
Printed in U.S. America

Burroughs m

B 1000 Systems

Interactive· BASIC
(IBASIC)

REFERENCE MANUAL

RELATIVE TO MARK 9.0 RELEASE

Copyright ©1981 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

July 1981 1108990

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However. no responsibility. financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/ or additions.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734,
Attn: Publications Department, TIO-West.

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual

LIST OF EFFECTIVE PAGES

Page Issue Page Issue

Title Original 9-28 Blank
ii Original 10-1 thru 10-2 Original
iii Original 11-1thru11-23 Original
iv Bla:1k 11-24 Blank
v thru xiii Original 12-1 thru 12-2 Original
xiv Blank A-1 thru A-11 Original
1-1 thru 1-4 Original A-12 Blank
2-1 thru 2-8 Original B-1 thru B-2 Original
3-1 thru 3-3 Original C-1 thru C-3 Original
3-4 Blank C-4 Blank
4-1 thru 4-11 Original D-1 thru D-21 Original
4-12 Blank D-22 Blank
5-1 thru 5-8 Original E-1 thru E-9 Original
6-1 thru 6-13 Original E-10 Blank
6-14 Blank F-1 thru F-4 Original
7-1 thru 7-8 Original Index-1 thru Index-7 Original
8-1 thru 8-4 Original Index-8 Blank
9-1 thru 9-27 Original

1108990 iii

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF CONTENTS

Section Title Page

INTRODUCTION . 1-1
Purpose of Manual 1-1
Organization of Manual 1-1
Syntax Conventions (Railroad Diagrams) 1-2

Required Items 1-2
Optional I terns 1-3
Loops 1-3
Bridges 1-4

Related Documentation 1-4
2 BEGINNING IBASIC 2-1

IBASIC Use 2-1
Executing IBASIC . 2-1
Making a File 2-2
Executing a BASIC Program 2-3
Editing a Program . 2-3
Stopping Execution of a BASIC Program 2-4
A More Complex Example 2-4
Progi·am Debugging Commands 2-7

Some IBASIC Commands for Debugging 2-7
Command Mode . 2-7

SAVE. SCRATCH. and BYE Commands 2-8
3 PROGRAM COMPOSITION 3-1

Statement Lines 3-1
Character Set 3-1
Program Documentation 3-1

Tail Comments 3-2
REM Statement . 3-2
STOP Statement 3-2
END Statement . 3-3

General Syntax Rules 3-3
4 NUMERIC DATA CONSTRUCTS 4-1

Numeric Constants 4-1
Numeric Variables 4-2
Numeric Assignment Statement 4-3
Numeric Expressions 4-4
Intrinsic Numeric Functions 4-5

ABS(X) 4-6
ACOS(X) 4-6
ANGLE(X.Y) 4-6
ASIN(X) 4-6
ATN(X) 4-6
CEIL(X) 4-6
COS(X) 4-7
COSH(X) 4-7
COT(X) 4-7
CSC(X) 4-7
DATE 4-7
DEG(X) 4-7

l 108990 v

vi

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

4 NUMERIC DATA CONSTRUCTS (Cont)

5

EPS
EXP(X)
FP(X) .
INF
INT(X)
IP(X)
LDIM(A.X)
LOG(X)
LOGIO(X)
LOG2(X)
MAX(X.Y)
MIN(X.Y)
MOD(X.Y)
Pl
RAD(X)
REM(X.Y)
RND
SEC(X)
SGN(X)
SIN(X)
SINH(X)
SQR(X)
TAN(X)
TANH(X)
TIME.
UDIM(A,X)

RANDOMIZE Statement
STRING DATA CONSTRUCTS
String Constants
String Variables
String Assignment Statement
String Expressions
Intrinsic String and String-Related Functions

CHR$(M)
DATE$
LEN(A$)
LWRC$(A$)
ORD(A$)
POS(A$.B$)
POS(A$.B$.M)
STR$(X) .
TIME$
UPRC$(A$)
VAL(A$)

String Declarations
DIM Statement String Size Declaration
OPTION Statement for Strings .

Page

4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-9
4-9
4-9
4-9

. 4-1u

. 4-10

. 4-10

. 4-10

. 4-10
. 4-10
. 4-10
. 4-10
. 4-11
. 4-.} 1
. 4-·1 l
. 4-H
. 4-·1 l

5-1
5-1
5-1
5-2
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8
5-8
5-8

Section

6

7

8

9

1108990

B 1000 Systems Interactive BASIC (IBASIC') Reference Manual

TABLE OF CONTENTS (Cont)

Title

ARRAYS
Array Declarations

DIM Statement Array Size Declaration
OPTION Statement for Arrays

Numeric Array Manipulation
MAT Addition Statement .
MAT Assignment Statement
MAT CON Statement
DOT Function
MAT IDN Statement
MAT Multiplication Statement
MAT Scalar Multiplication Statement
MAT Subtraction Statement
MAT ZER Statement

String Array Manipulation
MAT Assignment Statement
MAT NUL$ Statement .

CONTROL STRUCTURES
Relational Expressions
Control Statements

GOTO Statement
GOSUB and RETURN Statements
ON GOTO Statement
ON GOSUB and RETURN Statements

Loop Structures
FOR NEXT Structure

Decision Structures
IF Statement

PROGRAM PARTITIONING
User-Defined Functions

Single-Statement Functions
Multiple-Statement Functions

Assignment Statement For Multiple-Statement Functions
CHAIN Statement
INPUT/OUTPUT . .
Program-Internal Input

DAT A Statement
READ Statement
RESTORE Statement

Terminal 1/0
Terminal Input . . .

INPUT Statement .
LINPUT Statement

Terminal Output
PRINT Statement .

Printing Numeric Values
Printing String Values
Print Separators and T ABs
End-of-Line Conditions . .

Page

6-1
6-1
6-1
6-2
6-3
6-3
6-4
6-5
6-6
6-7
6-7
6-9
6-9

6-10
6-12
6-12
6-13

7-1
7-1
7-2
7-2
7-3
7-3
7-4
7-5
7-5
7-7
7-7
8-1
8-1
8-1
8-2
8-3
8-4
9-1
9-1
9-1
9-2
9-3
9-3
9-3
9-3
9-5
9-6
9-6
9-7
9-7
9-7
9-9

vii

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

9 INPUT/OUTPUT (Cont)

10

11

viii

Formatted Output . .
PRINT USING Statement
Images

Formatted Numeric Output
i-format
f-format
e-format
Formatted String Output
End-of-Line Conditions

MARGIN Statement
Array 1/0

Array Input
MAT READ Statement

Array Output
MAT PRINT Statement

File 1/0 Statements .
File Access

OPEN Statement
CLOSE Statement

File 1/0 Statements
File Input

File INPUT Statement
File LINPUT Statement

OUTPUT Statement .
Exception Statement . .

File Control Statements
File RESTORE Statement
SCRATCH Statement

DEBUGGING AIDS
DEBUG Statement
BREAK Statement
TRACE Statement
SYSTEM COMMANDS AND CAPABILITIES
Syntax Definitions

Line Number Range
BASIC File Name
Pack Name
MCP File Name

System Commands
BYE Command .
CONTINUE Command
DELETE Command
FI LE Command
FIX Command . .
GET Command . .
HELLO Command
LIST Command .
MAKE Command .

Page

9-1 ()
9-1 ()
9-10
9-13
9-13
9-13
9-14
9-14
9-15
9-16
9-17
9-17
9-17
9-18
9-18
9-19
9-20
9-20
9-22
9-22
9-23
9-23
9-23
9-24
9-25
9-26
9-26
9-27
10··1
10··1
10··1
10··2
11··1
11 ·· l
11 ·· l
11··2
11··3
11 ··3
11-4
11-4
11-4
11 ··5
11 ·-6
11 ·-6
11 ·-7
11 ·-8
11·-9

11-10

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF C:ONTENTS (Cont)

Section Title

11 SYSTEM COMMANDS AND CAP ABILITIES (Cont)

12

A
B

1108990

MERGE Command
PASSWORD Command .
Pseudo BREAK Feature
RENAME Command . .
RENUMBER Command
RUN Command . . .
SA VE Command
SCRATCH Command
STEP Command
TEACH Command
TITLE Command
USER Command
WALK Command
WHAT Command
WHERE Command
XREF Command

BASIC Commands
BASIC Statement Entry
Recovery
SPCFY Key Use (TD820 and TD830 Terminals Only)
SPECIAL COMMANDS ('DOT' COMMANDS)
BACKSPACE <new backspace char>
CASE
CONTINUOUS .
DEBUG
DUMP .
FREEZE
HELLO.
HINTS <string>
LOCAL
LOG ...
OL
OVERLAY
PROMPT .
RY
SS <string>
ST
STATUSLINE
TIME
GLOSSARY OF IBASIC TERMS
IBASIC LOG ON, LOG OFF, AND EXECUTION
Execution Under SMCS

Execute Syntax
ON Syntax

Execution Under CANDE
Execution With No MCS
Automatic Log Off . . .

