
Burroughs~

PRICED ITEM

Printed in U.S.A. August 1978 1057197

Printed in U.S.A.

Burroughs m

B 1800/B 1700
Systems

COBOL

I REFERENCE MANUAL

Copyright © 1978 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

August 1978 1057197

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

This revision incorporates information released under the following:

PCN 1057197-001 (3/8/76)

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. 0. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO - West.

Section

1

2

3

TABLE OF CONTENTS

FOREWORD•...•..................... xv

Burroughs Extensions to ANSI 68 COBOL xv

Acknowledgement xv

INTRODUCTION .. . 1-1

Advantages of COBOL . 1-1

Program Organization... 1-2

LANGUAGE FORMATION•......•.............•..•.... 2-1

General ···············ij.········••••a•••••••••••·············· 2-1
Character Set

Characters Used for Words . ., 2-1

Punctuation Characters • • • • . 2-2

Characters Used in Editing................................ 2-2

Characters Used in Formulas ····~························~· 2-2
Characters Used in Relations•....................... 2-2

Definition of Words . • . . • 2-3

Types

Nouns

Verbs

of Words

Reserved Words•....•...............

Language Description Notation•.....

Key Words .. .

Optional Words

Generic Terms .. .

Braces · . · · · · · · · · · · · · ·
Brackets

Ellipsis

Period ..•.... · · · · ·

CODING FORM

2-3

2-3

2-s
2-9

2-10

2-10

2-10

2-10

2-10

2-10

2-11

2-11

3-1

Genera 1 . 3-1

Sequence Field (Card Columns 1-6) 3-1

iii

TABLE OF CONTENTS (Cont)

· Sect ion Page

3 CODING FORM (Cont)

Continuation Indicator (Column 7) 3-1

Margin A (Columns 8 thru 11) 3-3
Margin B (Columns 12 thru 72) 3-3

Right Margin (Column 72)••....••••............. 3-3
Identification (Columns 73 thru 80) 3-3

Punctuation . 3-4

Satnple Coding . 3-4

4 IDENTIFICATION DIVISION

General . 4-1

IDENTIFICATION DIVISION Structure 4-1

MONITOR . 4-2
Coding the IDENTIFICATION DIVISION........................... 4-3

5 ENVIRONMENT DIVISION .. . 5-1

General '· . 5-1

ENVIRONMENT DIVISION Organization............................ 5-1

ENVIRONMENT DIVISION Structure 5-1

CONFIGURATION SECTION . 5-2
SOURCE-COMPUTER 5-3

OBJECT-COMPUTER . 5-4

SPECIAL-NAMES . 5-6

INPUT-OUTPUT SECTION . 5-8

FILE-CONTROL. 5-9
I-O-CONTROL . 5-15

Coding the ENVIRONMENT DIVISION.............................. 5-17

6 DATA DIVISION 6-1

General . 6-1

DATA DIVISION Organization . 6-1

DATA DIVISION Structure . 6-2

File and Record Concepts 6-3

Physical Aspects of a File................................. 6-3

Conceptual Characteristics of a File 6-3

Record Concepts . 6-4

iv

TABLE OF CONTENTS (Cont)

Section Page

6 DATA DIVISION (Cont)

Level Numbers Concept 6-5

Qualification • • • . • . 6-8

Tables . . • . 6-11

Subscripting . . . • • . .. 6-12

Indexing . 6-14

Identifier • . . . • • • . 6-15

FILE SECTION ...• ·· . 6-16

FILE DESCRIPTION . • • . 6-16

BLOCK . • . 6-19

DATA RECORDS . . • • • . 6-21

FILE CONTAINS . . • . • . 6-22

LABEL . 6-24

RECORD • • . 6-25

RECORDING MODE . 6-26

VALUE OF ID . 6-27

VALUE OF Q-MAX-MESSAGES • 6-31

RECORD DESCRIPTION . 6-32

BLANK WHEN ZERO • • • • • . . . • 6-35

CONDITION-NAME • . . . • . 6-36

DATA-NA.h-1E . • • • . 6-39

JUSTIFIED .. • • . 6-40

LEVEL-NUMBER • . 6-42

OCCURS . 6-43

PICTURE . • . 6-48

Categories of Data • • • . . . • . 6-48

Classes of Data . 6-49

Function of the Editing Symbols 6-50

Edi ting Rules • . 6-54

Precedence of Symbols ·•·.··· 6-58

v

Section

6

7

vi

TABLE OF CONTENTS (Cont)

DATA DIVISION (Cont)

REDEFINES

RENAMES ... -.... .

USAGE

VALUE

WORKING-STORAGE SECTION

Organization .. .

Non-Contiguous WORKING-STORAGE

WORKING-STORAGE Records

Initial Values .. .

Condit ion-Names

Coding The WORKING-STORAGE SECTION

PROCEDURE DIVISION

6-62

6-64

6-66

6-69

6-71

6-71

6-71

6-72

6-72

6-72

6-72

7-1

General . 7-1

Rules of Procedure Formation.................................. 7-1

Execution of PROCEDURE DIVISION............................... 7-2

Statements . 7-3

Imperative Statements . 7-3

Conditional St at emen ts . 7 -3

Compiler-Directing Statements.............................. 7-3

Sentences . 7 -4

Imperative Sentences . 7 -4

Conditional Sentences . 7-4

Compiler-Directing Sentences............................... 7-4

Sentence Punctuation . 7-5

Execution of Imperative Sentences . 7-5

Execution of Conditional Sentences 7-5

Execution of Compiler-Directing Sentences 7-6

CONTROL Relationship Between Procedures 7-7

Paragraphs . 7-7

Sect ions . 7-7

Segmentation . 7-9

Program Segments . 7-9

Segment Classification . 7-9

Priority Numbers . 7 -10

TABLE OF CONTENTS (Cont)

Section Page

7 PROCEDURE DIVISION (Cont)

Declaratives

USE Declarative

COPY Statement as a Declarative

Ari tl:unet ic Expressions

Ari tl:unetic Operators

Formation and Evaluation Rules

Condit ions

Logical Operators

Relation Condition

Relational Operators

Comparison of Operands

Sign Condition .. .

Class Condit ion ... · .. .

Condit ion-Name Condit ion

Evaluation Rules .. .

Simple Condit ions

Compound Condit ions

Abbreviated Compound Conditions

Internal Program Switches

Statement Options

Rounded Opt ion ...•...••............................•....•

Size Error Option•.......•...............•........

Corresponding Option•...........•.•......•.•.••••.

Verbs .. .

Specific Verb Formats

ACCEPT .. .

ADD-

ALTER

CLOSE

7-13

7-13

7-13

7-14

7-14

7-15

7-17

7-17

7-17

7-19

7-19

7-20

7-20

7-21

7-21

7-22

7-22

7-24

7-26

7-27

7-27

7-27

7-28

7-29

7-30

7-31

7-32

7-35

7-36

COMPUTE . 7-41

COPY . 7-42

DISPLAY . 7-46

DIVIDE . 7-4 7

DUMP . 7-49

EXAMINE . 7- 50

EXIT . 7-52

vii

TABLE OF CONTENTS (Cont)

Sect ion ?age

7 PROCEDURE DIVISION (Cont)

GO TO . 7-53

IF . 7-5:;>

MERGE . . • • • . • . • • . . . • . . • • . • . . . • . • • • • • . . . • . • • • • • • • 7-56

Syn tax Rules . • . • • • • . • . • . • • • • • • . . • . . • • • • . . . • • • . . . • • • . 7- 56

Gener a 1 Ru 1 es . . • . • . . . • • • • • . . . • • . . . • . • • . • • . • 7- 5 7

MOVE . . . • . • • . • . • . • • . . . • • • • . . • • • . . . • • . . . • • • . • . . • . . • . . • . . . 7-61

Elementary MOVES . 7-62

Group MOVES . 7-63

Translation . 7-64

Index Data Items . 7-64

Valid MOVE Combinations . 7-64

MULTIPLY . 7-66

NOTE

OPEN

7-67

7-68

PERFORM . 7- 72

READ . 7-78

RELEASE . 7-81

RETURN 7-82

SEARCH . 7-83

SEEK . 7-87

SET . 7-88

SORT

STOP

7-90

7-95

SUBTRACT . 7-96

TRACE . 7-97

USE . 7-98

WAIT ... 7-100

WRITE . 7-103

ZIP .. 7-106

Coding the PROCEDURE DIVISION 7-106

8 B 1800/B 1700 COBOL READER-SORTER ..••.••••...•.•.•••••••••.•..• 8-1

General . 8-1

Independent Functions . 8-2

COBOL Provisions for Reader-Sorter Handling 8-4

ENVIRONME~T DIVISIO~ REQUIREMENTS . 8-4

viii

TABLE OF CONTENTS (Cont)

Section Page

8 B 1800/B 1700 COBOL READER-SORTER (Cont)

9

DATA DIVISION Requirements . 8-5

PROCEDURE DIVISION Requirements ~·.................... 8-6

CLOSE ·... 8-7

CONTROL . 8-8

FOR~vfAT • . • 8-10

MI CR-EDIT . 8-12

OPEN

READ

8-13

8-14

USE . 8-15

Exception Condition Handling . 8-16

Reader-Sorter Characters 8-21

Reader Sorter Programming Considerations . 8-22

Example Program . 8-22

DATA COMMUNICATIONS .. . 9-1

General . 9-1

Specific Verb Formats . 9-1

10 INTER-PROGRAM COMMUNICATION 10-1

General

Message Queues

10-1

10-1

11 COBOL COMPILER CONTROL . 11-1

General . 11-1

Compilation Card Deck . 11-1

?Compile Card . 11-2

MCP Label Card . 11-2

$Option Control Card . 11-3

Source Data Card . 11-6

Label Equation Card . 11-7

12 DATA MANAGEMENT . 12-1

COBOL Source Program Syntax . 12-1

IDENTIFICATION DIVISIOK and ENVIRO~MENT DI\ISIOS 12-1

ix

TABLE OF CONTENTS (Cont)

Section Page

x

12 DATA MANAGEMENT (Cont)

DATA DIVISION •.. 12-1

General . 12-1

Data-Base Sect ion . 12-1

PROCEDURE DIVISION . . • • • . • • • • . • • . • • . • • • • • • • • • • • • • • • • • • • . • 12-2

13 INDEXED I-O • • • • . • . . • • . • • • . • • . • • • . • . • . . . • • . • • • • • • • 13-1

Introduction . 13-1

Language Concepts • • • . . . • • • • • . • • . • • . • • . • • . 13-1

Organization . . • • • . • • . • • • • • • . • • • . • • . • . • • 13-1

Access Modes • . • . • • • • . . • . . • 13-1

Current Record Pointer ...•..••..••••••.••.•.•..•..••••••.•• 13-2

I-O Status . . . • . • . . • . . . • . • . . . • • • . . • • • . . • . . • . • • . . . • • • . . • . • . . • 13-2

Status Key 1 . • . . • . . • . . • . • . . • . • . 13-2

Status Key 2 . • • • . . • . • • . . . • . . . 13-3

Valid Combinations of Status Keys•.•...•.•..•.•.•. 13-4

The Invalid Key Condition•...•..•.•... 13-4

The AT END Condition •' ...•....... ·...•.....•..•.......••.•..• 13-5

General Implementation Information . . • . 13-5

Physical Files . • . . • . • 13-5

Tag Files•........•........•.•.......•.••.. 13-5

RPG and COBOL Compatibility•.•..............•..•..... 13-6

Rough Tables•.•.. •................................. 13-7

Searching the Tag File•.......•......•........ 13-7

Adding Records to the Files•..•...•...........•.••...•. 13-8

Environment Division for Indexed 1-0 .•••••••••.•.••••.•••••••• 13-8

The File-Control Paragraph•.....•......•...•.•..•..••• 13-8

Fune t ion • . . . • • . • • . . • • . . 13-8

Genera 1 Format ~ • . . . • • . . • . . . • . 13-8

Syntax Rules•..........•..... •...................... 13-9

Genera 1 Rules : • • • . . . • 13-9

Data Division for Indexed 1-0 ••.•.•..•••••.••••••.••...•.••••• 13-10

The File Description•.•....•.•.......•..•............ 13-10

Function•...................•..••....•.••...••. 13-10

General Format • • • • . . . • • • . . 13-10

Syn tax Rules • • • • . • • 13-10

TABLE OF CONTENTS (Cont)

Section Page

13 INDEXED I-O (Cont)

The VALUE OF Clause

Fune t ion•................

General Format

Syn tax Rule .. .

General Rules•....•......•......•.....

Procedure Division for Indexed I-O

The CLOSE Statement

Fune ti on•...........•...•...................

General Format•......•........

Syn tax Rule ..•..

Genera 1 Rules•...............•

The OPEN Statement•

Fune ti on•.................••....

General Format•

Syn tax Rule•....•..................

Genera 1 Rules .. .

The READ Statement

Function

General Format

Syn tax Rules

General Rules .. .

The REWRITE Statement•......................

Function

General Format•..........

Syn tax Rules

General Rules .. .

The START Statement

Function

Genera 1 Format

Syn tax Rules•...................

General Rules .. .

The USE Statement•....

Function

General Format

Syntax Rules .. .

General Rules .. .

13-10

13-10

13-11

13-11

13-11

13-11

13-11

13-11

13-12

13-12

13-12

13-13

13-13

13-14

13-14

13-14

13-16

13-16

13-16

13-16

13-17

13-19

13-19

13-19

13-19

13-19

13-21

13-21

13.-21

13-21

13-21

13-22

13-22

13-22

13-23

13-23

xi

TABLE OF CONTENTS (Cont)

Section Page

13 INDEXED I-O (Cont)

The WRITE Statement 13-23

Function . 13-23

General Format . . • . 13-24

Syn tax Rules . 13-24

General Rules . 13-24

Appendix A - Reserved Words•.. A-1

Appendix B - COBOL Syntax Summary

Appendix C - Compiler Error Messages•.......................

Appendix D - S-Language Programs•........•..............

Table of Contents

Introduction .. .

Instruction Set

Arithmetic Operands and Instructions

Data Movement Operands and Instructions

Branching Operands and Instructions
Conditional Branch Operands and Instructions

Miscellaneous Inst'ructions

Alphabetic Index .. .

Appendix E - COBOL Graphics .. .

B-1

c-1
D-1

n-i
D-1

D-10
n-12

D-23

D-45

D-56

D-63

D-68

E-1

Index . Index-I

xii

Figure

3-1

3-2

4-1

5-1

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

7-1

7-2

7-3

7-4

7-5

7-6

8-1

11-1

Table

6-1

6-2

6-3

6-4

6-5

7-1

7-2

LIST OF_ ILLll.SlRATIONS.

COBOL Coding Form ••••••••••••.•...•..........................

Example of Continuation of Words and Literals•.........

IDENTIFICATION DIVISION Coding ..•...••....•..................

ENVIRONMENT DIVISION Coding ...•••.........•.••......•...•....
Level Number Construction
Concept of Level Numbers ••....•..•.....•..........•......•...
Coding of Multi-Dimensioned Table

Coding of FD and DATA RECORDS .••..•......•........•..........

Coding of Condition-Name .••••.........•.................•....
Relationship of Class and Category•........•....•.

Permissible Editing Types •...•.•..............•....•.........

Examples of RENAMES•..........•..
WORKING-STORAGE SECTION Coding ...•...........................
Valid MOVE Statement Combinations
PERFORM Statement Varying One Identifier

PERFORM Statement Varying Two Identifiers•...........

Example of SEARCH Operation Relating to Option 1

SET Statement Operand Combinations

Coding of PROCEDURE DIVISION ...•.•...........................
Approved Character Fonts
Compilation Card Deck .•.••.•.•.•••••••.•••••.••.•.••..••..••.

LIST OF TABLES

Maximum Value of Integers •...•.........•.....................

Recording Modes for Peripheral Devices

Editing Symbols and Results•............................
Order of Pre.cedence

Editing Application of the PICTURE Clause

Combination of Symbols in Arithmetic Expressions•.....
Relationship of Conditions, Logical Operators,

and Truth Values ..

3-2

3-5

4-4

5-18

6-6

6-7

6-13

6-18

6-38

6-50

6-54

6-65

6-73

7-65

7-76

7-76

7-86

7-89

7-107

8-22

11-1

6-20

6-26

6-55

6-59

6-61

7-14

7-18

xiii

Tables

7-3

13-1

13-2

13-3

13-4

D-1

D-2

D-3

E-1

xiv

List of Tables (Cont)

Combinations of Conditions and Logical Operators

Status Key Combinations

Tag File and Data File Names

File Close Type and Disposition

Permissible Statements

COBOL Program Layout .. .

Special Registers

Editing Constants and Toggles

Graphics and Related Codes

Page

7-18

13-4

13-6

13-12

13-15

D-2

D-2

D-37

E-2

FOREWORD

BURROUGHS EXTENSIONS TO ANSI 68 COBOL

Programming applications are written in the COBOL language as specified in this

B 1800/B 1700 Systems COBOL Reference Manual. The source language herein de­

scribed is the USA Standard COBOL, X3.23-1968, to which Burroughs extensions

ACKNOWLEDGEMENT

The information contained in this document is based on the COBOL language

initially developed in 1959 and the updated COBOL68.

COBOL is an industry language, and as such is not the property of any company

or group of companies, or of any organization or group of organizations.

The authors and copyright holders of the copyrighted material used in this

document,

FLOW-MATIC (trademark of Sperry Rand Corporation), programming

for the UNIVAC @ I and I I. Data Automation Systems, copyrighted

1958, 1959 by Sperry Rand Corp.; IBM Commercial Translator, form

No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760,

copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part,

in the COBOL specifications. This authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar publications,

Any organization interested in reproducing the COBOL report and specifications

in whole or part, using ideas taken from this report as the basis for an in­

struction manual, or for any other purpose, is free to do so; however, all

such organizations are requested to reproduce this section as a part of the

introduction to the document. Those using a short passage, as in a book

review, are requested to mention COBOL in acknowledgement of the source, but

need not quote this entire section.

xv

No warranty, expressed or implied, is made by any contributor or by the COBOL

committee as to the accuracy and functioning of the programming system and

language. Moreover, no responsibility is assumed by any contributor, or by

the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con­

cerning the procedure for proposing changes should be directed to the Executive

Committee of the Conference on Data Systems Languages.

xvi

SECTION l
INTRODUCTION

This manual provides a complete description of COBOL (.QOMMON ~USINESS QRIENTED

LANGUAGE) as implemented for use on the Burroughs B 1800/B 1700 system. This

concept of COBOL embraces the adoption of the American National Standards

Institute (ANSI) 1968.

ADVANTAGES OF COBOL

The long list of COBOL advantages is derived chiefly from its intrinsic quality

of permitting the programmer to state the problem solution in English. The

programming language reads much like ordinary English prose, and can provide

automatic program and system documentation. When users adopt in-house standard­

ization of elements within files plus well-chosen data-names before attempt-

ing to program a system, they obtain maximum documentational advantages of the

language described herein.

To a computer user, the Burroughs COBOL offers the following major advantages:

a. Expeditious means of program implementation.
h
JJ. Accelerated programmer training and simplified retraining requirements.

c. Reduced conversion costs when changing from a computer of one manu-

facturer to that of another.

d. Significant ease of program modification.

e. Standardized documentation.

f. Documentation which facilitates non-technical management participation

in data processing activities.

g. Efficient object program code.

h. Segmentation capability which sets the maximum allowable program size

well in excess of any practical requirement.

i. Due to the incorporation of debugging language statements, a high de­

gree of sophistication in program design is achieved.

j. A comprehensive source program diagnostic capability.

A program written in COBOL, called a source program, is accepted as input by

the COBOL compiler. The compiler verifies that rules outlined in this

manual are satisfied, and translates the source program language into an

1-1

object program language capable of communicating with the computer and direct­

ing it to operate on the desired data. Should source corrections become neces­

sary, appropriate changes can be made and the program recompiled. Thus, the

source file always reflects the object program being operationally executed.

PROGRAM ORGANIZATION

Every COBOL program must contain these four divisions in the following order:

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition, the program­

mer may include such optional pieces of information as the date compiled, and

programmer's name for documentation purposes. This division is completely ma­

chine-independent and thus does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains

computer descriptions and deals, to some extent, with the files the pro­

gram will use.

The DATA DIVISION contains file and record descriptions describing the data

files that the object program is to manipulate or create, and the individual

logical records which comprise these files. The characteristics or properties

of the data are described in relation to a standard data format rather than

an equipment-oriented format. Therefore, this division is to a large extent

computer-independent. While compatibility among computers cannot be absolutely

assured, careful planning in the data layout will permit the same data de­

scriptions, with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies the steps that the user wishes the computer

to follow. These steps are expressed in terms of meaningful English words,

statements, sentences, and paragraphs. This division of a COBOL program is

often referred to as the "program" itself. In reality, it is only part of

the total program, and is insufficient by itself to describe the entire pro­

gram. This is true because repeated references must be made (either explicitly

or implicitly) to information appearing in the other divisions. This division,

more than any other, allows the user to express his/her thoughts in meaningful

English. Concepts of verbs to denote actions, and sentences to describe pro­

cedures, are basic, as is the use of conditional statements to provide alter­

native paths of action.

1-2

A program written in COBOL, called a source program, is accepted as input by

the COBOL compiler. The compiler verifies that rules outlined in this manual

are satisfied, and translates the source program language into an object pro­

gram language capable of communicating with the computer and directing it to

operate on the desiretj data. Should source corrections become necessary,

appropriate changes can be made and the program recompiled. Thus, the source

file always reflects the object program being operationally executed.

1-3

SECTION 2
LANGUAGE FORMATION

GENERAL

As stated in section 1, COBOL is a language based on English, and is composed

of words, statements, sentences, paragraphs, etc. The following paragraphs

define the rules to be followed in the creation of this language. The use of

the different constructs formed from the created words is covered in subsequent

sections of this document.

CHARACTER SET

The COBOL character set for this system consists of the following 53 char­

acters:

0 - 9

A - Z

blank or space

+ plus sign

minus sign or hyphen

* asterisk

I slash (virgule)

equal sign

$ currency sign

comma

Characters Used for Words

"
(

)

>

<

period or decimal point

semicolon

quotation mark

left parenthesis

right parenthesis

greater than symbol

less than symbol

colon

@ "at" sign

The character set for words consists of the following 37 characters:

0 - 9

A - Z

(hyphen)

2-1

Punctuation Characters

The following characters may be used for program punctuation:

@

"
(

)

"at" sign space or blank

quotation mark period

left

right

parenthesis comma (see note below)

parenthesis semicolon

NOTE

Commas may be used between statements,

at the programmer's discretion, for

enhanced readability of the source

program. Use of these characters

implies that a following statement is

to be included as a portion of an entire

statement.

Characters Used in Editing

The COBOL compiler accepts the following characters in editing:

$ currency sign + plus

* asterisk (check protect) minus

B

0

comma

period

space or blank

zero insert

Characters Used in Formulas

CR credit

DB debit

insert z zero suppress

The COBOL compiler accepts the following characters in arithmetic expressions:

+ addition ** exponentiation

subtraction (left parenthesis

* multiplication) right parenthesis

I div is ion

Characters Used in Relations

The COBOL compiler accepts the following characters in conditional relations:

equal sign

< less than symbol

> greater than symbol

2-2

DEFINITION OF WORDS

A word is created from a combination of not more than 30 characters, selected

from the following:

A through Z

0 through 9

- hyphen

A word is ended by a space, or by a period, comma, or semicolon. A word may

not begin or end with a hyphen.

rules, as explained later.)

(A literal constitutes an excaption to these

Types of Words

COBOL contains the following word types:

a. Nouns.

b. Verbs.

c. Reserved words.

Nouns

Nouns are divided into ten special categories:

• File-name

• Record-name

• Data-name

• Condition-name

@ Procedure-name

•
•
•
•
•

Mnemonic-name

Index-name

Literal

Figurative constant

Special registers

Since the noun is a word, its length may not exceed 30 characters (exception:

literals may not exceed 160 characters). For purposes of readability, a noun

may contain one or more hyphens. However, the hyphen may neither begin nor end

the noun (this does not apply to literals).

File-Name. A file-name is a name containing at least one alphabetic character

assigned to designate a set of data items. The contents of a file are divided

into logical records that in turn are made up of any consecutive set of data

items.

Record-Name. A record-name is a noun containing at least one alphabetic

character assigned to identify a logical record. A record can be subdivided

into several data items, each of which is distinguishable by a data~name.

Data-Name. A data-name is a noun assigned to identify elements within a

record or work area and is used in COBOL to refer to an element of data, or

2-3

to a defined data area containing data elements. Each data-name must contain

at least one alphabetical character.

Condition-Name. A condition-name is the name assigned to a specific value,

set of values, or range of values, within the complete set of values that a

data item may assume. The data item itself is called a "conditional variable."

The condition-name must contain at least one alphabetic character and must

be unique, or be able to be referenced uniquely through qualification. A con­

ditional variable may be used as a qualifier for any of its condition-names.

If references to a conditional variable require indexing, subscripting, or

qualification, then references to any of its condition-names also require the

same combination of indexing, subscripting, or qualification. A condition­

name is used in conditions as an abbreviation for the relation condition; its

value is TRUE if the associated condition variable is equal to one of the set

values to which that condition-name is assigned.

Procedure-Name. A procedure-name is either a paragraph-name or section-name,

and is formulated according to noun rules. The exception is that a procedure­

name may be composed entirely of numeric characters. Two procedure-names are

identical only if they both consist of the same character strings. For ex­

ample: procedure-names 007 and 7 are not equivalent.

Mnemonic-Name. The use of mnemonic-names provides a means of relating certain

hardware equipment names to problem-oriented names the programmer may wish to

use. See the discussion of SPECIAL-NAMES in section 5.

Index-Name. An index-name is a word with at least one alphabetic character that

names an index associated with a specific table (refer to indexing in section 6).

An index is a register, the contents of which represent the character position

of the first character of an element of a table with respect to the beginning

of the table.

Literals. A literal is an item of data which contains a value identical to

the characters being described. There are three classes of a literal: numeric,

non-numeric, and undigit.

Numeric Literal

A numeric literal is defined as an item composed of characters chosen from

the digits O through 9, the plus sign (+) or minus sign (-) and the decimal

point. The rules for the formation of a numeric literal are:

a. Only one sign characterand/orotie or roorethari 6rie decimal point
may be contained in a ntunerte literal for use with Sterling. The

leftmost decimal determines-the> scale~

NOTES

A comma must be substituted for the decimal

point if the DECIMAL-POINT IS COMMA option

is used (sae SPECIAL-NAMES in the ENVIRON­

MENT DIVISION).

The implied USAGE of numeric literals is

COMPUTATIONAL except when used with the

verbs DISPLAY or STOP.

b. There must be at least one digit in a numeric literal.

c. The sign of a numeric literal must appear as the leftmost character.

If no sign is present, the literal is defined as a positive value.

d. The decimal point may appear anywhere within the literal except for

the rightmost character of a numeric literal. A decimal point with­

in a numeric literal is treated as an implied decimal point. Absence

of a decimal point denotes an integer quantity. (An integer is a

numeric literal which contains no decimal point.)

e. A numeric literal used for arithmetic manipulations cannot exceed

160 digits. The following are examples of numeric literals.

Non-Numeric Literal

13247
.005

+l.808
-.0968

7894.54

A non-numeric literal may be composed of any allowable character. The begin­

ning and end of a non-numeric literal are each denoted by a quotation mark. Any

character enclosed within quotation marks is part of the non-numeric literal.

Subsequently, all spaces enclosed within the quotation marks are considered

part of the literal.

A non-numeric literal cannot itself exceed 160 characters. Examples of non­

numeric literals are:

2-5

Literal on Source Program Level

"ACTUAL SALES FIGURE"
"-1234. 567"
"""LIMITATIONS"""

Literal Stored by Compiler

ACTUAL SALES FIGURE
-1234.567
"LIMITATIONS"

"ANNUAL DUES" ANNUAL DUES
"'""'
"A""' B"

"
A"B

NOTE

Literals that are used for arithmetic com­

putation must be expressed as numeric lit­

erals and must not be enclosed in quotation

marks as non-numeric literals. For example,

"-7.7" and -7.7 are not equivalent. The

compiler stores the non-numeric literal as

-7.7, whereas the numeric literal would be

stored as 0077 if the PICTURE were S999V9

DISPLAY with the assumed decimal point lo­

cated between the two sevens.

Figurative Constant. A figurative constant is a particular value that has

been assigned a fixed data-name and must never be enclosed in quotation marks

except when the word, rather than the value, is desired. The figurative con­

stant names and their meanings are:

2-6

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

Represents the value o, or one or more of the

character O, depending on the context.

Represents one or more spaces (blanks).

Represents the highest internal coding sequence

(i.e., 999) value. When HIGH-VALUES are moved to a

signed numeric computational field, the sign will

be changed to a plus sign.

Represents the lowest internal coding sequence (blanks)

value. When LOW VALUES are moved to a signed numeric

computational field, zeros will be moved ir.to the field

and the sign will be changed to a plus.

QUOTE
QUOTES

ALL

ALL literal

ALL "ABC"
ALL "311 or
ALL "HI-LO"
ALL QUOTE
ALL SPACES

Represents one or more of the single character " (quotation

mark). The word QUOTE or QUOTES does not have the same

meaning in COBOL as the symbol". For example, if "STANDARDS"

appears as part of the COBOL source program, STANDARDS is

stored in the object program. If, however, the full

"STANDARDS" is desired in a DISPLAY statement, it can be

achieved by writing QUOTE "STANDARDS" QUOTE, in which case

the object program will print "STANDARDS". The same

result can be obtained by writing """STANDARDS""" in the

source program. Only the latter method can be used in

MOVE statements and conditionals.

When followed by an integer numeric literal, a non-numeric

literal, or a figurative constant, the word ALL represents a

series of that literal. For example, if the COBOL statement

is MOVE ALL literal TO ERROR-CODE, then the resultant ERROR-

CODE would take on the following values:

Size of ERROR-CODE Resulting value of
ERROR-CODE

7 characters ABCABCA
ALL 3 5 characters 33333

12 characters HI-LOH I-LOH I
3 characters """
9 characters (nine spaces)

NOTE

The use of ALL with figurative constants,

as illustrated in the last two instances, is

redundant. MOVE ALL SPACES and MOVE SPACES

would yield the same result.

Special Registers. The B 1800/B 1700 COBOL compiler provides the following

five special PROCEDURE DIVISION register names:

a. TALLY.

Tally

The special register TALLY is automatically provided by the COBOL compiler and

has a defined length of five COMPUTATIONAL digits. The primary use of TALLY is

in conjunction with the EXAMINE statement; however, TALLY may be used as

temporary storage or an accumulative area during the interim when EXAMINE ...

TALLYING •.. is not being executed in a program.

Verbs

Another type of COBOL word is a verb. A verb in COBOL is a single word that

denotes action, such as ADD, WRITE, MOVE, etc. All allowable verbs in COBOL,

with the exception of the word IF, are truly English verbs. The usage of the

COBOL verbs takes place primarily within the PROCEDURE DIVISION.

2-8

Reserved Words

The third type of COBOL word is a reserved word. Reserved words have a specific

function in the COBOL language and cannot be used out of context, or for any

purpose other than the one for which they were intended. Reserved words are

for syntactical purposes and can be divided into three categories:

a. Connectives.

b. Optional words.

c. Key words.

A complete list of reserved words in COBOL used by the compiler is included

in appendix A.

Conne£tives. Connectives are used to indicate the presence of a qualifier

or to form compound conditional statements. The connectives OF and IN are

used for qualification. The connectives AND, AND NOT, OR, or NOT are used

as logical connectives in conditional statements. The comma is used as a

series connective to separate two or more operands.

Optional Words. Optionai words are included in the COBOL language to improve

the readability of the statement formats. These optional words may be inclu­

ded or omitted, as the programmer wishes. For example, IF A IS GREATER THAN

B ... is equivalent to IF A GREATER B Therefore, the inclusion or omission

of the words IS and THAN does not influence the logic of the statement.

Key Words. The third kind of reserved words is referred to as being a key

word. The category of key words includes the verbs and required words needed

to complete the meaning of statements and entries. The category also includes

words that have a specific functional meaning. In the example shown in the

previous paragraph, the words IF and GREATER are key words.

2-9

LANGUAGE DESCRIPTION NOTATION

COBOL reference manuals have almost universally adopted a particular form of

notation. This manual uses that notation as described in the paragraphs that

follow.

Key Words

All underlined upper case words are key words and are required when the

functions of which they are a part are utilized. Their omission will cause

error conditions at compilation time. An example of key words is as follows:

IF data-name IS [.NQ.'.!] {
NUMERIC }
ALPHABETIC

The key words are IF, NOT, NUMERIC, and ALPHABETIC.

Optional Words

All upper case words not underlined are optional words and are included for

readability only and may be included or excluded in the source program. In

the example above, the optional word is IS.

Generic Terms

All lower case words represent generic terms which must be supplied in that

format position by the programmer. Integer-I and integer-2 are generic terms

in the following example:

FILE-LIMIT IS integer-I 1'1!filI integer-2

Braces

When words or phrases are enclosed in braces [}, a choice of one of the

entries must be made. In reference to the key words example above, either

NUMERIC or ALPHABETIC must be included in the statement.

Brackets

Words and phrases enclosed in .. brackets [] represent optional port ions of a

statement. If the programmer wishes to include the optional feature, he may

do so by including the entry shown between brackets. Otherwise, it may be

omitted. In terms of the example above, the word enclosed in brackets is op­

tional. However, if the programmer wishes to distinguish between NUMERIC and

ALPHABETIC, he must choose one of the words enclosed in braces.

2-10

Ellipsis

The presence of three consecutive periods (...)within any format indicates

that the data immediately preceding the notation may be successively repeated,

depending upon the requirements of problem solving.

Period

When a single period is shown in a format, it must appear in the same position

whenever the source program calls for the use of that particular statement.

2-11

SECTION 3
CODING FORM

GENERAL

The format of the COBOL coding form (figure 3-1) has been defined by CODASYL,

by ANSI, and by common usage. The B 1800/B 1700 COBOL compiler accepts this

standard format. Should program interchange be a major consideration, the

user is directed to the ANSI standard.

The same coding form format is used for all four divisions of a COBOL program.

These divisions must appear in proper order: IDENTIFICATION, ENVIRONMENT,

DATA, and PROCEDURE.

SEQUENCE FIELD (CARD COLUMNS 1-6)

The sequence field may be used to sequence the source program. Normally a

numeric sequence is used; however, the B 1800/B 1700 compiler allows any com­

binations of charact~rs. A warning message is given if there is a sequence

error. The B 1800/B 1700 compiler provides for insertion or replacement of

card images during compilation, controlled by the sequence field. (See section

on "COBOL COMPILER CONTROL," section 11.)

CONTINUATION INDICATOR (COLUMN 7)

Column 7 has several functions as follows:

d. The letter L followed by a 11 library-name" entry causes all suc­

ceeding source card data to be placed into the COBOL Library File

during compilation. Termination of the action takes place when an

L card is encountered followed by spaces.

3-1

f"llOGlllAM

PllOGRAMMER

f"AQI LINE
NO. NO.

BURROUGHS COBOL CODING FORM
ADDITIONS. DELETIONS AND CHANGES

C080l. DIVISION PAGE

OAT'[10£NT. 7S ID

A I z

I I

+--...._.___.....__..._...__.__._~_.._~-· --+...L_L_J__L_L....._.J-...__...__~__._,_-L.-1...-'--'--'--'-+--'--'--'--.l.--l--'--1-'--l...-4--'--'--l--L-..1.-..1.-.L..-.L..-L......1~--L-1--L.--L......1-...i_..L_.J._.A-~

.... --L-L.-L-4-_..._......_~--L--..__..._....__._;_+i...-...1~_.._-J..-~' _l_LL+...._I _.__..__....:l__.!__.___.___.___._-+-_.__.__._......_....._..__ ... __...__.--+__.___.___._....L..-A---'--'--...__....__-+-....__.i...-L-......1--1.-'---'-....L..-'-"'"'-_,

----~_.__~~~'--~L-...O--.L---&._.___.__._1_,~1___.1_....__.__~_,_1_._1-41_L-+l _._......_-'-"'-"'--~l.-l~--'--l.-'--'--'--'--'-...&--'--+-.&.-L--L-.Jl...-L-l..-L-1...~-4--'---'--'--'--'--"'-'--'__.-'-__.

-· .. __ L_LJ-+_.__...__.__._-'-_._....._....._..._4--11....--ll...-L--L--1.-L.-'-~-..L_t-'.__._....__.___.__.__._~_._-+-......._~..__........,__.__.__.___.___..._.__.__..__._....._.J-,,__..._L-..<1---.A.-'---L--L....L..-'--'--'--'--'--_.

Figure 3-1. COBOL Coding Form

e. The presence of a hyphen (-) indicates that the last word or literal

on the previous card was not complete, and is continued on this card

beginning beyond margin A.

Words and numeric literals may be split at any point by placing a hyphen in

column 7 of the following card. Any rightmost blank spaces on a card are

ignored as are the leftmost blank spaces on the continuation card.

Non-numeric literals are split in a slightly different fashion. On the ini­

tial card, starting from the quotation mark, all information through column 72

is taken as part of the literal 7 and on the next card a quote mark must be

used to indicate the start of the second part of the literal.

MARGIN A (COLUMNS 8 THRU 11)

DIVISION, SECTION, and PARAGRAPH headers must begin in margin A. A division

header consists of the division name (IDENTIFICATION, ENVIRONMENT, DATA, or

PROCEDURE), followed by a space, then the word DIVISION followed by a period.

A section header consists of the section-name, followed by a space and then

the word SECTION, followed by an optional priority number, followed by a period

A paragraph header consists of the paragraph-name followed by a period. The

first sentence of the paragraph may appear on the same line as the paragraph

header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph

headers are fixed and only the headers shown in this manual are permitted.

Within the PROCEDURE DIVISION, the section and paragraph headers are defined

by the user.

MARGIN B (COLUMNS 12 THRU 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers should start

in margin B.

RIGHT MARGIN (COLUMN 72)

The text of the program must appear between columns 8 and 72, inclusive. A

word or statement may end in column 72.

IDENTIFICATION (COLUMNS 73 THRU 80)

The identification field may contain any information desired by the user. The

field is ignored but is reproduced on the output listing by the compiler. This

field normally contains the program name.

3-3

PUNCTUATION

The following rules of punctuation apply to the writing of COBOL programs

for the B 1800/B 1700.

a. A sentence is terminated by a period followed by a space. A

period may not appear within a sentence unless it is within a

non-numeric literal or is a decimal point in a numeric literal or

PICTURE string.

b. Two or more names in a series may be separated by a space or by a

comma. If used, commas can appear only where allowed.

c. Semicolons (;) are used only for readability and are never required.

d. A space must never be embedded in a name; hyphens should be used in­

stead. (A hyphen may not start or terminate a name.) For example:

NET-PAY

SAMPLE CODING

An extract sample from a source program, showing the continuation of both

words and non-numeric literals, is illustrated in figure 3-2.

3-4

VJ
I

CJ1

...

I

BURROUGHS COEIOL CODING FORM
ADDITIONS, DELETIONS AND CHANGES

PROGRAM

CON\ lN~~-r ~QN
PROGRAMMER ~

A:M

·~~~~-+1-c-oe_oc~~-v-1s-1o_N~--~~~~--P-•_•~--''--~~~~I.~~---
- DATE 10£NT 1S 10

P'AGI£ LINE
NO. NO.

3 ..

.l _l _l

l _L _l

l _l l

_l .l .l

l _l l

.l _l ..l

l .l .1

.l l l

_l l .l

_l _l .1

_l l .l

.1 .l ~

_l _l .l

.l _l _1

.l _l ..l

.l .J. .1

.l .J. ..1

.J ..1 .l

..1 .l ..1

.1 ..l ..l

_l .1 .1

.J. l .l

..l l J

..l .1 _l

l .J. ..l

A

s 7 • II

F~1l.,i_E

_l 1 1

l L _l

I- 1 i l

_l ..1 _l

lL ..1 _l _l

Wi_O~K

..l. l l

IOl..1..1

I- 1 l l

I-
j ..1 _l

1-
_l ..1 l

- _j_ _l ..1

I l I

- _1 _ _1 .l

_l I _1

I/ _1 _1 .l

_l _1 _l

P,R~

.l ..1 J

I z

12 22 32 42 61 71

-_i<:._O~i"Ti 'RiCL .1 js1E.1 L1 E f: j
I I

'11 1'Pi1<1l:.1NiTrI:tN@1F.~1:t:~,-~~E 1 ~1~A~iS;;....L.;1~=1=l:.iGt~~~~1~1Ti-'-'-""Q..__~ITi~1.=-=~~..__._,__.__,_-+"-"<=.l.:..&.;:.u.~.1:-1"--'--L-~

I 1 I I~ .1A1L j"T"1~~~lie1 I ~(~ .. 1E1~ 1S1 .. I 1 I I L.L '-+-'--~--'--~~--'----'--~~ .. ~~..L-.JL____.L--'-~--'--+--'--'---'---'--'--....__.__._-'-~

J 1 1 1 1 1 1 i 1 ,S.E1bi E1<:.i Ii 1M1A:1~j11E1f<.il:.trJ1f=ILltr1 16~1~;I:.i<?t~1 ~9t f1::ft:JS1K1
T

l l I 1~'RN1E1 j,, I laq~T1Ei ~.&rr:i.Et 1A.1Ri E1 A:1 • L.L_.l..__._-11,__....__._....__._._I _.1___._~~1....-... _.__....__. __ _..__...__.--L.. __ ~~_.__....__.._~_.__~-

_l_ll11-1J-11 I I I I I I

_l_l__l_ll l_l_l_J._+_1 _l 1 1

11:.iJJ G-i-1SirC1'l< 1~1E1

L.L.L_.~I ~l-+-l_._....L-..__.~-~...1.-..._'"--+l-'--'--'-~!_L_.._j_._~l-l,,_L-L_._-'-..__._.__.__.__._.L--.L-L.-'--4-.l.......ll'-l.l..-L...-'--I

L..l_L_~I ~l-+-j--'-~~___...._-1-.L-..J~--L+l-'---'-.1.-l--'---'--"-'~~1._L--L-1-L--1---1---'-.L-1---4---'-.i.._L-l.--L-'-L-1--J.-..L--1

~i.:...1/J.1 =-· +-I -'-~--'---'--1'--'---'---L-11---1.--'---'--.&.-L.--L~i....-i..~j1-LL.~----...__.__._-+-...__.~_..__..__. ___........__

L.i.-L--1 I I L..L...L-L-1..-L-L 1.__..1 __.__._....L-~~-'--'-~1.._ .. _._~-'--~--L.~--L-+--&---'---L.~..l..-L...J.--L.-L-..___.

1~E1C.-'

1 l I I 1 l I I I I I I I I

~- r-1-16:eiWi-1-1-1L1I:iT1E1R 1A1L1~L~•i...._.l__._~1__._1 ~1_Ll_L.~1--4-~P~15"~1_.__.__._.1N_,__1Ui_.__M~1---,_...__.__.. ___ _,__.__..._.-+_._....L-_.__._.__,___,_...._.~--

l l I 1 I l 1 1 I I I I I I LLLI r16-r=_iTJ-1 f lal~I N I A. L1¥..__"1 1_•~1 ;li--~~~__._.......__ __.~--_.__...___.....__._.___.__.__....__

_l _l _l 1 j 1 I I lh~loi. tl
T

~LI I I I ;'RJ:j~ 191'11

j 1. ..1 ..1 _l J. ..1 +..L...!........_L_ L.L__L_. I I I I I I L.i...I '7..:...J.-::1'1_..{.L..A...f, -4--'--'--L-..J..-'-........... -'--L-..L--+---'--'--~'--l..-'--'--..!.-~--'--'--'--.1.......1-L.....L-...L-~
L _l_ I l 1 l I ;__µ_I I I

I I :I I I I I I 1015'i 1t...l0 1N.
.i"_il-\iA~,,C1uE~'i<p, ~

L .. L.L~1V1lf1'11·1 I I I I I I I I I I

1-1N1ul.~- 1 -1LildTi , (P,r1c..1
1
)(il13c,).

~ ,,
"ALL C.

_1
I

_l _l .l _l I I I I I I I I I I

_1 _L_L.J.._ I I I I I I .. I I I I

_1_1111111 I I I I I I

E ~tAi§E1 ~J:tV1J:iSiJ:AtJ1•

_l I I I I I I I I I I I I I

~L..l..!...~.~1;µ1+~1~1~-.Lj_._1•~!........J.-+-~-'-~..__._-'-_._...._.L-+-~_,_-'--.L--1.--L.....L---L-...._~_._-'--'-"--'--L.....L--L-.....__.
L_L_L.~1__._~1--._._..._..__..1_~1_._1 ~1-L--4--'-L_.._1__._..._."-J._._...._._ _.__.._...._..........,........J._._ __ ..._~_,__._-'-...__._.__.__

L..L..L.~·_._~1~-'--~~_Lj_l_.~1-'--4-_,_-'-'--L-'--L----L-'--L--t--.._-'--.L.....JL--l.......L----'--..!.-L-4--'--'--'---'-l"---L-L-..L-~l-.I

L..L..L.~1_._~l-'--'--'--'-l-•-'----'---'--6---1_._-'-_._.l.......j~_,____._+-·L--O.--L--'---'-......i--L-L.-4---'-L-...l-L-'--'-......i--L.....L--I

L..L..L.~1_._~,_.__.__._.1.-1~•-'-........... -'--6---1'--'--'-...l.-.L.....J~-'-_,_+-·.._....~__,__--'--......i-'--'---t---'-L-...l"--'--L--'--.l.-l-L-'--I

L.L...L..~1_._4,___...._-i-...__.~L.~I_,__--~+-'._.._,___,_..._.__._,___,___._._.___.._.....___...._._,__ __ ...__~~------.. _.__

h-1- l-1'P.~1'K.1~~1RAA H1 •1 _i F,~~ L.L...L. I 1M0\/1 E'1 ~;;,..~4-~1Si"""'1 '1 1-+--1 _.___.___...._...__.__.__._ L-+_....__,_...._~_.__.__.__...._~-'---'--'-......i---lo.._.__....L-.1....-o4!
'T

1-
..1 .J. _l ..1..l.i.J..1-1.l.l-1-1..1.l l 1

I
~10,01 iTo 1N1U~M,-1-1ljl:iT,-, 1,;.~. 1

1
..l .l .J. .J. .J. l 1 l i 1 l _l ~~ 1T.H

-1
'T

.l .J. .J. .J. _l _l _l fin 'i!.1fti.r.l f' j-\ 1 - l l I I
'T

~ i'=1 j11\:\9 lJ\ L 1Gf?1 iT101 1 t=,I$5,T r1-? IA"
.l__L..J_~l_._~1-· -'--'-'---'--~1~~1__._1-'-~-6---1'--'--'-~.L.....l~-'-~+-r-&-..1.--L--'--..l..-.l.-l-'--'---+-~L-...1-L--L....l-......... --.L.-"-.....

_l ..1 .l ..1 _l 1 l 1 J I J J I I l .l _l

Figure 3-2. Example of Continuation of Words and Literals

SECTION 4
IDENTIFICATION DIVISION

GENERAL

The first part or division of the source program is the IDENTIFICATION DIVISION.

Its function is to identify the source program and the resultant output of its

compilation. In additon, the date the program was written, the date the com­

pilation was accomplished, plus other pertinent. information may be included

in the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division is as follows:

IDENTIFICATION DIVISION.

[PROGRAM-ID. Any COBOL word.]

[AUTHOR. Any entryJ

rTNS'T'"T T l\l'"flTQN A + 1 L.l.1 .1.nJ...JJ...J.n.J.. J.. ... • ..ny en .,ry . .J

[SECURITY.

[REMARKS. Any entry. Continuation lines must
be coded in Area B of the coding formJ

The following rules must be observed in the formation of the IDENTIFICATION

DIVISION:

a. The IDENTIFICATION DIVISION must begin with the reserved words

IDENTIFICATION DIVISION followed by a period.

b. All paragraph-names within this division must begin in Area A

of the coding form.

c. An entry following a paragraph-name cannot contain periods, with the

exception that a period must be present to denote the end of that

entry.

4-1

the time
the form

With the exception of the DATE-COMPILED paragraph, the entire division is

copied from the input source program by the compiler and listed on the output

listing for documentation purposes only.

4-2

CODING THE IDENTIFICATION DIVISION

Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be

coded in the source program. Note that continued lines must be indented to

margin B, or beyond.

4-3

BURROUGHS COBOL CODING FORM
ADDITIONS, DELETIONS AND CHANGES

PROGRAM C080l. DIVISION PAGE

PROGRAMMER OATt IOENT IO

PAGI LINE z
NO. NO.

3 4 e 7 e II 12 'SZ 42 11 7t

I I

1,-..1-.-1-4-1--~~'+--J'--"---A..-+-L-'-~_.__._._1I!lL.~15€1~:=J'--1..:_.i..:..;~,_J.L....i.!lo..u.::..l~:::.J:::..=.Jo:=miµ-.L:::.l.-J~~!L=..&:=.L-...J!!!:~--~~-!--L-l..-..l.-+-'"'--'L..-l.,_j._-L-L...j..-L-........... --t

.,___._--+-...._-,,_._..~....L...1-+-_.__,_~="-'=-'-"-P~~·-F~J:.>.J~j[j.1_i_L.l.___f-~'-'-...._~1~1~_._-'-"""-+-....._....__._~"""-..L-~_.__._--+-_._...._~~_...__.__._..._.......,._._~_._.._._. ___ _.__._~

I I I I I I -1..--I _,_.....__..__._,___,_........_.....__""---4~_,___,__.__....__.__..__ _.....__,__.__......_~1-+1--..L-L-...1.-Jo..--.. --1

......... _._-+-.._-.,-~_.__,__,_+--'.___.__.__.,__,__,_.L--.;........._-+-_,_......_..__...__.__.__._~L_L_....__..__.__._....._.........,.__._.__.,_-+-_.__.__..__.~_,__._...__.._.._.__,_....._.........._...__._.__.__,_-+-.__.__.,_.__,_...._..__._.__._

I I I I

Figure 4-1. IDENTIFICATION DIVISION Coding

SECTION 5
ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a COBOL source program.

Its function is to specify the computer being used for the program compilation,

to specify the computer to be used for object program execution, to associate

files with the computer hardware devices, and to provide the compiler with

pertinent information about disk storage files defined within the program.

Furthermore, this division is also used to specify input-output areas to be

utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SKCTION

contains the overall specifications of the computer. The INPUT-OUTPUT SECTION

deals with files to be used in the object program.

ENVIRONMENT DIVISION STRUCTURE

The structure of this division is as follows:

ENVIRONMENT DIVISION.

[[CONFIGURATION SECTION.]

[SOURCE-COMPUTER ...]

[OBJECT-COMPUTER ...]

[SPECIAL-NAMES ...]

(INPUT-OUTPUT SECTION.]

[FILE-CONTROL ...]

[I-O-CONTROL .]]

The following rules must be observed in the formulation of the ENVIRONMENT

DIVISION:

a. The ENVIRONMENT DIVISION must begin with the reserved words

ENVIRONMENT DIVISION followed by a period.

b. All entries other than the ENVIRONMENT DIVISION source line are op­

tional but, when used, they must begin in Area A of the coding form.

S-1

[CONFIGURATION SEcliONJ

CONFIGURATION SECTION

The CONFIGURATION SECT10N contains information concerning the system to be

used for program compilation (SOURCE-COMPUTER), the system to be used for

program execution (OBJECT-COMPUTER), and the special-names paragraph, which

relates hardware names used by the B 1800/B 1700 COBOL compiler to the mnemonic­

names in the source program.

5-2

r SOURCE-COMPUTER
1

SOURCE-COMPUTER

The function of this paragraph is to allow documentation of the configuration

used to perform the COBOL compilation.

The format of this paragraph has the following two options:

Option 1:

SOURCE-COMPUTER. COPY library-name

[. REPLACING word-1 BY word-2

[• word-3 BY word-4] ..• J .

Option 2:

SOURCE-COMPUTER. {any entry} .

This paragraph is for documentation only.

I OBJECT-COMPUTER I
OBJECT-COMPUTER

The function of this paragraph is to allow a description of the configuration

used for the object program.

The format of this paragraph has the· following two opt ions:

Opt ion 1:

OBJECT-COMPUTER. COPY library-name

[• REPLACING word-1 BY word-2

[• word-3 BY worct-4] ···].

Option 2:

OBJECT-COMPUTER.

SEGMENT-LIMIT IS priority number]

Priority numbers used in the SEGMENT-LIMIT clause must be positive integers

with a value from 1 to 49. The SEGMENT-LIMIT clause specifies the limit of

the fixed segment for sections numbered from 0 to 49. See SEGMENT CLASSIFICA­

TION, PROGRAM SEGMENTS, and PRIORITY NUMBER$.

oyerlayable
o~r~tion.

the

l:f in.teg~r-:r

compiler will

to t-eflect ··••the

in the same OBJECT

OBJECT-COMPUTER

5-5

SPECIAL-NAMES

SPECIAL-NAMES

The function of this paragraph is to allow the programmer to assign a signifi­

cant character for all currency signs, to declare decimal points as being

commas and to provide a means of relating implementor hardware-names to user

specified mnemonic-names.

The format of this paragraph has the following two options:

Option 1:

SPECIAL-NAMES. COPY library-name

[REPLACING word-I BY word-2

[word-3 BY word-4 J ... J .

Option 2:

SPECIAL-NAMES. [CURRENCY SIGN IS literal]

[l, implementor-name IS mnemonic-name] .J
[, DECIMAL-PQINT IS COMMA]

This paragraph is required if all declmal points are to be interchanged with

commas and/or if all currency signs are to be represented by a character other

than a dollar sign ($).

This literal is limited to a single character and must not be one of the

following:

a. Numeric digits 0 through 9.

b. Alphabetic characters A, B, C, D, J, K, P, R, S, V, X, Z, or blank.

c. Special characters * + - . ' () "

The clause DECIMAL-POINT IS COMMA signifies that the functions of comma and

period are to be exchanged in the PICTURE character-string and in numeric

literals.

If implementor-name is specified, it must be one of the allowable B 1800/

B 1700 COBOL hardware-names which may be specified in FILE-CONTROL paragraph

For example:

PUNCH IS CARD-PUNCH-EBCDIC

5-6

SPECIAL-NAMES

The mnemonic-name device can be directly referred to in the ASSIGN clause.

The SPECIAL-NAMES paragraph statement ends with a period as a delimiter.

Periods between clauses are not allowed.

5-7

I INPUT-OUTPUT SECTION I
INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information concerning files to be used

by the object program, the manner of recording used or to be used, and the

presence of any multiple-file tape or disk.

5-8

FILE-CONTROL

PILE-CONTROL

The function of this paragraph is to name each file, to identify the file

medium, and to specify a particular hardware assignment. The paragraph also

specifies alternative input-output areas.

The format of this paragraph has the following three options:

Option 1:

FILE-CONTROL. library-name

{

word-2 1
data-name-2
literal-I

[REPLACING {
word-I }
data-name-I

[, {
word-3 }
data-name-3 {

word-4 1]] data-name-4 ...
literal-2

Option 2:

FILE-CONTROL.

SELECT (OPTIONAL] f ile-name-1 ASSIGN TO hardware-name-1

rFOR MULTIPLE

L

[,RESERVE { ~~teger-2} [ALTERNATE

[
'{FILE-LIMIT IS }

FILE-LIMITS· ARE

r {literal-m }
L' data-name-m

[,ACCESS MODE IS

{
literal-1 }
data-name-1

{
THRU }
THROUGH

{ RANDOM }]
SEQUENTIAL

(,ACTUAL KEY IS data-name-3]

[,PROCESS ING MODE IS SEQUENTIAL]

{
THRU }
THROUGH {

END }
literal-2
data-name-2

{literal-n } J J
data-name-n · · ·

. [SELECT] . . .

5-9

FILE-CONTROL·

Option 3:

FILE-CONTROL.

SELECT sort-file-name ASSIGN TO [
integer-3 J
data-name-4 $(Jl'J{ {

TAPES}
TAPE
DISK

Option 1 may be used when the system's library contains the library-name entry.

See COPY verb, section 7.

The files used in a program must be the subject of only one SELECT statement.

If it is to be OPENed INPUT-OUTPUT or I-O, it must be present in the MCP

Disk Directory.

The OPTIONAL clause is applicable to input files only. Its specification

is required for input files that are not necessarily present each time the

object program is executed.

The ASSIGN clause must be used in order for the MCP to associate the file

with a hardware peripheral device. The allowable entries for hardware-name-1

are:

5-10

CARD96

CASSETTE

DISK (or DISC)

DISK-DFCl

DISK-DFC2

DISK-DPCl

DISK-DPC2

DISK-HPT

DISKPACK

PRINTER

PT-PUNCH

PT-READER

PUNCH

QUEUE

READER

READER-SORTER

REMOTE

TAPE (7 or 9 channel MCP to assign)

TAPE-MTCl

TAPE-MTC2

TAPE-MTC3

TAPE-MTC4

TAPE-MTC5

TAPE-7 (7 channel only)

TAPE-9 (9 channel only)

to be placed on a printer.

The BACKUP option will

disk files for subsequent

file

I FILE-CONTROL

With the exception of the ASSIGN clause which must immediately follow the

SELECT clause, the rest of the clauses in this paragraph may appear in any

order.

The MULTIPLE REEL clause is for documentation only. This function is performed

The RESERVE clause allows a variation of the number of input or output physical

record buffers to be supplied by the MCP at the time the file is opened. Each

alternate area reserved requires additional memory to be utilized, and will be

the size of a physical record as defined in the FD statement of the DATA

DIVISION for that specific file. Up to 63 alternate areas may be specified.

The RESERVE clause has an additional function when used for QUEUE files. In

this case, it is used to specify the number of messages to be contained in

memory. If more messages are allowed in the QUEUE than are allowed in memory,
the remaining messages will _be placed on disk. (See the discussion of QUEUES
in Section 10).

I FILE-CONTROL I
No alternate areas are reserved when the NO option is specified or if the

entire option is omitted.

The MCP will keep track of record data being passed to or from the buff er and

the record work area.

The programmer can use the READ or WRITE statements without regard to the

buffering action taking place.

The FILE-LIMIT clause is invalid if specified for a sort file description (SD)

entry. The FILE-LIMIT clause for input and output files associated with the

SORT verb will not be effective during execution of the SORT unless an input/

output procedure is declared.

The FILE-LIMIT clause specifies the following:

a. For SEQUENTIAL access, logical records are obtained from, or placed

sequentially in, the disk storage file by the implicit progression

from segment to segment. The AT END imperative statement of a READ

statement is executed when the logical end of the last segment of the

file is reached and an attempt is made to READ another record. The

INVALID KEY clause of a WRITE statement is executed when the end of

the last segment is reached and an attempt is made to WRITE another

record. The END option specifies that the compiler is to determine
the upper limit of an existing file. No ACTUAL KEY entry is neces-

sary for the SEQUENTIAL mode.

b. For RANDOM access, logical records are obtained from, or placed

randomly in, the disk storage file within the specified FILE-LIMIT.

The contents of ACTUAL KEY not within the specified limit will cause

the execution of the INVALID KEY branch in the READ and the WRITE

statements. The ACTUAL KEY entry must be specified,

In the FILE-LIMIT clause, each pair of operands associated with the key word

THRU represents a logical segment of a file. The logical beginning of a

disk storage file is considered to be that address represented by the first

operand of the FILE-LIMIT clause; the logical end is considered to be that

address as specified by the last operand of the FILE-LIMIT clause.

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the order in which

they are specified. For example:

FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7

This example will result in the sequential access of records 1, 2, 3, 4. 5,

10, 11, 12, 3, 4, 5, 6 and 7 in that order.

5-12

I FILE-C:ONTROL

The data-names used with the FILE-LIMIT clause must be defined with a PICTURE

OF 9(8) COMPUTATIONAL.

For the ACCESS MODE SEQUENTIAL clause, the disk storage records are obtained

or placed sequentially. That is, the next logical record is made available

from the file on a READ statement execution, or a specific logical record is

placed into the file on a WRITE statement execution. The ACCESS MODE

SEQUENTIAL clause is assumed if ACCESS MODE RANDOM is not specified.

Values of the ACTUAL KEY data-name-3 are controlled by the programmer, includ-­

ing any execution of the USE FOR KEY CONVERSION statement. The value may

range from 1 to n, where n equals the number of records in the file or as

reflected by the FILE-LIMITS clause. The ACTUAL KEY signifies the relative

position of a record within the file and is equated to a data-name at any

level which is defined with a PICTURE OF 9(8) COMPUTATIONAL. ACTUAL KEY is

not used for ACCESS MODE SEQUENTIAL files.

be 10 bytes. If ACTUAL KEY is omitted, message
taken from the message length being written,

The PROCESSING MODE IS SEQUENTIAL clause is for documentation only.

All integers must be of positive values.

5-13

FILE-CONTROL

The sort-file-name in Option 3 is the SD level file-name to be used by the

SORT or MERGE verbs. Option 3 may also be used to specify the number of tapes

to be used as work files for TAPE SORT.

If data-name-4 is specified, it must be defined as an integer. If this state­

ment specifies tape work files and ·integer-3/data-name-4 is omitted, the

default number of work tapes, three (3), will be used. Three is also the

minimum allowable number of work tapes. The maximum number of work tapes

which may be specified is (8).

5-14

11-0-CONTROL I
1-0-CONTROL

The function of this paragraph is to specify memory area, to be shared by

different files during object program execution and the point in time that a

rerun procedure is to be established.

The construct of this paragraph is:

Option 1:

T-('\-f"l('\l\Tr°P~('\T
i V 'VV.L., .&..&."V.l...i • COPY library-name

[REPLACING word-I BY word-2

[• word-3 BY word-4] ...] .

Option 2:

I-O-CONTROL.

[RECORD] AREA FOR file-name-2 (file-name-3]

MULTIPLE FILE f DISKPACK
1 TAD"R
l~

disk-pack-id 1
multi-file-idJ

CONTAINS file-name-5 (POSITION integer-2]

[, file-name-6 [POSITION integer-3]] ... 1.

. ..]

The I-0-CONTROL paragraph may be omitted from the program if the paragraph

does not contain any of the clause entries.

I

I

The SAME AREA clause in this COBOL compiler is used to assign the same address

to the record work areas of all files named in the clause. This area will be

in the overlayable data area of the program when data segmentation is used.

Due to the Virtual Memory concept employed in the design of the system, a given

file's file information block (FIB), buffer, and ALTERNATE AREAS will not exist

5-15

11-0-CONTROLJ

in memory until an OPEN statement in the PROCEDURE DIVISION has been executed.

At OPEN time, the MCP allocates sufficient memory outside of the limits of

the Base and Limit registers to contain these areas. The record work area

of the file is called into the overlayable data area of the program whenever

it is referenced by the program. When the file is programmatically CLOSEd, the

memory being used to contain the file's FIB, buffer and ALTERNATE AREAS will be

returned to the MCP.

COBOL restricts the OPENing of files defined as residing in the SAME AREA

of memory to one file at a time. This system ignores that logic and the re­

sult saves memory over the conventional intent by not using memory to contain

FIB record area, buffers, or ALTERNATE AREAS until a file is actually OPENed

by the program.

When the RECORD option of the SAME AREA clause is used, only the record area

is shared and the associated alternate areas for each file remain independent.

In this case, any number of the files sharing the same record area may be

OPEN at one time, but only one of the records can be processed at a time.

