?UT&TI@N&L the . 1etter K.

6-51

PICTURE

The letter V is used in a character—string to indicate the location

of the assumed decimal point and may only appear once in a character-
string. The V does not represent a character position and, therefore,
is not counted in the length of the elementary item. When the assumed
decimal point is to the right of the rightmost symbol in the string,
the V is redundant.

Each letter X in the character-string is used to represent a charac-
ter position which contains any allowable character from the computer's

character set.

Each letter Z in a character-string may only be used to represent the
leftmost leading numeric character positions which will be replaced
by a space character when the contents of the character position is
zero, Each Z is counted in the length of the item. Zero suppression
is terminated with the first non-zero numeric character in the data.
Insertion characters are also replaced by spaces while suppression is
in effect. Z can also appear to the right of J, when the J symbol is
used to reinitiate zero suppression. For additional information on

zero suppression, see the BLANK WHEN ZERO clause.

Each 9 in the character-string represents a character position which
contains a numeral and is counted in the length of the item. If
USAGE is explicitly or implicitly DISPLAY, the data will be operated
on as 8-bit (BYTE) characters. If USAGE is CMP, it will be operated
on as 4-bit digits.

Each O (zero) in the character-string represents a character position
into which the numeral zero will be inserted. When that item is re-

ceiving field, the 0 is counted in the length of the item.

Each comma in the character-string represents a character position
into which the comma character will be inserted. This character posi-
tion is counted in the length of the item., (See DECIMAL-POINT

IS COMMA.)

When the character period appears in the character-string, it is an
editing symbol which represents the decimal point for alignment
purposes; in addition, it represents a character position into which
the period character will be inserted. The period character is

counted in the length of the item. For a given program, the functions

CR
DB

— ot

PICTURE

of the period and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange, the
rules for the period apply to the comma and the rules for the comma
apply to the period whenever they appear in a PICTURE clause. V and
(.) are mutually exclusive,

The symbols +, -, CR, and DB are used as editing sign control symbols.
When used, they represent the character position(s) into which the
editing sign control symbol will be placed. The symbols are mutually
exclusive in any one character-string, and each character used in the
symbol is counted in determining the length of the data-item. (Note
that the symbols CR and DB are two character symbols, and any other

use of C or D constitutes an error.)

Each * symbol in the character-string represents a leading numeric
character position into which an asterisk will be placed when the
contents of that position is zero. Each * is counted in the length

of the item. Asterisk replacement is disabled when the first non-zero
character is encountered, or when the decimal point (implicit or ex-
plicit) is reached. When the PICTURE character string specifies only
asterisks (*), and the value of the item is zero, the entire output
item will consist of asterisks and the decimal point, if present.

BLANK WHEN ZERO does not override the insertion of asterisks.

The currency symbol ($) in the character-string represents a character
position into which a currency symbol is to be placed. The currency
symbol in a character-string is represented by either the dellar sign
($) symbol or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph. The currency symbol is counted
in the length of the item. (Copy deleted.)

NOTE

Any other character which is not a defined
picture character appearing in the PICTURE
is assumed to be an insert character.
Example
99/99/99 could be a date mask and
999=99=999 could represent a social

security number mask.

PICTURE

Editing Rules

There are two general methods of performing editing in the PICTURE clause:

by insertion or by suppression and replacement.

Floating insertion editing and editing by zero suppression and replacement are
mutually exclusive in a PICTURE clause, Only one type of replacement may be

used with zero suppression in a PICTURE clause.

The type of editing which may be performed upon an item is dependent upon the
category to which the item belongs. Figure 6-7 specifies which type of editing

may be performed upon a given category.

CATEGORY TYPE OF EDITING
Alphabetic None
Numeric None
Alphanumeric None
Alphanumeric Edited Simple Insertion, O and B
Numeric Edited All, Subject to above Rules

Figure 6-7. Permissible Editing Types

Insertion Editing. The following are the four types of insertion editing avail-
able:

Simple Insertion.

Special Insertion,

0O T

Fixed Insertion.

d. Floating Insertion.

Simple Insertion Editing. The comma (,), B (space), and 0 (zero) are used as
the insertion characters. The insertion characters are counted in the length
of the item and represent the position in the item into which the character
will be inserted.

Special Insertion Editing. The period (.) is used as the insertion character,

In addition to being an insertion character, it also represents the decimal point
for alignment purposes. The insertion character used for the actual decimal
point is counted in the length of the item. The use of the assumed decimal point
(represented by the symbol V) and the actual decimal point represented by the
insertion character) in the same PICTURE character-string is prohibited. If the

6-54

PICTURE

insertion character is the last symbol in the character-entry, the character-
string must be immediately followed by the semicolon punctuation character,

and then followed by a space. 1If the PICTURE clause is the last clause of that
DATA DIVISION entry, and the insertion character is the last symbol in the
character-string, the insertion character must be immediately followed by a
period punctuation character followed by a space. This results in two con-
secutive periods (or ",.'" if DECIMAL POINT IS COMMA has been specified) appear-
ing in the data description entry. The result of special insertion editing is
the appearance of the insertion character in the item in the same position as
shown in the character—string.

Fixed Insertion Editing. The currency sign ($) and the editing sign control

symbols "+'", "-"_ CR, and DB are the insertion characters. Only one currency
symbol and only one of the editing signh control symbols can be used in a given
PICTURE character—-string. When the symbols CR or DB are used, they represent
two character positions in determining the length of the item, and they must

represent the rightmost character positions that are counted in the size of the

item.
The symbol "+ or '"—', when used, must be the leftmost or rightmost character
position to be counted in the size of the item. The currency symbol must be

the leftmost character position to be counted in the size of the item except
that it can be preceded by either a + or a — symbol. Fixed insertion editing
results in the insertion character occupying the same character position in
the edited item as it occupied in the PICTURE character-string. Depending
upon the value of the data item, editing sign control symbols produce the re-

sults indicated in table 6-3.

Table 6-3. Editing Symbols and Results

EDITING SYMBOL IN Déggl%¥€% DATA ITEM
PICTURE CHARACTER-STRING OR ZERO NEGATIVE
+ + -
- SPACE -
CR 2 SPACES CR
DB 2 SPACES DB

PICTURE

Floating Insertion Editing. The currency symbol and editing sign control

symbols + or - are the insertion characters, and they are mutually exclusive

as floating insertion characters in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using
a string of at least two of the allowable insertion characters to represent the
leftmost numeric character positions into which the insertion characters can be
floated. Any of the simple insertion characters embedded in the string of

floating insertion characters or to the immediate right of this string are part
of the floating string; however, they represent themselves rather than numeric

character positions.

In the PICTURE character—string, there are only two ways of representing float-
ing insertion editing. One way is to represent any or all of the leading num—
eric character positions to the left of the decimal point by the insertion char-
acter. The other way is to represent all of the numeric character positions

in the PICTURE character—-string by the insertion character.

The result of floating insertion editing depends upon the representation in

the PICTURE character—string. If the insertion characters are only to the left
of the decimal point, the result is a single insertion character that will be
placed into the character position immediately preceding the decimal point, or
the first non—-zero digit in the data represented by the insertion symbol string.
whichever is further to the left in the PICTURE character—-string.

If all numeric character positions in the PICTURE character—-string are repre-
sented by the insertion character, the result depends upon the value of the
data. If the value is zero, the entire data item will contain spaces. If the
value is not zero, the result is the same as when the insertion character is

only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must be the number of characters in the sending data item,
plus the number of fixed insertion characters being edited into the receiving

data item, plus one for the floating insertion character.

Suppression Editing. The suppression of leading zeros in numeric character
positions is indicated by the use of the character Z or the character *
(asterisk) as suppression symbols in a PICTURE character-string. These symbols
are mutually exclusive in a given PICTURE character-string. Each suppression
symbol is counted in determining the length of the item. If Z is used. the
replacement will be the space, and if the asterisk is used, the replacement

character will be the *,

)]
{
()]
(5>}

PICTURE

Zero suppression and replacement are indicated in a PICTURE character-string
by using a string of one or more of the allowable symbols to represent leading
numeric character positions which are to be replaced when the associated char-
acter position in the data contains a zero. Any of the simple insertion char-
acters embedded in the string of symbols or to the immediate right of this
string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero

suppression. One way is to represent by suppression symbols, any or all of

the leading numeric character positions to the left of ecimal point.

1cadd’d ol 2 CidasiatovTa v alsL L1

]

+ A
vl u
other way is to represent all of the numeric character positions in the PICTURE

character—-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any
leading zero in the data which corresponds to a symbol in the string is re-
placed by the replacement character. Suppression terminates at the first non-
zero digit in the data represented by the suppression symbol string or at the

decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character—string are repre-
sented by suppression symbols and the value of the data is not zero, the re-
sult is the same as if the suppression characters were only to the left of the
decimal point. If the value is zero, the entire data item will be spaces if
the suppression symbol is Z or all asterisks (*), except for the actual decimal

point, if the suppression symbol is *,

When the asterisk is used as the zero suppression symbol and the clause BLANK
WHEN ZERO also appears in the same entry, the zero suppression editing overrides
the function of BLANK WHEN ZERO.

Replacement Editing. Symbols +, -, *, Z, and the currency symbol, when
used as floating replacement characters, are mutually exclusive within a
given character string. At least two floating replacement characters must
appear as the leftmost characters in the PICTURE.

PICTURE

Precedence of Symbols

Table 6-4 shows the order of precedence when characters are used as symbols
in a character string. An X at an intersection indicates that the symbol(s)
at the top of the column may precede, in a given character string, the
symbol(s) at the left of the row., Arguments appearing in braces indicate
that the symbols are mutually exclusive. The currency symbol is indicated
by the symbol 'cs'".

At least one of the symbols "A", "X", "Z", "9", or "*", or at least two of
the symbols "+, "-=" or "cs'" must be present in a PICTURE string.

When "+" or "-" is to be the rightmost printable character in a PICTURE char-
acter(s) P, if any, must follow, instead of preceded, the "+" or "-=", There-

fore, PICTURE 994PPP is valid, and PICTURE 99PPP+ is invalid.

Non-floating insertion symbols "+" and "-'", floating insertion symbols "Z",
kg o on=v - and "c¢s", and other symbol "P" appear twice in the PICTURE
character precedence chart. The leftmost column and uppermost row for each
symbol represent its use to the left of the decimal point position. The
second appearance of the symbol in the chart represents its use to the right

of the decimal point position.

PICTURE

Table 6-4. Order of Precedence

First Non-Floating Floating
Other Symbois
Symbol Insertion Symbols Insertion Symbols
Second T +){+)I (CR ‘Z 2+ | (+ A
B|O| ,|. cs |+ ''cs|cs| 9 S{v|P|P
1 ;
Symbo) (pe * =) ()] (= X
B X|x| x| x|x X x |x|x|x x X X | x X x
i o) x | x| x | x| x X X x| x| x| x X X | x X X
—
o)
gn) X | X1 x | x|x ! lox X | X |x|x| X X x X X
SE |
+ 0
@ X | x| X X X X X i X X
O +
)
o (4 -)
L |
-3 T T
o0
A (+ -) X | x| x| x X X X X | b4 X X | X | X
[+ 1
2] i
(CRDB) | x| x| x X ! X x 'x Lox X | x x| x ! x
cs X | ,
(2 =) X | x| x b3 X X
7] N
~
,8 (2 *) X | X | X |X|Xx X X | x X x
o & ‘ !
=]
% (+ =) X | x| X X X \ | |
+ ; ! i !
© § it ; ‘ ;
O - | [;
- 5 {(+ -) X x| xx X X x| I x x
gy
b !
u cs X | x| x b . ¢
o i ! :
- - i
cs xlx|x|x!x l Ilox 0 ox X X
| i | i
‘ +— _ ‘
9 X | x| x| x| x X X X X X | x| X |X b4
4] T
|
™ A X x | x | o X | x
0 i
g 1 X
> S ! | ! l |
(5] | o !
- B | ’
) v X X X I x X X X X X X X
-] L]
pe)
o P x| x| x x ! X X X 5 | X X X X
|
P X X | X | X X
!

PICTURE

The following examples illustrate some of the ways a PICTURE clause may be

coded:

ALPHABETIC ITEMS;
AA
A(25)
ALPHANUMERIC ITEMS:
XX
X(15)
A(5)9(4)
99A99XX
NUMERIC ITEMS:
9
99999
9v99
S99V99
999PPP
J99
EDITED NUMERIC ITEMS (CLASS IS ALPHANUMERIC):
9.99
777277
3.99CR
B(4)9
$x* K%k, 99
----- 9 (=" IS A MINUS SIGN)
++,++9.999
$x* ***, 99DB
999,999
(Copy deleted.)

6-60

PICTURE

Table 6-5 demonstrates the editing function of the PICTURE clause.

Table 6-5. Editing Application of the PICTURE Clause

SOURCE AREA RECEIVING AREA
EDITING

PICTURE DATA PICTURE EDITED DATA
9(5) 12345 $27,279.99 $12,345.00
V9 (5) 12345 $3%, $$9.99 $0.12
v9(5) 12345 $77,72729. 99 $ 0.12
9(5) 00000 $39%, $$9.99 $0.00
9(3)V99 12345 $77,7279. 99 $ 123.45

9(5) 00000 $5%, $33. 8%
9(5) 01234 $** *%9,99 $*1,234.00
9(5) 00000 $**7***,** kokkokkkk kk
9(5) 00123 $** **x9, 99 $*%xx123, 00
9(3)V99 00012 $727,7279.99 $ 0.12
9(3)Vv99 12345 $$%, $$9.99 $123.45
9(3)Vv99 00001 $77,277 .99 $.01
9(5) 12345 $$3$, $$9.99 $12,345.00
9(5) 00000 $27,7227 .77

9(3)Vv99 00001 333, $5%. $3 $.01
S9(5) (+) 12345 77779 .99+ 12345, 00+
S9(5) (=) 00123 --99999, 99 -00123.00
9(3)Vv99 12345 999, 00 123.00
S9(5) (=) 12345 777279, 99- 12345, 00~
S9(5) (+) 12345 7727279, 99~ 12345.00
9(5) 12345 BBB99. 99 45.00
S9(5)V (=) 12345 -77779, 99 -12345. 00

S9(5) (=) 12345 $8$$$%.99CR | $12345.00CR
S99v9(3) (-) 12345 | —===-- .99 -12.34
S9(5) (+) 12345 $$$8$$.99CR | $12345.00

9(3)V99 12345 999. BB 123.

9(5) 12345 00999, 00 00345, 00
9(7) 0012003 77.99J7Z9 12 3

REDEFINES

REDEFINES

The function of this clause is to allow an area of memory to be referred to

by more than one data—name with different formats and sizes.

The construct of the REDEFINES clause is:
level-number data—-name—1 REDEFINES data—name-2

The REDEFINES clause, when specified, must immediately follow data—name-1.
The level-numbers of data—-name—1 and data—name-2 must be identical and must
not be 66 or 88,

This clause must not be used in 01 level entries of the FILE SECTION, as an
implicit REDEFINES is assumed when multiple 01 level entries within a file
description are present. The size of the record(s) causing implicit redefini-
tion does not have to be equal to that of the record being redefined. The
various sizes of implicitly redefined record descriptions create no restriction
as to which description is to be coded first, second, third, etc., in the
source program. The size of the largest 01 level entry determines the size of

the storage area.

Redefinition starts at data—-name—2 and ends when a level-number less than or

equal to that of data—-name-2 is encountered in the source program.

When the level-number of data—name—1 is other than 01 (in the WORKING-STORAGE
SECTION), it must specify a storage area of the same size as specified by data-
name—2. It is important to observe that the REDEFINES clause specifies the
redefinition of a storage area, not simply of the data items occupying that
area. Redefined 01 levels do not have to be the same size.

Multiple redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must follow the entries defin-

ing the area being redefined, without intervening entries that define new

storage areas. dé

The data description entry being redefined cannot contain an OCCURS clause,
nor can it be subordinate to an entry which contains an OCCURS clause.

The entries giving the new description of the storage area must not contain

VALUE clauses, except in condition~name entries.

Data—name—2 need not be qualified.

6-62

An example

of REDEFINES entries follows:

01 WORKI1.

03
03

03

PART-ONE PC X(60).

PART-TWO REDEFINES PART-ONE.

05 X PC X(40).

05 Y PC X(20).

PART-THREE REDEFINES PART-TWO PC 9(60).

REDEFINES

RENAMES

RENAMES

The RENAMES clause permits alternative, and possibly overlapping grouping of

elementary items,

The construct of this clause is:

HROUGH
66 data—name—1 RENAMES data—name-2 [{%ﬁﬁﬁf“-} data—name-3]

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with a given logical record must immediately follow its
last record description entry. It is not possible to ''chain'" RENAMES; i.e.,
it is illegal to rename data item "A" to "B" and then rename "B" to "C". How-

ever, multiple RENAMES of a data—name are permitted. (See figure 6-8,)

Data—-name—2 and data—name—3 must be names of elementary items or groups of
elementary items of the same logical record and cannot be the same data—name.
A 66 level entry cannot rename another 66 level entry nor can it rename a 77,

88, or 01 level entry.

When data—name-3 is specified, data-name-1 is a group item which includes all
elementary items starting with data-name-2 (if data—-name—2 is an elementary

item) or the first elementary item in data—name—2 (if data—-name-2 is a group
item), and concluding with data-name-3 (if data-name—-3 is an elementary item)

or the last elementary item in data-name-3 (if data-name-3 is a group item).

When data—name—3 is not specified, data—name—2 can be either a group or an
elementary item; when data—-name—2 is a group item, data—-name-1 is treated as
a group item; and when data—-name—2 is an elementary item, data—name-1 is

treated as an elementary item.

The beginning of the area described by data—-name—-3 must not be to the left of
the beginning of the area described by data—name—2. The end of the area des-
cribed by data—-name—3 must not be to the left of the end of the area described
by data—name~2. Data—name—3 cannot be contained within data—-name—2. Data—-name-

2 and data—name—-3 may be qualified.

Data—name—1 cannot be used as a qualifier, and can only be qualified by the
names of the 01 level, SD, or FD entries. Neither data-name—2 nor data—-name-3
may have an OCCURS clause in its record description entry or be subordinate

to an item that has an OCCURS clause in its record description entry.

When data—name-3 is specified,

including data-name—-2 and data—name-3,

Data—name=1 will assume the USAGE of the item being renamed.