Page

11-10
II-1 I
II-I I
II-12
I 1-13
I 1-14
I 1-15
1I-I6
I 1-16
Jl-17
I 1-17
I 1-18
I 1-18
I 1-19
I 1-19
11-20
I 1-2 I
11-22
I 1-22
I 1-23

12-1
I 2-1
I 2-1
I 2-1
12-1
12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
A-1
B-1
B-1
B-1
B-1
B-1
B-2
B-2

ix

x

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

C OPERATIONAL CONSIDERATIONS
Network Controller Considerations . .
Interactive BASIC System Considerations

Dynamic Memory . . .
Hardware Requirements
ODT Operation . . .
Priority
Software Requirements .
Switch Values
U sercode Considerations

D SYNTAX SUMMARY
ABS FUNCTION . .
ACOS FUNCTION .
ANGLE FUNCTION
ASIN FUNCTION
ATN FUNCTION
.BACKSPACE COMMAND .
BASIC FILE NAME
BREAK STATEMENT
.BRK
BYE STATEMENT
.CASE COMMAND
CEIL FUNCTION
CHAIN STATEMENT
CHR$ FUNCTION .
CLOSE STATEMENT
CONTINUE COMMAND
.CONTINUOUS COMMAND
COS FUNCTION .
COSH FUNCTION
COT FUNCTION .
CSC FUNCTION .
DATA STATEMENT
DATE FUNCTION .
DATE$ FUNCTION
DEBUG STATEMENT
.DEBUG COMMAND
DEF ST A TEMENT .
DEG FUNCTION
DELETE COMMAND
DIM STATEMENT .
DOT FUNCTION . .
.DUMP COMMAND
END STATEMENT .
EPS FUNCTION . .
EXCEPTION STATEMENT
EXP FUNCTION .
FILE COMMAND
FIX COMMAND .

Page

C-1
C-I
C-I
C-2
C-2
C-2
C-2
C-2
C-3
C-3
D-I
D-I
D-I
D-1
JD-I
JD-I
JD-I
D-1
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-2
D-3
D-3
D-3
D-3
D-3
D-3
D-3
D-3
D-3
D-4
D-4
D-4
D-4
D-4
D-4
D-4
D-4
D-5
D-5
D-5
D-5
D-5

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF CONTENTS (Cont}

Section TitHe Page

D SYNTAX SUMMARY (Cont)
FNEND STATEMENT D-5
FOR STATEMENT D-5
FP FUNCTION D-5
.FREEZE COMMAND D-5
GET COMMAND . D-6
GOSUB STATEMENT D-6
GOTO STATEMENT D-6
HELLO COMMAND D-6
.HELLO COMMAND D-6
.HINTS COMMAND D-6
IF ST A TEMENT . D-6
IMAGE STATEMENT . D-7
INF FUNCTION D-7
INPUT REPLY D-7
INPUT ST A TEMENT D-7
INT FUNCTION D-7
IP FUNCTION . D-7
LDIM FUNCTION D-7
LEN FUNCTION D-7
LINE NUMBER D-8
LINE NUMBER RANGE D-8
LINPUT REPLY D-8
LINPUT STATEMENT D-8
LIST COMMAND D-8
.LOCAL COMMAND D-8
LOG FUNCTION D-8
.LOG COMMAND D-9
LOGIO FUNCTION . D-9
LOG2 FUNCTION D-9
MAKE COMMAND . D-:9
MARGIN STATEMENT D-9
MAT ADDITION STATEMENT . D-9
MAT ASSIGNMENT STATEMENT D-9
MAT CON STATEMENT D-9
MAT IDN STATEMENT D-10
MAT MULTIPLICATION STATEMENT D-10
MAT NUL$ STATEMENT . D-10
MAT PRINT STATEMENT D-10
MAT READ STATEMENT . D-10
MAT SCALAR MULTIPLICATION STATEMENT D-10
MAT SUBTRACTION STATEMENT . D-11
MAT ZER STATEMENT D-ll
MAX FUNCTION D-11
MCP FILE NAME D-11
MERGE COMMAND D-ll
MIN FUNCTION . D-ll
MOD FUNCTION D-11
MULTIPLE-STATEMENT FUNCTION ASSIGNMENT STATEMENT D-12

1108990 xi

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

D SYNTAX SUMMARY (Cont)

xii

NEXT STATEMENT
NUMERIC ASSIGNMENT ST A TEMENT
NUMERIC CONST ANT .
NUMERIC EXPRESSI01'
NUMERIC VARIABLE .
.OL COMMAND
ON GOSUB STATEMENT
ON GOTO STATEMENT
OPEN STATEMENT .
OPTION STATEMENT .
ORD FUNCTION
OUTPUT STATEMENT .
.OVERLAY COMMAND .
PACK NAME
PASSWORD COMMAND
Pl FUNCTION
POS FUNCTION
PRINT STATEMENT ..
PRINT USING STATEMENT .
.PROMPT COMMAND
RAD FUNCTION
RANDOMIZE STATEMENT .
READ STATEMENT
RELATIONAL EXPRESSION
REM FUNCTION •. . .
REM STATEMENT ...
RENAME COMMAND
RENUMBER COMMAND
RESTORE STATEMENT
RETURN STATEMENT
RND FUNCTION
RUN COMMAND
.RY COMMAND
SA VE COMMAND . ·.
SCRATCH COMMAND
SCRATCH STATEMENT
SEC FUNCTION .
SGN FUNCTION .
SIN FUNCTION .
SINH FUNCTION
SQR FUNCTION .
.SS COMMAND .
.ST COMMAND .
STATEMENT LINE
.STATUSLINE COMMAND
STEP COMMAND .
STOP STATEMENT
STR$ FUNCTION

Page

D-12
D-12
D-12
D-12
D-12
D-13
D-13
D-13
D-13
D-13
D-14
D-14
D-14
D-14
D-14
D-14
D-14
D-15
D-15
D-15
D-15
D-15
D-15
D-15
D-16
D-16
D-16
D-16
D-16
D-16
D-16
D-16
D-17
D-17
D-17
D-17
D-17
D-17
D-17
D-17
D-18
D-18
D-18
D-18
D-18
D-18
D-18
D-18

Section

D

E
F

Figurie

6-J

1108990

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

TABLE OF CONTENTS (Cont)

SYNTAX SUMMARY (Cont)
STRING ASSIGNMENT STATEMENT
STRING CONSTANT .
STRING EXPRESSION
STRING VARIABLE
TAIL COMMENT
TAN FUNCTION
TANH FUNCTION .
TEACH COMMAND
TIME FUNCTION
.TIME COMMAND .
TIME$ FUNCTION .
TITLE COMMAND .
TRACE STATEMENT .
UDIM
USER COMMAND .
VAL FUNCTION
WALK COMMAND .
WHAT COMMAND .
WHERE COMMAND
XREF COMMAND .
CHARACTER SETS
EXTENSIONS TO BASIC
INTRINSIC Statement
INTEND Statement
ERROR Statement
Special Functions .

NDIM(X)
MSV(X) ..
MXI ...
RDUC(X) ..
XPND(X,Y)
XPON(X) ..
XTIM ...

Special Variable Names
COMPILE Command
External Intrinsics

Title

LIST OF ILl.USTRATIONS

Title

Representation of a 9 by J 0

Page

D-18
D-19
D-19
D-19
D-19
D-19
D-19
D-19
D-20
D-20
D-20
D-20
D-20
D-20
D-20
D-20
D-20
D-21
D-21
D-21

E-1
F-1
F-1
F-2
F-2
F-2
F-2
F-3
F-3
F-3
F-3
F-3
F-3
F-3
F-3
F-4

Page

6-2

xiii

B 1000 Systems Interactive BASIC (IBASIC') Reference Manual

LIST OF TABLES

Table Title

7-1 Relational Symbols
E-1 Standard BASIC Character Set (ASCII)
E-2 Native BASIC Character Set (EBCDIC)

xiv

Page

7-1
E-1
E-4

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

PURPOSE OF MANUAL

SECTION 1
INTRODUCTION

The purpose of this manual is to provide a description of the Interactive BASIC System (IBASIC) as imple
mented on the Burroughs B 1000 systems. The name BASIC is an acronym for Beginners All-purpose Symbol
ic Instruction Code. BASIC was initially developed at Dartmouth College in New Hampshire. The American
National Standards Institute (ANSI) developed a standard for BASIC using the original Dartmouth BASIC plus
additional features. Burroughs Corporation has implemented the minimal BASIC language and significant ex
tensions to BASIC according to the standard developed by ANSI. In this manual, the term IBASIC refers
to the entire interactive system, that is, all of the programs and files necessary to run IBASIC, while the term
BASIC refers only to the BASIC language.

The BASIC language is designed for use not only by individuals who have little previous knowledge of com
puters but also by individuals with considerable programming experience. BASIC can be used in educational,
engineering, and scientific environments. A distinct advantage of BASIC is that the rules of form and grammar··
are easily learned.

Burroughs !BASIC is implemented in a conversational mode: the user enters BASIC statements and interactive
commands through a terminal to the IBASIC system, whereupon IBASIC processes the input and responds
with (1) the output for the command, (2) a request for more input, or (3) a message informing the user of
any syntax errors. Burroughs IBASIC is especially suited for the learning process because response is nearly
immediate for many of the errors commonly made by novice programmers.

ORGANIZATION OF MANUAL
The organization and writing of this manual was influenced by two fundamental considerations: (1) that many
of the users of Burroughs IBASIC would be using the BASIC language and, possibly, a computer for the first
time, and (2) that the user base would also include experienced BASIC users who would need a reference
manual only to describe the syntax of a particular command or statement, to learn the commands that com
prise the interactive portion of Burroughs IBASIC, or to learn about a command or statement that the pro
grammer never had the opportunity to use before.