The use of the RECORD option may decrease the physical size of a program as

well as increase the speed of the object program. To illustrate this point,

consider file maintenance. If the SAME RECORD AREA is assigned to both the

old and new files, a MOVE will be eliminated which transfers each record from

the input area to the output area. The records do not have to be defined in

detail for both files. Definition of a record within one file and the simple

inclusion of an 01 level entry for the other file will suffice.

Because these are record areas, in fact, in the same memory location, one set

of data-names is sufficient for all processing requirements, without requiring

qualification.

The MULTIPLE FILE clause specifies that disk files reside on a removable disk

cartridge or disk pack, or two or more tape files are resident on one magnetic

tape. All files resident on a multi-file (that are required in a program)

must be represented in the source program by a SELECT statement and a FD entry

for each file.

For tape, the file-name entries do not have to be defined in the program in

the sequence in which the files appear on the multi-file tape. However, the

MCP will read the label of the next file on tape! check the label against the

file requested, andi if that file is not the one requestea, the MCV will re-

wind the ~ulti-~i~e ta~e ~~d s ar~ se~rchi~g ~or f- from :~e inn of ape.

1-0-CONTROL

When the MULTIPLE FILE clause is used to identify a file on a removable disk

cartridge or disk pack, the MCP will use the specified disk-pack-id to locate

that file. File-name entries are FD file-names in the program indicated as

residing on the specified disk cartridge or disk pack.

The "multi-file-id" is the name contained in the physical tape label of a

magnetic tape containing multi-files, where file-name entries are FD file­

names in the program indicated as residing on the multi-file tape.

All files named in the MULTIPLE FILE TAPE clause have an implied SAME AREA

clause.

Multi-files, or any file contained within the multi-file may be OPTIONAL.

The POSITION clause is for documentation only.

CODING THE ENVIRONMENT DIVISION

An example of ENVIRONMENT DIVISION coding is provided in figure 5-1.

5-17

BURROUGHS COBOL CODING FORM
ADDITIONS. DELETIONS AND CHANGES

COBOL DIVISION PAGE

. _,,_" ------------+--OA--,,Tl----------+-.:,O:-=£=NT:-------'.:7=5--_..._--_,IO~

z
NO. NO.

42 22
--·-····---------··------=-=·="--=--=·=-=---=-=·--=-===========:========r========:;:::::========I 61

__ J_.L

__ J __ L

" ··'--
1 I

. t L ..
I

.J.-~
I
I
I

~'?_J_~\ t;:,g1-::-1~LMiBUt\t9-g,, I I 1'Bt-_il_LZAi.::::::J..0.:=+.:1·~! _;,!__,LI__,_, 1__._1 --L...I1.•~·-+-1 _.!1..--1.l_...i..l _...1....l _..1___._1 __._1 _..1_....1.....,.ft--"l-.A..I __._1 _.1--LI. __.__.__~~t-"'--"---.L.-........ _.__.__...._

QlB!J__.E _ir1-::-Lt;ig_~a_~Tj_~-~-i __ L~1=:-1J 17iQ~ . ..L' _J,L--L., _.i::::i.5=1E::::::....i.::P-~1~M~1 E:::..iji.:-::tJ'-'-rr.L.-'-1-__.1=L='n~M...J,.;l:~m......_-=¥~:.A.,1 .~•L.:.• 1a..:=...::.~1~......_~,,___.__._..........__.__L..-.L_...__.__....__.__._--11

_ $iP1. c_1~br1Nt ~1W\EiS1 -1- 1 1 1 1~6<;;:::WMA:1L1-t"BO}:t1NT1 .LSI 1~f?MM~ . .L.1 _.•~'-+-I _.1.___..1__._1 ~' _.1__._~_._~...-.----__._._._......._~~--_._

I---'---&.-.-+--~ __ L.LL _,_,J.., L 1 I I I I I I I I I I I I I I I I I I I

! .1 L. .J _ ~"11f?t~ rt)1~\1P~T1 151f5<:.iT1IiON1. 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1
I

~-·L_L_ .L.-}·- 5 .. =t~- 1~1~rQ1~1-T&~J-!:.l~_l-+~~1kebtI:L ,o~,,r*cNA.,L, J:>,As'l:1Lftr=ir1A.?.E1 ,As14Sa.~4N, iTic. j'Tje-.~1e. .. , 1

.. _.L.L .l-~... _ .. 1. __ LLf?J~L'"'l~-J~LAi!>fL~i.~1F-jI:.1LJSl i 1A-1S1Str1&N1 1T"A jl>;I:.1S.1K.i I I I I ! I I I I I I I I I I I _L_L.__.1 __.__._......._..___.
I I

. l J i. 1 , 1 1 ~ 1 1. 1 __ 1F1~bi_Ec:1L::~~LTi 1.~~ L!J.. ~:IT~1~'~L1Li.OP__i_g_ ___ , ..._._1._ • .__..1~~~~' ~'~t--+-j -'~'~' ~LL.L__j_l-+_._....__.__..__._.._.__.__..._.""'"-t
I I

: _LL __ L_~_ _ __ .L. __ .. 1 L+.L..LJ.-L~C.1~1§$..l.~--~J>..Ei__~LA1'vj'.bpM1 1~1C..iTitAJAtL1
1
Kiei"t1 r:nr,s1Ki-1~1°tNi'1R.9L..1• 1

l I 1 : t 1 l 1.S1E:1L1E;.1C.,.-r:-1 iM.'.~.Sf'iE-1'2:t-L"'!J_A-_1f>£ L.L~M_2~aj_1"Il;~Ltfr~E1 .. 1 1 I 1 1 + 1 1 I I 1 1 I

I
l : j I 1 , 1 \~E1L1E1<:;T1 i~~~-Li!iAf'~A¥12:1&1N ~ rn111'1E1 1'R1E1.S1E1 v t..>

i l i ; f-1-~ l 1 p1~1Gc:.rr1 Cb1EcqAt.:r~':l';L~~E"1~nFiJ:1L1Ei 1 1 1 1~1~1S.1:+iGNr mo jl:)i11S.1fc:-t.1

t-1-L _J_+ i j , .1 . .L !5'Eb1~L'.StYiM1MARLllnEi~iJ .. .1EL1AiS6~ iTA fb:Ys,1;; 1 ., 1 1 1 1 , 1 , 1 A
~--L,~-1-'~i~~LLi~~~~LLliJ: I I l ~1.~~~~~~~~~~~~~~~---L.~~~~~~~~ I-LL. _L-+.JP:_i:1Q1:-1C.Q~i!iKQ1b._i_-:L..L I I . l j I .. LLL ~-J-t-1-_j_J__l, LJ_.1,_L._l_+ _ _L__I I I I I _L.L.l t I I I I I l I _.L.J.._-+l--'-1 _.1....__..1 _ _.__,___.__......_.___.__._

t·-· __ j__ t. :J ... +---l---.L .. 1.1s1~1M leJ J.R..ie:1C .. P1R~P._i_A&.~if'-°-R 1 ,o A 11L1Y._c..J.LA.Pt--~~-..te.i.&.i.R.~.l1SJ..::JT-tl!\.-e .c:_t .J... __ L_,L_j,_ -"'· . Li-L-_l_L·-'~~~j__
l-LL 1 1 , , , j1-1,u ,L;r1rJ>.,L1E1iF1l,1.J~tl.t!.1K1P1A 1c.,K..~1A,i;:,", ,c,o,tJ,T,Al 1JJ,~, , , , 1. , ~_.__...__...._.__......_....__"'---1
;.L .. 1 1 -~ J __ __l __ L_J...L..L LJ_MAs..iT.E.&Ll•l 1L1~_g.J:AJ

1
i.,-1C1MM1G1E-1!>1-t1l 1L1E1 1~1u HiN,'1'2,lfi-,F,1,L,E, • 1 1 -f--L..J_J__L_L_J_LL....L

~_:_L_i___ --L~~ t J.. .L.Jl_ .. J. J_ l _.L_..l____J,_L_j _ _l__+_L .. _L_L__j_ _ _L_Ll I I I I I I I I I I I I I ! l ! I I I I I I I I I I L.L..LL..L....L I I I I I I I I I .

L_ .L . L ... J l I .I . j l. i.. L ... L ... J .L. L ..L _L_L,_L..J___._---f--'---..L.-.1---L.--L--1-_..___.l--L-4--L---L--L--l.-.l-J--L--'--'--+-..__.__.___._~_.__J...__J....___.-+_.__.__.....__..___.__.__...._--£.-~""---t:
I •
iLL .. L ... L-L -.. ,.J I 1' 1 J l .l._1..~l- L_L_l-t.......l~LL.,_L_,L __ ..L L..L I I I I l~.l....._l......J....__L+· I I ..L..,..l..._I 1....L-L_L_.__...__.._.....__.__._ ...

~LL .. ._f, t I I L 1-l . .L LLLJ. L.LLj-' l __ J J l J l .. J. J_ j _L J .LLJ . .LLJ J-f-1--1. I I I I

......... ______ 1.....__..L.J_._....J......L..J. I I I I I I .I I I I I I I I I 1 I JI I I l 1 I I I I

Figure 5-1. ENVIRONMENT DIVISION Coding

SECTION 6
DATA DIVISION

GENERAL

The third part of a COBOL source program is the DATA DIVISION which describes

all data that the object program is to accept as input, and to manipulate,

create, or produce as output. The data to be processed falls into three cate­

gories:

a. Data which is contained in files and which enters or leaves the in­

ternal memory of the computer from a specified area or areas.

b. Data which is developed internally and placed into intermediate stor­

age, or placed into a specific format for output purposes.

c. Constants which are defined by the programmer.

DATA DIVISION ORGANIZATION

The DATA DIVISION is subdivided into two sections:

a. The FILE SECTION defines the contents of data files which are to

be created or used by an external medium. Each file is defined

by a file description, followed by a record description or a series

of file-related record descriptions.

b. The WORKING-STORAGE SECTION describes records, constants, and non­

contiguous data items which are not part of an external data field,

but which are developed and processed internally.

I DATA DIVISION STRUCTURE I
DATA DIVISION STRUCTURE

The general structure of the DATA DIVISION is as follows:

DATA DIVISION.

r
FILE SECTION.

[
}file-description-entry}

!sort-description-entry

r

[record-description-entry] ...] ··J
lWORKING-STORAGE SECTION.

[
77-level-description-entry] ···]

record-description-entry

Each section of the DATA DIVISION is optional and may be omitted from the

source program if not needed. However, if a section is included, it must be

incorporated in order of appearance shown above. These sections are described

on the following pages.

The file description defines information pertaining to the physical aspects

of a file. Such items as number of records in a block, identification of

records On the file, the presence or absence of labels, etc., are included

to describe the entire file.

The record description presents logical characteristics of each record. This

includes the layout of items within each record type, size of various items

in the record, indication of the range of values for each item, picture

of the contents of each item, whether the item is signed or not, and the

usage of an item within the program. All of these parameters may be utilized

to define logical characteristics of each record.

The WORKING-STORAGE SECTION is comprised of internal record descriptions and

individual unrelated items, which are described as record entries, or parts

of record entries.

In summary, the DATA DIVISION contains information pertaining to the data to

be used by the program: the files used, the records contained in each file,

and items comprising each record; in addition, working storage and constants

may be specified.

6-2

FILE AND RECORD CONCEPTS

FILE AND RECORD CONCEPTS

The approach taken in defining file information is to distinguish between the

physical aspects of the file and the conceptual characteristics of the data

contained within the file.

Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input

or output media and include such features as the following:

a. The mode in which the data file is recorded on the external medium.

b. The grouping of logical records within the physical limitations of

the file medium.

c. The means by which the file can be identified.

Conceptual Characteristics of a File

The conceptual characteristics of a file explicitly define each logical entity

within the file itself. In a COBOL program, the input or output statements

refer to one logical record.

It is important to distinguish between a physical record and a logical record.

For COBOL a logical record is a group of related information, uniquely identi­

fiable, that is treated as a unit.

A physical record is a physical unit of information whose size and recording

mode are convenient to a particular computer for the storage of data on an

input or output device. The size of a physical record is hardware-dependent

and bears no direct relationship to the size of the file of information con­

tained on a device.

A logical record may be contained within a single physical unit; or several

logical records may be contained within a single physical unit. There are

several source-language methods available for describing the relationship

of logical records and physical units. Once the relationship has been

established, the control of the accessibility of logical records as related

to the physical unit is the responsibility of the operating system. In this

manual, reference to records means to logical records, unless the term

"phys ica 1 record" is s pee if ica l ly used.

The concept of a logical record is not restricted to files but may be applied

to all sections of the DATA DIVISION.

I FILE AND RECORD CONCEPTS I
Record Concepts

The record description consists of a set of DATA DESCRIPTION entries which

describe the characteristics of a particular record. Each DATA DESCRIPTION

entry consists of a level-number followed by a data-name, followed by a

series of independent clauses, as required.

Example:

01 ITEM-ONE PICTURE IS X(6).

The maximum size of a record description (i.e., the sum of the maximum sizes

of all the items subordinate to an 01 level item) is restricted to 65,535

bits (SK bytes).

6-4

LEVEL NUMBERS CONCEPT

LEVEL NUMBERS CONCEPT

The concept of hierarchy is inherent in the structure of a logical record.

This concept arises from the need to specify subdivisions of a record for

the purpose of data reference. Once a subdivision has been specified, it

may be further subdivided to permit more detailed data referral. In other

words, level numbers define the interrelationship of the items comprising

the record and allow the programmer to access individual items or groups

of items.

The most basic (least generic) subdivisions of a record, that is, those not

further subdivided, are called elementary items; consequently, a record is

said to consist of a sequence of elementary items, or the record itself may

be an elementary item.

In order to refer to a set of elementary items, the elementary items may

be combined into groups. Each group consists of a named sequence of one or

more elementary items. Groups, in turn, may be combined into groups of two

or more groups, etc. Thus, an elementary item may belong to more than one

group.

In COBOL, the item relationship is specified by the use of a series of level

numbers. These numbers must not contain more than two characters, and may

range from 1 thru 49. (Special level numbers of 66, 77, and 88 are discussed

later.)

Each record of a file begins with the level number 1 (which may also be

written as 01). This number is reserved for the record name only, as the

most generic grouping. Less inclusive groupings are given higher numbers

(not necessarily successive) up to a limit of 49. Figure 6-1 illustrates a

form of level construction.

The smallest elements of the description are called elementary items. In

figure 6-1, EMP-NO, EMP-COST-CENTER, EMP-LAST-NAME, EMP-FIRST-INITIAL, and

EMP-M-INITIAL are all elementary items, as well as EMP-H-MONTH, EMP-H-DAY,

EMP-H-YEAR, EMP-GROSS, EMP-HOSPITAL, EMP-LIFE, EMP-FICAT, EMP-STATE-TAX,

EMP-WITHHOLDING, EMP-LMONTH and EMP-LDAY. None of these items are further

subdivided; therefore, they are called elementary items.

Each elementary item belongs to one or more groups. In the example, EMP­

HOSPITAL is a part of the EMP-INSURANCE group. EMP-INSURANCE, in turn, is

part of the EMP-DEDUCTIONS group, which is part of the EMP-PAY-DATA group.

Therefore, a group is defined as being composed of all group and elementary

items d~scribed under it, until a level number equal to or less than the

6-5

(j')

I
(j)

'AGI LINE
NO. NO.

A I

3 4 e 1 8 II IZ

.. -1..

c

zz

OSi

OS:

BURROUGHS COBOL CODING FORM
ADDITIONS. DELETIONS AND CHANGES

II)

z

lZ 42 5 z 61 l't

:t'l:
1-P.Ii<i ,q.q,.,

f
I

L..

.,__,.,~--6--"'---__....~,___LL .. .L Oi:' l I l 1EM1P1- jDjr,-, H-l.-=:t.....:~::L::::J...::...L.-1--'--L-1--'--L-.+-J.-J--L-l-...L.......L-..J.~~+...-J--L.-L....J..-.L.....l--L.-L--'--+-J..--'--'-..l--L..l-L-1-1-.&--I

O S' E ?.- H - f\:\o,t'11TjH-1 1 , ;'PiI::,(j ,9 ,9, • , I ,

~_.__~~-7--P-+_J._~4-.J.___J...::::.Cs,::J._l..__L_J,_~' +EM'Pi-,~,--L...U-==-..=...;:.~_.__1.....-1.._.__~--'-..l....4......L-.~?i:...i.::::;i..;:::i._~..L..LL~~-L....J......J'--L....i-J'--'--'--l--L--'-..l.-L_J_..1.-L_J_.L-l.--1

I
.....------+-----'----+--...!_

I

_..__.__.-L-~·-~ 1£1~A/R-1~Alii..::-1l?iAj1~1Ai_,._;:·~'-'~'......__._.._.'-+-_._~1~1~1.__._1~1~1_.__._,._.__._......_....._~_.__,__...._'--'-_.__,__-'--'L-..&.-'--'-"---'--'
f ,M ?,-, c=r ~p, ~, ~,1.._._, -..&....,L, __._, ~·_._........_......_ ---'-~' ?.:i:....L, _._A;;;L......L.Ji'7~{~, <o='_,.j)f.+.1 v..1.,L-19 q....:..a..;, -~•--1-_,__...1.-.~-+.-L..-L-.~__._...L....J--1--.L....J.......I
E 'r?-'bl>1Ei~1t.Ai~~O~N~~.u:•...L..J_.L.J_..L....j~-L-'-1-1...-'-.L..-J-'--+-.L...J.-'-_J,_L..J.-L-'-~_J_...,L_.J.......J--L....LL-L....L....1.-.J

LL 1. ____ 1 __ +__. _ __.__-i---1-.-L..-_j_J_oa 1 , ,
I

. .Ll J __ , _l_L...L I I t I I I

II

Figure 6-1. Level Number Construction

r-

"' <
"' r-

z
c
~ ..
"' ,.,
"' n
0 z
n
"' -0

LEVEL NUMBERS CONCEPT

group level number is encountered. In the example, EMP-PAY-DATA group in­

cludes all items to, but not including, EMP-LAST-REVIEW (which has an equal

level number). Likewise, EMP-DEDUCTIONS group includes all subsequent items

up to, but not including, EMP-LAST-REVIEW (which has a level number less than

EMP-DEDUCTIONS).

Level numbers used in defining successively smaller groupings, working toward

an elementary item, are given in larger values. Although it is not necessary

that they be consistent or consecutive, a level number must not exceed 49. A

level number immediately following the last elementary item of a group must

have a value of less than or equal to the level number for that group and equal

to the level number of some previous group. An exception is that level number

1 (or 01) is reserved exclusively for identifying the beginning of a record

description.

In the above example, the rule prohibits EMP-ANNUAL-SALARY from having a level

number of 2 (or 02). Likewise, the entry name EMP-LAST-REVIEW could not have

had a level number of 10 or 06 because, in the example, no previous group ap­

pears with either of these levels. As a completely separate group, it could

only have a level number the same as that of the major groups previously shown.

Figure 6-2 illustrates another way to visualize the concept of level numbers

by using the same example.

EMPLOYEE INF 0 R MAT I 0 N

E
MN
p u
L M
0 B
y E
E R
E

.,,
3:
"'O
r
0
-< .,, .,,
I

z
c
3:
OJ .,,
::0

c
0
s

EMPLOYEE­
NAME T.,__ _____ ,,..

c
E
N
T
E
R

0
0
(/)

-t
I

0
r'TJ
z
-t .,,
::0

r
J>
(/)
-t
I

z
J>
3:
rTI

~~
::oc;
CJ>o
-tr
I f'T1 -,
Z--z -t_
--t '1>-
rJ>

r

Figure

J>
z
z
c
J>
r
I

(/)

f?
J>
::0
-<

6-2.

:f:O ~
0 J> J>
z-< ::0
-i
::c

NORMAL
GROSS

z
0
:u
~
J>
r
I

G'>
::0
0
(/)
(/)

Concept of

PAY DATA

DEDUCTIONS

INSURANCE TAXES

::c G'> 'Tl (/)

0 ::0 0
-i

(/) 0 J>
"O c J> -i

"'O
.,,

-i I I

J>
r c -i

J>
N 'Tl x .,,
~
0
z

Level Numbers

$! ~o
ol>

-t z -< ::c -t :I: ::c
0
r
0 z
G'>

6-7

QUALIFICATION

OUALIFICA TION

Every user-defined name explicitly referenced in a COBOL source program must

be uniquely referenced either because no other name has the identical spelling

and hyphenation or because it is unique within the context of a REDEFINES

clause, or because the name exists within a hierarchy of names such that

reference to the name can be made unique by mentioning one or more of the

higher-level names in the hierarchy. These higher-level names are called

qualifiers and this process that specifies uniqueness is called qualification.

Identical user-defined names may appear in a source program; however, unique­

ness must then be established through qualification for each user-defined name

explicitly referenced, except in the case of redefinition. All available

qualifiers need not be specified so long as uniqueness is established.

The hierarchy of qualification is as follows: names associated with a level

indicator are the most significant; then names associated with level-number

01, then those names associated with level-number 02, , 49. A section­

name is the highest (and the only) qualifier available for a paragraph-name.

Thus, the most significant name in the hierarchy must be unique and cannot

be qualified. Subscripted or indexed data-names and conditional variables,

as well as paragraph-names and data-names, may be made unique by qualifica­

tion. The name of a conditional variable can be used as a qualifier for any

of its condition-names.

Regardless of the available qualification, no name can be both a data-name

and a procedure-name.

Qualification is performed by following a data-name or a paragraph-name by

one or more phrases composed of a qualifier preceded by IN or OF. IN and

OF are logically equivalent.

The format for qualification consists of two options which are shown below:

Option 1:

{
data-name-I }
condition-name

6-8

f {6;}

l {6;}

data-name-2 file-name J

file-name

QUALIFICATION

Opt ion 2:

paragraph-name {~~} section-name

The rules for qualification are as follows:

a. Each qualifier must be of a successively higher level and within

the same hierarchy as the name it qualifies.

b. The same name must not appear at two levels in a hierarchy so that

the name would appear to qualify itself.

c. If a data-name or a condition-name is assigned to more than one

data item in a source program, the data-name or condition-name

must be qualified each time it is referred to in the PROCEDURE

DIVISION, ENVIRONMENT DIVISION, and DATA DIVISION (except REDEFINES

where, by definition, qualification is unnecessary).

d. A paragraph-name must not be duplicated within a section. When a

paragraph-name is qualified by a section-name, the word SECTION must

not appear. A paragraph-name need not be qualified when referenced

within its own section.

e. A data-name cannot be subscripted or indexed when it is being used

as a qualifier.

f. A name can be qualified, even though it does not need qualification;

if there is more than one combination of qualifiers that ensures

uniqueness, then any such set can be used.

In the example below, all item descriptions (except the data-name PREFIX)

are unique. In order to refer to either PREFIX item, qualification must be

used. Otherwise, if reference is made to PREFIX only, the compiler would

not know which of the two is desired. Therefore, in order to move the

contents of one PREFIX into the other PREFIX, the PROCEDURE DIVISION must

be coded with one of the following sentences:

a. MOVE PREFIX IN ITEM-NO TO PREFIX OF CODE-NO.

b. MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE.

c. MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO.

d. MOVE PREFIX IN TRANSACTION-TAPE TO PREFIX IN MASTER-FILE.

6-9

I QUALIFICATION I
Example:

6-10

01 TRANSACTION-TAPE .

03 ITEM-NO ...

05 PREFIX

05 CODE .

03 QUANTITY . . .

01 MASTER-FILE . . .

03 CODE-NO ...

05 PREFIX .

05 SUFFIX ...

03 DESCRIPTION . . .

TABLES

TABLES

Frequently, the need arises to describe data that appears in a table (i.e.,

array, list, etc.). For example, a master record might contain 16 total

fields, and these might be described as TOTAL-ONE, TOTAL-TWO, etc. However,

this requires 16 data-names, and each total must be individually referenced

in the PROCEDURE DIVISION. A more powerful way to describe the field is:

TOTAL . . . OCCURS 16 TIMES.

Elements of a table are referenced thru the use of subscripting or indexing.

An element of a table is represented by an occurrence number.

The elements of a table may contain subordinate fields. For example:

02 TOTAL

03 TOTAL-A

03 TOTAL-B

OCCURS 16 TIMES.

. PICTURE 9 (6).

. PICTURE 9(6) OCCURS 3 TIMES.

Also, as shown above, OCCURS may be nested to describe tables of more than

one dimension by applying an OCCURS clause to a subordinate name. Standard

COBOL limits tables to three-dimensions.

In the WORKING-STORAGE SECTION, initial values of elements within tables may

be specified as follows. The table may be described as a record by a set of

contiguous data description entries, each of which specifies the VALUE of an

element, or part of·an elemen~, of the table. In defining the record and its

elements, any data description clause (USAGE, PICTURE, etc.) may be used to

complete the definition, where required. This form is required when the

elements of the table require separate handling due to synchronization, USAGE,

etc. The hierarchical structure of the table is then shown by use of the

REDEFINES entry and its associated subordinate entries. The subordinate

entries following the REDEFINES entry, which are repeated due to the OCCURS

clause, must not contain VALUE clauses.

Example:

01 W-S-TOTS.

03 FILLER PC X(24) VALUE IS ZEROS.

03 CARDIMAGE-VALUES PC X(80).

01 R-TOTS REDEFINES W-S-TOTS.

03 TOT PC 9(4) OCCURS 26 TIMES.

6-11

SUBSCRIPTING

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual element

within a table of like elements that have not been assigned individual data­

names. (Refer to the OCCURS clause.)

The subscript can be represented by a numeric literal that is an integer,

or by a data-name. The data-name must be a numeric elementary item that rep­

resents an integer. The data-name may be qualified.

The subscript may be signed and if signed must be positive. However, the sub­

script cannot be computational-3 or J-signed. The lowest permissible subscript

value is 1. This value points to the first element of the table. The next

sequential elements of the table are pointed to by subscripts whose values are

2, 3, ••.• The highest permissible subscript value, in any particular case,

is the maximum number of occurrences of the item as specified in the OCCURS

clause, Violation of this rule will cause the object program to terminate

with an INVALID SUBSCRIPT message.

The subscript, or a set of subscripts, identifying the table element is en­

closed in parentheses. The table element data-name appended with a subscript

is called a subscripted data-name or an identifier. When more than one sub­

script appears within a pair of parentheses, the subscripts may be separated

by commas and are written in the order of successively less inclusive dimen­

sions of the data organization.

The general construct for subscripting is:

{
data-name }
condition-name (subscript [1subscript] ...)

For example, in figure 6-3, to reference the first volume, EN-VOLUME (1) is

written. If data-name N contains the number of the volume desired, EN-VOLUME

(N) is written. If the data item PAGE-NO contains the number of the page

desired, then EN-HEADING (N, PAGE-NO) would reference the 12-character

page heading.

Where qualification and subscripting are both required, the qualification is

shown first, followed by the subscripting. For example, EN-PAGE OF

ENCYCLOPEDIA (N, PAGE-NO). EN-PAGE (N~ 3) OF ENCYCLOPEDIA is incorrect.

For further restrictions, refer to the discussion of identifiers in this

section.

6-12

'llG[LIN£ A •
NO. NO.

I 3 • 6 T I 11 12 2 2 3 Z 4 2 ~ 2 6 I
F===·=-=i===::::t::::t:===:i====--==-=-====-==:-:::::_ =:,:..::..:.=.=:-...=:.:__--=:====::::.---- - -.. -----.:=======::::;:==========;:==========~

~..1....._...11......___,~l-=Cl...__1...__.i~"""'Ei~N1~1'11C.1L19.'.P&~LA1. I ... LJ._.LLL.~.L....l....J_~.L_L._L-+_L_L_I I 1 I 1 1 I I I I I 1 I .. L..L.....L.i...+_.1__.___._~_._ 1_......1L....L

..._.J~.1-+-_._1. __ _._..__..1l._..1....._....~ LLl_.L .. LLl tg_k.J1-1 v Q1L I~~ I I Q1C.1y LI.JRl51 ~L......L"Ti .J±M6 St ·-Lf-.L.J_j__j_l_j_._I_! 1--+I _.__..._......__ ~_.............._....._...._

l .1 .1 l.. i .i ..1 .il a ..i , 1 1 ,
1
ei"1np"1il:> E11.c..~_1...._L.LL.l. 1 1 , 1 I , 1 1 : 1 1 ' 1 1 f'Rr.c-' 1XG~..._ __.__...._....._...__....._.~_.__._-t

...L...L4-...l ..i ..i ..i ..1 1 1 o 1 1 1 , 1 4s.f..J, --,'P~_L_LLf--L_u~r=.it.A.1f<1~-~..o:::r:nMe61. 1 1 1 1 , 1 1 l_l__L_l_I

..__..1__...1--+-....... .1..._ _ _......-4-- L...L..L+--t-1___1~1 ~' t~'S~t~I ~I ~!~1Ei~fl-.l~,-~t-Hi~E~1~~il:>~;~ I I I I I L....LJ........L ... t-LL ... LLL ... LLL1 I fCI:ic. I ~><.i~~~l---+-i -~~' ...L..l..~-~~-
..1.1i_-+-_ l..~.i_i~--L..i~i1~1~!~1S~1_.1~1~1~ie~~~;~~~P~1~~g~~~c~~0~~~~~~1~M6s,.,

1
, 1111J 1~1-1~i-'--~~ -~ ~

..JL..., .. 1~---......._ i~-.1-..1.~.l.1 .. , 1;ia1 '-+§Nc1TiE1xiTi~ 1 1 , 1 _L_+-L 1 1-. ..L, 1-Pi:i;<;-i x,c~~..alt-·~1~~~'~' ~~-~~-
......... .1~ 1-+ __ .1...__~-+-L_l~_...LJ..__..L....L......L~I -'~1--+I ~I J.....L..J_l_ _ _l_L.~....L....,_I ~~ ~! _i.-+-L~t~__...-_..__._.........__..._+-1 _.__.__._......_..._.I _ _.1~1__..-+_.__._tL.Ll..~-~.....__-

J .l .J...--+--+-...... 1..__._.l_.l.~_l_ I I I I I I I I I I I _..L..L...l_l__LL.J_t- I I -L-1.......L..l-t-L~_,_J__.___.__.__.__+I _,_~_._~~l_L...__..._ --~~_.._-......._....._~

....l. __ ~ l --+-+-.L__l .1 .l.. .. L..1 I I I I I I I .1 .l 1.. ..1 ..1 l _L . ..L....4...l__._.......__,__......_..__.1__...__1 _L+1- I I I

.1 . .l. .J.---+-. .1 .l. .1 ..1 .l.. .l. .l .1 .1 L.L~L__L_L__..L.l_~_ .lL...L+- I J......l.._L_+-_L . .L ... L...l~_.____,.___..__.__+-.__.....__.__.__._1 __.I __ 1....__.__. _ __.__.__.__._....._..._1 ...J_..._......._._

~-~L...~ ~..1_.l.~..1~-L L I .1 .1 .l. .1 +...L......l_j__l__L J.........1.....L.....L-t-_.1__.._..__,__._.~L..L....L-f--1......L..L..-I ~~~~ ----~-' _.L_L_J_.._I __.__.......__..__.__....__...._...__,..__.__..__.__.__._-I

.1 .1 1.. .l. .l. .l. .l.. .1 ..1 l.. l l ;_--i__L_....1._L_L.1.__l__LLL+ . .L I I I IL-f--L-~1~~--~--~+--~~~--~L-1...__,__.--t-_.__,_I _.._! _.1__..__.__..__._~_...___.

~j_ _ __.._l-+_J.._____.--+~' _L_L t-_l___L i 1 I I I I I I I I I I _1_l___l_L . ..L_+ I .J......l..-1..+.L.~~-~-~-~--_._--~1~....+...Li._l_l·-~-~~-

~J.___..1.-+_1....____._-+_ .J.. .l. ...L .1 .l. .1 .l. ..1 _L..L+_L__L.L..L..l __ L_L..1 L+~1-_ ~~-L_L_L.J.._f-L._._....._~.__.-.....__.___._-+-_.._....._....__.__.__,__.___._......-+_..1....__.1__,1__..1__.__..__,_...._....._...._

_1 .1 .1 .1 .l. _L_ L _LJ_ _ _J__ I l I I I I I I I I I L_LL+ I IL.L-1..-+--LL_L_,_I _.__,__.__.__..._~__.___.___...__,__._......__.._...__+~L-.....1--'-....L--'-_..__._....._....._...._

l. .l .1 _..L_L_L_._J..__j__Ll. .L..l_l__I I I I I I I I I ~...L.L.J._l__j_LLJ__l_+_.:.... _ _.__,__._...__,_1J.__L__~_,_J_,___,___,__~1-1L....L_t__L_L_.1__.._ __ ~---

µ_J_ t-..l. --~ +-.LL .. L +--- J__L L .l. .l. .1 ..1 L_ I I I I I I I I l~ I I _J__.__f--1...·-'-_,__._....._~,__,___.-+_._J _ 1.__......._.__,___,t_J.__.__,_--t-...__.L.-..__L-..1__.._....._.__.__....._-t

.1 .l .1 .1 .1 .1 __L..L._1_..l_L_j__ I I I I I I I I I I~ I I I I I _L_+--L _..__._ __ ~_ -+__.__.__•__.1__.___. _ _,__.__._.._.....__....._...__,...._.__..__.__.__._

..l. .1. ...l .l. __ LL~L-LL.L...L._L--1_ LL1_!_.l__L_J__L...l-1.-1.......1.-+....L....LL_L_L_j_.Ll.._L-f--L.--._..__._...__ ___ _.-+__.___,_......__..__.__~-~....__.-__.__.__.__._......_...._....._.__..__.--t

J -1......+J _.._ .. L.L . .J... +- L......l_.1__.L...L .. LLL .. .L+-1_.J_.L . ..L.....J..._l_l_LLt- I L L...J..._L+ .. L.L ... ~I ---~~~.....___,_ __ _._~

µ_ .. L.t-.1~ _ _l__L_L .1 I I I I I I I I I I I I ..L........L..11.......LL..f- I .LJ.....J.....i_+_L..L. .. ~t _.__.._...___.._....._L.....i__.._.__._-L-......_ _...._...._....._....__..__..__.._.__,__._...._~

~-~.l~~J.1 .l. I I I I I I I I I I I I '~-~I 1.._i~ _ _.._ _____ -+------~--.......... ---------

.1.1 ...1. lii..1. ...1....1...11..1..111111111111~1 L~_.__..__._......_....._~__.-+_.__.__._......_...._~....._...._._~--~~~~~--

.1 l. .l .1 .1

Figure 6-3. Coding of Multi-Dimensioned Table

Cit
c ..
Cit
n
!! .,,
:::! z
Q

INDEXING

INDEXING

References can be made to individual elements within a table of like elements

by specifying indexing for that reference. An index is assigned to that level

of the table by using the INDEXED BY clause in the definition of a table. A

name given in the INDEXED BY clause is known as an index-name and is used to

refer to the assigned index. The value of an index corresponds to the occur­

rence number of an element in the associated table. An index must be initial­

ized before it is used as a table reference. An index can be given an initial

value by either a SET or a PERFORM statement.

Direct indexing is specified by using an index-name in the form of a subscript.

Relative indexing is specified when an index-name is followed by the operator

+ or -, followed by an unsigned integer numeric literal all delimited by the

balanced pair of separators left parenthesis and right parenthesis following

the table element data-name. The occurrence number resulting from relative

indexing is determined by incrementing (where the operator+ is used) or

decrementing (where the operator - is used), by the value of the literal, the

occurrence number represented by the value of the index. When more than one

index-name is required, they are written in the order of successively less­

inclus ive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table ele­

ment, the value contained in the index referenced by the index-name associated

with the table element must neither correspond to a value less than one (1)

nor to a value greater than the highest permissible occurrence number of an

element of the associated table. This restriction also applies to the va!ue

resultant from relative indexing.

The general construct for indexing is:

index-name [{:} literal -2] index-name[{:} li teral-4]

...)

literal-I literal-3

6-14

IDENTIFIER

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not unique in

a program, must be followed by a syntactically correct combination of quali­

fiers, subscripts, or indices necessary to ensure uniqueness.

The construct for identifiers has two options which are as follows:

Option 1:

data-name-I [{ ~~} data-name-2]

[£subscript-I(, subscript-n] .. ·l]
Option 2:

data-name-I data-name-2]

[
({index-name-I

- literal-I

[{~}

[{ ~} literal-2]} [.
{

index-name-2

literal-3

[{ ~} literal-~}]. . J
Restrictions on qualification, subscripting, and indexing are as follows:

a. The commas as shown in both options are optional.

b. The data-name-2 must not itself be subscripted nor indexed.

c. Indexing is not permitted where subscripting is not permitted.

d. An index may be modified only by the and PERFORM

statements. Data items described by the USAGE IS INDEX clause

permit storage of the values of index-names as data without con­

version. Such data items are called index data items.

e. Where more than one occurrence number is required for a data-name

reference, it is illegal to use a data-name for one occurrence num­

ber and an index-name for another. However, literals and index­

names may be mixed.

6-15

FILE SECTION

FILE SECTION

This section contains descriptions of the files used by the object program.

File Description

The function of the File Description sentence is to furnish information to the

compiler concerning the physical structure, identification, and record names

pertaining to a given file.

The construct of this sentence contains four options:

Option 1:

FD f ile-name-1 COPY library-name

[REPLACING {
word-1 }
data-name-1 BY

{

word-2 1
da ta-name-2 ~
literal-1 J

BY
{

word-4 }]] data-name-4 ...
literal-2 [{

word-3 }
data-name-3

Option 2:

FD f ile-name-1

[; BLOCK CONTAINS (integer-3 TO] integer-4 [
RECORDS]]
CHARACTERS

[; RECORD CONTAINS [integer-5 TO] integer-6 CHARACTERS]

[{
VA } {ID } \[literal-1/] literal-2 [l [literal-3]1}

; VALUE OF Yi5ENTIFICATION IS - ~

U"f~~gl
[LABEL

[DATA

6-16

data-name-1
[SAVE-FACTOR IS integer-~

{
RECORD IS }
RECORDS ARE

f RECORD IS }
1, RECORDS ARE

{
OMITTED [(J] }] STANDARD data-name-2 , data-name-3 ...

data-name-4 [, data-name-5 ...) J

Fl LE SECTION

Option 3:

SD sort-file-name COPY library-name

[REPLACING {
word-I }
data-name-I BY

[{
word-3 }

_ data-name-3
BY

Option 4~

SD sort-file-name

[; BLOCK CONTAINS [integer-3 TO]

l:
L'

RECORD CONTAINS integer-5 TO]

{

word-2 }
data-name-2
literal-I

f
word-4 ll
~~ ;:~~~~~-4 ...

.... - 1 - - - -- --- -- - -

] .

integer-4 [
RECORDS J]
CHARACTERS

integer-6 CHARACTERS]

[; DATA {
RECORD IS }
RECORDS ARE data-name-1 (data-name-2] ...]

A level indicator of FD or SD identifies the beginning of a File Description

or a Sort File Description and must precede the file statement. Both entries

should commence under Area A of the coding form. Only one period is allowed

in the entry and it must follow the last clause specified.

Options 1 and 3 can be used when the Systems library contains the library­

name entry; otherwise, Option 2 and/or Option 4 must be ~sed.

In many cases, the clauses within the File Description or Sort File Description

sentence are optional. Their order of appe~rance is immaterial. Each clause

is discussed in detail.

Figure 6-4 illustrates the use of the File Description sentence followed by

data record entries.

NOTE

The two 01 levels implicitly redefine

the record areae The DATA RECORDS clause

is treated by the compiler as being for

documentation purposes only and does not

cause an explicit redefinition of the area.

6-17

m
I

f-.1
00

BURROUGHS COBOL CODING FORM
ADDITIONS. DELETIONS AND CHANGES

PAO£ ~

10£NT 7S IO

COBOL Ol\llSION PROGRAM

---___ t=;_:,;..:W,,.E~ ~ E-c...:r I 0 N E:.?(.Nv\.PL.IK
OAT(

PR 0 GRAMMER _)V'-L\.£"

t====~====;.:::::;:======;====~-=-=-=-==-============~===============-c::::.=-==-~==========:::::!::======================~=======:!:::!:::::=:=::~~:::!::::::::t
,. AG(l IN E I z

NO. NO.

22 ll2 42 ~ 2 7t 61
--------------~~~-~~=--=-~-=-=-===--=-=-=-=-==-=-=-==-::::..=-=-=-======================;;::=============:;::=.==============~

..........-----~- -+-~~-=+--==-==....----'---'~~N'--'--'= - ; I I I IL.._L I I I I I I l__L._.__...._~......_.-_...___.__.__.__....._....__....._.___._-+-.....__...._.....___..........._........___..__.__.....__+-'..__..__.,__.___..__.__.....__ __.._ _

L ..L:...._.+L..1::::::.1...-.J..-...j~~"'-LL_,_,_....,,,,,._-......,F'-=~~E" I I 1'SLAC:.1K1 1CAN1tA-.:GtJe;,1 I~ I I I I

_ _L_-~_1 __ _._ ~~~.fdE1 91 1
1
' 1'P1E:1&151'' 1/1" 1M&~mel&'' 1 1-SAl'\J E 1-1F1&c.rrA1<1

1
1.o,.1

_.__~+--"--:----4--'=~...._.._.=.c--1.l--'-"L,...._...i...:..c>=L&..::c.:...L.::-• ...L-+-1- i I I I I L..Ll I I I I I I I I I I I I I
: I EtM.PL 1- I N1 lAi MB E1R1 (Pil:1C I A I CA. 0 1=--' --llf-----L-----4-~..___.____._.....L.-...._..._1 -'1'--+1 _.___.__..L._..__.__..._.....___...._.___.__

.._.~-+......_~:_...-+-_._-~.J.....-ti=l"=-'-.,.....i.-~1__..___.._.....__...._"--ir>~1E=.....f>_1~-r-~1_...1_..._1_..._1 ~1...._._--+__.._~ _ _._.._....__.___.__.___.._~j-~~1--.....1C__.._1 ~A_._..._1~_._._19~1~·~1__._1--+-I ~...._~._._..__.__._._1_i_+-'..__..___. __..__,_..._._.__... __

____ L+ .LI. 1F1:r1 Li L1ElR1 I I I I 1 'R:Ii~ 1>'-t C91\. I I ..i._i_+_.__.....__~~~__.._.....__..__....._ .. LL

I ~~-~~P~~;b 1E:1 I LLi_ I !'Pi.LC l><J')(,)(1X1 - I I I L.L__.._~~~·~~----41
1---'-~-~..__ _____ -+-·---J._J_.p.si-- __ .i LL-LL..LL-fEiJ:°1 L; Li 6 B Ll_..._-4,__._-'1.__._1 __,_1 1__.____._.....__~,_'R_.,1Ii==-C.~ 1)t.i<-.L..::l(M.:1b~C=)_,,_,_,1 •• ~11---'-__.__.__.__.__._...__.___..._+-, 1__._1 -"---L--'--J'---L---'-.....__·.__

L..L -....... -~.J.=:...l..._.__~~-w&&c:.ill-1F'±iLE1s, 1 ,F~ 1cot.'fu#\t:r:1NQ1 1, p1000 1'§scoptbSt- 1

_L_l_+-..___•~--+=LI-A-'-·-+=~::;.&.:..J.--:....1.-L.!..:I~ I I I I I I I I I I I I I

--U __ _l ___ .J....__L ~LLL.;._J_L -----+~~...LC:.=..=O::.i;']:)~-+-_.__.__.__..1...-J~__;.__.__._-+1--=:<:::=...'---'~~~J...!:...L...-!---L__;._--'---'-~..1.-1--..J'-....L._+.....L.......1--'--.L.-L-l---.L--'--L--'--~
I I

-..L ---+-+-- ._Ll. . .L ~ LJ. ---~ . ..L...1_;_. -- $-":""~il...!.~~=E~iR 1--'-1 __._I_......_...._~f-'--'~=-"-_............,._.-_ ~--+-__.._......_.6--..__..___..__.___._1 ~1.__,__.__1 _,_I __.._........_....__.__.~--4-_._-4

___ L-Hr----L_L .. 1.~.L.L_L_.L....l__l_L , ,Fjz L+ L EtR1 I I _j__ , I I ,
-~ ~" E ,pjr,-iJ? 1 Ei 'Poi'RjU. _J.Vi & Lit.ti, Ei_AE_~~......___.__.-1...J...:::..J..!..=~'--'---'-'--"-='-<....L::::::U.~ -+_.._......_.__.____.__.__.L-.....L-...L-+-......_L....-4__.__.._..1..-J'--'--L-............

I . --t+-r- ~iI.t_& ___ .iF1E:1C..A!i)>1 iBOil>L1 ,-, Ll;N1E1Si 1H-1Etl-,1)jt:i~-1 y;~~=o..-_.__~-+-....__.__.__..__....__.,_,,___.__.L--4-__.__..__...__..__._....__..__.__.__..__
: · QJ.L_L &E;~_J._::til-l--.G.t-1Li~Ne:1'!>.1 , LPi:x:,c. ,)(

1
c 113ta..J 1·, , 1 , 1 ; 1 1 1 I I I

~__._-+_.___I ___ Qd_J...__1_ ~Q~~LLLN1E1S1 •I ___J__J__L.....L.._.___.__..___.'--+_..._1 _ 1 _._~......._..__._1 _L _ _l_ _ _.__~~..__..___.__.__~..__.--

:~_: o"~~~~~~~:: :~:~::~~~::~~~~:~:~:;>~:~::: : : : : : : : ' : : : I I I I ..L..L...L

~__.___.__~_J__J.._._4!r6....__rj....._6~L.i=-=6='R.;....::J,..1__._1_...__.__+l--'-_._~1'P...:....=1.L=--C.~1--"1X~,("-'-'-1t~1~'~1S: 1)~,.~1...........__,__.____..___...._l--"_.___.__...__.__~.L....J'---'--+--'-_._-A--.....__...__..__.___.__1.__L

.......___~_.__._-4,_._•_.__.___.L....L.J..___l~~~1~~~~~~~..-,r--"~~_.__..___.~__._~-+-~~~~~~~--+~~.....__~~~~~--

.~..__..__.___.__.__+, _..._~_,.__._ _L __LJ_ _ _l___ L+...._1 _...__.__....__....._..__.._....___._-+-_._....__~-L......L__.___._~....__.._,.___.__..__.__._~~~'---4--'--'-~-'--.L.-....__.--A.-""--4--I

................. -+...._~+--+-~-L---'-t--'--~~-'--'---'-~..l--.L--jlf--1-__J..~-'---~'__;._l_J_l~IL-1.l._+l.....J.l_....1-...l-J.........J~-L.~1. j-+_._.......__.__~.__.__.__.___..__.L---J..__..-L.._.__._~...__+-'__.__.__..__.__,__..__...__._._-t

Figure 6-4. Coding of FD and DATA RECORDS

:!! ,...
m

"' m
n
:::!
0
z

BLOCK

The function of this clause is to specify the size of a physical record

(block).

The construct of this clause is:

BLOCK CONTAINS [integer-I TO] integer-2 f RECORDS J
[CHARACTERS

Integer-I and integer-2 must be positive integer values,

This clause is required if the block contains more than one logical record.

When only integer-2 is used, it will represent logically blocked, fixed-length,

records if its value is other than 1. When the integer-I TO integer-2 option

is used, it will represent the minimum to maximum size of the physical record

and indicates the presence of blocked variable-length records. Integer-! is

for documentation purposes only.

The maximum value of the integer used in this clause is shown in table 6-1

and refers to the number of characters in a block.

The word CHARACTERS is an optional word in the BLOCK clause. Whenever the

key word RECORDS is not present, the integers represent characters.

For object program efficiency, the use of blocked records is recommended. The

physical size of the block should be as large as possible depending on memory

availability.

Blocks of records are read into the input buffer area by the MCP, and the

delivery of each record to the record work-area of the program (required by

an explicit READ statement) is completed.

Blocking or deblocking of records is automatically performed by the MCP.

6-19

Table 6-1. Maximum Value of Integers

I/O MEDIUM MAXIMUM BLOCK SIZE - CHARACTERS

READER 80/96

PUNCH 80/96

TAPE Limited only by the amount of
memory available.

DISK Limited only by the amount of
memory available.

PRINTER One print line.

PT-READER Limited only by the amount of
memory available.

PT-PUNCH Limited only by the amount of
memory available.

Every explicit WRITE statement causes compiler-generated object code to notify

the MCP that a write is to be done. The MCP accumulates the number of logical

records necessary to create a specified block size and writes the block. When

a file is CLOSEd, the records left in the output buffer area, if not a full

block, will be written as a short block by the MCP before the file is physi­

cally CLOSEd, The transfer of records to the buffer is automatic, and is a

function of the MCP.

The user must specify the actual size of variable-length records in the first

four bytes of each record. This four-character indicator is counted in the

physical size of each record.

The BLOCK clause is not applicable to the READER, PT-PUNCH, PT-READER, or

READER-SORTER peripherals.

This clause may be omitted for unblocked files.

When a file is assigned to disk, the user should be aware that the physical

disk segment size is 180 bytes and that all READ and WRITE statements are, in

effect, in multiples of this size. The hardware must write (or read) in seg­

ments; therefore, it is preferred that the block size used be a multiple of

180 bytes.

6-20

DATA RECORDS

DATA RECORDS

The function of this clause is to document the names of the logical record(s)

actually contained within the file being described.

The construct of this clause is:

DATA {
RECORD IS }
RECORDS ARE data-name-I [,data-name-2] ...

This statement is only for documentation purposes. The compiler will obtain

this information from 01 level record description entries.

The presence of more than one data-name indicates that the file contains

more than one type of data record. These records may be of differing sizes,

different formats, etc. The order in which they are listed is not significant.

6-21

I FILE CONTAINS]

6-22

FILE CONTAINS I

6-23

LABEL

The function of this clause is to specify the presence or absence of file

label information as the first and last record of an input or output file.

The construct for this clause is:

LABEL)RECORD IS l
(RECORDS AREj !OMITTED

STANDARD
data-name-1 [,data-name-2]

l
.. · l

STANDARD specifies that labels exist for the file or device to which the file

is assigned. It also specifies that output labels conform to the standards

as implemented.

STANDARD, when specified for disk files, indicates that the 20-character

contents of the VALUE OF ID clause will be inserted into the disk file header.

Should VALUE OF ID be omitted, the first 10 characters of the FD or SD file­

name will be inserted into the second 10 characters of the disk file header.

When the LABEL clause is not specified, LABEL RECORD STANDARD is assumed.

Data-name-I, data-name-2, ... , are names of label records and must not appear

in the DATA RECORDS clause, or be the subject of a record description asso­

ciated with the file.

OMITTED specifies that physical labels do not exist for the specific input

file to which the file is ASSIGNed. During object program execution, the

operator will be queried by the MCP as to which unit possesses the input data.

The operator must reply with "mix-index" UL -"unit-mnemonic" control message.

OMITTED specifies that labels are not to be created for the specific output

file ASS IGNed.

The B 1800/B 1700 standard label for tape is in a format compatible with the

proposed USASI standard label for information exchange.

RECORD

RECORD

The function of this clause is to specify minimum and/or maximum variable

record lengths.

The construct of this clause is:

RECORD CONTAINS [integer-I TO] integer-2 CHARACTERS

Integer-! and integer-2 must be unsigned non-zero integer values.

If integer-! and integer-2 are specified, the variable-length record technique

is utilized.

If only integer-2 is specified the compiler will treat the clause as being

documentation only. The record size will be determined by the structure of

the largest record description. If the largest record description is not

equal to the value of integer-2, a warning message will be produced.

If integer-1 and integer-2 are specified, they refer to the minimum and maxi­

mum size of the variable-length records to be processed. At least one record

description must reflect the maximum size record length as specified in the

RECORD CONTAINS clause.

The user must specify the actual size of variable-length records in the first

four bytes of each record. The four-character variable-size indicator is

counted in the physical size of each record.

Variable-length records may only be contained on disk or magnetic tape files.

Variable-length files are also limited to sequential access, and may only be

OPENed INPUT or OUTPUT.

6-25

RECORDING MODE

RECORDING MODE

The function of this clause is to specify the recording mode for peripheral

devices, where a choice can be made.

The construct for this clause is:

RECORDING MODE IS
~STANDARD l
) NON-STANDARD
(ASCII

RECORDING MODE IS STANDARD is assumed if this clause is absent from the FD

sentence. The MCP automatically checks the parity of input magnetic tapes

and will read the tape in the intelligent mode. For this reason, this clause

is not required for input tapes.

The MCP will automatic ally assign RECORDING MODE IS STANDARD on 9-channel mag.­

netic tape drives if a SELECT clause indicates TAPE, even though the program­

mer has designated the unit as being NON-STANDARD.

Binary files are read or written, with no possibility of translation.

The records of a file which is specified RECORDING MODE ASCII are USAGE

ASCII by default.

The recording modes for the peripheral devices are provided in table 6-2.

Table 6-2. Recording Modes for Peripheral Devices

DEVICE STANDARD NON-STANDARD

TAPE-7 Odd Parity Even Parity

TAPE-9 Odd Parity -
DISK Memory Image -
READER EBCDIC Binary

PUNCH EBCDIC or BCD Binary

PT-READER BCL Binary

PT-PUNCH BCL Binary

PRINTER BCL -

6-26

VALUE OF ID

VALUE OF ID

The function of this clause is to define the identification value assigned, or

to be assigned, to a file of records and to declare the length of time that a

file is to be saved.

The construct of this clause is:

OF { ~ENTIFICATION} IS { [l iteral-lL] literal-2 [L [li tera l-3J]}

data-name-1

(SAVE-FACTOR IS integer-1]

This clause may be used when the label records are present in the file being

described. If this clause is not present, the compiler will take the VALUE OF

ID from the first 10 characters of the file-name (FD or SD) and place that ID

in the ID entry of the label where the value of the main directory entry would

normally be found. The file-name must be uniquely constructed so that the MCP

will be able to recognize the files.

Example:

FD SCHEDULE-DISK!

FD SCHEDULE-DISK2

To make them unique:

FD DISKOUTPAY

FD DISKOUTTAX

Would create a VALUE OF ID as

SCHEDULE-D for both files and

cause a duplicate file action

by the MCP.

Would create a VALUE OF ID as

DISKOUTPAY and one of DISKOUTTAX,

thus causing no MCP confusion

during object pro_gram execution.

The multiple file tape name will be taken from either the MULTIPLE FILE clause

in the I-O-CONTROL paragraph; the value of literal-2 when literal-2 is followed

by a slash and literal-3; or the second 10 characters of data-name-1. The file

name of a multiple file tape file will be taken from the contents of literal-2

when only one literal is specified; from literal-3 if both literal-2 and

literal-3 are specified; or from the last 10 characters of data-name-1. The

file name for a single file tape will be taken from the contents of literal-2,

or from the second 10 characters of data-name-1.

If literals are used, and contain non-blank characters, then the first charac­

ter in the literal must be a non-blank character.

All non-disk files,are limited to a maximum of two names.

6-27

I VALUE OF ID I
The pack-id name of a disk file will be taken either from the multi-file clause

in the I-O-CONTROL paragraph, or from the value of literal-!. The main di­

rectory (family) name will be taken from literal-2 (in the case of systems

disk or if I-O-CONTROL is used to specify user disk), from literal-2 (in the

case of user disk without I-O-CONTROL or if literal-2 is followed by a slash

(/)). The sub-directory entry (file-name) will be taken from the value of

literal-3. Literal-3 cannot be used when literal-! and literal-2 are both

blank. When using the literal option, if three literals are used, they repre­

sent pack-id, main directory (family), and sub-directory (file-name), respec­

tively. If two literals are used they represent main directory and sub­

directory. If only one literal is used it represents the main directory entry.

PACK-ID

literal-I I]
can be specified in
1-0-CONTROL and forces
literal-2 to be speci­
fied

Examples:

MAIN DIRECTORY

literal-2

can come from FD or
SD name

SUB-DIRECTORY

[!_ [literal-3]

forces literal-I I and
literal-2 to be speci­
fied

VALUE OF ID IS "USER!" /"PAYROLL" /"DEDUCTS".

VALUE OF ID IS "WORKPACKl" /"TRANS"/.

VALUE OF ID IS "PAYROLL"/"MASTER".

VALUE OF ID IS "ITEMS".

VALUE OF ID IS "MSTTAPE" SAVE-FACTOR IS 031.

The data-name-I option should only be used if file names are to be built under

program control, as this option overrides file equates and I-O-CONTROL name as­

signments for that file. When data-name-I is used it must be defined as being

30 characters in length and alphabetic or alphanumeric.

When the data-name-! option is used for disk files, the disk-pack-id must be

included in the description. The compiler will use the first 10 characters of

the data-name as the disk-pack-id each time the file is opened. If the file is

on or is to be crsated on systems disk, the first 10 characters must be blank.

01 DATA-NAME-11

6~·28

03 PACK-ID PC X(lO).

03 MAIN-DIRECTORY PC X(lO).

03 SUB-DIRECTORY PC X(lO).

Overrides I-O-CONTROL or use of

FD or SD name for that file.

Pack-id name for user disk must be

blank for system disk or non-disk

files.

Cannot be blank at open time.

A non-blank entry here requires a

non-blank entry for MAIN-DIRECTORY.

I VALUE OF ID I
Examples:

01 FILE-IDENTIFICATION.

03 PACK-ID PC X(lO) VA "USER1)1J6}1J6J6" .
03 MAIN-DIRECTORY PC X(lO) VA 11 PAYROLL)'.))'.)J6 1J.
03 SUB-DIRECTORY PC X(lO) VA "DEDUCTSJ?)J6)1" .

01 DATA-NAME-1.

03 PACK-ID PC X(lO) VA "WORKPACK1J6".
03 MAIN-DIRECTORY PC X(lO) VA "TRANS J6)6J6J6J6" •
03 SUB=DIRECTORY PC X(lO) VA SPACES.

01 FILE-ID.

03 PACK-ID PC X(lO) VA SPACES.

03 MAIN-DIRECTORY PC X(lO) VA "PA YROLL)'.))6)6".
03 SUB-DIRECTORY PC X(lO) VA "MASTERJ6)6J6J6".

01 VA-NAME.

03 PACK-ID PC X(lO) VA SPACES.

03 MAIN-DIRECTORY PC X(lO) VA "ITEMSJ6J6J6J6J6" •
" U..:>

C"TTT">-nTn1'.;'r-"11V"\DV
..::> un- JJ.L.ll.L'-' iv.u. i PC X(lO) VA SPACES.

01 SOME-DATA-NAME.

03 BACKUP-PACK-NAME PC X(lO) VA SPACES.

03 WHICH-SYSTEM PC X(lO) VA SPACES.

03 FOR-WHAT-DAY PC X(lO) VA SPACES.

NOTE

Names must be moved in prior to OPEN.

6-29

I VALUE OF ID I
When SAVE-FACTOR is specified for output magnetic tape files integer-I repre­

sents the number of days the file is to be saved before it can be purged and

used for other purposes by the system; integer-I is limited to an unsigned

integer not to exceed three digits in length with values from 001 to 999.

SAVE-FACTOR, when declared for a disk file, is for documentational purposes,

due to the fact that files residing on disk should only be purged by mutual

consent within an EDP organization and can only be performed as a physical

action by the systems operator, or the automatic RMOV option of MCP.

If SAVE-FACTOR is not specified, tapes are automatically assigned a SAVE-FACTOR

of zero days.

6-30

VALUE OF Q-MAX-MESSAGES

VALUE OF Q-MAX-MESSAGES

The function of this clause is to specify the maximum number of messages

allowed in a QUEUE.

The construct of this clause is:

{ VA }· OF Q-MAX-MESSAGES
VALUE

IS integer-8

Integer-8 is limited to three digits in length with values ranging from 001

through 255 inclusive.

If this clause is omitted, the value of Q-MAX-MESSAGES is set to 2 by the MCP

when the file is OPENed.

6-31

I RECORD DESCRIPTION I
RECORD DESCRIPTION

This portion of a COBOL source program follows the file description entries

and serves to completely identify each data element within a record of a

given file.

The construct of these entries contain the following four options:

Option 1:

01 data-name-I; COPY library-name

[REPLACING {
word-I }
data-name-2 BY

{

word-2 }
data-name-3
literal-1

BY
{

word-4 } J
data-name-5
li tera 1-2

... J .

Option 2:

level-number {
FILLER }
data-name-1

[;REDEFINES data-name-2]

· PIC [l l?C·]
' lll'CTURE

IS (allowable PICTURE characters) J

;[USAGE IS]

[; {~CURS } [integer-1 TO]integer-2 TIMES [DEPENDING ON data-name-3]

6-32

RECORD DESCRIPTION

[{
ASCENDING }
DESCENDING KEY IS data-name-4 [,data-name-5] ... J

[INDEXED BY index-name-1 [,index-name-2]] ... J

[l SY } ; SYNC
L SYNCHRONIZED

{ LEFT }]
RIGHT

RIGHT]

l {~ANK WHEN ZERO l]

Opt ion 3:

66 data-name-1 RENAMES data-name-2
[{=UGH} data-name-3]

Option 4:

88 condition-name {~LUE } ~~EJ literal-I [{
THRU }
THROUGH literal-2 J

[,u teral-3 [{
THRU }
THROUGH literal-4 J J

The optional clauses shown may occur in any order, with the exception that if

REDEFINES is used it must follow data-name-I.

The record description must be terminated by a period.

Level-numbers in Option 2 may be any number from 1-49 or 77. The optional

clauses may be written in any order. with two exceptions: the data-name-I or

FILLER clause must immediately follow the level-number; the REDEFINES clause,

when used. must immediately follow the data-name-1 clause.

6-33

RECORD DESCRIPTION

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED must occur

on elementary item level only.

The PICTURE clause must be specified for every elementary item except an index

data item, in which case use of the clause is prohibited.

Option 1 can be used when the COBOL library contains the record description

entry. Otherwise, one of the other options must be used.

In Option 4, there is no practical limit to the number of literals in the

condition-name series.

The SYNCHRONIZED clause is for documentation only.

6-34

BLANK WHEN ZERO

BLANK WHEN ZERO

The function of this clause permits the blanking of an item when its value

is zero.

The construct of this clause is:

{ ~~NK WHEN ZERO }

This clause overrides the zero-suppress float-sign functions in a PICTURE.

If the value of a field is all zeros, the BZ clause will cause the field to

be edited with spaces. However, it does not override the check protect

function (zero suppression with asterisks) in a PICTURE.

The BZ clause can only be used in conjunction with an item on an elementary

leve 1.

BLANK WHEN ZERO may be associated only with PICTUREs describing numeric or

numeric edited fields.

The category of the item is considered to be numeric edited.

6-35

CONDITION-NAME

CONDITION-NAME

Condition-name is a special name which the user may assign to a value or

values within a data element. This value may then be referred to by the

specified condition-name.

The construct of. this clause is:

88 condition-name {-:LUE} mEJ literal-I [{=UGH} literal-2 J

[1iteral-3 [{
THRU }
THROUGH 1itera1-4] J

Since the testing of data is a common data processing practice, the use of

conditional variables and condition-names supplies a shorthand method which

enables the writer to assign meaningful names (condition-names) to particular

code values that may appear in a data-field (conditional variable).

A condition-name can be associated with any item containing a level-number,

except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED, or

USAGE (other than USAGE IS DISPLAY).

d. An index data-item.

e. A data-item with the name FILLER.

When defining condition-names, the following rules must be observed:

6-36

a. If reference to a conditional variable requires subscripting, then

references to its condition-names also require subscripting.

b. A conditional variable may be used as a qualifier for any of its

condition-names.

c. Condition-names can only appear in conditional statements.

d. Whenever the THRU phrase is used, literal-! must be less than

literal-2, literal-3 less than literal-4, etc.