RENAMES

none of the elementary items within the range,

can be variable—occurrence items.

If the THRU

option is used, all items within the RENAMES range must have the same

USAGE.

01 TAB.
03 A.
05 A

05 A
03 X.
05 X

RENAMES
RENAMES
RENAMES
RENAMES
RENAMES

o))
[e7]
H oHE g O W

[¢]

¢}

(@]
B
=
=
B
w2

1 PIC

05 A2 PIC
05 A3 PIC

4 PIC

1 PIC

05 X2 PIC
05 X3 PIC

A,
A.

XXX.
XX.
XX.

XX.
X(6).
X(8).

Al THRU A3.
A4 THRU X2

(i.
(i.

e., Al THRU
e., Al THRU

e., A2 THRU

.e., Al THRU

A4)
A4)

A
il

>
w
N

W

Figure 6-8.

Examples

of RENAMES

USAGE

USAGE

The function of this clause is to specify the format of a data item in computer

storage.
The construct of this clause is:

DISPLAY |

[USAGE IS] {

The USAGE clause can be written at any level. If USAGE is written on group

level, it applies to each elementary item in that group.

The USAGE of an elementary item cannot contradict the USAGE of a group to

which the item belongs.

COMPUTATIONAL-1 and CMP-1 are acceptable substitutes for, and are equivalent
to, COMPUTATIONAL, COMP, or CMP entries.

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear whenever the
receiving field is a group CMP item. This message indicates that the resultant
contents during object—program execution of the group CMP item may not contain

expected results.

Group moves are performed whenever the sending or receiving field is a group
item, and both will be treated as alphanumeric (byte) data. The appropriate
conversion takes place when a translation occurs from ASCII to EBCDIC or
EBCDIC to ASCII,.

USAGE is a declaration for the EBCDIC internal representation of the system

and is defined as follows:

a., When USAGE IS DISPLAY, the data item consists of 8—bit (byte)

characters.

USAGE

b. When USAGE IS COMPUTATIONAL, the data item consists of 4-bit coded
digits and must be numeric. If a group item is described as computa-

tional, the elementary items in the group are computational.

¢. When USAGE IS INDEX, a PICTURE may not be specified. For example,
"77 ABC USAGE IS INDEX." An elementary item described with the USAGE
IS INDEX clause is called an index data item. An index data item can
be referred to directly only in a PERFORM, SEARCH, or SET statement

or in a relational condition, and is used for temporary storage of an

index—name.

The PICTURE of a COMPUTATIONAL item can contain only 9's, the operational sign

character S, J, the decimal point character V, and one or more P's,

COMPUTATIONAL items may be declared for 9—-channel magnetic tape files (TAPE-9),
disk (DISK), REMOTE, paper tape files (PT-READER or PT-PUNCH), or for WORKING-
STORAGE SECTION items.

A DISPLAY item is automatically converted to its 4-bit equivalent whenever the
receiving area is defined as COMPUTATIONAL, except when the receiving area is

a group item. A CMP item is automatically converted to its 8-bit equivalent

USAGE

whenever the receiving area is declared DISPLAY, except when the sending CMP
item is a group item.
If the USAGE clause is not specified for an elementary item, or for any group

to which the item belongs, the usage is assumed to be DISPLAY.

For the most efficient use of hardware storage and internal record storage
areas, records should be devised so as to avoid intermixing of odd—length
COMPUTATIONAL items with DISPLAY items. This rule is due to the compiler auto-
matically placing the machine addresses of DISPLAY areas to a character bound-

ary.

VALUE

VALUE
The function of this clause is to declare an initial value to WORKING-STORAGE

items, or the value associated with a condition—name.

The construct of this clause is:

VA . _) { THRU . _
{ VALUE IS literal-1 THROUGH literal—-2
[literal-3 [{ %%UGH } litera 1—4]]

The VALUE clause cannot be stated for any item whose size, explicitly or im-

plicitly, is variable.

Literals may consist of Figurative Constants; e.g., ZEROS, QUOTES, etc.

Literals may be replaced by the reserved word DATE-COMPILED, If DATE-COMPILED
is used in the VALUE clause, the date that the program was compiled will be
placed in the data—name in the JULIAN fcrm cf YYDDD,

In the FILE SECTION, the VALUE clause is allowed only in condition—name (88
level) entries. VALUE entries in other data descriptions in the FILE SECTION
are considered as being for documentation purposes only.

The entire VALUE clause may be used with condition—name entries. All levels
other than 88 are restricted to the use of literal-1l only.

The VALUE clause must not be stated in a Record Description entry with an

OCCURS clause, or in an entry which is subordinate to an entry containing an

OCCURS clause. This rule does not apply to condition—name entries.

The VALUE clause must not conflict with other clauses in the data description
of an item or in a data description within the hierarchy of the item. The

following rules apply:

a. If a category of an item is numeric, all literals in the VALUE clause
must be numeric literals; e.g., VA 1, 3 THRU 9, 12, 16 THRU 20, 25
THRU 50, 51, 56.

b. If the category of the item is alphabetic, all literals in the VALUE
clause must be specifically stated as non—numeric literals; e.g., VA IS

V'AN’, HBIV, 'YC'V, YYFVV’ llMH’ HNVV’ MOI!, ”P”, HQII’ szv .

VALUE

c. All literals in a VALUE clause of an item must have a value which
requires no editing to place that value in the item as indicated by
the PICTURE clause.

d. The function of any editing clause or editing characters in a PICTURE
clause is ignored in determining the initial appearance of the item
described. However, editing characters are included in determining
the length of the item.

In a condition—-name entry, the VALUE clause is required and is the only clause
permitted in the entry. The characteristics of a condition—name are explicitly

those of its conditional variable.

Whenever the THRU phase is used, literal-1 must be less than literal-2,
literal-3 less than literal—4, etc.

If this clause is used in an entry at the group level, the literal must be a
figurative constant or a non—numeric literal (byte characters). The group
area is initialized without consideration for the USAGE of the individual ele-
mentary items. Subordinate levels within the group cannot contain VALUE

clauses.

The VALUE clause must not be specified for a group containing items that require
separate handling due to the USAGE clause.

In a VALUE clause, there is no practical limit to the number of literals in a

series. VALUE cannot be associated with an index—data—name.

All numeric literals in a VALUE clause of an item must have a value which is
within the range of values indicated by the PICTURE clause, and must not have
a value which would require truncation of non-zero digits. Non—numeric items
in a VALUE clause of an item must not exceed the size indicated by the PICTURE
clause.

WORKING-STORAGE SECTION

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is optional and is that part of the DATA DIVISION
set aside for intermediate processing of data. The difference between
WORKING-STORAGE and the FILE SECTION is that the former deals with data

that is not associated with an input or output file. All clauses which

are used in normal input or output record descriptions can be used in a
WORKING-STORAGE record description.

Organization

Whereas the FILE SECTION is composed of file description (FD or SD) entries
and their associated record description entries, the WORKING~STORAGE SECTION
is composed only of record description entries and non-contiguous items. The
WORKING-STORAGE SECTION begins with a section—header and a period, followed by
item description entries for non—contiguous WORKING-STORAGE items, and then by
record description entries for WORKING-STORAGE records, in that order. The
format for WORKING-STORAGE SECTION is as follows:

WORK ING-STORAGE SECTION.
77 data-name-1

88 condition—name=1

77 data—name—n
01 data—name=-2
02 data-name-3

66 data—name—m RENAMES data-name-3
01 data—name-4
02 data-name-5
03 data—-name-n
88 condition—name-2

Non-Contiguous WORKING-STORAGE

Items in WORKING-STORAGE which bear no relationship to one another need not be
grouped into records, provided they do not need to be further subdivided. In-
stead, they are classified and defined as non—contiguous items. Each of these
items is defined in a separate record description entry which begins with the
special level-number 77, The following record description clauses are required

in each entry:

a. Level—number.
b. Data—name.
c. PICTURE clause.

WORKING-STORAGE SECTION

The OCCURS clause is not meaningful on a 77 level item and will cause an error
at compilation time if used. Other record description clauses are optional

and can be used to complete the description of the item if necessary.

All level 77 items must appear before any 01 levels in WORKING-STORAGE.

WORKING-STORAGE Records

Data elements in WORKING-STORAGE which bear a definite relationship to one
another must be grouped into records according to the rules for the formation
of record descriptions. All clauses which are used in normal input or output
record descriptions can be used in a WORKING-STORAGE record description, in-
cluding REDEFINES, OCCURS, and COPY. Each WORKING-STORAGE record-name (01
level) must be unique since it cannot be qualified by a file—name. Subordinate

data-names need not be unique if they can be made unique by qualification.
Initial Values

The initial value of any item in the WORKING-STORAGE SECTION is specified by
using the VALUE clause of the record description. If VALUE is not specified,
the initial values are set to 4-bit zeros (COMPUTATIONAL). The initial value

of any index data item is unpredictable.
Condition-Names

Any WORKING-STORAGE item may be a conditional variable with which one or more
condition—names are associated. Entries defining condition—names must immed-
iately follow the conditional variable entry. Both the conditional variable

entry and the associated condition—name entries may contain VALUE clauses.

Coding the WORKING-STORAGE SECTION
Figure 6-9 illustrates the coding of the WORKING-STORAGE SECTION,

6-72

€L-9

BURROUGHS COBOL CODING FORM

ADDITIONS, DELETIONS AND CHANGES

COBOL DIVISION

PAGE

PROGRAM
wck&\wcy— %‘\‘ckﬂﬁ;ﬁ_ SSLT!O!:—_'"__ C_ngmq.- |
PROGRAMMER K DATE IDENT 73)
\M‘BE&L\f P W U T S T S 1

PAGE LINE A [] :

NO. NO.

1 3[4 Ti 8 i 2 32 42 52 62 T2
1 T 7 T T

Lyl ! WoRr LMGL,LSEQQ_}ES@'JEL 1551Q71120N1-1L1|111111 T S W S N W
]

Ll e v LT DESK-CON Tlm__u“@“iﬂM+JqL(. ED) e L_QMEMEMTJLQJ&&QAHLJ_J_L_LJ_LL_fLLuALL;J_
]

Ly lrv] 0, [T~ éal\ﬂ-&sl s =l 1q|(Hd D VIALWE IZAERLQ- S T T N T T S S W B S
I

L1 1: 1'11151P*LLx1@9&QD"+&11'\’!13&11(‘}1(1\1'011-LLLL111%11111I111%111141111%11111L_L_L_L|

N BN BRI SR A A S U U U YOO U U0 U YU W S0 U NS TN U0 Y A0 WY S S0 W Y A0 M U B G A [N N N SR U U O R U U S U R U
0 _.L__LI ‘ } } L +.J_L }

Lt gt Q'lxSﬁkms“lﬁﬂﬁLgx‘lll1111xf111111111%111111111T1111111111111111111111
|

I 1.;QSLixl11L1%Sf"19\ﬂ"51$u111+111111|11+1111111144l_1LLL411L1}1_111111111
]

LLlit L LI!IOlLlll%QbAJ‘—IIFltil'%TDII—_LQ QJMLeJ_.*.-_L_‘L_lJ.J_J_‘L_lierIlllJJLLTAALJ_L L1 1
]

11 1 ! J th 1 ILLJ‘NEIVIMLPM L__L_L_ﬁ&_@ml_’.#*_J_J,.LLILJ L1 } S WS U W W W W %1) U U U U U T O |
i

J [N ISR 1) AJAIIQRIEIIA‘;;,, _,+EIC'ggiDJGLLIAIILIlll}'llllLLLL}llllllllll
]

L1y ! s STAT T&ELIR@E-,“L;LA”gLSI SOATES OSGCGURS 131-1%111111111%11111x1111
1

T S ISR AT =) _J__L;_,,Tém&ﬂ]g;fﬁi%‘LL[‘I& JqL?ioj%ljll‘LllljllllllllllellllLlllll

L L1 l: TR ST - v .,,#QM__‘.—LIL_L,L,LA_F‘Altol:cllqill1%]ljllllll}lLlillill%lllllllll

dd 1; _LJW._L17-?511_11JYLQIII_“YLL_J__L_L_L%LL\?Ilclich-J1%11L111‘.11%A111'1111%1111111111

14 J Q) "\1}161—1"111“151.1%111ilkll,,L_,},.J,_,l_,L,__L,ll11!%111 111111:11x1411L#111441141
]

A L OB 1 IlllJlF:]Iﬂ—‘ LER| "PLQC*._LAQEL!JL VA L. ¢§B.ﬂ_éx_1_{.¢4.L_LL_L_LA_J_+.LL_LJ_Li—l_LJ—J—~
]

I 1 1: L1] A_A}LLLA*J_L_L_L_}ELI__L':{_LJ.EV f_ﬁc ﬂ(ﬂ 20 VA ~,SL ALES ﬁEL@*EQExML&LN ELL.* FI A S A S

11 l: BT ok TS J_LL1¢+_AEEIQQ.§&_LB=,LCH&£L5 vpk-+§J_‘:.>‘l.§L_CAE.SL;J_LdL_+._;L_A_L_1__L4 I R A

T T L I O O S O S S G S ST G S S S S W S S0 0 0
i

11 i : [D 1 U N S VO U SR W § { ! S T U S W A S § +LJ) S U N SO N | % J SN G S S | J % J U U N S S W S S 1 Jl I S U U S S T

I T T U O T U O O U T U S S N S U G U 00 S U Y G Y U S B S G 0 0 U B S S W N S A A
, t t + }

ll ll 1 1 1 l]lllllll%‘lllLilLJL%LJjLJIlII#Illllllll%llLJLLLll%lLlllllllL
1

§ I U Y . PO VA U S VRS NN U TS W WD U WO VAN W SAND WD WU WS U (SN SN SO Y S SO S S W) WIS WS WD SONUN N0 VAN U AN U (0 N U U WU VU A0 G NS W U0 GH U G U A S U G G S G U G G S {
] T T t +

11 l: (. LLILJLIJL%Illllllll%lLLlLlil_J%JllllllllTLiiLLLilll%ll1[1[[111

[N L [URTEITE NN ST N WY WS T S N0 S0 U S S U S B U R B U S A N A S B S S SR i S B S AR IS I A I S SR S S A A S N S S A I S S AN SN N N UE NS A ¢

Figure 6-9. WORKING-STORAGE SECTION Coding

NOILI3S IOVIOLS-ONDIIOM

SECTION 7

PROCEDURE DIVISION

GENERAL

The fourth part of the COBOL source program is the PROCEDURE DIVISION. This
division contains the procedures needed to solve a given problem. These pro-
cedures are written as sentences which may be combined to form paragraphs,

which in turn may be combined to form sections. The purpose of the following

discussion is to explain this division and its elements.
RULES OF PROCEDURE FORMATION

A procedure is composed of a paragraph, a group of successive paragraphs, a
section, or a group of successive sections within the PROCEDURE DIVISION., 1If
declaratives are specified, then sections must be used in the remainder of
the PROCEDURE DIVISION. A procedure-name is either a paragraph—name or a

section—-name,

The end of the PROCEDURE DIVISION (the physical end of the program) is that
physical position in a COBOL source program after which no further procedures

appear,

A section consists of a2 section header followed by one or more successive
paragraphs. A section ends immediately before the next section—name, at
the end of the PROCEDURE DIVISION, or in the Declaratives portion of the
PROCEDURE DIVISION at the key words END DECLARATIVES.

A paragraph consists of a paragraph—-name followed by one or more successive
sentences. A paragraph ends immediately before the next paragraph—name or
section—name or at the end of the PROCEDURE DIVISION,

A sentence consists of one or more statements and is terminated by a period

followed by a space.

A statement is a syntactically valid combination of words and symbols begin-
ning with a COBOL verb.

The term "identifier" is defined as the word or words necessary to make

unique reference to a data item.

EXECUTION OF PROCEDURE DIVISION

Execution begins with the first statement of the PROCEDURE DIVISION, excluding
declaratives, Statements are then executed in the order in which they are pre-
sented for compilation, except where the rules in this section indicate some
other order,

The body of the PROCEDURE DIVISION must conform to the following format:
PROCEDURE DIVISION,.

[DECLARATIVES.

section—name SECTION. declarative-statement.
paragraph-name. [statement.]

[paragraph-name. [statement.] ...] ...

[section-name SECTION. declarative-statement,
paragraph-name. [statement.] ...
[paragraph—name. [statement.] ...] ce]

END DECLARATIVES.]

[[section—name SECTION [priority-number] .]
paragraph-name. [statement.]

[[paragraph-name.] ... [statement.] ...] ... } e

[END-OF-J0B.]

STATEMENTS

STATEMENTS

There are three types of statements: imperative statements, conditional

statements, and compiler—directing statements.
Imperative Statements

An imperative statement is any statement that is neither a conditional state-
ment nor a compiler—directing statement. An imperative statement may consist
of a sequence of imperative statements, each possibly separated from the next
by a separator. A single imperative statement is made up of a verb followed by
its operand. A sequence of imperative statements may contain either a GO TO
statement or a STOP RUN statement which, if present, must appear as the last

imperative statement of the sequence. Some of the imperative statements are:

ACCEPT DISPLAY MOVE SEEK

ADD(1) DIVIDE(1) MULTIPLY (1) SET

ALTER EXAMINE OPEN SORT

CLOSE EXIT PERFORM STOP

COMPUTE (1) GO READ(3) (2) SUBTRACT (1)
MERGE WAIT

WRITE(2) (4)
Conditional Statements

A conditional statement specifies that a truth value of a condition is to be
determined and that the subsequent action of the object program is dependent on
this truth value. A conditional statement is (1) an IF or SEARCH statement, (2)
a READ or RETURN statement that specifies the AT END phrase, (3) a READ or WRITE
statement that specifies the INVALID KEY phrase, (4) a WRITE statement that
specifies the END-OF-PAGE phrase or (5) the arithmetic statements ADD, SUBTRACT,
COMPUTE, DIVIDE, or MULTIPLY that specify the optional phrase ON SIZE ERROR.

For example, the IF statement syntax is as follows:

statement—1 statement—2 n

IF conditional {NEXT SENTENCE} Eﬁhﬁﬂ {EEXT SENTENCE

Statement—1l or statement—2 can be either imperative or conditional statements.
If conditional, the statement can, in turn, contain conditional statements to
a depth of 15, Also, if statement—1l or statement—2 is conditional, then the

conditions within the conditional statement are considered to be ''nested'.