The organization of this manual is designed to facilitate learning and using IBASIC.

Section 1 is the introduction to the manual and should be read at least once by all users.

Section 2, entitled Beginning IBA.SIC, introduces the use of IBASIC.

Sections 3 through 10 provide detailed information about BASIC language syntax.

Sections 11 and 12 describe the IBASIC system commands and capabilities.

Appendices A through F contain the glossary, information on how to set up IBASIC, and other technical infor
mation that is generally beyond the interest of the average IBASIC user.

When statements, commands, and syntax are described, the following format is used.

1. The name of the item being described.
2. A brief functional description.
3. The railroad syntax and any necessary verbal description of that syntax.
4. The semantics, which may be omitted depending on the complexity of the item. If this section is omit

ted, the semantic description of the item is the brief functional description that follows the item name.
5. Examples and explanations of the examples, if necessary.

1108990 1-l

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Introduction

SYNTAX CONVENTIONS (RAILROAD DIAGFlAMS)

Railroad diagrams show how syntactically valid statements can be constructed.

Traversing a railroad diagram from left to right, or in the direction of the arrow heads, and adhering to the
limits illustrated by bridges will produce a syntactically valid statement. Continuation from one line of a
diagram to another is represented by a right arrow (~) appearing at the end of the current line and beginning
of the next line. The complete syntax diagram is terminated by a vertical bar (j).

Items contained in broken brackets (< >) are syntactic variables which are further defined, or require the
user to supply the requested information. Upper-case items must appear literally. Minimum abbreviations of
upper-case items are underlined.

~-,--1
--ARAI LROAD DIAGRAM CONSISTS OF _ ___......,..__ <bridges> ------....-"'----------·-->?

-<loops >----------4

<optional items> --

-<required items> __ __,

>--AND IS TERMINATED BY A VEFfflCAL BAR.-----

G50051

The following syntactically valid statements may be constructed from the above diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTICAL
BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional-items> AND IS TERMINATED BY A VERTI
CAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>. <loops> AND IS TERMINATED BY A VER
TICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional-items>, <required-items>, <bridges>, <loops>
AND IS TERMINATED BY A VERTICAL BAR.

REQUIRED ITEMS

No alternate path through the railroad diagram exists for required items or required punctuation.

Example:

--REQUIRED ITEM----

G50052

1-2

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Introduction

OPTIONAL ITEMS

Items shown as a vertical list indicate that the user must make a choice of the items specified. An empty
path through the list allows the optional item to be absent.

Example:

-- REQUIRED ITEM E
<optional item-1 > __ _J
<optional item-2 > --~

G50053

The following valid statements may be constructed from the above diagram:

REQUIRED ITEM

REQUIRED ITEM <optional-item-I>

REQUIRED ITEM <optional-item-2>

LOOPS

A loop is a recurrent path through a railroad diagram and has the following general format:

r-<bridge >---------<return character>

___ j___<object of the loop> _________________ __._ ___________ ~

G50054

Example:

----''-~--<optional item-1 > --~--L---------------------------1

< optional item-2 > __J
G50055

The following statements can be constructed from the railroad diagram in the example.

<optional-item- I>

<optional-item-2>

<optional-item- I>, <optional-item-I>

<optional-item- I>,< optional-item-2>

<optional-item-2>, <optional-item-I>

<optional-item-2>, <optional-item-2>

A <loop> must be traversed in the direction of the arrow heads, and the limits specified by bridges cannot
be exceeded.

1108990 1-3

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Introduction

BRIDGES

A bridge illustrates the minimum or maximum number of times a path may be traversed in a railroad diagram.

There are two forms of <bridges>.

n is an integer which specifies the maximum
number of times the path may be traversed.

n is an integer which specifies the minimum
number of times the path must be traversed.

Example:

_fi___,_

---<optional item-1 >
~<optional item-2 > __ ____.

G50057

The loop may be traversed a maximum of two times~ however, the path for <optional-item-2> must be tra
versed at least one time.

The following statements can be constructed from the railroad diagram in the example.

<optional-item-1 >, <optional-item-2>

<optional-item-2>, <optional-item-2>, <optional-item-1 >

<optional-item-2>

RELATED DOCUMENTATION

The following manuals are referenced in this document:

B 1000 Systems Command and Edit (CANDE) Language User's Manual, form number 1090586.

B 1000 Systems Supervisory Message Control System (SMCS) Reference Manual, form number 1108891.

B 1700/B 1800 Systems System Software Operation Guide, Volume 2, form number 1108966.

14

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 2
BEGINNING IBASIC

The: purpose of this section of the manual is to help beginners as well as those who need a review of the
fun~amental commands in the use of !BASIC. After some introductory comments about !BASIC, this section
guides the user through several examples that teach most of the fundamental commands of !BASIC. For
maximum benefit, the user should have access to a terminal through which the commands and statements pres
ented in this section can be entered. After the user becomes familiar with the commands used in this section,
this •manual will generally be needed only as a reference document.

The easiest way to learn about !BASIC is to use it. Its use is easily learned because IBA SIC "talks" to the
user. As the user enters information to !BASIC, !BASIC tells the user whether the input is correct by respond
ing with the corresponding output or with an error message. This dialogue is referred to in this manual as
''interaction.''

Two: fundamental types of instructions can be presented to !BASIC: (1) system commands, and (2) BASie
language commands and statements. With system commands, the user requests information about the program
currently being written, requests that a particular interactive operation.be performed, or requests other infor
mation concerning the !BASIC system. Some examples are RUN, MAKE, LIST, and DELETE.

BASlC language statements and commands are instructions that are carried out by that portion of !BASIC
that 'executes or performs specified operations of the BASIC language. BASIC statements are entered and
stor~d for later execution (Entry mode). BASIC commands are executed immediately (Command mode). These
two modes are used in the examples in this section. They are briefly explained under Command Mode in this
sectibn., and are fully described in Section 11 under BASIC Commands and BASIC Statement Entry. Examples
of BASlC language commands and/or statements are PRINT, READ, GOTO, and LET.

Through entry of BASIC commands and statements, the user changes the set of data upon which the IBA SIC
system operates. This set of data is referred to as the BASIC environment. It consists of two parts: (1) the
set of BASIC statements that make up a program and (2) the data that is stored in BASIC variables, that
is, data names whose value can be changed. Many of the commands and statements that enable the user to
operate on this environment are introduced in this section. The statements and commands in this section were
tested on a Burroughs TD832 terminal. Output may be slightly different for other types of terminals.

IBASIC USE

The paragraphs that follow guide the user through the fundamental commands of !BASIC and teach some of
the commands and statements from the BASIC language. When asked to enter a command, the user must
type the command on one of the three uppermost lines of the terminal, most conveniently beginning in the
upper left-hand corner, and then press the transmit (XMT) key. For each operation that the. user is asked to
perform., the manual explains exactly what is taking place.

EXECUTING IBASIC

There are several ways to initiate execution of !BASIC. Only one method is shown in this section. A descrip
tion of all methods is found in Appendix B. (Appendix B should be consulted in order to initially configure
IBASJC for the examples in this section as well as for normal execution. In this section, it is assumed that
!BASIC has been configured to be executed under the Supervisory Message Control System (SMCS) using
the SIGN ON syntax as shown in Appendix B.)

To start execution of IBASIC, enter the following from a terminal:

USER <usercode>/<password> ON !BASIC

1108990 2-1

B 1000 Systems Interactive BASIC (lBASIC) Reference Manual
Beginning !BASIC

The computer responds with several messages. The ones pertirn!nt to !BASIC are similar to the following:

MESSAGE QUEUED FOR "!BASIC": WAITING STARTUP SIGNED ON TO "!BASIC",
SIGNAL = * B 1000 BASIC MARK IX.0.41 (04/14/80 14:07) (<usercode>) logged on at 15:24:29.2

These are some of the initial messages displayed when the SMCS SIGN ON command is used to start up
!BASIC. It is not necessary to understand exactly what they mean in order to use !BASIC.

After these initial messages, a status line is displayed on the bottom line of the terminal and a number sign
(#) is displayed in the upper left-hand corner of the terminal. The status line tells the user what the !BASIC
system is doing. The number sign signifies that the system has finished a previous instruction and is waiting
to receive input.

NOTE
If the status line is not displayed on the bottom line of the terminal, or if the num
ber sign is not in the upper left-hand corner, the status line option must be
switched off. Refer to STATUSLINE in Section 12.

MAKING A FILE

To begin writing a BASIC program. enter the following:

MAKE PROGRAMl

This command creates a workfile named PROGRAM I into which user-entered program statements are stored.
After the number sign (#) is displayed again. the system is ready for entry of BASIC language statements.

Enter the following statements one line at a time, pressing the transmit key (XMT) after typing each line. Be
sure to include the line numbers (10, 20, 30, 40) as they appear below.

10 PRINT "PROGRAMI ADDS TWO NUMBERS AND PRINTS THE RESULT."
20 LET A = 9 + 4
30 PRINT "9 + 4 =";A
40 END

Each of these statements is entered into the workfile PROGRAM 1 after transmission. They are stored there
until the user explicitly removes one or more of the statements or until the workfile is removed. These state
ments comprise a BASIC program. When the program is run, the first PRINT statement causes display of
the string of characters that appears between the quotation marks. The LET statement adds 9 and 4 and as
signs the sum to variable A. The second PRINT statement causes display of the string between quotation
marks and the value assigned to variable A. The END statement signifies the end of the program.