CONDITION-NAME I
e. The characteristics of a condition-name are implicitly those of its

conditional variable.

The following example illustrates a conditon-name. If THIS-YEAR identi­

fies the 12 months of a year, whereas its subordinate data items are defined

as JANUARY, FEBRUARY, etc., and the values assigned to each month range from

01 to 12, then it follows that JUNE would have the assigned value of 06. Using

the condition-name JUNE, the programmer can utilize it in conditional state­

ments as follows:

IF JUNE GO TO

which is logically equivalent to the statement:

IF THIS-YEAR IS EQUAL TO 06 GO TO

6-37

en
I

w
00 BURROUGHS COBOL CODING FORM

ADDITIONS. DELETIONS AND CHANGES

PROGRAM c ~ \
_______ _:Q_!::J"D l tl O N __ f'J_ A-M.e~

C080l. DIVISION PAO£

- - - .. -------------------·-----------------------------------£--- ________ __ ___,.
OAT(IOENT 7S IO

PROGRAMMER l)p.Vl't>

t=:=~===-==::::=::::========-=--==--·==-=-~----------
PAGE LINE A

NO. NO.

1 • 6 7 •

I

11 IZ zz
=====

z

42 7t

J.___j _ _J _J...:I •;_.i.1__,___.1 _j_l_ I I I _l_l_c_I1.I _..., _..._1 _1.__.__..___._......__,__....._L-4___.__..__...__~....__......._....__.__.__+_..__,__....__....__. __ __.._...___.__.._....._..__....._. -.&..__.__._....__.L.....l..._.

I l I I G,f2 P..11:> 1E I I .L..L..l--+l 'P.-=,.:y=-c;_...__4-19~1q,_._, ..;;... .. _.I__._~ __ ..__...__...___._..___.__.__.__....__~-_..~__.__.__....__..__.__.~__.__.__.._....__......._..__.__..__.__.__

. L.i J __ .l_l__l.-A..:15':.....1u.~u1 ~~=~.L'_L_J~~~£Po.L_.J.__L...J-..J..~~!.1-.J...:.._+.=--i___L_Lj_j___L.LI -'--'-'-+I__.__.___,__....__.__.__.___..__._-+-....__..__..__..__.__..___._......_..__'---"

I

_ l __ L_LLL.LJ 81R°1 I Fjq._.\g li'41-1GifS A-jl>S1 ,VA, 1lfi • I
,y,p, 15j-1 ~~ 1 .~\ 16ZR~-~~~~~~~·~_..__~~~~~......_~~~~~~_.._......_~_,_~~_,_~~~~~~~~~

i __ t ,g-,81 f01Titf1-iG.tR1Ail>E1 I 1Y1As !~I' I

,VA , I , , 8 ii ~m - Gt R. ~'"""b=,£...i1'--'1__..__._......_-L.-.L-....J....!..J.:....;.i.---1..~:....i.__L._.J.__1-.J.---'----l..~-L.-~L...J--L---'-....L....-L....l-..l...-L...Jl-J----l..-L...J.......l-.L..JL....l.-L-'-.....
1VA .LL . .l , VL+gtn4, ~~Ai=;'l>'-'E-.....1 --1l~__.__~_.....__.____._"'+-'-_.__~_..__.__.___.__.__.___~_,___.__.....__.___....._......_...__.-+-......_-'---'.__..___.__~.__..__..__-'--I

I I ,V,A, __ J__l__i ~...__.___._, R,,._..·--.E _ _(1.i.n;-:iGi~~EL+-_,_1 ~--'--_.__._~~ ~~_.__.__.__~~__.___,1--'-~.........__._.....l.~~~~~~--J-~-L......"--"'
.L .. J .. _ __i__;_ _.__...._.1_8-...._1 ~=--'-!__......,_,~

... 1 I I I

Figure 6-5. Coding of Condition-Name

n
0 z
0
~
0
z
I z
>
~
'"

DATA-NAME

DATA-NAME

The purpose of this mandatory clause is to specify the name of each data

element to be used in a program. If a data element requires a definite label,

a data-name is assigned. Otherwise, the word FILLER can be used in its

place.

The construct of this clause is:

f FILLER 1
1 da ta-name-1 J

The word FILLER can be used to name a contiguous description area that does

not require programmatic reference.

This entry must immediately follow a level-number other than an 88 level.

FILLER is only applicable to elementary levels.

A data-name need not be unique if it can be made unique through qualification

by use of data-names on higher levels than itself.

6-39

I JUSTIFIED

JUSTIFIED

The JUSTIFIED clause specifies non-standard positioning of data within a

receiving data item.

The format for the JUSTIFIED clause is as follows:

{~IFIED} RIGHT
The JUSTIFIED clause cannot be specified for a numeric-edited data item or

for an item described as numeric. The JUSTIFIED clause cannot be specified

for an item whose size is variable, for group items or for an index-data-name.

The following are the standard rules for positioning within an area:

a. Numeric data is aligned by decimal point (either implicit or explicit),

with zeros filling any unused positions on either end, as required.

In the absence of an explicit decimal point indication, the decimal

point is assumed to be in the next position to the right of the units

digit. Edited numeric data items are aligned by decimal point, with

zero fill or truncation at either end as required within the receiv­

ing character positions of the data item, except where editing require­

ments cause replacement of the leading zeros.

b. Alphabetic or alphanumeric receiving data items are aligned at the

leftmost character position in the data item, with space fill or

truncation to the right.

When the receiving data items are described with the JUSTIFIED clause and it

is larger than the sending item, the data is aligned at the rightmost char­

acter position in the data item, with leading space fill.

Example:

SENDING RECEIVING

PIC X(5) I A I 1 I 2 I 3 I c I PIC x (7) I A I 1 I 2 I 3 I c I
When the receiving item is described with the JUSTIFIED clause and it is

smaller than the sending item, the left-most characters are truncated.

Example:

SENDING RECEIVING

PIC X(7) I A I 1 I 2 I 3 I c ID IE I PIC x (5) (2 I 3 I c I D I E I
If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item, data

is placed into the area, with space fill to the left.

6-40

JUSTIFIED

If JUSTIFIED RIGHT is specified for an alphabetic or alphanumeric item and the

receiving field is smaller than the sending field, truncation will occur from

the left.

When standard justification is desired, the JUSTIFIED clause is not required.

Justification is considered only when data is moved into an area.

6-41

LEVEL-NUMBER

LEVEL-NUMBER

The function of this clause is to show the hierarchy of data within a logical

record. Its further function is to identify entries for condition-names, non­

contiguous constants, working-storage items, and for re-grouping.

The construct of this clause is:

level-number {
FILLER }
data-name-I

A level-number is the first required element of each record and data-name

description entry.

Level-numbers may be as follows:

a. 01 to 49 - record description and WORKING-STORAGE entries.

b. 66

c. 77

d. 88

- RENAMES clause used as a record description or WORKING­

STORAGE entry.

- applicable to WORKING-STORAGE only as non-contiguous

items and must precede all other level-numbers.

- condition-name clause used as a record description or

WORKING-STORAGE entry.

Level-numbers 01 through 49 are used for record or WORKING-STORAGE descriptions.

Level-number 01 is reserved for the first entry within a record description.

Level-number 66 is reserved for RENAMES entries. Level-number 77 is used for

miscellaneous elementary items in the WORKING-STORAGE SECTION when these items

are unrelated to any record. They are called non-contiguous items since it

makes no difference as to the order in which they actually appear. Level­

number 88 is used to define the entries relating to condition-names in record

descriptions or WORKING-STORAGE entries.

For additional in format ion on level-numbers, see LEVEL NUMBER CONCEPT.

6-42

I OCCURS

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated data,

and it supplies information required for the application of subscripts and

indices.

The construct for this clause has the following two options:

Option 1:

{fctURs} integer-2 TIMES

[{~~~~~~~~~G} KEY IS data-name-2 [,data-name-3] ...] ...

[INDEXED BY index-name-I [,index-name-2] ...]

Option 2:

{fccuRs} integer-I TO integer-2 TIMES [DEPENDING ON data-name-I]

[{~~~~~~ii~~G} KEY IS data-name-2 [,data-name-3] ...]

[INDEXED BY index-name-I [,index-name-2] ...]

Integer-I and integer-2 must b~ positive integers. If both are used, the value

of integer-I must be less than in~eger-2. The value of integer-I may be zero,

but integer-2 cannot be zero.

The data description of data-name-1 must describe a positive integer.

Data-name-2 must either be the name of the entry containing the OCCURS clause

or the name of an entry subordinate to the entry containing the OCCURS clause.

Data-name-3, etc., must be the name of an entry subordinate to the group item

which is the subject of this entry.

Data-name-I, data-name-2, and data-name-3 may be qualified.

The OCCURS clause cannot be specified in a data description that:

a. Has an 01, 66, 77, or 88 level-number.

b. Describes an item whose size is variable. The size of an item is

variable if its data description, or any item subordinate to it,

contains option 2 of the OCCURS clause.

6-43

OCCURS

The OCCURS clause is used in defining tables and other homogeneous sets of

repeated data. Whenever the OCCURS clause is used, the data-name which is the

subject of this entry must be either subscripted or indexed whenever it is re­

ferred to in a statement other than SEARCH. Further, if the data-name asso­

ciated with the OCCURS clause is the name of a group item, then all data­

names belonging to the group must be subscripted or indexed whenever they

are used as operands.

Except for the OCCURS clause itself, all data description clauses associated

with an item whose description includes an OCCURS clause applies to each oc­

currence of the item described.

In option 1, the value of integer-2 represents the exact number of occurrences

of items within the table.

In option 2, the value of integer-I represents the minimum number of oc­

currences, and integer-2 represents the maximum number of occurrences. This

does not imply that the length of the table is variable but that the number

of occurrences is variable. When option 2 is specified in a data description

entry, only items subordinate to the data item described with the option 2

OCCURS may follow in the Record Description. Thus, the following is illegal:

01 DATA-I.

05 TAB-I OCCURS 1 TO 50 DEPENDING ON CNT.

10 TAB-2 PIC 9(5).

05 TAB-3 PIC 9(5).

Any unused character positions resulting from the DEPENDING option will appear

in the external media.

The DEPENDING option is for documentation and serves only to document the end

of the occurrences of data items. The value of data-name-I is the count of

the number of occurrences of items, and its value should not exceed integer-2.

The user must employ his own tests to determine how many occurrences of the

item are actually valid and present in the record.

If data-name-I in the DEPENDING option is an entry in the same record as the

current data description entry, data-name-I should not be the subject of, or

be subordinate to, an entry whose description includes option 2 of an OCCURS

clause.

6-44

OCCURS

An entry which contains option 2, or has a subordinate entry which contains

option 2, cannot be the object of the REDEFINES clause. For example, the

following is illegal:

01 w-s-TABLE.

02 TAB-SIZE OCCURS 1 TO 5 TIMES DEPENDING ON DEP-NAME.

02 RED-TAB REDEFINES TAB-SIZE.

The KEY IS option is used to indicate that the repeated data is arranged in

ascending or descending order according to the values contained in data-name-

2, data-name-3, and so on. The data-names are listed in descending order of

their significance.

If data-name-2 is not the subject of this entry, then the following applies:

a. All of the items identified by the data-names in the KEY IS phrase

must be within the group item which is the subject of the OCCURS

entry.

b. None of the items identified by data-names in the KEY IS phrase can

be described by an entry which either contains an OCCURS clause or is

subordinate to an intervening entry which contains an OCCURS clause.

The following example illustrates a use of the OCCURS clause to provide nested

descriptions. A reference to ITEM-4 requires the use of three levels of sub­

scripting; e.g., ITEM-4 (2, 5, 4). A reference to ITEM-3 requires two sub-

scripts; e.g., ITEM-3 (I,J).

2 ITEM; OCCURS 2 TIMES; ...

3 ITEM-I; ...

3 ITEM-2; OCCURS 5 TIMES; ...

4 ITEM-3; ...

4 ITEM-4; OCCURS 5 TIMES; ...

5 ITEM-5; ...

5 ITEM-6;

In the example above, there are 50 ITEM-4 quantities.

6-45

OCCURS

The following example shows another use of the OCCURS clause. Assume that

the user wishes to define a record consisting of five AMOUNT items, followed

by five TAX items. Instead of the record being described as containing 10

individual data items, it could be described in the following manner:

1 TABLE; ...

2 AMOUNT; OCCURS 5 TIMES; ...

2 TAX; OCCURS 5 TIMES; ...

The above definition would result in memory allocated for five AMOUNT fields

and five TAX fields. Any reference to these fields is made by addressing

the field by name AMOUNT or TAX followed by a subscript denoting the parti­

cular occurrence desired. (See the discussion on subscripts, page 6-12.)

An INDEXED BY clause is required if the subject of this entry, or an item

within it, is to be referred to by indexing. If indexing is to be used, each

table dimension must contain an INDEXED BY clause. The index-names identified

by the clause must not be defined elsewhere in the program and must be unique.

The ASCENDING/DESCENDING KEY option is for documentation only.

The operands in the INDEXED BY option are index-names or indices. The operands

of an INDEXED BY option must appear in association with an OCCURS clause and

are usable only when referencing that level of the table. In the use of three­

level indexing, each level must have an INDEXED BY option and in a given

indexing operation, only one operand from each option may be used.

Other than its use as an index into an array, an index-name may be referred

to only in a SET, SEARCH, PERFORM, or in a relation condition. All index-names

must be unique. Index-names have an assumed construction of PC S9(6)

COMPUTATIONAL.

Using an index-name associated with one row of a table for indexing into

another row of a table will not cause a syntax error, but will, in most

cases, cause incorrect object-time results, since it is the index-name that

contains the information pertinent to the element sizes.

When using an index-name series (e.g., INDEXED BY A, B, C):

a. The indexes should be used only when referencing the associated row.

b. All "assumed" references are to the first index-name in a series.

Others in the series are affected only during an explicit reference.

6-46

OCCURS

Indexing into a table follows much the same logic as subscripting. There is

a limit of three indexes per operand (e.g., A (INDEX-I, INDEX-2, INDEX-3)).

The use of a relative index allows modification of the index-name without

actually changing the value of the index-name.

Example:

A (INDEX-I + 3, INDEX-2 - 4, INDEX-3)

An index-name followed by a + or - integer indicates relative indexing, which

causes the affected index to be incremented or decremented by that number of

elements within the table.

A data-name whose USAGE is defined to be INDEX is an index-data-name.

Condition-names, PICTURE, VALUE, SYNCHRONIZED, or JUSTIFIED cannot be associated

with an index-data-name.

The COBOL compiler will assign the construction of a PC S9(6) COMPUTATIONAL

area for each index-data-name specified.

It is not permissible to relationally compare an index-data-name against a

literal or against a data-name.

6-47

PICTURE

PICTURE

The PICTURE clause describes the general characteristics and editing require­

ments of an elementary item.

The general construct for the PICTURE clause is as follows:

f

PICTURE }
PIC
Rt

IS character-string

The following are rules for the PICTURE clause:

a. A PICTURE clause can only be used at the elementary item level.

b. A character-string consists of certain allowable combinations of

characters in the COBOL character set used as symbols. The allowable

combinations determine the category of the elementary item.

c. The maximum number of symbols allowed in the character-string is 30.

When an unsigned integer enclosed in parentheses immediately follows

a symbol, the integer specifies the number of consecutive occurrences

of that symbol. This may not be used for those symbols limited to

one occurrence per picture.

d. A PICTURE clause must appear in every elementary item except those

items whose USAGE is declared as INDEX.

Record descriptions do not have to conform to the physical characteristics

of an ASSIGNed hardware-name. The flow of input-output data will terminate

at the end of the prescribed PICTURE size. For example:

READER (can read 80 columns) description can be PICTUREd
from 1 through 80.

PUNCH (can punch 80 columns) description can be PICTUREd
from 1 through 80.

CARD96 (can read or punch 96 columns) description can be
PICTUREd from 1 through 96.

PRINTER (120/132 character lines) description can be
PICTUREd from 1 through maximum.

Categories of Data

There are five categories of data that can be described with a PICTURE clause:

alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

These categories are described as follows:

6-48

PICTURE

ALPHABETIC

To define an item as alphabetic, its PICTURE character-string can only contain

the symbol A, and its contents, when represented externally, must be any com­

bination of the 26 letters of the alphabet and the space from the COBOL charac­

ter set.

NUMERIC

To define an item as numeric, its PICTURE character-string can only contain

the symbols 9, P, S, J, <11 and V. Its contents, when represented externally,

must be a combination of the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The

item may include one operational sign.

ALPHANUMERIC

To define an item as alphanumeric, its PICTURE character-string is restricted

to certain combinations of the symbols A, X, 9, and the item is treated as if

the character-string contained all X's. Its contents, when represented exter­

nally, are any of the allowable characters in the COBOL character set. A

PICTURE character-string which contains all 9's or all A's does not define an

alphanumeric item,

ALPHANUMERIC EDITED

To define an item as alphanumeric edited, its PICTURE character-string is

restricted to certain combinations of the symbols A, X, 9, B, and 0 (zero)

given by the following rules:

a. The character-string must contain at least one B and one X, or at

least one 0 (zero) and one X, or

b. The character-string must contain at least one 0 (zero) and one A.

NUMERIC EDITED

To define an item as numeric-edited, its PICTURE character-string is restricted

to certain combinations of the symbols B, P, V, Z, 0, 9, (comma), . (period),

* +, -, CR, DB, and the currency sign ($). The PICTURE character string must

contain at least one symbol other than V. and 9. The allowable combinations

are determined from the order of precedence of symbols and the editing rules.

Cl asses of Data

The five categories of data items are grouped into three classes: Alphabetic,

Numeric. and Alphanumeric. For Alphabetic and Numeric, the classes and cate­

gories are synonymous. The Alphanumeric class includes the categories of

Alphanumeric Edited, Numeric Edited and Alphanumeric (without editing). Every

6-49

PICTURE

elementary item belongs to one of the classes and further to one of the cate­

gories. The class of a group item is treated at object time as Alphanumeric

regardless of the class of elementary items subordinate to that group item.

Figure 6-6 depicts the relationship of the class and categories of data items.

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

Elementary Numeric Numeric

Numeric-editied
Alphanumeric Alphanumeric-edited

Alphanumeric

Group Alphanumeric Alphanumeric

Figure 6-6. Relationship of Class and Category

Function of the Editing Symbols

An unsigned non-zero integer which is enclosed in parentheses following the

symbols A, X, 9, P, Z, *, B, 0, +, - the comma, or the currency sign ($)

indicates the number of consecutive occurrences of the symbol. Note that the

following symbols may appear only once in a given PICTURE clause: S, ~* V, K;

(period), CR, and DB.

The functions of the symbols used to describe an elementary item are explained

as follows:

6-50

A The symbol A in the character-string represents a character position

which can contain only a letter of the alphabet or a space.

B Each symbol B in the character-string represents a character position

into which the space character will be inserted.

PICTURE

P The letter P indicates an assumed decimal scaling position and is

used to specify the location of an assumed decimal point when the

point is not within the number that appears in the data item. The

scaling position character P is not counted in the length of the

data item. Scaling position characters are counted in determining

the maximum number of digit positions 'fl~~J in numeric edited items

or NUMERIC items which appear as operands in arithmetic statements.

The scaling position character P can appear only to the left or right

as a continuous st~ing of P's within a PICTURE description. Since

the scaling position character P implies an assumed decimal point

(to the left of P if P's are leftmost PICTURE characters, and to

the right of P if P's are rightmost PICTURE characters), the assumed

decimal point symbol V is redundant as either the leftmost or right­

most character within such a PICTURE description. The character P

and the insertion character 11
." (decimal point) cannot both occur in

the same PICTURE character string.

S The letter S is used in a character-string to indicate the presence

of an operational sign and must be written as the leftmost character

in the PICTURE. The S is not counted in determining the length of

the elementary item unless USAGE is CMP. If USAGE is DISPLAY, S in­

dicates the sign is carried as an overpunch in the most-significant

position. J and S are mutually exclusive. For CMP, S indicates the

sign is carried in the leading digit of the field. The four zone bits

in EBCDIC and CMP are set to a "Dn, for negative, and to a n C11 for po­

sitive. Wherever possible, S should be used rather than J or K.

NOTE

Any value other than D will be assumed positive.

K Tn~- letter K ln the eharacte~ ~it~tn~ ll'ld:tcia'.t~sfltle .. presenee of an ·a-.·
bit (byt~) s:tgn app~aring .:tn the lef:t;IilQ$t .cq~racter po$it:j..on of an

item /when USAGE is· implicit!' or eJC)?ll;citly? DISPJ4AY··· anti .·is eounted

in the Ieng.th of the item.. If USAGE IS COMPUrtATIONAL, the letter IC

6-51

PICTURE

6-52

V The letter V is used in a character-string to indicate the location

of the assumed decimal point and may only appear once in a character­

string. The V does not represent a character position and, therefore,

is not counted in the length of the elementary item. When the assumed

decimal point is to the right of the rightmost symbol in the string,

the V is redundant.

X Each letter X in the character-string is used to represent a charac­

ter position which contains any allowable character from the computer's

character set.

Z Each letter Z in a character-string may only be used to represent the

leftmost leading numeric character positions which will be replaced

by a space character when the contents of the character position is

zero. Each Z is counted in the length of the item. Zero suppression

is terminated with the first non-zero numeric character in the data.

Insertion characters are also replaced by spaces while suppression is

in effect. Z can also appear to the right of J, when the J symbol is

used to reinitiate zero suppression. For additional information on

zero suppression, see the BLANK WHEN ZERO clause.

9 Each 9 in the character-string represents a character position which

contains a numeral and is counted in the length of the item. If

USAGE is explicitly or implicitly DISPLAY, the data will be operated

on as 8-bit (BYTE) characters. If USAGE is CMP, it will be operated

on as 4-bit digits.

0 Each 0 (zero) in the character-string represents a character position

into which the numeral zero will be inserted. When that item is re­

ceiving field, the 0 is counted in the length of the item.

Each comma in the character-string repr;esents a character position

into which the comma character will be inserted. This character posi­

tion is counted in the length of the item. (See DECIMAL-POINT

IS COMMA.)

When the character period appears in the character-string, it is an

editing symbol which represents the decimal point for alignment

purposes; in addition, it represents a character position into which

the period character will be inserted. The period character is

counted in the length of the item. For a given program, the functions

PICTURE

of the period and comma are exchanged if the clause DECIMAL-POINT IS

COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange, the

rules for the period apply to the comma and the rules for the comma

apply to the period whenever they appear in a PICTURE clause. V and

(.)are mutually exclusive.

The symbols+, -, CR, and DB are used as editing sign control symbols.

When used, they represent the character position(s) into which the

editing sign control symbol will be placed. The symbols are mutually

exclusive in any one character-string, and each character used in the

symbol is counted in determining the length of the data-item. (Note

that the symbols CR and DB are two character symbols, and any other

use of C or D constitutes an error.)

* Each * symbol in the character-string represents a leading numeric

character position into which an asterisk will be placed when the

contents of that position is zero. Each * is counted in the length

of the item. Asterisk replacement is disabled when the first non-zero

character is encountered, or when the decimal point (implicit or ex-

plicit) is reached. When the PICTURE character string specifies only

asterisks (*)J and the value of the item is zero, the entire output

item will consist of asterisks and the decimal point, if present.

BLANK WHEN ZERO does not override the insertion of asterisks.

$ The currency symbol ($) in the character-string represents a character

position into which a currency symbol is to be placed. The currency

symbol in a character=string is represented by either the dollar sign

($) symbol or by the single character specified in the CURRENCY SIGN

clause in the SPECIAL-NAMES paragraph. The currency symbol is counted

in the length of the item. (Copy deleted.)

NOTE

Any other character which is not a defined

picture character appearing in the PICTURE

is assumed to be an insert character.

Example

99/99/99 could be a date mask and

999=99=999 could represent a social

security number mask.

6-53

PICTURE

Editing Rules

There are two general methods of performing editing in the PICTURE clause:

by insertion or by suppression and replacement.

Floating insertion editing and editing by zero suppression and replacement are

mutually exclusive in a PICTURE clause. Only one type of replacement may be

used with zero suppression in a PICTURE clause.

The type of editing which may be performed upon an item is dependent upon the

category to which the item belongs. Figure 6-7 specifies which type of editing

may be performed upon a given category.

CATEGORY TYPE OF EDITING

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric Edited Simple Insertion, 0 and B

Numeric Edited All, Subject to above Rules

Figure 6-7. Permissible Editing Types

Insertion Editing. The following are the four types of insertion editing avail­

able:

a. Simple Insertion.

b. Special Insertion.

c. Fixed Insertion.

d. Floating Insertion.

Simple Insertion Editin_g. The comma (,), B (space), and O (zero) are used as

the insertion characters. The insertion characters are counted in the length

of the item and represent the position in the item into which the character

will be inserted.

Spe~ial_!.nsert_ioq Editing. The period (.) is used as the insertion character.

In addition to being an insertion character, it also represents the decimal point

for alignment purposes. The insertion character used for the actual decimal

point is counted in the length of the item. The use of the assumed decimal point

(represented by the symbol V) and the actual decimal point represented by the

insertion character) in the same PICTURE character-string is prohibited. If the

6-54

PICTURE

insertion character is the last symbol in the character-entry, the character­

string must be immediately followed by the semicolon punctuation character,

and then followed by a space. If the PICTURE clause is the last clause of that

DATA DIVISION entry, and the insertion character is the last symbol in the

character-string, the insertion character must be immediately followed by a

period punctuation character followed by a space. This results in two con­

secutive periods (or 11
, •

11 if DECIMAL POINT IS COMMA has been specified) appear­

ing in the data description entry. The result of special insertion editing is

the appearance of the insertion character in the item in the same position as

shown in the character-string.

Fixed Insertion Editing. The currency sign ($) and the editing sign control

symbols "+ 11
, "-", CR, and DB are the insertion characters. Only one currency

symbol and only one of the editing sign control symbols can be used in a given

PICTURE character-string. When the symbols CR or DB are used, they represent

two character positions in determining the length of the item, and they must

represent the rightmost character positions that are counted in the size of the

item.

The symbol 11 +" or "-", when used, must be the leftmost or rightmost character

position to be counted in the size of the item. The currency symbol must be

the leftmost character position to be counted in the size of the item except

that it can be preceded by either a + or a - symbol. Fixed insertion editing

results in the insertion character occupying the same character position in

the edited item as it occupied in the PICTURE character-string. Depending

upon the value of the data item, editing sign control symbols produce the re­

sults indicated in table 6-3.

Table 6-3. Editing Symbols and Results

EDITING SYMBOL IN DATA ITEM
POSITIVE DATA ITEM

PICTURE CHARACTER-STRING OR ZERO NEGATIVE

+ + -
- SPACE -
CR 2 SPACES CR

DB 2 SPACES DB

6-55

PICTURE

Floating Insertion Editing_. The currency symbol and editing sign control

symbols + or - are the insertion characters, and they are mutually exclusive

as floating insertion characters in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using

a string of at least two of the allowable insertion characters to represent the

leftmost numeric character positions into which the insertion characters can be

floated. Any of the simple insertion characters embedded in the string of

floating insertion characters or to the immediate right of this string are part

of the floating string; however, they represent themselves rather than numeric

character positions.

In the PICTURE character-string, there are only two ways of representing float­

ing insertion editing. One way is to represent any or all of the leading num­

eric character positions to the left of the decimal point by the insertion char­

acter. The other way is to represent all of the numeric character positions

in the PICTURE character-string by the insertion character.

The result of floating insertion editing depends upon the representation in

the PICTURE character-string. If the insertion characters are only to the left

of the decimal point, the result is a single insertion character that will be

placed into the character position immediately preceding the decimal point. or

the first non-zero digit in the data represented by the insertion symbol string.

whichever is further to the left in the PICTURE character-string.

If all numeric character positions in the PICTURE character-string are repre­

sented by the insertion character, the result depends upon the value of the

data. If the value is zero, the entire data item will contain spaces. If the

value is not zero, the result is the same as when the insertion character is

only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the

receiving data item must be the number of characters in the sending data item,

plus the number of fixed insertion characters being edited into the receiving

data item, plus one for the floating insertion character.

Suppression Editing. The sup~ression of leading zeros in numeric character

positions is indicated by the use of the character Z or the character *
(asterisk) as suppression symbols in a PICTURE character-string. These symbols

are mutually exclusive in a given PICTURE character-string. Each suppression

symbol is counted in determining the length of the item. If Z is used, the

replacement will be the space, and if the asterisk is used. the replacement

character will be the *

PICTURE

Zero suppression and replacement are indicated in a PICTURE character-string

by using a string of one or more of the allowable symbols to represent leading

numeric character positions which are to be replaced when the associated char­

acter position in the data contains a zero. Any of the simple insertion char­

acters embedded in the string of symbols or to the immediate right of this

string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero

suppression. One way is to represent by suppression symbols, any or all of

the leading numeric character positions to the left of the decimal point.

other way is to represent all of the numeric character positions in the PICTURE

character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any

leading zero in the data which corresponds to a symbol in the string is re­

placed by the replacement character. Suppression terminates at the first non­

zero digit in the data represented by the suppression symbol string or at the

decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are repre­

sented by suppression symbols and the value of the data is not zero, the re­

sult is the same as if the suppression characters were only to the left of the

decimal point. If the value is zero, the entire data item will be spaces if

the suppression symbol is Z or all asterisks (*), except for the actual decimal

point, if the suppression symbol is *·
Whan the asterisk is used as the zero suppression symbol and the clause BLANK

WHEN ZERO also appears in the same entry, the zero suppression editing overrides

the function of BLANK WHEN ZERO.

Replacement Editing. Symbols+, - *, Z, and the currency symbol, when

used as floating replacement characters, are mutually exclusive within a

given character string. At least two floating replacement characters must

appear as the leftmost characters in the PICTURE.

6-57

PICTURE J

Precedence of Symbols

Table 6-4 shows the order of precedence when characters are used as symbols

in a character string. An X at an intersection indicates that the symbol(s)

at the top of the column may precede, in a given character string, the

symbol(s) at the left of the row. Arguments appearing in braces indicate

that the symbols are mutually exclusive. The currency symbol is indicated

by the symbol "cs".

At least one of the symbols "A", "X", "Z", "9", or"*", or at least two of

the symbols"+", "-" or "cs" must be present in a PICTURE string.

When "+" or "-" is to be the rightmost printable character in a PICTURE char­

acter(s) P, if any, must follow, instead of preceded, the "+" or "-" There­

fore, PICTURE 99+PPP is valid, and PICTURE 99PPP+ is invalid.

Non-floating insertion symbols"+" and"-", floating insertion symbols "Z",

"*", "+", "-", and "cs", and other symbol "P" appear twice in the PICTURE

character precedence chart. The leftmost column and uppermost row for each

symbol represent its use to the left of the decimal point position. The

second appearance of the symbol in the chart represents its use to the right

of the decimal point position.

6-58

PICTURE

Table 6-4. Order of Precedence

First Non-Floating Floating
Other Symbols

Symbol Insertion Symbols Insertion Symbols

Second

Symbol
cs 9

A

s -v p . TJ+l1J+l JcRI! cs Jzl !Jzl J+11l+li cs

I jl J, os\1 I 1J ! J JI J, x
p

B x x x xix Ix x txlxlx
1--------4---+--+---+- T T j_

~ o xx xx x JX x/x xx
g'~e , x x

1

x x xj : T x x jx 1Jx x
·P'! >- i ; i I I

..., Cl) I ! T T T T I I ! I
~ c ~----_..._x_.__x __ I x 1 -1 _x.....;!_) _ ___.j_x_~ x I l x ; I x i

x I x

x x x

x x

x

x

x

x
I

x

x

x

x x I
I

x

l

l

ix
i

I l
1 ~: <+ -i r-t ll 11 J! i i \ I ! i

c ... t-------+-----+-·+---+ I I l I lT
0 a) II i T I I x 1 T T
z ~ C+ -) x Ix Ix l x I ! \ x x I l ! x ~ x x I I x 1· x f x

I I

H (CR DB) I x l x l x l x ! i i ; x x : x l l i x i x I x I
11 i /x! 1 1 J l l -f j i [l

I I I I i x i x x
\ l l

_l cs

[I 1 11 1' Tl I I
(Z •) x x ! x x I I x x I l

~1--~~~+---+--+-~+-~!~i~' c-+-~-1+-~~-+~----+11'~~-+1~~~~_._-1---+~~T
_g (Z •) x x x x l x I I j x x ix I l l I x I ix

~ ~i------+-+--+--+---+-l--+1-+11---+,,-~--~:--+--+1!-+--!-~!,--+--+---+-1-+-1+---1t--~

I til ..__ _< +_-_> ---+--j ·-1>--x-+-1-x +-· _ __,_· -----x-+1-+---+--1-x ..__, -· .___._u___._· -' _.........._· ~
x C:t! (+-j XjX/XjX/ JI Ix l Jxix[J ii /xj

E t----c_s~-+-x-+-x--1-_x-+-+--x.....;l_+J----+J-~---1;t---+l_-_-....... J~~...,..,....._f ~~x~:i~~~:~~~+-1_-_--+-:~~:l~~:i ~~:~:
I i I T ! l I T

C/l
.....;

0
.c
e
>­

ll')

cs x x!x x:x/ J l 1 l Jxix I Jx x

~--9--~x-4-_x_
1

~'_x __ '_x-+--x4i_~~--~-x-~~: --+:-x____,l,__~1--x--..j_x~!,__x_I~: ~x-+---+-x--1
AX x,x 't ! ! I I I . I I x ·1 I

s

v

p x

p

T T i' T i T T I i I
I L J I i J_ i l I I

x x x

x T T
j x i

I x
I

T

I
i

x

x

l
x

I

! I I

6-59

PICTURE

The following examples illustrate some of the ways a PICTURE clause may be

coded:

6-60

ALPHABETIC ITEMS;

AA

A(25)

ALPHANUMERIC ITEMS:

xx
X(l5)

A(5)9(4)

99A99XX

NUMERIC ITEMS:

9

99999

9V99

S99V99

999PPP

J99

EDITED NUMERIC ITEMS (CLASS IS ALPHANU~IBRIC):

9.99

zzzzz
$$.99CR

B(4)9

$**,***.99

-----9
++,++9.999

$**,***.99DB
999,999

("-" IS A MINUS SIGN)

(Copy deleted.)

Table 6-5 demonstrates the editing function of the PICTURE clause.

I

Table 6-5. Editing Application of the PICTURE Clause

SOURCE

PICTURE

9 (5)
V9(5)
V9(5)

9 (5)
9(3)V99
9 (5)
9 (5)
9 (5)
9 (5)
9(3)V99
9(3)V99
9(3)V99
9 (5)
9 (5)
9(3)V99

89 (5)
S9 (5)

9(3)V99
89 (5)
89 (5)

9 (5)
S9(5)V
<;;:Q -) ~~ (5/

S99V9(3)
89 (5)
9(3)V99
9 (5)
9(7)

AREA

I

DATA

12345
12345
12345
00000
12345
00000
01234
00000
00123
00012
12345
00001
12345
00000
00001

(+) 12345
(-) 00123

12345
(-) 12345
(+) 12345

12345
(-) 12345
(-) 12345
(-) 12345
(+) 12345

12345
12345

0012003

RECEIVING AREA

EDITING
PICTURE EDITED DATA

$ZZ,ZZ9.99 $12,345.00
$$$,$$9.99 $0.12
$ZZ,ZZ9.99 $ 0.12
$$$,$$9.99 $0.00
$ZZ,ZZ9.99 $ 123.45
$$$,$$$.$$
$**,**9.99 $*1,234.00
$**,***·** *******·**
$**,**9.99 $***123.00
$ZZ,ZZ9.99 $ 0.12
$$$,$$9.99 $123.45
$ZZ,ZZZ.99 $.01
$$$,$$9.99 $12,345.00
$ZZ,ZZZ.ZZ
$$$,$$$.$$ $.01

ZZZZ9. 99+ 12345. 00+
--99999.99 -00123.00

999.00 123.00
ZZZZ9.99- 12345.00-
ZZZZ9.99- 12345.00
BBB99.99 45.00

-ZZZZ9.99 -12345.00
~~ ~- ~.99CR ~12345.00CR
YYYY I y -12.34 ------.99
$$$$$$.99CR $12345.00

999.BB 123.
00999.00 00345.00

ZZ99JZ9 12 3

I PICTURE I

6-61

REDEFINES

REDEFINES

The function of this clause is to allow an area of memory to be referred to

by more than one data-name with different formats and sizes.

The construct of the REDEFINES clause is:

level-number data-name-1 REDEFINES data-name-2

The REDEFINES clause, when specified, must immediately follow data-name-1.

The level-numbers of data-name-1 and data-name-2 must be identical and must

not be 66 or 88.

This clause must not be used in 01 level entries of the FILE SECTION, as an

implicit REDEFINES is assumed when multiple 01 level entries within a file

description are present. The size of the record(s) causing implicit redefini­

tion does not have to be equal to that of the record being redefined. The

various sizes of implicitly redefined record descriptions create no restriction

as to which description is to be coded first, second, third, etc., in the

source program. The size of the largest 01 level entry determines the size of

the storage area.

Redefinition starts at data-name-2 and ends when a level-number less than or

equal to that of data-name-2 is encountered in the source program.

When the level-number of data-name-1 is other than 01 (in the WORKING-STORAGE

SECTION), it must specify a storage area of the same size as specified by data­

name-2. It is important to observe that the REDEFINES clause specifies the

redefinition of a storage area, not simply of the data items occupying that

area. Redefined 01 levels do not have to be the same size.

Multiple redefinitions of the same storage area are permitted. The entries

giving the new descriptions of the storage area must follow the entries defin­

ing the area being redefined, without intervening entries that define new

The data description entry being redefined cannot contain an OCCURS clause,

nor can it be subordinate to an entry which contains an OCCURS clause.

The entries giving the new description of the storage area must not contain

VALUE clauses, except in condition-name entries.

Data-name-2 need not be qualified.

R-62

An example of REDEFINES entries follows:

01 WORK!.

03 PART-ONE PC X(60).

03 PART-TWO REDEFINES PART-ONE.

05 X PC X(40).

05 Y PC X(20).

03 PART-THREE REDEFINES PART-TWO PC 9(60).

I REDEFINES I

6-63

RENAMES

RENAMES

The RENAMES clause permits alternative, and possibly overlapping grouping of

elementary items.

The construct of this clause is:

[{
THROUGH}

66 data-name-1 RENAMES data-name-2 THRU data-name-3]

One or more RENAMES entries can be written for a logical record. All RENAMES

entries associated with a given logical record must immediately follow its

last record description entry. It is not possible to "chain" RENAMES; i.e. ,

it is illegal to rename data item "A" to "B" and then rename "B" to "C". How­

ever, multiple RENAMES of a data-name are permitted. (See figure 6-8.)

Data-name-2 and data-name-3 must be names of elementary items or groups of

elementary items of the same logical record and cannot be the same data-name.

A 66 level entry cannot rename another 66 level entry nor can it rename a 77,

88, or 01 level entry.

When data-name-3 is specified, data-name-1 is a group item which includes all

elementary items starting with data-name-2 (if data-name-2 is an elementary

item) or the first elementary item in data-name-2 (if data-name-2 is a group

item), and concluding with data-name-3 (if data-name-3 is an elementary item)

or the last elementary item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either a group or an

elementary item; when data-name-2 is a group item, data-name-1 is treated as

a group item; and when data-name-2 is an elementary item, data-name-1 is

treated as an elementary item.

The beginning of the area described by data-name-3 must not be to the left of

the beginning of the area described by data-name-2. The end of the area des­

cribed by data-name-3 must not be to the left of the end of the area described

by data-name-2. Data-name-3 cannot be contained within data-name-2. Data-name-

2 and data-name-3 may be qualified.

Data-name-1 cannot be used as a qualifier, and can only be qualified by the

names of the 01 level, SD, or FD entries. Neither data-name-2 nor data-name-3

may have an OCCURS clause in its record description entry or be subordinate

to an item that has an OCCURS clause in its record description entry.

6-64

RENAMES

When data-name-3 is specified, none of the elementary items within the range,

including data-name-2 and data-name-3, can be variable-occurrence items.

Data-name-1 will assume the USAGE of the item being renamed. If the THRU

option is used, all items within the RENAMES range must have the same

USAGE.

01 TAB.

03 A.

05 Al PIC x.
05 A2 PIC xxx.
05 A3 PIC xx.
05 A4 PIC xx.

03 x.
05 Xl PIC xx.
05 X2 PIC X(6).

05 X3 PIC X(S).

66 B RENAMES A. (i.e.' Al THRU A4)

66 c RENAMES A. (i.e.' Al THRU A4)

66 D RENAMES Al THRU A3.

66 E RENAMES A4 THRU X2

66 F RENAMES A2 THRU X. (i.e.' A2 THRU X3)

66 r" RENAMES A THROUGH X. (i.e.' Al T"tlRU T'P'-'
u]}..j)

Figure 6-8. Examples of RENAMES

6-65

USAGE

USAGE

The function of this clause is to specify the format of a data item in computer

storage.

The construct of this clause is:

[USAGE IS]

The USAGE clause can be written at any level. If USAGE is written on group

level, it applies to each elementary item in that group.

The USAGE of an elementary item cannot contradict the USAGE of a group to

which the item belongs.

COMPUTATIONAL-1 and CMP-1 are acceptable substitutes for, and are equivalent

to, COMPUTATIONAL, COMP, or CMP entries.

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear whenever the

receiving field is a group CMP item. This message indicates that the resultant

contents during object-program execution of the group CMP item may not contain

expected results.

Group moves are performed whenever the sending or receiving field is a group

item, and both will be treated as alphanumeric (byte) data. The appropriate

conversion takes place when a translation occurs from ASCII to EBCDIC or

EBCDIC to ASCII.

USAGE is a declaration for the EBCDIC internal representation of the system

and is defined as follows:

6-66

a. When USAGE IS DISPLAY, the data item consists of S-bit (byte)

characters.

USAGE

b. When USAGE IS COMPUTATIONAL, the data item consists of 4-bit coded

digits and must be numeric. If a group item is described as computa­

tional, the elementary items in the group are computational.

c. When USAGE IS INDEX, a PICTURE may not be specified. For example,

"77 ABC USAGE IS INDEX." An elementary item described with the USAGE

IS INDEX clause is called an index data item. An index data item can

be referred to directly only in a PERFORM, SEARCH, or SET statement

or in a relational condition, and is used for temporary storage of an

index-name.

The PICTURE nf a COMPUTATIONAL item can contain only 9's, the operational sign

character S, J, the decimal point character V, and one or more P's.

COMPUTATIONAL items may be declared for 9-channel magnetic tape files (TAPE-9),

disk (DISK), REMOTE, paper tape files (PT-READER or PT-PUNCH), or for WORKING­

STORAGE SECTION items.

A DISPLAY item is automatically converted to its 4-bit equivalent whenever the

receiving area is defined as COMPUTATIONAL, except when the receiving area is

a group item~ A CMP item is automatically converted to its 8-bit equivalent

6-67

whenever the receiving area is declared DISPLAY, except when the sending CMP

item is a group item.

If the USAGE clause is not specified for an elementary item, or for any group

to which the item belongs, the usage is assumed to be DISPLAY.

For the most efficient use of hardware storage and internal record storage

areas, records should be devised so as to avoid intermixing of odd-length

COMPUTATIONAL items with DISPLAY items. This rule is due to the compiler auto­

matically placing the machine addresses of DISPLAY areas to a character bound­

ary.

6-68

VALUE

The function of this clause is to declare an initial value to WORKING-STORAGE

items, or the value associated with a condition-name.

The construct of this clause is:

{ D } VALUE IS literal-I [{ ~~gUGH} literal-2 J
[literal-3 [{ THRU }

.. THROUGH litera1-4J
J

The VALUE clause cannot be stated for any item whose size, explicitly or im­

plicitly, is variable.

Literals may consist of Figurative Constants; e.g., ZEROS, QUOTES, etc.

Literals may be replaced by the reserved word DATE-COMPILED. If DATE-COMPILED

is used in the VALUE clause, the date that the program was compiled will be

placed in the data-name in the JULIAN form of YYDDD.

In the FILE SECTION, the VALUE clause is allowed only in condition-name (88

level) entries. VALUE entries in other data descriptions in the FILE SECTION

are considered as being for documentation purposes only.

The entire VALUE clause may be used with condition-name entries. All levels

other than 88 are restricted to the use of literal-I only.

The VALUE clause must not be stated in a Record Description entry with an

OCCURS clause, or in an entry which is subordinate to an entry containing an

OCCURS clause. This rule does not apply to condition-name entries.

The VALUE clause must not conflict with other clauses in the data description

of an item or in a data description within the hierarchy of the item. The

following rules apply:

a. If a category of an item is numeric, all literals in the VALUE clause

must be numeric literals; e.g., VA 1, 3 THRU 9, 12~ 16 THRU 20, 25

THRU 50, 51, 56.

b. If the category of the item is alphabetic, all literals in the VALUE

clause must be specifically stated as non-numeric literals; e.g., VA IS

"A", "B", "C", "F", "M", "N", "O", "P", "Q", "Z".

6-69

VALUE

c. All literals in a VALUE clause of an item must have a value which

requires no editing to place that value in the item as indicated by

the PICTURE clause.

d. The function of any editing clause or editing characters in a PICTURE

clause is ignored in determining the initial appearance of the item

described. However, editing characters are included in determining

the length of the item.

In a condition-name entry, the VALUE clause is required and is the only clause

permitted in the entry. The characteristics of a condition-name are explicitly

those of its conditional variable.

Whenever the THRU phase is used, literal-1 must be less than literal-2,

literal-3 less than literal-4, etc.

If this clause is used in an entry at the group level, the literal must be a

figurative constant or a non-numeric literal (byte characters). The group

area is initialized without consideration for the USAGE of the individual ele­

mentary items. Subordinate levels within the group cannot contain VALUE

clauses.

The VALUE clause must not be specified for a group containing items that require

separate handling due to the USAGE clause.

In a VALUE clause, there is no practical limit to the number of literals in a

series. VALUE cannot be associated with an index-data-name.

All numeric literals in a VALUE clause of an item must have a value which is

within the range of values indicated by· the PICTURE clause, and must not have

a value which would require truncation of non-zero digits. Non-numeric items

in a VALUE clause of an item must not exceed the size indicated by the PICTURE

clause.

6-70

I WORKING-STORA~E SECTION I
WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is optional and is that part of the DATA DIVISION

set aside for intermediate processing of data. The difference between

WORKING-STORAGE and the FILE SECTION is that the former deals with data

that is not associated with an input or output file. All clauses which

are used in normal input or output record descriptions can be used in a

WORKING-STORAGE record description.

Organization

Whereas the FILE SECTION is composed of file description (FD or SD) entries

and their associated record description entries, the WORKING-STORAGE SECTION

is composed only of· record description entries and non-contiguous items. The

WORKING-STORAGE SECTION begins with a section-header and a period, followed by

item description entries for non-contiguous WORKING-STORAGE items, and then by

record description entries for WORKING-STORAGE records, in that order. The

format for WORKING-STORAGE SECTION is as follows:

WORKING-STORAGE SECTION.
77 data-name-I

88 condition-name=l

77 data-name-n
01 data-name-2

02 data-name-3

66 data-name-m RENAMES data-name-3
01 data-name-4

02 data-name-5
03 data-name-n

88 condition-name-2

Non-Contiguous WORKING-STORAGE

Items in WORKING-STORAGE which bear no relationship to one another need not be

grouped into records, provided they do not need to be further subdivided. In­

stead, they are classified and defined as non-contiguous items. Each of these

items is defined in a separate record description entry which begins with the

special level-number 77. The following record description clauses are required

in each entry:

a. Level-number.

b. Data-name.

c. PICTURE clause.

6-71

I WORKING-STORAGE SEcnoNJ

The OCCURS clause is not meaningful on a 77 level item and will cause an error

at compilation time if used. Other record description clauses are optional

and can be used to complete the description of the item if necessary.

All level 77 items must appear before any 01 levels in WORKING-STORAGE.

WORKING-STORAGE Records

Data elements in WORKING-STORAGE which bear a definite relationship to one

another must be grouped into records according to the rules for the formation

of record descriptions. All clauses which are used in normal input or output

record descriptions can be used in a WORKING-STORAGE record description, in­

cluding REDEFINES, OCCURS, and COPY. Each WORKING-STORAGE record-name (01

level) must be unique since it cannot be qualified by a file-name. Subordinate

data-names need not be unique if they can be made unique by qualification.

Initial Values

The initial value of any item in the WORKING-STORAGE SECTION is specified by

using the VALUE clause of the record description. If VALUE is not specified,

the initial values are set to 4-bit zeros (COMPUTATIONAL). The initial value

of any index data item is unpredictable.

Condition-Names

Any WORKING-STORAGE item may be a conditional variable with which one or more

condition-names are associated. Entries defining condition-names must immed­

iately follow the conditional variable entry. Both the conditional variable

entry and the associated condition-name entries may contain VALUE clauses.

Coding the WORKING-STORAGE SECTION

Figure 6-9 illustrates the coding of the WORKING-STORAGE SECTION.

6-72

en
I

-...)

w

BURROUGHS COBOL COOING FORM
ADD I TI ON s • DEL [TI ON s ·.-~N.._D_c H_A_.N.-..GE_s__,.._...,... _______ _

::: :: :: M_f_R __ w_k~::~'::~ ~::~~:~:___.-_<-~' ":- :~ ~-=~~------f:; ::'o~ -~-----3:;:._ --J,,_:_, ____ IO

,. AIO[LINE I

NO. NO.

3 4 6 1 8 11 12 2 2 3 2 4 2 ~ 2 6 I 7t
t====t==~:l====t=--=--=--=-.:.c==--==:.:-~o.:...:::c:~c _ - -- ·~ · · . ·

1
-r-- ;=·--r-=----=--·-

~L-......1'--+~--+-~-i...:::.....1:....=.i..:~=:...::~ ~L':.L~~~...b~~.....L~Tb!~L·-t-LJ_.L...L .L.L.LL..Lf_L...L .. .L.LL..LLLJ .. -t_..l_i_L_L.1 I I l I I .L .. L_LL.L.LL.L

r.L~i.=i_~IT1~..L.i!:>_~~~t-1qL(~~-~~.~-CfiJ:iQ1tJAibu+i--1-_LL.L_l__l__L_..L-f...LL..LL..LL.~~---.
·4--....&--'--1--4-1-..__,_,'--'--+-'~..J,...i'Ti;..._,:_....._L~--=""-'-'~'~ I 1'BI:i c.i .BL~, I ;) l iV l ~ ~~§.&~_LLLLl I I I I I I J_j__L..Ll _____..__..__..__.__.__.&..-">_.__._

~f'-.l::_~1~1-~~~.f,:1T+E\! .. _ _l__j__·13~d~L l9t_LL.f->1'li."'..L.Ll.....1...__Ll___L_t--...L..L-L.LLLLL.L .. -f-1-...LLLL.L.LJ.. Lt__l__L__L_LLLL.L...L

....._....__.-+~--+--+--~~-~~ LL.L_Lj__L_Lt...i~..l-~..J_J___L-~__L_L __ L_L l I I I ...L+_...L..L_L_J_l_l__LL..! __ +--1--1- L.J.. L..J..._l.__LL-t-1----L--LLJ.~~~~--.
T .J..1-r:L.6.:::-~~J_L_L_..L....L_J_L.Lt--1--1 l l l L.--1... L..L-t __ ..LJ. __ J._LL.L . .L_L l I l I l _..l_,_j__l ___ L1-~LLJ.....J...~~----..

.J..........J.___..,:,,,..,,,S,,_._J_ L . .L......L..L..J_j__ 1.SiT...L~~L.LJ_J..__, l I l l l I.. I ..LL+_..L._l _ _L_l I I I I I I I .. L .. L_LL .. L Lt--1. __ LJ.._l _l_l_l ___ __,

'J0_LJ_l._j_j__~~~-·....L ... L...L.~· +BI1:~.......8~..L~.Lt-J __ LLLL.LLL ... L I i _J_J._L_..L+.....1_L_LJ __ L..LL1.

j.......LlJQ __ .L_L_L...LL~Yl~ ... L._ .. LLf...L~ ,c;j (1 l/.1)_u.J._t_..L_L.Ll l i I l I I l _L..L..J... I I I I ! I 1..L...L

·----~-.-1.........Ll..iQ_L.i.........J. l I 1Cf'R1EL..L_LL....L .. .L.....l... __ +B:r1c..j 191 (,q.~..L.f-~LLL..L-1 Lj I LJ __ L..Ll I _l_i__l.......L..L.1

. .L.....1---+==.c:...t...........cS:.J.....!iri~A.,,.__iTi.!...JCf;i-;._~Ei.'tJ J?...£.il> _E;J:-ild..~~ 1.S 1 1 ~jrj AtT~:u +01c:.i Ci 4g,:;, ~..!..L+..l__i_~__J___j_ 1 1 1 1

_L_L~_L..1._L ____ +~::r::::...~T..JE..r:-.i~~~~IC..1 B_{/.l...!~ I I l l_J_J. I l l _ _L I I l_l__L_l _._~~'"'--1

L~_ _ _J _ _J__;_ • ~o-~c:ri_":i_:__LLL+L..BJ::q l~l..!.LL..f_l... ! 1. 1._i_+ I I _l........l.._j__Lf--l_L._l_I -'---'-

......lL~Si::....J... ..l___l__LJ .
1
c..1:crti Y1 .LLL_LL+- L~..Lc~..L ... Lt--, 1 .L...L......L 1 I 1 LLLL LfL....1_1 ______ _

~ G- 'J;~~...lLL.+i-_ _L_J_L...LJ.... .. L-1 L t-_L_LL..LJ._j_L.L .. L-t-1-..l. I I I I I I 1.~_LL.L...L..L...J.......+__.l_L~•~_._~......_ __

........,..~--+-~-~~-~+=~L .Llu 1J_j__J._j_p:t:1L,L:EiR.L..J....1?~Ci 1ACS-1:t1)1 1Y.J:~L.J..~17L~~ I I I I I I I I I I 1 I I

L 1.l ..LL LL.L rF.:C1L, Lj6_'e, .J?.!.L~t-1.&G.t, ll_LY.il~-+~~1A1L;§S, _..lB.§..¥~...L~V,C...1E_L'....e+-.LL.L-I --------.

LU_l__j_J. ..L~~-_s~~~~~u)LtY'.il~+~.J:>~.iE..S...L!.L_L 1
1

, , , -~-L .. L...L..L .. L+J..__J_LLL.L-----

__ 1 .. L ..1.. ..L 1- ...i_l L.L ... f-L-1..L....L..l-11........L... ... +.....L... .. L. . .L..J. _L_LJ......1... . ..1..+l......J._L_..._! __.1.__.___.__.__._~1~_._-' _.1_1.._._......_......_.....__+-"___.__...._.__._......_......_.~_....--1

.._.. -+--~~- _j__~-'---i--'--- ... L .. J..... L...L ... 1 L L L--j-~.....L....L....L-1. ..l1........L.L t.....L....L ... L..L..L.l L.L....L_t--..L-1 .. -L .. .L.J.~~~......_~~_......__._ _.1___._1~1 ~! -+-......_.....__......_.~___._-4........_...._~

._.... _L ____... --1. ___j_J __ j __ L.._L_L L.J. + .. L.J. .. -1-1. .. J......J._...L....LJ. I I l I I J_j__l__...L....L.....~L...J.~_._~-~~----~~~IL..LL1-t-1-·------~-.....,

--~~-~~+ ~~~~~~~~+.L....L...L....L_L__L...LJ__j_t--1--1-- J..-LJ......l..........L...L..f--~' ~_._~~~~~--~-~~I _.l._.~~"--1-----~----

.L......L~-~~ ~-~-L..1. L .. L....L_L_.L_t---~~~L.l...L.L...L-t ~~~~~~-.-.......,...........~~~' i_ I l

..... ! l I I ...l..........L.....~j,__..-~~-L.J.........l...t-j __._.....__4..--JL-.L__.__...___L.J-f__...___."---'-_.._~J-1__._-+-_.__...__..___.~1L...L...l--------------.
I I

Figure 6-9. WORKING-STORAGE SECTION Coding

~
0
~
~

z
C>
I

"' ~ 0
~

>
C>
m

"' m
n
::!
0
z

SECTION 7
PROCEDURE DIVISION

GENERAL

The fourth part of the COBOL source program is the PROCEDURE DIVISION. This

division contains the procedures needed to solve a given problem. These pro­

cedures are written as sentences which may be combined to form paragraphs,

which in turn may be combined to form sections. The purpose of the following

discussion is to explain this division and its elements.

RULES OF PROCEDURE FORMATION

A procedure is composed of a paragraph, a group of successive paragraphs, a

section, or a group of successive sections within the PROCEDURE DIVISION. If

declaratives are specified, then sections must be used in the remainder of

the PROCEDURE DIVISION. A procedure-name is either a paragraph-name or a

section-name.

The end of the PROCEDURE DIVISION (the physical end of the program) is that

physical position in a COBOL source program after which no further procedures

appear.

A section consists of a section header followed by one or more successive

paragraphs. A section ends immediately before the next section-name, at

the end of the PROCEDURE DIVISION, or in the Declaratives portion of the

PROCEDURE DIVISION at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by one or more successive

sentences. A paragraph ends immediately before the next paragraph-name or

section-name or at the end of the PROCEDURE DIVISION.

A sentence consists of one or more statements and is terminated by a period

followed by a space.

A statement is a syntactically valid combination of words and symbols begin­

ning with a COBOL verb.

The term "identifier" is defined as the word or words necessary to make

unique reference to a data item.

EXECUTION OF PROCEDURE DIVISION

Execution begins with the first statement of the PROCEDURE DIVISION, excluding

declaratives. Statements are then executed in the order in which they are pre­

sented for compilation, except where the rules in this section indicate some

other order.

The body of the PROCEDURE DIVISION must conform to the following format:

PROCEDURE DIVISION.

[DECLARATIVES.

section-name SECTION. declarative-statement.

paragraph-name. [statement.]

(paragraph-name. [statement.] ... J
[section-name SECTION. declarative-statement.

paragraph-name. [statement.]

[paragraph-name. [statement.] ... J ... J
END DECLARATIVES.]

[[section-name SECTION [priority-number] . J
paragraph-name. [st~tement.] ...

[[paragraph-name.]

[E'.ND•QF-JOB.]

[s ta temen t .] . . . J . . . J ...

STATEMENTS

STATEMENTS

There are three types of statements: imperative statements, conditional

statements, and compiler-directing statements.

Imperative Statements

An imperative statement is any statement that is neither a conditional state­

ment nor a compiler-directing statement. An imperative statement may consist

of a sequence of imperative statements, each possibly separated from the next

by a separator. A single imperative statement is made up of a verb followed by

its operand. A sequence of imperative statements may contain either a GO TO

statement or a STOP RUN statement which, if present, must appear as the last

imperative statement of the sequence. Some of the imperative statements are:

ACCEPT DISPLAY MOVE SEEK

ADD(l) DIVIDE(l) MULTIPLY(l) SET

ALTER EXAMINE OPEN SORT

CLOSE EXIT PERFORM STOP

COMPUTE(l) GO READ(3) (2) SUBTRACT(l)

MERGE WAIT
WRITE(2) (4)

Conditional Statements

A conditional statement specifies that a truth value of a condition is to be

determined and that the subsequent action of the object program is dependent on

this truth value. A conditional statement is (1) an IF or SEARCH statement, (2)

a READ or RETURN statement that specifies the AT END phrase, (3) a READ or WRITE

statement that specifies the INVALID KEY phrase, (4) a WRITE statement that

specifies the END-OF-PAGE phrase or (5) the arithmetic statements ADD, SUBTRACT,

COMPUTE, DIVIDE, or MULTIPLY that specify the optional phrase ON SIZE ERROR.

For example, the IF statement syntax is as follows:

. . f sta tement-1 } [{sta tement-2 }]
IF conditional ,NEXT SENTENCE ;~ NEXT SENTENCE

Statement-I or statement-2 can be either imperative or conditional statements.

If conditional, the statement can, in turn, contain conditional statements to

a depth of 15. Also, if statement-I or statement-2 is conditional, then the

conditions within the conditional statement are considered to be "nested".

Compiler-Directing Statements

A compiler-directing statement is one that consists of a compiler-directing

verb (COPY and NOTE) and its operand(s).

1
2

Without the SIZE ERROR Option.
Without the INVALID KEY Option.

3
4

Without the AT END Option.
Without the EOP Option.

7-3

SENTENCES

SENTENCES

There are three types of sentences: imperative sentences, conditional sen­

tences, and compiler-directing sentences. A sentence consists of a sequence

of one or more statements, the last of which is terminated by a period.

Imperative Sentences

An imperative sentence is one or more imperative statements terminated by a

period. An imperative sentence can contain either a GO TO statement or a STOP

RUN statement which, if present, must be the last statement in the sentence.

The following are examples of an imperative sentence.

ADD MONTHLY-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL.

or

DISPLAY "PGM-END" THEN STOP RUN.

Conditional Sentences

A conditional sentence is a conditional statement which may optionally contain

an ~mperative statement and must always be terminated by a period.

Examples:

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO

TALL-MEN, ELSE ADD 1 TO SOME-OTHER, GO GET-ANOTHER­

RECORD.

IF SALES IS EQUAL TO BOSSES-QUOTA THEN MOVE SALESMAN

TO HONOR-ROLL OTHERWISE MOVE SALESMAN TO QUOTA­

LIST.

Compiler-Directing Sentence$

A compiler-directing sentence is a single compiler-directing statement termin­

ated by a period.

Example:

SCAN. COPY SCANER.

SENTENCES

Sentence Punctuation

The following rules apply to the punctuation of sentences:

a. A sentence is terminated by a period followed by a space.

b. A separator is a word or character used for the purpose of enhancing

readability. The use of a separator (other than a space) is optional.

c. The allowable separators are spaces, the semicolon(;), the comma

(,), and the reserved word THEN.

d. Separators may be used in the following places:

1. Between statements.

2. In a conditional statement.

(a) Between the condition and statement-I.

(b) Between statement-I and ELSE.

e. A separato:r(othQt ... "fihatt.·.••·•~···•···.·sgli\q~l

space but is not requjred.

Execution of Imperative Sentences

An imperative sentence is executed in its entirety and control is passed to

the next applicable procedural sentence.

Execution of Conditional Sentences

In the conditional sentence:

IF condition statement-I {
OTHERWISE}
ELSE

sta tement-2.

the condition is an expression which is TRUE or FALSE. If the condition is

TRUE, then statement-I is executed and control is then implicitly transferred

to the next sentence unless statement-I causes some other transfer of control.

If the condition is FALSE, statement-2 is executed and control passes to the

next sentence unless statement-2 causes some other transfer of control.

If statement-I is conditional, then the conditional statement must be the last

(or only) statement comprising statement-I.

tence would then have the form:

For example. the conditional sen-

l.E condition-I imperative-statement-I 11: condition-2

statement-3 {
OTHERWISE}
ELSE statement-4 {

OTHERWISE}
ELSE statement-2.

SENTENCES

If condition-I is TRUE, imperative-statement-I is executed. If condition-2

is TRUE, statement-3 is executed and control is transferred to the next sen­

tence. If condition-2 is FALSE, statement-4 is executed and control is trans­

ferred to the next sentence. If condition-I is FALSE, statement-2 is executed

and control is transferred to the next sentence. Statement-3 can in turn be

either imperative or conditional and, if conditional, can in turn contain con­

ditional statements to an arbitrary depth. In an identical manner, statement-4

can either be imperative or conditional, as can statement-2. The execution of

the phrase NEXT SENTENCE causes a transfer of control to the next sentence

written in order, except when it appears in the last sentence of a procedure

being PERFORMed, in which case control is passed to the return control.