Compiler—Directing Statements

A compiler—-directing statement is one that consists of a compiler—directing
verb (COPY and NOTE) and its operand(s).

1 Without the SIZE ERROR Option. 3 Without the AT END Option,
2 Without the INVALID KEY Option. 4 Without the EOP Option.

SENTENCES

SENTENCES

There are three types of sentences: imperative sentences, conditional sen-
tences, and compiler—directing sentences. A sentence consists of a sequence
of one or more statements, the last of which is terminated by a period,

Imperative Sentences

An imperative sentence is one or more imperative statements terminated by a
period. An imperative sentence can contain either a GO TO statement or a STOP
RUN statement which, if present, must be the last statement in the sentence.
The following are examples of an imperative sentence,

ADD MONTHLY-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL.
or
DISPLAY "PGM—-END" THEN STOP RUN.

Conditional Sentences

A conditional sentence is a conditional statement which may optionally contain
an imperative statement and must always be terminated by a period.

Examples:

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO
TALL-MEN, ELSE ADD 1 TO SOME-OTHER, GO GET-ANOTHER-
RECORD,

IF SALES IS EQUAL TO BOSSES—-QUOTA THEN MOVE SALESMAN
TO HONOR-ROLL OTHERWISE MOVE SALESMAN TO QUOTA-
LIST.

Compiler-Directing Sentences

A compiler—-directing sentence is a single compiler—-directing statement termin-
ated by a period.

Example:

SCAN. COPY SCANER.

SENTENCES

Sentence Punctuation
The following rules apply to the punctuation of sentences:
a. A sentence is terminated by a period followed by a space.
b. A separator is a word or character used for the purpose of enhancing

readability. The use of a separator (other than a space) is optional,

c. The allowable separators are spaces, the semicolon (;), the comma
(.), and the reserved word THEN.

d. Separators may be used in the following places:
1., Between statements.
2. In a conditional statement.
(a) Between the condition and statement-1,

(b) Between statement-1 and ELSE,

space but is not required.

Execuiion of imperaiive Seniences

An imperative sentence is executed in its entirety and control is passed to

the next applicable procedural sentence.
Execution of Conditional Sentences

In the conditional sentence:

QIHEEKl§§} statement-2.

IF condition statement-1 {ELSE

the condition is an expression which is TRUE or FALSE, 1If the condition is
TRUE, then statement-1 is executed and control is then implicitly transferred
to the next sentence unless statement—1 causes some other transfer of control.
If the condition is FALSE, statement—2 is executed and control passes to the

next sentence unless statement—2 causes some other transfer of control.

If statement—1l is conditional, then the conditional statement must be the last
(or only) statement comprising statement—1l. For example. the conditional sen-

tence would then have the form:
JF condition-1l imperative—statement—1 IF condition—2

OTHERWISE
ELSE

statement—3 { } statement—4 {%%g%ﬂﬂlﬁﬁ} statement—2,

SENTENCES

If condition-1 is TRUE, imperative-statement-1l is executed. If condition-2

is TRUE, statement-3 is executed and control is transferred to the next sen-
tence. If condition—-2 is FALSE, statement—4 is executed and control is trans-
ferred to the next sentence. If condition—1l is FALSE, statement—2 is executed
and control is transferred to the next sentence. Statement—-3 can in turn be
either imperative or conditional and, if conditional, can in turn contain con-
ditional statements to an arbitrary depth., In an identical manner, statement-4
can either be imperative or conditional, as can statement-2. The execution of
the phrase NEXT SENTENCE causes a transfer of control to the next sentence
written in order, except when it appears in the last sentence of a procedure

being PERFORMed, in which case control is passed to the return control.
Execution of Compiler-Directing Sentences

The compiler—directing sentences direct activities during compilation time,.

On the other hand, procedural sentences denote action to be taken by the object
program. Compiler—directing sentences may result in the inclusion of routines
into the source program. They do not directly result in either the transfer
or passing of control. The routines themselves, which the compiler—-directing
sentences may have included in the source program, are subject to the same
rules for transfer or passing of control as if those routines had been created

from procedural sentences only.

CONTROL RELATIONSHIP BETWEEN PROCEDURES

CONTROL RELATIONSHIP BETWEEN PROCEDURES

In COBOL, imperative and conditional sentences describe the procedure that is
to be accomplished. The sentences are written successively, according to the
rules of the coding form (section 3), to establish the sequence in which the
object nrogram is to execute the procedure. In the PROCEDURE DIVISION, names
are used so that one procedure can reference another by naming the procedure
‘to be referenced. In this way, the sequence in which the object program is

to be executed may be varied simply by transferring control to a named pro-

cadura
gegure.,

In procedure execution, control is transferred only to the beginning of a
paragraph or section. Control is passed to a sentence within a paragraph only
from the sentence written immediately preceding it. If a procedure is named,
control can be passed to it from any sentence which contains a GO TO or PERFORM,

followed by the name of the procedure to which control is to be transferred.

Paragraphs

So that the source programmer may group several sentences to convey one idea
(procedure), paragraphs have been included in COBOL. In writing procedures

in accordance with the rules of the PROCEDURE DIVISION and the requirements

of the coding form (section 3), the programmer begins a paragraph with a

name. The name consists of a word followed by a period, and the name pre-
cedes the paragraph it names. A paragraph is terminated by the next paragraph-
name, The smallest grouping of the PROCEDURE DIVISION which is named is a

g SR AT Y - o
21t A

paragraph. DURE DIVISION is the coptional special

: > last card in the source program the
the object program.

Programs may contain identical paragraph—names, provided they are resident in
different sections. If such paragraph—names are not qualified when used, the
current section is assumed, Paragraph—-names may be used in GO, PERFORM, and
ALTER statements.

Sections

A section consists of one or more successive paragraphs and must be named when
designated. The section—-name is followed by the word SECTION, a priority num-—
ber which is optional, and a period,. If the section is a DECLARATIVE section,
then the DECLARATIVE sentence (i.e., USE or COPY) follows the section header
and begins on the same line, Under all other circumstances., a sentence may

not begin on the same line as a section—name, The section—name applies to all

CONTROL RELATIONSHIP BETWEEN PROCEDURES

paragraphs following it until another section—name is found. It is not re-
quired that a program be broken into sections, but this technique is exception-
ally useful in trimming down the physical size of object programs by stating a

priority number to declare overlayable program storage (see SEGMENT CLASSIFI-
CATION).

Since paragraph—names and section—names both have the same designated position
on the reference format (i.e., position A), section—names, when specified, are
written on one line followed by a paragraph .name on a subsequent line. When
PERFORM is used in a non—DECLARATIVE procedural section to call another section,
the same rules apply as when PERFORM is used in a DECLARATIVE section.

SEGMENTATION

SEGMENTATION

COBOL segmentation is a facility that provides a means to specify object pro-
gram overlay requirements. COBOL segmentation deals only with segmentation
of procedures. As such, only the PROCEDURE DIVISION and the ENVIRONMENT
DIVISION are ¢onsidered in determining segmentation requirements for an ob-

ject program.

Program Segments

Although it is not mandatory, the PROCEDURE DIVISION for a source program may
tten as a consecutive group of sections, each of which are operations
that are designed to collectively perform a particular function. Each section
must be classified as belonging either to the fixed portion or to one of the
independent segments of the object program. Segmentation in no way affects

the need for qualification of procedure—names to ensure uniqueness.

The object program is composed of two types of segments: a fixed segment and

overlayable segments.

a. The fixed segment is the main program segment and may be overlaid in

the same manner as if it were an overlayable segment.

b. An overlayable segment is a segment which, although logically treated
as if it were always in memory, can be overlaid, if necessary, to
optimize memory utilization. However, such a segment, if called for
by the program, is always made available in its "initial" state when
the segment priority—number is 50 or greater. When the segment prior-—
ity-number is 49 or less, the segment will be made available in its
last-used state.

In addition, depending on availability of memory, the number of permanent seg-
ments in the fixed and overlayable portions can be varied by changing the
SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph.

Segment Classification

Sections which are to be segmented are classified by means of a system of
priority numbers and the following criteria:

a., Logic requirements: sections with priority numbers from 00 through
49 in a program may reside in the fixed segment, depending on the
value specified in SEGMENT-LIMIT. Sections containing a priority
number lower than that specified in SEGMENT-LIMIT, regardless of

their physical location in the program, will be assigned to the fixed

SEGMENTATION

segment; all other sections will be assigned as overlayable segments.
"Fall—-through" control from one SECTION to another SECTION is accom-

plished in their order of appearance in the source program.

b. Relationship to other sections: sections coded within the SEGMENT-
LIMIT range will become the fixed segment and can communicate freely
with each other. Those coded outside the stated SEGMENT-LIMIT range
fall into the overlayable category and can also communicate from one
to the other.

The compiler will create one program segment‘which will include all
sections with priority numbers below the value specified in SEGMENT-
LIMIT. The overlayable sections will be called into memory as needed
by the program. When memory is available, more than one overlayable
section will be in memory at the same time. This will reduce the
number of disk accesses, which in turn will cause the program to have

a shorter run time.
Priority Numbers

Section overlay classifications are accomplished by means of a system of
priority numbers, The priority number is included in the section header. The
general construct of a section header is as follows:

section—name SECT ION priority—number.

The priority number must be an integer ranging in value from 00 through 99
(also 0. 1, 2, etc., are permissible priority numbers). If the priority num—
ber is omitted from the section header, the priority number is assumed to be O.
Segments with priority numbers ranging from O up to, but not including, the
value specified in the SEGMENT-LIMIT clause (or 50 if no SEGMENT-LIMIT clause
has been specified) are considered as being located in the fixed portion of the
object program. Segments with priority number equal to or higher than the
value specified in SEGMENT-LIMIT (but not exceeding 99) are independent seg-—
ments and fully ALTERable; however, segments with priority numbers greater
than 49 will be made available in their "initial" state each time they are
referenced. A GO TO paragraph in a section whose priority is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a
different priority. Sections in DECLARATIVES are assumed to be 00 and must

not contain priority numbers in their section headers. Priority numbers may

be stated in any sequence and need not be in direct sequence. The fixed seg-
ment does not end when the first priority number equal to or greater than
SEGMENT-LIMIT is encountered.

7=10

SEGMENTATION

All segments, regardless of their physical location in the source program,
whose priority number is less than that which is specified in SEGMENT-LIMIT
will be '"gathered" into a single segment. All other segments equal to or
greater than that which is specified in SEGMENT-LIMIT will be '"gathered" in-
to overlayable segments according to equal priority number, regardless of

their physical location in the source program.

The use of the '"gathering" technique will allow programmers to create tailored

segments which will reduce disk access times. For example:

Program A SEGMENT-LIMIT equals 17,
Non—-Gathered

Segment Description Size in Digits

00-16 Main body of the program 4,000
17 Used frequently 1,000
18 Used frequently 5,000
19 Used infrequently 4,000
20 Used at EOJ only 500
21 Used frequently 2,000
22 Used at BOJ only 1,000
23 Used frequently 500
24 Used for infrequent test 1,500
25 Used infrequently 3,000

Gathered

Segment Description Size in Digits

00-16 Main body of the program 4,000
17 Used frequently 1,000
18 Used infrequently 5,000
19 Used infrequently 4,000
20 Used at EOJ 500
17 Used frequently (was segment 21) 2,000
19 Used at BOJ (was segment 22) 1,000
17 Used frequently (was segment 23) 500
20 Used for infrequent test (was segment 24) 1,500
20 Used infrequently (was segment 25) 3.000

SEGMENTATION

Results of Gathering

Segment Description Size in Digits
00-16 Main body of the program 4,000

17 Used frequently 3,500

18 Used infrequently 5,000

19 Used infrequently 5,000

20 Used infrequently 5,000

"Fall through" will be performed in the sequence as outlined in the above
"Non—-Gathered'" example, and not as they appear in the "Results of Gathering"
example above, therefore preserving the logical integrity of the original

program.

The COBOL interpreter will automatically check to see if an overlay being
called for by an object program is already present in memory. If it is
present, no disk access is required and the program is not interrupted. If it
is not present, the COBOL interpreter interrupts the program and will access
the disk for the desired overlayable portion of the program. The COBOL inter-
preter uses overlay segments directly from the program library where the ob-
ject program was compiled to and is called in as an overlay in its initial

generated code each and every time it is required by the operating program.
Although the initial code is retrieved each time, the latest addresses of

ALTERed exits are still applicable and are in force by the use of an automatic
ALTER table for segments with a priority number of 49 or less.

7-12

DECLARATIVES

DECLARATIVES

Declaratives are procedures which operate under the control of the input-
output system. Declaratives consist of compiler—directing sentences and their
associated procedures. Declaratives, if used, must be grouped together at the
beginning of the PROCEDURE DIVISION. The group of declaratives must be pre-
ceded by the key word DECLARATIVES, and must be followed by the words END
DECLARATIVES. Each DECLARATIVE consists of a single section and must conform
to the rules for procedure formation. There are two statements that are
called declarative statements in the COBOL compiler. These are the USE and
the COPY statements. The next source statement following the END DECLARATIVES

statement must be a section—name or paragraph—name.
USE Declarative

A USE declarative is used to supplement the standard procedures provided by

the input-output system. The USE sentence immediately following the section-
name, identifies the condition calling for the execution of the USE procedures.
Only the PERFORM statements may reference all or part of a USE section. The
USE sentence itself is never executed., Within a USE procedure. there must be
no reference to the main body of the PROCEDURE DIVISION. The construct for the
USE declarative is as follows:

section—-name SECTION, USE................

paragraph—name. First procedure-statement...
Complete rules for writing the formats for USE are stated under the USE verb.
COPY Statement as a Declarative

A COPY declarative is used to incorporate a DECLARATIVE library routine in
the source program, that is, a routine which is a USE declarative. The con-

struct of the COPY declarative is:
section—name SECTION. COPY 1library—name

Complete rules for writing the format for COPY are stated under the COPY verb.

7-13

ARITHMETIC EXPRESSIONS

ARITHMETIC EXPRESSIONS

An arithmetic expression is an algebraic expression which is defined as:
a. An identifier of a numeric elementary item,
b. A numeric literal.
c. Such identifiers and literals separated by arithmetic operators.
d. Two arithmetic expressions separated by an arithmetic operator.
e. An arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary + or -, The permissible
combinations of identifiers, literals, and arithmetic operators are given in
table 7-1. Those identifiers and literals appearing in an arithmetic expres-
sion must represent either numeric elementary items or numeric literals on

which arithmetic operation may be performed.

Table 7-1. Combination of Symbols in Arithmetic Expressions

Section Symbol
First unary
Symbol Variable X/**4+= | + or - ()
Variable - P - - p
X/ kK 4+~ P - p P -
unary + or - b - - P -
(p - P P -
) - P - - P

NOTE

In the above table, the letter "P'" represents
a permissible pair of symbols. The character
"='"" represents an invalid character pair. Vari-

able represents an identifier or literal.
Arithmetic Operators
There are five arithmetic operators that may be used in arithmetic expressions.

These operators, listed below, are represented by specific characters which

must be preceded by a space and followed by a space.

ARITHMETIC EXPRESSIONS

Character Meaning
+ addition

- subtraction

* multiplication
division
*x exponentiation

Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify the order in
which elements are to be used. Expressions within parentheses are evaluated
first and, within a nest of parentheses, evaluation proceeds from the least
inclusive set to the most inclusive set. When parentheses are not used or
parenthesized expressions are at the same level of inclusiveness, the follow-

ing hierarchical order of operations is implied:

Unary + or -
* ok
* and /

+ and -

Parentheses have a precedence higher than any of the operators and are used

to eliminate ambiguities in logic where consecutive operations of the same
hierarchical 1level appear, or to modify the normal hierarchical sequence of
execution in formulas where it is necessary to have some deviation from the
normal precedence. When the sequence of execution is not specified by paren-
theses, the order of execution of consecutive operations of the same hierarchi-
cal level is from left to right. Thus, expressions ordinarily considered to

be ambiguous, e.g., A/ B * C, A/ B / C, and A**B**C are permitted in COBOL.
They are interpreted as if they were written (A / B) * C, (A / B) / C. and

(A**B) **C, respectively. Without parenthesizing, the following example:
A+ B/ C+ D*xE *x F - G

would »be interpreted as:
A+ (B/C)+ ((D**xE) *xF) -G

with the sequence of operations working from the innermost parentheses toward
the outside, i.e., first exponentiation, then multiplication and division, and

finally addition and subtraction.

ARITHMETIC EXPRESSIONS

The way in which operators, variables, and parentheses may be combined in an

arithmetic expression is summarized in table 7-1.

An arithmetic expression may only begin with the symbols (, +, =, or a
variable and may only end with a) or a variable. There must be a one-to-one
correspondence between left and right parentheses of an arithmetic expression
such that each left parenthesis is to the left of its corresponding right

parenthesis,

CONDITIONS

CONDITIONS

A condition causes the object program to select between alternate paths of
control, depending upon the truth value of a test. Conditions are used in IF

and PERFORM statements. A condition is one of the following:
a. Relation condition.
b. Class condition.

c¢c. Condition—name condition.

Q
16)]
[
o)}
3
O
Q
o3
[oN
fod
ct
Jod
(e}
jw]

e. NOT condition.

AND

OR } condition.

f. Condition {
The construction NQT condition is not permitted if the condition itself con-
tains NOT.
Logical Operators

Conditions may be combined by logical operators. The logical operators must
be preceded by a space and followed by a space. The meaning of the logical

operators is as follows:

Logical Operator Meaning
OR Logical Inclusive OR
AND Logical Conjunction
NOT Logical Negation

Table 7-2 indicates the relationships between the logical operators and condi-
tions A and B. Table 7-3 indicates the way in which conditions and logical

operators may be combined.
Relation Condition

A relation condition causes comparison of two operands, each of which may be
a data—-name, a literal, or an arithmetic expression (formula). Comparison
of two elementary numeric items is permitted, regardless of the individual
USAGE clauses. However, for all other comparisons, the operands must have
the same USAGE. Group numeric items are defined to be alphanumeric. It is

not permissible to compare an index—data—-name to a literal or a data—-name.

CONDITIONS

Table 7-2. Relationship of Conditions,
Logical Operators, and Truth Values

CONDITION CONDITION AND VALUES
A B A AND B A OR B NOT A
TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

Table 7-3. Combinations of Conditions
and Logical Operators

SECOND
SYMBOL
FIRST
SYMBOL CONDITION OR AND NOT ()
CONDITION - P P - - P
OR p - - P P -
AND P - - P P -
NOT *P - - -) -
(p - - P P -
) - P P - - P

NOTE

The letter "P" represents a permitted pair
of symbols, and the character '"-" repre-

sents an invalid character pair.