Before instructing the computer to execute PROGRAM 1, the user should consider what happens in the case
of an accidentally misspelled BASIC keyword, one of the predefined words which make up the BASIC Ian ..
guage. Assume that the keyword PRINT was accidentally entered as PINT on line 30. To see the effects, enter
the following:

30 PINT "9 + 4 =";A

The user statement and the output will look like the following:

#30 PINT 11 ~ + 4 =11 ;A
---->
error 20 - incomprenensible statement

2-2

B l 000 Systems Interactive BASIC (IBASIC) Reference Manual
Beginning IBASIC

The arrow points to the beginning of the portion of the statement that contains the error. The error message
will help the user to determine exactly what is wrong with the statement. In this case IBASIC could not under
stand what statement was entered since PINT is not a BASIC keyword. This new statement 30 replaced the
old statement 30, even though the new statement was in error. Enter the following to list PROGRAM! and
see the erroneous statement in relation to the correct statements:

LIST

The ~LIST command lists the program statements. The statement in error is highlighted. In order to correct
the error, re-enter the line as follows.

30 PRINT "9 + 4 =";A

The program is now the same as it was originally.

There are many errors that can be detected upon transmission of a line. Each of them is accompanied by
a descriptive message to help the user determine the cause.

EXECUTING A BASIC PROGRAM

In order to instruct the computer to execute the program just written, enter the following:

RUN

The RUN command initiates execution of the program. In PROGRAM I, the first statement executed is the
PRINT statement on line JO. Line 20 is executed next, then line 30, and line 40 last. The flow of execution
continues in this manner unless the programmer specifies that it be changed. Statements that change the flow
are described in detail in Section 7. One of these statements, the GOTO statement, is briefly mentioned in
this section.

The output from the RUN command previously entered is similar to the following:

running "PROGRAM 1" from line 10 at 11 :06:46.4
PROGRAMl ADDS TWO NUMBERS AND PRINTS THE RESULT.
9 + 4 = 13
end run of "PROGRAM J" at line 40

EDITING A PROGRAM

It is obvious that PROGRAM 1 executes correctly, since there were no errors and the output was what was
expeqted, but one hardly needs a computer to find the sum of 9 and 4. The program can easily be changed
to hatidle more significant problems by the addition and deletion of a few statements. The following paragraphs
direct the user to change or edit this program in such a way that it will compute and display the sum of almost
any two numbers. The numbers it will not be able to compute are those that are too large for the computer
to store.

First, do a LIST command to see exactly what the program looks like.

Line 2o is not needed because it only works with the integers 9 and 4. So, delete it by entering the following:

DELETE 20

1108990 2-3

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Beginning IBASIC

This command deletes line 20 from the file currently being written. Now replace the deleted statement with
the following:

20 INPUT A

This statement allows the user to enter a numeric value into variable A from a terminal. The DELETE com
mand was not really necessary since re-entering a new line 20 would have written over the old line 20. The
DELETE command is included here so that the user would become familiar with it. To allow a second input
value, enter the following statement:

25 INPUT B

This statement performs the same operation as line 20, except that the input value is assigned to variable B.
Enter another LIST command to see what has been done·.

Notice that the !BASIC system automatically put the two lines into their proper numerical order. Now, re
enter the PRINT statement on line 30 in the following way:

30 PRINT A; "+''; B; "="; A + B

When run, this PRINT statement causes display of the value stored in vari~ble A, a plus sign (+), the value
stored in variable B, an equal sign (=), and the value A + 8. Now add the following statement so that the
addition can be done repeatedly:

35 GOTO 20

Now execute the program again by entering the RUN command.

A question mark (?) is displayed in the upper left-hand corner of the terminal. This is a prompt, issued as
a result of the appearance of the INPUT statement. A prompt tells the user to enter the required data. In
this case, the data is a number. Enter a number. Enter a second number when the next prompt is displayed.
The program displays the sum. Enter several pairs of numbers to make sure that the program works correctly.

STOPPING EXECUTION OF A BASIC PROGRAM

This program would go on forever, if allowed, but the user probably has better things to do. To stop the pro
gram, depress the SPCFY key on the keyboard of a TD series terminal. For other types of terminals, refer
to the Pseudo BREAK Feature subsection in Section 11.

IBASIC responds with a message similar to the fol1owing:

> > > BREAK received ·- INPUT terminated at line 20

A MORE COMPLEX EX.AMPLE

Remove PROGRAMl and make a new file with a name of your choice by entering the following two instruc
tions.

SCRATCH

MAKE <file-name>

<file-name> must be created by the user. For example, the first or last name of the user will probably be
valid. The maximum length allowed is ten characters.

2-4

B l 000 Systems Interactive BASIC .OBASIC) Reference Manual
Beginning IBASIC

The following sample program callculates the greatest common divisor (GCD) of two integers. Enter the fol
lowing statements. As before, transmit after each statement is entered. If a line of input is too long for one
line on the terminal, continue typing onto the next terminal line - IBASIC allows up to 256 characters to be
entered per line.

10 PRINT ''THIS PROGRAM CALCULATES THE GREATEST COMMON DIVISOR OF
TWO INTEGERS. IT IS ONLY ACCURATE UP TO 16,777,215."
20 PRINT
30 PRINT ''ENTER THE FIRST INTEGER.''
40 INPUT A
50 LET C = A
60 PRINT "ENTER THE SECOND INTEGER."
70 INPUT B
80 LET D = B
90 IF A = B THEN 150
100 IF A < B THEN 130
110 LET A = A - B
120 GOTO 90
130 LET B = B - A
140 GOTO 90
150 PRINT "THE GREATEST COMMON DIVISOR OF"; C; "AND"; D; "IS"; A
160 PRINT
170 PRINT "DO YOU WANT TO CONTINUE? Y ORN"
180 INPUT E$
190 IF E$ = "Y" THEN 30
200 IF E$ = "N" THEN 230
210 PRINT "COME ON, Y OR N CANNOT BE THAT HARD ... TRY AGAIN."
220 GOTO 180
230 END

Before proceeding to an explanation of the new statements used in this program, enter the RUN command
to see how it works.

Instructions for the program are displayed by the program on the user's terminal. Follow these instructions
and enter several pairs of integers to validate the correctness of the program and to become familiar with it.

Unlike the previous example in which outside intervention (BREAK) was necessary to stop execution, the
GCD program can be stopped programmatically. In other words, the user can instruct the program to stop
itself without any outside intervention. Stop the program by following the instructions displayed by the pro
gram.

Each of the statements in the current program ·- program that is currently loaded into the BASIC
envirdnment - is now briefly described. In order to see each statement as it is described, do a LIST in the
following manner:

LIST 10 TO 200

The PRINT statement on line 10 causes display of the string between the quotation marks. This string contains
instructions for the operator of the program. Notice that the string of characters in the sample program is too
long to fit on one terminal line so it has been continued on the next terminal line.

The PRINT statement on line 20 causes display of a blank line to improve readability of the program as it
is executed.

1108990 2-5

B 1000 Systems Interactive BASIC (IBASJ[C) Reference Manual
Beginning IBA SIC

The PRINT statement on line 30 causes display of the string between the quotation marks. This quoted string
(string within quotation marks) instructs the user to enter an integer value.

Line 40 contains the INPUT statement that allows input to the program. It also causes the prompt character
(?) to be displayed on the terminal.

Line 50 causes the contents of variable A to be assigned to variable C.

The PRINT statement on line 60 causes display of the string within the quotation marks. The string contains
additional instructions.

Line 70 accomplishes the same taslk that line 40 did, except that variable B is used.

Line 80 causes the contents of variable B to be assigned to variable D.

Line 90 contains a statement that has not yet been described, the CF statement. The IF statement tests a condi
tion to see whether it is true or false. In this case, the condition is "Is A equal to B?" If the condlition is
true, the statement following the word THEN is executed. When this statement is a line number, the next
statement executed is the statement whose line number appears after the word THEN. Line 90 is read in the
following way: If the contents of variable A are equal to the contents of variable B, then go to line number
150. If A is not equal to B, the statement following the IF statement is executed.

Line 100 contains another IF statement. This statement is read as follows: If the contents of variable A are
less than the contents of variable B, then go to line number J3i0. If A is not less than B, the statement on
line 1 IO is executed.

On line 110, the contents of Bare subtracted from the contents of A and the difference is stored in variable A.

Line 120 jumps execution back to line 90.

On line 130, the contents of A are subtracted from the contents of B and the difference is stored in variable B.

Line 140 is a duplicate of line 120.

The PRINT statement on line 150 causes the answer to be displayed.

The PRINT statement on line 160. like line 20, is for readability.

Line 170 asks if the program is to be continued.

Line 180 contains another INPUT statement. This time, though. a dollar sign ($) comes after the variable.
The variables that have been used up to now (A. B. C. D) only allow the use of numbers with them. A variable
with a dollar sign following it allows the use of alphabetic characters. Variable E$ receives the N or Y that
the user enters.

Line 190 tests the contents of variable E$. If E$ contains a Y, then the program continues at line 30.

Line 200 also tests the contents of variable E$. If E$ contains an N, then line 230 is executed next.

Do another LIST:

LIST 210 TO 230

Now the remainder of the statements can be seen.