Execution of Compiler-Directing Sentences

The compiler-directing sentences direct activities during compilation time.

On the other hand, procedural sentences denote action to be taken by the object

program. Compiler-directing sentences may result in the inclusion of routines

into the source program. They do not directly result in either the transfer

or passing of control. The routines themselves, which the compiler-directing

sentences may have included in the source program, are subject to the same

rules for transfer or passing of control as if those routines had been created

from procedural sentences only.

CONTROL RELATIONSHIP BETWEEN PROCEDURES

CONTROL RELATIONSHIP BETWEEN PROCEDURES

In COBOL, imperative and conditional sentences describe the procedure that is

to be accomplished. The sentences are written successively, according to the

rules of the coding form (section 3), to establish the sequence in which the

object program is to execute the procedure. In the PROCEDURE DIVISION, names

are used so that one procedure can reference another by naming the procedure

·to be referenced. In this way, the sequence in which the object program is

to be executed may be varied simply by transferring control to a named pro-

cedure.

In procedure execution, control is transferred only to the beginning of a

paragraph or section. Control is passed to a sentence within a paragraph only

from the sentence written immediately preceding it. If a procedure is named,

control can be passed to it from any sentence which contains a GO TO or PERFORM,

followed by the name of the procedure to which control is to be transferred.

Paragraphs

So that the source programmer may group several sentences to convey one idea

(procedure), paragraphs have been included in COBOL. In writing procedures

in accordance with the rules of the PROCEDURE DIVISION and the requirements

of the coding form (section 3), the programmer begins a paragraph with a

name. The name consists of a word followed by a period, and the name pre-

cedes the paragraph it names. A paragraph is terminated by the next paragraph­

name. The smallest grouping of the PROCEDURE DIVISION which is named is a

:VIVISIO!i is the optional special

card in the source program the

program.

Programs may contain identical paragraph-names, provided they are resident in

different sections. If such paragraph-names are not qualified when used, the

current section is assumed. Paragraph-names may be used in GO, PERFORM, and

ALTER statements.

Sections

A section consists of one or more successive paragraphs and must be named when

designated. The section-name is followed by the word SECTION, a priority num­

ber which is optional, and a period. If the section is a DECLARATIVE section.

then the DECLARATIVE sentence (i.e .. USE or COPY) follows the section header

and begins on the same line. Under all other circumstances. a sentence may

not begin on the same line as a section-name. The section-name applies to all

I CONTROL RELATIONSHIP BETWEEN PROCEDURES I
paragraphs following it until another section-name is found. It is not re­

quired that a program be broken into sections, but this technique is exception­

ally useful in trimming down the physical size of object programs by stating a

priority number to declare overlayable program storage (see SEGMENT CLASSIFI­

CATION).

Since paragraph-names and section-names both have the same designated position

on the reference format (i.e., position A), section-names, when specified, are

written on one line followed by a paragraph .name on a subsequent line. When

PERFORM is used in a non-DECLARATIVE procedural section to call another section~

the same rules apply as when PERFORM is used in a DECLARATIVE section.

I SEGMENTATION]

SEGMENTATION

COBOL segmentation is a facility that provides a means to specify object pro­

gram overlay requirements. COBOL segmentation deals only with segmentation

of procedures. As such, only the PROCEDURE DIVISION and the ENVIRONMENT

DIVISION are ~onsidered in determining segmentation requirements for an ob­

ject program.

Program Segments

Although it is not mandatory, the PROCEDURE DIVISION for a source program may

be written as a consecutive group of sections, each of which are operations

that are designed to collectively perform a particular function. Each section

must be classified as belonging either to the fixed portion or to one of the

independent segments of the object program. Segmentation in no way affects

the need for qualification of procedure-names to ensure uniqueness.

The object program is composed of two types of segments: a fixed segment and

overlayable segments.

a. The fixed segment is the main program segment and may be overlaid in

the same manner as if it were an overlayable segment.

b. An overlayable segment is a segment which, although logically treated

as if it were always in memory, can be overlaid, if necessary, to

optimize memory utilization. However, such a segment, if called for

by the program 7 is always made available in its "initial" state when

the segment priority-number is 50 or greater. When the segment prior­

ity-number is 49 or less, the segment will be made available in its

last-used state.

In addition, depending on availability of memory, the number of permanent seg­

ments in the fixed and overlayable portions can be varied by changing the

SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph.

Segment Classification

Sections which are to be segmented are classified by means of a system of

priority numbers and the following criteria:

a. Logic requirements: sections with priority numbers from 00 through

49 in a program may reside in the fixed segment, depending on the

value specified in SEGMENT-LIMIT. Sections containing a priority

number lower than that specified in SEGMENT-LIMIT, regardless of

their physical location in the program, w~ll be assigned to the fixed

7-9

SEG M·ENT A TION

segment; all other sections will be assigned as overlayable segments.

"Fall-through" control from one SECTION to another SECTION is accom­

plished in their order of appearance in the source program.

b. Relationship to other sections: sections coded within the SEGMENT­

LIMIT range will become the fixed segment and can communicate freely

with each other. Those coded outside the stated SEGMENT-LIMIT range

fall into the overlayable category and can also communicate from one

to the other.

The compiler will create one program segment which will include all

sections with priority numbers below the value specified in SEGMENT­

LIMIT. The overlayable sections will be called into memory as needed

by the program. When memory is available, more than one overlayable

section will be ~n memory at the same time. This will reduce the

number of disk accesses, which in turn will cause the program to have

a shorter run time.

Priority Numbers

Section overlay classifications are accomplished by means of a system of

priority numbers. The priority number is included in the section header. The

general construct of a section header is as follows:

section-name SECTION priority-number.

The priority number must be an integer ranging in value from 00 through 99

(also 0. 1, 2, etc., are permissible priority numbers). If the priority num­

ber is omitted from the section header, the priority number is assumed to be 0.

Segments with priority numbers ranging from 0 up to, but not including. the

value specified in the SEGMENT-LIMIT clause (or 50 if no SEGMENT-LIMIT clause

has been specified) are considered as being located in the fixed portion of the

object program. Segments with priority number equal to or higher than the

value specified in SEGMENT-LIMIT (but not exceeding 99) are independent seg­

ments and fully ALTERable; however, segments with priority numbers greater

than 49 will be made available in their ''initial" state each time they are

referenced. A GO TO paragraph in a section whose priority is greater than or

equal to 50 must not be referred to by an ALTER statement in a section with a

different priority. Sections in DECLARATIVES are assumed to be 00 and must

not contain priority numbers in their section headers. Priority numbers may

be stated in any sequence and need not be in direct sequence. The fixed seg­

ment does not end when the first priority number equal to or greater than

SEGMENT-LIMIT is encountered.

7-10

I SEGMENTATION I

All segments, regardless of their physical location in the source program,

whose priority number is less than that which is specified in SEGMENT-LIMIT

will be "gathered" into a single segment. All other segments equal to or

greater than that which is specified in SEGMENT-LIMIT will be "gathered" in­

to overlayable segments according to equal priority number, regardless of

their physical location in the source program.

The use of the "gathering" technique will allow programmers to create tailored

segments which will reduce disk access times. For example:

Segment

00-16

17

18

19

20

21

22

23

24

25

Segment

00-16

17

18

19

20

17

19

17

20

20

SEGMENT-LIMIT

Non-Gathered

DescriQtion

Main body of the program

Used frequently

Used frequently

Used infrequently

Used at EOJ only

Used frequently

Used at BOJ only

Used frequently

Used for infrequent test

Used infrequently

Gathered

DescriQtion

Main body of the program

Used frequently

Used infrequently

Used infrequently

Used at EOJ

Used frequently (was segment 21)

Used at BOJ (was segment 22)

Used frequently (was segment 23)

Used for infrequent test (was segment 24)

Used infrequently (was segment 25)

Size in Digits

4,000

1,000

5,000

4,000

500
<) {) r.r. ,:;,,, vvv

1.000

500

1,500

3,000

Size in Digits

4,000

1,000

5,000

4,000

500

2.000

1,000

500

1,500

3.000

7-ll

SEGMENTATION

Results of Gathering

Segment DescriQtion Size in Digij;;s

00-16 Main body of the program 4,000

17 Used frequently 3,500

18 Used infrequently 5,000

19 Used infrequently 5,000

20 Used infrequently 5,000

"Fall through" will be performed in the sequence as outlined in the above

"Non-Gathered" example, and not as they appear in the "Results of Gathering"

example above, therefore preserving the logical integrity of the original

program.

The COBOL interpreter will automatically check to see if an overlay being

called for by an object program is already present in memory. If it is

present, no disk access is required and the program is not interrupted. If it

is not present, the COBOL interpreter interrupts the program and will access

the d~sk for the desired overlayable portion of the program. The COBOL inter­

preter uses overlay segments directly from the program library where the ob­

ject program was compiled to and is called in as an overlay in its initial

generated code each and every time it is required by the operating program.

Although the initial code is retrieved each time, the latest addresses of

ALTERed exits are still applicable and are in force by the use of an automatic

ALTER table for segments with a priority number of 49 or less.

7-12

DECLARATIVES

DECLARATIVES

Declaratives are procedures which operate under the control of the input­

output system. Declaratives consist of compiler-directing sentences and their

associated procedures. Declaratives, if used, must be grouped together at the

beginning of the PROCEDURE DIVISION. The group of declaratives must be pre­

ceded by the key word DECLARATIVES, and must be followed by the words END

DECLARATIVES. Each DECLARATIVE consists of a single section and must conform

to the rules for procedure formation. There are two statements that are

called declarative statements in the COBOL compiler. These are the USE and

the COPY statements. The next source statement following the END DECLARATIVES

statement must be a section-name or paragraph-name.

USE Declarative

A USE declarative is used to supplement the standard procedures provided by

the input-output system. The USE sentence immediately following the section­

name. identifies the condition calling for the execution of the USE procedures.

Only the PERFORM statements may reference all or part of a USE section. The

USE sentence itself is never executed. Within a USE procedure. there must be

no reference to the main body of the PROCEDURE DIVISION. The construct for the

USE declarative is as follows:

section-name SECTION. USE

paragraph-name. First procedure-statement ...

Complete rules for writing the formats for USE are stated under the USE verb.

COPY Statement as a Declarative

A COPY declarative is used to incorporate a DECLARATIVE library routine in

the source program, that is, a routine which is a USE declarative. The con­

struct of the COPY declarative is:

section-name SECTION. COPY library-name

Complete rules for writing the format for COPY are stated under the COPY verb.

ARITHMETIC EXPRESSIONS

ARITHMETIC EXPRESSIONS

An arithmetic expression is an algebraic expression which is defined as:

a. An identifier of a numeric elementary item.

b. A numeric literal.

c. Such identifiers and literals separated by arithmetic operators.

d. Two arithmetic expressions separated by an arithmetic operator.

e. An arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary+ or -. The permissible

combinations of identifiers, literals, and arithmetic operators are given in

table 7-1. Those ideptifiers and literals appearing in an arithmetic expres­

sion must represent either numeric elementary items or numeric literals on

which arithmetic operation may be performed.

Table 7-1. Combination of Symbols in Arithmetic Expressions

First
Symbol

Variable

*/** + -

unary +

(

)

Arithmetic Operators

Section Symbol

unary
Variable */**+- + or - ()

- p - - p

p - p p -

or - p - - p -
p - p p -
- p - - p

NOTE

In the above table. the letter "P" represents

a permissible pair of symbols. The character

"-" represents an invalid character pair. Vari­

able represents an identifier or literal.

There are five arithmetic operators that may be used in arithmetic expressions.

These operators, listed below, are represented by specific characters which

must be preceded by a space and followed by a space.

7-14

ARITHMETIC EXPRESSIONS

Character

+

*
I
**

Formation and Evaluation Rules

Meaning

addition

subtraction

multiplication

division

exponentiation

Parentheses may be used in arithmetic expressions to specify the order in

which elements are to be used. Expressions within parentheses are evaluated

first and, within a nest of parentheses, evaluation proceeds from the least

inclusive set to the most inclusive set. When parentheses are not used -0r

parenthesized expressions are at the same level of inclusiveness, the follow­

ing hierarchical order of operations is implied:

Unary + or -

**
* and I
+ and -

Parentheses have a precedence higher than any of the operators and are used

to eliminate ambiguities in logic where consecutive operations of the same

hierarchical level appear, or to modify the normal hierarchical sequence of

execution in formulas where it is necessary to have some deviation from the

normal precedence. When the sequence of execution is not specified by paren­

theses, the order of execution of consecutive operations of the same hierarchi­

cal level is from left to right. Thus, expressions ordinarily considered to

be ambiguous, e.g., A I B * C, A I BI C, and A**B**C are permitted in COBOL.

They are interpreted as if they were written (A / B) * C, (A I BJ / C. and

(A**B) **C, respectively. Without parenthesizing, the following example:

A + B / C + D ** E * F - G

would Je interpreted as:

A + (B / C) + ((D ** E) * F) - G

with the sequence of operations working from the innermost parentheses toward

the outside, i.e., first exponentiation, then multiplication and division. and

finally addition and subtraction.

7-15

I ARITHMETIC EXPRESSIONS I
The way in which operators, variables, and parentheses may be combined in an

arithmetic expression is summarized in table 7-1.

An arithmetic expression may only begin with the symbols (, +, -, or a

variable and may only end with a) or a variable. There must be a one-to-one

correspondence between left and right parentheses of an arithmetic expression

such that each left parenthesis is to the left of its corresponding right

parenthesis.

7-16

CONDITIONS

CONDITIONS

A condition causes the object program to select between alternate paths of

control, depending upon the truth value of a test. Conditions are used in IF

and PERFORM statements. A condition is one of the following:

a. Relation condition.

b. Class condition.

c. Condition-name condition.

e. NOT condition.

f. Condit ion { ~~D} condition.

The construction NOT condition is not permitted if the condition itself con­

tains NOT.

Logical Operators

Conditions may be combined by logical operators. The logical operators must

be preceded by a space and followed by a space. The meaning of the logical

operators is as follows:

Logical Operator

OR

AND

NOT

Meaning

Logical Inclusive OR

Logical Conjunction

Logical Negation

Table 7-2 indicates the relationships between the logical operators and condi­

tions A and B. Table 7-3 indicates the way in which conditions and logical

operators may be combined.

Relation Condition

A relation condition causes comparison of two operands, each of which may be

a data-name, a literal, or an arithmetic expression (formula). Comparison

of two elementary numeric items is permitted, regardless of the individual

USAGE clauses. However, for all other .comparisons, the operands must have

the same USAGE. Group numeric items are defined to be alphanumeric. It is

not permissible to compare an index-data-name to a literal or a data-name.

I CONDITIONS l

A

Table 7-2. Relationship of Conditions,
Logical Operators, and Truth Values

CONDITION CONDITION AND VALUES

B A AND B A OR B NOT A

TRUE TRUE TRUE TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE

FALSE FALSE FALSE FALSE TRUE

Table 7-3. Combinations of Conditions
and Logical Operators

~ CONDITION OR AND NOT (

CONDITION

OR

AND

NOT

(

)

- p p -
p - - p

p - - p

*P - - -
p - - p

- p p -

NOTE

The letter "P" represents a permitted pair

of symbols, and the character ''-" repre­

sents an invalid character pair.

The general format for a relation condition is as follows:

-
p

p

p

p

-

)

p

-
-
-
-
p

{

da ta-name-1 }
literal-1
arithmetic-expression-I

relational-operator r~~~=~~~~~- 2
}

arithmetic-expression-2

The first operand, data-name-1, literal-1, or arithmetic-expression-1 is

called the subject of the condition. The second operand, data-name-2~

literal-2, or arithmetic-expression-2 is called the object of the condition.

The object and the subject may not both be literals.

* Permissible only if the condition Hse1f is not a. "NOT condition".

7-1-8

CONDITIONS

Relational Operators

The relational operators specify the type of comparison to be made in a rela­

tion condition. The relational operators must be preceded by a space and

followed by a space. Relational operators are:

IS [NOT] GREATER THAN.

IS [.filIT J 1&.§..§ THAN.

IS [.liQI] EQUAL TO.

IS
r- _ ... _...._,

L .filL!.' J > .

IS [NOT] <·

IS [NOT]

EQUALS.

Comparison of Operands

Non-Numeric. For non-numeric (byte) operands, a comparison will result when

determination is made that one operand is less than, equal to, or greater than

the other with respect to a specified internal collating sequence of characters.

The size of an operand is the total number of characters in the operand. Non­

numeric operands may be compared only when their USAGE is the same, implicitly

or explicitly. There are two cases to consider:

a. If the operands are of equal size, characters in corresponding

character positions of the two operands are compared starting from

the high-order end through the low-order end. If all pairs of char-

acters compare equally through the last pair, the operands are con­

sidered equal when the low-order end is reached. The first pair of

unequal characters to be encountered is compared to determine their

respective relationship. The operand that contains the character

that is positioned higher in the internal collating sequence is con­

sidered to be the greater operand.

b. If the operands are of unequal size, the comparison of characters

proceeds from h igh-o_rder to low-order posit ions until a pair of un­

equal characters is encountered. or until one of the operands has no

more characters to compare. If the end of the shorter operand is

reached and the remaining characters in the longer operand are spaces.

the two operands are considered to be equal.

Numeric. For operands that are numeric. a comparison results in the deter­

mination that one of them is less than. equal to. or greater than the other

with respect to the algebraic value of the operands. The length of the oper-

7-19

I CONDITIONS I
ands, in terms of number of digits, is not significant. Zero is considered

a unique value regardless of the sign. Comparison of these operands is per­

mitted regardless of the manner in which their usage is described. Unsigned

numeric operands are considered positive for purposes of comparisons.

The signs of signed numeric operands will be compared as to their algebraic

value of being plus (highest) or minus (lowest).

Sign Condition

The sign condition determines whether or not the algebraic value of a numeric

operand is less than, greater than, or equal to O. The general construct for

a sign condition is as follows:

arithmetic-expression
{

POSITIVE}
IS [NOT] NEGATIVE

ZERO

An operand is positive if its value is greater than zero, negative if its

value is less than zero, and zero if its value is equal to zero.

Class Condition

The class condition determines whether the operand is numeric; that is,

consists entirely of the characters O, 1, 2, 3, ... , 9, with or without an

operational sign, or alphabetic, that is, consists entirely of the characters

A, B, C, ... , Z, and space. The general construct for the class condition is

as follows:

The usage of the operand being tested must be described, implicitly or ex­

plicitly, as DISPLAY.

The NUMERIC test cannot be used with an item whose record description de­

scribes the item as alphabetic. If the record description of the item being

tested does not contain an operational sign, the item being tested is de­

termined to be numeric only if the contents are numeric and an operational

sign is not present.

The ALPHABETIC test cannot be used with an item whose record description

describes the item as numeric. The item being tested is determined to be

alphabetic only if the contents consist of any combination of the alpha­

betic characters A thru Z and the space.

CONDITIONS

Condition-Name Condition

In a condition-name condition, a conditional variable is tested to determine

whether or not its value is equal to one of the values associated with a

condition-name. The general construct for the condition-name condition is as

follows:

[NOT] condition-name

If the condition-name is associated with a range or ranges 9f values, then

the conditional variable is tested to determine whether or not its value

falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value

are the same as those specified for relation conditions.

The result of the test is TRUE if one of the values corresponding to the

condition-name equals the value of its associated conditional variable.

Evaluation Rules

The evaluation rules for conditions are analogous to those given for arith­

metic expressions, except that the following hierarchy applies:

a. Arithmetic expressions (formulas).

b. All relational operators.

d. AND.

e. OR.

CONDITIONS

Simple Conditions

Simple conditions, as distinguished from compound conditions, are subdivided

into four general families of conditional tests: Relation Tests, Relative

Value Tests, Class Tests, and the Conditional Variable Tests. A detailed ex­

planation of each of these can be found at the beginning of this subsection

(title: Conditions).

Compound Conditions

The most common construct of a compound condition is:

simple-condition-I { O
ARND} simple-condition-~

[{ ~~D } { ~~D} . 1 d 't. l s imp e-con i ion-n J

Simple conditions can be combined with logical operators, according to speci­

fied rules, to form compound conditions. The logical operators AND, OR, and

NOT are shown in table 7-2, where A and B represent simple conditions. Thus,

if A is TRUE and B is FALSE, then the expression A AND B is FALSE, while the

expression A OR B is TRUE.

The following are illustrations of compound conditions:

a. AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20.

b. AGE IS GREATER THAN 24 OR MARRIED.

c. STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS

GREATER THAN DEMAND + INVENTORY.

d. A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT

EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I *
e. STK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS

THAN 100 OR STK-NUMBER EQUAL TO 76920).

J.

Note that it is not necessary to use the same logical connective throughout.

The rules for determining the logical (i.e., truth) value of a compound condi­

tion are as follows:

7-22

a. If AND is the only logical connective used, then the compound

condition is TRUE if, and only if, each of the simple conditions is

TRUE.

b. If OR is the only logical connective used, then the compound

condition is TRUE if, and only if, one or more of the simple condi­

tions is TRUE.

CONDITIONS

c. If both logical connectives are used, then the conditions are grouped

first according to AND, proceeding from left to right, and then by OR,

proceeding from left to right.

Parentheses may be used to indicate grouping as specified in the examples

below. Parentheses must always be paired the same as in algebra, i.e., the

expressions within the parentheses will be evaluated first. In the event that

nested parenthetical expressions are employed, the innermost expressions within

parentheses are handled first. Examples of using parentheses to indicate

grouping are:

a. To evaluate Cl AND (C2 OR NOT (C3 OR C4)), use the first part of

rule c above and successively reduce this by substituting as follows:

Let C5 equal "C3 OR C4", resu 1 ting in

Cl AND (C2 OR NOT C5)

Let C6 equal "C2 OR NOT C5", resulting

in Cl AND C6

This can be evaluated by referencing table 7-2.

b. To evaluate Cl OR C2 AND C3, use the second part of rule c and

reduce this to Cl OR (C2 AND C3), which can now be reduced as in

example a.

c. To evaluate Cl AND C2 OR NOT C3 AND C4, group first by AND from left

to right, resulting in:

(Cl AND C2) OR (NOT C3 AND C4)

which can now be evaluated as in example a.

d. To evaluate Cl AND C2 AND C3 OR C4 OR C5 AND C6 AND C7 OR CS. group

from the left by AND to produce:

((Cl AND C2) AND C3) OR C4 OR ((C5 AND C6)

AND C7) OR CS

which can now be evaluated as in example a.

e. The following uses a condition-name as part of the statement.

IF CURRENT-MONTH AND DAY = 15 OR 30 ... would

be treated as:

IF (CURRENT-MONTH AND DAY

actual test desired is:

IF CURRENT-MONTH AND (DAY

15) OR 30 ... the

15 OR 30) ...

7-23

CONDITIONS

The required result is that CURRENT-MONTH must be true and DAY must

contain either 15 or 30.

Without the parentheses as shown, the conditions are:

1. DAY = 30 or

2. CURRENT-MONTH is true AND DAY 15.

Abbreviated Compound Conditions

Any relation condition other than the first that appears in a compound condi­

tional statement may be abbreviated as follows:

a. The subject, or the subject and relational operator, may be omitted.

In these cases. the effect of the abbreviated relation condition is

the same as if the omitted parts had been taken from the nearest

preceding complete relation condition within the same condition;

that is, the first relation is a condition and must be complete.

b. If. in a consecutive sequence of relation conditions (separated by

logical operators) the subjects are identical, the relational oper­

ators are identical and the logical connectors are identical, the

sequence may be abbreviated as follows:

1. Abbreviation 1: when identical subjects are omitted in a con­

secutive sequence of relation conditions. An example of abbre­

viation 1 would be:

IF A = B AND = C.

This is equivalent to IF A = B AND A = C.

2. Abbreviation 2: when identical subjects and relational operators

are omitted in a consecutive sequence of relation conditions.

An example of abbreviation 2 is:

IF A = B AND C.

This is equivalent to IF A = B AND A = C.

c. As indicated in the previous paragraphs. compound conditions can be

abbreviated by having implied subjects, or implied subjects and re­

lational operators. providing the first simple condition is a full

relation. The missing term is obtained from the last stated relation

CONDITIONS

in the sentence. The following examples further illustrate the abbre­

viated compound conditions:

1. IF A B OR C is equivalent to IF A = B OR A c.
2. IF A < B OR C OR D is equivalent to IF A < B OR

A = C OR A = D.

7-25

INTERNAL PROGRAM SWITCHES

INTERNAL PROGRAM SWITCHES

Every compiled object program contains eight automatically provided program­

matic switches. Switches SWl through SW8 are composed of one unsigned digit

in ·length and are located in memory locations O through 7 of data segment O.

These switches can be referred to in the PROCEDURE DIVISION by the use of the

reserved words SWl, SW2 ... SW8. During execution, each individual switch

setting can be changed by a MOVE, ADD, SUBTRACT, etc .. For example:

MOVE 0 TO SWl.

ADD 1 TO SW2.

SUBTRACT 1 FROM SW3.

Note that SW6 has an effect on the MONITOR DEPENDING requirement if the

statement is present.

The switch memory locations are reserved and operate identically to those of

the reserved TALLY locations.

7-26

STATEMENT OPTIONS

STATEMENT OPTIONS

In the statement descriptions that follow, several options appear frequently:

the ROUNDED option, the SIZE ERROR option, and the CORRESPONDING option.

In the discussion below, a resultant-identifier is that identifier associated

with a result of an arithmetic operation.

Rounded Option

If after decimal point alignment, the number of places in the fraction of the

result of an arithmetic operation is greater than the number of places pro­

vided for the fraction of the resultant identifier, truncation is relative

to the size provided for the resultant-identifier. When rounding is requested,

the value returned is (X + 0.5), where X is the original argument.

When the low-order positions in a resultant-identifier PICTURE are represented

by the character "P", rounding or truncation occurs relative to the right­

most integer position for which storage is allocated.

Size Error Option

If, after decimal point alignment, the value of a result exceeds the largest

value that can be contained in the associated resultant-identifier, a size

error condition exists. The size error condition applies only to the final

results of an arithmetic operation and does not apply to intermediate results,

except in the MULTIPLY and DIVIDE statements, in which case the size error

condition applies to the intermediate results as well. Arithmetic faults such

as divide by zero will cause program termination if the SIZE ERROR clause is

not used.

If the ROUNDED option is specified, rounding takes place before checking for

size error. When such a size error condition occurs, the subsequent action

depends on whether or not the SIZE ERROR option is specified:

a. If the SIZE ERROR option is not specified and a size error condition

occurs, the values of the resultant-identifier(s) affected will be

unpredictable. Values of resultant-identifier(s) for which no size

error condition occurs are unaffected by size errors that occur for

other resultant-identifier(s) during execution of this operation.

b. If the SIZE ERROR option is specified and a size error condition

occurs, then the values of resultant-identifier(s) affected by the

size errors are not altered. Values of resultant-identifier(s) for

which no size error condition occurs are unaffected by size errors

that occur for other resultant-identifier(s) during execution of this

7-27

I STATEMENT OPTIONS I
operation. After completion of the execution of this operation, the

statement in the SIZE ERROR option is executed.

For ADD and SUBTRACT CORRESPONDING, the SIZE.ERROR clause is not

executed until all of the individual additions or subtractions are

completed.

Corresponding Option

In this discussion, identifier-1 and identifier-2 are identifiers specified

in a statement containing the CORRESPONDING phrase.

7-28

a. Rules for valid identifiers are:

1. All identifiers must refer to group items.

2. Identifiers may be described with or be subordinate to an item

described with a REDEFINES or OCCURS clause.

3. No identifier may have a USAGE of INDEX.

b. Data items subordinate to identifier-1 correspond with data items

subordinate to identifier-2, if the following rules apply:

1. Both data items must have the same data-name.

2. All possible qualifiers for the sending item, up to but not

including identifier-1, must be identical to all possible quali­

fiers for the receiving item up to but not including identifier-2.

3. In an ADD or SUBTRACT statement, only elementary numeric data

items will be considered.

4. In a MOVE statement, the corresponding sending and/or receiving

data items must be elementary. The class may differ.

5. Any item with a level-number of 66 or 88 or with a Data Descrip­

tion entry containing a REDEFINES, OCCURS, or INDEX clause is not

considered. Any item subordinate to an item not eligible for

correspondence will also be ignored.

6. FILLER data items are ignored.

VERBS

VERBS

The verbs available for use with the COBOL Compiler are categorized below.

Although the word IF is not a verb in the English language, it is utilized

as such in the COBOL language. Its occurrence is a vital feature in the

PROCEDURE DIVISION.

a. Arithmetic:

ADD

COMPUTE

DIVIDE

MULTIPLY

SUBTRACT

b. Compiler Directing:

COPY

MONITOR

NOTE

USE

c. Data Manipulations:

EXAMINE

FORMAT
MICR-EDIT
MOVE

d. Ending:

STOP

e. Input-Output:

ACCEPT

CLOSE

CONTROL
DISPLAY

OPEN

READ

SEEK

WRITE

ZIP

f. Logical Control:

IF

WAIT

7-29

VERBS

g. Procedure Branching:

ALTER

EXIT

GO

PERFORM

h. Sort:

11111
RELEASE

RETURN

SORT

i. Table Manipulation:

SEARCH

SET

j. Debugging:

D'UMP
!'RACE

Specific Verb Formats

The specific verb formats, together with a detailed discussion of the restric­

tions and limitations associated with each, appear on the following pages in

alphabetic sequence.

7-30

ACCEPT

ACCEPT

The function of this verb is to permit the entry of low-volume data from the

console typewriter.

The construct of this verb is:

ACCEPT identifier [FROM { !~monic-name}]
This statement causes the operating object program to halt and wait for appro­

priate data to be entered on the console printer (SPO). The SPO entry will

replace the contents of memory specified by the identifier. The systems

operator answers an ACCEPT halt by keying in the following message:

mix-index AXdata-required

If a blank appears between the AX and data-required, the blank character will

be included in the data-stream.

The MCP will space fill to the right if the number of characters entered is

less, or truncate to right if the number of characters entered is more.

If mnemonic-name is used, it must appear in the SPECIAL-NAMES paragraph and

be equated to the hardware-name SPO.

The receiving identifier may be a group level entry and cannot be subscripted.

The maximum number of characters per ACCEPT statement is unlimited.

Because of the inefficiency of entering data through the keyboard, this tech~

nique of data transmission should be restricted solely to low-volume input

data.

NOTE

The "<" is a backspace character and is

not passed by the MCP.

7-31

ADD

The function of this verb is to add two or more numeric data items and adjust

the value of the receiving field(s) accordingly.

The construct of this verb has three options.

Option 1:

{
literal-1 1 [{ literal-2 }
identifier-lJ identifier-2 ...]

TO identifier-m (ROUNDED] [identifier-n (ROUNDED] ...]

[;ON SIZE ERROR statement-I - [;'ELSE st~temeb.t;-21]

Opt ion 2:

{
1 iteral-1 } { 1 itera·1-2 } [{ 1 iteral-3 } J
identif ier-1 identif ier-2 identif ier-3 · · ·

GIVING identifier-m (ROUNDED] [,identifier-n (RO~DEQ]J
[:ON SIZE ERROR statement-I (;ELSE statement7~)]

Option 3:

{
CORR } ADD CORRESPONDING identif ier-1 TO identif ier-2

[ROUNDED] GoN SIZE ERROR statem.ent'."'l fiELSE statement;-21]

With Option 1. the value(s) of the operand(s) preceding the word TO will be

added together and the sum will be added to the existing value(s) of operand(s)

following the word TO. A resummation does not occur if the value of one of

the identifiers changes in the process.

For example, the result of the statement

ADD A, B 1 C TO C, D(C), E

is equivalent to

ADD A, B, c GIVING TEMP

ADD TEMP TO c
ADD TEMP TO D(C)

ADD TEMP TO E

where TE~P is a~ intermediate result item provided by the compiler.

7-·32

ADD

In Option 2, the sum of the operands preceding the word GIVING will be in­

serted as a replacement value of identifier(s) following the word GIVING.

In Options 1 and 2,. the identifiers must refer to elementary numeric items only,

except that identifiers appearing only to the right of the word GIVING may refer

to elementary numeric-edited items.

An ADD statement must have at least two operands.

That composite of operands, which is the super-imposition of all operands,

excluding the data item that follows the word GIVING, aligned on their decimal

points, must not contain more than 125 digits or characters.

The internal format of operands referred to in an ADD statement may differ

among each other. Any necessary format transformation and decimal point

alignment are automatically supplied throughout the calculation.

Each literal must be a numeric literal.

If, after decimal point alignment with the receiving data item, the calculated

result extends to the right of the receiving data item (i.e., an identifier

whose value is to be set equal to the sum); truncation will occur. Truncation

is always in accordance with the size associated with the resultant identi­

fier. When the ROUNDED option is specified, it causes the resultant identi­

fier to have its absolute value increased by 1 whenever the most-significant

digit of the truncated portion is greater than or equal to 5.

Whenever the magnitude of the calculated result exceeds the largest magnitude

that can a size error condition arises.

In the event of a size error condition, one of two possibilities will occur,

depending on whether or not the ON SIZE ERROR option has been specified. The

testing for the size error condition occurs only when the ON SIZE ERROR option

has been specified.

a. In the event that ON SIZE ERROR is not specified and size error con­

ditions arise, the value of the resultant identifier is unpredictable.

b. If the ON SIZE ERROR option has been specified and size error condi­

tions arise, then the value of the resultant identifier will not be

altered. After it has been determined that there is a size error

condition, the statement-1 associated with the ON SIZE ERROR option

will be executed.

If Option 3 is used multiple operations are performed. The operations are exe­

cuted by the pairing of identical data-names of numeric elementary items subor-

7-33

dinate in hierarchy to identifier-I and identifier-2. Data-names match if they,

and all their possible qualifiers up to, but not including identifier-I and

identifier-2, are the same. All general rules pertaining to the ADD verb apply

to each individual ADD operation. For instance, if the size of matched data­

names does not correspond, in that the decimal point is out of alignment or

the sizes differ, the decimal point alignment or truncation takes place accord­

ing to the rules previously discussed.

In the process of pairing identical data-names, any data-name with the

REDEFINES clause is ignored. Similarly, data-names which are subordinate to

the subordinate data-names with the REDEFINES clause are ignored.

NOTE

This restriction does not preclude

identif ier-1 or identif ier-2 from having

REDEFINES clauses or from being sub­

ordinate to data-names with REDEFINES

clauses.

If the CORR or CORRESPONDING option is used, any item in the group referred

to which contains an OCCURS clause will be ignored. Any items subordinate to

such an item will also be ignored.

In Option 3, if either identifier-I or identifier-2 is a group item which con­

tains RENAMES entries, the entries are not considered in the matching of names.

In Option 3, identifier-I and identifier-2 must not have a level number of 66,

77, or 88.

If corresponding data-names are not elementary numeric items, the ADD operation

will be ignored.

In Option 3, CORR is an acceptable substitute for CORRESPONDING.

7-34

ALTER

ALTER

The function of this verb is to modify a predetermined sequence of operations

by changing the operand of a labeled GO TO paragraph.

The construct of this verb is:

ALTER procedure-name-I TO [PROCEED TO] procedure-name-2

[procedure-name-3 .IQ [PROCEED TO] procedure-name-4 ...]

Procedure-name-I, procedure-name-3, ... are names of paragraphs, each of

which contains a single sentence consisting of only a GO TO statement as

defined under Option 1 of the GO TO verb. Procedure-name-2, procedure-name-4,

... are not subject to the same restrictions and they may be either paragraph­

names or section-names.

When control passes to procedure-name-I, control is immediately passed to

procedure-name-2 rather than to the procedure-name referred to by the GO TO

statement in procedure-name-I, Procedure-name-I is therefore a "gate" which

remains set until again referenced by another ALTER statement.

A GO TO statement in a section whose priority is greater than or equal to 50

must not be referred to by an ALTER statement in a section with a different

priority.

All other uses of the ALTER statement are valid and are performed even if the

GO TO which the ALTER refers to is in an overlayable section, as long as the

section priority number is less than 50.

7-35

I CLOSE I
CLOSE

The function of this verb is to communicate to the MCP tnat the designated

file-name being operated on or created is programmatically completed, and also

to fulfill the stated action requirements.

The construct of this verb is:

CLOSE f ile-name-1 (REEL]

[file-name-2 ...]

r WITH

l
LOCK
;~~,'
llBli~llE
NO REWIND
REMOVE

File-names must not be those defined as being SORT files. A file must have

been OPENed previously before a CLOSE statement can be executed for the file

File space in memory will not be allocated until the file has been OPENed.

When a file is programmatically CLOSEd and the assigned unit is released, the

memory allocated for that file will be returned to the MCP. The MCP I/O as­

signment table reflects any unit which remains assigned to the program after

the file on that unit has been CLOSEd.

The above statement applies to the following categories of input and output

files.

a. Files whose input and output media involve print files, card files,

etc.

b. Files which are contained entirely on one reel of magnetic tape

and are the only files on that reel.

c. Files which may be contained on more than one physical reel of

magnetic tape. Furthermore, the number of reels might possibly be

higher than the number of physical tape units provided on the system.

d. Disk files.

To show the effects of the CLOSE options, each type of file will be discussed

separately.

a. Card Input.

1. CLOSE - does not release the input memory areas or the reader.

2. CLOSE WITH NO REWIND - same as CLOSE,

7-36

CLOSE

4. CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

5~ CLOSE WITH.PURGE

6. CLOSE WITH REMOVE - same as CLOSE.

b. Card Output.

1. CLOSE - punches the trailer label (if any) and does not release

the output memory areas or the punch.

2. CLOSE WITH NO REWIND - same as CLOSE.

3. CLOSE WITH ULEASE -

returns the punch··

4. CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

6. CLOSE WITH REMOVE - same as CLOSE.

7. CLOSE WITH CRUNCH - same as CLOSE;

c. Magnetic Tape Input.

l. CLOSE - rewinds the tape and does not release the input memory

areas. The unit remains assigned to the program.

2. CLOSE WITH NO REWIND - same as CLOSE except the tape is not

rewound.

3. CLOSE WITH LOCK - releases the input memory areas, rewinds the

tape, and the MCP marks the unit not ready.

4. CLOSE WITH RELEASE - releases the memory input. areas, rewinds

the tape, and returns the unit to the .MCP ..

5. CLOSE WITH PURGE - rel~as~s th.e ~ppqt me1npry ar~~s 1 .re~i~d$ J;J:le

tape, and if a w:rit@ rin~ is i.n tl1~ x:~~+, Off;f:('-writes thE} 1'1,b@l,

making the tape a scratch tape<whlch becomes a candidate for use

by the MCP. The unit is returned to the MCP.

6. CLOSE WITH REMOVE - same as CLOSE.

7. CLOSE WITH CRUNCH - same as CLOSE.

d. Magnetic Tape Output.

7-37

CLOSE

1. CLOSE - does not release the output memory areas, writes the

trailer label (if any), and rewinds the tape. The unit remains

assigned to the program.

2. CLOSE WITH NO REWIND - does not release the output memory areas,

writes the trailer label (if any). The tape remains positioned

beyond the trailer label (or tape mark if there is no trailer

label). The unit remains assigned to the program.

3. CLOSE WITH LOCK - releases the output memory areas, writes the

trailer label (if any), rewinds the tape, and the MCP marks the

unit not ready.

6. CLOSE WITH REMOVE - same as CLOSE.

e. Printer Output.

7-38

1. CLOSE - prints the trailer label (if any) and does not release the

the output memory areas or the printer.

2. CLOSE WITH NO REWIND - same as CLOSE.

and

4. CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

6. CLOSE WITH REMOVE - same as CLOSE.

CLOSE

f. Disk Files. The actions taken on files ASSIGNED to DISK will be

discussed in terms of old files and new files. An old file is one

that already exists on disk and appears in the MCP Disk Directory.

A new file is one created by the program and does not appear in the

Directory. A new file may only be referenced by the program which

creates it.

1. CLOSE - does not release the input/output memory areas.

(a) For an old file, the file is left in the Directory and is

available to other programs.

(b) For a new file, the file is not entered in the Directory;

however, it remains on the disk and may be OPENed again by

this program.

2. CLOSE WITH NO REWIND - not permitted on disk files.

4. CLOSE WITH LOCK - releases the input/output memory areas.

(a) For an old file, the file remains in the Directory and is

made available.

(b) For a new file, the file is entered in the Directory and

is available to other programs.

6. CLOSE WITH REMOVE - releases the input/output memory areas.

This option will cause the MCP to REMOVE a file from the Disk

Directory that has the same file-id as the file being closed.

This action will take place prior to entering the closing files

file-id in the Disk Directory. Use of this option will eliminate

the DUPLICATE FILE condition and reduce operator intervention.

If the REMOVE option is not used, the "RM" SPO input message will

accomplish the same results.

7-39

CLOSE

If a file has been specified as being OPTIONAL, the standard end-of-file pro­

cessing is permitted whenever the file is not present.

If a CLOSE statement without the REEL option has been executed for a file, a

READ, WRITE, or SEEK statement for that file must not be executed unless an

intervening OPEN statement for that file is executed.

The CLOSE REEL option signifies that the file-name being CLOSEd is a multi­

reel magnetic tape input or output file. The real will be CLOSEd when the

CLOSE REEL statement is encountered and an automatic OPEN of the next se­

quential reel of the multi-reel file is then performed by the MCP.

7-40

COMPUTE

COMPUTE

The function of this verb is to assign to a data item the value of a numeric
~

data item, literal, or arithmetic expression.

The construct of this verb is:

COMPUTE identifier-1 [ROUNDED J
{

identifier-2 }
literal
arithmetic expression

[;ON SIZE ERROR

The literal must be a numeric literal.

Identifier-2 must refer to an elementary numeric item. Identifier-I may describe

an elementary numeric edited item.

The arithmetic expression option permits the use of any meaningful combination

of identifiers, numeric literals, arithmetic operators, and parenthesization,

as required.

All rules regarding ON SIZE ERROR, ROUNDED options, truncation and editing are

the same as for ADD.

If numeric-literal exponents are used, the results are accurate up to 18

digits in length and to as many decimal places.

7-41

COPY

COPY

The function of this verb is to allow library routines contained on a source

language library file to be incorporated into the program.

The construct of this verb contains the following two options:

Option 1:

.QQEX. library-name .

Option 2:

COPY library-name

r l REPLACING {
word-I }
data-name-I

[{
word-3 }
data-name-3

{

word-2 l
identifier-2r
literal-I

{

word-4 ·1
identif ier-4
literal-2

... J ·]
The COPY statement may refer only to one library entry in the library. Library­

name is the value placed in a library entry bounded by quotes or a procedure­

name type word. The library ehtry can contain up to three lo-character non­

numeric literals each separated by a slash(/), following normal naming

conventions for disk files.

The library file is inserted in the source program immediately after the COPY

statement at compilation time. The result is the same as if the library data

were actually a part of the source program.

Library data can encompass an entire procedure, which may be any number of

statements, paragraphs, or entire source program divisions (or parts thereof).

Library files may not contain COPY statements.

No statement may appear to the right of the COPY statement on the same source

card.

COPY during the PROCEDURE or ENVIRONMENT divisions must follow a SECTION or

paragraph-name, and all information contained in the library file is included

and can be fully referenced.

7-42

[copy I
On a COPY during the DATA DIVISION, the FD file-name, or the 01 level data-name

preceding the COPY is saved and the relative constructs from the library file

are discarded. For example, the statement

FD MASTER- INPUT COPY "MASTER".

will cause the library file titled MASTER to be inserted into the source

program immediately following the COPY statement. The source program must

refer to the FD file-name as MASTER-INPUT, not as MASTER. The library FD

file-name will appear on the output listing, but cannot be referenced in the

source program.

Library texts copied from the library are flagged on the output listing by an

"L" preceding the sequence number.

In Option 2, a word is defined as being any COBOL word that is not a COBOL

reserved word. For example, the following statement reflects non-reserved

COBOL words AAA,BBB and 1234, where AAA and BBB are data-names and 1234 is a

COBOL word:

MULTIPLY AAA BY BBB, THEN GO TO 1234.

If the COPY REPLACING option is specified, each word-1 or data-name-1 stipulated

will be replaced by the word-2 or identifier-2 entries specified in the option.

Data-names may not be subscripted, indexed, or qualified.

Use of the COPY REPLACING option requires that the "library-name" COBOL source

image file be present on disk, prior to compilation of the source program con-

taining the COPY REPLACING option. The use of this option will not cause

alteration of the library file residing on disk.

In Option 2, literals contained in a library file cannot be replaced by liter­

als, words, or identifiers. If a numeric literal is the last entry in a

replacing list, it must be followed by a blank and then a period. For example:

COPY BERMAN REPLACING AAA BY HOURS,

BBB BY PAY-SCALE, 1234 BY 58b.

The COPY REPLACING option is exceptionally useful for conversion of generalized

COBOL source-language library routines into specific and well-named routines

within a given program. For example, a generalized COBOL source-language

library routine may use the following data-names for the purposes shown.

7-43

COPY

Da::ta-name Purpose

AAA Monthly hours worked per employee.

BBB Employee pay-rate.

CCC Employee social security number.

DDD Employee income tax rate.

EEE Employee year to date gross income.

FFF Employee year to date net income.

GGG Employee gross pay for month.

Employee net pay for the month.

1234 Specifies a GO TO exit from the routine.

A program calling upon the above generalized routine can replace the non­

descriptive data-names with descriptive names as defined in the program's

record description or WORKING-STORAGE area. For example:

COPY ... REPLACING AAA BY HOURS-WORKED
COPY ... REPLACING BBB BY RATE-OF-PAY
COPY ... REPLACING CCC BY SOC-SEC-NR
COPY ... REPLACING DDD BY INC-TAX-RA TE
COPY ... REPLACING EEE BY YR-TO-DATE-GROSS
COPY ... REPLACING FFF BY YR-TO-DA TE-NET
COPY ... REPLACING GGG BY THIS-MONTHS-GROSS
COPY ... REPLACING HHH BY TH IS-MONTHS-NET

COPY ... REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT.

The specified source program data-names and exit points will be inserted into

the library file routine at every occurrence of the assigned generalized names

within the routine.

Library Creation. A library file will be created during a COBOL compilation

each time a source statement is encountered that contains an "L" in column 7

followed by a library-name on that same image. A library file may contain up

to a maximum of 20,000 card images.

Each library file in the source program will be terminated when a source image

is encountered which contains an 11 1" in column 7 followed by all blanks or

another library-name.

Once a file has been created, it may be COPYed by other programs, or by the

creating program in succeeding FD, 01, or procedure COPY statements.

7-44

COPY

The source data used to create an original library file will also be compiled

into the object program at the point of appearance.

All assigned library-names must be unique to other library-names contained in

the library, to preserve the integrity of the COBOL library system.

Library files to be used with the COPY verb can be created by a user program

which creates a card image file on disk. The compiler will automatically

accept the blocking used when the file was created.

Library Maintenance. The COBOL compiler allows several methods for updating

existing library files. Due to the fact that new source and/or library files

are created during the initial pass of the compilation, source programs which

create library files need not be complete COBOL programs. In this manner,

source programs which create library files may be compiled with patch cards

to be applied to the library files (as described in Section 11) by use of the

dollar option MERGE.

Another method of updating library files is to use the library file as a

source program rather than a library file. Using the dollar options MERGE

and NEW to make patches and create a new source file, changes and updates may

be made.

Another possible solution to the library file maintenance problem, is to create

all library files in one source program. This would allow for centralized

control of library files and also aid in documentation and training of new

personnel.

7-45

I DISPLAY I
DISPLAY

The function of this verb is to provide for the printing of low-volume data,

error messages, and operator instructions on the console typewriter.

The construct of this verb is:

DISPLAY {literal-1 }
identif ier-1

[{literal-2 1
' identifier-2, ... J

[uPON { ~~monic-name}]

Each literal may be any figurative constant except ALL.

All special registers (DATE, TIME, TALLY, sw1 . . . swn, etc.) may be DISPLAYed .

The DISPLAY statement causes the contents of each operand to be written on the

supervisory printer (SPO), from the MCP SPO queue, to ensure that a program is

not operationally deterred while a message is printing.

If a figurative constant is specified as one of the operands, only a single

character of the figurative constant is displayed.

The identifiers may be subscripted or indexed and can be COMPUTATIONAL or

DISPLAY items.

An infinite number of characters may be displayed with one DISPLAY statement.

The DISPLAY series option will cause the literals or identifiers to be con­

catenated, printed on one line and, if required, the MCP will cause automatic

carriage returns and line feeds for information extending to other lines of

print.

When mnemonic-name is used, it must appear in the SPECIAL-NAMES paragraph

equated to the hardware-name SPO.

7-46

DIVIDE

DIVIDE

The function of this verb is to divide one numerical data-item into another

and set the value of an item equal tc the result.

The construct of this verb contains the following two options:

Option 1:

DIVIDE

Option 2:

DIVIDE lliteral-1 l
I identifier-1 l

GIVING identifier-3 [ROUNDED]

f REMAINDER iden ti f ier-4 [ROUNDED J l
L ~

identifier-2 [ROUNDED]

jliteral-2 ~
!identifier-2 I

[;ON SIZE ERROR .. s;tatefuerit+,1 ... [;Jt.sl st~t~mjf1t .. r2.lJ

Identifier~3 and identifier-4 of Option 2 may refer to elementary numeric­

edi ted items.

Each literal must be a numeric literal.

Division by zero is not permissible and, if executed, will result in a size

error indication. This can be handled programmatically, either by doing a

zero test prior to the division or by the use of the SIZE ERROR clause. If

SIZE ERROR is not written, an attempt to divide by zero will result in pro­

gram termination.

All identifiers must refer to elementary numeric items.

In Option 1, the value of the operand preceding the word INTO will be divided

into the operand following INTO and the resulting quotient stored as the new

value of the latter.

The use of the BY option will cause literal-1/identifier-1 to be divided by

literal-2/identifier-2, whereas the INTO option will cause literal-1/

identifier-1 to be divided into literal-2/identifier-2.

In Option 2, the resulting quotient will be stored as the new value of

identifier-3. The value of the operands immediately to the left of the word

GIVING will remain unchanged.

7-47

DIVIDE

The ROUNDED option and ON SIZE ERROR clause and truncation are the same as

those discussed for the ADD statement.

The size of the operands is determined by the sum of the divisor and the

quotient. The sum of the two cannot exceed 99 digits.

same degree of accuracy as defined in the PICTURE of the quotient, and all extra

positions will be filled with zeros.

Literals cannot be used as dividends.

The use of the REMAINDER option will cause the remainder to be placed in

identifier-4, and identifier-3 will contain the quotient.

~/=48

DUMP I
DUMP

7-49

EXAMINE

EXAMINE

The function of this verb is to replace a specified character, and/or to count

the number of occurrences of a particular character in a data item.

The construct of the verb contains the following two options:

Option 1:

EXAMINE identif ier-1

TALLYING l~ } LEADING
lUNTIL FIRST

{~iter~l~l } [REPLACING BY
1dent1f1er-2

\

{
li teraI-2 1 J
identit'ier-3J

Option 2:

EXAMINE identif ier-1 REPLACING LEADING
{

ALL }

{
literal-3 }
identif ier-4 BY

[UNTIL] FIRST

{
literal-4 ~
identif ier-5 J

The description of identifier-I must be such that USAGE is DISPLAY explicitly

or implicitly.

Each literal used in an EXAMINE statement must consist of a single DISPLAY

character. Figurative constants will automatically represent a single DISPLAY

character.

Examination proceeds as follows:

7-50

a. For items that are not numeric, examination starts at the

leftmost character and proceeds to the right. Each 8-bit character

in the item specified by the data-name is examined in turn. Any

reference to the first character means the left-most character.

b. If an item referenced by the EXAMINE verb is numeric, it must consist

of numeric characters and may possess an operational sign.

Examination starts at the leftmost character (excluding the sign)

and proceeds to the right. The low order digit of each character

except the sign is examined in turn. Regardless of where the sign is

physically located, it is completely ignored by the EXAMINE verb.

Any reference to the first character means the leftmost numeric

character.

EXAMINE

The TALLYING option creates an integral count (i.e., a tally) which replaces

the value of a special register called TALLY. The count represents the num­

ber of:

a. Occurrences of literal-1 or identifier-2 when the ALL option is used.

b. Occurrences of literal-1 or identifier-2 prior to encountering a

character other than literal-I or identifier-2 when the LEADING

option is used.

c. Characters not equal to literal-1 or identifier-2 encountered before

the first occurrence of literal-1 or identifier-2 when the UNTIL

FIRST option is used.

When either of the REPLACING options is used (i.e., with or without TALLYING),

the replacement rules are as follows:

a. When the ALL option is used, then literal-2 or identifier-3 or

literal-4 or identifier-5 is substituted for each occurrence of

literal-I or identifier-2 or literal-3 or identifier-4.

b. When the LEADING option is used, the substitution of literal-2 or

identifier-3.or literal-4 or identifier-5 terminates as soon as a

character other than literal-! or identifier-2 or literal-3 or

identifier-4 or the right-hand boundary of the data item is en­

countered.

c. When the UNTIL FIRST option is used, the substitution of literal-2

or identifier-3 or literal-4 or identifier-5 terminates as soon as

literal-1 or identifier-2 or literal-3 or identifier-4 or the right-

hand boundary of the data item

d. When the FIRST option is used, the first occurrence of literal-3

or identifier-4 is replaced by literal-4 or identifier-5.

The field called TALLY is a 5-digit field provided by the compiler. Its

usage is COMPUTATIONAL and will be reset to zero automatically when the

EXAMINE ... TALLY option is encountered.

7-51

EXIT

The function of this verb is to provide a terminating point for a PERFORM

loop, whenever required.

The construct of this verb is:

EXIT.

If the EXIT statement is used, it must be preceded by a paragraph-name and

appear as a single one-word paragraph. EXIT is documentational only, but if

used, must follow the rules of COBOL.

The EXIT is normally used in conjunction with conditional statements contained

in procedures referenced by a PERFORM statement. This allows branch paths

within the procedures to rejoin at a common return point.

If control reaches an EXIT paragraph and no associated PERFORM or USE state­

ment is active, control passes through the EXIT point to the first sentence

of the next paragraph.

7-52

GO TO

The function of this verb is to provide a means of interrupting out of the se­

quential, sentence by sentence, execution of code, and to permit continuation

at some other location indicated by the procedure-name(s).

The construct of this verb has the following two options:

Option 1:

GOW [procedure-name]

Option 2:

GO\ID procedure-name-I (, procedure-name-2] ..• , procedure-name-3,

DEPENDING ON identifier

Each procedure-name is the name of a paragraph or section in the PROCEDURE

DIVISION of the program.

Whenever a GO TO statement (represented by Option 1) is executed, control is

unconditionally transferred to a procedure-name, or to another procedure­

name if the GO TO statement has been changed by an ALTER statement.

A GO TO statement is unrestricted as to where it branches to in a segmented

program. It can call upon any segment at either the section level or para~

graph levels.

In Option 1, when the GO TO is referred to by an ALTER statement, the follow­

ing rules apply, regardless of whether or not procedure-name is specified:

a. The GO TO statement must be the only statement in the paragraph.

b. If the procedure-name is omitted, and if the GO TO statement is not

referenced by an ALTER statement prior to the first exec~tion of the

GO TO statement, the MCP will cause the job to be terminated.

If a GO TO statement represented by Option 1 appears in an imperative state­

ment, it must appear as the only or the ~ast statement in a sequence of im­

perative statements.

7-53

GO TO

In Option 2, GO TO ... DEPENDING •.. may specify up to 1023 procedure-names

in a single statement. The data-name in the format following the worus

DEPENDING ON must be a numeric elementary item described without any positions

to the right of the assumed decimal point. Furthermore, the value must be

positive in order to pass control to the procedure-names specified. Control

will be transferred to procedure-name-I if the value of the identifier is 1,

to procedure-name-2 if the value is 2, etc. If the value of the identifier is

aQything other than a positive integer, or if its value is zero, or its value

is higher than the number of procedure-names specified, control will be passed

to the next statement in normal sequence. For example:

GO TO MFG, RE-SALE, STOCK, DEPENDING ON S-O.

VALUE OF s-o GO TO PROCEDURE-NAME

-1 next statement

0 next statement

1 MFG

2 RE-SALE

3 STOCK

4 next statement

7-54

IF

The IF statement causes a condition to be evaluated. The subsequent action of

the object program depends on whether the value of the condition is true or

false.

The construct for the IF statement is as follows:

IF condition; {
statement-! } [ELSE
NEXT SENTENCE '

~statement-2 }]
tNEXT SENTENCE

Statement-! and statement-2 represent either a conditional statement or an im­

perative statement, and either may be followed by a conditional statement.

The semicolons are optional.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the

terminal period of the sentence.

When an IF statement is executed, the following action is taken:

a. If the condition is true, the statements immediately following the

condition (represented by statement-!) are executed, and control then

passes implicitly to the next sentence unless statement-I causes some

other transfer of control.

b. If the condition is false, either the statements following ELSE are

executed or, if the ELSE clause is omitted, the next sentence is

executed.

When an IF statement is executed and the NEXT SENTENCE phrase is present, con­

trol passes explicitly to the next sentence, depending on the truth value of

the condition and the placement of the NEXT SENTENCE phrase in the statement.

IF statements within IF statements may be considered as paired IF and ELSE

combinations, proceeding from left to right; thus, any ELSE encountered is

considered to apply to the immediately preceding IF that has not already

been paired with an ELSE.

When control is transferred to the next sentence, either implicitly or ex­

plicitly, control passes to the next sentence as written or to a return

mechanism of a PERFORM or a USE statement.

The method of evaluating conditional expressions allows early exit, once the

truth value of the expression has been determined.

7-55

MERGE

speci-

[
f THROUGH l J

OUTPlj'r PROCEt>URE IS jn:ocedure-name-l { ™ . Jprocedure-nQrlle~]
GIVING file-narne-5 [LOC·K··········· J.··

RELEASE

Syntax Rules

7-56

a,. File-name-1 must be described in a sort-merge file description (SD)

entry in the DATA DIVISION.

b. P;ocedure~name-:1 represents the nameof an output procedtJ,re.

e. File-name-2, file-name-3 1 file-name-4) and file•name 5 must be

described in a file description (FD) entry, not in a sort-merge file

Q.escription (SD) entry, in the DATA DIVISION. The actual size of the

logical· rec()rd(s r describ¢d for file-name.;...2' fi.J:e-name-3' ·;file-name-4'

and file-name-5 must be equal to the actual s:lze of the logical

reeord(s) described ,for file-name-l. If the data descriptions of the

elementary items that make up these records are not identical, it is

the programmer's responsibility to describe the corresponding records

in such a mann~r so as to ~ause an equal number of character positions

to b~ allocated for the corresponding records.

MERGE

(8) file-names may be

file-name-3, and file-name-4.
statement must have been CLOSEd with LOCK or RELEASE prior

time the MERGE statement is executed. These files are automatically

OPENed and CLOSEd by the merge operation with all implicit functions

performed, such as the execution of any associated USE procedures.

The terminating function for all files is p~rformed as if a CLOSE

statement, wit~out optional phrases, had been executed for each file.

b. The data-names following the word KEY are listed from left to right
in the MERGE statement in order of decreasing significance without

7-57

MERGE

7-58

the

more other data records, the

MERGE

Follows the order of the associated input files as specified in

the MERGE statement.

Is such that all records associated with one input file are

r~turned prior to the return of records from another input file.

h. When the records in the files referenced by file-name-2, file-name-

3 •.• are not ordered as described in the ASCENDING or DESCENDING KEY

clauses, the MERGE will take place as previously described but with

all improperly ordered data records being placed on th~ output file

or RETURNED to.the output procedure immediately after they are read

from their respective input files. As a result, when.such a condition

, exists, the output from the MERGE statement will not be in a strict

ASCENDING or DESCENDING KEY order.

7-59

7-60

MOVE

MOVE

The MOVE statement transfers data, in accordance with the rules of editing,

to one or more data areas.

The construct for the MOVE statement consists of the following two options:

Option 1:

Option 2:

{
ident if ier-1}
literal

J CORRESPONDING}
) CORR .

ident if ier-2 [, ident if ier-3] •••

ident if ier-1 TO ident if ier-2

Identifier-! and literal represent the sending field; identifier-2,

identifier-3 represent the receiving fields. Literal may be any literal

or figurative constant consistent with the class of the receiving field.

Option 1 provides for multiple receiving fields. The data designated by

the literal or identifier-I will be moved first to identifier-2, then to

identifier-3, etc. Subscripting or indexing associated with identifier-1 is

evaluated only once, immediately before data is moved to the first receiving

field. The notes referencing identjfier-2 also apply to the other areas.

The result of the statement:

MOVE A(SUB) TO SUB, B(SUB)

would produce the same result as:

MOVE A(SUB) TO TEMP.

MOVE TEMP TO SUB.

MOVE TEMP TO B(SUB).

When Option 2 is used, selected items within identifier-1 are moved, with any

required editing, to selected areas within identifier-2. Identifier-1 and

identifier-2 must be group items. Items are selected by matching the data­

names of items defined within identifier-1 with like data-names of areas de­

fined within identifier-2, according to the rules specified in the discussion

of the corresponding option. The resulting operation on each of the sets of

matched data items proceeds as if an Option 1 MOVE had been specified.

7-61

MOVE

Elementary Moves

Any move in which the sending and receiving items are both elementary items

is an elementary move. All other moves are defined as group moves. Every

elementary item belongs to one of these five categories:

a. Numeric.

b. Numeric Edited.

c. Alphabetic.

d. Alphanumeric.

e. Alphanumeric Edited.

See the PICTURE clause description in section 6 for a detailed discussion of

these categories. Group items, non-numeric literals, and all figurative con­

stants, except ZEROS and SPACES, are classed as alphanumeric. Numeric

literals and the figurative constant ZEROS are classed as numeric. The

figurative constant SPACES is classed as alphabetic.

Illegal Elementary Moves. The rules governing illegal elementary moves are

as follows:

1. A numeric-edited item, alphanumeric edited item, SPACES, or an

alphabetic item cannot be moved to a numeric or numeric edited item.

2. A numeric literal, ZEROS, a numeric data item, or a numeric edited

item cannot be moved to an alphabetic data item.

3. A non-integer numeric literal or a non-integer numeric data item can­

not be moved to an alphanumeric or alphanumeric edited data item.

Legal Elementary Moves. The rules governing legal elementary moves are as

follows:

7-62

4. When an alphanumeric or alphanumeric edited item is a receiving

field, justification and any necessary space filling takes place

as defined under the JUSTIFIED clause. If the size of the sending

field is greater than the size of the receiving field, the excess

characters are truncated on the right after the receiving item is

filled.

If the sending field is described as being signed numeric, the

operational sign will not be moved. If the sign occupies a separate

character position (KSIGN), that character will not be moved and the

size of the sending field will be considered to be one less than its

actual size.

For example:

Given these data descriptions:

77 S PIC K9999.

77 R PIC X(6).

Then the statements:

MOVE -124 TOS.

MOVE S TO R.

will result in R being equal to ;; 0124 ii

MOVE

5. When a numeric or numeric edited item is the receiving field in an

elementary move and the data in the sending field is not numeric,

zone bits will be stripped. Alignment by decimal point and any nec­

essary zero-filling takes place as defined under the JUSTIFIED

clause, except where zeros are replaced because of editing require­

ments.