The general format for a relation condition is as follows:

data—-name-1 data—-name=-2
literal-1 relational-operator literal-2
arithmetic—expression-1 arithmetic—-expression—2

The first operand, data—name—1l, literal—1l, or arithmetic-expression-1 is
called the subject of the condition. The second operand, data-name-2,
literal—2, or arithmetic-expression—=2 is called the object of the condition.

The object and the subject mav not both be literals.

* Permissible only if the condition itself is not a "NOT condition".

7-18

CONDITIONS

Relational Operators

The relational operators specify the type of comparison to be made in a rela-
tion condition. The relational operators must be preceded by a space and

followed by a space. Relational operators are:
IS [NOT) GREATER THAN.
IS [NOT] LESS THAN,

IS [NOT] EQUAL TO.

NOT

b=y
44}
P
’-l

-
[0)]

r—\ rm mrm
|z

1>

OT] <«

IS [NoT] =
EQUALS.

Comparison of Operands

Non-Numeric. For non-numeric (byte) operands, a comparison will result when

determination is made that one operand is less than, equal to, or greater than

~~ 1 ~ - paoy —~ - — -~ e oy
collating sequence of characters.

-

the other with respect to a specified interna
The size of an operand is the total number of characters in the operand. Non-
numeric operands may be compared only when their USAGE is the same, implicitly

or explicitly. There are two cases to consider:

a. If the cperands are of equal size, characters in corresponding
character positions of the two operands are compared starting from
the high—order end through the low—order end. If ail pairs of char-
acters compare equally through the last pair, the operands are con-
sidered equal when the low-order end is reached. The first pair of
unequal characters to be encountered is compared to determine their
respective relationship. The operand that contains the character
that is positioned higher in the internal collating sequence is con-

sidered to be the greater operand.

b. If the operands are of unequal size, the comparison of characters
proceeds from high-order to low-order positions until a pair of un-
equal characters is encountered. or until one of the operands has no
more characters to compare. If the end of the shorter operand is
reached and the remaining characters in the longer operand are spaces.

the two operands are considered to be equal.

Numeric. For operands that are numeric. a comparison results in the deter-

mination that one of them is less than, equal to. or greater than the other

with respect to the algebraic value of the operands. The length of the oper-
7-19

CONDITIONS

ands, in terms of number of digits, is not significant. Zero is considered
a unique value regardless of the sign. Comparison of these operands is per-—
mitted regardless of the manner in which their usage is described. Unsigned

numeric operands are considered positive for purposes of comparisons.

The signs of signed numeric operands will be compared as to their algebraic

value of being plus (highest) or minus (lowest).
Sign Condition

The sign condition determines whether or not the algebraic value of a numeric
operand is less than, greater than, or equal to 0. The general construct for
a sign condition is as follows:
POSITIVE
arithmetic—-expression IS [NOT] {NEGATIVE
ZERO
An operand is positive if its value is greater than zero, negative if its

value is less than zero, and zero if its value is equal to zero.
Class Condition

The class condition determines whether the operand is numeric; that is,
consists entirely of the characters 0, 1, 2, 3, .y 9, with or without an

operational sign, or alphabetic, that is, consists entirely of the characters
A, B, C, ..., Z, and space. The general construct for the class condition is

as follows:

identifier IS [NOT] {gg%%%%%TIC}

The usage of the operand being tested must be described, implicitly or ex-
plicitly, as DISPLAY.

The NUMERIC test cannot be used with an item whose record description de-
scribes the item as alphabetic. If the record déscription of the item being
tested does not contain an operational sign, the item being tested is de-
termined to be numeric only if the contents are numeric and an operational
sign is not present,

The ALPHABETIC test cannot be used with an item whose record description
describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alpha-
betic characters A thru Z and the space.

CONDITIONS

Condition-Name Condition

In a condition—name condition, a conditional variable is tested to determine
whether or not its value is equal to one of the values associated with a
condition—name. The general construct for the condition—name condition is as

follows:
[NOT] condition—name

If the condition—name is associated with a range or ranges of values, then
the conditional variable is tested to determine whether or not its value

falls in this range, including the end values.

The rules for comparing a conditional variable with a condition—name value

are the same as those specified for relation conditions,

The result of the test is TRUE if one of the values corresponding to the

condition—name equals the value of its associated conditional variable.
Evaluation Rules

The evaluation rules for conditions are analogous to those given for arith-

metic expressions, except that the following hierarchy applies:
a. Arithmetic expressions (formulas).
b. All relational operators.

NOT
INU L,

v

@)

d. AND.,

e. OR.

CONDITIONS

Simple Conditions

Simple conditions, as distinguished from compound conditions, are subdivided
into four general families of conditional tests: Relation Tests, Relative
Value Tests, Class Tests, and the Conditional Variable Tests. A detailed ex-
planation of each of these can be found at the beginning of this subsection
(title: Conditions).

Compound Conditions

The most common construct of a compound condition is:

simple—condition-1 {%%D} simple-condition—2
AND AND . _ .._1
[{QE } T {QE } simple—-condition—n |

Simple conditions can be combined with logical operators, according to speci-
fied rules, to form compound conditions. The logical operators AND, OR, and
NOT are shown in table 7-2, where A and B represent simple conditions. Thus,
if A is TRUE and B is FALSE, then the expression A AND B is FALSE, while the
expression A OR B is TRUE.

The following are illustrations of compound conditions:
a. AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20,

b. AGE IS GREATER THAN 24 OR MARRIED.
c. STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS
GREATER THAN DEMAND + INVENTORY.

d. A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT
EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I x J.

e, STK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS
THAN 100 OR STK-NUMBER EQUAL TO 76920).

Note that it is not necessary to use the same logical connective throughout.
The rules for determining the logical (i.e., truth) value of a compound condi~

tion are as follows:

a, If AND is the only logical connective used, then the compound
condition is TRUE if, and only if, each of the simple conditions is
TRUE.

b. If OR is the only logical connective used, then the compound
condition is TRUE if, and only if, one or more of the simple condi-
tions is TRUE,

CONDITIONS

¢, If both logical connectives are used, then the conditions are grouped
first according to AND, proceeding from left to right, and then by OR,
proceeding from left to right.

Parentheses may be used to indicate grouping as specified in the examples
below. Parentheses must always be paired the same as in algebra, i.e., the
expressions within the parentheses will be evaluated first. In the event that
nested parenthetical expressions are employed. the innermost expressions within
parentheses are handled first. Examples of using parentheses to indicate

grouping are:

a. To evaluate Cl1 AND (C2 OR NOT (C3 OR C4)), use the first part of

rule ¢ above and successively reduce this by substituting as follows:

Let C5 equal "C3 OR C4", resulting in
C1 AND (C2 OR NOT C5)

Let C6 equal '"C2 OR NOT C5", resulting
in C1 AND C6

This can be evaluated by referencing table 7-2,

b. To evaluate C1 OR C2 AND C3, use the second part of rule c¢ and
reduce this to Cl1 OR (C2 AND C3), which can now be reduced as in

example a.

c. To evaluate Cl1 AND C2 OR NOT C3 AND C4, group first by AND from left
to right, resulting in:

(C1 AND C2) OR (NOT C3 AND (C4)
which can now be evaluated as in example a.

d. To evaluate C1 AND C2 AND C3 OR C4 OR C5 AND C6 AND C7 OR C8, group
from the left by AND to produce:

((C1 AND C2) AND C3) OR C4 OR ((C5 AND C6)
AND C7) OR C8

which can now be evaluated as in example a,
e. The following uses a condition—name as part of the statement.

IF CURRENT-MONTH AND DAY = 15 OR 30... would

be treated as:

IF (CURRENT-MONTH AND DAY

actual test desired is:

1l

15) OR 30,.. the

IF CURRENT-MONTH AND (DAY 15 OR 30)...

CONDITIONS

The required result is that CURRENT-MONTH must be true and DAY must

contain either 15 or 30.
Without the parentheses as shown, the conditions are:

1. DAY = 30 or
2. CURRENT-MONTH is true AND DAY = 15.

Abbreviated Compound Conditions

Any relation condition other than the first that appears in a compound condi-

tional statement may be abbreviated as follows:

a,

The subject, or the subject and relational operator, may be omitted.
In these cases, the effect of the abbreviated relation condition is
the same as if the omitted parts had been taken from the nearest
preceding complete relation condition within the same condition;

that is, the first relation is a condition and must be complete.

If. in a consecutive sequence of relation conditions (separated by
logical operators) the subjects are identical, the relational oper-
ators are identical and the logical connectors are identical, the

sequence may be abbreviated as follows:

1. Abbreviation 1: when identical subjects are omitted in a con-
secutive sequence of relation conditions. An example of abbre-

viation 1 would be:
IF A = B AND = C.
This is equivalent to IF A = B AND A = C.

2. Abbreviation 2: when identical subjects and relational operators
are omitted in a consecutive sequence of relation conditions.

An example of abbreviation 2 is:
IF A = B AND C.
This is equivalent to IF A = B AND A = C.

As indicated in the previous paragraphs. compound conditions can be
abbreviated by having implied subjects, or implied subjects and re-
lational operators. providing the first simple condition is a full

relation. The missing term is obtained from the last stated relation

CONDITIONS

in the sentence. The following examples further illustrate the abbre-

viated compound conditions:
1. IF A =B OR C is equivalent to IF A = BOR A = C,

2, IFA<<BOR =C ORD is equivalent to IF A < B OR
A =COR A =D,

INTERNAL PROGRAM SWITCHES

INTERNAL PROGRAM SWITCHES

Every compiled object program contains eight automatically provided program-
matic switches. Switches SW1 through SW8 are composed of one unsigned digit

in length and are located in memory locations 0 through 7 of data segment O.

These switches can be referred to in the PROCEDURE DIVISION by the use of the
reserved words SW1l, SW2...SW8. During execution, each individual switch
setting can be changed by a MOVE, ADD, SUBTRACT, etc.. For example:

MOVE 0 TO SW1.
ADD 1 TO SWw2.
SUBTRACT 1 FROM SW3.

Note that SW6 has an effect on the MONITOR DEPENDING....requirement if the

statement is present.

The switch memory locations are reserved and operate identically to those of

the reserved TALLY locations.

STATEMENT OPTIONS

STATEMENT OPTIONS

In the statement descriptions that follow, several options appear frequently:
the ROUNDED option, the SIZE ERROR option, and the CORRESPONDING option.

In the discussion below, a resultant-identifier is that identifier associated

with a result of an arithmetic operation.
Rounded Option

If after decimal point alignment, the number of places in the fraction of the
result of an arithmetic operation is greater than the number of places pro-
vided for the fraction of the resultant identifier, truncation is relative

to the size provided for the resultant-identifier. When rounding is requested,

the value returned is (X + 0.5), where X is the original argument.

When the low-order positions in a resultant-identifier PICTURE are represented
by the character "P", rounding or truncation occurs relative to the right-

most integer position for which storage is allocated.

Size Error Option

[
k4

the value of a result exceeds the largest

, after decimal point alignm
value that can be contained in the associated resultant-identifier, a size
error condition exists. The size error condition applies only to the final
results of an arithmetic operation and does not apply to intermediate results,
except in the MULTIPLY and DIVIDE statements, in which case the size error
condition applies to the intermediate results as well. Arithmetic faults such
as divide by zero will cause program termination if the SIZE ERROR clause is

not used.

If the ROUNDED option is specified, rounding takes place before checking for
size error. When such a size error condition occurs, the subsequent action

depends on whether or not the SIZE ERROR option is specified:

a. If the SIZE ERROR option is not specified and a size error condition
occurs, the values of the resultant-identifier(s) affected will be
unpredictable. Values of resultant—identifier(s) for which no size
error condition occurs are unaffected by size errors that occur for
other resultant-identifier(s) during execution of this operation.

b. If the SIZE ERROR option is specified and a size error condition
occurs, then the values of resultant-identifier(s) affected by the
size errors are not altered. Values of resultant-identifier(s) for
which no size error condition occurs are unaffected by size errors

that occur for other resultant-identifier(s) during execution of this

7-27

STATEMENT OPTIONS

operation. After completion of the execution of this operation, the

statement in the SIZE ERROR option is executed.

For ADD and SUBTRACT CORRESPONDING, the SIZE. ERROR clause is not

executed until all of the individual additions or subtractions are

completed.

Corresponding Option

In this discussion, identifier-1 and identifier-2 are identifiers specified
in a statement containing the CORRESPONDING phrase.

a. Rules for valid identifiers are:

1.
2.

3.

All identifiers must refer to group items.

Identifiers may be described with or be subordinate to an item
described with a REDEFINES or OCCURS clause.

No identifier may have a USAGE of INDEX.

b. Data items subordinate to identifier-1 correspond with data items

subordinate to identifier-2, if the following rules apply:

1.
2.

7-28

Both data items must have the same data-name.

All possible qualifiers for the sending item, up to but not
including identifier-1, must be identical to all possible quali-
fiers for the receiving item up to but not including identifier-2.
In an ADD or SUBTRACT statement, only elementary numeric data
items will be considered.

In a MOVE statement, the corresponding sending and/or receiving
data items must be elementary. The class may differ.

Any item with a level-number of 66 or 88 or with a Data Descrip-
tion entry containing a REDEFINES, OCCURS, or INDEX clause is not
considered. - Any item subordinate to an item not eligible for
correspondence will also be ignored.

FILLER data items are ignored.

VERBS

VERBS

The verbs available for use with the COBOL Compiler are categorized below.

Although the word IF is not a verb in the English language, it is utilized

as such in the COBOL language.

PROCEDURE DIVISION.

a.

f.

Arithmetic:
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Compiler Directing:

COPY
MONITOR
NOTE
USE

Data Manipulations:

EXAMINE
FORMAT
MICR-EDIT
MOVE

Ending:
STOP

Input-Output:
ACCEPT
CLOSE
CONTROL
DISPLAY
OPEN
READ
SEEK
WRITE
Z1P

Logical Control:

IF
WAIT

Its occurrence is a vital feature in the

VERBS

g. Procedure Branching:
ALTER
EXIT
GO
PERFORM

RELEASE
RETURN
SORT

i. Table Manipulation:
SEARCH
SET

j. Debugging:

Specific Verb Formats

The specific verb formats, together with a detailed discussion of the restric-—
tions and limitations associated with each, appear on the following pages in

alphabetic sequence.

~1
i

30

ACCEPT

ACCEPT

The function of this verb is to permit the entry of low-volume data from the

console typewriter.

The construct of this verb is:

S
mnemonic—name

8

ACCEPT identifier [FROM {

This statement causes the operating object program to halt and wait for appro-
priate data to be entered on the console printer (SPO). The SPO entry will
replace the contents of memory specified by the identifier. The systems
operator answers an ACCEPT halt by keying in the following message:

mix—index AXdata-required

If a blank appears between the AX and data-required, the blank character will

be included in the data—stream.

The MCP will space fill to the right if the number of characters entered is
less, or truncate tc right if the number of characters entered is more,

If mnemonic—name is used, it must appear in the SPECIAL-NAMES paragraph and

be equated to the hardware—name SPO.
The receiving identifier may be a group level entry and cannot be subscripted.
The maximum number of characters per ACCEPT statement is unlimited.

Because of the inefficiency of entering data through the keyboard, this tech-
nique of data transmission should be restricted solely to low-volume input
data.

NOTE

The "<" is a backspace character and is
not passed by the MCP,

ADD

ADD

The function of this verb is to add two or more numeric data items and adjust
the value of the receiving field(s) accordingly.

The construct of this verb has three options.

Option 1:
ADD literal-1 1 literal-2
_— identifier-1} identifier-z} ce
TO identifier-m [ROUNDED] [identifier-n [RQUNDED]...]
[:ON SIZE ERROR statement-1 . [;ELSE statement-2]]

Option 2:
ADD literal-1 } literal—-2 literal-3
_— identifier—1 identifier—z} identifier-S} o
GIVING identifier-m [ROUNDED] [,identifier-n [ROUNDEQ]] ...
[[ON SIZE ERROR statement-1 = [;ELSE statement-2]]

Option 3:

CORR . ces . ces
AD {CORRESPONDING} identifier-1 TO identifier-—2

(ROUNDED] [;ON SIZE ERROR statement-1 [;ELSE statement-2]]

With Option 1. the value(s) of the operand(s) preceding the word TO will be
added together and the sum will be added to the existing value(s) of operand(s)
following the word TO. A resummation does not occur if the value of one of
the identifiers changes in the process,

For example, the result of the statement
ADD A, B, C TO C, D(C), E
is equivalent to

ADD A, B, C GIVING TEMP
ADD TEMP TO C

ADD TEMP TO D(C)

ADD TEMP TO E

where TEMP is anr intermediate result item provided by the compiler.

732

ADD

In Option 2, the sum of the operands preceding the word GIVING will be in-
serted as a replacement value of identifier(s) following the word GIVING.

In Options 1 and 2, the identifiers must refer to elementary numeric items only,
except that identifiers appearing only to the right of the word GIVING may refer

to elementary numeric—edited items,
An ADD statement must have at least two operands.

That composite of operands, which is the super-imposition of all operands,
excluding the data item that follows the word GIVING, aligned on their decimal

points, must not contain more than 125 digits or characters.

The internal format of operands referred to in an ADD statement may differ
among each other. Any necessary format transformation and decimal point

alignment are automatically supplied throughout the calculation.
Each literal must be a numeric literal.

If, after decimal point alignment with the receiving data item, the calculated
result extends to the right of the receiving data item (i.e., an identifier
whose value is to be set equal to the sum), truncation will occur. Truncation
is always in accordance with the size associated with the resultant identi-
fier. When the ROUNDED option is specified, it causes the resultant identi-
fier to have its absolute value increased by 1 whenever the most-significant

digit of the truncated portion is greater than or equal to 5.

Whenever the magnitude of the calculated result exceeds the largest magnitude
that can be contained in a resultant data—-name, a size error condition arises.
In the event of a size error condition, one of two possibilities will occur,
depending on whether or not the ON SIZE ERROR option has been specified. The
testing for the size error condition occurs only when the ON SIZE ERROR option

has been specified.

a. In the event that ON SIZE ERROR is not specified and size error con-

ditions arise, the value of the resultant identifier is unpredictable.

b. 1If the ON SIZE ERROR option has been specified and size error condi-
tions arise, then the value of the resultant identifier will not be
altered. After it has been determined that there is a size error
condition, the statement-1 associated with the ON SIZE ERROR option

will be executed.