2-6

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Beginning IBASIC

Line 210 displays an instructive message to the user. This line is executed only if E$ does not contain an
N or a Y.

Line 220 causes execution to continue with line 180.

Line 230 ends the program.

Even though all the statements have been discussed separately, the user may still not understand how the
program actually calculates the GCD of two integers. In order to understand this, each statement must be un
derstood in relation to the other statements in the program. This exercise, left to the user, entails simulating
the computer; that is, thinking through what the computer would do with each statement of the program.

PROGRAM DEBUGGING COMMANDS

There are two additional types of commands described in this section. The first type, IBASIC debugging com
mand:s, involves several more IBASIC commands. The second, command mode, involves using the BASIC
language statements in a different manner than they have been used up to this point in the manual. The GCD
program is used to explain these features.

Some IBASIC Commands for Debugging

Ente~ the RUN command again. Now enter the integers 16777215 and 16777214. The user will certainly tire
of waiting for this answer, but the delay will give us time to examine the two types of commands mentioned.
Begin by depressing the SPCFY key as in the previous example. The use of the SPCFY key in this manner
is known as a BREAK. The user will now be guided in the use of several commands useful in examining
the execution of a program.

First, find out where execution was terminated by entering the following IBASIC command:

WHERE

IBASJC responds with a message similar to the following:

you are stopped - ready to continue at line 130

After a program is stopped, it may be executed 'one statement at a time with the STEP command. The STEP
command may be entered in two ways: (1) by explicitly entering the word STEP, or (2) by pressing the SPCFY
key. Enter the STEP command if it has not been entered already.

IBASIC executes the next statement, displays it, and stops before the execution of the subsequent statement.
An entire program may be executed in this manner, if desired. STEP is useful when the execution of sections
of code need to be closely observed. To resume normal execution, use the CONTINUE command.

CONTINUE

Before this program terminates, stop execution again by using the BREAK feature (SPCFY key).

Command Mode

As mentioned in the first part of this section, BASIC language statements may be entered in two ways: Com
mand mode and Entry mode. All of the BASIC statements entered up to this point in the manual have been
in the Entry mode. Entry mode statements are entered into a file and stored for subsequent use and are char
acterized by a line number at the beginning of the line.

1108990 2-7

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Beginning !BASIC

In Command mode, the line number is omitted. This om1ss1on tells !BASIC that the statement is to be
executed immediately. Many of the BASIC statements may be used in Command mode. A list of the state
ments that cannot be used in Command mode appears in BASIC Commands in Section 11. To understand
how Command mode can help in analyzing a program, enter the following:

PRINT A; B

The values displayed are the current values of the variables A and B from the GCD program. They are only
of value to those users who understand how the program calculates the greatest common divisor. These users
know that A is continually subtracted from B, or vice versa, until the two variables are equal. As one can
see from the output of the PRINT statement previously entered in command mode, one of the variables has
the value 1 and the other contains a very large number. Obviously, the program takes quite a while to run
to termination. The time necessary for this program to finish can be reduced if the larger of the two variables
is made smaller. So, using another BASIC statement in Command mode, change the value of the larger
variable. You can determine which of the two variables is the larger by using the PRINT command (Command
mode).

Change the value of the larger variable to 1000 by entering the following statement:

LET <larger variable> = 1000

Resume execution by entering the CONTINUE command. The program will terminate quite rapidly.

SAVE, SCRATCH, AND BYE COMMANDS

The last three commands that the user will want to learn about before leaving the terminal are the SAVE.,
SCRATCH, and BYE commands.

If you want to save the program for later use, enter the following:

SAVE

The SA VE command creates a copy of the current workfile and stores it on disk. If you do not want to SA VE
the program, enter the following:

SCRATCH

The SCRATCH command, as previously shown, removes the current program.

In order to terminate the !BASIC system, enter the following command:

BYE

The BYE command causes termination of the IBASIC system. The output is similar to the following:

connect time = 00:05:36.0, cpu time = 2 units
(<usercode>) logged off at 15:27:29.6
goodbye
REMOTE FILE CLOSED BY "IBASIC".

In order to sign off SMCS, enter BYE again.

2-8

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 3
PROGRAM COMPOSITION

A BASIC program is made up of a number of lines. Each line consists of characters from the character set
for BASIC. The concepts of lines, characters, and the fundamental rules for combining these elements in order
to write BASIC programs are described in this section.

STATEMENT LINES

A statement line consists of a line number followed by a BASIC language statement. The maximum length
al.lowed for a statement line is 256 characters. There may be a maximum of 1979 statement lines in a program.

Unl¢ss otherwise specified, the term "line" in this manual is not synonymous with the same term as used
in relation to a terminal or a printer. For example, one statement line may occupy three "lines" on a terminal.

Syntax:

<digit> is any decimal digit. At least one <digit> must be nonzero. Leading zeros have no effect, other than
couhting as a digit in the line number. <BASIC-language-statement>s are described in Sections 4 through 10.

Examples of statement Jines:

99999 PRINT A
l REM THIS IS THE START OF THE PROGRAM.

0001 PRINT "ENTER YOUR NAME."
02340 LET A$(X *Y) = "25" & Al$

100 BREAK

CHARACTER SET

NOTE
Line numbers are generally omitted from statement
lines in the examples in this manual. However, they
must be included in all statements entered to BASIC
programs.

A BASIC statement line consists of characters from the character set for BASIC. The standard character set
for BASIC is contained in the International Reference Version of ISO Standard 646, 7-Bit Input/Output Coded
Character Set, 4th Edition. Table E-1 in Appendix E contains this character set. BASIC can also use the
EB<!DIC character set if the user desires (refer to the OPTION statement in Section 5). Table E-2 in Appendix
E d;mtains this character set. All lower-case characters are translated directly to their upper-case equivalent
everywhere within the !BASIC system except for strings enclosed within quotation marks (for example, print
a,b is equivalent to PRINT A,B).

PROGRAM DOCUMENTATION

BASIC programs may be documented with tail comments at the end of statement lines or with a separate state
ment called a REM statement.

1108990 3-1

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Program Composition

TAIL COMMENTS

A tail comment can be entered at the end of a line in order to provide a clear description of what a BASIC
statement or a group of BASIC statements does. Tail comments have no effect on the execution of a program.

Syntax:

--- < statement-line > ------ < exclamation-mark > < remark-string > -----------

G18001

<statement-line> is described under Statement Lines in this section. <exclamation-mark> indicates the begin
ning of the tail comment. <remark-string> is any string of characters that the programmer chooses in order
to explain the statements of the program.

Examples of tail comments:

PRINT A, B, C
LET T = T2 -- TI

REM STATEMENT

! PRINT THE ANSWERS
! SUB INITIAL TIME FROM TERMINAL TIME

The REM statement must occur on a line by itself. It serves to document a program and has no effect on
the execution of the program.

Syntax:

--- REM <remark-string > ------,--1
G18002

<remark-string> is any string of characters that the programmer chooses in order to explain the statements
of the program.

Examples of REM statements:

REM THIS PROGRAM CALCULATES THE GREATEST COMMON DIVISOR
REM OF TWO INTEGERS.

STOP STATEMENT

The STOP statement causes termination of the program.

Syntax:

--- STOP ------

G18003

The STOP statement may occur anywhere within a program.

3-2

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Program ·Composition

END STATEMENT

The END statement marks the physical end of the program and causes termination of execution of the program
when encountered.

Syntax:

G18(i)04

The END statement may occur only at the physical end of the main program.

GENERAL SYNTAX RULES

The following rules must be observed in writing a BASIC program.

1. Each statement of a program must begin with a unique, positive, nonzero line number and must con
tain one BASIC statement.

2. Spaces must not occur within keywords, within the word TAB in a tab call, within numeric constants,
within line numbers, within variable names, or within multicharacter relation symbols (>=, =<).
Spaces may occur anywhere else within a program to enhance readability. For example:

b GO TO :l4~
1~ GO TO L4!;)
1~GOT024:;>
1~ G 0 TO 2 4 ~

NOTE
It is strongly recommended that spaces be used surrounding keywords since spaces
in these positions may be required in the future.

3. Each program must terminate with an END statement.
4. Lines are executed in sequential order, starting with the first line in the program, and continuing until

some other action is dictated by execution of a control statement, until a STOP or END statement
is executed, or until the occurrence of a fatal error (an error which stops the execution of a program).

5. Upper-case and lower-case characters are interchangeable. Lower-case characters are translated to
their upper-case equivalents everywhere within the IBASIC system except in strings within quotation
marks.

1108990 3-3

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 4
NUMERIC DATA CONSTRUCTS

There are two data types in BASIC: numeric and string. Associated with each of these data types are con
stants, variables, and intrinsic functions from which expressions can be formed. This section deals with data
type numeric and the expressions that can be formed from the fundamental numeric constructs. Strings are
explained in Section 5.

NUMERIC CONSTANTS

Numeric constants are used to denote numeric values. Unlike some programming languages, BASIC does not
distinguish between numbers containing a decimal point (real numbers) and those written without a decimal
point (integers): all numeric values in !BASIC are stored internally in floating-point form, that is, as a sign,
exponent, and fraction, and are handled 'as real numbers.

Syntax:

L<sign> < integer > I · T < integer > E T < sign > T < integer >

G18005 · < integer >-------'

<sign> is a plus sign (+) or a minus sign (-). <integer> is a series of decimal digits.