When a signed numeric item is the receiving field, the sign of the

sending field is placed in the receiving field. Conversion of the

sign representation takes place as necessary. If the sending field

is unsigned, a positive sign is generated for the receiving field.

When an unsigned numeric item is the receiving item, the absolute

value of the sending item is moved and no operational sign is gen-

erated for the receiving item.

When an alphanumeric item is the sending field, data is moved as if

the sending item was described as an unsigned numeric integer.

6. When the receiving field is alphabetic, justification and any neces­

sary space filling takes place as defined under the JUSTIFIED clause.

If the size of the sending field is greater than the size of the re­

ceiving field, the excess characters are truncated on the right,

after the receiving field is filled.

Group Moves

A group move is any move in which either the sending field or the receiving

field is a group item. Group moves are handled as alphanumeric to alphanu­

meric moves, regardless of the class of the receiving field and without

consideration for the individual elementary or group items contained within

either the sending or receiving area.

7-63

MOVE

Translation

Any necessary translation of data from one form of internal representation to

another, i.e., ASCII to EBCDIC, will be done for elementary or group moves

depending on the usages of the sending and receiving data items.

Index Data Items

An index data item cannot be used as an operand in a MOVE statement. The SET

statement must be used to move index data items.

Valid Move ComJ:>inations

Figure 7-1 shows the valid combinations of sending and receiving fields per­

mitted in COBOL.

7-64

~ G

ALPHABETIC

GROUP
AN

ELEM (a)

AE

DISPLAY INTEGER
NUMERIC
(DN OR LIT) REAL

CMP INTEGER (b)

NUMERIC REAL

NE

a - also non-numeric literal

b - also undigit literal

NON-NUMERIC NUMERIC
MOVE MOVE

CD j

® /

0 ./

0 I

® ./

© I

(j) I

*ILLEGAL

AN AE
DISPLAY NUMERIC

ALPHABETIC

GROUP ELEM INTEGER REAL

CD CD CD ~) * *
0 CD 0 CD CD @

CD CD 0 G? ® ®
CD Q:) CD (§) * *
* Q-) CD ~) ® ®
* CD * * ® ®
* ~) ® G) ® ®
* @) * * ® ®
* CD CD (§0 * *

ZERO ZERO ANY SENDING
LEFT JUST. BY SPACE FILL ON FILL ON NECESSARY ZONES
JUST. DECIMAL FILL RIGHT LEFT TRANSLATION STRIPPED

I ./ I

j I

I I I

./ ./ I

I I I
I I j

I I

Figure 7-1. Valid MOVE Statement Combinations

CMP NUMERIC NE

INTEGER REAL

* * *
0 0 0

! ® ® 0
* * *

® ® 0
® ® 0
® ® 0
® ® 0
* * *

PROPER ZONES
STRIPPED OR EDITING
SUPPLIED BY PERFORMED
INTERPRETER

I

v1 I

I

I

I

MULTIPLY

MULTIPLY

The function of this verb is to multiply two operands and store the results

in the last-named field (which must be a numeric item).

The construct of this verb is:

{
literal-I }

MPLTIPLY identifier-I BY {literal -2 }
identif ier-2

(GIVING _identifier-3] (ROUNDED]

(;ON SIZE ERROR_

All rules specified under the ADD statement regarding the presence of editing

symbols in operands, the ON SIZE ERROR option, the ROUNDED option, the GIVING

option, truncation, and the editing results apply to the MULTIPLY statement,

except the maximum operand size is 125 digits for the sum of two operands.

The identifiers must be elementary item references. If GIVING is used,

identifier-3 may be an elementary edited numeric item. In all other cases,

the identifiers used must refer to elementary numeric items only.

If the GIVING option is used, the result of the multiplication replaces the

contents of identifier-3; otherwise, it replaces the contents of identifier-2.

If GIVING is not used, literal-2 is not permitted, i.e., identifier-2 must

appear.

7-66

NOTE

NOTE
The function of this statement is to allow the programmer to write explanatory

statements in his program which are to be produced on the source program list­

ing for documentation purposes.

The constructs of this statement are:

Option 1: Paragraph NOTE:

paragraph-name. NOTE any comment.

Option 2: Paragraph NOTE:

NOTE any comment.

Option 3: Sentence NOTE:

NOTE any comment.

Any combination of the characters from the allowable character set may be

included in the character string of a NOTE statement.

If a NOTE sentence is the first sentence of a paragraph, the entire paragraph

is considered to be commentary. Either Option 1 or Option 2 may be used as

NOTE statements on a paragraph level.

If a NOTE statement appears as other than the first sentence of a paragraph,

only the sentence constitutes a commentary. After the word NOTE is encountered,

the first period followed by a space will cause the compiler to resume compi­

lation unless the new sentence commences with the word NOTE.

Refer to the paragraph entitled CONTINUATION INDICATOR (section 3) for an ex­

planation of comments (* or I in column 7) appearing anywhere within the

source program.

7-67

I OPEN I
OPEN

The function of this verb is to initiate the processing of both input and

output files. The MCP performs checking or writing, or both, of labels and

other input-output operations.

The construct of this verb is:

Option 1:

[INPUT f ile-name-1

[ouTPUT file-name-3

[!~l] [file-name-2 ...]J ..

[
[
[

[WITH NO REWIND] [file-name-4 ...] J .. .
I INPUT-OUTPUT I
/I-0 I

0-I file-name-7

f ile-name-5

[file-name-8 .. .] J ...
EXTEND f ile-name-9

[f ile-name-6 ... J] .

[f ile-name-10 ...]]

Option 2:

OPEN ~~~~UT l file-name l INPUT-OUTPUT

[~~~~~~filtlEt:~~tl~~~i~~~~·i
DPtion 2 of tne QPl:NF ve.ro is valttt•·· only .for. 80/Qf? ~¢;1;1.l.~ .. qia,;tai .. iie

t~~n ... qnr• .. o.t.~~!!~~]'~~ .. ~t~~tr:~~~~~.11~~4'\f't#f.~:~1!.~Pii
~,, .. eiu1s1~!.:~~·~~fl f.~r~Tlt~f~?~fit~~.t~i~~·.
Whe.n PlllN'J.'l:~S;·:ta spec.ifteli . f OJ' .the ~ Qot.imi!t ~a.t~. ;i-:~~~),~tfr{~ .)T~i%· .t~W~i!"~v
an out.put a::t"~a of 96: + 128, qr 2~4 chataQt~ts.. The ,f.ir.st io. characters will

be for ... punch<<>ut:Pu"tr.···iand the rem~inini>l~a .. w1l1 l:)e f~.r pr:i;,nt:iJig QntA~ ~f4td~
. .· •.·.··,·. ·:.····· ,.·.··:·.·······:.::::·:: .. ::·:::::.:::···.·.·:·

When PIIB128 · ls used :f ci:r ftne 80 column 4~1;;i re~?~~~ty l~ w;:~l 1 re9ui::t"~ i3.~ !~t·
put are~ of SO + ·so; or 160 characters. The first> 80 characters will J:>e. for

p9nc~· output, and tn..er~tll~intng ... aQ·. w-111 .~.·~ .r:er~. g,~ri~l..~i ~µ•••••.·.the ~~r~. Tne.• max~
imum number of ¢Al1f.:t"actets which .will be Pt:J.nt$d. ~$r deyip.e depen(ietl,1;.

When INTERPRET is specif:ied, it ca.uses) the punch >dat~ to be p:rint;ed, therefote
no additional output. area for prin..t data is requir¢di.

7-68

OPEN

File-names must not be those defined as being SORT files.

At least one of the options must be specified before a file can be read.

The I-O, INPUT-OUTPUT, and o-I options pertain to disk storage files.

The OPEN statement must be executed prior to the first SEEK, READ, or WRITE

statement for that file.

A second OPEN statement for a file cannot be executed prior to the execution

of a CLOSE statement for that file.

A file area will not exist in memory until an OPEN statement is executed,

which in turn, causes the MCP to allocate memory for the file work area, and

any alternate areas or buffers. The MCP will obtain the needed information

from the File Parameter Block to determine the file's characteristics. Once

the file has been OPENed; memory will remain allocated until the file is

programmatically CLOSEd.

The OPEN statement does not obtain or release the first data record. A READ

or WRITE statement must be executed to obtain or release, respectively, the

first data record.

When the first label is to be checked or written, the user's beginning label

subroutine is executed if it is specified by a USE statement.

The REVERSED and the NO REWIND options can only be used with sequential,

single-reel tape files.

If the peripheral ASSIGNed to the file permits rewind action, the following

rules apply:

a. When neither the REVERSED nor the NO REWIND option is specified,

execution of the OPEN statement for the file will cause the file to

be positioned ready to read the first data-record.

b. When either the REVERSED or the NO REWIND option is specified,

execution of the OPEN statement does not cause the file to be po­

sitioned. When the REVERSED option is specified, the file must be

positioned at its physical end. When the NO REWIND option is speci­

fied, the file must be positioned at its physical beginning.

c. When the NO REWIND option is specified, it applies only to sequential,

single-reel files stored on magnetic tape units.

7-69

OPEN

When the REVERSED option is specified, the subsequent READ statements for the

file makes the data-records available in reverse record order starting with

the last record. Each record will be read into its record-area, and will

appear as if it has been read from a forward-moving file.

If an input file is designated with the OPTIONAL clause in the FILE-CONTROL

paragraph of the ENVIRONMENT DIVISION, the object program causes an interroga­

tion to the MCP, for the presence or absence of a pertinent file. If this file

is not present, the first READ statement for this file causes the imperative

statement in the AT END clause to be executed only when the operator has re­

sponded with an optional file "mix index OF" message.

The 1-0 or INPUT-OUTPUT option permits the OPENing of a disk file for input

and/or output operations. This option demands the existence of the file to

be on the disk and cannot be used if the file is being initially created;

that is, the file to be OPENed must be present in the MCP disk directory, or

has been previously created and CLOSEd in the same run of the program.

When any input file option is used, the MCP immediately checks the MCP disk

directory to see if the file is present, or if it has been created and CLOSEd

in the same program run. The system operator will be notified in its absence,

and the file can then be loaded if it is available or the program can be DSed

(discontinued). If the decision is to load the file, the operator does so

and then notifies the MCP to proceed with the program, by means of a "mix­

index OK" message.

The O-I option is identical to OPEN I-o, with the exception that with the o-I

option the file is assumed to be a new file to the disk directory. The OPEN

o-·I option will short cut the usual method of initially creating I-O work

files within a program, e.g., OPEN OUTPUT, WRITE record(s), CLOSE WITH RELEASE,

OPEN I-O, etc. The o-I option does not, nor was it intended to, replace the

OPEN I-O option, since the use of OPEN 0-1 assumes that a new file is to be

created each time.

During processing of mass storage files for which the ACCESS MODE is

SEQUENTIAL, the OPEN statement supplies the initial address of the first

record to be accessed.

The contents of the data-names specified in the FILE-LIMIT clause of the

FILE-CONTROL paragraph (at the time the file is OPENed) are used for all

checking operations while that file is OPEN. The FILE-LIMIT clause is dynamic

only to this extent.

7-70

When an OPEN OUTPUT statement is executed for a magnetic tape file, the MCP

searches the assignment table for an available scratch tape, writes the label

if specified by the program, and executes any USE declaratives for the file.

If no scratch tape is available, a message to the operator is typed and the

program is suspended until the operator mounts such a tape or one becomes

available due to the termination of a multiprogramming program.

OPENing of subsequent reels of multi-reel tape files is handled automatically

by the MCP and requires no special consideration by the programmer.

7-71

PERFORM

PERFORM

The function of this verb is to depart from the normal sequence of execution

in order to execute one or more procedures, either a specified number of times

or until a specified condition is satisfied. Following this departure, con­

trol is automatically returned to the normal sequence.

The construct of this verb has the following four options:

Option 1:

PERFORM procedure-name-I

Option 2:

PERFORM procedure-name-!

{ integer-I }
identifier-lo TIMES

Option 3:

PERFORM procedure-name-!

UNTIL condition-!

Option 4:

PERFORM procedure-name-I

VARYING {
index-name-1 }
identif ier-1.

[{=UGH}
procedure-name-2]

[{ ~=gUGH } procedure-name-2 J

procedure-name-2]

[{ THRU } procedure-name-2]
THROUGH

{

index-name-2}
FROM identifier-2{

literal-2 J

{
identifier-3}
literal-3

UNTIL condition-! [AFTER {
index-name-4 }
identif ier-4

7-72

f. index-name- 5 ~
FROM)identifier-5

, li teral-5 /
{ identif ier-6}
, 1i teral-6

PERFORM

UNTIN condition-2]

} index-name-8 }
)identifier-8
~literal-8

UNTIL condition-3]

[AFTER { index-name-7 }
identif ier-7

{ identifier-9}
literal-9

PERFORM is the means by which subroutines are executed in COBOL. The sub­

routines may be executed once, or a number of times, as determined by a

variety of controls. A given paragraph may be PERFORMed by itself, in con­

junction with another paragraph, control may pass through it in sequential

operation, and it may be the object of a GO statement, all in the same pro­

gram.

Each identifier represents a numeric elementary item. Identifier-IO must be

described as an integer.

Each literal represents a numeric literal.

When the PERFORM statement is executed, control is transferred to the first

statement of procedure-name-I. An automatic return to the statement following

the PERFORM statement is established as follows:

a. If procedure-name-I is a paragraph-name and procedure-name-2 is

not specified, then the return occurs after the last statement of

procedure-name-I.

b. If procedure-name-I is a section name and procedure-name-2 is not

specified, then the return occurs after the last statement of the last

paragraph in procedure-name-I.

c. If the procedure-name-2 is specified and it is a paragraph name, then

the return occurs after the last statement of the paragraph.

d. If the procedure-name-2 is specified and it is a section name, then

the return occurs after the last sentence of the last paragraph in the

section.

There is no necessary relationship between procedure-name-I and procedure­

name-2, except that a consecutive sequence of operations is to be executed

beginning at the procedure named procedure-name-I and ending with the execu­

tion of the procedure named procedure-name-2. In particular, GO TO and

PERFORM statements may occur between procedure-name-I and the end of

7-73

PERFORM

procedure-name-2. If there are two or more direct paths to the return point,

then procedure-name-2 may be the name of a paragraph consisting of the EXIT

statement, to which all of these paths must lead.

If control passes to these procedures by means other than a PERFORM statement,

control passes thru the last statement of the procedure to the following

statement, unless a PERFORM statement is executed during execution of these

procedures.

If a statement within procedure-name-I or procedure-name-2 contains a nested

PERFORM, object program control will pass to the procedure-name contained in

the nested statement, and the procedure will be accomplished. Program control

Will automatically return to the next sentence following the executed PERFORM

statement. Nested PERFORM statements are allowed to any reasonable depth.

However, the procedure named must return to the statement following the pre­

viously executed PERFORM and cannot contain a GO TO out of range of procedure­

name-1 or procedure-name-2.

A PERFORM statement is not restricted by overlayable segment boundaries and

may reference a procedure-name anywhere within the PROCEDURE DIVISION.

Option 1 is the basic PERFORM statement. A procedure referred to by this

type of PERFORM statement is executed once, and then control passes to the

statement following the PERFORM statement.

Option 2 is the TIMES option and, when used, the procedures are performed the

number of times specified by identif ier-10 or integer-1~ The value of

identifier-lo or integer-1 must be positive. Control is transferred to the

statement following the PERFORM statement. If the value is zero, control

passes immediately to the statement following the PERFORM sentence. Once the

PERFORM statement has been initiated, any reference to, or manipulation of,

identifier-lo will not affect the number of times the procedures are executed.

Option 3 is the UNTIL option. The specified procedures are performed until

the condition specified by the UNTIL condition is TRUE. At this time, control

is transferred to the statement following the PERFORM statement. If the con­

dition is TRUE at the time that the PERFORM statement is encountered, the

specified procedure is not executed.

In option 4, when one identifier is varied, identifier-I is set equal to the

current value of identifier-2, or literal-2. If the condition is false,

the sequence of procedures, procedure-name-I thru procedure-name-2, is

executed once. The value of identifier-! is augmented by the specified incre­

ment or decrement (identifier-3), and condition-I is evaluated again. The

7-74

PERFORM

cycle continues until this expression is true; at this point, control passes

to the statement following the PERFORM statement. If the condition is true at

the beginning of execution of the PERFORM, control passes directly to the

statement following the PERFORM statement. Figure 7-2 illustrates the logic

of the PERFORM statement when one identifier is varied.

In option 4, when two identifiers are varied, identifier-I and identifier-4

are set to the current value of identifier-2 and identifier-5, respectively.

At the start of the PERFORM statement, condition-I is evaluated; if true,

control is passed to the statement following the PERFORM statement; if false,

condition-2 is evaluated. If condition-2 is false, procedure-name-I thru

procedure-name-2 is executed once, after which identifier-4 is augmented by

identifier-6, and condition-2 is evaluated again. The cycle of execution and

augmentation continues until this condition is true. When condition-2 is

true, identifier-4 is set to the current value of identifier-5; identifier-I

is augmented by identifier-3, and condition-I is re-evaluated. The PERFORM

statement is completed if condition-I is true; if not, the cycles continue

until condition-I is true~

Figure 7-3 illustrates the logic of the PERFORM statement when two identifiers

are varied.

During the execution of the procedures associated with the PERFORM statement,

any change to the VARYING variable (identifier-I and index-name-I), the BY

variable (identifier-3), the AFTER variable (identifier-4 and index-name=4),

of the FROM variable (identifier-2, index-name-2, identifier-5 and index-name-

5) will be taken into consideration and will affect the operation of the PER­

FORM statement.

When two identifiers are varied, identifier-4 goes thru a complete cycle

(FROM, BY, UNTIL) each time identifier-I is varied.

At the termination of the PERFORM statement, identifier-4 contains the current

value of identifier-5. Identifier-I has a value that exceeds the last used

setting by an increment or decrement, as the case may be, unless condition-I

was true when the PERFORM statement was entered, in which case identifier-I

contains the current value of identifier-2.

NOTE

Identifier-3, identifier-6, and identifier-9

cannot contain zeroes.

7-75

I PERFORM I

7-76

ENTRANCE

SET IDENTIFIER-I EQUAL TO
CURRENT FROM VALUE

~-T_R_U_E __ ~ EXIT

EXECUTE PROCEDURE-NAME-I
THRU PROCEDURE-NAME-2

AUGMENT IDENTIFIER-I WITH
'----------------1 CURRENT BY VALUE

Figure 7-2. PERFORM Statement Varying One Identifier

ENTRANCE

SET IDENTIFIER-I AND
IDENTIFIER-4 TO

CURRENT FROM VALUES

~---T_R_U_E ______________ ~ EXIT

EXECUTE PROCEDURE-NAME-I
THRU PROCEDURE-NAME-2

AUGMENT IDENTIFIER-4 WITH
1.-------1 CURRENT BY VALUE

TRUE

SET IDENTIFIER-4 TO ITS
CURRENT FROM VALUE

AUGMENT IDENTIFIER-I WITH
CURRENT BY VALUE

Figure 7-3. PERFORM Statement Varying Two Identifiers

PERFORM]

In Option 4 where three conditions are required to control the number of

iterations that a given procedure is to be PERFORMed, the mechanism is the

same as for two-conditional control except that identifier-7 goes through a

complete cycle each time that identifier-6 is added to identifier-4, which in

turn goes through a complete cycle each time that identifier-! is varied.

After the completion of option 4, identifier-4 and identifier-7 contain the

current value of identifier-5 and identifier-8, respectively. Identifier-!

has a value that exceeds its last used setting by one increment or decrement

value, unless condition-1 is true when the PERFORM statement is entered, in

which case identifier-! contains the current value of identifier-2.

Since the return control information is placed in the stack rather than being

directed through instruction address modification, a PERFORM statement exe­

cuted within the range of another PERFORM is not restricted in the range of

paragraph names it may include. The examples shown below are permitted and

will execute correctly.

x PERFORM a THRU m

a

d PERFORM f THRU j

f

j

m

x PERFORM a THRU m

a

d PERFORM f THRU j

f IF condition THEN--i

PERFORM a THRU m

m

j

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU j f-----.

m

f

j

j

d PERFORM f THRU j

x PERFORM a THRU m

a

d IF condition THEN

PERFORM a THRU m

m

7-77

READ

The functions of this verb are twofold, namely:

a. During processing of sequential input files, a READ statement will

cause the next sequential logical record to be moved from the input

buffer area to the record work area, thus making the record available

to the program.

All sequential records will be physically read into the buffer area

of the file. Physical READs are performed as a function of the MCP.

The READ statement permits the performance of a specified statement

when an end-of-file condition is detected by the MCP.

b. For random file processing, the READ statement communicates with the

MCP to explicitly cause the reading of a physical record from a disk

file, and also allows performance of a specified statement if the

content of the associated ACTUAL KEY data item is found to be in­

valid.

The construct of this verb is:

READ file-name RECORD [INTO identifier] [; l ~~V~D KEY! ·statement...;.l

l; ELSE statement...;2 J]
The AT END clause is used for non-disk files or for disk files being processed

in the sequential access mode. If no AT END or INVALID KEY clause is stated,

and one of these conditions occurs, the program will be terminated with a DS

or DP message.

If, during execution of a READ statement with AT END, the logical end-of-file

is reached and an attempt is made to READ that file, the statement speci-

fied in the AT END phrase is executed. After the execution of the state-

ment of the AT END phrase, a READ statement for that file must not be given

without prior execution of a CLOSE statement and an OPEN statement for that

file.

When the AT END clause is specified in a conditional sentence, aJ_l exits

within the sentence are controlled by using the rules pertaining to the

matching of IF ... ELSE pairs. For example:

IF AAA = BBB THEN HEAD FILE'-A, AT END

g@ TO ~~11P>7ITT', :EJJ:i$E JiI::m}{T $EHT~NCI£.; ELSE . ST0P BUfL

a. When AAA does not equal BBB, control will be passed to STOP RUN.

b. When AAA equals BBB, FILE-A is read, end-of-file is tested and if

the result is TRUE program control will be transferred to the

The INVALID KEY applies to files that are ASSIGNed to disk. The access of

the file is controlled by the value contained in ACTUAL KEY.

An AT END or INVALID KEY clause must be specified when reading a file de­

scribed as containing FILE-LIMITS.

An OPEN statement must be executed for a file prior to the execution of the

first READ statement for that file.

When a file consists of more than one type of logical record, these records

automatically share the same storage area and are equivalent to an implicit

redefinition of the area. Only the information that is present in the cur­

rent record is available.

If the INTO option is specified, the current record is MOVEd from the input

area to the area specified by identifier according to the rules for the MOVE

statement without the CORRESPONDING option.

When the INTO option is used, the record being read is available in both the

data area associated with identifier and the input record area.

If a file described with the OPTIONAL clause is not present, the imperative

statement in the AT END phrase is executed on the first READ. The standard

End-of-File procedures are not performed. (See the OPEN and USE statements,

and the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION.)

If the end of a magnetic tape file is recognized during execution of a READ

statement, the following operations are carried out:

a. The standard ending reel label procedure and the user 1 s ending reel

label procedure, if specified by the USE statement, are performed.

The order of execution of these two procedures is specified by the

USE statement.

b. A tape swap is performed.

7-79

READ

c. The standard beginning reel label procedure and the user's beginning

label procedure, if specified, are executed. The order of execution

is again specified by the USE statement.

d. The first data record on the new reel is made available.

READ with INVALID KEY is used for disk files in the random access mode. The

READ statement implicitly performs the functions of the SEEK statement, ex­

cept for the function of the KEY CONVERSION option for a specific disk file.

If the content of the associated ACTUAL KEY data item is out of the range

indicated by FILE-LIMITS or the FILE CONTAINS clause, the INVALID KEY phrase

will be executed.

For random disk files, the sensing of an INVALID KEY does not preclude further

READs on that file, nor must the file be closed and reopened before such READs

are allowed.

7-80

I RELEASE I
RELEASE

The function of this verb is to cause records to be transferred to the initial

phase of a SORT operation.

The construct of this verb is:

RELEASE record-name [~ identifier]

A RELEASE statement may only be used within the range of an input procedure

associated with a SORT statement.

Record-name and identifier must name different memory areas when specified.

The RELEASE statement causes the contents of record-name to be released to

the initial phase of a sort. Record-name will be transferred to the speci­

fied sort-file (SD) and becomes controlled by the sort operation.

In the FROM option, the contents of identifier are MOVEd to record-name, then

the contents of record-name are released to the initial phase of a sort.

Moving takes place according to the rules specified for the MOVE statement

without the CORRESPONDING option.

When control passes from the input procedure, the SD file consists of all

records placed in it by the execution of RELEASE statements.

7-81

RETURN

RETURN

The function of this verb is to obtain sorted records from the final phase

of a SORT operation.

The construct of this verb is:

RETURN file-name RECORD [INTO identifier]

[; AT END statement]. I; ELSE statement"-2]]

File-name must be a sort file with a Sort File Description (SD) entry in the

DATA DIVISION.

A RETURN statement may only be used within the range of an output procedure

associated with a SORT statement for file-name.

Records automatically share the same area when a file consists of more than

one type record and only the information pertinent to the current record is

available.

The execution of the RETURN statement causes the next record, in the order

specified by the keys listed in the SORT statement, to be made available for

processing in the record area associated with the SORT file (SD).

Moving is performed according to the rules specified for the MOVE statement

without the CORRESPONDING option.

When the INTO option is specified, the sorted data is available in both the

input-record area and the data-area specified by identifier.

RETURN statements may not be executed within the current SORT input procedure

after the AT END clause has been executed.

7-82

SEARCH

SEARCH

The function of this verb is to cause a search of a table to locate a table­

element that satisfies a specific condition and, in turn, to adjust the as­

sociated index-name to indicate that table-element.

The construct of this verb has the following two options:

Option 1:

SEARCH identifier-! l
..I

[;AT END imperative-statement-!]

;WHEN condition-! {
1'111111111'1; }
NEXT SENTENCE

EWHEN condition-2

Option 2:

SEARCH ALL identifier-3 [;AT END imperative statement-2]

;WHEN condition-3 NEXT SENTENCE}

Identifier-! and identifier-3 must not be subscripted or indexed, but its des­

cription in the DATA DIVISION must contain an OCCURS clause and an INDEXED BY

clause.

When Option 2 is specified, the description of identifier-3 may optionally

contain the ASCENDING/DESCENDING KEY clause.

When the VARYING option is used, identifier-2 must be described as USAGE IS

INDEX, or ~s the name of a numeric elementary item described without any po­

sitions to the right of the assumed decimai point. Identifier-2 will be in­

cremented at the same time as the occurrence number (and by the same amount)

represented by the index-name associated with identifier-I.

When Option 1 is used, condition-I, condition-2, etc., may be comprised of any

conditional as described by the IF verb.

When Option 2 is used, condition-3 may consist of a relational condition in­

corporating the relation EQUAL, or a condition-name condition where the VALUE

clause that describes the condition-name contains only a single literal.

Condition-3 may be a compound condition formed from simple conditions of the

type just mentioned, with AND being the only acceptable connective.

7-83

I SEARCH I
When Option 2 is used, any data-name that appears in the KEY option of

identifier-3 may appear as the subject or object of a test, or be the name of

the conditional variable with which the tested condition-name is associated.

When Option 1 is used, a serial type search operation takes place, starting

with the current index setting. The search is immediately terminated if, at

the start of execution of the statement, the index-name associated with data­

identifier-1 contains a value that corresponds to an occur~ence number that is

greater than the highest permissible occurrence number for identifier-I. Then,

if the AT END option is specified, statement-I is executed; if AT END is not

specified, control passes to the NEXT SENTENCE.

When Option 1 is used, if at the start of execution of the SEARCH statement, the

index-name associated with identifier-I contains a value that corresponds to an

occurrence number that is not greater than the highest permissible occurrence

number for identifier-I, the SEARCH statement will begin evaluating the con­

ditions in the order that they are written, making use of index settings

wherever specified, to determine the occurrences of those items to be tested.

If none of the conditions are satisfied, the index-name for identifier-I

is incremented to obtain a reference to the next occurrence. The process is

repeated using the new index-name setting for identifier-I, which corresponds

to a table element which exceeds the last setting by one more occurrence,

until such time as the highest permissible occurrence number is exceeded, in

which case the SEARCH terminates as indicated in the previous paragraph.

When Option 1 is used, if one of the conditions is satisfied upon its evaluation,

the SEARCH terminates immediately and the statement associated with that

condition is executed; the index-name remains set at the occurrence which

caused the condition to be satisfied.

In Options 1 and 2, if the specified imperative statements do not terminate

with a GO statement, then program control will pass to the next sentence, after

the execution of the imperative statement.

In the VARYING option, if index-name-I appears in the INDEXED BY option of

identifier-I, then that index-name will be used for the SEARCH; otherwise, the

first index-name given in the INDEXED BY option of identifier-1 will be used.

If index-name-1 appears in the INDEXED BY clause of another table entry, the

occurrence number represented by index-name-1 is incremented by the same

amount as, and at the same time as, the occurrence number represented by the

index-name associated with identifier-1 is incremented.

7-84

SEARCH

In Option 2, the initial setting of the index-name for identifier-3 is ig­

nored, the effect being the same as if it were SET to 1.

In Options 1 and 2, if identifier-1 and identifier-3 constitute an item in a

group, or a hierarchy of groups, whose description contains an OCCURS clause,

then each of these groups must also have an index-name associated with it. The

settings of these index-names are used throughout the execution of the SEARCH

statement to refer to identifier-I and identifier-3, or to items within its

structure. These index settings are not modified by the execution of the

SEARCH statement (unless stated as index-name-I): and only the index-name

associated with identifier-1 and identifier-3 (and identifier-2 or index-name-

1) is incremented by the SEARCH. Figure 7-4 provides an example of SEARCH

operation as related to Option 1.

7-85

I SEARCH J

START

AT END*

GREATER THAN ACCOMPLISH
>--~~~~~~~~~ IMPERATIVE

STATEMENT-I

LESS THAN OR EQUAL

FALSE

FALSE

INCREMENT INDEX­
NAME FOR IDENTI­
F IER-1 OR INDEX-

NAME IF APPLICABLE

INCREMENT INDEX­
NAME (FOR A DIFF­

ERENT TABLE) OR
IDENTIFIER-2*

TRUE ACCOMPLISH
~~~~~~~~~--l-

S TATEM ENT - l 

>-~_T_R_UE~~~~~--- ACCOMPLISH 
STATEMENT-2* 

see ** 

* These operations are only included when called for in the SEARCH statement. 
** Each of the control transfers is to NEXT SENTENCE unless the statement 

ends with a GO statement. 

Figure 7-4. Example of Option 1 SEARCH Statement 

7-86 



SEEK 

The function of this verb is to initiate the accessing of a disk file record 

for subsequent reading and/or writing. The construct of this verb is: 

SEEK file-name RECORD [WITH KEY CONVERSION] 

The specification of the KEY CONVERSION clause indicates that the user­

provided USE FOR KEY CONVERSION section in the DECLARATIVE SECTION is to be 

executed prior to the execution of the SEEK statement. If there are no 

DECLARATIVES for KEY CONVERSION in a SEEK statement, then the KEY CONVERSION 

clause will be ignored. 

A SEEK statement pertains only to disk storage files in the random access mode 

and may be executed prior to the execution of each READ and WRITE statement. 

The SEEK statement uses the contents of the data-name in the ACTUAL KEY clause 

as the location of the record to be accessed. At the time of execution, the 

determination is made as to the validity of the contents of the ACTUAL KEY 

data item for the particular disk storage file. If the key is invalid, the 

imperative statement in the INVALID KEY clause of the next executed READ or 

WRITE statement for the associated file is executed. 

Two SEEK statements for a disk storage file may logically follow each other. 

Any validity check associated with the first SEEK statement is negated by the 

execution of a second implicit or implied SEEK statement. 

An implied SEEK is executed by the MCP whenever an explicit SEEK is missing 

for the specified record. An implied SEEK never executes any USE KEY CON­

VERSION Declaratives. 

If a READ/WRITE statement for a file ASSIGNed to DISK is executed, but an 

explicit SEEK has not been executed since the last previous READ or WRITE 

for the file, then the implied SEEK statement is executed as the first step 

of the READ/WRITE statement. 

An explicit alteration of ACTUAL KEY after the execution of an explicit SEEK 

has been performed, but prior to a READ/WRITE, will cause the initiation of 

an implied SEEK of the initial record in the sequence. For example, 

a. If ACTUAL KEY is 10, then 

b. READ record 10, then 

c. MOVE 50 to ACTUAL KEY, then 

d. WRITE record 50. 

An implied SEEK of record 50 will be performed between actions c and d, above. 

7-87 



SET 

The SET statement establishes reference points or offsets operations by set­

ting index-names associated with table elements. 

The construct of this verb has the following two options: 

Option 1: 

{
identifier-I} [ 
index-name-I ' { ~dentif ier-2}] 

1ndex-name-2 { 

identif ier-3} 
index-name-3 
integer-I 

Option 2: 

SET index-name-4 [, index-name-5] {
UP BY } 
DOWN BY { 

identif ier-4} 
integer-2 

All references to identif ier-1 and index-name-I apply equally to identif ier-2 

and index-name-2, respectively. 

All identifiers must name either index data items, or elementary items des­

cribed as an integer, except that identifier-4 must not name an index data 

item. When integer-I is used, it must be a positive integer. Index-names 

are considered related to a given table and are defined by being specified 

in the INDEXED BY phrase of the OCCURS clause. 

If index-name-3 is specified, the value of the index before the execution of 

the SET statement must correspond to an occurrence number of an element in 

the associated table. 

If index-name-I, index-name-2 is specified, the value of the index after the 

execution of the SET statement must correspond to an occurrence number of an 

element in the associated table. The value of the index associated with an 

index-name after the execution of a SEARCH or PERFORM statement may be un­

defined. 

In option 1, the following action occurs: 

7-88 

a. Index-name-! is set to a value causing it to refer to the table ele­

ment that corresponds in occurrence number to the table element ref­

erenced by index-name-3, identifier-3, or integer-I. If identifier-3 

is an index data item, or if index-name-3 is related to the same 

table as index-name-I, no conversion takes place. 



b. If identifier-I is an index data item, it may be set equal to either 

the contents of index-name-3 or identifier-3 where identifier-3 is 

also an index data item; no conversion takes place in either case. 

c. If identifier-I is not an index data item, it may be set only to an 

occurrence number that corresponds to the value of index-name-3. 

Neither identifier-3 nor integer-I can be used in this case. 

d. The process is repeated for index-name-2, identifier-2, etc., if 

specified. Each time, the value of index-name-3 or identifier-3 

is used as it was at the beginning of the execution of the statement. 

Any subscripting or indexing associated with identifier-I, etc., is 

evaluated immediately before the value of the respective data item 

is changed. 

In option 2, the contents of index-name-4 are incremented (UP BY) or decre­

mented (DOWN BY) by a value that corresponds to the number of occurrences 

represented by the value of integer-2 or identifier-4; thereafter, the process 

is repeated for index-name-5, etc. Each time the value of identifier-4 is 

used as it was at the beginning of the execution of the statement. 

Data in the figure 7-5 represents the validity of various operand combinations 

in the SET statement. The parenthetical comment references the lettered para­

graphs above. 

RECEIVING ITEM 

SENDING ITEM -r,.TmT.'rtT.'n n.I\ ml\ Trn"C''ll/I' T'l'.TT\"C'V-1'.T/\'lllf"C' INDEX DA TA Tl'J1ti'U .l J.~ .L .£.U.£.n. .Urt J.rt J. .1. .l!l!Vl J. .1.-. .u.cia J.-..r:uu.i:.i ..... .&..,.&.I.I. 

Integer Literal No (c) Valid (a) No (b) 

Integer Data Item No (c) Valid (a) No (b) 

Index-Name Valid (c) Valid (a) Valid (b) * 

Index Data Item No (c) Valid (a)* Valid (b)* 

*No conversion takes place. 

Figure 7-5. SET Statement Operand Combinations 

7-89 



EJ 
SORT 

The function of this verb is to sort an input file of records by transferring 

such data into sort work files and sorting those records on a set of speci­

fied keys. The final phase of the sort operation makes each record available 

from the sort-file, in sorted order, to an output procedure or to an output 

file. 

The construct of this verb is: 

SORT f ile-name-1 

[WITH file-name-~ 

ON \DESCENDINGl KEY data-name-1 [,data-name-2] ... 
!ASCENDING I 

[ 
\DESCENDING! [ J J ON /ASCENDING I KEY data-name-3 ,data-name-4 . . . . .. 

f INPUT PROCEDURE IS 

lusrNG file-name-2 

section-name-1 

f OUTPUT PROCEDURE IS section-name-3 

lGIVING file-name-3 

[
jTHRU l 
!'THROUGH' sect ion-name-2 J l 

lTHROUGHlsection-name-4 [ j THRU l . ] l 
are 
using only 
:relative 
of the 

~.~c~r~ .. slz~s. :for.file~hame-1,/ :ii1~:rt~e~2, .. and file-narne-3 
Tile>INPLACE option is invalid for sorts using tape work, 

7-90 



File-name-1 must be described in a Sort File Description (SD) entry in the 

DATA DIVISION, and file-name-2, file-name-3, and file-name-4 must be described 

in a File Description (FD) entry. 

Section-name-1 specifies the name of the input procedure to be used before 

each record is passed to the sort-file, and section-name-3 specifies the out­

put procedure to be used to obtain each sorted record from the sort-file. 

7-91 



Each data-name must represent data-items described in records associated 

with file-name-I. Data-names following the word KEY are listed from left 

to right, in the order of decreasing significance, without regard to their 

division into optional KEY clauses. 

The PROCEDURE DIVISION of a source program may contain more than one SORT 

statement appearing anywhere in the program, except in the DECLARATIVES por­

tion or in the input/output procedures associated with a SORT statement. 

The input procedure must consist of one or more sections that are written 

consecutively and which do not form a part of an output procedure. The in­

put procedure must include at least one RELEASE statement in order to trans­

fer records to the sort-file after the object program has accomplished the 

required input data manipulation specified in the procedure. Input procedures 

can select, create and/or modify records, one at a time, as specified by the 

programmer. 

There are three restrictions placed on procedural statements within an input 

or output procedure: 

a. The procedure must not contain any SORT statements. 

b. The input or output procedures must not contain any transfers of 

program control outside the range of the procedure; ALTER, GO and 

PERFORM statements within the procedure are not permitted to refer 

to procedure-names outside of the input or output procedure. 

c. The remainder of the PROCEDURE DIVISION must not contain any transfers 

of program control to points within the input or output procedure; 

ALTER, GO, and PERFORM statements in the remainder of the PROCEDURE 

DIVISION must not refer to procedure-names within the range of the 

input or output procedure. 

The output procedure must consist of one or more sections that are written 

consecutively and which do not form a part of an input procedure. The output 

procedure must include at least one RETURN statement in order to make each 

sorted record available for processing. Output procedures can select, create, 

and/or modify records, one at a time, as they are being returned from the sort­

file. 

When the ASCENDING clause is specified, the sorted sequence of the affected 

records is from the lowest to the highest value, according to the binary 

EBCDIC collating sequence (.ol" a.~ .•. $p~c~~W~4····.··:r11>··ll+e·.·Y~~·~q;~~ ~¢i*~~tf'lg·~~fg;"µ~Ii;(}~·•) 

7-92 



SORT 

When the DESCENDING clause is specified, the sorted sequence of the affected 

records is from the highest to the lowest value according to the binary EBCDIC 

collating sequence (pr a;$ $p~~~l2lf::tqJn 

The SD record description of the sort-file must contain fully defined data­

name KEY items in the relative positions of the record, as applicable. A rule 

to follow when using these KEY items is that when a KEY item appears in more 

than one type of record, the data-names must be relatively equivalent in each 

record and may not contain, or be subordinate to, entries containing an OCCURS 

clause. 

When an INPUT procedure is specified, object-program control will be passed to 

that procedure automatically as an implicit function of encountering the gen­

erated SORT verb object code compiled into the program. The compiler will in­

sert a "return-to-the-sort" mechanism at the end of the last section in the in­

put procedure, and when program control passes the last statement of the input 

procedure, the records that have been RELEASED to file-name-I are sorted. 

If the USING option is specified, all records residing in f ile-name-2 will be 

automatically transferred to file-name-I, upon encountering the generated SORT 

verb object code. At the time of execution of the SORT statement, file-name-2 

must have been CLOSEd WITH LOCK or RELEASE. The SORT statement automatically 

performs the function necessary to OPEN, READ, USE and CLOSE file-name-2. If 

file-name-2 is a disk file, it must be in the Disk Directory before the SORT 

intrinsic is called. 

If an output procedure is specified, object-program control will be passed 

to that procedure automatically as an implicit function when all records have 

become sorted. The compiler will insert a "return-to-the-object program" me­

chanism at the end of the last section in the output procedure; and when pro­

gram control passes the last statement of the output procedure, the object 

program will execute the next statement following the pertinent SORT statement. 

If the GIVING option is specified, all sorted records residing in file-name-I 

are automatically transferred to the OUTPUT file as specified in file-name-3. 

At the time of execution of the SORT statement, file-name-3 must have been 

CLOSEd WITH LOCK or RELEASE. File-name-3 will be automatically OPENed before 

the sorted records are transferred from the sort-file and, in turn, will be 

automatically CLOSEd, default is LOCK, after the last record in the sort-file 

has been transferred. 

7-93 



SORT 

Example: 

SORT file-name-I ASCENDING KEY data-name-I 

USING f ile-name-2 

GIVING f ile-name-3 

Beginning and ending label USE procedures are provided as follows when input/ 

output procedures are present in the SORT statement: 

7-94 

a. OPEN INPUT file-name. 

USE ••• (The programmer's USE procedure will be invoked). 

b. OPEN OUTPUT file-name. 

USE ••• (The programmer's USE procedure will be invoked). 

c. CLOSE INPUT file-name. 

USE ••• (The programmer's USE procedure will be invoked; however, 

the contents of the ending input label will not be available to the 

USE procedure). 

d. CLOSE OUTPUT file-name. 

USE ... (The programmer's USE procedure will be invoked; however, 

the ending label will have been written prior to execution of the 

USE procedure). 

NOTE 

The above action provide label USE pro­

cedures at beginning and ending of files, 

but not during switching of reels of 

multi-reel files. 



STOP 

STOP 

The function of this verb is to halt the object program temporarily or to 

terminate execution. 

The construct of this verb is: 

)RUN } 
STOP t literal 

If the word RL~t is used, then all files which remain OPEN will be CLOSED 

automatically. New files ASSIGNED to DISK will be CLOSED WITH PURGE and all 

others will be CLOSED WITH RELEASE. See the SAVE option in the FILE-CONTROL 

paragraph. All storage areas for the object program are returned to the MCP 

and the job is then removed from the MCP mix. 

The STOP RUN is not used for temporary stops within a program. STOP RUN 

must be the last statement of the program execution sequence. 

A sequence of imperative statements may contain a STOP RUN statement which, 

if present, must appear as the last imperative statement of the sequence. 

If the literal option is used, the literal will be DISPLAYed on the console 

printer and the program will be suspended. When the operator enters the MCP 

continuation message mix-index AX, program execution resumes with the next 

sequential operation. This option is normally used for operational halts to 

cause the system's operator to physically accomplish an external action. 

7-95 



SUBTRACT 

SUBTRACT 

The function of this verb is to subtract one data item, or the sum of two or 

more, numeric data items from another item, and set the value of an item equal 

to the result(s). 

The construct of this verb has the following three options: 

Option 1: 

jli teral-1 l [ {li teral-2 l J SUBTRACT 
1
. d t. f. ll .. d t . f. 2 1 • • • FROM i en i ier- i en i ier- 1 

identifier-m [ROUNDED] [identifier-n [ROUNDED] ... ] 

[;ON SIZE ERROR siat~~eD.tCf··· [;~LSE···s~a~eti~~~;~)l 

Option 2: 

I li teral-1 I [{li teral-2 
SUBTRACT /identifier-11 identifier-2 ... J FROM 

ll~iter~l~m )I GIVING identifier-n [ROUNDED] [,identifier-a [ROUNDED]] ... 
ident1f1er-m 

. 
(;ON SIZE ERROR st;atement..-1 f; ELSE stafement-2l] 

~·· .. ··:. :.::·:.··.;. 

Option 3: 

SUBTRACT I CORR I 
/CORRESPONDING I identifier-1 FROM identifier-2 

In Options 1 and 2, the identifiers used must refer only to elementary numeric 

items. If Option 2 is used, the data-description of identifier-n and identifier­

o may be an elementary numeric edited item. 

All rules specified under the ADD statement with respect to the operand size, 

presence of editing symbols in operands, the ON SIZE ERROR option, the ROUNDED 

option, the GIVING option, truncation, the editing results, the handling of 

intermediate results, and the CORR or CORRESPONDING option apply to the SUB­

TRACT statement. 

When the GIVING option is not used, a literal may not be specified as the minuend 

When dealing with multiple subtrahends, the effect of the subtraction will be as 

if the subtrahends were first summed, and then the sum subtracted from the 

minuends. 

7-96 



TRACE 

TRACE 



USE 

The function of this verb is to specify procedures for any input/output 

error and/or label handling which are in addition to the standard procedures 

supplied by the MCP, to calculate the ACTUAL KEY for files assigned to DISK, 

The construct of this verb has the following five options: 

Option 1: 

{

file-name-I [,file-name-2] 
INPUT 

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-OUTPUT 

I-O 

Option 2: 

FOR KEY CONVERSION ON file-name-I [,file-name-2 ... ] . 

... }· 

, must i.ptm~d~~tely f ol1ow a section header in 
the DECLARATIVE portion of the PROCEDURE DIVISION and must be followed by a 

period followed by a space. The remainder of the section must consist of one 

or more procedural paragraphs that define the procedures to be used. 

A USE statement specified for input and/or output files associated with the 

SORT verb will not be executed when executing the SORT unless an INPUT and/or 

OUTPUT PROCEDURE has been included in the program. 

The USE statement itself is never executed rather, it defines the conditions 

calling for the execution of the USE procedures. 

7-98 



Within a given format, a file-name must not be referred to implicitly or 

explicitly in more than one USE statement. 

USE procedures will be executed by the MCP: 

a. After completion of the standard I/O error retry routine (this applies 

only to option 1), the record in error has been read; therefore, another 

READ cannot appear in the USE section, since the MCP is performing 

the section because of a previous READ which has been completed. 

Upon completion of the USE procedure, control is returned to the 

statement following the READ which detected the error condition. 

b. Prior to any SEEK WITH KEY CONVERSION statement on files named in 

There must not be any reference to non-declarative procedures within a USE 

procedure. Conversely, in the non-declarative portion there must be no 

reference to procedure-names that appear in the declarative portion, except 

that a PERFORM statement may refer to a USE declarative or to the procedures 

associated with such USE declaratives. 

NOTE 

USE AFTER STANDARD ENDING and USE BEFORE 

STANDARD BEGINNING are both illegal entries 

in B 1800/B 1700 COBOL. 

7-99 



8 
WAIT 

The function of this verb is to $uspend an object 

[REAll-0~ ON f fle-name•2 

[USING tdentifier....:4] 

serial I/O Q;evices $UCh Jts card punches t:rr 
there i.s space it1 tile buffers for .at lea.st 
files and files which a.re not OPE.Ned 1 this 

Tbe REAI).-.OK option causes program execution 
least one record in f ile.~na.me....:2 to be .read~ 

to specify queue n'tlrnber fcir queue famili~s. For queue and remote filesf thls 
event is truewhen the queue speclfied\is not empty. For serial IfO devlces 

7-100 



1111 .£ts ~~it:-i fJteiCier.s ina tap~; tll'.Ls.·•we'e~t··.beiii.tr~e····me~~j jiiij a. record 
lfl§;n;t in the buf:eer ~ For ·.·· atsk and. pseudo~rea(je;tfs and 

~llNd.) thts candi:tl.on 1$ ~:rways true. 
'6en tlfieWSE~Go]p!tioti ~s spectfied, the value contained in iaentifief~4is 

psld.1~ .~,11~.i~e .. a.j J'qlcq ;point ~;D ;tie specified l.h~t q.:f events the WAIT 

l)liQii•l(i~~P,?c.Q:e<lrtlil~qfra true $0Jidi:t;1oi. laentiflter-.4 is zero relative to 

ilent:iif1ex~4 would eause ;tlie WAI'J st~teft1ept tq< l)egi:qc checling with the first 
e'veit irf tie l:ist. From the 'Pegint}!nl point l.n 'thef lfst, events in> the llst 

are ~,~,~r~. m~~ ~ijf~~ .~?nditlon).~ntil ~11 events ·1~ve beeP, checked,. or· until 
the tir$t irue condition is found. If a true condition is :fomjd, the uwAIT" 
;J;~~~l:inliitel a:tll eC!ntrol i!S pass~d to the next statement. If in this initial 

~~~~ Ji ~~i ~v:nE~:;Frno j8tmts ~f' :fouj~ to be true, p:rog:ram execution is 
§tt§~EiJi~ed: U;nt:il ~ny event 111 tne l:istr becomes true, at which time, the "WAITlt

~1$\t:t;ement is termini\t.i;:ed and contiol is passed to the n.ext statement.

~~ll jb,e <ltVINGpptiop, is spe¢ified, identifier-5 is set by the WAIT statement
to/ refl.e.ct the event in the statement which terminated the WAIT. Identifier-5,

lil{e fd.entlfle.;"'"4 is zero relat.iveT i~e., ·if the second event in the list of
events is found tooetrue, identifier~5 will be set to a value of one. The

maximum nun:iber o:t events which may .. be coded in a WAIT statement is nine.

7-101

7-1 CJ2,

COMP 01

COMP ZOO.
2,
3,
o.
o.

tD!NTH' t!lh 1
SPO•!NPUT•PR!S!NT
WRITE•Ok QN QU!UE•FILE (tnENTt~IER•~)
R!lO~OK ON OUEUt•'fLE (fD!NTIFTER•3)
WRITf•Ok ON QUEUE•FILE (8 ~

Ult NG IO!NTIFI!A•U
GIVINS IOENTI,!IR•~.

t' fbENTI,t!-·~ • 0 DXSPLlV "WAITED lO SECONDS"•
!F ?D!~TI~IER•5 • 1 DISPLAY •GOT !PO•t~PUT•PR£S!NT•,
l' tO!NTIFJER•5 a 2 Ot!PL4Y "2NO QU!Ut MAS SPACE FOR A MSG"•
1' IO!NTIFIE~·5 • J otSPL•v Ml~O QutuE ~•s • ~sG TO R!AO".
IF IO£NT!Ft£R•S • 4 ~!SPLAY "~TM QUEUE Hl~ SPACF ro• A ~8G".
STOP RUN.

END•Otr•J08.

WRITE

The function of this verb is to release a logical record for an output file.

It is also used to vertically position forms in the printer. For mass

storage files, the WRITE statement also allows the performance of a speci­

fied imperative statement if the contents of the associated ACTUAL KEY item

are found to be invalid.

The construct of this verb has the following two options:

Option 1:

WRITE record-name [FROM identifier-I]

{
integer-I }
identif ier-2 LINES

{
AFTER }
BEFORE ADVANCING

TO CHANNEL {
integer-2 }
iden t if ier-3

[TO

[;AT statement-I

Option 2:

WRITE record-name [FROM identifier-1]

An OPEN statement for a file must be executed prior to execution of the first·

WRITE statement for that file.

The record-name must be defined in the DATA DIVISION by means of an 01 level

entry under the FD entry for the file. The record-name and identifier-I must

not be the same name, or be in two files that have the same record area.
/

The ADVANCING option allows the control of vertical positioning of each

record on the printed page. The options are as follows:

a. When LINES is used, identifier-2 must be declared as PC 99 COMPUTATIONAL,

or integer-I must be a positive integral value of 00 thru 99.

b. WRITE BEFORE ADVANCING is more efficient than AFTER ADVANCING.

7-103

WRITE

c. When CHANNEL is used, identifier-3 or integer-2 must contain a posi-

tive integral value of 01 11. Identifier-3 must be declared as

PC 99 COMPUTATIONAL. The MCP will advance the line printer's carriage

to the carriage control channel specified.

d. If the ADVANCING option is not specified, single spacing is provided.

The END-OF-PAGE option applies to a file that has been assigned to a printer.

When the END-OF-PAGE punch in the carriage control tape on the printer is de­

tected, the statement following END-OF-PAGE will be executed.

Option 2 must be used for writing on disk files.

If the FROM option is specified, the data is moved from the area specified

by identif ier-1 to record-name according to the rules specified for the

MOVE statement without the CORR or CORRESPONDING option. After execution

of the WRITE statement is completed, the information in identifier-1 is

available, even though that record-name is not available.

When the WRITE statement is executed at object time, the logical record is

released for output and is no longer available for referencing by the object

program. Instead, the record area is ready to receive items for the next

record to be written. If blocking is called for by the COBOL program, the

records will be automatically blocked by the MCP.

Short blocks of records which were written during EOF or EOJ will be of no

programmatic concern to the user when using the file as input at a later

time.

If a write error is detected during a magnetic tape write operation, the tape

record in error will be erased and a rewrite will be attempted further down

the tape until the record is finally written correctly. A punch or printer

write error will result in a message to the operator. The COBOL programmer

need not include any USE procedures to handle write errors.

The shortest allowable record which can be written on 7 and 9 channel mag­

netic tape units is 7 bytes.

If a CLOSE statement has been executed for a file, any attempt to WRITE on

the file until it is OPENed again will result in an error termination.

For files which are being accessed in a SEQUENTIAL manner, the INVALID KEY

clause is executed when the end of the last segment of the file (last record)

has been reached and another attempt is made to WRITE into the file. The last

segment of a file is specified in the FILE-LIMITS clause or the FILE CONTAINS

clause. Similarly, for files being accessed in a RANDOM manner, the INVALID

7-104

WRITE

KEY clause will be executed whenever the value of the ACTUAL KEY is outside

the defined limits. An INVALID KEY entry must be specified when writing to

a file described as containing FILE-LIMITS.

Records will be written onto DISK in either a SEQUENTIAL or RANDOM manner

according to the rules given under ACCESS MODE. For RANDOM accessing, SEEK

statements may be explicitly used for record determination as defined under

ACCESS MODE, SEEK, and READ.

If the size and blocking of records being accessed in a RANDOM manner is such

that a WRITE statement must place a record into the middle of a block without

disturbing the other contents of the block, then an implicit SEEK will be

given to load the block desired (provided that an explicit SEEK has not been

given). If the file is being processed for INPUT-OUTPUT, then either an ex­

plicit or implicit SEEK for a READ statement will suffice to load the block

between the READ and WRITE statements.

If the value of the ACTUAL KEY is changed after a SEEK statement has been

given and prior to the WRITE statement, an implied SEEK will be performed

and the WRITE will use the record area selected by the implied SEEK as the

output record area. The value contained in the ACTUAL KEY will not be af­

fected.

For RANDOM access, when records are unblocked, the use of a SEEK statement

related exclusively to WRITE is unnecessary, and may result in an extra

loading of the record from disk, because the compiler is, in general, unable

to distinguish between SEEK statements that are intended to be related to a

READ and those intended to be related to a WRITE.

7-105

~
ZIP

PGM2H.

the ZIP state-

from

7-106

BURROUGHS COBOL CODING FORM
ADDITIONS, DELETIONS ANO CHANGES

PROGRAMMER r- IO

DIVISION PAGE

l'Alil LINE z
NO. NO.

3 4 42 61 7t

I I I I I
I I I I I I

1--Jl..-l.-.+-...L...-'-~=.J..-'--L:~-!-=~L:....l.--'-.-4-....L-_.__...__.-+-4-_._...__......._L..l._l_L I I ll_L_.i f I I I _ _,._I ~...__,_I 1 __._--+--_._.__._.LJ..__.___.___.__.-.__.. _____ _.__.__

1--L--'--+-..__,:-+---+--L-.__._-+--~-'=-.__._-===--=:.u.....~iT+ ~c:L~-19Vi.\1'P1lAJT.uBEi'l::.NjI1-C1Ut"'Tr. I

~__._-+-......_...:__~_J_---.L.-L-~=-.i~::::...L~....l-L-l..=.~==:L!...::L-.....J.~l'kri'Rptl...1, I I L ... L.L 1........L 1 ~~'-I ~1 1__._1 _.1 __._~_.__ -t-A.~__._~~~ __._---.......

I .L...J_L_.._._._~~ _.__.____.__....._.....__.~~_._
---+-......................... ~~~1_1_~1-L1-4--_._....._..._ ___ ,~~ -......... ..._........_.__.__.__ __ ~_.__. __.___.__ ,L_.O~--

I
..........._-....-A-~~-~_.____._~,__,,___..=;J,.__._~~~ J>~p:i=.....5~l<J"-'=--->...:IC:..=!~L1$Ct-!rl I I I I !__J L--.1 _._.....__,______._....._~1~__.___.__~..._~__.__.__--t-~~~__.___.__~~~-1

1--l-.....L......+-~'.......+-+-_L_L...J........+!:!l\....!BL.St.l._J,J,l.1:::b,;21~~'KJ.!A:~~iTi..LL....J.TQ..._l:.iA:jRlP1-~MAtG-~L I I _Lj__j_L. I I I

......................... --+--....._--+ +-J.__~.......+==..:......._J!....-=l.:...::!=-=.,,......~~~-'jL!.~:::1~.w.i....iL..:1...,:::i.1_~~..:£...11:..rb 1e=tR. '', ~j~ 1 Fir1"·..fPSt~1· 1 1 1 1
£..L_&-P~~~-...ilL~"iE1 1 \I ITi9 1<'._t~j!ERi I I G-Gi....i°"Ip-....=---"15=.;..1K_i.=L.!.....l...:.......i..=~i.=+-L-...L.......J'--'--L-............... __._J...-.

..----;------+---+-~___.__.~\76 1?iR~~+ri--~~1__l_~iDO~~i°l)1~~~.~~N~G~'~'~?+............_1L~1=l:i~N ... ~6=--=S-1-~1_.._~.~~__._"""'---i__._...._.___._~--.-......_.__
~~-+--"---i ~~.......__~+~...L~. 1""!1>i re.piu..N::ra~ --1. Fi°' iT"P1 1E_F=L_~,:r:.1"6-1., I I I • I
l,.......l_L_J........L_~W..;'!JJ""""'dr:'.lO~~~....l......_j_LJLl4,.....L-1.......l_.L_l...-L......i.......1L_I I I I I I 1-L . .L. ... L-t-j~l-1 _1~1~1~1__._1 __ '1-1--~1_,1 ~ ~~~__ -6...-_~

................. __._--+--.L.........---+--+-_.__............,~_,,,_.,,..:Ii15.__J"'81Gri ~ - ~ E1<1 __ifi_~Mi 1N16W-i'Pi~ t.Jj!I .. 1 u _.L.L..L 1_....__ +I _.__ 1 _,1__..__._....... -+-.......................... __....._..._ __._......-.......