If Option 3 is used multiple operations are performed., The operations are exe~
cuted by the pairing of identical data—-names of numeric elementary items subor-

ADD

dinate in hierarchy to identifier-1 and identifier-2. Data—names match if they,
and all their possible qualifiers up to, but not including identifier—1 and
identifier—-2, are the same. All general rules pertaining to the ADD verb apply
to each individual ADD operation. For instance, if the size of matched data-—
names does not correspond, in that the decimal point is out of alignment or

the sizes differ, the decimal point alignment or truncation takes place accord-

ing to the rules previously discussed.

In the process of pairing identical data—-names, any data—name with the
REDEFINES clause is ignored. Similarly, data—-names which are subordinate to
the subordinate data—-names with the REDEFINES clause are ignored.

NOTE

This restriction does not preclude
identifier—-1 or identifier-2 from having
REDEFINES clauses or from being sub-
ordinate to data—names with REDEFINES
clauses,

If the CORR or CORRESPONDING option is used, any item in
to which contains an OCCURS clause will be ignored. Any
such an item will also be ignored.

the group referred
items subordinate to

In Option 3, if either identifier—1l or identifier-2 is a group item which con-—
tains RENAMES entries, the entries are not considered in the matching of names.
In Option 3, identifier—1 and identifier-2 must not have a level number of 66,
77, or 88.

If corresponding data—names are not elementary numeric items, the ADD operation
will be ignored.

In Option 3, CORR is an acceptable substitute for CORRESPONDING.

7-34

ALTER

ALTER

The function of this verb is to modify a predetermined sequence of operations

by changing the operand of a labeled GO TO paragraph.

The construct of this verb is:

ALTER procedure—name—-1 TO [PEOCEED Ig] procedure—name—2

[procedure-name-3 TQ [PROCEED TO] procedure-name-4 ...]

Procedure—name—1, procedure—name-3, ... are names of paragraphs, each of
which contains a single sentence consisting of only a GO TO statement as
defined under Option 1 of the GO TO verb. Procedure-name-2, procedure-name-4,
... are not subject to the same restrictions and they may be either paragraph-

names or section—names,

When control passes to procedure—name—1l, control is immediately passed to
procedure—name—2 rather than to the procedure—name referred to by the GO TO
statement in procedure—name—1l, Procedure—name—1l is therefore a ''gate'" which

remains set until again referenced by another ALTER statement.

A GO TO statement in a section whose priority is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different

priority.

All other uses of the ALTER statement are valid and are performed even if the
GO TO which the ALTER refers to is in an overlayable section, as long as the

section priority number is less than 50.

7-35

CLOSE

CLOSE

The function of this verb is to communicate to the MCP that the designated
file-name being operated on or created is programmatically completed, and also
to fulfill the stated action requirements.

The construct of this verb is:

CLOSE file-name-1 [REEL] WITH

NO REWIND
REMOVE

[file-name-2...]

File—names must not be those defined as being SORT files. A file must have
been OPENed previously before a CLOSE statement can be executed for the file
File space in memory will not be allocated until the file has been OPENed.
When a file is programmatically CLOSEd and the assigned unit is released, the
memory allocated for that file will be returned to the MCP. The MCP I/0 as-
signment table reflects any unit which remains assigned to the program after
the file on that unit has been CLOSEd.

The above statement applies to the following categories of input and output
files.

a. Files whose input and output media involve print files, card files,
etc.

b. Files which are contained entirely on one reel of magnetic tape
and are the only files on that reel,

c. Files which may be contained on more than one physical reel of
magnetic tape. Furthermore, the number of reels might possibly be

higher than the number of physical tape units provided on the system.

d. Disk files.

To show the effects of the CLOSE options, each type of file will be discussed
separately.

a, Card Input.

1. CLOSE - does not release the input memory areas or the reader.

2. CLOSE WITH NO REWIND - same as CLOSE,

7-36

T

/CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

CLOSE

CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

CLOSE WITH REMOVE - same as CLOSE.

Card Output.

l.

CLOSE - punches the trailer label (if any) and does not release

the output memory areas or the punch.

CLOSE WITH NO REWIND - same as CLOSE.

- CLOSE WITH RELEASE’~‘relea‘”

" returns the punch to the MCP.

4.
5.
6.

T

CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

CLOSEWITH PURGE - same as CLOSE WITH RELEASE

CLOSE WITH REMOVE - same as CLOSE.

CLOSE WITH CRUNCH - same as CLOSE: 1 = 0

Magnetic Tape Input.

6.

7.

CLOSE - rewinds the tape and does not release the input memory

areas. The unit remains assigned to the program.

CLOSE WITH NO REWIND - same as CLOSE except the tape is not

rewound.

CLOSE WITH LOCK - releases the input memory areas, rewinds the
tape, and the MCP marks the unit not ready.

CLOSE WITH RELEASE - releases the memory input a
the tape, and returns the wnlt’tg'thé MCP.,.g-f

éa'S‘,' rew 1r ds

CLOSE WITH PURGE - releases the input memory areas,_rew1ndsfthe

tape, and if a write ring 1s in the reel, over-writes the label,

making the tape a scratch tape which becomes a candldate for use
by the MCP. The unit is returned to the MCP.

CLOSE WITH REMOVE - same as CLOSE.

CLOSE WITH CRUNCH - same as CLOSE.

Magnetic Tape OQOutput.

CLOSE

1. CLOSE - does not release the output memory areas, writes the
trailer label (if any), and rewinds the tape. The unit remains
assigned to the program.

2., CLOSE WITH NO REWIND - does not release the output memory areas,
writes the trailer label (if any). The tape remains positioned
beyond the trailer label (or tape mark if there is no trailer

label). The unit remains assigned to the program.

3. CLOSE WITH LOCK - releases the output memory areas, writes the
trailer label (if any), rewinds the tape, and the MCP marks the

unit not ready.

s

6. CLOSE WITH REMOVE - same as CLOSE.

e, Printer Output.

1. CLOSE - prints the trailer label (if any) and does not release the

the output memory areas or the printer.

2. CLOSE WITH NO REWIND - same as CLOSE.

4, CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

6. CLOSE WITH REMOVE - same as CLOSE.

7-38

CLOSE

f. Disk Files. The actions taken on files ASSIGNED to DISK will be
discussed in terms of old files and new files. An old file is one
that already exists on disk and appears in the MCP Disk Directory.
A new file is one created by the program and does not appear in the
Directory. A new file may only be referenced by the program which
creates it.

1. CLOSE - does not release the input/output memory areas.

(a) For an old file, the file is left in the Directory and is

available to other programs.

(b) For a new file, the file is not entered in the Directory;
however, it remains on the disk and may be OPENed again by
this program.

2. CLOSE WITH NO REWIND - not permitted on disk files.

e

4. CLOSE WITH LOCK - releases the input/output memory areas.

(a) For an old file, the file remains in the Directory and is
made available.

(b) For a new file, the file is entered in the Directory and

is available to other programs.

6. CLOSE WITH REMOVE - releases the input/output memory areas.
This option will cause the MCP to REMOVE a file from the Disk

Directory that has the same file-id as the file being closed.

This action will take place prior to entering the closing files
file-id in the Disk Directory. Use of this option will eliminate
the DUPLICATE FILE condition and reduce operator intervention.

If the REMOVE option is not used, the "RM" SPO input message will

accomplish the same results.

CLOSE

If a file has been specified as being OPTIONAL, the standard end-of-file pro-

cessing is permitted whenever the file is not present.

If a CLOSE statement without the REEL option has been executed for a file, a
READ, WRITE, or SEEK statement for that file must not be executed unless an

intervening OPEN statement for that file is executed.

The CLOSE REEL option signifies that the file-name being CLOSEd is a multi-
reel magnetic tape input or output file. The real will be CLOSEd when the
CLOSE REEL statement is encountered and an automatic OPEN of the next se-

quential reel of the multi-reel file is then performed by the MCP.

7-40

COMPUTE

COMPUTE
The function of this verb is to assign to a dqta item the value of a numeric
data item, literal, or arithmetic expression.
The construct of this verb is:
identifier—-2

COMPUTE identifier-l [ROUNDED] = literal
arithmetic expression

[;ON SIZ

=i

The literal must be a numeric literal.

Identifier—-2 must refer to an elementary numeric item. Identifier—-1 may describe

an elementary numeric edited item.

The arithmetic expression option permits the use of any meaningful combination

of identifiers, numeric literals, arithmetic operators, and parenthesization,
as required.

All rules regarding ON SIZE ERROR, ROUNDED options, truncation and editing are
the same as for ADD.

If numeric—literal exponents are used, the results are accurate up to 18
digits in length and to as many decimal places.

cory

COPY

The function of this verb is to allow library routines contained on a source

language library file to be incorporated into the program.

The construct of this verb contains the following two options:

Option 1:

COPY 1library—name

Option 2:

COPY 1library—name

[REPLACING [gozd:l -1} BY YS£§;§fier-2[
[ata—name identifle
d-3 word—4)
{goi - e-3} BY identifier—4 o
atamnam literal—-2

The COPY statement may refer only to one library entry in the library, Library-
name is the value placed in a library entry bounded by quotes or a procedure-
name type word. The library ehtry can contain up to three l0-character non-
numeric literals each separated by a slash (/), following normal naming

conventions for disk files.

The library file is inserted in the source program immediately after the COPY
statement at compilation time. The result is the same as if the library data
were actually a part of the source program,

Library data can encompass an entire procedure, which may be any number of

statements, paragraphs, or entire source program divisions (or parts thereof).
Library files may not contain COPY statements.

No statement may appear to the right of the COPY statement on the same source
card,

COPY during the PROCEDURE or ENVIRONMENT divisions must follow a SECTION or
paragraph-name, and all information contained in the library file is included
and can be fully referenced.

COPY

On a COPY during the DATA DIVISION, the FD file—name, or the 01 level data—name
preceding the COPY is saved and the relative constructs from the library file

are discarded. For example, the statement
FD MASTER-INPUT COPY ""MASTER".

will cause the library file titled MASTER to be inserted into the source
program immediately following the COPY statement. The source program must
refer to the FD file—name as MASTER-INPUT, not as MASTER. The library FD
filemname will appear on the output listing, but cannot be referenced in the

source program,

Library texts copied from the library are flagged on the output listing by an
"L" preceding the sequence number.

In Option 2, a word is defined as being any COBOL word that is not a COBOL
reserved word. For example, the following statement reflects non—reserved
COBOL words AAA,BBB and 1234, where AAA and BBB are data—names and 1234 is a
COBOL word:

MULTIPLY AAA BY BBB, THEN GO TO 1234.

If the COPY REPLACING option is specified, each word—1l or data—name—1l stipulated
will be replaced by the word—2 or identifier-2 entries specified in the option.

Data—names may not be subscripted, indexed, or qualified.

Use of the COPY REPLACING option requires that the "library—name'" COBOL source
image file be present on disk, prior to compilation of the source program con-
taining the COPY REPLACING option. The use of this option will not cause

alteration of the library file residing on disk.

In Option 2, literals contained in a library file cannot be replaced by liter-
als, words, or identifiers. If a numeric literal is the last entry in a

replacing list, it must be followed by a blank and then a period. For example:

COPY BERMAN REPLACING AAA BY HOURS,
BBB BY PAY-SCALE, 1234 BY 58b.

The COPY REPLACING option is exceptionally useful for conversion of generalized
COBOL source-language library routines into specific and well—named routines
within a given program. For example, a generalized COBOL source-language

library routine may use the following data—names for the purposes shown.

COPY

Data-name Purpose
AAA Monthly hours worked per employee.
BBB Employee pay-rate.
CcccC Employee social security number,
DDD Employee income tax rate.
EEE Employee year to date gross income,
FFF Employee year to date net income.
GGG Employee gross pay for month,

Employee net pay for the month.

1234 Specifies a GO TO exit from the routine,

A program calling upon the above generalized routine can replace the non-—
descriptive data-names with descriptive names as defined in the program's
record description or WORKING-STORAGE area. For example:

COPY...REPLACING AAA BY HOURS-WORKED

COPY...REPLACING BBB BY RATE-OF-PAY

COPY...REPLACING CCC BY SOC-SEC—-NR

COPY. . .REPLACING DDD BY INC-TAX-RATE

COPY. . .REPLACING EEE BY YR-TO-DATE-GROSS

COPY...REPLACING FFF BY YR-TO-DATE-NET

COPY...REPLACING GGG BY THIS—-MONTHS-GROSS
COPY. ..REPLACING HHH BY THIS—-MONTHS-NET

COPY. . .REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT.

The specified source program data—names and exit points will be inserted into
the library file routine at every occurrence of the assigned generalized names

within the routine.

Library Creation. A library file will be created during a COBOL compilation
each time a source statement is encountered that contains an "L" in column 7
followed by a library-name on that same image. A library file may contain up

to a maximum of 20,000 card images.

Each library file in the source program will be terminated when a source image
is encountered which contains an "L" in column 7 followed by all blanks or

another library-name.

Once a file has been created, it may be COPYed by other programs, or by the

creating program in succeeding FD, 01, or procedure COPY statements,

COPY

The source data used to create an original library file will also be compiled
into the object program at the point of appearance.

All assigned library—-names must be unique to other library-names contained in
the library, to preserve the integrity of the COBOL library system.

Library files to be used with the COPY verb can be created by a user program
which creates a card image file on disk. The compiler will automatically

accept the blocking used when the file was created.

Library Maintenance. The COBOL compiler allows several methods for updating

existing library files. Due to the fact that new source and/or library files
are created during the initial pass of the compilation, source programs which
create library files need not be complete COBOL programs. In this manner,
source programs which create library files may be compiled with patch cards
to be applied to the library files (as described in Section 11) by use of the
dollar option MERGE.

Another method of updating library files is to use the library file as a
source program rather than a library file. Using the dollar options MERGE
and NEW to make patches and create a new source file, changes and updates may

be made.

Another possible solution to the library file maintenance problem, is to create
all library files in one source program. This would allow for centralized
control of library files and also aid in documentation and training of new

personnel.

DISPLAY

DISPLAY

The function of this verb is to provide for the printing of low-volume data,
error messages, and operator instructions on the console typewriter.

The construct of this verb is:

literal-1 literal-2
DISELAY {identifier—l} [{ identifier—z} X]
[UPON {————SI 0 } :l
_— mnemonic—hname

Each literal may be any figurative constant except ALL,
All special registers (DATE, TIME, TALLY, SwW; ... SWn, etc.) may be DISPLAYed,

The DISPLAY statement causes the contents of each operand to be written on the
supervisory printer (SPO), from the MCP SPO queue, to ensure that a program is
not operationally deterred while a message is printing.

If a figurative constant is specified as one of the operands, only a single

character of the figurative constant is displayed.

The identifiers may be subscripted or indexed and can be COMPUTATIONAL or
DISPLAY items.

An infinite number of characters may be displayed with one DISPLAY statement.

The DISPLAY series option will cause the literals or identifiers to be con-
catenated, printed on one line and, if required, the MCP will cause automatic
carriage returns and line feeds for information extending to other lines of

print.

When mnemonic-name is used, it must appear in the SPECIAL-NAMES paragraph
equated to the hardware-name SPO.

DIVIDE

DIVIDE

The function of this verb is to divide one numerical data-item into another
and set the value of an item equal to the result.

The construct of this verb contains the following two options:

Option 1:

|literal-1 INTO identifier-2 [ROUNDED]

DIVIDE lidentifier-1f LNIO

[;ON SIZE ERROR
Option 2:

[u6D] [literal-1 | {BY {literal-2 |

DIVIDE lidentifier-1 [INTO| lidentifier-2|

GIVING identifier-3 [ROUNDED]
[REMAINDER identifier-4 [ROUNDED]}

(;ON SIZE ERROR statement-1 [;ELSE statement-2]]

Identifier~3 and identifier-4 of Option 2 may refer to elementary numeric-
edited items.

Each 1iteral must be a numeric literal.

Division by zero is not permissible and, if executed, will result in a size
error indication. This can be handled programmatically, either by doing a
zero test prior to the division or by the use of the SIZE ERROR clause. 1If

SIZE ERROR is not written, an attempt to divide by zero will result in pro-
gram termination.

All identifiers must refer to elementary numeric items.

In Option 1, the value of the operand preceding the word INTO will be divided
into the operand following INTO and the resulting quotient stored as the new
value of the latter.

The use of the BY option will cause literal-1/identifier-1 to be divided by
literal-2/identifier-2, whereas the INTO option will cause literal-1/
identifier-1 to be divided into literal-2/identifier-2.

In Option 2, the resulting quotient will be stored as the new value of

identifier-3. The value of the operands immediately to the left of the word
GIVING will remain unchanged.

DIVIDE

The ROUNDED option and ON SIZE ERROR clause and truncation are the same as
those discussed for the ADD statement.

The size of the operands is determined by the sum of the divisor and the

quotient. The sum of the two cannot exceed 99 digits.

The remainder will be carried to the

same degree of accuracy as defined in the PICTURE of the quotient, and all extra

positions will be filled with zeros.
Literals cannot be used as dividends.

The use of the REMAINDER option will cause the remainder to be placed in

identifier-4, and identifier-3 will contain the quotient.

‘Use of both the MOD and REMAINDER is prohibited.

DUMP

DUMP

R

g

o o

™

7-49

EXAMINE

EXAMINE

The function of this verb is to replace a specified character, and/or to count
the number of occurrences of a particular character in a data item,

The construct of the verb contains the following two options:
Option 1:

EXAMINE identifier-1

ALL :
literal-1
TALLYING [LEADING] {i e s

\
literal-2]J
(JUNTIL FIRST

} [B.EIMQI_&G..EX {identifier—?, ;

Option 2:
ALL
EXAMINE identifier—-1 REPLACING LEADING
[UNTIL] FIRST

[1itera1-3 } BY [1itera1-4
identifier—4 - identifier-S}

The description of identifier-1 must be such that USAGE is DISPLAY explicitly

or implicitly.