Semantics:

Numeric values are maintained with a precision of at least six decimal digits (21 to 24 binary digits depending
on the value). They may range from approximately 5.39761E-79 to 7.23701E+75.

E signifies "times ten to the power." For example, 2.145E-4 is read as 2.145 times ten to the power -4 and
represents the value .0002145. If the <sign> is omitted, plus (+) is assumed.

Examples of numeric constants:

-21.
lElO
5E-2
.4E+l
500
1
.255

1108990 4-1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Numeric Data Constructs

NUMERIC VARIABLES

A numeric variable is a symbolic name used to represent a numeric value which may be changed during pro
gram execution by a numeric assignment statement. (Refer to Numeric Assignment Statement in this section.)
Numeric variables may either be simple or subscripted. All numeric variables, whether simple or subscripted,
are of type real. A subscripted variable is one element of an array. Arrays are described in Section 6.

Syntax:

< letter > L <digit > J[(< subscript > L • < subscript > T)

G18006

<letter> is any English alphabet character (A through Z). <digit> is any decimal digit (0 through 9). The
same <letter> or <letter> <digit> combination cannot be used as the name of both a simple numeric variable·
and a numeric array, nor the name of both a I-dimensional (one <subscript>) and a 2-dimensional (two <sub
script>s) numeric array. <subscript> is any numeric expression. It is .an index into the array. <subscript>
is always rounded to the nearest integer. The rounded value is defined as INT(< subscript>+. 5), where INT
signifies "the largest integer not greater than." A <subscript> must be in the allowable range of subscripts
for the array being referenced.

Semantics:

Explicit declarations of numeric variables in BASIC are not necessary except in the case of certain subscripted
numeric variables. These declarations are described in Section 6. Numeric variables with no explicit declara
tion are implicitly declared through their appearance in a program unit. Of these implicitly declared numeric
variables, those followed by one or two subscripts are numeric arrays whose subscripts can range in value
from zero, or one, to ten. A subscripted numeric variable refers to the element in the 1- or 2-dimensional
array selected by the value(s) of the subscript(s). A numeric variablle that has no subscripts and does not occur
in a MAT statement (refer to Section 6) is a simple variable.

The initial value of each numeric variable at execution time is zero.

Examples of numeric variables:

4-2

x
AS
V(4)
W(X,X+Y/2)

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Numeric Data Constructs

NUMERIC ASSIGNMENT STATEMENT

The numeric assignment statement is used to assign a computed value to a list of simple or 'ubscripted
va11iables.

Syntax:

(--c- LET ----- < numeric-variable > ---- < numeric-expression > --------------i

G18007

<numeric-variable> is described under Numeric Variables in this section. Simple and subscripted variables
may appear in the same list of <numeric-variable>s. <numeric-expression> is any numeric expression valid
in BASIC.

Semantics:

A numeric assignment statement is evaluated in the following manner: The subscripts, if any, of variables in
the <numeric-variable> list are evaluated in sequence from left to right. Next, the expression on the right
of the equal sign (=)·is evaluated. Finally, the value of that expression is assigned to each variable in the
<numeric-variable> list.

EXiamples of numeric assignment statements:

LET P = 3.14159
LET A(X,3) = SIN(X) *Y + I

LET A, Y(I), Z = I + I

A= B

LET T(l,J), I, J I + J

P gets an approximation of Pl.
Array element A(X,3) is
assigned the expression value.
A, Y(I), and Z are assigned
I + I.

A is assigned the value of B.

! The listed variables are
! assigned the sum of I and J.

In the last example, understanding the order of evaluation of a numeric assignment statement is necessary in
orqer to fully understand the statement. ·Assume that variables I and J have the values I and 2 respectively.
The subscripts, I and J, in the reference to array T are evaluated first. Thus, the array element being refer
enqed is T(l,2). The numeric expression, I + J,Js then evaluated. Its value is 3. Thus, the assignment state
ment results in the assignment of 3 to variables T(l ,2), I, and J. In contrast, if subscripts in the <numeric
vaniable> list were evaluated after the <numeric expression> had been assigned to I and J, the array element
referenced would have been T(3,3).

I 1@8990 4-3

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Numeric Data Constructs

NUMERIC EXPRESSIONS

A numeric expression is any numeric constant, numeric variable, numeric function reference, or a combination
of these separated by the operators representing addition, subtraction, multiplication, division, and exponentia
tion.

Syntax:

~----- < operator > ------

-.....---<sign >----------<numeric-constant>----..----'--------------------,

< numeric-variable > -----i

< numeric-function-ref > ------1

(<numeric-expression >)

G18008

<operator> is one of the following:

Operator and Name
/\ Circumflex accent
* * Double asterisk
+ Unary plus

Unary minus
* Asterisk

Solidus
+ Plus sign

Minus sign

Meaning
Exponentiation
Exponentiation
No actlon
Negation
Multiplication
Division
Addition
Subtraction

<numeric-constant> is defined under Numeric Constants in this section. <numeric-variable> is defined under
Numeric Variables in this section. <numeric-function-ref> includes the intrinsic numeric functions as defined
under Intrinsic Numeric Functions in this section and the user-defined numeric functions as defined under
User-Defined Functions in Section 8. User-defined functions must be defined in the program unit in which
they are referenced. The appearance of a <numeric-expression> between parentheses signifies that a numeric
expression may be used as an operand in a larger numeric expression which encompasses the numeric expres
sion in parentheses.

Semantics:

The rules for formation and evaluation of numeric expressions follow normal algebraic rules. There are four
levels of precedence. These levels, listed in order from highest precedence to lowest, follow.

1. Exponentiation
2. Unary plus and minus
3. Multiplication and division
4. Addition and subtraction

The order of evaluation can be changed by the use of parenthesies. Operations within parentheses are per
formed first. Operations on the same precedence level are performed left to right unless parentheses dictate
otherwise. Refer to the examples that follow in this subsection for detailed explanations of specific cases.

4-4

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Numeric Data Constructs

W~en numeric overflow or underflow occurs, that is, when a numeric value either exceeds or is less than
th¢ allowable limits for numeric values, the condition is reported and execution continues. The resultant value
wHen overflow occurs is the largest representable value, 7.237E+.75. The resultant value when underflow oc
curs is zero. Division by zero, and zero raised to a negative power are treated as overflows. O* *0 is defined
as 1. When a negative number is raised to a nonintegral power a fatal error occurs.

Examples of numeric expressions:

3 *X-Y**2

A(l) + A(2) + A(3)

-X/Y

2 * *(-X)

SQR(X**2+ Y* *2)

A-B-C

A **B* *C

A/B/C

-A**B

INTRINSIC NUMERIC FUNCTIONS

! Y squared is subtracted from the
! product of 3 and X.

! The array elements listed are added.

! Negative X divided by Y.

! 2 raised to the negative Xth power.

! The square root of the sum of X
! squared and Y squared.

! (A - B) - C

! (A** B) ** C

! (A I B) I C

! - (A * * B)

Predefined functions are supplied as part of the !BASIC system for the evaluation of commonly used numeric
functions. The general syntax for the intrinsic numeric functions follows.

Syntax:

--. -- <intrinsic-numeric-function>-.....---- (_L~; _=1_..___) ----..---------1

G18009

Semantics:

A description of each of the <intrinsic-numeric-function>s with its meaning follows. Zero, one, or two <argu
meht>s can be included depending on the function. In all cases, X and Y represent numeric expressions and
A liepresents a numeric or string array.

1108990 4-5

B 1000 Systems Interactive BASIC (IBASlC) Reference Manual
Numeric Data Constructs

ABS(X)

The absolute value of X.

Example:

LET X = 25.5
PRINT "ABSOLUTE VALUE OF A =" ;ABS(X)
PRINT "ABSOLUTE VALUE OF -123.45 =";ABS(-123.45)

When the statements in this example are run, the following output is produced.

ABSOLUTE VALUE OF A = 25.5
ABSOLUTE VALUE OF -123.45 123.45

ACOS(X)

The arccosine of X in radians, where 0 <= ACOS(X) <= PI; X must be in the range -1 <= X <= 1, PI
= 3.14159.

ANGLE(X,Y)

The angle in radians between the positive x-axis and the vector joining the origin to the point with coordinates
(X,Y), where -PI < ANGLE(X,Y) <= PI. The values of X and Y cannot both be zero.

Example:

PRINT "ANGLE BETWEEN (1,0) AND (1,1) IS";ANGLE(l,1)

Executi~m of this example causes the following to be displayed.

ANGLE BETWEEN (1,0) AND (1,1) IS .785398

ASIN(X)

The arcsine of X in radians, where --PI/2 <= ASIN(X) <= PI/2; X must be in the range -I <= X <= 1.

ATN(X)

The arctangent of X in radians; that is, the angle whose tangent is X, where -(PI/2) < ATN(X) < (PI/2).

CEIL(X)

The smallest integer not less than X.

Examples:

PRINT "CEIL OF 1.5 IS";CEIL(l.5)
PRINT "CEIL OF -1.5 IS ";CEIL(-1.5)

Execution of these statements gives the following output:

4-6

CEIL OF ·J .5 IS 2
CEIL OF -1.5 IS -1

COS(X)

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Numeric Data Constructs

The cosine of X, where X is in radians.

COSH(X)

The hyperbolic cosine of X, where X is in radians.

COT(X)

The cotangent of X, where X is in radians.

CSC(X)

The cosecant of X, where X is in radians.