........... ~-+----~f--+----'----'-_.__+''PJEES.~M. 1H9~ "bEiR1 L~' 00 LEE!.~.i~.Lfu!.-il_......;_._1 _,..__.,_..._I ~1 ~1 _.__..,.,_........_._......___.1L.~_.___........._.L.1 -11---'-__.__.....__~-.A..- ~-41
,.,....~R.=.=... • ..LI I I I I I I I I I I I -1..........L.. I I I I I I I I __ L_L........___,.1_.......1 ___._I ~1.__._1 1 1___,.1 ~ +, ! ~·___._ _ _.__.__.....__ --+ ~-~.__.___.__......_

~~~--·+---"~------+~-1J...1:...L.J.~~A1C.1E1~ iIQ......l2i_Br1 NT1-Ri6C I., I 1W~:.I:iljE1 1B~NT,-1 'R1E,C1 

..J..._J'"--+'~~-il::. iT1E1 __ ;E'.B~.fli-R1E&.1 ~~....iTi:t:1TiL1EJ ~1E ,F....J:f=1R=1E..u.1........J..:1Ai1?....z::::..i...1'1~1t\....l..!...:~:i.::1(__=-~f~1~~G..u1..........Ji:Ci.........i==~=¥'~..L.........J........J...........1...........L.....L-....L......J...........1...~ 

~-..L.---............. __.~_..... ~~~q~e, 1~1 ...iTA f-OLAiNil1E~, 
1 

1 1 1 , 1 ...... LL_L-+1 ................................................................. 1__._1__,_......._+-........... __._ ......... _........_ ............................ .__._ ........................................ ......_--... .............. -A...--...._ ........... 

........,.__....._-+--~-'-i~'-"'!l!:L:....:.a!=~~~__,_........_...J............L........J'-J..--4-J.._l._L__.L--l..~I I 1.1 I I I l...J._i_-+l-'-_..._ ......................... ~...L...~1__,__._+-..._.~1.-1 ........................................... ...._~_...___._ .............. _._...._. ............. --.. ............... ............... 

............. ~-+--'-----+-.............. -~~ ..... ~=~L""'-L-))1.:1 =Z=.S,,.=1K~11--..... ir.l!:JNt..=...~i"P.1~Ti-p1lAj'Ij. I I _......L....l.......J-+j __._~~~~-.............................. +--'-_.........__.__ .............. ~ ............................. ---_.___. ............... .........._....__.~........._ ............ _ 

l--'---'--+------~-'--L--'-+-'=L-'-'~"-'--~~:U.......=-..1.-+_._.....J..,.....~L-.J...........LJ........L.~1---1 ............... ........_ .......................... ~1~ . ....L_Lj ---_._~__.___,_~-~~--......................................... 1.........L_L_L_l..........._,._..__.__.___.__ ................................................................. -41 

............ --. .............. L..-.1.:J.:...;.ll!l:........=::u....1..-.,.1..:.:~.u.:...._1.-1. ............ _.__.L-l.......l....LJ.....L~!_._......._......_ ....... _...~1 .......... 1 _ _..1 __ 1 __ _._ .............. _.__..__._ ............. _.. ____ ._ ....... _... __ ...._ __ ....... ..__ ______ .......,.._. ....... _ 

Figure 7-16. Coding of PROCEDURE DIVISION 



SECTION 8 
B 1800/B 1700 COBOL READER-SORTER 

GENERAL 

Ariader-so:riter is a.d~vfcewJ:iich reads>and records specific information on 

0~ff~r( )rfc~~pt;, \a~}~s=t :~~~p~, withd3~wa1i ricdr1s. ~i\1 ei\i~a* (loc;ients and 
t~en so~t~ ···the ao;.,~~t~. Readin~ >is accomplis~ed by m;gnetic ink character 
r1c;ognition (¥lCR~ or by optical character recognition (OC~).... $drting ;is intd 
1tl)qct<etst• b'!lUf into the _reader:...s9:rter. MICR is the ,more w:tdely used of the 
two r~aling methods in the applic~tions under cqnsiaeration. 

The ba~kjijg industry, which has a very high daily vo:tume of .sqch documents, is 
a p~itnary user of reader-sorters. 

'Podeai with thi~ higp. vqlume, reader"""~<Jl"ters are high~speed devices; hanalin.g 
900 ~o 4€$25 docufijeits per minute. The maximum rate 'is determlo~d by the capa­
b'll;i~J,:es of the host computer as Well as the readtfr-sorlef mechanism and elec­
tronics. Operation is in real time; therefore, unlike any other B 1$00/B 1190 
feripheral device; the reader-sorter must be immediately serviced on request, 
interrupting all C>ther MQPL functitms< 

This op-demand av.ailabili ty is requirel by tbe two functions that must be com"-­
P1Eftea i11 a very limited amount of time for each document. The first function 
is the Read; the second function is Pbcket Select. Read is self-explanatory. 
Pocket Select refers to the pocket se1ection information that must be issued 
by the program during the time the document moves from the read station to the 

$ort {pocket) are.a. 

Pocket selection is done only in a Pocket-Self:~ct DECLARATIVE sect ion of the 
ptrogram. This section is bound to the particular reader-sorter by a 11 USE 11 

statement (cpvered later in tbis section). The purpose of this DECLARATIVE 
section is to make the deci$ions, 'based on data and/or exception conditions, 
necessary to route the documents into the desired pocket. 

It is the progr.ammer' s responsibility to insure the quickest path through this 

Pocket-Select DECLARATIVE section. If the document reaches the entrance to 

8-1 



the MCP. 

a. 

d. 

e. 

8-2 



f. DOUBLE-DOCUMENT: 

All the 

greater 

control 

Those COBOL verbs or 

a. 

b. READ 
c. WRITE 
d. CLOSE 
e. OPEN 
f. SORT 
g. SEEK 
h. ZIP 
i. ACCEPT 
j. DISPLAY 

If issued such communicates 

In 
operation 

case: 

and is seen only by the non-DECLARATIVE section. 

programmer must deal with this exception. Otherwise, the same exception, 

conditions and data which determined the pocket selected will be seen in 

the non-DECLARATIVE section where the data can be captured. Normally, 

pocket selection is transparent to the non-DECLARATIVE section. 

8-3 



$frt.ce ~he .. non;,,..DECUBATIVE section!may·be ip.ter:t"up;ted t.o ·b;ap.d}e· pq~ket 

sef ebt.!~n hetwe~ri.··· ii.Ii]~··\·· s.-. 1:Nsmtfetrow•·•·••($ee APPl~JX:P),• ·tn;~ i P~O.kt~~r .. i:;hoU.:t·~ 

t;m~~~~~~~~t~ ~~1Sf1:>ri; sul)tt M Jno'<:inl{ of la,Tie. "qatil are~·• READ ••• lwrQ, ;o:r 
WRI'EE ....... FROM .. 

retnstfitedat the next s-...rNsTRUOTJ:ON a:fter pocke'ts~lectlon iseompIDeteJ 

'tlii\ji~fP'i nave the iri(l~pen<t~il'.P :t:unctfons of a. CObol Iieaper~Sqrt~r p~olr~~ The 
ro~~pwJn~ d~:fine~ the l\.· 1sc10/B f7oo Gdf,jdl larigu,age taci1i ties for handling 
Reacier;;;.;sorter• .. :files. 

~~.~~e <>] the ~fvislons of a COBOL program ~~qtiife specia;L con$1d~;r~;tlons Wh¢n 

tJ:i~ program is to process reader~sorter files. Those divisions are ENVIRON­
M:,EjfT rJ:tVISlON, l)ATA DIVISlC>N, and PROCEDURE DIVISION. 

Tne···:followlng paragraphs deJi.n.e the requirements of ·those three divisions. 

ENVIRONMENT DIVISION REQUIREMENTS 

Each reader-sorter to be serviced by the program must have a file assigned to 

it in the ENVIRONMENT DIVISION. This is accomplished in the FILE-CONTROL 
paragraph of the INPUT-OUTPUT SECTION by use of the SELECT statement. 

The construct of this statement is: 

SELECT file-name ASS!y;N TO READER-SORTER; 

RESERVE integer ALTERNATE AREAS; 

ACTUAL KEY IS data-name. 

The file-name must be described in a File Description (FD) entry in the DATA 

DIVISION. 

The RESERVE clause allows a varia t io!! of the number of input physical record 

buffers.to be supplied. by the MCP at th,e time the file is opened. Each alter-

4a.t$ a:rea. :reset-v~d requires additional m~mo:ry to be us~d, and is the size of 

a physical record as defined in the FD statement of the DATA DIVISION for that 

specific file. Up to 63 alternate areas may be specified, 

Generally a min.imumof nine alternate areas should be specified in order to 

provide the non-DECLARATIVE section sufficient time to process the documents 

while the Pocket-Select DECLARATIVE section performs the pocket selection 

function. 

8-4 



The data-nam~ specified in the ACTUAL KEY clause must be defined in the 

WORKING-STORAGE SECTION with a length of 112 characters. The ACTUAL KEY data­

name specifies the data area where document information is to be placed by the 

MCP for use by the Pocket-Select DECLARATIVE section in the decision as to 

which pocket the document is to be routed. 

The high-order 24 digits (COMP) of data-name contain result descriptor infor­

mation for the document which is to be pocket-selected. This result descrip­

tor describes exception conditions found while reading the document. The 

remaining 100 characters contain the data read from the document, right justi-

fied, with blank-fill to the left. 

The content of data-name is undefined during the execution of the non­

DECLARATIVE section. A more detailed description of the result descriptor 

portion and the actions required of the program when exception conditions 

occur appears later in this section of the manual (See Exception Condition 

Handling). 

The I-0 CONTROL paragraph uses the APPLY clause to specify the specific 

reader-sorter read station(s) to be used. At present this clause is for docu­

mentation purposes only. When specified, the construct for this clause is: 

APPLY { 
MICR} 
OCR file-name 

DATA DIVISION REQUIREMENTS 

The FILE SECTION of the DATA DIVISION must contain a File Description (FD) 

entry for each reader-sorter file SELECTed. 

The construct of the File Description sentence is: 

FD file-name. 

Other clauses of the FD entry are optional as described in Section 6. It 

should be noted that blocked reader-sorter files are not allowed. 

The file record area for the reader-sorter file must be the same data type and 

length as the ACTUAL KEY data-name which was specified in the ENVIRONMENT DIVI­

SION. The data which is available in the ACTUAL KEY data-name area during the 

Pocket-Select DECLARATIVE section is available to the non-DECLARATIVE section 

in the file record area. (See the TOO-LATE-TO-POCKET-SELECT discussion later 

in this section of the manual.) 

8-5 



PROCEDURE DIVISION REQUIREMENTS 

8-6 



CLOSE 

released 
' 

8-7 



CONTROL 

CONTROL 

31 

the 

BATCH-COUNT or 

8--R 



CONTROL 

counter contained in the 
which is printed 

I 
the pocket ligh1;; of 

8-9 



FORMAT 

FORMAT 

The fnn:ction of this verb is to ·place the data received from the Reader-Sorter 

ii1t© 2©~cb.a:ftacte:r s.ul:>flelds ba.sed on the occurrence of specified control 
lnl\racters•·~ 

Be eonstrnct of .this verb is: 

•<>&IAT >:t<len.tit1er,,_1 1LITO ·1dentifier-2 

... (~~~ ~~~ ;!~~~ $~~t~,~f\t•1 lE~~E statement-2]] 

li'.:tfi :;iid.~nt~fie~f.;1 all l.:dentiff-r.-.2 must be OSAGE .DISPLAY. Identifier-2 is to 

I~ ~~lfiiic)§~d or J.II> ~d n:~oe fielas >and eilcn ;e:teld must be 20 characters in 
lill~b. , J:>a:t~ mqvelilent l>y the FORMAT verb is from low to high order. For a 

ml~e l.etaileddescriptton of the operation of the F6RMAT verb, refer to 

BIENll! 

,~ .F~pl~T .v~;fo .. i)~y both the Pocket-Select DECLARATIVE and non-

DECLARATJ:VE Seot1<)n$r<:)f tfie PROCEDURE I:>IVIStON. 

tbe ON.SlZE EIROR <londttion wtll be considered true when: 

.. a~ A0;y. s11bffeld ii i.q~n.tifier-1 exceeds 20 chara:cters in length, or 

b.- I:f the i;otal number of characters in iclentifier-1 exceeds the length 
of <~d~n,titl.er•2 t or 

c.. ~' (iq¢t.nj~nt being FOlllATted is unencoded. 

J::f a Q!\NNQ'f.,..JiEAD cluiraoter is encountered as a subfield is being filled, the 

~~$~ .. ~~~~~.:rie~nt qtll\racter of that subfield will be set to a "J''. If no 
QINMQl~·MAJ:> cha.raetet is encountered, tbe rnost.•significant character is set to 

a bl;ank·.~ 

U t.Qe' :J.;efl.$t...:signlfiea'{lt character is found 'to be a CANNOT-READ character, it 

is treated as a transfer character, and is placed into the subfield after a 
blank ha$ been pl.aced into the least-significant posit ion. 

8-10 



FORMAT 

8-11 



MICR-EDIT 

MICR-EDIT 

8-12 



OPEN 

8-13 



B 
READ 

8-14 



USE 

8-15 



EXCEPTION CONDITION HANDLING 

8-16 



NoT~READt, +: This cin<li.~io:n is caused by one or mor:e of the following·: 

Power off ~er UQti y~t fµ;liy up'~ 

Ot:e 1ttie. 
Jam~ 

l!mpty hopper. 
Full. pef>cket~ 

g. ~t~:ftl~tdt> qlt aeppe~iSect¥rff;t:te 1e~dy. 
ht~ Pocket. lighted,. 

i. Feeq ¢heck(tj,o item feel within reasonable time while Feeder is on). 

J.. TJ;~h$P@l".'t· s}j.Q;]d9wn (after Feeder< off for a number of minutes). 

11~ Op~'< ;thter#6~k·.~ 

Wien a Nar·...:sEAIJ1 condltloh o<;c~:$.~ ~h, rea~7r7sort~r transport continues to 

opex:i;t;ij anQ. dicumerits <al.ready in moti.on will be :t;>ead' pocket selected' and 
pociet.ed no~ma:t:Ly;· hd~e~er;<tfie Fe~d~i is .. turned·.· of£ and no additional docu-

ments )are fed. Jri, the case o~an Qpeh interlock or power down, the entire 

tra11spq~1; in~cl;l~nismis it'nnl~diately stopped, and several documents may have to 

be inlhuallyremoved from th~ transport ~rea. Since the reader-sorter control 

~ind tbij MCl? >c~n.:not; Jn getierar qlstinguish l?etwee:n these various cases, opera­

t_io;n proc,eds at? ;thou.gn .al:L aocuments in motion are to be processed in the 

normal manner. lt docUltietits Jn fact stop iri the transport area, the reader­

s9rjer qp$rat(7)£.~J~i re~9w~th~t?e and<assist inthe recovery procedure. 

The data which is returned with a NOT-READY condition is INVALID, and must not 

1?~ proe~$$ed} ~he.· J?qeke'¢HSeleet; DEG'.LARATIV'E section must select a pocket 

nturiber whi¢h is greater than ;n when a NOT-READY condition is reported in the 

re$uI t d~SCJ:'~f>tbr. 

'UNENCO:OEn.::nocul:ENT -<This cdndttion is TRUE when the document related to this 

result descfiptor cohtairis ~<f non-blank characters. A document with one or 

more .b'.h.al:'~cters {eveµ a cannot-r.ead character) is not reported as unencoded. 

The Pocket-Se1~ct DECLARATIVE section must select a pocket number less than 

32,- Unless there is also an exception condition reported which requires a 

poq:k:et number greater t:han 31, in .w:hich case that requirement takes precedence. 

DIG:rr-5-RESERVED -- This digit is reserved. 

CANNOT-READ - A CANNOT-READ condition indicates that one or more of the charac­

ters detected by the reader-sorter could not be correctly interpreted. Note 

that UNENCODED-DOCUMENT and CANNOT-READ are mutually exclusive. 

8-17 



8-18 



p<;'.>cket ~~~as, the transport :ts halted immediately. In this case the operator 

rnaY be }tequ;\red>to extri;tct documents from the transport area and manually 

};>¢>¢ke1; t.he items. It should be noted that there is no indication, except to 

tbe qp~;t~:f;Qr, .as to where the jrup occurred and where various documents have 

stolJPt?d.~ llso, a . .J~ wh:(Cti qccii;rs after the read result has been returned is 

ri~?t. reported tp the program> even though documents may be halted in the trans­

l;let;rt\ ittei. 

The.data whiqh is .returnetlwith the JAM condition is INVALID.and must nottbe 

:Pro{;.e§sed~ The P!:>dket-Select DECLARATIVE section must select a pocket number 

;':reat'Pr than 31 \vhep a JlM cpnd,iti6lg. :is reported in the result descriptor. 

MlSSClRT - When amissort ts detected, the read,er-sorter irntnetliately goes not 

readY. all).d stppS the "fe.edf;n:~~ The reader-sorter light.s the pocket(s) into which 

thetnli~sprted .dociufient(~) was routed. If the control was waiting tor pocket 

~~.t~c.; .~n.:r~~atien w~~n -~~e. misso~t occurred, the po.cket select information is 
a.pc~pteCl .and !Sent to the :-reader_;csorter, and that document is pocketed normally. 

A. missbrt which occurs after the read resu·1 t for the last i tern has been. 

:returned is not reported to the program. 

if a nocument is directed to a nonexistent pocket on a reader-sorter with 

fewer tnan 32 pockets, then that document is a missort to the last pocket. 

l!SSORT is then reported on a subsequent document. 

'.The data which is returned with the MISSORT condition is INVALID and must not 

'be processed. The document(s) rnissorted and succeed~ng documents which are 

already in motion are route.d to the Reject pocket. The Pocket-Select DECLARA-

Tl:VE section must select a pocket number greater than 31 when a MISSORT condi­

t~on is reported in the result descriptor. 

BLACK ... BAND - A BLACK-BAND condition is caused by a large black area on a docu­
ment which is detected photo-optically by the reader-sorter. Detection occurs 

close to the Feeder so that the Feeder can be stopped without feeding the 

following document. 

A document which contains this large black area may be used to stop the feed­

ing of documents, and to flag the end of a specific series of documents. 

The data which is returned with a BLACK-BAND condition is VALID, and may be 

processed. The Pocket-Select DECLARATIVE section must select a pocket number 

less than 32, unless there is also an exception condition reported which 

requires a pocket number greater than 31, in which case, that requirement 

takes precedence. Other exceptions or conditions are reported as in a normal 

8-19 



8-20 



8-21 



s-22 



00 
I 

1:-.j 

VJ 

8L~RCUG~S 01700 CC8CL COMPllEfi• MA~K VI.O (1~/3G/16 09:58) 
~ICR /E~A~PlE 

COClOv 
COC200 
COC300 
CCC400 
COC500 
COC600 
CCClOO 
coceoo 
COC.900 
COlOOO 
Cv 1100 
CC1200 
CC1300 
CG 140 0 
C01500 
C01600 
C01700 
CClSOO 
CC1900 
CC201JQ. 
C02100 
CC~200 
c (j z 30 0 
C02400 
C02500 
C<H&OO 
CC HOO 
C-02800 
C029GO 
C03000 
CC3100 
CC!200 
CC!3UO 
C0~40C 

C0!500 
C03600 
co 3100 
003800 
C0~900 
C04000 
C0410C 
C04200 
C04300 
044CC 
C04S.OO 
CC46CO 
CO HOO 
C04800 
C04900 
cc~ooo 
CC~lOO 
C-0 '::200 
CC'; 3C 0 
G05400 
tC~500 

ItE~TlflCAllO~ OIVISIO~. 
~£MARKS. T~JS PRGGRA' REACS A~C PRINTS KlCR GOC~MENTS. 

S~ 1 : C LIST AFTER ftfOA~~T· 

SW 1 :::: 1 LIST eHIJR( 00 HHR "fORHAff'I 
s~ 1 : 2 LlSl BEFORE ·roR~AT· 
SW l = ~ USE POCX£T <h> 

E~VIRON~£~l DIVISIO~. 
l~fLT•OUTPLT SlCTIG~. 
f lU•CCf.. rnoL. 

SELEC1 FRT-~lCR ASSIG~ TU P~IATER. 
SlllCl ~IC~IN ASSIGN TO ff£AOER·SORTCR. RESCRV( 9• 

ACTLAL KEY 15 PCK-SEL·eur. 
I-C-CGNIRCL.. . 

lPPLY ~tCR C~ HlCnlA. 
CHA CHl~IGh. 
FILE. 5£.CTIO•. 
fC: PRT•MICR. 
01 PRHICR .. 

05 PRT·ROESC PC 9(20)• 
05 PRT·•ROfSC REOEFI~ES P~T·RCESC Pt k(20>• 
os FILLER PC xx~ 
05 PR T·PUCKNIJH PC xcn .. 
05 PRT•IT£~ PC Xf9S>~ 
05 PRT•INV PC XUQ.). 

re MICRl~ VALLE GF 10 IS ~uts~x~. 
0 1 MI CR• ITEM. 

C5 ~ESULT•OESCRIPIOR. 
10 RCl PC 9 C~P. 

ea UP£RATIG•-CC,PLETE VA 1. 
10 R02 ~C 9 CMP. 
au EXCEFTIO••tC~CITIO~ VA 1 .. 

10 J'.03 PC 9 Cl!tP. 
ae hCT-R(AOY VA 1. 

10 RO~ PC 9 C¥P~ 
88 ~N£NCGDfC•OOCU~E~T VA 

10 ~9S PC Ctt,F., 
10 KD6 PC CKP. 

88 CA~T·REAC•CHAR VA 
10 R07~9 P~ 

10 fi010 
ei OO~BLE~DCCL~ENT 

10 fi011 
88 fOC ... U TE.- TO•REAO 

10 RD12 
86 j AJ.t 

10 FOl.3 
88 ~ISSCIH 

10 RD14 
8Fi e.ATC.,,.Tl(K£T 

10 R015 
ae ~ALT•ft~~-StGPP(C 

1G RC16 
10 11017 

88 toe ·l Alf• T O..;POCK.£ T -S(l( CT 
10 ROl6"'2C 

* MlCR • 
• MICR • 
* tHCfl • 
"' HI CR * 
* MlCR * 
• fUCR * 
* HICR * 
* M ICR * 
• fiflCR • 
• MICR • 
* MICR * 
* MJCR * 
* MICR • 
• fflCR • 
• MJCR • 
* MU:R • 
* MICR * 
• MICH • 
• M[CR * 
* MIC& • 
* !1JCR • 
* tUCR * 
• HICR • 
* HlCR * 
• MICR * 
• MICR * 
* MICR * 
* fitICR • 
* MIC& * 
* M ICR • 
* MlCR • 
• titlCR • 
• MICR • 
• HICR • 
• liUCR • 

tOtOiJ 900•0000134 
OOhOOQOl34 

C POOZl OQ(h 00001 l4 
000.0000114 
000100.00lU 

r uon 009•90001~~ 
tOOOliJ OOOHJ0003.71 

000,00001'' 
poo·~OOOPJ9~ 
OQO~J)CQ0398 

OOO~OQ00l99 



PC 9 
PC 9 
PC 9 
PiC 9(f)) 

Pt 9 
PC 9 
PC 9 
PC ·9 
PC 9( 11) CMP. 
PC X(lCO). 

01 
PC X( 60). 
Pt X<20>. 
PC )(( 20 l. 

01 
PC X<lO). 

PC X(20). 
PC , )((3Q). 

PC xc201. 
PC )((20). 



00 
I 

l\J 
CJJ 

009910 I 
ClC0-00 
C1C100 
C10200 
c 10 30 0 
G104-00 
ClC500 -
010600 
() 10 700 
ClCSOO 
C1C900 
C11000 • 
cuzoo 
Q 11300 
011400 
c 11500 -
Cl1600 
011700 -
011800 -
011900 
Gl2000 
012100 
012200 
CH JOO 
C12400 
012500 

01 

01 

01 

01 

01 

HDG•Ot.E. 
05 DAY'"''NAfiE 
05 H:OG•{)A TE 
05 RLN·ll~E 
05 FILLER PC X<67l VA " SHALL 
"MEhT TEST 
05 PG ... .,_·o 
HOG•U.O .. 

PC xn1> VA SP.ACES. 
PC 991991998EIB. 
PC 99;99;99;~t8C8> .. 

SYSTEMS T I 0 fHCR 
PAGE "• 

PC 9C5> VA.0• 

05 flllER FC )((35) VA .. RESIJl T oeSCRIPTOR· .. 

oocu 

05 r Ill6R PC. )((94) VA •u 0 c u "' E .~ l A ~· 
.. C• : C A 
HDG•THRfiE. 

f\ T R E A CJ 
R £ iA 0 
l~V.ALIO" .. 

05 flll£H PC X<38) VA •o l 2•~ 
05 f lLL[ff PC X<61l VA •t 2 3 
.. 5 6 7 8 9·~ 

HOG-ff UR FC .. ~<119) VA_ •" 12345676901U456.1890 · ... ·. 1?J4567 
•s9012 34 56 78 ipt 284567 8901ZJ4S.H69C1'2345678901Zl-45676901~3'45~1 
•8901( H-5E70CH345E7890~. 
TOT•ttNf. 
05 flll£R PC x<11 > VA "'TO Ut.. DOGUM£,.JS •. 
05 ooc.•ToT PC 2z2,.zz9. 
05 flllU PC· )(08> VA " TOTAL EKCEPTI ONS "•· 
05 ()CC•lOT PC nz,.~;u. 
05 f' uu:R re )((23) VA .. EKC!PltON 
05 PCE,tt.T•ElCC PC l ZZZ • 99,. 

• MlCR * 
* HlCR • 
• MlCR * 
• HICR • 
• MtCR * 
• MlCR • 
* MlCR • 
• IUCR • 
• M.lCR • 
• HlCR * 
* fflCR • 
* HlCR * 
* MlCR • 
* MICR * 
• MlCR • 
• HICR • 
• HlCR • 
* MlCR * 
• HICB • 

MlCR • 
• HlCR • 
• HlCR • 
• MlCR • 
• MlCR • 
• H'ICR • 
• MlCR 

00-0• 0()01.21'$ 
ooo .. oootu$ 
000#0001316 
000•0 .. 001l40 
(}00•000ll~2 

000•0.001398 
ooo.0001s1t 
0DO•OO:Ol582 
000•040:tS82 

000,.0;901&;~ 
ooo,qon1~~q 
Q00*00.01$~0 

000 .. 00-0.1?16 

0-00•fl0020t8 
OOQ~Q.Q:0.2116 

~ 000;.0(t023l6 
ooo,.oooz3:so 
~~~~~~o~~R~ 
0:$)()11'099?4()0
00(hi0-00Z41f

Ct.510 I
G12600
01HOO
(!12800
'12900
Cl:!OOO
013100
Cl.3200
013300
013400
013500
013600
Gl.3700
013800
013900
014000
014100
014200
G 14300
014400
014500 *
014600 *
014700
014800
014900
C15000

PAtCCDURE DIVISION.
OE CLARA 11 VES.
POCK(T•SELECT•ClCLAHAltV(~ECTION.

USE f GR REACER·S~BlER POCKET ~ICRIN.
one-SEARCH.

MDV£ s~z IC PCK-~U~. ~OVE TALLY IO STORE-TALLY.
tf PCK•EX•CCND = C G-0 TO PRGC•ITM.
lf 1 = fCK•kRDY nR PCK•DO CR PCK-Ttl•RO OR PCK•JAH

Off PCK-SORT,. JIO'VE 4iff4 TC PC1\•NUM1 G"O TC PCK•SEL.
PRt:lC•IHt.

ADD 1 TO PCK-COUNT.
fOR~Al FCK•COCU~E~l INTO USE·lTEM ON SIZE ERROR~

GO T1l PCK·SEL.
MICR•EDIT USE•flELDO INTO USE•TC·~KA.
H <TALLY = 3 AND USE•TC-WIU = 96). 140VE TO FLOW•STP•flAG.
MOVE STORE•TALLY TO lALLY.
If POCK£T•HCT•fULL GO TO PC~·S£L.

S lP•FlOh.
CONTROL MICRI~ STOP•FLCW POCKET PCK•NUM.

NOTE THAT EXECUTION Of THE •ct~TROlw STATEMENT Will CAUSE
THE OEClARAllVE SECTION H 8£ EXITED.

PCK•SEL.
If fLOW·STP•fLAG = 1 Gn TC STP·Ftow~

COHTRCL MICfll~ PUCKET PCK•NOH.
E~C OECLAR~llVES~

* JUCR •
• tUC.ff *
* MlCR *
* MICR *
* H tCf< *
* H !CR *
* JHCR •
* HICR *
* MICR *
* MlCR. *
* MlCR* *
* MlCR •
* MICR *
* MlCR *
• MlCR *
• MICR *
• MICR *
• MICR •
* H1CR *
* HICR *
* H ICR *
* M:ICR •
* MICR *
* f4ICR *
• MlCR *
• MICR *