Each literal used in an EXAMINE statement must consist of a single DISPLAY
character. Figurative constants will automatically represent a single DISPLAY

character.
Examination proceeds as follows:

a. For items that are not numeric, examination starts at the
leftmost character and proceeds to the right. Each 8-bit character
in the item specified by the data—name is examined in turn. Any
reference to the first character means the left—-most character.

b. If an item referenced by the EXAMINE verb is numeric, it must consist
of numeric characters and may possess an operational sign.
Examination starts at the leftmost character (excluding the sign)
and proceeds to the right. The low order digit of each character
except the sign is examined in turn. Regardless of where the sign is
physically located, it is completely ignored by the EXAMINE verb.

Any reference to the first character means the leftmost numeric

character.

EXAMINE

The TALLYING option creates an integral count (i.e., a tally) which replaces

the value of a special register called TALLY. The count represents the num-

ber of:

a.
b.

Occurrences of literal-l or identifier—-2 when the ALL option is used.
Occurrences of literal—-l or identifier—2 prior to encountering a
character other than literal-l or identifier—2 when the LEADING
option is used.

Characters not equal to literal-l or identifier—-2 encountered before
the first occurrence of literal~l or identifier—2 when the UNTIL

FIRST option is used.

When either of the REPLACING options is used (i.e., with or without TALLYING),

the replacement rules are as follows:

a,

d.

When the ALL option is used, then literal-2 or identifier—-3 or
literal-4 or identifier—-5 is substituted for each occurrence of
literal-1 or identifier—-2 or literal-3 or identifier-—4.

When the LEADING option is used, the substitution of literal-2 or
identifier—-3 or literal—-4 or identifier—-5 terminates as soon as a
character other than literal-1 or identifier-2 or literal-3 or
identifier-4 or the right-hand boundary of the data item is en-—
countered.

When the UNTIL FIRST option is used, the substitution of literal-2
or identifier—3 or literal-4 or identifier—-5 terminates as soon as
literal-1l or identifier-2 or literal-3 or identifier-4 or the right-
hand boundary of the data item is encountered,

When the FIRST option is used, the first occurrence of literal-3
or identifier—-4 is replaced by literal-4 or identifier-5.

The field called TALLY is a 5-digit field provided by the compiler. Its
usage is COMPUTATIONAL and will be reset to zero automatically when the
EXAMINE,.. TALLY option is encountered,.

~1
!

(93}

=i

EXIT

EXIT

The function of this verb is to provide a terminating point for a PERFORM

loop, whenever required.

The construct of this verb is:

EXIT,

If the EXIT statement is used, it must be preceded by a paragraph—name and
appear as a single one-word paragraph. EXIT is documentational only, but if
used, must follow the rules of COBOL,

The EXIT is normally used in conjunction with conditional statements contained
in procedures referenced by a PERFORM statement. This allows branch paths

within the procedures to rejoin at a common return point.

If control reaches an EXIT paragraph and no associated PERFORM or USE state-
ment is active, control passes through the EXIT point to the first sentence

of the next paragraph.

GO 1O

GO TO

The function of this verb is to provide a means of interrupting out of the se-
quential, sentence by sentence, execution of code, and to permit continuation

at some other location indicated by the procedure—name(s).
The construct of this verb has the following two options:

Option 1:
GO T0 [procedure-name]

Option 2:

10 procedure-name-1 [, procedure-name-2] ... , procedure~name-3,
DEPENDING ON identifier

Each procedure—name is the name of a paragraph or section in the PROCEDURE
DIVISION of the program.

Whenever a GO TO statement (represented by Option 1) is executed, control is
unconditionally transferred to a procedure—name, or to another procedure-
name if the GO TO statement has been changed by an ALTER statement.

A GO TO statement is unrestricted as to where it branches to in a segmented
program. It can call upon any segment at either the section level or para-
graph levels,

In Option 1, when the GO TO is referred to by an ALTER statement, the follow-

ing rules apply, regardless of whether or not procedure-name is specified:
a. The GO TO statement must be the only statement in the paragraph.

b. If the procedure-name is omitted, and if the GO TO statement is not
referenced by an ALTER statement prior to the first execution of the
GO TO statement, the MCP will cause the job to be terminated.

If a GO TO statement represented by Option 1 appears in an imperative state-
ment, it must appear as the only or the last statement in a sequence of im—

perative statements.

GO 10

In Option 2, GO TO... DEPENDING... may specify up to 1023 procedure—names

in a single statement. The data—-name in the format following the wordas
DEPENDING ON must be a numeric elementary item described without any positions
to the right of the assumed decimal point. Furthermore, the value must be
positive in order to pass control to the procedure—names specified. Control
will be transferred to procedure—name—1l if the value of the identifier is 1,
to procedure—name-2 if the value is 2, etc. If the value of the identifier is
anything other than a positive integer, or if its value is zero, or its value
is higher than the number of procedure—names specified, control will be passed
to the next statement in normal sequence. For example:

GO TO MFG, RE-SALE, STOCK, DEPENDING ON S-0.

VALUE OF S-0 GO TO PROCEDURE-NAME
-1 next statement
0 next statement
1 MFG
2 RE-SALE
3 STOCK
4 next statement

7-54

IF

IF

The IF statement causes a condition to be evaluated. The subsequent action of

the object program depends on whether the value of the condition is true or

false.

The construct for the IF statement is as follows:

1F condition; {NEXT SENTENCE NEXT SENTENCE

Statement-1l and statement—2 represent either a conditional statement or an im-—

statement—-1 } [; ELSE istatement—z }]

perative statement, and either may be followed by a conditional statement.

The semicolons are optional.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the

terminal period of the sentence,
When an IF statement is executed, the following action is taken:

a, If the condition is true, the statements immediately following the
condition (represented by statement—1l) are executed, and control then
passes implicitly to the next sentence unless statement—1l causes some
other transfer of control.

b, If the condition is false, either the statements following ELSE are
executed or, if the ELSE clause is omitted, the next sentence is

executed.

When an IF statement is executed and the NEXT SENTENCE phrase is present, con-
trol passes explicitly to the next sentence, depending on the truth value of
the condition and the placement of the NEXT SENTENCE phrase in the statement.

IF statements within IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right; thus, any ELSE encountered is
considered to apply to the immediately preceding IF that has not already
been paired with an ELSE,

When control is transferred to the next sentence, either implicitly or ex-—
plicitly, control passes to the next sentence as written or to a return

mechanism of a PERFORM or a USE statement,

The method of evaluating conditional expressions allows early exit, once the

truth value of the expression has been determined.

MERGE

Syath Ruies

ha{

,QIZYNQ«f11e~name@5 Y[LOCK']'

THROQGH

IS procedure—name 1.[
_ THRU

} procedurehname~%}§3

'c¥11e~name 1 must be descrlbed in‘a sort~merge flle descrlptlon (SD)
. entry in the DATA DIVISION._‘_-' ' .

Procedure*namewi represents. the name. of an output procedure.:‘

»T11e~name~2 flle~name*3 file-name-4, aad flle*nameaﬁ must be
ﬂ&ascr1bed in a file description (FD) entry, not in a sort~merge file
;idescrlptlon:(SD) entry, in the DATA DI?ISION The actual size of the
 logical record(s) described for file-name-2, file-name-3, file- name-4,
 and file-name-5 must be equal to the actual size of the logical

‘record(sJ described for file-name-1. If the data descriptions of the

elementary items that make up these records are not identical, it is

the programmer's responsibility to describe the corresponding records
in such a manner so as to cause an equal number of character 9031t1ons
to be allocated forithe corresponding records.

MERGE

A ‘:The MERGE statement will merge all records contameci
~ file-name~3, and file-name-4. The files referenced in the MﬁKGE

statement must have been CLOSEd with LOCK or REIEASE pmor to the :
time the MERGE statement is executed.. These files are autamatlc,a.llsﬁ.-
. OPENed and CLOSEd by the merge operation with all implicit functions
‘ performed, such as the execution of any associated USE procedures.

The terminating function for all files is performed as if a CLOSE
statement, without optional phrases, had been executed for each file.

The data-names fbllowing the word KEY are listed from left to right
in the MERGE statement in order of decreasing significance without

7-57

MERGE

MERGE

. is speelfled all of the merged records in

Qandihg'key ‘data
tems of one or more other data records, the order of return of

raw rd are equal ta the contents of the corre

these reccrdS‘

' &1{:'Fo11ows the order of the associated input files as specified 1n,:‘

the MERGE statement. e
. Is such that all records associated with one lnput flle are i
lreturnad prior to the return of records from another 1nput file."

When the records ‘in the files referenced by file—-name-2, fllevname—

'3y .are not ordered as described in theé ASCENDING or DESCENDING KEY
" clauses, the MERGE will take place as previously described but with

- -all improperly ordered data records being placed on the output file

or RETURNED to the output procedure immediately after they are read

from their respective input files. As a result, when .such a.conditidh
exists, the output from the MERGE statement will not be in a strict
ASCENDING or DESCENDING KEY order.

MERGE

7-60

MOVE

MOVE

The MOVE statement transfers data, in accordance with the rules of editing,

to one or more data areas.

The construct for the MOVE statement consists of the following two options:

Option 1:

MOVE {i?igiﬁier_l} TO identifier-2 [, identifier-3] ...
Option 2:

MOVE {Eg__g_gg_sm_m_l&} identifier-1 TO identifier—2

Identifier—1 and literal represent the sending field; identifier-2,
identifier—-3 represent the receiving fields. Literal may be any literal

or figurative constant consistent with the class of the receiving field.

Option 1 provides for multiple receiving fields. The data designated by
the literal or identifier—1 will be moved first to identifier-2, then to
identifier—-3, etc. Subscripting or indexing associated with identifier-1 is
evaluated only once, immediately before data is moved to the first receiving

field. The notes referencing identifier—-2 also apply to the other areas.
The result of the statement:

MOVE A(SUB) TO SUB, B(SUB)
would produce the same result as:

MOVE A(SUB) TO TEMP.
MOVE TEMP TO SUB.
MOVE TEMP TO B(SUB).

When Option 2 is used, selected items within identifier-1 are moved, with any
required editing, to selected areas within identifier~2. Identifier-1 and
identifier-2 must be group items. Items are selected by matching the data-
names of items defined within identifier-1 with like data-names of areas de-
fined within identifier-2, according to the rules specified in the discussion
of the corresponding option. The resulting operation on each of the sets of

matched data items proceeds as if an Option 1 MOVE had been specified.

MOVE

Elementary Moves

Any move in which the sending and receiving items are both elementary items
is an elementary move. All other moves are defined as group moves. Every

elementary item belongs to one of these five categories:

a. Numeric.

b. Numeric Edited.
c. Alphabetic.

d. Alphanumeric.
e.

Alphanumeric Edited.

See the PICTURE clause description in section 6 for a detailed discussion of
these categories. Group items, non—-numeric literals, and all figurative con-
stants, except ZEROS and SPACES, are classed as alphanumeric. Numeric
literals and the figurative constant ZEROS are classed as numeric. The

figurative constant SPACES is classed as alphabetic.

Illegal Elementary Moves. The rules governing illegal elementary moves are

as follows:

1. A numeric-edited item, alphanumeric edited item, SPACES, or an

alphabetic item cannot be moved to a numeric or numeric edited item.

2. A numeric literal, ZEROS, a numeric data item, or a numeric edited

item cannot be moved to an alphabetic data item.

3. A non—integer numeric literal or a non—integer numeric data item can-

not be moved to an alphanumeric or alphanumeric edited data item.

Legal Elementary Moves. The rules governing legal elementary moves are as

follows:

4. When an alphanumeric or alphanumeric edited item is a receiving
field, justification and any necessary space filling takes place
as defined under the JUSTIFIED clause. If the size of the sending
field is greater than the size of the receiving field, the excess
characters are truncated on the right after the receiving item is
filled.

If the sending field is described as being signed numeric, the

operational sign will not be moved. If the sign occupies a separate
character position (KSIGN), that character will not be moved and the
size of the sending field will be considered to be one less than its

actual size.

MOVE

For example:
Given these data descriptions:

77 S PIC K9999.
77 R PIC X(8).

Then the statements:

MOVE -124 TOS.
MOVE S TO R.

will result in R being equal to 70124 ¥

When a numeric or numeric edited item is the receiving field in an
elementary move and the data in the sending field is not numeric,
zone bits will be stripped. Alignment by decimal point and any nec-
essary zero—filling takes place as defined under the JUSTIFIED

clause, except where zeros are replaced because of editing require-

ments.

When a signed numeric item is the receiving field, the sign of the
sending field is placed in the receiving field. Conversion of the
sign representation takes place as necessary. If the sending field

is unsigned, a positive sign is generated for the receiving field.

When an unsigned numeric item is the receiving item, the absolute

of th

[0}

valu sending item is moved and no operational sign is gen—

e
erated for the receiving item.

When an alphanumeric item is the sending field, data is moved as if

the sending item was described as an unsigned numeric integer.

When the receiving field is alphabetic, justification and any neces-—
sary space filling takes place as defined under the JUSTIFIED clause,
If the size of the sending field is greater than the size of the re-
ceiving field, the excess characters are truncated on the right,

after the receiving field is filled.

Group Moves

A group move is any move in which either the sending field or the receiving
field is a group item. Group moves are handled as alphanumeric to alphanu-
meric moves, regardless of the class of the receiving field and without

consideration for the individual elementary or group items contained within

either the sending or receiving area.

MOVE

Translation

Any necessary translation of data from one form of internal representation to
another, i.e., ASCII to EBCDIC, will be done for elementary or group moves

depending on the usages of the sending and receiving data items.
Index Data ltems

An index data item cannot be used as an operand in a MOVE statement. The SET

statement must be used to move index data items.
Valid Move Combinations

Figure 7-1 shows the valid combinations of sending and receiving fields per-
mitted in COBOL.

G9-L

RECEIVING

LPHABETIC AN AR DISPLAY NUMERIC | CMP NUMERIC

SENDING GROUP ELEM INTEGER REAL INTEGER REAL
ALPHABETIC ©) ©) ® ®) * * * * *
N o o ool o o [o ® o

ELEM (2) ® ® ® ® ©) ® ® ® | @
AE ©) (Z> ©) ®) * * * * *
DISPLAY INTEGER * @ ® ®) ® ® ©) ® @
Tngg;CLIT) REAL * @ * * ©) ®@ ®@ ®@ @
cup INTEGER (b) * ®) ®) ©) ©) ©) ® | ®
NUMERIC EAL . ® N N ® ® ® ® | ®
NE * (i) (:) (E) * * * * *

a - also non-numeric literal
b - also undigit literal

ZERO ZERO ANY SENDING §¥g§§gE%oggs EDITING
NON-NUMERIC | NUMERIC | LEFT JUST. BY | SPACE | FILL ON | FILL ON |} NECESSARY ZONES SUPPLIED BY PERFORMED
MOVE MOVE JUST. DECIMAL FILL RIGHT LEFT TRANSLATION | STRIPPED
INTERPRETER
o / / /
@ v v / /
® v v / /
©) v/ v / v /
©) v / / /
(® / v J /
©) / v / /

*ILLEGAL

Figure 7-1. Valid MOVE Statement Combinations

JAOW

MULTIPLY

MULTIPLY

The function of this verb is to multiply two operands and store the results
in the last-named field (which must be a numeric item).

The construct of this verb is:

literal-1l {literal-z
NLLIIPLY {identifier—l} BY lidentirier-2]

[GIVING identifier—3] [RQUNDED]
[;ON SIZE ERROR

All rules specified under the ADD statement regarding the presence of editing
symbols in operands, the ON SIZE ERROR option, the ROUNDED option, the GIVING
option, truncation, and the editing results apply to the MULTIPLY statement,
except the maximum operand size is 125 digits for the sum of two operands.

The identifiers must be elementary item references. If GIVING is used,
identifier—-3 may be an elementary edited numeric item. In all other cases,
the identifiers used must refer to elementary numeric items only.

If the GIVING option is used, the result of the multiplication replaces the
contents of identifier-3; otherwise, it replaces the contents of identifier-2,.

If GIVING is not used, literal-2 is not permitted, i.e., identifier-2 must
appear.

NOTE

NOTE
The function of this statement is to allow the programmer to write explanatory
statements in his program which are to be produced on the source program list-

ing for documentation purposes.

The constructs of this statement are:

Option 1: Paragraph NOTE:

paragraph—-name. NQTE any comment.

Option 2: Paragraph NOTE:

NOTE any comment.

Option 3: Sentence NOTE:

NOTE any comment.

Any combination of the characters from the allowable character set may be

included in the character string of a NOTE statement.

If a NOTE sentence is the first sentence of a paragraph, the entire paragraph
is considered to be commentary. Either Option 1 or Option 2 may be used as
NOTE statements on a paragraph level.

If a NOTE statement appears as other than the first sentence of a paragraph,
only the sentence constitutes a commentary. After the word NOTE is encountered,
the first period followed by a space will cause the compiler to resume compi-

lation unless the new sentence commences with the word NOTE.

Refer to the paragraph entitled CONTINUATION INDICATOR (section 3) for an ex~
planation of comments (* or / in column 7) appearing anywhere within the

source program.

OPEN

OPEN

The function of this verb is to initiate the processing of both input and
output files. The MCP performs checking or writing, or both, of labels and
other input-output operations.

The construct of this verb is:

Option 1:
OPEN
(L })
INPUT file-name-1 REVERSED [file-name-2...]}|..
WITH NO REWIND

OUTPUT file-name-3 [WITH NO REWIND] [file-name-4 ...]].

|I=0 | file-name-5 [1QQ

O-I file-name-7 [file—name—S...

v

< [| INDUT-OUTPUT | K. [ACCESS]) [file—name-6--']] .>-'°
[
[

\ EXTEND file-name-9 ! [file—name-lo...]})
Option 2:
OUTPUT
OPEN I-0 file-name
INPUT-OUTPUT

no addltmnal output ared for print data is requlredw :

7-68

OPEN

File—-names must not be those defined as being SORT files.

At least one of the options must be specified before a file can be read.
The I-0, INPUT-OUTPUT, and O-1 options pertain to disk storage files.

The OPEN statement must be executed prior to the first SEEK, READ, or WRITE
statement for that file. '

A second OPEN statement for a file cannot be executed prior to the execution
of a CLOSE statement for that file.

A file area will not exist in memory until an OPEN statement is executed,
which in turn, causes the MCP to allocate memory for the file work area, and
any alternate areas or buffers. The MCP will obtain the needed information
from the File Parameter Block to determine the file's characteristics. Once
the file has been OPENed, memory will remain allocated until the file is
programmatically CLOSEd.