DATE

The current date in decimal form YYDDD, where YY is the last two digits of the year and DOD is the number
of days elapsed in the year.

Example:

PRINT DATE

If the date was May 17, 1980, this example would give the following output:

80138

DEG(X)

The number of degrees in X radians.

Examples:

PRINT "DEG OF PI IS" ;DEG(PI)
PRINT "DEG OF PI/6 IS" ;DEG(PI/6)

Execution of these examples gives the following output:

EPS

DEG OF PI IS 180
DEG OF PI/6 IS 30

The smallest positive nonzero number that can be represented by the machine: 5.39761E-79

EXP(X)

The exponential of X; that is, the value of the base of natural logarithms (2.71828) raised to the power X.

1108990 4-7

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
Numeric Data Constructs

FP(X)

The fractional part of X. FP(X), is equivalent to X - IP(X), where IP signifies "integer part of."

Example:

PRINT "FP OF 17.358795 IS";FP(17.358795)

Execution of this example produces the following output:

FP OF 17 .358795 IS .358795

INF

The largest positive number that can be represented by the machine: 7 .237E+ 75

INT(X)

The largest integer not greater than X.

Example:

A= 6.9
B = 6
c = -6.14
PRINT "LARGEST INTEGER NOT GREATER THAN"; A;" IS"; INT(A)
PRINT "LARGEST INTEGER NOT GREATER THAN"; B;" IS"; INT(B)
PRINT "LARGEST INTEGER NOT GREATER THAN ";C;" IS "; INT(C)
PRINT '"LARGEST INTEGER NOT GREATER THAN -2 IS "; INT(-2)

Execution of the above example causes the following to be displayed.

LARGEST INTEGER NOT GREATER THAN 6.9 IS 6
LARGEST INTEGER NOT GREATER THAN 6 IS 6
LARGEST INTEGER NOT GREATER THAN -6.14 IS -7
LARGEST INTEGER NOT GREATER THAN -2 IS -2

IP(X)

The integer part of X. IP(X) is equivalent to SGN(X) *INT(ABS(X)).

Examples:

PRINT "IP OF -6.14 IS" ;IP(--6.14)
PRINT "IP OF 6.9 IS";IP(6.9)

Execution of these examples causes the following to be displayed.

4-8

IP OF -6.14 IS -6
IP OF 6.9 IS 6

LDIM(A,X)

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
Numeric Data Constructs

The lower bound for the Xth subscript of array A.

Example:

DIM A(l0,10)
PRINT "LDIM OF THE 2ND SUBSCRIPT OF ARRAY A IS";LDIM(A,2)

Execution of this example gives the following output:

LDIM OF THE 2ND SUBSCRIPT OF ARRAY A IS 0.

LOG(X)

The natural logarithm of X. X must be greater than zero.

LOG10(X)

The common logarithm of X. X must be greater than zero.

LOG2(X)

The base 2 logarithm of X. X must be greater than zero.

MAX(X,Y)

The larger of X and Y .

. MIN(X,Y)

The smaller of X and Y.

MOD(X,Y)

The modulo function, MOD(X,Y), is equivalent to X-Y*INT(X/Y) if Y is nonzero, and is equivalent to 0 if
Y is zero.

Example:

PRINT "MOD OF 100 AND 90 IS" ;MOD(l00,90)
PRINT "MOD OF 10 AND -4 IS ";MOD(l0,-4)

Execution of this example causes the following to be displayed.

Pl

MOD OF 100 AND 90 IS 10
MOD OF 10 AND -4 IS -2

The constant 3.14159, which is the ratio of the circumference of a circle to its diameter.

11:08990 4-9

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Numeric Data Constructs

RAD(X)

The number of radians in X degrees ..

Example:

PRINT "RAD OF 30 DEGREES IS" ;RAD(30)

Execution of this example gives the following output:

RAD OF 30 DEGREES IS .523599

REM(X,Y)

The remainder function. REM(X,Y) is equivalent to X-Y*IP(X/Y) if Y is nonzero, and is equivalent to 0 if
y = 0.

Examples:

PRINT "REM OF 100 AND 90 IS";REM(l00,90)
PRINT '"REM OF 10 AND -4 IS";REM(l0,-4)

Execution of these examples causes the following to be displayed.

REM OF 100 AND 90 IS 10
REM OF 10 AND -4 IS 2

RND

The next pseudo-random number in the sequence of pseudo-random numbers uniformly distributed in the range
0 < = RND < 1. The RANDOMIZE statement can be used in conjunction with the RND function to initiate
a different and unpredictable sequence of pseudo-random numbers. Refer to the subsection entitled RAN
DOMIZE statement in this section.

SEC(X)

The secant of X, where X is in radians.

SGN(X)

The sign of X, SGN(X), is -1 if X < 0, is 0 if X 0, and is +I if X > 0.

SIN(X)

The sine of X, where X is in radians.

SINH(X)

The hyperbolic sine of X, where X is in radians.

SQR(X)

The nonnegative square root of X. X must be nonnegative.

4-10

TAN(X)

B 1000 Systems Interactive BAS KC (I BASIC) Reference Manual
Numeric Data Constructs

The tangent of X, where X is in radians.

TANH(X)

The hyperbolic tangent of X, where X is in radians.

TliME

The time elapsed since the previous midnight, expressed in seconds; for example, the value of TIME at 11: 15
AM is 40500.

Example:

T = TIME
FOR X = I TO 5E5

LET A= X
NEXT X
PRINT "ELAPSED TIME IS";TIME - T;"SECONDS."

Execution of this program segment causes the following to be displayed.

ELAPSED TIME IS 123 SECONDS.

UDIM(A,X)

The upper bound for the Xth subscript of array A.

Example:

DIM B(I00,10)
PRINT "UDIM OF THE IST SUBSCRIPT OF B IS";UDIM(B,1)

Execution of this partial program causes the following to be displayed.

UDIM OF THE lST SUBSCRIPT OF B IS 100

As with numeric expressions, in case of an overflow or underflow in a numeric function, the condition is re
ported. the appropriate value (the largest machine value for overflow and zero for underflow), is substituted
and execution continues.

The result of evaluating a numeric function is a s~alar numeric value (quantity characterized by a single value)
which replaces the <numeric-fu_nction-ref> in the numeric expression.

;

RANDOMIZE STATEMENT

Th~ RANDOMIZE statement overrides the normal sequence of pseudo-random numbers used as values for
the RND function, generating a different and unpredictable sequence of pseudo-random numbers used subse
quently by the RND function.

Syntax:

--RANDOMIZE-----------

G1$010

1108990 4-11

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 5
STRING DATA CONSTRUCTS

Th¢re are two data types in BASIC: numeric and string. Numeric constructs are described in Section 4. Strings
may contain arbitrary sequences of characters, and their lengths are variable. The constructs used with strings
are! described in detail in this section.

STRING CONSTANTS

A string constant is a string of characters enclosed within quotation marks (").

Syntax:

r -~~~·~
·--· -- " ---------- < quoted-string-character > ~T . "

<quoted-string-character> is any character in Table E-1, Appendix E, except those characters in ordinal posi
tions 0 through 31, 34, 64, 91 through 93, 96, and 123 through 127. A quotation mark, ordinal position 34,
may be included in a string constant by representing it by two adjacent quotation marks. The length of a string
constant is limited to 255 bytes.

Examples:

''XYZ''
"1 EIO"
"He said, ""Don't."""

STRING VARIABLES

! Two adjacent quotation marks,
! used to represent one quotation
! mark inside the string.

A string variable is a symbolic name used to represent a string value. A string variable may be changed during
program execution by a string assignment statement (refer to String Assignment Statement in this section).
String variables may either be simple or subscripted. The proper syntax for a string variable follows.

Syntax:

----<letter>---....--< digit> T $ [_(_<_s_u_b_s_c_r-ip_t_> _____ <_s_u_b-sc-r-ip_t_>_T ____ _

G18012

<letter> is any English alphabet character (A through Z). <digit> is any decimal digit (0 through 9). The
same <letter> or <letter> <digit> combination cannot be used as the name of both a simple string variable
and a string array, nor as the name of both a I-dimensional and a 2-dimensional string array. <subscript>

1108990 5-1

B 1000 Systems Interactive BASK (!BASIC) Reference Manual
String Data Constructs

is any numeric expression. <subscript> is always rounded to the nearest integer. The rounded value is defined
as INT(<subscript>+ .5). A <subscript> must be in the allowable range of subscripts for the array being refer
enced.

Semantics:

The length of the character string associated with a string variable ·can vary during the execution of a program
from a length of zero characters, signifying the null or empty string, to a maximum length of 255 characters,
or to the length defined in a string declaration. Refer to String Declarations in this section for further informa
tion on length specification of a string variable.

Explicit declarations of string variables in BASIC are not necessary except when it is desired to set a
maximum assignable length. for the string to a value less than 255. Declarations involving subscripts are de
scribed in Section 6. The description of the method for declaring a specific length is under String Declarations
in this section.

String variables with no explicit declaration are implicitly declared through their appearance in a program. Of
these implicitly declared string variables, those followed by one or two subscripts are string arrays whose sub
scripts can range in value from zero or one to ten. A subscripted string variable refers to the element in the
1- or 2-dimensional array selected by the value(s) of the subscript(s). A string variable with no subscripts is
a simple variable.

The initial value of each string variable at execution time is the null string ('' '').