o.00~0002,60

q.oq~9<>q ~o<>o
:000.000 0000
000~0000000
~~~~999<>0PQ 
p9p1o~9()(J()OQ 
\)0Qlo000 00.76 
99·~ .. ~99.9 Ol.32 
OQQp()0003l2 
OOO!OP~047Z 
OlJO '"000 047 2 
OOOP:0000486 
000,()000588 
000~000060& 
000 iOOO 067 8 
ooo,.oooon£ 
000fl)000834 
000•000<>928 
00.0JiQ.000928 
()OQ»iOO:O ttl't 
P<>l~~·~o iJ3 4 
q~<J~9001~·•34 
OOO~Q0.011l4 
()pO~()Ootlto 
OOOJiOOOI.376 



C 15005 I 
015010 
015100 
015200 
c 15300 
015.400 
015500 
015600 
015700 
015800 
01~900 
016000 
CtUOO 
016200 
016400 
016500 
016600 
GlE700 
016800 
01000 
017000 
017100 
017200 
() 11300 
Cl 7ft00 
017500 
017600 
017100 
011800 
C17900 
018000 
OlUOO 
018200 
otUOO 
018400 
018500 
CU600 
018700 
Q 18800 
018900 
019000 
019100 
019200 
()19300 
019400 
019500 
019600 



00 
I 

NJ 
00 

019610 I· 
019700 SEl-\1.P•Pltl;. . 
01J800 If <Stlt =: 1~ OR 2 > '40V.E PRfll•flM TU PRT•H£M 
Ol'l900 P(;f<f.llJt.tt ~CTVAt.•PfU~l. 
020000 1f <Sjl ~ 9 OR tJ HOV£ At. J• IHOtt< 'TO f>Rt• Ut:t1 
020100 P(RfGR"····ACTUU·fRlhl • 
C2C200 AOO 1 lt ta l~ 
C20l00 lf LltiC•CKl > 59 GO Hl fllH.i•Rltt. 
020400 GO TO RUO•H£H. 
020.500 AtHJU•PRINl. 
020600 "OVE REStJLl•OES TO PRT•ROESC. 
C20100 If EXCEflllOti•COtUHTION 
C2CJ8.QO £XAMU~E. flRl•XRDESC REPLACH.G Alt:' •o• BY •-• 
Cl20900 ELSE 
auooo EXAMlNE PRl"')R0£SC fi(PLAC.nG At..t. •o• 8Y .... 
Cl21l00 KOVE PKl-HUJf8EJLTO .,Rl•POCOliH. 
021200 .. R IJC PfiUUCR 8(ftlRf ACVOC UG t. 
oeUOO MOVE SPACES TC PRTMICR. 
021400 ADD 1 Hl L OE•CtH. 
OZ1500 EDJ•RlN~ 
021600 MOYE TOT lO 004;•TOT. M(lVE toT·EXC to uc•TQT ... 
021700 OtYlOE TOT unc lOT·EXC GI VUG £-P(ftC(Nl ROliNDEO. 
Q21800 ~OV[ £•PE~C£Ht lG fCE~l•[XC. 
021900 ~R11£ PRT,lCR fRA~ 1Cl•LINE •FTCR AOVANCIMG 2 LlH(S. 
cnooo CLOSE MlCRl" REHA$E PRT-IHCfi. 
022100 STOP RUth 
022200 UD•Of•J08 .. 

• MlCR • 
• MlC:R * 
* MlC.R • 

MlCR • 
MICR * 
MICR * 



00 
I 

I.\:> 
<O 



SECTION 9 
DATA COMMUNICATIONS 

by the program that 

be executed when the datacom network controller receives a QC 

the MCS (if one exists) does an MCS.COMMUNICATE with 

MESSAGE.TYPE set to 1 and MESSAGE.VARIANT set to 3. 

WRITE requires MESSAGE-TYPE to be set to 0 if an actual key is used, as well 

as TEXT-LENGTH set to the ac~ual message length, and STATION-RSN to be set to 

the correct relative station number of the terminal to which the message is to 

be sent. 

9-1 



9-2 



SECTION 10 
1-NTER-PROGRAM COMMUNICATION 

a&Nllil .. .,..... .... ')i·~t: 

~h1.s $cect ion d~$etib~$ t.ne OOJ;svlr in ter .... program eomm.un i cat ion , _ which is · 

,~~:i,!':~ ~~:~a]' ~7 ::~Fs~Q.~~ ~~e~fs'~.i~memory. (A: queue is treated by the 
I~ aIJ;cl >QomPil~rs e:lrnos;t e)(aQtiy as if· it were a normal file.) A discussion 

61 t~~ t·tnPJiem~nt~tlqn qf qlett~s 1011ows 

mel.sA.a1._.oilau11 

i rneaQs _.q··~ ;i.nter-:grogi;.arp, eorom'Un:Ecation. Queues; have va.rious ~ttrj.butes inclucl­

~il. i ~f~Qlia:r;~ct.el;n~-, use.rcount, and messagewcount·. Most· importantt a 

~il!Jti!Jtn~1C.vn:t;~i~a<\1~~<;?! ~ee;§ag$s [possibly empty),. A queue user may add 

fi -ibe- l5ack. or remove from fJie front of this list~ The queue may be shared -­

orii~ >or more p'.;hog~am~ m~y :au~ ?Pessa..gfs in the list and one or more programs may 

remove messages; Qn,ly ~n~ MG:P mftY access a queue dir~ctly. User programs 

must use <:>:9he:V:fiitttr~JQe~-·b!!~lt uPbl'!· queues., s'llob as queue files or remote 

!llEis• 

Tlie m:a.iimum fiumbEU< pt mess;:t.ges allowed in a queue at any one time is 

SIJee;ffied by the i>r9g;ram first opening the file .. 

A means of reporting to the user program that the queue was empty 

during a REAlJ, or that tbe queue was. full and the WRITE did not com­

plete, has been spe·cified for queue handling. 

c. Queues which contain a large number of messages may be optionally 

maintained on disk. Disk I/O to place or retrieve messages t.o or 

from disk is overlapped with user processing whenever possible. 

d. The endof file reporting on READ statements has been-defined for 

queue files in such a way as to permit label equation to other 

deviqes without causing incorrect reporting of end of file. 

e.. Queue files may not be blocked. Records written to a queue file are 

immediately put into the queue. 

10-1 



store, 

10-character names. For a queue file family however, two 10-character names 

10--? 



10-3 



SECTION n 
COBOL COMPILER CONTROL 

11-1 



ll-2 

cards; these aards, along 
presented

0
in the paragraphs 



11-3 



11-4 



11-5 



ll-6 



point within the source language 

until reset with 

non-numeric 

blanks. 

ll-7 



Example 1: 

To compile a COBOL program from the card reader and create a 

source program blocked :five on a disk ffte with the file-ID 
the following Label Equation (FILE) cards could be used: 

? COMPILE P-N WlTH COBOL SYNTAX 
? FILE NEWSOURCE NAME COBOL/TESTl 

? DATA CARDS 
$ CARD LIST DOUBLE NEW 

• • . SOURCE P!tOGRAM DECK 
? END 

To create the same program fil~ on magnetic tape, use· the following 

? FILE NEWSOURCE NAME COBOL/TESTl TAPE RECO·RDS. J3LOCK 5; 

Example 2: 

To compile a COBOL program from a disk file which had been created by th~ de­

fault option of the$ NEW option and to create a new source file on diskwith 

the file-ID of TEST2, the following FILE card could be used~ 

? COMPILE P-N WITH COBOL SYNTAX 

? FILE NEWSOURCE NAME = TEST2; 

? DATA CARDS 

$ MERGE NEW 

. . . PATCH CARDS IF ANY ... 

? END 

If the input file had a file-ID of COBOL/TEST1, in place of thie default fi1e~lD 

of SOURCE the following FILE card should have also been used in the above 
examples.; 

? FILE SOURCE NAME COBOL/TESTl; 



SECTION 12 
DATA MANAGEMENT 

12-1 



a generative'declaration of 

12-2 



SECTION 13 
INDEXED 1-0 

13-1 



used in this document to 

13-2 



was unsuccessful as 

13-3 



13-4 

key 1 and status 

indicates a valid 



of a READ state­

the conaition, refer to the subsection 

13-5 



13-6 



w-i th both COBOL 

lough Tables 

a. 

requiring the 

13-7 



This does not 

13-8 



13-9 



13-10 



Ge.neral For,ma t 

1:LUEJ OF { :~IFICAT1~ } 18 1:::::::::-l } • 

[VALUE OF CORE-INBEX IS in.tegen:·-l CHARACT!~] 

a. Data~name-:t should be qualifieCl wtu~n necessary, but, can:not. be 

scripted or ;inde~ed, nor ean <it be an 1.tem described with the USJIGI 

IS INDEX clause. 

option .. : 

tne·u©P checks to see 

ttame .is. eqij~f to t:h.e vaJ.:u~ of :ti:t:~ral ... l, 
wii·1··t;·tieve·r········•·11~·~·.··········•fi~en. ·········~~·;.61·~1·~4··:····· ... a.;·•.·•·•~e .. 1····1 ... as 

are l)re$eht ·.· :tn the .. dist d..i rebt ory. 

For. ~ach QJJ.tput file, a data file wh0se name 

value o:f · literal-1 or ····of. data-naJ:ne-l;• .. a9 weJ:t @.Er U~ as.sbelate.d 
t.ag ···:f!1le are· insertect .in to the disk c:l:irectory·~ '.Refer ttf.·tne··· sub...; 

s~<t:tiqQ, entitled Tag .r~Jes .. 

:tn.e ... ~QU7 . .INDIJ <>.Pt1obr :tht .. l\it~l>E#t <>f>Q;.;biwaeters sp.e¢'1ifled 

;i,nt~g~.;r;l >is ... · ~ll.:QQlt~4··· :for .. \:ft?~f ill.t~e t;>t¢>.;r~.ge ... 9t a· 1'91l;r;~ t~!?~e. 

ten ... (.,10}. entries is all.oeatea··~ 'Mier t:·~ the subsection entit:teCl 

RQl;lgh Tables for aCl<;tit ~ol!i'.t ilfQxtma.t:ttln 

The verbs .in ··the PRQCE].)URE l)IVISiOr! .... ar~ CLQS~, ·OPEN, READ,. REWRITE, START, 

USE and WRITE. 

The CLOSE Stotement 

Function. 
• 

The CLOSE statement terminates the processing of a file arid speq.i~~;ies the 

disposition of the file. 

13-11 



13~J? 



13-13 



13-14 



13-15 



13-16 



13-17 



13-18 



is logic-

13-19 





13-21 



13-22 



13-23 



13-24 



13-25 



APPENDIX A 
RESERVED WORDS 

All reserved words known to· the B 1800/B 1700 COBOL compiler are listed in this 

Appendix, together with notations (X) of the DIVISION(s) in which the words 

are used or other reasons for reservation: 

a. for DATA MANAGEMENT (DMSII), 

b. for future use or standards requirements. 

RESERVED 
WORD 

ACCEPT 
ACCESS 
ACTUAL 
ADD 
ADDRESS 
ADVANCING 

""r":"!!'Ti'T""1T"'\. Ar 1.r...tt 

ALL 

ALPHABETIC 
ALTER 
ALTERNATE 

AND 

ARE 
AREA 
AREAS 
ASCENDING 

ASSIGN 
AT 

AUTHOR 

BEFORE 
BEGINNING 
Jlmlil!RlllllllllDI r· w 

IDEN 

-
-
-
-
-
-
-
-
x 

x 

D I v 

ENVI 

-
-
x 
x 
-
-
-
-

x 

x 

x 
x 
x 
x 

x 

x 

REASON FOR 

I s I 0 

DATA 

-
-
-
-
-
-
-
-
x 

x 

x 
x 

N 

RESERVATIONS 

PROC 

-
x 
-
-
x 
-
x 
v 

x 

x 
x 

x 

x 

x 

x 
x 
x 

I 

DMSII 

-
-
-
-
-
-
-
-

x 

x 

x 

FUTURE/ 
STANDARDS 

x 
-
-
-
-
x 
-
-

x 

A-1 



Appendix A .(Cont) 

RESERVED 
WORD 

BLANK 
BLOCK 
BY 

COMPUTE 
CONFIGURATION 
CONTAINS 
CONTROL 
CONTROLS 
€!01¥1RSION 
COPY 
10a:E;.;;1111x 
CORR 
CORRESPONDING 

Qll ,. ; I {I:••·•·•••••••·•·• 11· :c! 
CURRENCY 

DATA 
imd.±~7:~~$1 
J:)!\jf .IET 
DAT! 
DATE-COMPILED 
DATE-WRITTEN 
l)B 
'.l'>:DL~NUMBER 

A-2 

IDEN 

x 

x 
x 

REASON FOR 

D I V I 

ENVI 

x 

x 
x 

x 

x 

x 
x 

x 

x 

x 

S I 0 

DATA 

x 
x 
x 
x 

x 

x 
x 
x 

x 
x 
x 
x 
x 
x 

x 

x 

x 

x 

N 

RESERVATIONS 

PROC 

x 

x 

x 

x 

x 

x 
x 

x 
x 

x 

x 

DMSII 

x 

x 

x 
x 

x 
x 

FUTURE/ 
STANDARDS 

x 

x 
x 

x 

x 
x 
x 
x 

x 
x 

x 

x 



Appendix A (Cont) 

REASON FOR RESERVATIONS 

D I v I s I 0 N 
RESERVED FUTURE/ 
WORD IDEN ENVI DATA PROC DMSII STANDARDS 

DE x 
DECIMAL-POINT x 
DECLARATIVES x 

x 
x 

x x x 
x x 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

DISPLAY x x 
DIVIDE x 
DIVISION x x x x 

x 
DOWN x 

x 
x 

ELSE x 
x 

END x x 
x 
x 

x 
x 

ENDING x 
ENTER x 
ENVIRONMENT x 

x 
EQUAL x 

x 
x 

EVERY x 
EXAMINE x 
EXC:ll'TIC>N x 
EXIT x 

FD x 
FILE x x x 
FILE-CONTROL x 
FILE-LIMIT x 
FILE-LIMITS x 
FILL 
FILLER x 
FINAL x 

A-3 



Appendix A (Cont) 

REASON FOR RESERVATIONS 

D I v I s I 0 N 
RESERVED FUTURE/ 
WORD IDEN ENVI DATA PROC DMSII STANDARDS 

x 
FIRST x 

x 
FOOTING x 
FOR x x 

x 
x 

x 
FROM x 

GENERATE x 
GIVING x 
GO x 
GREATER x 
GROUP x 

x 
x 

x 
x 

HIGH-VALUE x x 
HIGH-VALUES x x 

I-0 x 
I-0-CONTROL x 

x 
IDENTIFICATION x x 
IF x 
IN x 
)E.N<J+tEU. x 
INDEX x 
INDEXED x 
INDICATE x 
INITIATE x 
I NP LACE x 
INPUT x 
INPUT-OUTPUT x 

x 
x 

x 
x 
x 
x 

x 
x 

x x x 

x 
JUST x 
JUSTIFIED x 
KEY x x x 
KEYS x 

A-4 



Appendix A (Cont) 

REASON FOR RESERVATIONS 

D I V I S I 0 N 
RESERVED FUTURE/ 
WORD IDEN ENVI DATA PROC DMSII STANDARDS 

LABEL x x 
LAST x 
LEADING x 
LEFT x 
LESS x 

x 
LIMIT x 
LIMITS x 
LINE x 
LINE-COUNTER x 
LINES x 
LOCK x 
LOW-VALUE x x 
LOW-VALUES x x 

x 
MEMORY x 

x 
x 
x 

x 
x 

x 
x 

x 
x 

x 
MOVE x 
MULTIPLE x 
'llTTT mTT"\.T ~T v 
lV!Ul.J.l .L..t'l.J.l L'>. 

NEGATIVE x 
NEXT x x 
NO x x 

x 
x 
x 

x 
NOT x 

x 
NOTE x 

x 
NUMBER x 
NUMERIC x 

x 
x 

x 
x 

x 
OF x 
OFF x 

A-5 



Appendix A (Cont) 

RESERVED 
WORD 

OMITTED 
ON 
OPEN 
OPTIONAL 
OR 

OUTPUT 
OUTPUT-INPUT 

PAGE 
PAGE-COUNTER 

PERFORM 
PF 
PH 
PIC 
PICTURE 
PLUS 

PROCEDURE 
PROCEED 
PROCESSING 

PROGRAM-ID 

QUOTES 

RANDOM 
RD 
READ 

~6'.R.~H.•·.·.•·····< 
1~.~'.JS:ft .... SORTER 
@.~~~(JK 

···•IECEJ.VE 

A-6 

IDEN 

x 

REASON FOR 

D I V I S I 0 N 

ENVI DATA 

x 

x 
x 

x 

x 
x 

x 
x 

x 

x 
x 
x 

x 
x x 
x x 

x 
x 

x 

x 
x 

RESERVATIONS 

FUTURE/ 
PROC DMSII STANDARDS 

x 
x 

x 
x 
x 

x 
x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 

x 
x 

x 

x 
x 

x 
x 

x 
x 

x 
x 

x 
x 

x 



RESERVED 
WORD 

RECORD 
:BB.11t11111t,;\\11111110,@1r11~11•;•• 
RECORDS 
!fl8111-ttliB!t1l!i~111i•~l1B 
REDEFINES 
REEL 
RELEASE 

RENAMES 
REPLACING 
REPORT 
REPORTING 
REPORTS 
RERUN 
RESERVE 
RESET 

RETURN 
REVERSED 
REWIND 

RF 
RH 
RIGHT 

ROUNDED 
RUN 

SAME 

SD 
SEARCH 
SECTION 
SECURITY 
SEEK 
SEGMENT-LIMIT 
SELECT 

SENTENCE 
SEQUENTIAL 
SET 
SIGN 

SIZE 
SORT 

SOURCE 

REASON FOR 

D I V I S I 0 N 

IDEN ENVI DATA 

x x 
x 
x 

x 
x 

x 
x 

x 

x 

v 
A 

x 
x 

x 
x 

x x 
x 

x 
x 

x 

x 

x 

Appendix A (Cont) 

RESERVATIONS 

FUTURE/ 
PROC DMSII STANDARDS 

x 

x 

x 
x 
x 

x 

x 
x 
x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 

x 

x 
x 

x 
x 

x 
x 

x 
x 

A-7 



Appendix A (Cont) 

REASON FOR RESERVATIONS 

D I V I S I 0 N 
RESERVED FUTURE/ 
WORD IDEN ENVI DATA PROC DMSII STANDARDS 

SOURCE-COMPUTER x 
SPACE x x 
SPACES x x 
SPECIAL-NAMES x 

x x 
x 
x 
x 

x 
x 

x 
x 

x 
x 

x 
x 

x 
x 

x 
x 
x 

x 
x 

x 
x 
x 
x 
x 
x 
x 
x 
x 

x 
x 

x 
x 

x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 
x 
x 

TERMINATE x 
THAN x 

A-8 



Appendix A (Cont) 

REASON FOR RESERVATIONS 

D I V I S I 0 N 
RESERVED FUTURE/ 
WORD IDEN ENVI DATA PROC DMSII STANDARDS 

x 
THROUGH x x x 
THRU x x x 

x 
TIMES x x 
TO x x x 

x 
x 

x 
x 

x 
TYPE x 

UNIT x 
x 

UNTIL x 
UP x 

x 
UPON x 
USAGE x 
USE x 
USING x 

x 
VALUE x 
VALUES x 
VARYING x 

x 
v 
A 

WHEN x 
WITH x x 
WORDS x 

x 
WORKING-STORAGE x 
WRITE x 

x 

ZERO x x 
ZEROES x x 
ZEROS x x 

x 

A-9 



APPENDIX B 
COBOL SYNTAX SUMMARY 

IDENTIFICATION DIVISION 

IDENTIFICATION DIVISION. 

[PROGRAM-ID. Any COBOL word.] 

[AUTHOR. Any entry.] 

[INSTALLATION. Any entry.] 

[DATE-WRITTEN. Any entry.] 

[DATE-COMPILED. Any entry - appended with 
date 

[SECURITY. Any entry.] 

[REMARKS. Any entry. Continuation lines must 
be coded in Area B of the coding form.] 

ENVIRONMENT DIVISION 

ENVIRONMENT DIVISION. 

[[CONFIGURATION SECTION.] 

[SOURCE-COMPUTER ... ] 

[OBJECT-COMPUTER ... ] 

[SPECIAL-NAMES ... ] 

[INPUT-OUTPUT SECTION.] 

[FILE-CONTROL ... ] 

[I-o-coNTROL ···U 
B-1 



Appendix B (Cont) 

CONFIGURATION SECTION. 

B-2 

Option 1: 

SOURCE-COMPUTER. COPY library-name 

[, REPLACING word-I BY word-2 

[, word-3 BY word-4] ···]· 

Option 2: 

SOURCE-COMPUTER. {any entry} . 

Option 1: 

OBJECT-COMPUTER. COPY library-name 

[, REPLACING word-I BY word-2 
[, word-3 BY word-4]~ ... J. 

Option 2: 

OBJECT-COMPUTER. [{any entry}] 

[, SEGMENT-LIMIT IS priority-number]. 

Option 1: 

SPECIAL-NAMES. COPY library-name 

[REPLACING word-I BY word-2 

[, word-3 BY word-4] ... ]. 

Option 2: 

SPECIAL-NAMES. [CURRENCY SIGN IS literal] 

[[, implementor-name IS mnemoni6-namej ... ] 

[, DECI:MAL-POINT IS COM:MA]. 



Appendix B (Cont) 

INPUT-OUTPUT SECTION 

Option 1: 

FILE-CONTROL. COPY library-name 

[ 
I d 1 I l word-2 l REPLACING 1~0~ = -ll BY data-name-2 
\ a a name literal-1 

Option 2: 

FILE-CONTROL. 

MULTIPLE REEL] 

[ INO I G l J] ' RESERVE llliteger-21 [ALTERNATE ~~~!aj 

r jFILE-LIMIT IS ! ! li teral-1 l j THRU ~ 1~~~ ~ , -2 l 
L' 

1FILE-LIMITS AREi (data-name-11 I THROUGH I ............. e.La..... { \ da ta-name-2J 
r I 1; h:~l"!:l l -m ) ( 'ril-flHT l l' /ct;t;.:~~~·-mi iTiffiOuGH i i~~~=~~~:-nl] · · ·] 

[ I RANDOM I] 
, ACCESS MODE IS lSEQUENTIALI 

[, ACTUAL KEY IS data-name-3) 

l, PROCESSING MODE IS SEQUENTIAL) . [SELECT] ... 

Option 3: 

FILE-CONTROL 

SELECT sort-file-name ASSIGN TO [
integer-3 J 
data-name-4 lTAPESl 

TAPE 
DISK 

B-3 



Appendix B (Cont) 

I-O-CONTROL. 

Option I: 

1-0-CONTROL . .QQ.fX. library-name 

[REPLACING word-I BY word-2 

[, worq-3 !!I word-4] ... ] . 
..,.._ _____ ---- ---- --- ----------------

Option 2: 

I-O-CONTROL. 

G ~[RECORD] AREA FOR file-name-2 [, file-name-3] ··] 

f; MYLTIPLE FILE { DISKPACK ~is~pac~-id ~ L TAPE mult1-f1Ie-1d J 

CONTAINS file-name-5 [PQSITION integer-2] 

L' file-name-6 [POSITION integer-31] ···] 

[APPLY {~[2 ) [~~R]}file-name (file-name) ···] . 

DATA DIVISION 

B-4 

DATA DIVISION. 

[FILE SECTIQN. 

[{ file-description-entry } [record-description-entry] ... ] ... ] 
sort-merge-description-entry 

[woRKINQ-§TQRAGE §ECTION. 

[
77-Ievel-description-entryJ] 
record-description-entry 



Appendix B (£ont) 

FILE SECTION. 

Option 1: 

FD file-name COPY library-name 

[ 
{
word-2 } 

REPLACING {wdortd=l _1 } BY da ta-name-2 

[ {

word-
3 

a a n}ame {word-4li tera}l]-1 L 
, d t _ _3 BY data-name-4 ... . 

a a name literal-2 

Option 2 
FD f ile-name-1 

~ BLOCK CONTAINS [integer-3 TO] integer-4 [~~~~ERSJ 
~ RECQRD CONTAINS (integer-5 TO) integer-6 CHARACTERS] 

[ {
VA } OF {ID } {(literal-I L] li teral-2 [ L 

; VALUE IDENTIFICATION IS data-name-1 

LABEL 

r .. sAVE-FACTOR IS integer-111 
-6 J 

{
RECORD IS } 
RECORDS ARE {

OMITTED [ 
STANDARD data-name-2 [, da ta-name-3 . • .] ] } ] 

{
RECORD IS } 
RECORDS ARE data-name-4 [, da ta-name-5 ... ] J 

B-5 



Appendix B (Cont} 

Option 3: 

~ sort-file-name COPY library-name 

[
REPLACING {wdortd:l -I} BY {~~~==~ame-2} 

a a name literal-I 

[ {~~~~=~ame-3} BY HH:;~~~r}J. . .]. 
Option 4: 

SD sort-file-name 

[; BLOCK CONTAINS (integer-3 TO] integer-4 

RECORD CONTAINS (integer-5 TO] integer-6 

[ RECORDS ] J 
CHARACTERS 

CHARACTERS] [; 
[; DATA l RECORD IS ! 

RECORDS ARE data-name-1 [data-name-2] ... ] 

Option 1: 

Q! data-name-I; .QQf.X library-name 

rREPLACING {wdortd:l _2} BY {~~~==!ame,-3} l a a name literal-I 

[ 
{dwortd:3 _4 } BY (~~~~=!ame-5 TI. . ·] . 

a a name f literal-2 fl 
I 

B-6 



Option 2: 

level-number {~!~~~~ame-i} [, REDEFINES data-name-2] 

[; l!TURE} ll (allowable PICTURE characters)] 

[; {mNK WHEN ZERO} J 

~~C t IRIGHTt J 
(SYNCHRONIZED} lLEFT i 

{llli } [integer-1 TO] integer-2 TIMES OCCURS 

[DEPENDING ON data-name-3] 

Appendix B (Cont) 

r !ASCENDING i 
}n~~~~unTu~r KEY IS data-name-4 

l \.LJ.&.:10v.&.:1J.-..LJ.1.J.H.l" J 
[, da ta-name-5] ... l ... 

.J 

I 
I 

~INDEXED BY index-name-I [, index-name-2] 

[USAGE IS] 

l l 
I I 

... ] J 

B-7 



Appendix B (Cont) 

Option 3: 

66 data-name-I RENAMES data-name-2 [{=UGH } data-name-3 J . 
..,___ __ --------- ------

Option 4: 

88 condition-name {~=-=-U=E}U~E] literal-I [{=UGH} literal-2] . 

~ li teral-3 ({=UGH} li teral-4]] •... 

PROCEDURE DIVISION 

PROCEDURE DIVISION. 

[DECI.,ARATIVES. 

section-name SECTION. declarative-statement. 

paragraph-name. [statement.] 

[paragraph-name. [s ta temen t. ] ... J .... 
(section-name SECTION. declarative-statement. 

paragraph-name. [statement.] ... 

[paragraph-name. [statement.] ••• ] •. ~ J ... 
END DECLARATIVES.] 

[(section-name SEC'l'ION [priority-number]]. 

paragraph-name. [statement.] ... 

([paragraph-name. ] . . . [statement. ] ... ] .. ·] ... 

Verb Formats: 

ACCEPT identifier [ FROM {SPO }] 
~~ mnemonic-name 

B-8 



Appendix B (Cont) 

Option 1: 

jliteral-1 I 
ADD lidentifier-lf [

I li teral-2 I 
/identifier-2) ... J 

TO identifier-m [~~~~.g~J~a~.,~J~~e~~c:1W~:,~i ... J 
[; ON SIZE ERROR ~~~;~~e!· 

Option 2: 

Ann 
.C'l.LJLJ 

jliteral-1 I )literal-2 I flliteral-3 I 
lidentifier-1 I lidentifier-2 I L lidentifier-3 j 

l .. •J 

GIVING identifier-m [ROUNDED][, identifier-n [ROUNDED]] 

[; ON SIZE ERROR ·.::::i':'>~<l<~:~::<!::~:,iil> ~l>~,>~J~!~~~ :~~ JJil!I•• ~;;'.~~J:~~~·~t~:i,iJ~ 
Option 3: 

jCORR I 
ADD !CORRESPONDING) identifier-1 TO identifier-2 

[ROUNDED] [; 

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2 

[, procedure-name-3 TO [PROCEED TO] procedure-name-4 ... ] 

CLOSE f ile-name-1 [REEL] 

COMPUTE identifier-1 [ROUNDED] [, identifier-n °[ROUNDED]] 

lidentifier-2 l 
= literal-1 

arithmetic-expression 

B-9 



Appendix B (Cont) 

Option 1: 

COPY library-name. 

Option 2: 

COPY library-name 

[ REPLACING jword-l l BY t~~~~~~fier-ll 
ldata-name-lj literal-1 j 

[ f wdord- 3 
3 l BY ~~~~~~ifier-2 l .. ·] ·] 

' \ ata-name- J tiiteral-2 j 

j li teral-1 l 
DISPLAY lidentifier-lJ [, 

[UPON {~~~monic-name}] 
Option 1: 

jli teral-2 l 
lidentifier-2 j ... ] 

DIVIDE jliteral-l I INTO identifier-2 [ROUNDED] 
t iden ti f ier-1 j 

......._ ___ ..;;;.[_; _ON ~_ERROR_...,;;;.'·===---===·"===·=------~--·------
Opt ion 2: 

DIVIDE 1.1111 {t~~~~~~i!r-1 l t ~~TO} {t~~~~~~i:r-2} 
GIVING identifier-3 [ROUNDED ] 

[REMAINDER identifier-5 

[; ON SIZE ERROR 

B-10 



Appendix B (Cont) 

Option 1: 

EXAMINE idehtif ier -1 TALLYING 
{

ALL 
LEADING 
[UNTIL] } 

f literal-1 l 
FIRST (identifier-2f 

[REPLACING BY 

Option 2: 

Jliteral-2 I J 
(identifier-3 j 

{
ALL } 
LEADING 
[UNTIL] FIRST 

EXAMINE identifier-1 REPLACING 

BY 

EXIT. 

j li teral-2 I 
!identifier-3j 

Option 1: 

GO :IS [ procedure-naiue] 

Option 2: 

GO . procedure-name-1 [, procedure-name-2] ... 

, procedure-name-n DEPENDING ON identifier 

j li teral-1 l 
(identifier-2f 

B-11 



Appendix B (Cont) 

Option 1: 

lidentifier-ll TO.identifier-2 [, identifier-3] 
tliteral-1 l 

........ -------·----·---.~----------··------________ ___, 

Option 2: 

. 
fCORR l 

MOVE ! CORRESPONDING f identif ier-1 TO identif ier-2 

B-12 



Appendix B (Cont) 

-MULTIPLY {literal-I } 
identif ier-1 BY 

[GIVING identifier-3] 

[; ON SIZE ERROR 

Option 1 Paragraph NOTE: 

{
literal-2 } 
identif ier-2 

Paragraph-name. NOTE any comment. 
---------- --------- ---------
Option 2 Paragraph NOTE: 

NOTE. Any comment. 

Option 3 Sentence NOTE: 

NOTE. Any comment. 

Option 1: 

OPEN 

fl 

rINPUT file-name-I [~REYE L {WITH NO REWIND 

~OUTPUT file-name-3 [WITH NO REWIND] 

,] [file-name-2 .•. ]f 
J 

[file-name-4 ... ] J .. . 
.. · l 

[{~UT-OUTPUT} file-name-5 BlllllJI [ f ile-name-6 ... ] -------
IO-I file-name-7 [file-name-8 ... il 

l LL[~ -
ile-name-9 

J 
[file-name-10 ... ~ 

rOption,:~TPUT } 

OPEN \.!:Q. file-name 
-- { INPUT-OUTPUT 

[WITH PUNCH] 

Option 1: 

PERFORM procedure-name-1 [{~UGH} procedure-name-2] 

B-13 



Appendix B (Cont) 

~ion 2: 

PERFORM procedure-name-1 [
jTHRU I 
l THROUGH I procedure-name-2] 

j integer-1 I TIMES 
I identif ier-10 I 

Option 3: 

[ jTHRU l J PERFORM procedure-name-1 I THROUGH j procedure-name-2 

VARYING j index-name-1 l 
/identifier-lf { 

index-name-2 } 
FROM identifier-2 BY 

literal-2 

j identifier-31 
tli teral-3 I [ 

lindex-name-4l 
UNTIL condition-1 AFTER lidentifier-41 

UNTIL 

{

index-name-5} 
identifier-5 BY 
literal-5 

condi tion-2 J [AFTER 

j index-name-6 j 
/literal-6 I 

jindex-name-71 
l ident if ier-7 j FROM 

{
index-name-8} 
identifier-8 
literal-8 

jidentifier-9! 
lliteral-9 J 

UNTIL condition-3] 

Option 1: 

READ_ file-name [INTO identifier] 

i-----·------·--·-------- ---·--·-- --- ---·--

Option 2: 

READ file-name RECORD [INTO identifier] 

I AT END l 
I INVALID KEY j 

RELEASE record-name [FROM identifier] 

RETURN file-name RECORD [~identifier] 

[; AT END .statement-1 f~ .~~SE ~t~t;ll1~pt~~1~~ 

B-14 



Appendix B (Cont) 

Option 1: 

SEARCH identif ier-1 

[; AT END imperative-statement-I] 

WHEN condition-I 111;;1n11e1111)1111?t } 
lNEXT SENTENCE 

[; WHEN condition-2 { :~~f~l:~~~~~~E } J 
+---·-----------------------------------

Option 2: 

SEARCH ALL identifier-3 [; AT END imperative-statement-2] 

; WHEN condi tion-3 t_NEXT SENTENCE} 

SEEK file-name RECORD [WITH KEY CONVERSION] 

Option 1: 
, 

SET ... j TO 
(index-name-3) 
{iQ.entif ier-3 t 
(literal-I } 

---------------------------------------
Option 2: 

SET index-name=4 [, index=name=5 
, 

••• J 
{identifier-4l 
\Ii teral-2 r 

B-15 



Appendix B (Conf) 

SORT f ile-name-1 

lwITH file-name-4] [RESTART WITH data-name-5 J 

] 
ON { DE~CEND ING} 

A~CENDINQ: 
KEY data-name-1 [, data-name-2] 

[oN {DESCENDING} 
ASCENDING 

KEY data-name-3 [, data-name-4] ... ] 

[

INPUT PRQCEDURE IS section-name-1 

USING f ile-name-2 [ ] 

f oUTPUT PROCEDURE IS section-name-3 

lGIVING file-name-3 J 

[{~UGH} section-name-2]1 

({~UGH} section-name-4] I 
STOP {RUN } -- literal 

Option 1: 

SUBTRACT {
literal-1 t 
identifier-lJ 

identifier-m [ROUNDED] 

[; ON SIZE ERROR.·. 

Option 2: 

SUBTRACT {
literal-1 ~ 
iden t if ier-1 

GIVING identif ier-n 

[; ON SIZE ERROR 

B-16 

[, 

iliteral-2 } J 
\identifier-2 ··· 

{literal-2 } 
identif ier-2 ... J 

... J 

{
literal-m } 
identif ier-m 

, identifier-a [ROUNDED]] ... 



Appendix B (Cont) 

Option 3: 

SUBTRACT 1-~SPONDING} identifier-1 !!!QM. identifier-2 

[ROUNDED) [; ON SIZE ERROR 

Option 1: 

( file-name-1 [, file-name-2] ... ) 

USE AFTER STANDARD ERROR PROCEDURE ON ~ ~::-OUTPUT ~ . 

{ I-0 ) 

Option 2: 

USE_FOR KEY CONVERSION ON file-name-1 (, file-name-2] ... 

B-17 



Appendix B (Cont) 

Option 1: 

WRITE record-name [FROM identifier-!] 

[
J AFTER t 
l BEFORE f ADVANCING 

[
; AT j·END-OF-PAGE 

t EOP 

[ 
Option 2: 

lli~~~~~~~!r-21 LINES ll 
TO CHANNEL jinteger-2 l 

tidentifier-3j 

imperative-statement 

WRITE record-name [FROM identifier-!] 

[; INVALID KEY 

B-18 



ERROR NO. 

000 
001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
046 

( 

COMPILER ERROR MESSAGES 

FILE-NAME EXPECTED 
INTEGER LITERAL REQUIRED 
INVALID LITERAL 
RESERVED WORD REQUIRED 

MESSAGE 

PARAGRAPH HEADER EXPECTED IN AREA A (COL. 8-11) 
MISSING DIVISION 
DOLLAR CARD ERROR 
"DIVISION" REQUIRED 
COMPILER ERROR 
MISSING PERIOD 
RESERVED WORD OR DATA NAME REQUIRED 
COPY REPLACING OR MNEMONIC LIST OVERFLOW 
DUPLICATE MNEMONIC NAME 
ILLEGAL WORD 
IMPROPER LABEL RECORD(S) DECLARATION 
ILLEGAL NESTED COPY 
ILLEGAL COPY OPERAND 
STANDARD OR NON-STANDARD OR ASCII REQUIRED 
DUPLICATE REPLACING 
ILLEGAL SUBSCRIPTING 
ILLEGAL LIBRARY NAME 
ILLEGAL TYPE 
ILLEGAL QUALIFICATION 
ILLEGAL PROGRAM ID 
"SECTION" REQUIRED 
MISSING FILE NAME 
A PARENTHESIS WAS EXPECTED HERE 
MISSING LABEL QUALIFICATION •.• MONITOR 
NO FD OR SD 
INVALID FD 
ILLEGAL LEVEL 
ILLEGAL DATA NAME 
RELATIONAL OPERATOR REQUIRED 
PICTURE SIZE ERROR 
"PROCEDURE" EXPECTED 
ILLEGAL FD OR SD IN WORKING-STORAGE 
PRIORITY NUMBER ERROR 
MISSING IMPLIED LABEL OR LABEL QUALIFICATION 
MISSING SECTION 
NO "USE" 
PARAGRAPH-NAME OR SECTION-NAME REQUIRED 
VERB OR PARAGRAPH-NAME OR SECTION-NAME REQUIRED 
MISSING FILE NAME 
ILLEGAL LABEL RECORD REFERENCE OUTSIDE DECLARATIVES 
ILLEGAL ARITHMETIC OPERAND 
MISS ING "=" OR "FROM'' 
NO VALID CORRESPONDING OPERANDS 



Appendix C (Cont) 

ERROR NO. 

047 

048 
049 
050 
051 
052 
053 
054 
055 
056. 
057 
058 
059 
060 
061 
062 
063 
064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
077 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 
088 
089 
090 
091 
092 
093 

c-2 

094 
095 
096 
097 
098 
099 
100 

MESSAGE 

COMPOSITE ARITHMETIC SIZE> 125 ... MAY USE LARGE AMOUNT OF 
CORE 

MISSING "END DECLARATIVES" 
MISSING "DECLARATIVES" 
ILLEGAL MOVE OPERAND 
"TO" REQUIRED 
AN ALPHABETIC ITEM CANNOT BE MOVED TO A NUMERIC ITEM 
ILLEGAL GROUP TO ELEMENTARY MOVE 
ILLEGAL "ALL" LITERAL 
ILLEGAL SUBSCRIPTING OF A SUBSCRIPT 
SUBSCRIPT NOT S-SIGN OR UNSIGNED 
SUBSCRIPT NOT NUMERIC INTEGER 
SUBSCRIPT NOT ELEMENTARY ITEM 
ILLEGAL MIXING OF INDEX AND SUBSCRIPT 
EXPLICIT DATA NAME TABLE OVERFLOW 
THIS DATA NAME IS NOT DESCRIBED IN THE DATA DIVISION 
QUALIFIER ARRAY TABLE OVERFLOW 
ILLEGAL QUALIFIER 
INSUFFICIENT QUALIFICATION 
OVERLAPPING CORRESPONDING OPERANDS 
NO MATCHING CORRESPONDING OPERANDS 
CORRESPONDING NAMES ARE THE SAME 
FD NAME ILLEGAL FOR CORRESPONDING 
CORRESPONDING DATA NAME NOT GROUP ITEM 
DUPLICATE PARAGRAPH OR SECTION NAME 
LABEL NOT UNIQUE 
LABEL QUALIFICATION NOT A SECTION 
ALTER TABLE OVERFLOW 
QUALIFIER LABEL TABLE OVERFLOW 
REFERENCED PARAGRAPH OR SECTION DOES NOT EXIST 
LABEL QUALIFIER. IS NOT UNIQUE 
LABEL RECORD IS NOT AN 01 LEVEL 
ILLEGAL CONDITIONAL STATEMENT 
ILLEGAL DOUBLE NEGATIVE 
INVALID IMPLIED SUBJECT OR MISSING RELATIONAL OPERATOR 
PICTURE TABLE FULL : RECOMPILE 
PICTURE SPECIFIED ON A GROUP ITEM 
RENAMES OPERAND OUT OF RANGE 
RENAMES OPERAND LEVEL CANNOT BE 01 OR 66 OR 77 OR 88 
RENAMES OPERAND IS SUBSCRIPTED 
DUPLICATE NAME 
II RENAMES" REQUIRED 
GROUP RENAMES ITEM ADDRESS OR LENGTH NOT 0 MOD 2 
BLANK WHEN ZERO SPECIFIED FOR NON NUMERIC CLASS 
JUSTIFIED SPECIFIED FOR NUMERIC OR EDITED NUMERIC CLASS 
UNSIGNED INTEGER EXPECTED 
"OCCURS" SPECIFIED FOR LEVEL 01 OR 77 
VARIABLE LENGTH DISK FILE MUST HAVE SEQUENTIAL ACCESS AND 

NO FILE LIMITS 
NON-ZERO VALUE EXPECTED 
DUPLICATE "VALUE" CLAUSE 
ILLEGAL "VALUE" LITERAL 
DATA CLAUSE EXPECTED 
ILLEGAL DATA CLAUSE FOR GROUP ITEM 
ILLEGAL 4 BIT SPECIFICATION FOR HARDWARE DEVICE 
"ZERO" EXPECTED 



ERROR NO. 

101 

102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 

Appendix C (Cont) 

MESSAGE 

ASCII MAY BE SPECIFIED ON ONLY WORKING-STORAGE LEVEL 
01 OR 77 

MISSING "OCCURS" FOR INDEX-NAME 
INDEX NAME EXPECTED 
LEVEL NUMBER EXPECTED 
LEVEL NOT 01 THRU 49, 66, 77, OR 88 
LEVEL 77 MUST FOLLOW ONLY WORKING-STORAGE SECTION 
PICTURE REQUIRED FOR ELEMENTARY DATA NAME 
NO DATA CLAUSE FOR INDEX DATA ITEM 
COMPUTATIONAL ITEM NOT NUMERIC 
EXPECTED A COLON IN MONITOR STATEMENT 
IMPROPER REDEFINED NAME 
LEVEL NUMBER NEQ REDEFINED LEVEL NUMBER 
REDEFINED OPERAND IS SUBSCRIPTED 
REDEFINED GROUP ADDRESS IS ODD 
VALUE CANNOT BE SPECIFIED FOR SUBSCRIPTED ITEM 
VALUE CANNOT BE SPECIFIED FOR REDEFINED AREA 
VALUE CONFLICTS WITH GROUP VALUE 
FILLER ADDED TO PREVIOUS ITEM 
REDEFINED AREA NEQ REDEFINING AREA 
USAGE CONFLICTS WITH GROUP USAGE 
SUBSCRIPT MAXIMUM IS 3 
INCONSISTENT LEVEL NUMBER 
01 LEVEL NUMBER EXPECTED 
"SELECT'' EXPECTED 
FILE PREVIOUSLY SELECTED 
FILE NOT SELECTED 
FILE INFO TABLE FULL 
HARDWARE NAME EXPECTED 
SD FILE NOT ASSIGNED TO DISK OR TAPE 
ILLEGAL CHARACTER 
WORD EXCEEDS 30 CHAR..~CTERS 
INVALID NUMERIC OR UNDIGIT LITERAL 
ZERO SIZE LITERAL 
MISSING RIGHT QUOTE 
WORD ENDS IN A HYPHEN 
NO ALPHA CHARACTER IN NAME 
MISSING LEFT QUOTE 
TABLE OVERFLOW IN MERGE: RECOMPILE 
MISSING "BY" OR "INTO" 
MISSING "GIVING" 
"MOD" AND "REMAINDER" ARE MUTUALLY EXCLUSIVE 
MISSING "ERROR" 
ILLEGAL PERFORM OPERAND 
ILLEGAL PERFORM "TIMES" OPERAND OR MISS ING "TIMES" 
MISSING "UNTIL" 
ILLEGAL PERFORM "VARY ING" OPERAND 
ILLEGAL PERFORM "FROM" OPERAND OR MISS ING "FROM" 
ILLEGAL PERFORM "BY" OPERAND OR MISSING "BY" 
ILLEGAL SET OPERAND 
FILE-LIMITS SPECIFICATION GIVEN FOR SD FILE 
INVALID DESCRIPTION FOR ACTUAL KEY 
PICTURE REPEAT ERROR 
PICTURE FLOAT ERROR 
PICTURE SIGN ERROR 
PICTURE "P" SPECIFICATION ERROR 

C-3 



Appendix C (Cont) 

ERROR NO. 

156 
157 
158 

159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 

178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 

C-4 

MESSAGE 

PICTURE SIZE SPECIFICATION ERROR 
PICTURE DECIMAL POINT ERROR 
PICTURE ERROR ••• IMPROPER CHARACTER PRECEDING FLOAT,ZERO 

SUPPRESS,OR CHECK PROTECT 
PICTURE CLASS ERROR 
PICTURE MASK SIZE (100) EXCEEDED 
VALUE OF ID CATEGORY IS NUMERIC 
FILE-LIMIT MUST BE PC 9(8) COMP 
"THRU" EXPECTED 
DATA NAME OR INTEGER EXPECTED 
"RANDOM'' OR "SEQUENTIAL" EXPECTED 
SD FILE MUST BE SEQUENTIAL 
ACTUAL KEY REQUIRED 
"BACKUP" EXPECTED 
FILE-CONTROL CLAUSE EXPECTED 
BACKUP FOR LINE PRINTER OR PUNCH ONLY 
ILLEGAL USE OF FILE-NAME OR CONDITION-NAME 
"MULTI-FILE- ID" EXPECTED 
FILE NOT ASSIGNED TO TAPE OR DISK 
I-O CONTROL CLAUSE OR " . " EXPECTED 
APPLY CLAUSE NOT IMPLEMENTED 
FILE NOT ASSIGNED To HARDWARE DEVICE 
DECLARATIVES NOT lST ITEM IN PRO.DIV. OR USE NOT BETWEEN 

SECTION & PARAGRAPH 
CONDITION-NAME LITERAL REQUIRED 
II VALUE" REQUIRED 
VALUE THRU ••• lST LITERAL GEQ 2ND LITERAL 
I/O OPERAND MUST BE 01 RECORD OF A FILE 
I/O OPERAND CANNOT BE LABEL RECORD 
I/O OPERAND MUST BE SORT FILE 
1/0 OPERAND MUST BE FILE 
I/O OPERAND CANNOT BE WORKING-STORAGE 01 RECORD 
I/O OPERAND CANNOT BE SORT FILE 
CAN MONITOR ONLY ON FILE 
SORT KEY NOT WITHIN SCOPE OF SORT FILE 
SORT STATEMENT NOT PERMITTED IN DECLARATIVES SECTION 
MISSING "ASCENDING" OR "DESCENDING" 
SORT KEY CANNOT BE SUBSCRIPTED 
MISSING SORT KEY 
NUMBER OF SORT KEYS GREATER THAN 40 
SIZE OF KEY TOO LARG~ 
MISSING II INPUT" /"OUTPUT'' /"USING" /"GIVING" 
USING/GIVING FILE REC SIZE NEQ SORT REC SIZE 
MISSING SORT INPUT/OUTPUT PROCEDURE NAME 
SORT THRU PROCEDURE APPEARS BEFORE BEGINNING POINT 
GO TO DEPENDING OPERAND MUST BE ELEMENTARY DATA-NAME INTEGER 
MORE THAN 1 ACCEPT OPERAND 
MISSING WORD OR LITERAL 
NOT READABLE/WRITEABLE HARDWARE 
GO TO DEPENDING LABEL LIMIT {1022) EXCEEDED 
FILE-LIMITS REQUIRE "AT END" OR "INVALID KEY" 
ILLEGAL READER-SORTER OPERAND 
MISSING "DEPENDING" IN GO TO 
READ/WRITE/SEEK ON SD OR RELEASE/RETURN ON FD 
SEEK FILE NOT RANDOM DISK 
ILLEGAL ADVANCING/STACKER OPERAND 
INVALID I/O OPERAND 



ERRQR NO. 

211 
212 
213 
214 
215 
216 
217 
218 
219 

220 
2", -'i .L 

222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
n~A 
~.:>":t 

235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 

248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 

260 
261 
262 
263 
264 

Appendix C (Cont) 

MINUS SIGN NOT ALLOWED 
MISSING GO TO LABEL 

MESSAGE 

GO TO MUST BE TERMINATED BY"." OR "ELSE" 
ILLEGAL OPTION FOR I/O DEVICE 
INVALID OR MISSING OPEN TYPE 
ATTEMPTED ALTER OF NON-GOTO PROCEDURE-NAME 
CHANNEL NUMBER GTR 11 
RESERVED WORD (VERB) REQUIRED 
CURRENT SECTION MUST HAVE SAME PRIORITY AS REFERENCED GOTO 

PROC 
TAPE FILE CANNOT HAVE 2 NAMES 
EXPECTED A FILE DECLARATION CLAUSE 
MISSING FILE CONTAINS CLAUSE - 1 AREA OF 500 BLOCKS BY DEFAULT 
RECORDS PER AREA MADE MULTIPLE OF RECORDS PER BLOCK 
DATA DICTIONARY FULL : RECOMPILE 
REDEFINES NOT ALLOWED ON 01 RECORD OF FILE 
MISSING FILE RECORD DESCRIPTION 
BLOCK SIZE NOT MULTIPLE OF MAXIMUM RECORD SIZE 
ARITHMETIC OPERAND MUST BE ELEMENTARY ITEM 
ARITHMETIC OPERAND CANNOT BE INDEX ITEM 
ARITHMETIC OPERAND MUST BE NUMERIC 
ARITHMETIC LITERAL OPERAND MUST BE NUMERIC 
FILE LABEL RECORDS OMITTED 
DUPLICATE USE PROCEDURE 
MONITOR ALLOWED ONLY ON FILE 
CANNOT MONITOR ON SORT FILE 
MONITOR ALLOWED ON LINE PRINTER ONLY 
OBJECT OF SEARCH MUST BE. INDEX 
MISSING ALTER LABEL 
DATA-NAME REQUIRED 
DATA-NAME OR INDEX-NAME REQUIRED 
WHEN CLAUSE REQUIRED 
ILLEGAL USE OF RESERVED WORD 
ITEM NOT DISPLAY 
DATA LENGTH EXCEEDS 1 CHARACTER 
ILLEGAL USE OF FIRST IN EXAMINE 
MISSING FIRST IN EXAMINE 
SIGN CONDITION OPERAND MUST BE ELEMENTARY NUMERIC OR 

ARITHMETIC EXPRESSION 
CLASS TEST OPERAND CANNOT BE ARITHMETIC EXPRESSION 
CLASS TEST OPERAND MUST BE DISPLAY 
NUMERIC VERSUS ALPHA COMPARE IS ILLEGAL 
VIOLATION OF ANSI RULES FOR PERFORMING OVERLAYABLE SEGMENTS 
RECEIVING FIELD TRUNCATION 
FIELD TREATED AS 8 BIT DISPLAY 
SEQUENCE ERROR 
LITERAL EXCEEDS 160 CHARACTERS 
CLASS TEST OPERAND CANNOT BE ASCII 
MISSING SUBSCRIPT 
MISUSE OF CONDITION-NAME 
COMPARISON OF INDEX DATA ITEM MUST BE AGAINST INDEX DATA 

ITEM OR INDEX NAME 
COMPARISON OPERANDS MUST HAVE SAME USAGE 
ILLEGAL USE OF "NEXT SENTENCE" 
CANNOT COMPARE LITERALS 
CANNOT COMPARE INDEX-NAME VS ZERO OR - LITERAL 
SORTER FILE RECORD NOT MOD 112 IN LENGTH 

C-5 



Appendix C (Cont) 

ERROR NO. 

265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 

278 

279 

280 

281 

282 
283 
284 
285 

286 

287 

288 
289 
290 

291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 

C-6 

MESSAGE 

CANNOT BLOCK SORTER FILE 
GROUP NAME CANNOT BE "FILLER" 
IF STATEMENT MUST BE TERMINATED BY " . " OR "WHEN" 
LITERAL SUBSCRIPT CAUSES OUT OF BOUNDS ERROR 
HARDWARE MUST BE READER-SORTER 
READER-SORTER ACTUAL KEY NOT IN DATA SEGMENT ZERO 
RECORDING MODE BINARY NOT ALLOWED 
MISSING MONITOR DECLARATION (TO DECLARE DUMP FILE) 
MULTI RECEIVING FIELDS ILLEGAL WITH CORRESPONDING OPTION 
TAG-KEY GIVING FILE MUST HAVE 01 RECORD OF PC 9(8) CMP 
TAG-KEY SORT REQUIRES GIVING FILE, RECORD OF PC 9(8) CMP 
COMPILER ERROR IN CODEGEN GET [ (<~$*};-/,%=]#@:>+1**+-<*>$ 
COMPILER ERROR IN CODGEN GET.TRASH [(<...&$*);-/,%=]#@:>+I**& 

$**+-<*>$ 
COMPILER ERROR IN CODEGEN GET.POOL [(<...-&$*);-/,%=]#@:>+1** 
&$**~<*>$ 

COMPILER ERROR IN CODEGEN CONTROL[{<--&$*) ;-/,%=]#@:>+1** 
&$** ... <*>$ 

COMPILER ERROR IN CODEGEN AR ITH.EXP [ {<--&$*) ;-/, %= ]#@ 1
: >+I 

**&$**+.--<*>$ 
COMPILER ERROR IN CODEGEN OPND.OVER [(<+-&$*) ;-/,%=]#@:>+1 

**&$**~<*>$ 
COMPILER ERROR IN PROSYN GET [(<.....&$*);-/,%=]#@:>+1**&$** ... <*>$ 
USAGE DECLARED FOR AN ASCII FILE 
BLOCK SIZE MADE EQUAL TO MAXIMUM RECORD SIZE 
CURRENT COMPILER DATA SEGMENT LIMIT OF 000 EXCEEDED .• 

TEMPORARY SOLUTION=RESEGMENT 
COMPILER ERROR •• COLUMN 'IOO LARGE •• DOES NOT AFFECT COMPILATION 

[(<+-&$*);-/,%=]#@:>+1**&$**+-<*>$ 
A ROUTINE IN CODEGEN HAS ENCOUNTERED AN UNEXPECTED TOKEN .. 

COMPILER ERROR[(<+-&$*) ;-/,%=]#@:>+1**&$**+-<*>$ 
CANNOT COMPARE ALPHA VS REAL 
MINIMUM OF 2 OPERANDS MUST PRECEDE THE WORD GIVING IN AN ADD 
SUBSCRIPT NOT INTEGER (SPACE REQUIRED BEFORE LIT IF DECIMAL-

PO INT IS COMMA 
INVOKED DATASET NAME IS NOT A WORD 
EXPECTED "DB" AS A LEVEL INDICATOR 
INVALID DB NAME 
EXPECTED A DDL-NUMBER 
DATA-BASE DECLARATION NOT EXPECTED IN THIS SECTION 
"DATA SET" EXPECTED 
WORKING-STORAGE SECTION OR PROCEDURE DIVISION EXPECTED 
DATA MANAGEMENT LEVEL 01 DATASET NAME REQUIRED 
DATA BASE NAME REQUIRED 
DATA MANAGEMENT DATASET NAME REQUIRED 
SPECIFIED DATASET IS NOT THE TARGET SET OF THIS SUBSET 
DATA MANAGEMENT SUBSET NAME REQUIRED 
DATA MANAGEMENT PATH NAME REQUIRED 
TARGET DATASET NAME MUST BE SPECIFIED WHEN PATHNAME IS A SUBSET 
SPECIFIED DATASET IS NOT THE TARGET SET OF THIS PATH NAME 
COMPONENT NAME LIST MAY NOT BE USED WHEN PATHNAME IS A DATASET 
FIRST, LAST, AND PRIOR MAY NOT BE USED WITH RANDOM RETRIEVAL 
IMPROPER COMPONENT NAME FOR PATH NAME SPEC IF IED 
INCORRECT NUMBER OF COMPONENT NAMES FOR PATH NAME SPECIFIED 
EQUAL SIGN MUST FOLLOW A COMPONENT NAME 
ONLY A DATA NAME OR LITERAL IS ALLOWED 
FROM OR INTO REQUIRED HERE 



ERROR NO. 
313 
314 
315 
316 
317 
318 

319 
320 

321 

322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 

334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 

362 
363 

Appendix C (Cont) 

MESSAGE 

" INVOKE" EXPECTED 
PARAGRAPH-NAME REQUIRED FOLLOWING SECTION-NAME 
COMPILER ERROR IN CODEGEN •.• CODE.DISP TOO LARGE 
AN ALPHABETIC ITEM CANNOT BE MOVED TO A NUMERIC EDITED ITEM 
AN ALPHANUMERIC EDITED ITEM CANNOT BE MOVED TO A NUMERIC ITEM 
AN ALPHANUMERIC EDITED ITEM C~OT BE MOVED TO A NUMERIC 

EDITED ITEM 
A NUMERIC ITEM CANNOT BE :MOVED TO AN ALPHABETIC ITEM 
A NON-INTEGER NUMERIC ITEM CANNOT BE MOVED TO AN ALPHANUMERIC 

ITEM 
A NON-INTEGER NUMERIC ITEM CANNOT BE MOVED TO AN ALPHANUMERIC 

A NUMERIC EDITED ITEM CANNOT BE MOVED TO AN ALPHABETIC ITEM 
A NUMERIC EDITED ITEM CANNOT BE MOVED TO A NUMERIC ITEM 
A NUMERIC EDITED ITEM CANNOT BE MOVED TO A NUMERIC EDITED ITEM 
A NON-NUMERIC LITERAL CANNOT BE l\!IOVED TO A COMPUTATIONAL ITEM 
LIMIT ON NUMBER OF DATA BASES HAS BEEN EXCEEDED 
DMSTATUS MUST BE FOLLOWED BY PARENTHESIZED STATUS NAME 
THIS STATUS NAME IS INVALID 
COMPONENT AND SEARCH KEY CLASSES ARE INCOMPATIBLE 
DATASET IS NOT ALLOWED, CURRENT WILL BE ASSUMED 
NON-GRAPHIC CHARACTER IN PICTURE CLAUSE 
TOO MANY DATA MANAGEMENT PATHNAMES 
FOLLOWING STATEMENT NEEDS PARAGRAPH-NAME IN ORDER TO BE 

EXECUTED 
ILLEGAL CHARACTER IN COLUMN 7 
ORDERING NOT PERMITTED WITH RETRIEVAL KEY 
DATA ENTRY LENGTH EXCEEDS LIMIT OF 16383 DIGITS 
VA OF ID DATA-NAME SIZE MUST BE 30 CHARACTERS 
PACK-ID ILLEGAL FOR NON-DISK FILE 
MISSING OR ILLEGAL RESTART DATASET 
MISSING COMPONENT LIST 
TARGET DATASET INVALID WITH DATASET PATHNAME IN THIS FORMAT 
ORDERED PATHNAME INVALID IN ORDERED ACCESS FORMAT 
INPLACE INVALID FOR TAPE SORT 
ILLEGAL SORT TAPES DATANAME 
OPTIONAL WORD USED AS A PROCEDURE-NAME 
FILLER USED AS A CONDITIONAL VARIABLE NAME 
Q-MAX-MESSAGE~ EXCEEDS 255 
MAXIMUM OF 9 EVENTS EXCEEDED 
RECORD CONTAINS SIZE NOT = MAXIMUM FILE RECORD SIZE 
2 TO 8 MERGE FILES REQUIRED 
USING REQUIRED IN MERGE STATEMENT 
VARIABLE LENGTH RECORDS ILLEGAL IN TAG-SEARCH OR INPLACE soRr 
VARIABLE LENGTH RECORDS UNUSABLE WITH TAG-KEY SORT 
FILE STATUS MUST BE TWO CHARACTERS LONG 
RECORD KEY NOT A DATA-NAME WITHIN THE SELECTED FILE 
RECORD KEY MUST BE SPECIFIED FOR AN INDEXED FILE 
ORGANIZATION MUST BE INDEXED FOR ACCESS TO BE DYNAMIC 
EXPECTED SEQUENTIAL OR INDEXED ORGANIZATION 
EXPECTED FILE STATUS DECLARATION 
MISMATCH OF FILE ORGANIZATION/ACCESS CONSTRUCTS 
INDEXED FILE REQUIRES USE PROCEDuRE OR AT END/INVALID 

KEY CLAUSE 
KEY NOT AS DECLARED IN RECORD KEY CLAUSE 
ACCESS RANDOM ILLEGAL FOR START STATEMENT 

c-1 



Appendix C (Cont) 

ERROR NO. 
364 
365 
366 

380 

C-8 

MESSAGE 
FILE-LIMIT(S) NOT ALLOWED ON INDEXED FILES 
RECORD KEY CATEGORY MUST BE ALPHANUMERIC 
MERGE COMPILER ERROR, BAD PC. OCCUR, SUBMIT SOURCE AND 

TROUBLE REPORT 
INVALID CASE VARIABLE PASSED TO ERROR PRINT ROUTINE 



PART 

1 

2 

APPENDIX 0 
5-LANGUAGEPROGRAMS 

TABLE OF CONTENTS 

INTRODUCTION ................................................ . 

Background Information ...................................... . 

Program Parameters ........................................... . 

Container Size .............................................. . 

S-Instruction ............................................... . 

S-Opera tors ( OPl, OP2) ................................... . 

Operands (OPND) .......................................... . 

Literal String ........................................ . 

Current Operand Index (COPX) ...... , ................... . 

Current Operand Table (COP) ................................. . 

Segment Number .................... , ....................... . 

Displacement . .................................... = = : = ~ = = = 9 e 9 9 ... . 

Data Length .............................................. . 

Subscript or Index Flag .................................. . 

Data Type ................................................ . 

ASCII Flag ............................................... . 

Number of Subscripts or Indexes .......................... . 

Subscript Flag ........................................... . 

Subscript Factors ........................................ . 

Indexing ............................................. -.... . 

Table Bound .............................................. . 

In-Line COP Index ( ICOP) .................................... . 

INSTRUCTION SET ............................................. . 

Page 

D-1 

D-1 

D-3 

D-3 

D-3 

D-3 

D-3 

D-4 

D-4 

D-5 
D-6 

D-6 

D-6 

D-6 

D-7 

D-7 

D-7 

D-7 

D-8 

D-8 

D-8 

D-10 

Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-10 

Data Movement.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-10 

Branching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-11 

Conditional Branching........................................ D-11 

Miscellaneous..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-11 

D-;i 



PART 

3 

4 

D-ii 

TABLE OF CONTENTS (Cont) 

ARITHMETIC OPERANDS AND INSTRUCTIONS ........................ . 

Introduction ................................................ . 

Add Three Address (ADD) ..................................... . 

Subtract Three Address (SUB) ................................ . 

Add Two Address (INC) ....................................... . 

Subtract Two Address (DEC) .................................. . 

Multiply (MULT) ............................................. . 

Divide (DIV) ................................................ . 

Di vi de Special (DIVS) ....................................... . 

Increment by One ( INCl) ............................. • ....... . 

Decrement by One (DECl) ..................................... . 

DATA MOVEMENT OPERANDS AND INSTRUCTIONS ..................... . 

Introduction ......... , , , .................................... . 

Move Alphanumeric (MVA) ..................................... . 

Move Spaces ( MVS) ........................................... . 

Move Numeric (MVN) ..........................•................ 

Move Zeros ( MVZ) ............................................ . 

Concatenate (·CAT) ..•......................................... 

Scaled Move Numeric (SMVN) .................................. . 

Move Translate (MVT) ........................................ . 

Examine (EXAM) .............................................. . 

Edit Instructions and Micro-Operators ....................... . 

Introduction ............................................. . 

Edit (EDIT) .............................................. . 

Edit With Explicit Mask (EDTE) ........................... . 

Edit Mi era-Opera tors ..................................... . 

Move Digits ........................................... . 

Move Characters ....................................... . 

Move Suppress ......................................... . 

Fill Suppress ......................................... . 

Skip Reverse Destination .............................. . 

Insert Unconditionally ................................ . 

Insert on Minus ....................................... . 

Insert Suppress ....................................... . 

Insert Float .......................................... . 

End Float Mode ........................................ . 

Page 

D-12 

D-12 

D-14 

D-15 

D-16 

D-17 

D-18 

D-19 

D-20 

D-21 

D-22 

D-23 

D-23 

D-24 

D-25 

D-26 

D-27 

D-28 

D-29 

D-30 

D-31 

D-33 

D-33 

D-34 

D-35 

D-36 

D-37 

D-38 

D-38 

D-38 

D-38 

D-38 

D-39 

D-39 

D-39 

D-40 



TABLE OF CONTENTS (Cont) 

PART Page 

End Non-Zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-40 

End of Mask............................................ D-40 

Start Zero Suppress.................................... D-40 

Complement Check Protect............................... D-40 

MICR Format (MICF)........................................ D-41 

MICR Edit (MICE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-44 

5 BRANCHING OPERANDS AND INSTRUCTIONS ......................... . D-45 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-45 

Branch Unconditionally (BUN)................................. D-46 

Branch On Overflow (BOFL). .. . .. . . . . .. . . . .. . . ... . . . .. . ... .. . . . D-47 

Set Overflow Toggle (SOFL). .. . . .. .. . . .. ... ...... .. . . . . .. . .. . . D-48 

Perform Enter (PERF)......................................... D-49 

Perform Exit (PXIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-50 

Enter (NTR).................................................. D-51 

Exit (XIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-52 

Go To Depending (GOTD). .. .. . .. . .. .. . . .. . . . . . .. . . . .. . . . . . . . . . . D-53 

Altered Go To Paragraph (GPAR)... .. . .. . .. . . .. . .. . .. .. . .. . ... . D-54 

A 1 t er ( ALTR) ............................................... , . D-5 5 

6 CONDITIONAL BRANCH OPERANDS AND INSTRUCTIONS ................ . D-56 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-56 

Compare Alphanumeric (CMPA).......................... ... ..... D-57 

Compare Numeric (CMPN).. .. .. . .. . . . . . . . . . . . . .. . . . . . .. . . . . ... .. D-58 

Compare for Zeros (CMPZ)... .. . . . . . . ... . .. . . .. . .. . . . .. . .. . .. . . D-59 

Compare for Spaces (CMPS)...... .. .. . .. . . .. . .. . .. . . . . . . . . . . . . . D-60 

Compare for Class (CMPC)..................................... b-61 

Compare Repeat ( CMPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-62 

7 MISCELLANEOUS INSTRUCTIONS .................................. . D-63 

Communicate (COMM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-63 

Load Communicate Reply (LDCR)... .. . . . . .. . ... .. ..... .. . . ... . . . D-64 

Convert ( CONV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-65 

Make Present (MAKP).......................................... D-66 

Hardware Monitor (HMON)...................................... D-67 

8 ALPHABETIC INDEX ............................................ . D-68 

D-iii 



INTRODUCTION 

BACKGROUND !NFORMAT!ON 

B 1800/B 1700 COBOL S-Language provides the virtual machine interface between 

the code generated by the COBOL Compiler and the COBOL Interpreter. This 

appendix describes the format of COBOL S-instructions and then explains each 

operator as a member of one of the following classes: 

ARITHMETIC 

DATA MOVEMENT 

BRANCHING 

CONDITIONAL BRANCHING 

MISCELLANEOUS 

All COBOL S-language programs have associated with them a base register and a 

limit register. The area between the base and the limit is to be used as data 

space only. All program code, organized in segment form, is stored at any 

available location in memory, according to the memory management algorithms 

used by the B 1800/B 1700 operating system. 

The data space contains the COP table and various other parameters such as 

Edit Masks and Record Areas. 

Various parameters, necessary for the running of the S-Language object code 

and maintained by the MCP, are stored beyond the Limit Register in the Run 

Structure Nucleus (RSN). 

A typical COBOL program layout in memory is shown in table D-1. Special 

registers, which are part of the program layout in memory, are shown in 

table D-2. 

D~l 



Appendix D (Cont) 

BASE REGISTER 

STATIC MEMORY 

'-

DYNAMIC MEMORY 

Table D-1. COBOL Program Layout 

EDIT TABLE (8 CHRS) -COP TABLE 

SPECIAL REGISTERS 

DATANAME MONITOR 
SYMBOLS 

EDIT MASKS 

NONOVERLAYABLE USER'S 
DATA AREA 

TRASH (INTERMEDIATE RESULTS) 

ALTER TABLE (IF ANY) 
t-

STACK 

OVERLAY ABLE 
USER DATA AREA 

lST ENTRY (COPX=l) 

DATA SEGMENT ZERO BASE 

DATA SEGMENT ZERO 

STACK BASE 

STACK LIMIT 

{ -LIMIT REGISTER EXTENDABLE LIMIT REG. 
REINSTATE INFO (BOJ ATTRIBUTE) 
& RUN STRUCTURE 

DATA DICTIONARY 

S-CODE 

Table D-2. Special Registers 

ADR NAME PIC 

0 SWl 9 CMP 
1 SW2 9 CMP 
2 SW3 9 CMP 
3 SW4 9 CMP 
4 SW5 9 CMP 
5 SW6 9 CMP 
6 SW7 9 CMP 
7 SW8 9 CMP 
8 TALLY 9(5) CMP 

13 DATE (JULIAN) 9(5) CMP 
(YYDDD) 

18 TIME (HHMMSST) 9(7) CMP 
25 TODAYS-DATE 9(6) CMP 

(MMDDYY) 
31 TODAYS-NAME X(9) 

D-2 



Appendix D (Cont) 

PROGRAM PARAMETERS 

The parameters pertaining to a particular program are listed below~ The 

numbers in parentheses signify the number of bits used to contain the 

parameter. 

BDISPBl ( 5) 

DSEGZ (24) 

STACK-POINTER (24) 

STACK-SIZE ( 5) 

COP-BASE (24) 

COPB (12) 

SEGB ( 5) 

DISPB ( 5) 

LENB ( 5) 

COPXB ( 5) 

CONTAINER SIZE 

BRANCH DISPLACEMENT CONTAINER SIZE + 1 

BASE OF DATA SEGMENT ZERO 

BASE ADDRESS OF STACK 

SIZE OF THE STACK 

BASE ADDRESS OF COP TABLE 

COP ENTRY CONTAINER SIZE 

DATA SEGMENT NUMBER CONTAINER SIZE 

DATA DISPLACEMENT CONTAINER SIZE 

DATA LENGTH CONTAINER SIZE 

COP INDEX CONTAINER SIZE 

Container size is a field size (in number of bits) necessary to contain the 

maximum value required for that field. A container size of 

five bits allows a field value to house 32 bit addresses (0-31). 

S-INSTRUCTION FORMAT 

Each COBOL S-Instruction consists of an S-operator followed by arguments con-

sisting of a variable number of bits. The format and interpretation of these 

arguments is specified by the S-operator and is described in detail by the 

specification of the individual operators. An example of one such instruction 

format is illustrated below. 

OPl 
(3) 

S-0 pe ra tors { OPl, OP2) 

OP2 
(6) 

OPND 
(VARIABLE) 

c=INDEX INTO COP TABLE OR LITERAL 

The most frequently used S-operators are encoded in a three bit S-operator 

denoted as OPl. If OPl is equal to seven, the operator is encoded in the next 

six bits denoted as OP2. If OPl is less than seven, OP2 is omitted. 

0 pera nds {OPN D) 

An operand is normally referenced indirectly through a table containing the 

attributes of the operand. An argument which references an operand in this 

manner is denoted as COPX. An operand is either contained in the instruction 

D-3 



Appendix D (Cont) 

as a literal or is referenced indirectly through the table. An argument of 

this type is denoted as OPND. The first bit of OPND is denoted as LITFLG and 

is used to indicate a literal string or COPX as follows: 

LITFLG____r--. ___ 1 ____ L_I_T_E_R_A_L __ S_TR--IN_G __ 

~ 0 COPX 

Literal String. When LITFLG specifies a literal, the literal string, which 

includes the literal type (LTYPE), the literal length (LLGTH), and the literal 

(LSYMB) itself in that order, is included in the code stream immediately fol­

lowing the LITFLG. The format is as follows: 

LTYPE 
(2) 

LLTGHl 
(3) 

LTYPE 

LLTGH2 
(8) 

NOTE 

OO=Unsigned 4-bit 

Ol=Unsigned 8-bit 

LSYMB 
(variable) 

lO=Signed 4-bit (sign is MSD) 

ll=Reserved 

LLGTH2 present if LLGTHl equal zero 

The length of the literal expressed in binary is encoded in LLGTHl and LLGTH2. 

If the length of the literal is less than eight digits or characters, its 

length is encoded in LLGTHl; and LLGTH2 is omitted. If the length of the 

literal is greater than or equal to eight digits or characters, its length is 

encoded in LLGTH2 and LLGTHl is set to zero. The maximum literal length is 

255 digits or characters excluding the sign. 

Current Operand Index (COPX). The argument COPX is an index value used to 

index into the current operand table (COP table). The number of bits (COPXB) 

used to index into the COP table is a function of the maximum number of COP 

table entries required for the source program. For example, a COP table con­

sisting of between 512 and 1023 entries would require ten bits. 

The address of an entry is calculated by multiplying the value ncOPX" by the 

value ncOPB" and then adding the result to the base address of the COP table. 

D-4 



Appendix D (Cont) 

A COPX value of zero specifies that the COP table information is contained 

in-line in the S-Instruction itself rather than in the COP table. (See 

In-Line COP Information (ICOP).) 

NOTE 

The base address of the COP table points 

to an unused entry. 

CURRENT OPERAND TABLE (COP) 

The COP table consists of a set of entries, each of which contains the attri­

butes of a variable. The width of one entry is a function of the source 

program and is determined by the number of bits required to express its attri­

butes (segment number, displacement, length, subscript-or-index-flag, data 

type and ASCII flag). 

When the attributes exceed one entry, multiple entries are used to accommodate 

the additional information. Any reference to a multiple entry attribute 

points to the first of its entries. 

The formats of entries in the COP table are shown below and explained in the 

following subsections. 

DATA 
SEG# 
(SEGB) 

ADDRESS 
DISPL. 
(DISPB) 

DATA 
LENGTH 
(LENB) 

SUBSCRIPT-OR­
I:NDEX-FLAG 
(1) 

DATA 
TYPE 
(2) 

ASCII 
FLAG 
(1) 

NO. OF 
SUBSCRIPTS 
OR INDEXES 
(2) 

SUBSCRIPT-FLAG SUBSCRIPT 
FACTOR 1 

SUBSCRIPT 
FACTOR 2 

SUBSCRIPT 
FACTOR 3 

(1) (LENB) (LENB) 

I 
PRESENT IF 
NUMBER OF 
SUBSCRIPTS 
= 01 OR 10 

PRESENT IF SUBSCRIPT­
OR-INDEX FLAG = 1 

(LENB) 

PRESENt IF 
NUMBER OF 
SUBSCRIPTS 
= 10 

TABLE 
BOUND 

(DISPB) 

D..-5 



Appendix D (Cont) 

Segment Number 

Segment number is expressed in binary and specifies the data segment number of 

the operand. The container size (SEGB) is a function of the maximum number of 

data segments specified in the source program. The range of the segment num­

ber container size (SEGB) is 0 through 18. If it is zero, then there is no 

segment number container for that particular program; that program has no seg­

mented (overlayable) data and all data references are to data segment zero, 

the non-overla¥able data segment. 

Displacement 

Displacement is expressed in binary and specifies the digit displacement of 

the data from the base of the data segment. All data is stored beginning at 

an address which modulo 4-BIT must equal zero. The container size (DISPB) is 

a function of the maximum data displacement specified in the source program. 

The range of the displacement container size (DISPB) is 1 through 21. 

Data Length 

Data length is expressed in binary and specifies the number of digits or char­

acters in the data item, excluding the sign. The container size (LENB) is a 

function of the maximum length specified in the source program. The range of 

the data length container size (LENB) is 1 through 14; however, the largest 

data item allowed is 8,191 8-BIT units or 16,383 4-BIT units. 

Su bsc ript-or-1 ndex-Flag 

The subscript-or-index-flag bit is true to indicate subscripting or indexing 

and false otherwise. When true, the necessary subscripting or indexing infor­

mation is contained in the next entry or entries. 

Data Type 

Data type specifies the type of data as follows: 

D-6 

00 = Unsigned 4-BIT 

01 = Unsigned 8-BIT 

10 = Signed 4-BIT (sign is MSD) 

11 Signed 8-BIT (sign over MSD) 



Appendix D (Cont) 

ASCII Flag 

The ASCII flag bit of the destination field influences the execution of 

certain code sensitive S-language instructions. These instructions are: 

ADD 

SUB 

INC 

DEC 

INCl 

DE Cl 

DIV 

DIVS 

MVA 

MVS 

MVN 

MVZ 

CAT 

SMVN 

MVT 

CMPA 

CMPS 

The ASCII flag bit does not influence the execution of the following code 

sensitive instructions in which EBCDIC is assumed: 

EDIT 

EDTE 

CMPC 

MICF 

MICE 

Number of Subscripts or Indexes 

When indexing or subscripting is indicated by the subscript-or-index-flag, the 

number of subscripts or indexes required for the variable is specified as 

follows: 

00 One 

01 Two 

10 Three 

11 Reserved 

Subscript Flag 

The bit immediately following the number of subscripts or indexes field indi­

cates the appropriate operation: 

0 = Indexing 

1 Subscripting 

Su bsc ri pt Factors 

Subscripting requires one to three fields, LENB bits in length, containing 

the binary factor by which each subscript value is to be multiplied to obtain 

the proper digit address. The factor is the digit displacement between ele­

ments of the table. The value one is subtracted from the subscript value 

prior to multiplying by the factor. The subscrip~ value may be signed. 

D-7 



Appendix D (Cont) 

If the subscript value is zero or negative, or if the final sum of the 

multiplied· subscript values exceeds the table bound, an error communicate will 

be issued. 

If the binary equivalent of the multiplied subscript value or the sum of the 

multiplied subscript values exceeds 24 bits, overflow is ignored. 

A COPX for each subscript value immediately follows the primary COPX in the 

S-Instruction. A subscript variable must not itself be subscripted or indexed. 

Indexing 

NOTE 

Literal subscript values are optimized 

by the compiler by building a new 

descriptor in-line in the S-Instruction. 

When indexing is indicated, a COPX for each index value (up to three) immedi­

ately follows the primary COPX in the S-Instruction. An index variable must 

not itself be indexed or subscripted. 

An index value is contained in a 28 bit field. The value consists of a 4-bit 

sign followed by six 4-bit decimal digits. The value is converted to binary 

and combined with the binary data address at execution time. 

If any index value is less than zero or if the sum of the index values exceeds 

the table bound, an error communicate will be issued. 

Table Bound 

Table bound is a binary value used to specify the maximum permissible digi~ 

displacement from a table base for subscripting and indexing. Its container 

size is DISPB. 

n~s 



Appendix D (Cont) 

IN-LINE COP INFORMATION (ICOP) 

The format for in-line COP information differs from its COP table format (See 

"CURRENT OPERAND TABLE") when subscripting or indexing is required. 

The format for in-line COP information is as follows: 

DATA 
SEG.# 
(SEGB) 

ADDRESS 
DISPL. 
(DISPB) 

DATA 
LENGTH 
(LENB) 

SUBSCRIPT-OR­
INDEX-FLAG 
(1) 

DATA 
TYPE 
(2) 

ASCII 
FLAG 
(1) 

NO. OF 
SUBSCRIPTS 
OR INDEXES 
(2) 

SUBSCRIPT-FLAG COPXl SUBSCRIPT 
FACTOR 1 

COPX2 SUBSCRIPT 
FACTOR 2 

COPX3 

(COPXB) 

(1) 

SUBSCRIPT 
FACTOR 3 
(LENB) 

TABLE 
BOUND 
(DISPB) 

(COPXB) (LENB) (COPXB) (LENB) 

a. None of the subscripting/indexing information (all entries 

following the ASCII flag) is present unless the subscript-or­

index-flag equals one. 

b. A COPX for each index value, or a COPX/subscript factor pair 

for each subscript value, must be present as indicated by the 

value of number of subscripts or indexes. 

c. COPXl, COPX2, and COPX3 may be in-line entries but must not be 

subscripted or indexed. 

D~9 



Appendix D (Cont) 

INSTRUCTION SET 

ARITHMETIC 

NAME MNEMONIC OP ARGUMENTS 

INCREMENT INC 02 OPNDl, COPXl 

ADD ADD 08 OPNDl, COPXl, COPX2 

DECREMENT DEC 09 OPNDl, COPXl 

SUBTRACT SUB 10 OPNDl, OPND2, COPXl 

MULTIPLY MULT 11 OPNDl, COPXl, COPX2 

DIVIDE DIV 12 OPNDl, COPXl, COPX2 

DIVIDE SPECIAL DIVS 16 OPNDl, COPXl, COPX2 

INCREMENT BY ONE IN Cl 13 COPXl 

DECREMENT BY ONE DE Cl 14 COPXl 

DATA MOVEMENT 

NAME MNEMONIC OP ARGUMENTS 

MOVE ALPHANUMERIC MVA 00 OPNDl, COPXl 

MOVE SPACES MVS 15 COPXl 

MOVE NUMERIC MVN 01 OPNDl, COPXl 

MOVE ZEROS MVZ 22 COPXl 

CONCATENATE CAT 32 N, COPXl, OPNDO, ... , OPNDN 

SCALED MOVE NUMERIC SMVN 28 OPNDl, COPXl, V, SCL 
EXAMINE EXAM 44 M, T, COPXl, OPNDl, COPX2, OPND2 

MOVE TRANSLATE MVT 47 OPNDl, COPXl, COPX2 

EDIT EDIT 17 OPNDl, COPXl, DADDR 

EDIT WITH EXPLICIT MASK EDTE 21 OPNDl, COPXl, MASK 

MICR FORMAT MICF 48 COPXl, COPX2 

MICR EDIT MICE 49 COPXl, COPX2, COPX3 

D-10 



Appendix D (Cont) 

BRANCHING 

NAME" MNEMONIC OP ARGUMENTS 

BRANCH ON OVERFLOW BOFL 23 v, BAD DR 

SET OVERFLOW SOFL 07 v 
BRANCH UNCONDITIONALLY BUN 03 BADDR. 

PERFORM ENTER PERF 06 K, BAD DR 

PERFORM EXIT PXIT 34 K 

ENTER NTR 18 BAD DR 

EXIT XIT 19 

GO TO DEPENDING GOTD 39 COPXl, L, DBADDRO, ... , DBADDRL 
ALTERED GO TO PARAGRAPH GPAR 35 DAD DR 

ALTER ALTR 36 DADDR, ACON 

CONDITIONAL BRANCHING 

NAME MNEMONIC OP ARGUMENTS 

COMPARE ALPHANUMERIC CMPA 04 OPNDl, COPXl, R, BAD DR 

COMPARE NUMERIC CMPN 05 OPNDl, COPXl, R, BADDR 

COMPARE FOR ZEROS CMPX 27 f"'()DVI "Q BADDR '--"'-"..&.. .. c~ . ...L. ' ... ' 
COMPARE FOR SPACES CMPS 37 COPXl, R, BAD DR 

COMPARE FOR CLASS CMPC 38 COPXl, c, BAD DR 

COMPARE REPEAT CMPR 45 OPNDl, COPXl, R, BADDR 

MISCELLANEOUS 

NAME MNEMONIC OP ARGUMENTS 

COMMUNICATE COMM 33 COPXl 

LOAD COMMUNICATE REPLY LDCR 41 DAD DR 

CONVERT CONV 40 COPXl, DAD DR 

MAKE PRESENT MAKP 42 COPXl, DAD DR 

HARDWARE MONITOR HMON 13 OPNDl 

n.,...11 



Appendix D (Cont) 

ARITHMETIC OPERANDS AND INSTRUCTIONS 

INlRODUCTION 

In general, arithmetic operands can have any of the following formats: 

a. Unsigned 4-bit 

b. Unsigned 8-bit 

c. Signed 4-bit (sign is MSD) 

d. Signed 8-bit (sign over MSD) 

Any restrictions concerning the types of operands permitted in an operation 

are specified under the description of the particular operation. 

All fields are addressed by pointing to the most significant bit of the most 

significant unit, which in the case of a signed field is the sign. 

All fields are considered to be comprised of decimal integers, 

The absolute value is stored if the receiving field is unsigned. 

Unsigned fields are considered positive. 

When signed format is specified for the receiving field for any arithmetic 

operation, the sign position is set to 1100 for a positive result and to 1101 

for a negative result. 

Four-bit operands are interpreted in units of four bits. When a signed 

operand is specified, the sign is interpreted as a separate and leading (left­

most) 4-bit unit which is not included in the statement of length. 

Eight-bit operands are interpreted in units of eight bits. When a signed 

operand is specified, the sign is interpreted as being contained in the left­

most four bits of the leftmost 8-bit unit. 

The length of the operand field specifies the number of 4-bit or 8-bit units. 

When 8-bit units are specified for the receiving field of an arithmetic opera­

tion, the leftmost four bits of each 8-bit unit, except the unit carrying a 

sign, is set to 1111 if EBCDIC or to 0011 if ASCII. 

D-12 



Appendix D (Cont) 

The value of an 8-bit unit is carried in the rightmost four bits of the unit. 

Its value is as defined below for the 4-bit unit. The leftmost four bits, 

except for a sigtj, are ignored. The value and sign interpretation of a 4-bit 

unit is as follows: 

UNIT 

0000 

0001 

0010 

0011 

0100 

0101 

OllO 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

lllO 

1111 

VALUE 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

UNDEFINED 

UNDEFINED 

UNDEFINED 

UNDEFINED 

UNDEFINED 

UNDEFINED 

SIGN 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

In addition and subtraction, results generated when the size of the result 

field is not sufficient to contain the result are not specified. When the 

result field is longer than the length of the result, leading zero units are 

stored. 

In ADD THREE ADDRESS, SUBTRACT THREE ADDRESS, and MULTIPLY, total or partial 

overlap of the first two operands is permitted. Results generated when the 

result field totally or partially overlaps either of the operand fields are 

not specified. 

In ADD TWO ADDRESS and SUBTRACT TWO ADDRESS, total overlap is permitted. 

Results generated when the result field partially overlaps the first operand 

field are not specified. Note that total overlap implies that the two fields 

are identical. 

No overlap of operands or result fields is permitted in DIVIDE. Results gen­

erated under any condition of overlap are not specified. 

D-13 



Appendix D (Cont) 

ADD THREE ADDRESS 

OP: 08 

Format: 

*************************** 
* ADD OPNDl, COPXl, COPX2 * 
*************************** 

Function: 

Algebraically add an addend denoted by OPNDl to an augend denoted by COPXl and· 

store the sum in the field denoted by COPX2. 

D-14 



SUBTRACT THREE ADDRESS 

OP: 10 

Format: 

*************************** * SUB OPNDl, OPND2, COPXl * 
*************************** 

Function: 

Appendix D (Cont) 

Algebraically subtract a subtrahend denoted by OPNDl from a minuend denoted by 

OPND2 and store the difference in the field denoted by COPXl. 

D-15 



Appendix D (Cont) 

ADD TWO ADDRESS 

OP: 02 

Format:. 

******************** * INC OPNDl, COPXl * 
******************** 

Function: 

Algebraically add an addend denoted by OPNDl to an augend denoted by COPXl and 