The OPEN statement does not obtain or release the first data record. A READ
or WRITE statement must be executed to obtain or release, respectively, the
first data record.

When the first label is to be checked or written, the user's beginning label

subroutine is executed if it is specified by a USE statement.

The REVERSED and the NO REWIND options can only be used with sequential,
single—~reel tape files.

If the peripheral ASSIGNed to the file permits rewind action, the following
rules apply:

a. When neither the REVERSED nor the NO REWIND option is specified,
execution of the OPEN statement for the file will cause the file to
be positioned ready to read the first data-record.

b. When either the REVERSED or the NO REWIND option is specified,
execution of the OPEN statement does not cause the file to be po-
sitioned. When the REVERSED option is specified, the file must be
positioned at its physical end. When the NO REWIND option is speci-
fied, the file must be positioned at its physical beginning.

c. When the NO REWIND option is specified, it applies only to sequential,
single-reel files stored on magnetic tape units.

OPEN

When the REVERSED option is specified, the subsequent READ statements for the
file makes the data-records available in reverse record order starting with
the last record. Each record will be read into its record—area, and will
appear as if it has been read from a forward-moving file.

If an input file is designated with the OPTIONAL clause in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION, the object program causes an interroga-
tion to the MCP, for the presence or absence of a pertinent file. If this file
is not present, the first READ statement for this file causes the imperative
statement in the AT END clause to be executed only when the operator has re-
sponded with an optional file "mix index OF" message.

The I-0 or INPUT-OUTPUT option permits the OPENing of a disk file for input
and/or output operations. This option demands the existence of the file to
be on the disk and cannot be used if the file is being initially created;
that is, the file to be OPENed must be present in the MCP disk directory, or
has been previously created and CLOSEd in the same run of the program.

When any input file option is used, the MCP immediately checks the MCP disk
directory to see if the file is present, or if it has been created and CLOSEd
in the same program run. The system operator will be notified in its absence,
and the file can then be loaded if it is available or the program can be DSed
(discontinued). If the decision is to load the file, the operator does so
and then notifies the MCP to proceed with the program, by means of a '"mix-—
index OK" message.

The O-1 option is identical to OPEN I-0, with the exception that with the O-1I
option the file is assumed to be a new file to the disk directory. The OPEN
O~1 option will short cut the usual method of initially creating I-O work
files within a program, e.g., OPEN OUTPUT, WRITE record(s), CLOSE WITH RELEASE,
OPEN I-0, etc. The O-1I option does not, nor was it intended to, replace the
OPEN I-0 option, since the use of OPEN 0O-1 assumes that a new file is to be
created each time,

During processing of mass storage files for which the ACCESS MODE is
SEQUENTIAL, the OPEN statement supplies the initial address of the first
record to be accessed.

The contents of the data—-names specified in the FILE-LIMIT clause of the
FILE-CONTROL paragraph (at the time the file is OPENed) are used for all
checking operations while that file is OPEN. The FILE-LIMIT clause is dynamic
only to this extent.

7-70

OPEN

When an OPEN OUTPUT statement is executed for a magnetic tape file, the MCP
searches the assignment table for an available scratch tape, writes the label
if specified by the program, and executes any USE declaratives for the file.
If no scratch tape is available, a message to the operator is typed and the
program is suspended until the operator mounts such a tape or one becomes

available due to the termination of a multiprogramming program.

OPENing of subsequent reels of multi-reel tape files is handled automatically

by the MCP and requires no special consideration by the programmer.

PERFORM

PERFORM

The function of this verb is to depart from the normal sequence of execution
in order to execute one or more procedures, either a specified number of times
or until a specified condition is satisfied. Following this departure, con-
trol is automatically returned to the normal sequence.

The construct of this verb has the following four options:

Option 1:

PERFORM procedure—name-1 IHRU procedure—name—2
THROUGH

Option 2:

PERFORM procedure—name-—1 [{ procedure-name-Z]

THRU |
THROUGH

TIMES

{integer—l
identifier—lo}

Option 3:

THRU }

PERFORM procedure—name-l [{THROUGH

procedure—name-z]

UNTIL condition-1

Option 4:
PERFORM procedure—name—1 [{IEBH } rocedure'name-z]
2REDRE pro THROUGH p
. _ _ index—name—2
VARYING {?gieﬁ.gﬁgi_}} FROM {identifier—zl BY
identifi ' literal-2 |
identifier-S} e [{index-name—4}
{literal—S UNTIL condition=l | AFTER identifier—4
index—name-5 3 sps
FROM }identifier-S} BY {ifigﬁ;{fgr 6}
1iteral-5 ‘

PERFORM

s index—name—7}
UNTIL condition 2] [AFTER {identifier-7 FROM

identifier—8 BY

findex—name-S }
|1iteral-s

{identifier-g}
literal=-9

UNTIL condition—3]

PERFORM is the means by which subroutines are executed in COBOL, The sub-
routines may be executed once, or a number of times, as determined by a
variety of controls. A given paragraph may be PERFORMed by itself, in con-
junction with another paragraph, control may pass through it in sequential
operation, and it may be the object of a GO statement, all in the same pro-

gram,

Each identifier represents a numeric elementary item. Identifier—10 must be
described as an integer,

Each literal represents a numeric literal.

When the PERFORM statement is executed, control is transferred to the first
statement of procedure-name-l, An automatic return to the statement following
the PERFORM statement is established as follows:

a. If procedure—-name—1l is a paragraph—name and procedure—name-2 is
not specified, then the return occurs after the last statement of

procedure—name-—1,

[og

If procedure-name-l is a section name and procedure-name—2 is not
specified, then the return occurs after the last statement of the last
paragraph in procedure—name-1l.

c. If the procedure—name-2 is specified and it is a paragraph name, then
the return occurs after the last statement of the paragraph.

d. If the procedure—name-2 is specified and it is a section name, then
the return occurs after the last sentence of the last paragraph in the

section,

There is no necessary relationship between procedure—-name-1 and procedure-
name-2, except that a consecutive sequence of operations is to be executed
beginning at the procedure named procedure-name-1 and ending with the execu-
tion of the procedure named procedure-name-2. In particular, GO TO and
PERFORM statements may occur between procedure-name-1 and the end of

PERFORM

procedure-name~2, If there are two or more direct paths to the return point,
then procedure—-name—-2 may be the name of a paragraph consisting of the EXIT
statement, to which all of these paths must lead.

If control passes to these procedures by means other than a PERFORM statement,
control passes thru the last statement of the procedure to the following
statement, unless a PERFORM statement is executed during execution of these
procedures.

If a statement within procedure—name—1 or procedure—name—2 contains a nested
PERFORM, object program control will pass to the procedure—name contained in
the nested statement, and the procedure will be accomplished. Program control
will automatically return to the next sentence following the executed PERFORM
statement. Nested PERFORM statements are allowed to any reasonable depth.
However, the procedure named must return to the statement following the pre-
viously executed PERFORM and cannot contain a GO TO out of range of procedure-

name—1l or procedure—name—2,.

A PERFORM statement is not restricted by overlayable segment boundaries and
may reference a procedure—name anywhere within the PROCEDURE DIVISION,

Option 1 is the basic PERFORM statement. A procedure referred to by this
type of PERFORM statement is executed once, and then control passes to the
statement following the PERFORM statement.

Option 2 is the TIMES option and, when used, the procedures are performed the
number of times specified by identifier—10 or integer—1l. The value of
identifier-10 or integer-1 must be positive. Control is transferred to the
statement following the PERFORM statement. If the value is zero, control
passes immediately to the statement following the PERFORM sentence. Once the
PERFORM statement has been initiated, any reference to, or manipulation of,

identifier-10 will not affect the number of times the procedures are executed.

Option 3 is the UNTIL option. The specified procedures are performed until
the condition specified by the UNTIL condition is TRUE, At this time, control
is transferred to the statement following the PERFORM statement., If the con-
dition is TRUE at the time that the PERFORM statement is encountered, the
specified procedure is not executed.

In option 4, when one identifier is varied, identifier—1 is set equal to the
current value of identifier-2, or literal-2, 1If the condition is false,

the sequence of procedures, procedure—name-1l thru procedure-name-2, is
executed once, The value of identifier-1 is augmented by the specified incre-
ment or decrement {identifier-3), and condition-1 is evaluated again, The

=74

PERFORM

cycle continues until this expression is true; at this point, control passes
to the statement following the PERFORM statement. If the condition is true at
the beginning of execution of the PERFORM, control passes directly to the
statement following the PERFORM statement. Figure 7—-2 illustrates the logic
of the PERFORM statement when one identifier is varied.

In option 4, when two identifiers are varied, identifier—-1 and identifier-4
are set to the current value of identifier-2 and identifier-5, respectively.
At the start of the PERFORM statement, condition—1l is evaluated; if true,
control is passed to the statement following the PERFORM statement; if false,
condition—2 is evaluated. If condition—-2 is false, procedure—name-1 thru
procedure—name—2 is executed once, after which identifier—4 is augmented by
identifier-6, and condition—2 is evaluated again. The cycle of execution and
augmentation continues until this condition is true. When condition—2 is
true, identifier—-4 is set to the current value of identifier—5; identifier-1
is augmented by identifier—-3, and condition-1 is re—evaluated. The PERFORM
statement is completed if condition—1l is true; if not, the cycles continue

until condition—1l is true.

Figure 7-3 iliustrates the logic of the PERFORM statement when two identifiers

are varied.

During the execution of the procedures associated with the PERFORM statement,
any change to the VARYING variable (identifier—-1 and index—-name-1), the BY
variable (identifier-3), the AFTER variable {(identifier—-4 and index—name—4),
of the FROM variable (identifier—-2, index—name—2, identifier-5 and index-name-
5) will be taken into consideration and will affect the operation of the PER-
FORM statement.

When two identifiers are varied, identifier—4 goes thru a complete cycle
(FROM, BY, UNTIL) each time identifier—-1l is varied,

At the termination of the PERFORM statement, identifier—4 contains the current
value of identifier—-5. Identifier—1 has a value that exceeds the last used
setting by an increment or decrement, as the case may be, unless condition-1
was true when the PERFORM statement was entered, in which case identifier-1

contains the current value of identifier-2.
NOTE

Identifier-3, identifier-6, and identifier-9

cannot contain zeroes.

PERFORM

ENTRANCE

|

SET IDENTIFIER-1 EQUAL TO
CURRENT FROM VALUE

CONDITION-1 ?

TRUE = EXIT

iFALSE

EXECUTE PROCEDURE-NAME-1
THRU PROCEDURE-NAME-2

Figure 7-2,

AUGMENT IDENTIFIER-1 WITH
CURRENT BY VALUE

ENTRANCE

SET IDENTIFIER-1 AND
IDENTIFIER-4 TO
CURRENT FROM VALUES

CONDITION-2 ?

- CONDITION-1 7 TRUE

PERFORM Statement Varying One Identifier

—» EXIT

TRUE

EXECUTE PROCEDURE-NAME-1
THRU PROCEDURE-NAME-2

SET IDENTIFIER-4 TO ITS
CURRENT FROM VALUE

!

AUGMENT IDENTIFIER-4 WITH
CURRENT BY VALUE

AUGMENT IDENTIFIER-1 WITH
CURRENT BY VALUE

Figure 7-3,

PERFORM Statement Varying Two Identifiers

PERFORM

In Option 4 where three conditions are required to control the number of
iterations that a given procedure is to be PERFORMed, the mechanism is the
same as for two—-conditional control except that identifier-7 goes through a
complete cycle each time that identifier-6 is added to identifier-4, which in

turn goes through a complete cycle each time that identifier—1 is varied.

After the completion of option 4, identifier—4 and identifier-7 contain the
current value of identifier-5 and identifier—8, respectively. Identifier-1
has a value that exceeds its last used setting by one increment or decrement
value, unless condition—1l is true when the PERFORM statement is entered, in

which case identifier—-1 contains the current value of identifier-2.

Since the return control information is placed in the stack rather than being
directed through instruction address modification, a PERFORM statement exe-
cuted within the range of another PERFORM is not restricted in the range of
paragraph names it may include. The examples shown below are permitted and

will execute correctly.

x PERFORM a THRU m x PERFORM a THRU m x PERFORM a THRU m
a a a
d PERFORM f THRU j d PERFORM f THRU j f
f m m
J f —— J
m J d PERFORM f THRU j
x PERFORM a THRU m x PERFORM a THRU nm
a a
d PERFORM f THRU j d IF condition THEN
f IF condition THEN-— PERFORM a THRU m
PERFORM a THRU m m
m
J

READ

READ

The functions of this verb are twofold, namely:

a.

During processing of sequential input files, a READ statement will
cause the next sequential logical record to be moved from the input
buffer area to the record work area, thus making the record available

to the program.

All sequential records will be physically read into the buffer area
of the file. Physical READs are performed as a function of the MCP.
The READ statement permits the performance of a specified statement
when an end-of-file condition is detected by the MCP.

For random file processing, the READ statement communicates with the
MCP to explicitly cause the reading of a physical record from a disk
file, and also allows performance of a specified statement if the
content of the associated ACTUAL KEY data item is found to be in-

valid.

The construct of this verb is:

READ file-name RECORD [INTO identifier] [

_|AT END

’ | INVALID KEY istatement~1

i:ﬁggﬂféﬁaﬁémentfzi}

The AT END clause is used for non-disk files or for disk files being processed
in the sequential access mode. If no AT END or INVALID KEY clause is stated,

and one of these conditions occurs, the program will be terminated with a DS

or DP message.

If,

during execution of a READ statement with AT END, the logical end-of-file

is reached and an attempt is made to READ that file, the statement speci-

fied in the AT END phrase is executed. After the execution of the state-
ment of the AT END phrase, a READ statement for that file must not be given

without prior execution of a CLOSE statement and an OPEN statement for that

file.

When the AT END clause is specified in a conditional sentence, all exits

within the sentence are controlled by using the rules pertaining to the

matching of IF...ELSE pairs. For example:

7-78

IF AAA BBB THEN READ FILE-A, AT END

, ELSE NEXT SENTENCE, ELSE STOP RUN.

READ

a. When AAA does not equal BBB, control will be passed to STOP RUN.
b. When AAA equals BBB, FILE-A is read, end-of-file is tested and if
the result is TRUE program control will be transferred to the
WRAP-UP procedure; t of FALSE wil

however, | ult

The INVALID KEY applies to files that are ASSIGNed to disk. The access of
the file is controlled by the value contained in ACTUAL KEY.

An AT END or INVALID KEY clause must be specified when reading a file de-
scribed as containing FILE-LIMITS.

An OPEN statement must be executed for a file prior to the execution of the
first READ statement for that file.

When a file consists of more than one type of logical record, these records
automatically share the same storage area and are equivalent to an implicit
redefinition of the area. Only the information that is present in the cur-

rent record is available.

If the INTO option is specified, the current record is MOVEd from the input
area to the area specified by identifier according to the rules for the MOVE
statement without the CORRESPONDING option.

When the INTO option is used, the record being read is available in both the

data area associated with identifier and the input record area.

If a file described with the OPTIONAL clause is not present, the imperative
statement in the AT END phrase is executed on the first READ. The standard
End-of-File procedures are not performed. (See the OPEN and USE statements,
and the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION.)

If the end of a magnetic tape file is recognized during execution of a READ

statement, the following operations are carried out:

a. The standard ending reel label procedure and the user's ending reel
label procedure, if specified by the USE statement, are performed.
The order of execution of these two procedures is specified by the
USE statement.

b. A tape swap is performed.

READ

c. The standard beginning reel label procedure and the user's beginning
label procedure, if specified, are executed. The order of execution
is again specified by the USE statement.

d. The first data record on the new reel is made available.

READ with INVALID KEY is used for disk files in the random access mode. The
READ statement implicitly performs the functions of the SEEK statement, ex-—
cept for the function of the KEY CONVERSION option for a specific disk file.
If the content of the associated ACTUAL KEY data item is out of the range
indicated by FILE-LIMITS or the FILE CONTAINS clause, the INVALID KEY phrase
will be executed.

For random disk files, the sensing of an INVALID KEY does not preclude further

READs on that file, nor must the file be closed and reopened before such READs
are allowed.

RELEASE

RELEASE

The function of this verb is to cause records to be transferred to the initial
phase of a SORT operation.

The construct of this verb is:
RELEASE record-name [FROM identifier]

A RELEASE statement may only be used within the range of an input procedure

associated with a SORT statement.
Record-name and identifier must name different memory areas when specified.

The RELEASE statement causes the contents of record-name to be released to
the initial phase of a sort. Record-name will be transferred to the speci-

fied sort-file (SD) and becomes controlled by the sort operation.

In the FROM option, the contents of identifier are MOVEd to record-name, then
the contents of record—-name are released to the initial phase of a sort.
Moving takes place according to the rules specified for the MOVE statement

without the CORRESPONDING optiomn.

When control passes from the input procedure, the SD file consists of all

records placed in it by the execution of RELEASE statements.

RETURN

RETURN

The function of this verb is to obtain sorted records from the final phase
of a SORT operation.

The construct of this verb is:

RETURN file-name RECORD [INTO identifier]

[; AT END statement-1 [ELSE statement-21]

File-name must be a sort file with a Sort File Description (SD) entry in the
DATA DIVISION.

A RETURN statement may only be used within the range of an output procedure

associated with a SORT statement for file-name.

Records automatically share the same area when a file consists of more than
one type record and only the information pertinent to the current record is

available.

The execution of the RETURN statement causes the next record, in the order
specified by the keys listed in the SORT statement, to be made available for

processing in the record area associated with the SORT file (SD).

Moving is performed according to the rules specified for the MOVE statement
without the CORRESPONDING option.

When the INTO option is specified, the sorted data is available in both the

input-record area and the data-area specified by identifier.

RETURN statements may not be executed within the current SORT input procedure
after the AT END clause has been executed.

SEARCH

SEARCH

The function of this verb is to cause a search of a table to locate a table-
element that satisfies a specific condition and, in turn, to adjust the as-—
sociated index—-name to indicate that table-element.

The construct of this verb has the following two options:

Option 1:

findex—name-1

lidentifier—2!

| I

SEARCH ijdentifier—1 [VARYING

[;AT END imperative-statement-1]

;s WHEN condition-1 {NEXT SENTENCE}

i e st ;
EWHEN condition—2 {NEXT SENTENCE}]

-

Option 2:

SEARCH ALL identifier-3 [;AT END imperative statement-2]

;WHEN condition-3

Identifier-1 and identifier—-3 must not be subscripted or indexed, but its des-
cription in the DATA DIVISION must contain an OCCURS clause and an INDEXED BY
clause.