store the sum in the field denoted by COPXl. 

D-16 



SUBTRACT TWO ADDRESS 

OP: 09 

Format: 
******************** 
* DEC OPNDl, COPXl * 
******************** 

Function: 

Appendix D (Cont) 

Algebraically subtract a subtrahend denoted by OPNDl from a minuend denoted by 

COPXl and store the difference in the field denoted by COPXl. 

D-17 



Appendix D (Cont) 

MULTIPLY 

OP: 11 

Format: 

**************************** * MULT OPNDl, COPXl, COPX2 * 
**************************** 

Function: 

Algebraically multiply a multiplicand denoted by COPXl by a multiplier denoted 

by OPNDl and store the product in the field denoted by COPX2. 

The result field length is the sum of the lengths of the two operands and must 

be denoted by COPX2. 

The result field is always either signed 4-bit format or unsigned 4-bit format. 

D-18 



Appendix D (Cont) 

DIVIDE 

OP: 12 

Format: 

*************************** 
* DIV OPNDl, COPXl, COPX2 * 
*************************** 

Function: 

Algebraically divide a dividend denoted by COPXl by a divisor denoted by OPNDl 

and store the quotient in the field denoted by COPX2. Store the remainder in 

the field denoted by COPXl. 

The result field length is the difference of the lengths of the two operands 

and must be denoted by COPX2. 

Results are not specified if the length of the dividend is not greater than 

the length of the divisor. 

If the absolute value of the divisor is not greater than the absolute value of 

an equivalent number of leading digits of the dividend, the result is 

undefined. 

Division by zero results in a tatal error communicate to the MCP. 

The sign of the remainder is that of the original dividend. 

The dividend field is always either signed 4-bit format or unsigned 4-bit 

format. 

D-19 



Appendix D (Cont) 

DIVIDE SPECIAL 

OP: 16 

Format: 

**************************** 
* DIVS OPNDl, COPXl, COPX2 * 
**************************** 

Function: 

This operation is performed in exactly the same manner as the standard divide 

(DIV) operator; except that when a divisor equal to zero is encountered, an 

overflow toggle is set and processing is allowed to continue. The overflow 

toggle can be manipulated by the "SOFL" and "BOFL" S-operators. 

D-20 



INCREMENT BY ONE 

OP: 13 

Format: 

************** * INCl COPXl * 
************** 

Function: 

Appendix D (Cont) 

Algebraically add the positive integer one to an augend denoted by COPXl and 

store the sum in the field specified by COPXl. 

n~21 



Appendix D (Cont) 

DECREMENT BY ONE 

OP: 14 

Format: 

************** 
* DECl COPXl * 
************** 

Function: 

Algebraically subtract the positive integer one from a minuend denoted by 

COPXl and store the difference in the field specified by COPXl. 

D-22 



DATA MOVEMENT OPERANDS AND INSTRUCTIONS 

INTRODUCTION 

Appendix D (Cont) 

In general, fields involved in data movement operations can have any of the 

following formats: 

a. Unsigned 4-bit 

b. Unsigned 8-bit 

c. Signed 4-bit (sign is MSD) 

d. Signed 8-bit (sign over MSD) 

Any restrictions as to the type of fields permitted in an operation are speci­

fied under the description of the particular operation. 

See arithmetic operands and instructions for a description of the four types 

of fields. 

Totally or partially overlapped fields are not permitted, unless specifically 

specified by the description of the individual instruction. 

D~23 



Appendix D (Cont) 

MOVE ALPHANUMERIC 

Oi?: 00 

Format: 

******************** * MVA OPNDl, COPXl * 
******************** 

Function: 

Move 8-bit or 4-bit units from the source field denoted by OPNDl to the 8-bit 

or 4-bit destination field denoted by COPXl. 

If the destination field is signed, it receives either the sign of the source 

if the source is signed, or 1100 if the source is unsigned. 

If the data type of the source field is 4-bit and the data type of the desti­

nation field is 8-bit, each 4-bit unit is moved to the destination with 1111 

if EBCDIC or 0011 if ASCII moved to the leftmost four bits of each 8-bit unit. 

If the data type of the source field is 8-bit and the data type of the desti­

nation is 4-bit, the rightmost four bits are moved. 

If the data type of the source field is the same as the data type of the desti­

nation field, each unit is moved unchanged to the destination. 

If the destination length is greater in size than the source length, the desti­

nation field is filled in on the right with trailing spaces (0100 0000 if 

EBCDIC or 0010 0000 if ASCII) if the destination type is 8-bit; otherwise it 

is filled in on the right with zeros (0000). 

If the destination length is lesser in size than the source length, the source 

data is truncated on the right. 

Overlapping operand fields ate permitted if the data type of both fields is 

the same. It can be assumed that the source is moved 24 bits (six digits or 

three characters) at a time into the destination field and that the move is 

from left to right. 

D-24 



Appendix D (Cont) 

MOVE SPACES 

OP: 15 

Format: 

************* 
* MVS COPXl * 
************* 

Function: 

Fill the destination field denoted by COPXl with spaces (0100 0000 if EBCDIC 

or 0010 0000 if ASCII). 

The data type of the destination field is ignored and is assumed to be 

unsigned 8-bit. 

D-25 



Appendix D (Cont) 

MOVE NUMERIC 

OP: 01 

Format: 

******************** 
* MVN OPNDl, COPXl * 
******************** 

Function: 

Move 8-bit or 4-bit units from the source field denoted by OPNDl to the 8-bit 

or 4-bit destination field denoted by COPXl. 

If the destination field is signed, it receives either the sign of the source 

if the source is signed, or 1100 if the source is unsigned. 

If the destination field is unsigned, the sign of the source is ignored. 

If the data type of the destination field is 8-BIT, the leftmost four bits of 

each 8-bit unit, except for the sign position, if signed, are set to 1111 if 

EBCDIC or to 0011 if ASCII, regardless of the data type of the source field. 

If the data type of the destination field is 4-BIT, the leftmost four bits of 

each source 8-bit unit are ignored and only the rightmost four bits are moved; 

if the source field is a 4-bit field, each 4-bit unit is moved unchanged. 

If the destination length is greater in size than the source length, the 

destination field is filled in on the left with leading zeros of appropriate 

type (1111 0000 if EBCDIC, 0011 0000 if ASCII or 0000 if 4-bit). 

If the destination length is lesser in size than the source length, the source 

data is truncated on the left. 

Note that a sign is placed in the leftmost four bits of a field, whether 4-bit 

or 8-bit. 

Overlapping operand fields are permitted if the data type of both fields is 

the same. It can be assumed that the source is moved 24 bits (six digits or 

three characters) at a time into the destination field and that the move is 

from left to right. 

D-26 



MOVE ZEROS 

OP: 22 

Format: 

************* 
* MVZ COPXl * 
************* 

Function: 

Appendix D (Cont) 

Fill the destination field denoted by COPXl with zeros of the appropriate type 

(1111 0000 if EBCDIC, 0011 0000 if ASCII or 0000 if 4-bit). 

If the destination field is signed, 1100 is placed into the sign position. 

D-27 



Appendix D (Cont) 

CONCATENATE 

OP: 32 

Format: 
*********************************** 
*CAT N, COPXl, OPNDO, ... , OPNDN * 
*********************************** 

Function: 

Move each of the N+l fields denoted by OPNDO through OPNDN, in the order 

specified, into an output string starting at the field denoted by COPXl. 

The number of source fields is specified by the 4-bit binary value N. The 

value N ranging from 0000 to 1111 is used to indicate 1 to 16 source fields. 

Each field is moved according to the rules specified for MOVE ALPHANUMERIC. 

If the destination length is greater in size than the combined source length, 

the destination field is filled in on the right with trailing spaces (0100 

0000 if EBCDIC or 0010 0000 if ASCII). 

If the destination length is lesser in size than the combined source lengths, 

the source data is truncated on the right. 

D-28 



SCALED MOVE NUMERIC 

OP: 28 

Format: 

***************************** 
* SMVN OPNDl, COPXl, V, SCL * 
***************************** 

Function: 

Appendix D (Cont) 

SMVN 

If V equals 0, perform a MOVE NUMERIC operation after first adding the scale 

factor to the field length of the source field and assuming that the added 

portion of the field is zeros on the right. The scale factor must not be 

greater than the destination field length. 

If V equals one, perform a MOVE NUMERIC operation after first subtracting the 

scale factor from the field length of the source field. The scale factor must 

not be greater than the source field length. 

All rules specified for MOVE NUMERIC are applicable after adjustment by the 

scale factor. 

The container size for the scale factor is the same as the container size for 

the length of an operand (LENB). The length of Vis one bit. 

n~29 



Appendix D (Cont) 

MOVE TRANSLATE 

OP: 47 

Format: 

*************************** * MVT OPNDl, COPXl, COPX2 * 
*************************** 

Function: 

Move 8-bit units from the source field denoted by OPNDl to the destination 

field denoted by COPX2, translating enroute. 

Translation is accomplished by using each 8-BIT source character, multiplied 

by eight, as an index into the translation table, denoted by COPXl, to obtain 

the translated character. 

The data type of the source and table fields are ignored and are assumed to be 

unsigned 8-BIT. The destination field is also assumed to be unsigned, but may 

be 4~bit or 8-bit. 

If the destination length is greater in size than the source length, the 

destination field is filled in on the right with trailing spaces (0100 0000 if 

EBCDIC, 0010 0000 if ASCII or 0000 if 4-bit). 

If the destination length is lesser in size than the source length, the source 

data is truncated on the right. 

Total overlap of operand fields is permitted, to allow in-place translation. 

D-30 



EXAMINE 

OP: 44 

Format: 

***************************************** * EXAM M, T, COPXl, OPNDl, COPX2, OPND2 * 
***************************************** 

Function: 

Appendix D (Cont) 

EXAM 

Examine the operand defined by COPXl, tallying and/or replacing a variable 

number of 8-bit characters. The particular 8-bit character to be tallied 

and/or replaced is specified by OPNDl. The character to be used as the 

replacement character is specified by OPND2. The field into which the tally 

is stored is specified by COPX2. 

The type of operation is specified by the 4-bit parameter, T. If these four 

bits are identified, left to right, as Tl, T2, T3 and T4, then T is inter­

preted as follows: 

TlT2 00 undefined 

01 tally T3T4 occurrences of the character specified by OPNDl 

10 replace T3T4 occurrences of the character specified by OPNDl 

11 tally and replace T3T4 occurrences of the character specified 

T3T4 

by OPNDl 

00 all 

01 (all) leading 

10 until first 

11 first 

NOTE 

TlT2T3T4 = 0111 and 1111 not specified 

and results are undefined. 

The OPND2 argument is not present when TlT2 01. 

The COPX2 argument~is not present when TlT2 10. 

The data type of the examined operand (COPXl) is assumed to be signed or 

unsigned 8-bit. If it is signed, then the original sign is preserved by this 

operation. 

D-31 



Appendix D (Cont) 

The data type of the examining operand, defined by OPNDl, must be unsigned. 

Its length is assumed to be one. When 4-bit format is specified, the operand 

is assumed to have the four bits 1111 if EBCDIC or 0011 if ASCII appended to 

the left~ 

The data type of the replacing operand, defined by OPND2, must be unsigned. 

Its length is assumed to be one. When 4-bit format is specified, the leftmost 

four bits of the position replaced are set to 1111 if EBCDIC or 0011 if ASCII, 

and the rightmost four bits receive the four bits from the replacing source. 

When 8-bit format is specified, the position replaced receives all eight bits 

from the replacing source. 

The data type of the tally field defined by COPX2 is assumed to be unsigned 

4-bit. Its length is assumed to be five. 

If the one bit parameter M equals zero, it denotes numeric items, and only the 

rightmost four bits of a character are used in the comparison; the leftmost 

four bits are ignored. If M equals one, alphanumeric items are denoted, and 

all eight bits of a character are used in comparing. 

D-32 



Appendix D (Cont) 

EDIT INSTRUCTIONS AND EDIT MICRO-OPERATORS 

Introduction 

No restrictions are placed on the data type of the source field of an edit 

operation. 

The data type of the destination field of an edit operation must be unsigned 

8-bit. 

If the destination length is greater in size than the source length, the 

source data is assumed to have leading zero fill on the left. 

If the destination length is lesser in size than the source length, the source 

data is truncated on the left. 

The operation is terminated by an edit micro-operator and not by exhaustion of 

either the source or destination fields. 

D-33 



Appendix D (Cont) 

EDIT 

OP: 17 

Format: 

**************************** 
* EDIT OPNDl, COPXl, DADDR * 
**************************** 

Function: 

Move data from the source field, denoted by OPNDl, to the destination field, 

denoted by COPXl, under the control of the micro-operator string contained at 

the location denoted by the DADDR. 

The argument DADDR is an unsigned binary value which specifies the digit dis­

placement of the micro-operator string relative to the data segment zero base. 

The container size of DADDR is DISPB. 

D-34 



EDIT WITH EXPLICIT MASK 

OP: 21 

Format: 

*************************** 
* EDTE OPNDl, COPXl, MASK * 
*************************** 

Function: 

Appendix D (Cont) 

Move data from the source field denoted by OPNDl to the destination field 

denoted by COPXl under the control of the micro-operator string immediately 

following COPXl. The format of the explicit micro-operator string is the 

same as a literal and is as follows: 

LTYPE 
(2) 

LLGTHl 
(3) 

I 

LLGTH2 
(8) 

i 
MICRO-OPERATOR STRING 
(variable) 

Present if LLGTHl equals zero 

t 
Length of the micro-operator string in 8-bit 
units. If length is greater than or equal 
to eight units, the length is encoded in 
LLGTH2 and LLGTHl is ·Set to zero. 

01: Unsigned 8-bit format 

D-35 



Appendix D (Cont) 

EDIT Mic ro-0 pe rators 

The edit micro-operators used in an edit instruction are: 

OPERATOR MNEMONIC OPERATION 

0000 "R" MVD MOVE DIGITS 

0001 "R" MVC MOVE CHARACTERS 

0010 "R" MVS MOVE SUPPRESS 

OOll "R" FIL FILL SUPPRESS 

0100 "N" SRD SKIP REVERSE DESTINATION 

0101 "T" INU INSERT UNCONDITIONALLY 

OllO "T" INM INSERT ON MINUS 

Olll "T" INS INSERT SUPPRESS 

1000 "T" INF INSERT FLOAT 

1001 "T" EFM END FLOAT MODE 

1010 0000 ENZ END NON-ZERO 

1010 0001 EOM END OF MASK 

1010 0010 szs START ZERO SUPPRESS 

1010 OOll CCP COMPLEMENT CHECK PROTECT 

OTHERS UNDEFINED 

"R" indicates a 4-bit binary value used as a repeat count. The value 0000 

represents no repeat, do it once. 

"N" indicates a 4-bit binary value used to skip over a number of destination 

8-bit units. The value 0000 represents no skip. 

"T" indicates a 4-bit binary value which is: 

a. used to index into a table of editing constants 

b. used to indicate a conditional selection between two table constants 

c. used to indicate an editing constant in line with the edit-operator 

string. 

The next edit-operator follows the constant. 

Table D-3 indicates the normal table editing constants as well as the condi­

tional and unconditional selection of constants associated with the value ''T''. 

D-36 



Appendix D (Cont) 

Table D-3. Editing Constants and Toggles 

11T11 ENTRY 
VALUE NUMBER 

0000 0 

0001 1 

0010 2 

OOll 3 

0100 4 

0101 5 

OllO 6 

Olll 7 

1000 -

1001 -
1010 -

TOGGLE 

"S 11 (SIGN) 

11 Z11 (ZERO SUPPRESS) 
11 p 11 (CHECK PROTECT) 

EDITING CONSTANTS 

TABLE ENTRY 
OR CONSTANT 

.11+11 

II - II 

II* II 

II II 

I! II 

' 
II$ I! 

II O II 

II I! 

ENTRY 0 or 1 

ENTRY 7 or 1 

IN-LINE 8-BIT 
CONSTANT 

EDITING TOGGLES 

USE 

MNEMONIC 

PLU (PLUS) 

MIN (MINUS) 

AST (ASTERISK) 

DPT (DECIMAL POINT) 

CMA (COMMA) 

CUR (CURRENCY) 

ZRO (ZERO) 

BLK (BLANK) 

SPM (SIGN PLUS OR MINUS) 

SBM (SIGN BLANK OR MINUS) 

LIT (LITERAL) 

Set to zero if the source field sign is positive, 
otherwise set to one. 

Set and reset by the individual micro-operators 

Set and reset ~Y the individual micro-operators 

Associated with the edit instructions are three toggles denoted as "S 11 for 

sign, 11 Z" for zero suppress and "P" for check protect. Initially the 11 Z11 and 

the "P" toggles are assumed to be set to the zero state. They are set and 

reset as specified by the description of the individual micro-operators. The 

"S" toggle is set to zero if the source field sign is positive and to one 

otherwise. Unsigned fields are considered positive. 

Operations are detailed below; explanations of the individual micro-operators 

follow the definitions. 

Move Digit. Set "Z" to "l", ending the zero suppress state. Move an appro­

priate unit (4-bit digit or 8-bit character) from the source field to the 

destination field. If a 4-bit unit is moved, append the four bits 1111 to the 

left before storing in the destination. If an 8-bit unit is moved, the four 

bits 1111 are substituted for the leftmost four bits of the 8-bit unit. 

D-37 



Appendix D (Cont) 

Move Character. Set "Z" to "l", ending the zero suppress state. Move an 

appropriate unit (4-bit digit or 8-bit character) from the source field to the 

destination field. If a 4-bit unit is moved, append the four bits 1111 to the 

left before storing in the destination. If an 8-bit unit is moved, it is 

moved unchanged. 

Move Suppress. The micro-operator "MOVE DIGIT" is performed if the 4-bit unit, 

or the rightmost four bits of the 8-bit unit, of the source field is not equal 

to 0000. 

If the appropriate four bits of the source field unit are equal to 0000, the 

suppress toggle "Z" is inspected. If "Z" equals "l", indicating non-suppress 

mode, the micro-operator "MOVE DIGIT" is performed. If the suppress toggle 

"Z" equals "0", the check protect toggle "P" is inspected. If "P" = "O", 

indicating non-check protect mode, move the table entry containing the 8-bit 

code for blank to the destination field. If "P" = "l", move the table entry 

containing the 8-bit code for asterisk to the destination field. 

Summary 

Z=l 

SOURCE NOT 

SOURCE 

Z=O P=O SOURCE 

Z=O P=l SOURCE 

0 MOVE DIGIT 

0 MOVE DIGIT 

0 MOVE TABLE ENTRY 7 (BLANK) 

0 MOVE TABLE ENTRY 2 (ASTERISK) 

Fill Suppress. If "P" = "0", indicating non-check protect mode, move the 

table entry containing the 8-bit code for blank to the destination field. If 

"P" = "l", move the table entry containing the 8-bit code for asterisk to the 

destination field. 

Summary 

p 

p 

0 

1 

MOVE TABLE ENTRY 7 (BLANK) 

MOVE TABLE ENTRY 2 (ASTERISK) 

Skip Reverse Destination. Adjust the address pointer of the destination field 

to skip backward (lower address) "N" 8-bit units. 

Insert Unconditionally. Move the table entry "T" as indicated below to the 

destination field. 

T=O ... 7 

S=O T=8 

S=l T=8 

S=O T=9 

S=l T=9 

T=lO 

D-38 

MOVE 

MOVE 

MOVE 

MOVE 

MOVE 

MOVE 

TABLE ENTRY "T" 

TABLE ENTRY 0 (PLUS) 

TABLE ENTRY 1 (MINUS) 

TABLE ENTRY 7 (BLANK) 

TABLE ENTRY 1 (MINUS) 

IN-LINE CONSTANT 



Appendix D (Cont) 

Insert on Minus. Move the table entry "Tn as indicated below to the 

destination field. 

S=l T=O ... 7 MOVE TABLE ENTRY "T" 

* P=O T=0 ... 7,10 MOVE TABLE ENTRY 7 (BLANK) 

* P=l T=O ... 7, 10 MOVE TABLE ENTRY 2 (ASTERISK) 

S=l T=8 MOVE TABLE ENTRY 1 (MINUS) 

* T=8 MOVE TABLE ENTRY 0 (PLUS) 

S=l T=9 MOVE TABLE ENTRY 1 (MINUS) 

* T=9 MOVE TABLE ENTRY 7 (BLANK) 

S=l T=lO MOVE IN-LINE CONSTANT 

*: s 0 or only source digits/characters equal to zero (minus zero) 

moved. 

have been 

Insert Suppress. Move the table entry "T" as indicated below to the destina­

tion field. 

Z=l 

Z=O P=O 
'7-fl n-1 LJ-v .r-..J.. 

Z=l 

Z=l 

Z=l 

Z=l 

Z=l 

S=O 

S=l 

S=O 

S=l 

Insert Float. 

T=O ... 7 

T=8 

T=8 

T=9 

T=9 

T=lO 

Move the 

MOVE TABLE ENTRY "T" 

MOVE TABLE ENTRY 7 (BLANK) 
l\Kr'\U"Q 'l'/\DT D Dl\T'l'DV ') { II C',,.,DD T QV '\ 
1UVV .LJ .L.C1.U.LJ.LJ .L:.ll.' .L l.J, .l. u \.t1U.L.LJU.l.U.1l..J 

MOVE TABLE ENTRY 0 (PLUS) 

MOVE TABLE ENTRY 1 (MINUS) 

MOVE TABLE ENTRY 7 (BLANK) 

MOVE TABLE ENTRY 1 (MINUS) 

MOVE IN-LINE CONSTANT 

table entry "Tn and/or perform the micro-operator 

"MOVE DIGIT" as indicated below. 

Z=l MOVE DIGIT 

Z=O SOURCE =O P=O MOVE TABLE ENTRY 7 (BLANK) 

Z=O SOURCE =O P=l MOVE TABLE ENTRY 2 (ASTERISK) 

Z=O SOURCE NOT=O T=O .. 7 MOVE TABLE ENTRY "T"' THEN MOVE DIGIT 

Z=O SOURCE NOT=O T=8 S=O MOVE TABLE ENTRY 0 (PLUS) THEN MOVE DIGIT 

Z=O SOURCE NOT=O T=8 S=l MOVE TABLE ENTRY 1 (MINUS) THEN MOVE DIGIT 

Z=O SOURCE NOT=O T=9 S=O MOVE TABLE ENTRY 7 (BLANK) THEN MOVE DIGIT 

Z=O SOURCE NOT=O T=9 S=l MOVE TABLE ENTRY 1 (MINUS) THEN MOVE DIGIT 

Z=O SOURCE NOT=O T=lO MOVE IN-LINE CONSTANT, THEN MOVE DIGIT 

D-39 



Appendix D (Cont) 

End Float Mode. Move the table entry "T" as indicated below to the 

destination field. 

Z=O T=O ... 7 MOVE TABLE ENTRY "T" 

Z=O S=O T=8 MOVE TABLE ENTRY 0 (PLUS) 

Z=O S=l T=8 MOVE TABLE ENTRY 1 (MINUS) 

Z=O S=O T=9 MOVE TABLE ENTRY 7 (BLANK) 

Z=O S=l T=9 MOVE TABLE ENTRY 1 (MINUS) 

Z=O T=lO MOVE IN-LINE CONSTANT 

Z=l NO OPERATION 

End Non-Zero. Terminate the micro-operator operations if any non-zero source 

character/digit has been moved; otherwise continue with the next in-line 

operator. 

End of Mask. Terminate the micro-operator operations. 

Start Zero Suppress. Set "Z" to the "O" state. 

Complement Check Protect. Complement the state of "P". 

D-40 



Appendix D (Cont) 

MICR FORMAT 

OP: 48 

Format: 

********************* 
* MICF COPXl, COPX2 * 
********************* 

Function: 

Format the data from the source field denoted by COPXl into the destination 

field denoted by COPX2. 

The data type of both the source and the destination fields is assumed to be 

unsigned 8-BIT. 

The field length of the destination MODULO 20 must equal zero. The destina­

tion field is considered to be composed of a number of 20 character subfields. 

Data movement is right to left beginning with the rightmost character of the 

source field and beginning with the rightmost character position of the desti­

nation field. 

In the discussion that follows, the following definitions apply: 

a. Transfer characters are characters that are automatically transferred 

from the source field into the current destination subfield. They 

never occupy the rightmost control character position of a destina-

tion subfield. They are the numeric "0" through "9" and the HYPHEN 

"-" The HYPHEN is not expected to occur for OCR input. 

b. Defined control characters are characters that cause some specific 

action to be taken, depending on the character. They are: the END­

OF-DOCUMENT "'", the MICR CANT-READ"*" and the OCR CANT-READ @3F@. 

c. Default control characters are characters other than transfer and 

defined control characters. They are expected to be, but are not 

limited to, the MICR AMOUNT"#", TRANSIT"@" and ON-US ":" and the 

OCR HOOK"<", FORK"=", CHAIR">", VERTICAL BAR "I", BLANK @40@ and 

PLUS"+". 

D-41 



Appendix D (Cont) 

Operation is as follows: 

D-42 

a. Begin formatting into a subfield by fetching a source f1eld character, 

unles$ the source field is exhausted, and then proceeding to step al. 

1. If the source field is exhausted, assume an END-OF-DOCUMENT(') 

character and proceed to step a2. 

2. If the source field character is an END-OF-DOCUMENT character, 

move it to the rightmost position of the current subfield, blank­

fill the rest of the destination field and then terminate the 

operation. 

3. If the source field character is other than a default control or 

END-OF-DOCUMENT character, move a blank to the rightmost position 

of the current subfield, then move the source character and pro­

ceed to step bl. 

4. If the source field character is a default control character, 

move it to the rightmost position of the current subfield and 

then proceed to step bl. 

b. Continue formatting into the current subfield by fetching a new 

source character and then proceeding to step bl. 

1. If the source field is exhausted, blank-fill the rest of the 

current subfield, assume an END-OF-DOCUMENT source character and 

proceed to step a2. 

2. If the source field character is an END-OF-DOCUMENT character, 

blank-fill the rest of the current subfield, save the source 

field character and proceed to step a2. 

3. If the source field character is other than a default control or 

END-OF-DOCUMENT character, store the character in the destination 

and proceed to step bl. 

4. If the source field character is a default control character that 

is equal to the character in the rightmost position of the cur­

rent subfield, move it to the next position of the curr~nt sub­

field, blank-fill the rest of the current subfield and then 

proceed to step al. 

5. If the source field character is a default control character, but 

it is not equal to the character in the rightmost position of the 

current subfield, the rest of the current subfield is blank­

filled and the control character is used in step a4, to which we 

now proceed. 



NOTES 

1. If any attempt is made to exceed the 

size of any subfield or of the entire 

destination field, the overflow tog­

gle is set to one, the operation is 

terminated and the contents of the 

destination field are undefined. 

2. If any individual subfield contains 

a CANT-READ ("*" or "@3F@) character, 

then the high order (leftmost) posi­

tion of the subfield is set to 1101 

0001; otherwise, it is set to a blank 

( 0100 0000). 

Appendix D (Cont) 

D-43 



Appendix D (Cont) 

MICR EDIT 

OP: 49 

Format: 

**************************** 
* MICE COPXl, COPX2, COPX3 * 
**************************** 

Function: 

Move data from the source field denoted by COPXl to the destination field 

denoted by COPX2 deleting all characters except numeric characters ("0" 

through "9") and CANT-READ characters ("*" and @3F@). 

The moved characters are right justified in the destination field and zero 

filled on the left, if necessary, to fill the remaining destination area. If 

the destination field is lesser in size than the moved data, the source data 

is truncated on the left. 

A decimal count of all numeric characters moved is provided in the special 

COBOL register "TALLY" denoted by COPX3. 

The data type of the source field must be unsigned 8-bit. The data type of 

the destination field must be unsigned 4-bit or 8-bit. The data type of the 

"TALLY" field must be unsigned 4-bit and its length is assumed to be five. 

D-44 



BRANCHING OPERANDS AND INSTRUCTIONS 

INTRODUCTION 

A branch address argument "BADDR" has the following format: 

DISPLACEMENT 
(BDISPB) 

BTYPE 
(1) 

SEGMENT NUMBER 
(7) 

I 
present if BTYPE = 1 

0: Relative to the current code segment 
base (intrasegment branch) 

1: Relative to a new code segment base 
(intersegment branch) 

Appendix D (Cont) 

Displacement is an unsigned binary value which specifies the bit displacement 

of an instruction relative to a segment base. The container size of the dis­

placement and BTYPE combined is a program parameter (BDISPBl). 

D~45 



Appendix D (Cont) 

BRANCH UNCONDITIONALLY 

OP: BUN 

Format: 

************* 
* BUN BADDR * 
************* 

Function: 

Obtain the next instruction from the location specified by BADDR. 

D-46 



BRANCH ON OVERFLOW 

OP: 23· 

Format: 

***************** 
* BOFL V, BADDR * 
***************** 

Function: 

Appendix D (Cont) 

If the overflow toggle equals V, a transfer to the address (BADDR) given in 

the instruction occurs, otherwise control is passed to the next sequential 

instruction. 

The overflow toggle is unchanged. The length of V is one bit. 

D-:-47 



Appendix D (Cont) 

SET OVERFLOW TOGGLE 

OP: 07 

Format: 

********** * SOFL V * 
********** 

Function: 

Set the overflow toggle to V. 

The length of V is one bit. 

D-48 

NOTE 

The overflow toggle is set to one if a 

"DIVIDE BY ZERO" is encountered in the 

DIVIDE SPECIAL S-operator or if a field 

overflow is attempted in the MICR FORMAT 

S-operator. 



PERFORM ENTER 

OP: 06 

Format: 

***************** 
* PERF K, BADDR * 
***************** 

Function: 

Create a stack entry with the following format: 

DISPLACEMENT 
(24) 

SEGMENT NO. 
(7) 

K 
(8) 

Appendix D (Cont) 

Insert a displacement value, relative to the active code segment base and 

pointing to the next sequential S-instruction, into the stack. 

Insert the current code segment number into the stack. Insert the value of K 

from the instruction into the stack. 

Adjust the stack pointer to point to the next possible entry. 

Obtain the next instruction from the location specified by BADDR. 



Appendix D (Cont) 

PERFORM EXIT 

OP: 34 

Format: 

********** * PXIT K * 
********** 

Function: 

Compare the K contained in the instruction to the Kin the current stack entry 

and if unequal proceed to the next in-line S-instruction. If equal, adjust 

the stack pointer to point to the previous entry and obtain the next 

S-instruction from the information contained in the removed stack entry. 

D-50 



ENTER 

OP: 18 

Format: 

************* 
* NTR BADDR * 
************* 

Function: 

Same function as "PERF". K is assumed equal to zero. 

Appendix D (Cont) 

D.,...51 



Appendix D (Cont) 

EXIT 

OP: 19 

Format: 

******* 
* XIT * 
******* 

Function: 

Same function as "PXIT". K is assumed equal to zero. 

D-52 



GO TO DEPENDING 

OP: 39 

Format: 

**************************************** 
* GOTD COPXl, L, DBADDRO, ... , DBADDRL * 
**************************************** 

Function: 

Appendix D (Cont) 

GOTO 

Compar~ the ten bit binary value L with the variable specified by COPXl. The 

variable is first converted to a binary value, MODULO 2 to the 24th power. 

If the binary value of the variable is less than zero or greater than L, the 

next instruction is obtained from the location specified by DBADDRO. Note 

that the variable can be signed. 

If the binary value of the variable is in the range zero through L, it is used 

as an index to select from the list of DBADDR's the appropriate DBADDR to be 

used to obtain the next instruction. 

DBADDR and BADDR have the same format with the exception that DBADDR always 

contains the segment number. Although segment number is unnecessary for those 

DBADDR's with BTYPE equal to zero, in order to index into the list of DBADDR's, 

all of the DBADDR's must be of equal length. The container size of DBADDR is 

BDISPBl + 7. 

D-53 



Appendix D (Cont) 

ALTERED GO TO PARAGRAPH 

OP: 35 

Format: 

************** * GPAR DADDR * 
************** 

Function: 

GPAR 

Obtain the next instruction from the location specified by the address 11 ACON 11
• 

The address constant "ACON" has the same format as a BADDR. 

The argument DADDR is an unsigned binary value which specifies the digit dis­

placement of the "ACON" relative to the data segment zero base. 

The container size of DADDR is DISPB. 

D-54 



ALTER 

OP: 36 

Format: 

******************** * ALTR DADDR, ACON * 
******************** 

Function: 

Appendix D (Cont) 

Copy the address constant "ACON" into the data area specified by the argument 

DADDR. 

The address constant "ACON" has the same format as a BADDR. 

The argument DADDR is an unsigned binary value which specifies the digit dis­

placement of the "ACON" relative to the data segment zero base. 

The container size of DADDR is DISPB. 

D-55 



Appendix D (Cont) 

CONDITIONAL BRANCH OPERANDS AND INSTRUCTIONS 

INTRODUCTION 

If the condition "A (R) B" is true a transfer to the address (BADDR) given in 

the instruction occurs, otherwise control is passed to the next sequential 

instruction. The relation (R) is defined as follows: 

000 UNDEFINED 

001 GTR 

010 LSS 

Oll NEQ 

100 EQL 

101 GEQ 

llO LEQ 

lll UNDEFINED 

Overlap of fields is permitted. "A" is the first operand denoted in the 

instruction. If an instruction has only one operand, then the assumed field 

is the "A" field. 

D-56 



COMPARE ALPHANUMERIC 

OP: 04 

Format: 

******************************* * CMPA OPNDl, COPXl, R, BADDR * 
******************************* 

Function: 

Appendix D (Cont) 

CMPA 

Compare the two operand fields according to their binary values. 

The comparison is performed left to right with any shorter operand assumed to 

be right-filled with blank characters (0100 0000 if EBCDIC or 0010 0000 if 

ASCII). 

The fields are considered equal when the equal size portions are equal and the 

longer (if one is longer) field has trailing blanks. 

8-BIT data format is assumed for both fields with no checking to verify other­

wise, Signed fields have their most significant four bits, i.e., their sign, 

modified to the appropriate numeric zone (1111 for EBCDIC, 0011 for ASCII) 

before being compared. This modification is not permanent and is done so that 

sign does not affect the result of an alphanumeric comparison. 

D-57 



Appendix D (Cont) 

COMPARE NUMERIC 

OP: 05 

Format: 

******************************* * CMPN OPNDl, COPXl, R, BADDR * 
******************************* 

Function: 

CMPN 

Compare the two operand fields according to the algebraic values; considering 

the two fields to be comprised of decimal integers. 

When the field sizes are different, the longer is tested for leading zeros 

(0000). There is no restriction as to data type. In comparing an 8-bit char­

acter only the rightmost four bits of the character are considered; the other 

bits are ignored. 

Two fields of all zeros are equal regardless of sign. 

Unsigned fields are considered positive. Sign conventions are the same as for 

arithmetic operands. 

Results generated by invalid digit values are undefined. 

D-58 



COMPARE FOR ZEROS 

OP: 27 

Format: 

************************ 
* CMPZ COPXl, R, BADDR * 
************************ 

Function: 

Appendix D (Cont) 

CMPZ 

Compare two operand fields according to their algebraic values, assuming the 

first field to be comprised of all zeros (0000). 

There is no restriction as to data type. In comparing an 8-bit character only 

the rightmost four bits of the character are considered. The other bits are 

ignored. 

Two fields of all zeros are equal regardless of sign. 

Unsigned fields are considered positive. Sign conventions are the same as for 

arithmetic operands. 

Results generated by invalid digit values are undefined. 

D-59 



Appendix D (Cont) 

COMPARE FOR SPACES 

OP: 37 

Format: 

************************ 
* CMPX COPXl, R, BADDR * 
************************ 

Function: 

CMPS 

Compare two operand fields according to their binary values, assuming the 

first field to be comprised of all spaces (0100 0000 if EBCDIC or 0010 0000 if 

ASCII). 

The comparison is performed left to right. 

Unsigned 8-bit format is assumed with no checking to verify otherwise. 

D-60 



COMPARE FOR CLASS 

OP: 38 

Format: 

************************ 
* CMPC COPXl, C, BADDR * 
************************ 

Function: 

Compare the operand field and determine whether the field is: 

C=OO COMPLETELY ALPHABETIC 

C=Ol COMPLETELY NUMERIC 

C=lO NOT COMPLETELY ALPHABETIC 

C=ll NOT COMPLETELY NUMERIC 

Appendix D (Cont) 

CMPC 

If the condition being tested is true, a transfer to the address BADDR given 

in the instruction occurs, otherwise control is passed to the next sequential 

instruction. 

In the alphabetic test, each character is range-checked for 1100 0001 through 

1100 1001, 1101 0001 through 1101 1001, 1110 0010 through 1110 1001 and for 

0100 0000. Unsigned 8-bit format is assumed with no checking to verify 

otherwise. 

In the numeric test each ~haracter is range-checked for 1111 0000 through 

1111 1001. Signed or unsigned 8-bit format is permitted. The four bits in 

the sign position of a signed 8-bit field are ignored. The sign position is 

the leftmost four bits of the most significant character, 

D-61 



Appendix D (Cont) 

COMPARE REPEAT 

OP: 45 

Format: 

******************************* * CMPR OPNDl, COPXl, R, BADDR * 
******************************* 

Function: 

Compare the two operand fields according to their binary value. 

Comparison proceeds from left to right. 

The field lengths are considered equal by repeating OPNDl. 

Both fields are assumed to have unsigned 8-bit data type. 

The size of OPNDl must divide evenly into the size of COPXl; otherwise, the 

results of the compare may be erroneous. 

D-62 



MISCELLANEOUS INSTRUCTIONS 

COMMUNICATE 

OP: 33 

Format: 

************** 
* COMM COPXl * 
************** 

Function: 

Appendix D (Cont) 

COMM I 

Move the length and address fields from the COPXl entry to the RS.COMMUNICATE. 

MSR.PTR field located in this program's RS.NUCLEUS, converting them enroute. 

The origin field is unchanged. 

The length is converted from a digit or character length to a bit length. The 

address is stored as an absolute bit ~ddress. 

D-63 



Appendix D (Cont) 

LOAD COMMUNICATE REPLY 

OP: 41 

Format: 

************** * LDCR DADDR * 
************** 

Function: 

Move the last 24 bits of information from the RS.REPLY area of the RS.NUCLEUS 

to the location specified by DADDR. 

See 'MAKE PRESENT' for definition of DADDR. 

D-64 



Appendix D (Cont) 

CONVERT 
CONV 

OP: 40 

Format: 

******************** 
* CONV COPXl DADDR * 
******************** 

Function: 

Convert the operand denoted by COPXl from a decimal value to an unsigned 

24 bit binary value, truncating or zero filling on the left if necessary. 

Place the result at the location specified by DADDR. 

The operand must be either unsigned 4-bit or unsigned 8-bit units. 

See 'MAKE PRESENT' for definition of DADDR. 

D-65 



Appendix D (Cont) 

MAKE PRESENT 

OP: 42 

Format: 

********************* 
* MAKP COPXl, DADDR * 
********************* 

Function: 

MAKP 

Load the data segment specified by COPXl and place the base relative address 

of the data area specified by COPXl into the 24 bit location specified by 

DADDR. 

DADDR is an unsigned binary value which specifies a digit displacement from 

the data segment zero base. 

The container size of DADDR is DISPB. 

D-66 



HARDWARE MONITOR 

OP: 43 

Format: 

************** 
* HMON OPNDl * 
************** 

Function: 

Appendix D (Cont) 

HMON 

The low order eight bits of the field described by OPNDl are used as the input 

to the monitor micro-operator. 

The length of the field described by OPNDl must be greater than or equal to 

eight bits. 

D-67 



Appendix D (Cont) 

ALPHABETIC INDEX 

ADD ............................. D-14 CONDITIONAL BRANCHING ........... D-11 

ADD THREE ADDRESS ............... D-14 CONTAINER SIZE .................. D-3 

ADD TWO ADDRESS ................. D-16 CONV ............................ D-65 

ALTER ........................... D-55 CONVERT ......................... D-65 

ALTERED GO TO PARAGRAPH ......... D-54 CURRENT OPERAND INDEX (COPX) .... D-4 

ALTR ............................ D-55 CURRENT OPERAND TABLE (COP) ..... D-5 

ARITHMETIC ...................... D-10 DATA LENGTH ..................... D-6 

ARITHMETIC OPERANDS AND DATA MOVEMENT ................... D-10 

INSTRUCTIONS .................. D-12 DATA MOVEMENT OPERANDS AND 

ASCII FLAG ...................... D-7 INSTRUCTIONS .................. D-23 

BOFL ............................ D-47 DATA TYPE ....................... D-6 

BRANCH ON OVERFLOW .............. D-47 DEC ............................. D-17' 

BRANCH UNCONDITIONALLY .......... D-46 DECREMENT BY ONE ................ D-22 

BRANCHING ....................... D-11 DECl ............................ D-22 

BRANCHING OPERANDS AND DISPLACEMENT .................... D-6 

INSTRUCTIONS .................. D-45 DIV ............................. D-19 

BUN ............................. D-46 DIVIDE ................... , ...... D-19 

CAT ............................. D-28 DIVIDE SPECIAL .................. D-20 

CMPA ............................ D-57 DIVS ............................ D-20 

CMPC ............................ D-61 EDIT ............................ D-34 

CMPN ............................ D-58 EDIT INSTRUCTIONS AND EDIT 

CMPR ............................ D-62 MICRO-OPERATORS ............... D-33 

CMPS ............................ D-60 EDIT MICRO-OPERATORS ............ D-36 

CMPZ ............................ D-59 EDIT WITH EXPLICIT MASK ......... D-35 

COBOL PROGRAM LAYOUT EDITING CONSTANTS ............... D-37 

(TABLE D-1) ................... D-2 EDTE ............................ D-35 

COMM ............................ D-63 END FLOAT MODE .................. D-40 

COMMUNICATE .................. · ... D-63 END NON-ZERO .................... D-40 

COMPARE ALPHANUMERIC ............ D-57 END OF MASK ..................... D-40 

COMPARE FOR CLASS ............... D-61 ENTER ........................... D-51 

COMPARE FOR SPACES .............. D-60 EXAM ............................ D-31 

COMPARE FOR ZEROS ......... .' ..... D-59 EXAMINE ......................... D-31 

COMPARE NUMERIC ................. D-58 EXIT ............................ D-52 

COMPARE REPEAT .................. D-62 FILL SUPPRESS ................... D-38 

COMPLEMENT CHECK PROTECT ........ D-40 GENERAL. . . . . . . . . . . . . . . . . . . . . . . . . D-1 

CONCATENATE ..................... D-28 GO TO DEPENDING ................. D-53 

CONDITIONAL BRANCH OPERANDS GOTD ............................ D-53 

AND INSTRUCTIONS .... , ......... D-56 GPAR ............................ D-54 

D-68 



Appendix D (Cont) 

HARDWARE MONITOR ................ D-67 MVA ............................. D-24 
HMON ............................ D-67 MVN ............................. D-26 
IN-LINE COP INFORMATION ......... D-8 MVS ............................. D-25 
INC ............................. D-16 MVT ............................. D-30 
INCREMENT BY ONE ................ D-21 MVZ ............................. D-27 
INCl ............................ D-21 NTR ............................. D-51 
INDEXING ......................... D-8 NUMBER OF SUBSCRIPTS 

INSERT FLOAT .................... D-39 OR INDEXES .................... D-7 
INSERT ON MINUS ................. D-39 OPND ............................ D-3 

INSERT SUPPRESS ................. D-39 PERF ............................ D-49 

INSERT UNCONDITIONALLY .......... D-38 PERFORM ENTER ................... D-49 
INSTRUCTION SET .. ~· ............. D-10 PERFORM EXIT .................... D-50 

LDCR ................ t ........... D-64 PROGRAM PARAMETERS .............. D-3 

LITERAL STRING .................. D-4 PXIT ............................ D-50 
LOAD COMMUNICATE REPLY .......... D-64 RELATED PUBLICATIONS ..... i, •• ••• D-1 

MAKE PRESENT .................... D-66 S-INSTRUCTION FORMAT ............ D-3 

MAKP ............................ D-66 S-LANGUAGE PROGRAMS ............. D-1 

MICE ............................ D-44 S-OPERATORS ..................... D-3 

MICF ............................ D-41 SCALED MOVE NUMERIC ............. D-29 

MICH EDIT ....................... D-44 SEGMENT NUMBER .................. D-6 

MICR FORMAT ..................... D-41 SET OVERFLOW TOGGLE ............. D-48 

MISCELLANEOUS ................... D-11 SKIP REVERSE DESTINATION ........ D-38 

MISCELLANEOUS SMVN ............................ D-29 

INSTRUCTIONS .................. D-63 SOFL ........................ , . . . D-48 

MOVE ALPHANUMERIC ............... D-24 SPECIAL REGISTERS 

MOVE CHARACTER .................. D-38 (TABLE 1-2) ................... D-2 

MOVE DIGIT ...................... D-37 START ZERO SUPPRESS .......... ~ .. D-40 

MOVE NUMERIC .................... D-26 SUB ............................. D-15 

MOVE SPACES ..................... D-25 SUBSCRIPT FACTORS ............... D-7 

MOVE SUPPRESS ................... D-38 SUBSCRIPT-OR-INDEX-FLAG ......... D-6 

MOVE TRANSLATE .................. D-30 SUBTRACT THREE ADDRESS .......... D-15 

MOVE ZEROS ...................... D-27 SUBTRACT TWO ADDRESS ............ D-17 

MULT ............................ D-18 TABLE BOUND ..................... D-8 

MULTIPLY ....................... D-18 XIT ............................. D-52 

D-69 



APPENDIX E 
COBOL GRAPHICS 

Table E-1 is a listing of pertinent graphics, the related EBCDIC and ASCII 

internal codes, the EBCDIC 80-column card code and the BCD 96-column card 

codes. 

Standard convention is followed for the 8-bit internal codes, which are pre­

sented as pairs of hexadecimal numbers that are translated as shown in these 

examples: 

39 

BE 

OF 

8 4 2 1 

0 0 1 1 

1 0 1 1 

0 0 0 0 

8 4 2 1 

1 0 0 1 

1 1 1 0 

l l l l 

The 80-column card code is shown in terms of the card positions punched 

(12,11,0,9, ... ,1). 

The 96-column card code is presented as 6-position zone and numeric punches 

(BA8421), with the punched positions represented by their symbol and the non­

punched positions represented by dashes. 

E-1 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes 

EBCDIC USASCII-7 BCD 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE 

NULL 00 12-0-9-8-1 00 

SOH 01 12-9-1 01 

STX 02 12-9-2 02 

ETX 03 12-9-3 03 

04 12-9-4 

HT 05 12-9-5 09 

06 12-9-6 

DEL 07 12-9-7 7F 

08 12-9-8 

09 12-9-8-1 

OA 12-9-8-2 

VT OB 12-9-8-3 OB 

FF QC 12-9-8-4 OC 

CR OD 12-9-8-5 OD 

so OE 12-9-8-6 OE 

SI OF 12-9-8-7 OF 

DLE 10 12-11-9-8-1 10 

DCl 11 11-9-1 11 

DC2 12 11-9-2 12 

DC3 13 11-9-3 13 

14 11-9-4 

NL 15 11-9-5 

BS 16 11-9-6 08 

17 11-9-7 

CAN 18 11-9-8 18 

EM 19 11-9-8-1 19 

lA 11-9-8-2 

lB 11-9-8-3 

FS lC 11-9-8-4 lC 

GS lD 11-9-8-5 lD 

RS lE 11-9-8-6 lE 

I I 
E-2 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC USASCII-7 BCD 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE 

us lF 11-9-8-7 lF 

20 11-0-9-8-1 

21 0-9-1 

22 0-9-2 

23 0-9-3 

24 0-9-4 

LF 25 0-9-5 OA 

ETB 26 0-9-6 17 

ESC 27 0-9-7 lB 

28 0-9-8 

29 0-9-8-1 

2A 0-9-8-2 

2B 0-9-8-3 
t)(""1 ("'\ () 0 A I I 
.::.v v-v-o-<-± 

ENQ 2D 0-9-8-5 05 

ACK 2E 0-9-8-6 06 

BEL 2F 0-9-8-7 07 

30 12-11-0-9-8-1 

I 
31 9-1 

SYN 32 9-2 16 

33 9-3 

34 9-4 

35 9-5 

36 9-6 

EOT 37 9-7 04 

38 9-8 

39 9-8-1 

3A 9-8-2 

3B 9-8-3 

DC4 3C 9-8-4 14 

NAK 3D 9-8-5 15 

3E 9-8-6 

SUB 3F 9-8-7 lA 

E-3 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC USASCII-7 BCD 
I 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE 

SPACE 40 20 

41 
I 

12-0-9-1 

42 12-0-9-2 

43 12-0-9-3 

44 12-0-9-4 

45 12-0-9-5 

46 12-0-9-6 

47 12-0-9-7 

48 12-0-9-8 

49 12-8-1 

[ 4A 12-8-2 5B BA-42-

4B 12-8-3 2E BA8-21 

< 4C 12-8-4 3C BA84--

( 4D 12-8-5 28 BA84-l 

+ 4E 12-8-6 2B BA842-

I ! 4F 12-8-7 21 BA8421 

& 50 12 26 -A8-2- I 
I 51 12-11-9-1 

52 12-11-9-2 

53 12-11-9-3 

54 12-11-9-4 

55 12-11-9-5 

56 12-11-9-6 

57 12-11-9-7 

58 12-11-9-8 

59 11-8-1 

] 5A 

I 
11-8-2 5D B-8-2-

$ 5B 11-8-3 24 B-8-21 

* 5C 11-8-4 2A B-84--

) 5D 11-8-5 29 B-84-1 

' 
5E 11-8-6 3B B-842-

--. 5F 11-8-7 5E B-8421 

- 60 I 11 2D 

I 

B----- I 

I I I 
E-4 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC USASCII-7 BCD 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE 

I 61 0-1 2F -A---1 

62 11-0-9-2 

63 11-0-9-3 

64 11-0-9-4 

65 11-0-9-5 

66 11-0-9-6 

67 11-0-9-7 

68 11-0-9-8 

69 0-8-1 

6A 12-11 7C 

' 
6B 0-8-3 2C -A8-21 

% 6C 0-8-4 25 -A84--

Underscore 6D 0-8-5 5F -A84-l 

I > I 6E 0-8-6 3E I -A842-

? 6F 0-8-7 3F -A8421 

70 12-11-0 

71 12-11-0-9-1 

72 12-11-0-9-2 

73 12-11-0-9-3 

74 12-11-0-9-4 

75 12-11-0-9-5 

76 12-11-0-9-6 

77 12-11-0-9-7 

78 12-11-0-9-8 

79 8-1 60 

7A 8-2 3A --8-2-

# 7B 8-3 23 --8-21 
@ 7C 8-4 40 --84--

7D 8-5 27 --84-1 

7E 8-6 3D --842-
!! 7F 8-7 22 --8421 

80 12-0-8-1 

a 81 12-0-1 61 

b 82 12-0-2 62 

E-5 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC USASCII-7 BCD 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE 

c 83 12-0-3 63 

d 84 12-0-4 64 

e 85 12-0-5 65 

f 86 12-0-6 66 

g 87 12-0-7 67 

h 88 12-0-8 68 

i 89 12-0-9 69 

8A 12-0-8-2 

8B 12-0-8-3 

8C 12-0-8-4 

8D 12-0-8-5 

8E 12-0-8-6 

8F 12-0-8-7 

90 12-11-8-1 

j 91 12-11-1 6A 

k 92 12-11-2 6B 

1 93 12-11-3 6C 

m 94 12-11-4 6D 

n 95 12-11-5 6E 

0 96 12-11-6 6F 

p 97 12-11-7 70 

q 98 12-11-8 71 

r 99 12-11-9 72 

9A 12-11-8-2 

9B 12-11-8-3 

9C 12-11-8-4 

9D 12-11-8-5 

9E 12-11-8-6 

9F 12-11-8-7 

AO 11-0-8-1 

Al 11-0-1 7E 

s A2 11-0-2 73 

t A3 11-0-3 74 

u A4 11-0-4 75 

E-6 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC USASCII-7 BCD 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE _.._ 

v A5 11-0-5 76 

w A6 11-0-6 77 

x A7 11-0-7 78 

y AS 11-0-8 79 

z A9 11-0-9 7A 

AA 11-0-8-2 

AB 11-0-8-3 

AC 11-0-8-4 

AD 11-0-8-5 

AE 11-0-8-6 

AF 11-0-8-7 

BO 12-11-0-8-1 

I Bl 12-11-0-1 

B2 12-11-0-2 I 

I I 
B3 12-11-0-3 

B4 12-11-0-4 

B5 12-11-0-5 

B6 12-11-0-6 

B7 12-11-0-7 

B8 12-11-0-8 

B9 12-11-0-9 

BA 12-11-0-8-2 

BB 12-11-0-8-3 

BC 12-11-0-8-4 

BD 12-11-0-8-5 

BE 12-11-0-8-6 

BF 12-11-0-8-7 

(+)PZ co 12-0 7B 

A Cl 12-1 41 BA---1 

B C2 12-2 42 BA--2-

c C3 12-3 43 BA--21 

D C4 12-4 44 BA-4--

E C5 12-5 45 BA-4-1 

F C6 12-6 46 BA-42-

E-7 



Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC USASCII-7 BCD 

8-BIT 80-COLUMN 8-BIT 96-COLUMN 
GRAPHIC INTERNAL CODE CARD CODE INTERNAL CODE CARD CODE 

G C7 12-7 47 BA-421 

H C8 12-8 48 BA8---
I C9 12-9 49 BA8--l 

CA 12-0-9-8-2 

CB 12-0-9-8-3 

cc 12-0-9-8-4 

CD 12-0-9-8-5 

CE 12-0-9-8-6 

CF 12-0-9-8-7 

( ! )MZ DO 11-0 7D 

J Dl 11-1 4A B----1 
K D2 11-2 4B B---2-
L D3 11-3 4C B---21 
M D4 11-4 4D B--4--
N D5 11-5 4E B--4-1 

0 D6 11-6 4F B--42-
p D7 11-7 50 B--421 
Q D8 11-8 51 B-8---
R D9 11-9 52 B-8--1 

DA 12-11-9-8-2 

DB 12-11-9-8-3 

DC 12-11-9-8-4 

DD 12-11-9-8-5 

DE 12-11-9-8-6 

DF 12-11-9-8-7 

EO 0-8-2 5C 

El 11-0-9-1 

s E2 0-2 53 -A--2-

T E3 0-3 54 -A--21 

u E4 0-4 55 -A-4--

v E5 0-5 56 -A-4-1 

w E6 0-6 57 -A-42-

x E7 0-7 58 -A-421 
y E8 0-8 

I 
59 -A8---

E-8 



z 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

GRAPHIC 

Appendix E (Cont) 

Table E-1. Graphics and Related Codes (Cont) 

EBCDIC 

8-BIT 
INTERNAL CODE 

E9 

EA 

EB 

EC 

EE 

EF 

FO 

Fl 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

FA 

FB 

FC 

FD 

FE 

FF 

80-COLUMN 
CARD CODE 

0-9 

11-0-9-8-2 

11-0-9-8-3 

11-0-9-8-4 

11-0-9-8-5 

11-0-9-8-6 

11-0-9-8-7 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

12-11-0-9-8-2 

12-11-0-9-8-3 
,n ,, rt. n () A 
.LLi-.L.L-V-~-O-'± 

12-11-0-9-8-5 

12-11-0-9-8-6 

12-11-0-9-8-7 

USASCII-7 

8-BIT 
INTERNAL CODE 

5A 

20 

31 

32 

33 

34 

35 

36 

37 

38 

39 

BCD 

96-COLUMN 
CARD CODE 

-A8--l 

-A----
-----1 

----2-

----21 

---4--

---4-1 

---42-

---421 

--8---

--8--1 

E-9 



abbreviated compound conditions, 
7-24 

ACCEPT, 7-31 
ACCESS, 5-9, 5-12, 5-13, 13-1, 13-8, 

13-9 
RANDOM, 5-9, 5-12, 5-13, 13-1, 
13-8' 13-9 

INDEX 

SEQUENTIAL, 5-9, 5-12, 5-13, 13-1, 
13-8, 13-9 

DYNAMIC, 13-1, 13-8, 13-9 
i\ f""'l'l1TTi\ T VVV C:::-0 C:::-1 ') C:::-1 ~ 
n~LUfiU n~L, u ~, u .... ~, u ..LU 

ADD, 7-32 
ALL, 2-7, 4-2, 4-3, 7-50, 7-83 
ALL-AT-OPEN, 5-9, 5-11 
alphabetic items, 6-49 
a,lphanumeric edited i terns, 6-49 
alphanumeric items, 6-49 
ALTER, 7-35, 7-53 
ALTERNATE, 5-9, 5-11, 5-15, 5-16 
APPLY, 8-5 
AREA, 5-9, 5-11, 5-15, 5-16 
arithmetic.expressions, 7-14 

formation and evaluation rules, 
7-lA 
I ..L-Z 

arithmetic operators, 7-14 
arithmetic verbs, 7-29 

ADD, 7-32 
COMPUTE, 7-41 
DIVIDE, 7-4 7 
MULTIPLY, 7-66 
SlJBTRACT, 7-96 

ASCENDING, 6-33, 6-43, 6-46, 7-90 
ASCII, 6-16, 6-32, 6-68 
ASSIGN, 5-9~ 5-10~ 5-11, 13-8, 13-9 
ASSIGN, READER-SORTER, 8-4 
AT END, 5-12, 7-78, 9-1, 13-2, 13-4, 

13-5 
AUTHOR, 4-1 

BACKUP, 5-9, 5-10 
BATCH-COUNT, 8-8, 8-9 
BLANK WHEN ZERO, 6-33, 6-34, 6-35, 

6-52 
BLOCK, 6-16, 6-17, 6-19 
braces, 2-10 
brackets, 2-10 

character set, 2-1 
characters, 2-1 

editing, 2-2 
formulas, 2-2 
MICR, 8-1 
relational, 2-2 
word, 2-1 
punctuation, 2-2 

class conditions, 7-20 
CLOSE, 7-36, 8-7, 9-1, 13-11, 13-12, 

13-13 
COBOL compiler control, 11-1, 13-6 
COBOL source program syntax, 12-1 
coding form, 3-1 
COMMA, 5-6 
comparison of operands, 7-19 
compilation card deck, 11-1 
compile card, 11-2 
compiler-directing sentence, 7-4 
compiler-directing statement, 7-3 
compiler-directing verbs, 7-29 

COPY, 7-42 
MONITOR, 4-2 
NOTE, 7-67 
USE, 7-98, 8-15, 13-22 

compound conditions, 7-22 
COMPUTATIONAL, 6-32, 6-67 
COMPUTATIONAL-1, 6-32 
COMPUTATIONAL-3, 6-32, 6-67 
COMPUTE, 7-41 
concepts, 6-3 

file, 6-3 
record, 6-4 
level numbers, 6-5 

condition-name, 2-4, 6-33, 6-36, 
6-72, 7-21 

condition-name condition, 7-21 
conditional sentence, 7-4 
conditional statement, 7-3 
conditional verb, 7-29 

IF, 7-3, 7-5, 7-55 
conditions, 7-17 

abbreviated compound, 7-24 
class, 7-20 
compound, 7-22 
condition-name, 7-21 
evaluation rules, 7-21 
relation, 7-17 
sign, 7-20 
simple, 7-22 

CONFIGURATION SECTION, 5-1, 5-2 
connectives, 2-9 
constant, figurative, 2-6 
continuation indicator, 3-1 
CONTROL, 8-8 
control cards, 11-1 
control relationship between proce­

dures, 7-7 
COPY, 5-3, 5-4, 5-6, 5-9, 5-15, 6-16, 

6-17, 6-32, 7-13, 7-42 
CORE-INDEX, 13-10, 13-11 
CORRESPONDING, 7-27, 7-32, 7-34, 

7-61, 7-96 

I ndex-1 



INDEX (Cont) 

CURRENCY SIGN, 5-6, 6-53 
Current Record Pointer, 13-2 

DATA-BASE SECTION, 12-1 
data classes of, 6-49 
data communications, 9-1 
DATA DIVISION, 6-1, 8-5, 12-1, 13-10 
DATA DIVISION, structure, 6-2 
DATA MANAGEMENT, 12-1 
data manipulation, verbs, 7-29 

EXAMINE, 7-50 
FORMAT, 8-10, D-41 
MICR-EDIT, 8-12, D-44 
MOVE, 7-6,1 

data-name, 2-3, 6-39 
DATA RECORDS, 6-16, 6-17, 6-21 
DATA SEGMENT-LIMIT, 5-4 
DATE, julian, 2-8 
DATE-COMPILED, 4-1, 4-2 
DATE-WRITTEN, 4-1 
debugging verbs, 7-30 

DUMP, 7-49 
TRACE, 7-97 

DECIMAL-POINT, 5-6, 6-52 
DECLARATIVES, 7-1, 7-2, 7-7, 7-13, 

8-6 
definition of words, 2-3 
DEPENDING, 4-2, 6-32, 6-43, 6-44, 7-53 
DESCENDING, 6-33, 6-43, 6-46 
DISPLAY, 6-32, 6-52, 6-66, 7-46 
DIVIDE, 7-47 
DIVISIONS, 1-2 

DATA, 1-2, 6-1, 8-5, 12-1, 13-10 
ENVIRONMENT, 1-2, 5-1, 8-4, 13-8 
IDENTIFICATION, 1-2, 4-1 
PROCEDURE, 1-2, 7-1, 8-6, 12-2, 

13-11 
DUMP, 7-49 

editing, 6-50 
floating insertion, 6-56 
fixed insertion, 6-54 
insertion, 6-54 
replacement, 6-57 
simple insertion, 6-54 
special insertion, 6-54 
suppression, 6-56 

editing characters, 2-2 
editing rules, 6-54 
editing symbols, 6-50 
elementary items, 6-5 
elementary MOVE, 7-61 
ellipsis, 2-11 
END, 5-9, 5-12 
ending verb, 7-29 

Index-2 

STOP, 7-95 
END-OF-JOB, 7-2, 7-7, A-3, B-8 
END-OF-PAGE, 7-103 
ENVIRONMENT DIVISION, 5-1, 8-4, 12-1, 

13-8 
ENVIRONMENT DIVISION, strµcture, 5-1 
evaluation of conditions, 7-21 
EXAMINE, 7- 50 
execution of PROCEDURE DIVISION, 7-2 
execution, sentence, 7-5 
EXIT, 7-52 
EXTEND, 7-68, B-13 

FD, 6-16, 8-5, 13-10 
figurative constant, 2-8 
file concept, 6-3 
FILE-CONTROL, 5-1, 5-9, 13-8 
FILE-CONTROL, READER-SORTER, 8-4 
file description, 6-2, 6-16, 13-10 
FILE-LIMIT, 5-9, 5-11, 5-12 
file-name, 2-3 
FILE SECTION, 6-1, 6-2, 6-16 
FILLER, 6-32, 6-39 
fixed insertion editing, 6-54 
floating insertion editing, 6-56 
FORM, 5-9, 5-11 
FORMAT, 8-10, D-41 
FROM, 7-81, 7-103, 7-104, 13-24 

generic terms, 2-10 
GIVING, 7-32, 7-33, 7-47, 7-56, 7-59, 

7-66, 7-90, 7-93, 7-94, 7-96 
GO, 7-35 
group items, 6-5 
group MOVE, 7-63 

HEADERS, 6-22, 6-23 
HIGH-VALUE(s), 2-6 

IDENTIFICATION DIVISION, 4-1, 12-1 
IDENTIFICATION DIVISION, structure, 
4-1 

identification field, 3-3 
identifier, 6-15, 7-1 
IF, 7-55 
imperative sentence, 7-4 
imperative statement, 7-3 
INDEX, 6-32 
index data items, MOVE, 7-64 
index-name, 2-4, 6-15, 7-90 
INDEXED BY, 6-14, 6-33, 6-43, 6-46 
indexing, 6-14, 6-15 
initial value, 6-72 
INPLACE, 7-90 
INPUT, OPEN, 7-68, 8-13, 13-14 



INDEX (Cont) 

INPUT-OUTPUT, OPEN, 7-68, 13-14 
INPUT-OUTPUT SECTION, 5-1, 5-8 
INPUT PROCEDURE, 7-90 
input-output verbs, 7-29 

ACCEPT, 7-31 
CLOSE, 7-36, 8-7, 13-11, 13-12 
CONTROL, 8-8 
DISPLAY, 7-46 
OPEN, 7-68, 8-13, 13-13, 13-14 
READ, 7-78, 8-14, 13-16 
REWRITE, 13-19 
SEEK, 7-87 
START, 13-21 
WRITE, 7-103, 13-21, 13-23, 13-24 

insertion editing, 6-54 
INSTALLATION, 4-1 
internal program switches, 7-26 
inter-program communication, 10-1 
INTERPRET, OPEN, 7-68 
INTO, 7-78, 7-79, 8-14, 13-16, 13-17 
INVALID KEY, 5-12, 7-78, 7-103, 13-4, 
13-16, 13-19, 13-21, 13-24 

i terns, 6-48 
alphabetic, 6-49 
alphanumeric, 6-49 
alphanumeric edited, 6-49 
numeric, 6-49 
numeric edited, 6-49 

I-O-CONTROL, 5-1, 5-15, 6-27, 8-5 
I-O Status, 13-2 

JUSTIFIED, 6-33, 6-34, 6-40 

key words, 2-9, 2-10 

LABEL, 6-16, 6-24 
label equation card, 5-14, 11-1 
language description notation, 2-10 
language formation, 2-1 
LEADING, 7-50 
level-number, 6-42 
level-number concept, 6-5 
library, 3-1, 7-42, 7-43, 7-44, 7-45 
literals, 2-4 

numeric, 2-4 
non-numeric, 2-5 
undigit, 2-6 

LOCK ACCESS, OPEN, 7-68, 7-71, 13-14 
LOCK, CLOSE, 7-36, 13-12 
LOCK, OPEN, 7-68, 7-71, 13-14 
logical control verbs, 7-29 

IF, 7-55 
logical operators, 7-17 
logical record, 6-3 
LOW-VALUE(s), 2-6 

margin A, 3-3 
margin B, 3-3 
MCP label card, 11-2 
MEMORY, 5-4 
MERGE, 7-56 
MESSAGE QUEUES, 10-1 
MICR character type, 8-21 
MICR-EDIT, 8-12, D-44 
MICR RESULT DESCRIPTOR, 8-5, 8-14, 

8-16 
OPERATION-COMPLETE, 8-16 
EXCEPTION-CONDITION, 8-16 
NOT-READY, 8-2, 8-17 
UNENCODED-DOCUMENT, 8-17 
CANNOT-READ, 8-17 
DOUBLE-DOCUMENT, 8-3, 8-18 
TOO-LATE-TO-READ, 8-2, 8-18 
JAM, 8-2, 8-18 
MISSORT, 8-2, 8-19 
BLACK-BAND, 8-2, 8-3, 8-19 
HALT-FLOW-STOPPED, 8-8, 8-20 
TOO-LATE-TO-POCKET-SELECT, 8-2, 

8-3, 8-20 
POCKET-NUMBER-SELECTED, 8-21, 8-22 

mnemonic-name, 2-4 
MOD, 7-47, 7-48 
MONITOR, 4-2 
MOVE, 7-61 

elementary, 7-61 
group, 7-63 
index data items, 7-64 

MOVE, valid statement combinations, 
7-58 

MULTIPLE, 5-9, 5-15 
MULTIPLE FILE, 5-15, 5-16, 5-17 
MULTIPLE REEL, 5-9, 5-11 
MULTIPLY, 7-66 

NEXT SENTENCE, 7-55 
NO, 5-9, 5-11 
NO REWIND, CLOSE, 7-36 
NO REWIND, OPEN, 7-68 
non-contiguous WORKING-STORAGE, 7-78 
non-numeric literal, 2-5 
NON-STANDARD, 6-16, 6-26 
NOTE, 7-67 
nouns, 2-3 

condition-name, 2-4 
data-name, 2-3 
figurative constant, 2-6 
file-name, 2-3 
index-name, 2-4 
literals, 2-4 
mnemonic-name, 2-4 

Index-3 



INDEX (Cont) 

procedure-name, 2-4 
record-name, 2-3 
special registers, 2-7 

numeric edited items, 6-49 
numeric items, 6-49 
numeric literal, 2-4 

OBJECT-COMPUTER, 5-1, 5-4 
object program, 1-3 
OCCURS, 6-32, 6-43 
OCR, 8-1 
O-I, OPEN, 7-68 
OMITTED, 6-16, 6-24 
OPEN, 5-10, 5-16, 7-68, 8-13, 13-14 
optional control card, 11-3 
OPTIONAL, 5-9, 5-10, 5-17, 7-79 
optional words, 2-9, 2-10 
OUTPUT, OPEN, 7-68, 13-14 
OUTPUT PROCEDURE, 7-90 

paragraph, definition, 7-1 
structure, 7-7 

paragraph NOTE, 7-67 
PERFORM, 7-72 
period, 2-11 
Physical Files, 13-6 
physical record, 6-3 
PICTURE, 5-7, 6-32, 6-48 

precedence, 6-58 
POSITION, 5-15, 5-17 
precedence, 6-58 

PICTURE, 6-58 
PRINT128, OPEN, 7-68 
priority number, 7-10 
procedure branching verbs, 7-30 

ALTER, 7-35 
EXIT, 7-52 
GO, 7-53 
PERFORM, 7-72 
ZIP, 7-106 

PROCEDURE DIVISION, 7-1, 8-6, 12-1, 
13-ll 

PROCEDURE DIVISION, body, 7-2 
PROCEDURE DIVISION, execution, 7-2 
PROCEDURE DIVISION, READER-SORTER, 

8-6 
procedure formation, rules of, 7-1 
procedure-name, 2-4, 7-1 
POCKET, 8-8 
POCKET-LIGHT, 8-8, 8-15 
PROGRAM-ID, 4-1 
program organization, 1-2 
program segments, 7-9 
PUNCH, OPEN, 7-68 
punctuation, 3-4 

I ndex-4 

punctuation characters, 2-2 
punctuation, sentence, 7-5 
PURGE, CLOSE, 7-36, 13-12 

qualification, 6-8 
qualifier, 2-9 
Q-EMPTY, 7-99, 10-3 
Q-FULL, 7-99, 10-3 
Q-MAX-MESSAGES, 6-16, 6-31, 10-2, 

10-3 
QUEUE, 6-16 
QUEUE, files, 10-1, 10-3 

RANDOM, 5-12 
READ, 7-78, 8-14, 13-16 
READ-OK, 7-100 
READER-SORTER, 8-1 

ENVIRONMENT DIVISION, 8-4 
DATA DIVISION, 8-5 
PROCEDURE DIVISION, 8-6 

RECORD, 5-15, 5-16, 6-16, 6-17, 6-25 
record concept, 6-4 
record description, 6-2, 6-32 
record-name, 2-3 
RECORDING, 6-16, 6-26 
REDEFINES, 6-32, 6-33, 6-62 
REEL, CLOSE, 7-36, 7-40 
relation characters, 2-2 
relation condition, 7-17 
relational operators, 7-19 
RELEASE, 7-81 
RELEASE, CLOSE, 7-36, 13-12 
RE MARKS , 4-1 
REMOVE, CLOSE, 7-36, 13-12 
RENAMES, 6-33, 6-42, 6-64 
replacement editing, 6-57 
REPLACING, 5-3, 5-4, 5-6, 5-8, 5-15, 

6-16, 6-17, 7-34, 7-42, 7-43, 7-50 
RESERVE, 5-9, 5-11 
reserved words, 2-9 
RESTART, 7-90 
RETURN, 7-82 
REVERSED, OPEN, 7-68 
REWRITE, 13-19 
right margin, 3-3 
Rough Tables, 13-7 
ROUNDED, 7-32, 7-33, 7-41, 7-47, 

7-66, 7-96 

SA ME , 5- 1 5 , 5- 16 , 5- 1 7 
SAVE-FACTOR, 6-16, 6-27, 6-30 
SD, 6-17, 7-90 
SEARCH, 7-83 
SECTION, 7-1, 7-7 

CONFIGURATION, 5-2 



INDEX (Cont) 

definition, 7-1 
FILE, 6-16 
INPUT-OUTPUT, 5-8 
structure, 7-7 
WORKING-STORAGE, 6-72 

SECURITY, 4-1 
SEEK, 7-87 
segmentation, 7-9 
segment classification, 7-9 
SEGMENT-LIMIT, 5-4, 7-9 
SELECT, 5-9, 5-10, 13-8 
SELECT, READER-SORTER, 8-4 
sentence, definition, 7-1 
sentence, 7-1, 7-4 

compiler-directing, 7-4 
conditional, 7-4 
imperative, 7-4 

sentence NOTE, 7-67 
sentence punctuation, 7-5 
sequence field, 3-1 
SEQUENTIAL, 5-12, 5-13, 13-8 
SET, 7-:-88 
sign condition, 7-20 
simple conditions, 7-22 
simple insertion editing, 6-54 
SINGLE, 5-9, 5-11 
SIZE ERROR, 7-32, 7-33, 7-41, 7-47, 

7-66, 7-96, 8-10 
SORT, 5-4, 5-10, 5-11, 5-14, 7-90 
sort verbs, 7-30 

RELEASE, 7-81 
RETURN, 7-82 
SORT, 7-90 

SOURCE-COMPUTER, 5-1, 5-3 
source data card, 11-6 
source program, 1-3 
special insertion editing, 6-54 
SPECIAL-NAMES, 5-1, 5-6 
special registers, 2-7 

DATE, julian, 2-8 
TALLY, 2-7 
TIME, 2-8 
TODAYS-DATE, 2-8 
TODAYS-NAME, 2-8 

SPO-INPUT-PRESENT, 7-100 
STANDARD, 6-16, 6-24, 6-26 
START, 13-21 
statement, 7-1, 7-3 

compiler-directing, 7-3 
conditional, 7-3 
imperative, 7-3 

STATION, 6-22 
STATION-HSN, 5-13 
STATUS KEY, 13-2, 13-3, 13-4 
STOP, 7-95 
STOP-FLOW, 8-8, 8-20 

STOP RUN, 7-3, 7-95 
SUBTRACT, 7-96 
subscripting, 6-12 
suppression editing, 6-56 
switches, internal program, 7-26 
SYNCHRONIZED, 6-33, 6-34 

tables, 6-11, 6-43 
table manipulation verbs, 7-30 

SEARCH, 7-83 
SET, 7-88 

Tag Files, 13-5 
TAG-KEY, 7-90 
TAG-SEARCH, 7-90 
TALLY, 2-7 
TALLYING, 7-50 
TAPES, 5-10, 5-14 
TEXT-LENGTH, 5-13 
THROUGH, 6-33, 6-36 
TIME, 2-8 
timing requirements, READER-SORTER, 

8-2 
TODAYS-DATE, 2-8 
TODAYS-NAME, 2-8 
TRACE, 7-97 
translation of data, MOVE, 7-63 
types of words, 2-3 

nouns, 2-3 
verbs, 2-8 
reserved, 2-9 

undigit literal, 2-6 
UNTIL FIRST, 7-50 
TT~Ar..T<: h-~? g_gg 
....,'lt..J.L~~ ...... ' .._, ""'-' .._, .._,.._, 

USE declarative, 7-13, 7-98, 8-15, 
9-2, 13-22 

VALUE, 6-16, 6-24, 6-27, 6-33, 6-36, 
6-69 

verb formats, data communication, 9-1 
verbs, 2-8, 7-29 
verbs, arithmetic, 7-29 

ADD, 7-32 
COMPUTE, 7-41 
DIVIDE, 7-47 
MULTIPLY, 7-66 
SUBTRACT, 7-96 

verbs, compiler-directing, 7-29 
COPY, 7-42 
MONITOR, 4-2 
NOTE, 7-67 
USE, 7-98, 8-15, 9-2, 13-22 

verbs, conditional, 7-29 
IF, 7-55 

verbs, data manipulation, 7-29 
EXAMINE, 7-50 

Index-5 



INDEX (Cont) 

FORMAT, 8-10, D-41 
MICR-EDIT, 8-12, D-44 
MOVE, 7-61 

verbs, debugging, 7-30 
DUMP, 7-49 
TRACE, 7-97 

verbs, ending, 7-29 
STOP, 7-95 

verbs, input-output, 7-29 
ACCEPT, 7-31 
CLOSE, 7-36, 8-71, 13-11, 13-12 
CONTROL, 8-8 
DISPLAY, 7-46 
OPEN, 7-68, 8-13, 13-13, 13-14 
READ, 7-78, 8-14, 13-16 
REWRITE, 13-19 
SEEK, 7-87 
START, 13-21 
WRITE, 7-103, 13-21, 13-23, 13-24 

verbs, logic control, 7-29 
IF, 7-55 

verbs, procedure branching, 7-30 
ALTER, 7-35 
EXIT, 7-52 
GO, 7-53 
PERFORM, 7-72 

Index-6 

ZIP, 7-106 
verbs, SORT, 7-30 

RELEASE, 7-81 
RETURN, 7-82 
SORT, 7-90 

verbs, table manipulation, 7-30 
SEARCH, 7-83 
SET, 7-88 

words, 2-3 
def in it ion, 2-3 
key, 2-9 
optional, 2-9 
reserved, 2-9 
types, 2-3 

nouns, 2-3 
reserved, 2-9 
verbs, 2-8, 7-29 

WAIT, 7-100 
WORK, 5-9, 5-ll 
WORKING-STORAGE, 6-1, 6-2, 6-42, 

6-71 
WRITE, 7-103, 13-21, 13-23, 13-24 
WRITE-OK, 7-100 

ZIP, 7-106 



m .... 
co 
0 
p 

...... 
:::0 m 
rT1 .,, .... ,,., ..........._. 
I • I ~ 
:::0 0 rT1 z 0 
() 

"' rT1 

s: -c ... .,.. 
)> .... 
z CD 
c 51 )> 

"' I 

n 
0 
m 
0 
r-

1057197 

Printed in U.S.A. 

I i--1" BINDER-I I 
j--111•• BINDER---1 

Printed in U.S.A. August 1978 1057197 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	09-01
	09-02
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-001
	D-002
	D-003
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53
	D-54
	D-55
	D-56
	D-57
	D-58
	D-59
	D-60
	D-61
	D-62
	D-63
	D-64
	D-65
	D-66
	D-67
	D-68
	D-69
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	xBack