When Option 2 is specified, the description of identifier-3 may optionally
contain the ASCENDING/DESCENDING KEY clause.

When the VARYING option is used, identifier—2 must be described as USAGE IS
INDEX, or as the name of a numeric elementary item described without any po-
sitions to the right of the assumed decimal point. Identifier-2 will be in-
cremented at the same time as the occurrence number (and by the same amount)
represented by the index—name associated with identifier-1.

When Option 1 is used, condition-1l, condition—-2, etc., may be comprised of any

conditional as described by the IF verb.

When Option 2 is used, condition—-3 may consist of a relational condition in-
corporating the relation EQUAL, or a condition—name condition where the VALUE
clause that describes the condition—name contains only a single literal,
Condition—-3 may be a compound condition formed from simple conditions of the
type just mentioned, with AND being the only acceptable connective.

SEARCH

When Option 2 is used, any data—name that appears in the KEY option of
identifier—-3 may appear as the subject or object of a test, or be the name of

the conditional variable with which the tested condition—name is associated.

When Option 1 is used, a serial type search operation takes place, starting
with the current index setting. The search is immediately terminated if, at
the start of execution of the statement, the index—name associated with data-
identifier—1 contains a value that corresponds to an occurrence number that is
greater than the highest permissible occurrence number for identifier—-1, Then,
if the AT END option is specified, statement-1l is executed; if AT END is not
specified, control passes to the NEXT SENTENCE.

When Option 1 is used, if at the start of execution of the SEARCH statement, the
index—name associated with identifier-1 contains a value that corresponds to an
occurrence number that is not greater than the highest permissible occurrence
number for identifier—1, the SEARCH statement will begin evaluating the con-
ditions in the order that they are written, making use of index settings
wherever specified, to determine the occurrences of those items to be tested.
If none of the conditions are satisfied, the index—name for identifier-l

is incremented to obtain a reference to the next occurrence. The process is
repeated using the new index—name setting for identifier-1l, which corresponds
to a table element which exceeds the last setting by one more occurrence,

until such time as the highest permissible occurrence number is exceeded, in
which case the SEARCH terminates as indicated in the previous paragraph.

When Option 1 is used, if one of the conditions is satisfied upon its evaluation,
the SEARCH terminates immediately and the statement associated with that
condition is executed; the index—name remains set at the occurrence which

caused the condition to be satisfied.

In Options 1 and 2, if the specified imperative statements do not terminate
with a GO statement, then program control will pass to the next sentence, after
the execution of the imperative statement.

In the VARYING option, if index—name—1 appears in the INDEXED BY option of
identifier-1, then that index—name will be used for the SEARCH; otherwise, the
first index-name given in the INDEXED BY option of identifier-1 will be used.
If index-name-1 appears in the INDEXED BY clause of another table entry, the
occurrence number represented by index-name-1 is incremented by the same
amount as, and at the same time as, the occurrence number represented by the

index-name associated with identifier-1 is incremented.

SEARCH

In Option 2, the initial setting of the index—name for identifier-3 is ig-

nored, the effect being the same as if it were SET to 1.

In Options 1 and 2, if identifier-1 and identifier-3 constitute an item in a
group, or a hierarchy of groups, whose description contains an OCCURS clause,
then each of these groups must also have an index—name associated with it. The
settings of these index—names are used throughout the execution of the SEARCH
statement to refer to identifier—1 and identifier—-3, or to items within its
structure. These index settings are not modified by the execution of the
SEARCH statement (unless stated as index—name-1), and only the index—name
associated with identifier-1 and identifier-3 (and identifier-2 or index—name-
1) is incremented by the SEARCH. Figure 7-4 provides an example of §EARCH

operation as related to Option 1.

SEARCH

(START)

Y

AT END*
\

INDEX SET:
HIGHEST PERMISSIBLE
CCURRENCE NUMBE

GREATER THAN ACCOMPLISH
=| IMPERATIVE |—

STATEMENT-1

LESS THAN OR EQUAL

CHECK

CONDITION-1
?

TRUE ACCOMPLISH
- - X%
STATEMENT-1 > see

CHECK

CONDITION-2%*
?

TRUE =] ACCOMPLISH
STATEMENT-2x*

INCREMENT INDEX-
NAME FOR IDENTI-
FIER-1 OR INDEX-
NAME IF APPLICABLE

INCREMENT INDEX-
NAME (FOR A DIFF-
ERENT TABLE) OR
IDENTIFIER-2%

* These operations are only included when called for in the SEARCH statement,

** FEach of the control transfers is to NEXT SENTENCE unless the statement
ends with a GO statement.

Figure 7-4. Example of Option 1 SEARCH Statement

SEEK

SEEK

The function of this verb is to initiate the accessing of a disk file record
for subsequent reading and/or writing. The construct of this verb is:

SEEK file-name RECORD [WITH KEY CONVERSION]

The specification of the KEY CONVERSION clause indicates that the user-
provided USE FOR KEY CONVERSION section in the DECLARATIVE SECTION is to be
executed prior to the execution of the SEEK statement. If there are no
DECLARATIVES for KEY CONVERSION in a SEEK statement, then the KEY CONVERSION

clause will be ignored,

A SEEK statement pertains only to disk storage files in the random access mode

and may be executed prior to the execution of each READ and WRITE statement.

The SEEK statement uses the contents of the data—name in the ACTUAL KEY clause
as the location of the record to be accessed. At the time of execution, the
determination is made as to the validity of the contents of the ACTUAL KEY
data item for the particular disk storage file. If the key is invalid, the
imperative statement in the INVALID KEY clause of the next executed READ or
WRITE statement for the associated file is executed.

Two SEEK statements for a disk storage file may logically follow each other.
Any validity check associated with the first SEEK statement is negated by the

execution of a second implicit or implied SEEK statement.

[o)

An implied SEEK is executed by the MCP whenever an explicit SEEK is missing
for the specified record. An implied SEEK never executes any USE KEY CON-
VERSION Declaratives.

If a READ/WRITE statement for a file ASSIGNed to DISK is executed, but an
explicit SEEK has not been executed since the last previous READ or WRITE
for the file, then the implied SEEK statement is executed as the first step
of the READ/WRITE statement.

An explicit alteration of ACTUAL KEY after the execution of an explicit SEEK
has been performed, but prior to a READ/WRITE, will cause the initiation of
an implied SEEK of the initial record in the sequence. For example,

a. If ACTUAL KEY is 10, then

b. READ record 10, then

c. MOVE 50 to ACTUAL KEY, then

d. WRITE record 50.

An implied SEEK of record 50 will be performed between actions c¢ and d, above.

SET

SET

The SET statement establishes reference points or offsets operations by set-
ting index—names associated with table elements.

The construct of this verb has the following two options:

Option 1:
. .o . P identifier-3
identifier-1 identifier-2 " . -
SET {index-name-l} [’ {index—name—z}] et 10 }ndex name-3
integer-1
Option 2:
. - _ . _ _ UP BY identifier—4
SET index—name-4 [, index—name-5] cen {DQWN EX} {integer-z }

All references to identifier-1 and index—name-1 apply equally to identifier-2
and index—name-2, respectively.

All identifiers must name either index data items, or elementary items des-
cribed as an integer, except that identifier—4 must not name an index data

item. When integer-1 is used, it must be a positive integer. Index—names

are considered related to a given table and are defined by being specified

in the INDEXED BY phrase of the OCCURS clause.

If index—name—3 is specified, the value of the index before the execution of
the SET statement must correspond to an occurrence number of an element in
the associated table.

If index—name—1l, index—name—2 is specified, the value of the index after the
execution of the SET statement must correspond to an occurrence number of an
element in the associated table. The value of the index associated with an
index—~name after the execution of a SEARCH or PERFORM statement may be un-—
defined.

In option 1, the following action occurs:

a. Index—name-l is set to a value causing it to refer to the table ele-
ment that corresponds in occurrence number to the table element ref-
erenced by index—name—3, identifier—-3, or integer-~1l. If identifier-3
is an index data item, or if index—name—-3 is related to the same

table as index—name-1l, no conversion takes place.

SET

b. If identifier—-1l is an index data item, it may be set equal to either
the contents of index—name—3 or identifier—3 where identifier-3 is
also an index data item; no conversion takes place in either case.

c. If identifier—1 is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index—name-3.
Neither identifier—3 nor integer—-l can be used in this case.

d. The process is repeated for index—name—-2, identifier-2, etc., if
specified, Each time, the value of index—name—3 or identifier-3
is used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-1, etc., is
evaluated immediately before the value of the respective data item

is changed.

In option 2, the contents of index-name-4 are incremented (UP BY) or decre-
mented (DOWN BY) by a value that corresponds to the number of occurrences
represented by the value of integer-2 or identifier-4; thereafter, the process
is repeated for index—name-5, etc. Each time the value of identifier-4 is

used as it was at the beginning of the execution of the statement,

Data in the figure 7-5 represents the validity of various operand combinations
in the SET statement. The parenthetical comment references the lettered para-

graphs above.

RECEIVING ITEM
SENDING ITEM INTEGER DATA ITEM INDEX-NAME INDEX DATA ITEM
Integer Literal No (c¢) Valid (a) No (b)
Integer Data Item No (¢) vValid (a) No (b)
Index—Name Valid (c) vValid (a) valid (b)*
Index Data Item No (c) Valid (a)* Valid (b)*

*No conversion takes place,

Figure 7-5. SET Statement Operand Combinations

SORT

SORT

The function of this verb is to sort an input file of records by transferring
such data into sort work files and sorting those records on a set of speci-
fied keys. The final phase of the sort operation makes each record available

from the sort-file, in sorted order, to an output procedure or to an output
file.

The construct of this verb is:

SORT file-name-1

[WITH file-name-4]

{DESCENDING | _ _ _
ON lK§E§ﬁﬁfﬁ§—$ KEY data-name-1 [,data name 2] Ce
(DESCENDING :
[ON lﬁéﬁﬁﬁﬁfﬁa"i KEY data-name-3 [,data—name—4] e .o
INPUT PROCEDURE IS section-name-1 ;IEEH- section—name—z]
e | THROUGH

[% TnggUGH =Sect iOn—name_4}

r sorting

3 , me~2, and file-name-3
valid for sorts using tape work

SORT

File—-name-1 must be described in a Sort File Description (SD) entry in the
DATA DIVISION, and file-name-2, file-name-3, and file-name-4 must be described
in a File Description (FD) entry.

Section-name-1 specifies the name of the input procedure to be used before

each record is passed to the sort-file, and section-name-3 specifies the out-

put procedure to be used to obtain each sorted record from the sort-file.

SORT

Each data—-name must represent data—items described in records associated
with file—-name-1l, Data~names following the word KEY are listed from left
to right, in the order of decreasing significance, without regard to their
division into optional KEY clauses.

The PROCEDURE DIVISION of a source program may contain more than one SORT
statement appearing anywhere in the program, except in the DECLARATIVES por-
tion or in the input/output procedures associated with a SORT statement.

The input procedure must consist of one or more sections that are written
consecutively and which do not form a part of an output procedure. The in-
put procedure must include at least one RELEASE statement in order to trans-
fer records to the sort—-file after the object program has accomplished the
required input data manipulation specified in the procedure. Input procedures
can select, create and/or modify records, one at a time, as specified by the
programmer,

There are three restrictions placed on procedural statements within an input
or output procedure:

a, The procedure must not contain any SORT statements.

b. The input or output procedures must not contain any transfers of
program control outside the range of the procedure; ALTER, GO and
PERFORM statements within the procedure are not permitted to refer
to procedure—names outside of the input or output procedure,

c. The remainder of the PROCEDURE DIVISION must not contain any transfers
of program control to points within the input or output procedure;
ALTER, GO, and PERFORM statements in the remainder of the PROCEDURE
DIVISION must not refer to procedure—names within the range of the
input or output procedure,

The output procedure must consist of one or more sections that are written
consecutively and which do not form a part of an input procedure. The output
procedure must include at least one RETURN statement in order to make each
sorted record available for processing. Output procedures can select, create,
and/or modify records, one at a time, as they are being returned from the sort-
file.

When the ASCENDING clause is specified, the sorted sequence of the affected
records is from the lowest to the highest value, according to the binary

EBCDIC collating sequence {or as speci lating sequence.)

SORT

When the DESCENDING clause is specified, the sorted sequence of the affected
records is from the highest to the lowest value according to the binary EBCDIC
collating sequence (or as specified in th]

The SD record description of the sort—file must contain fully defined data-
name KEY items in the relative positions of the record, as applicable. A rule
to follow when using these KEY items is that when a KEY item appears in more
than one type of record, the data—names must be relatively equivalent in each
record and may not contain, or be subordinate to, entries containing an OCCURS

clause,

When an INPUT procedure is specified, object—program control will be passed to
that procedure automatically as an implicit function of encountering the gen-
erated SORT verb object code compiled into the program. The compiler will in-—
sert a "return—to—the-sort" mechanism at the end of the last section in the in-
put procedure, and when program control passes the last statement of the input
procedure, the records that have been RELEASED to file—name-1 are sorted.

If the USING option is specified, all records residing in file—name—-2 will be
automatically transferred to file—name—1l, upon encountering the generated SORT
verb object code. At the time of execution of the SORT statement, file—name—2
must have been CLOSEd WITH LOCK or RELEASE. The SORT statement automatically
performs the function necessary to OPEN, READ, USE and CLOSE file—-name-2. If
file—name-2 is a disk file, it must be in the Disk Directory before the SORT
intrinsic is called.

If an output procedure is specified, object—program control will be passed

to that procedure automatically as an implicit function when all records have
become sorted. The compiler will insert a "return—-to—the-object program' me-
chanism at the end of the last section in the output procedure; and when pro-
gram control passes the last statement of the output procedure, the object
program will execute the next statement following the pertinent SORT statement.

If the GIVING option is specified, all sorted records residing in file—name-1
are automatically transferred to the QOUTPUT file as specified in file—name-3.
At the time of execution of the SORT statement, file—name—-3 must have been
CLOSEd WITH LOCK or RELEASE. File—-name-3 will be automatically OPENed before
the sorted records are transferred from the sort—-file and, in turn, will be
automatically CLOSEd, default is LOCK, after the last record in the sort-file

has been transferred.

SORT

Example:

SORT file—name—-1 ASCENDING KEY data—name-1.
USING file-name-2 E i
GIVING file-name-3 }

Beginning and ending label USE procedures are provided as follows when input/
output procedures are present in the SORT statement:

a. OPEN INPUT file—name.
USE. . . (The programmer's USE procedure will be invoked).

b. OPEN OUTPUT file-name,
USE, . . (The programmer's USE procedure will be invoked).

c. CLOSE INPUT file—name,
USE. . . (The programmer's USE procedure will be invoked; however,
the contents of the ending input label will not be available to the
USE procedure).

d. CLOSE OUTPUT file—name.
USE. . . (The programmer's USE procedure will be invoked; however,
the ending label will have been written prior to execution of the
USE procedure).

NOTE

The above action provide label USE pro-
cedures at beginning and ending of files,
but not during switching of reels of
multi-reel files.

STOP

STOP

The function of this verb is to halt the object program temporarily or to

terminate execution.

The construct of this verb is:

I word RUN is used, then all files which remain OPEN will be CLOSED
automatically. New files ASSIGNED to DISK will be CLOSED WITH PURGE and all
others will be CLOSED WITH RELEASE. See the SAVE option in the FILE-CONTROL

paragraph. All storage areas for the object program are returned to the MCP

b
ot
-

and the job is then removed from the MCP mix.

The STOP RUN is not used for temporary stops within a program. STOP RUN

must be the last statement of the program execution sequence.

A sequence of imperative statements may contain a STOP RUN statement which,

(&)

if present, must appear as the last imperative statement of the seqguence.

If the literal option is used, the literal will be DISPLAYed on the console
printer and the program will be suspended. When the operator enters the MCP
continuation message mix—index AX, program execution resumes with the next
sequential operation. This option is normally used for operational halts to

cause the system's operator to physically accomplish an external action.

SUBTRACT

SUBTRACT

The function of this verb is to subtract one data item, or the sum of two or
more, numeric data items from another item, and set the value of an item equal
to the result(s).

The construct of this verb has the following three options:

Option 1:
fliteral-1 | [literal-2]
SUBTRACT i gentifier-1 |lidentifier-2| - | IEOM
identifier-m [ROUNDED][identifier—n [ROUNDED | ...]

[;ON SIZE ERROR s
Option 2:

SUBTRACT |literal-1 | [Piteral-z 1

|identifier-1| [lidentifier-2 |

..} FROM

{literal-m |

lidentifier—m| GLVING identifier-n [ROUNDED] [,1dent1fier—o [ROUNDED]]...

[;ON SIZE ERROR statement-1 [;ELSE statement-2]]

Option 3:
supTracT | CORR | jdentifier-1 FROM identifier-2
—————~— | CORRESPONDING |

[ROUNDED] [; ON SIZE ERROR gtatement*l .

In Options 1 and 2, the identifiers used must refer only to elementary numeric
items. If Option 2 is used, the data-description of identifier-n and identifier-

o may be an elementary numeric edited item.

All rules specified under the ADD statement with respect to the operand size,
presence of editing symbols in operands, the ON SIZE ERROR option, the ROUNDED
option, the GIVING option, truncation, the editing results, the handling of
intermediate results, and the CORR or CORRESPONDING option apply to the SUB-
TRACT statement.

When the GIVING option is not used, a literal may not be specified as the minuend

When dealing with multiple subtrahends, the effect of the subtraction will be as
if the subtrahends were first summed, and then the sum subtracted from the
minuends.

7-96

TRACE

TRACE

=97

USE

USE

The function of this verb is to specify procedures for any input/output

error and/or label handling which are in addition to the standard procedures
supplied by the MCP, to calculate the ACTUAL KEY for flles assigned to DISK,

The construct of this verb has the following five options:

Option 1:

file-name-1 [,file-name-2]
INPUT

INPUT-QUTPUT

1-0

USE AFTER STANDARD ERROR PROCEDURE ON

Option 2:
USE FOR KEY CONVERSION ON file—name-1 [,file-name-2...].

file-name-1 e-2]...

kle“name“l {file-name-z}

n ;;resent must mmedm_tely follow ‘a section header in
the DECLARATIVE portion of the PROC