Examples of string variables:

K$
R2$
A$(4)
B 1$(I,J)

STRING ASSIGNMENT STATEMENT

The string assignment statement is used to assign a string value to a list of simple or subscripted variables.

Syntax:

I
.___L_E_T_J ____ .___ < string-variable > < string-expression > -----------,

G18013

<string-variable> is described under String Variables in this section. Simple and subscripted variables may
appear in the same list of <string-variable>s. <string-expression> is any valid string expression in BASIC.

Semantics:

A string assignment statement is eva1uated in the following manner: The subscripts, if any, of variables in the
<string-variable> list are evaluated iin sequence from left to right. Next, the expression on the right of the
equal sign (=) is evaluated. Finally, the value of that expression is assigned to each variable in the <string
variable> list.

S-2

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
String Data Constructs

If the assignment of a string to a string variable causes an overflow of that variable, which means that more
characters have been assigned to the variable than are allowed, an error message is displayed and program
execution terminates.

Examples of string assignment statements:

LET A$ = "ABC"

LET C$(I) = B$

A$,B$ = "NEGATIVE" & "DISCRIMINANT"

STRING EXPRESSIONS

! String constant ABC is assigned to A$.

! Ith element of array C$ gets contents
! of B$.
! A$ and B$ get the value
! of the string expression.

A string expression is any string constant, string variable, string function reference, or concatenation of these.

Syntax:

_1L < string-con:tant > · ~ c <string-variable>

<string-function-ref >
G18014

<st~ing-constant> and <string-variable> are defined in this section under String Constants and String
Variables, respectively. <string-function-ref> includes the intrinsic string functions as defined under Intrinsic
Stripg Functions in this section, and the user-defined string functions defined in Section 8 under User-Defined
Functions. The ampersand character (&) signifies concatenation.

Semantics:

Concatenation is the joining of the end of one string to the beginning of another.

ff the result of a string operation is longer than 255 characters, a fatal error occurs.

Examples of string expressions:

"SOONER OR"

X$(1,3)

A$ & B$

B$ & A$

A2$ & B$ & "223"

String constants are string expressions.

String variables are string expressions.

! Following text gives explanation.

Following text gives explanation.

! Concatenation of two string variables
! with a string constant.

Thei third example, A$ & B$, shows the use of the concatenate operator (&). Assume that A$ contains the
con~tant "COME " and that B$ contains the constant "IN". A$ & B$ gives "COME IN".

1108990 S-3

B I 000 Systems Interactive BASIC (IBASIC)l Reference Manual
String Data Constructs

For the fourth example, B$ & A$, assume that A$ and 8$ contain the same values as before. B$ & A$ gives
"INCOME "

Example:

A$ "FIRST ---"
B$ "SECOND ---"
C$ A$ & B$ & "THIRD"
PRINT C$

Execution of this example gives the following output:

FIRST ---SECOND ---THIRD

INTRINSIC STRING AND STRING-RELATED fUNCTIONS

Predefined functions are supplied as part of the lBASIC system for the evaluation of commonly used string
valued functions and numeric-valued functions whose arguments (parameters passed to a function) are strings.
The general syntax for the intrinsic string functions follows.

Syntax:

~·1 < intrinsic-string-function > ---c_ (< argument > _______ ___.

G18015

The number of <argument>s depends on the function.

Semantics:

A description of each of the <intrinsic-string-function>s follows. In each of the descriptions, M represents
an index, that is, the rounded integer value of some numeric expression; X represents a numeric expression,
and A$ and B$ represent string expressions.

The result of evaluating a string function is a character string which replaces the <string-function-ref> in the
string expression.

CHR$(M)

The I-character string consisting of the character occupying ordinal position M in the collating sequence for
the declared character set. (Refer to Tables E-1 and E-2 for the possible collating sequences). M must be great
er than zero and less than the number of characters in the declared character set.

Example:

5-4

OPTION COLLATE STANDARD
PRINT "THE 53RD CHARACTER IS" ;CHR$(53)
PRINT "THE 65TH CHARACTER IS" ;CHR$(65)

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
String Data Constructs

Execution of this partial program causes the following to be displayed.

THE 53RD CHARACTER IS 5
· THE 65TH CHARACTER IS A

DATE$

The date in the string representation YY/MM/DD.

Example:

PRINT DATE$

If the date was May 17, 1980, this example would give the following output:

80/05/17

LBN(A$)

The number of characters in the value associated with A$.

Example:

READ A$,B$,C$,D$
PRINT "A$ = ";A$;" LENGTH OF A$ =";LEN(A$)
PRINT "B$ = ";B$;" LENGTH OF B$ =";LEN(B$)
PRINT "C$ = ";C$;" LENGTH OF C$ =";LEN(C$)
PRINT "D$ = ";D$;" LENGTH OF D$ =";LEN(D$)
DATA ABC, DEFGH,IJKLMNOPQRST,U V W X Y Z ! DATA statement is

! described in

Execution of the above example causes the following to be displayed.

A$ = ABC LENGTH OF A$ = 3
B$ = DEFGH LENGTH OF B$ = 5
C$ = IJKLMNOPQRST LENGTH OF C$ == 12
0$ = U V W X Y Z LENGTH OF D$ = 11

lWnC$(A$)

The lower-case equivalent of the value of A$.

Example:

A$ = "ABCDEF123"
! PRINT L WRC$(A$)

Ex¢cution of this example gives the following output:

abcdef123

1108990

! Section 9.

5-5

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
String Data Constructs

ORD(A$)

The ordinal position of the character associated with A$ in the collating sequence of the declared character
set, where the first member of the character set is in ordinal position zero. The acceptable values of A$ are
the single character graphics of the character set and the 2- and 3-character mnemonics of the character set.
The acceptable values for the character sets are shown in Tables E-1 and E-2. If the character associated with
A$ is not an acceptable value, a fatal error occurs.

Example:

OPTION COLLATE STANDARD
PRINT "THE ORDINAL POSITION OF BS IS";ORD("BS")
PRINT "THE ORDINAL POSITION OF A IS";ORD("A")
PRINT 'THE ORDINAL POSITION OF 5 IS";ORD("5")
PRINT "THE ORDINAL POSITION OF SOH IS";ORD("SOH")

Execution of the above example produces the following output:

THE ORDINAL POSITION OF BS IS 8
THE ORDINAL POSITION OF A IS 65
THE ORDINAL POSITION OF 5 IS 53
THE ORDINAL POSITION OF SOH IS 1

POS(A$,8$)

The character position in A$ where B$ occurs. The leftmost character in A$ is position 1. If B$ does not
occur within A$, then POS(A$,B$) is 0. POS(A$,"") is 1 unless A$ is the null string, in which case
POS(A$, "") is 0.

Example:

PRINT "CD OCCURS IN ABCDE AT POSITION"; POS("ABCDE" ,"CD")
A$ = "FOUR SCORE AND SEVEN YEARS AGO ... "
PRINT "R OCCURS IN A$ AT POSITION";POS(A$,"R")

Execution of this example causes the following to be output.

CD OCCURS IN ABCDE AT POSITION 3
R OCCURS IN A$ AT POSITION 4

POS(A$,B$,M)

Same as the previous POS function except that M-1 positions are skipped before the scan of A$ begins; that
is, scanning begins with the Mth character. The value of the function is M'-1 + POS(A$(M:LEN(A$)),B$),
where M' equals MAX(l,MIN(M,LEN(A$))), and A$(M:LEN(A$)i) signifies the Mth character position in A$
through the end.

Example:

S-6

LET A$ = "GRANDSTANDING"
PRINT POS(A$," AN", 1)
PRINT POS(A$, "AN" ,4)
PRINT POS(A$," AN" ,9)

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
String Data Constructs

Execution of this example produces the following output:

3
8
·o

STR$(X)

The character string which is the numeric representation of the value associated with X. No leading or trailin~
spaces are included in the character string.

Example:

PRINT STR$(123. 5)
PRINT STR$(-3.14)

Execution of this example gives the following output:

123.5
:-3.14

TIME$

The time of day in 24-hour notation. For example, the value of TIME$ at 3: 15 PM is 15: 15:00.

UPR!C$(A$)

The upper-case equivalent of the value of A$.

Example:

A$ = "abcdef123"
PRINT UPRC(A$)

Execution of this example gives the following output:

ABCDEF123

VAL(A$)

Performs the inverse of STR$; has the value of the number associated with A$ if the string associated with
A$ is a number. Leading and trailing spaces in the string are ignored. If the evaluation of the number results
in a vii.lue which causes an underflow, the value returned is zero. If an overflow occurs, the largest possible
value is supplied. In either case execution continues.

Examples:

PRINT VAL(" 123.5 ") * IO
PRINT VAL("-3.14") * 10
PRINT VAL("'2.E-99")

Execution of these statements gives the following output:

1235
~31.4

error 15 - numeric underflow
0

1108990 5-7

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
String Data Constructs

STRING DECLARATIONS

String declarations may be used to specify the maximum number of characters allowed in a string variable
and/or to specify the character set to be used in a program unit. There are two statements used in string decla
rations: the DIM statement and the OPTION statement.

DIM STATEMENT STRING SIZE DECLARATION

The DIM statement may be used to declare a maximum size for a string variable. The necessary syntax fol
lows. Other uses of the DIM statement are described in Section 6.

Syntax:

--- DIM L < string-variable·; • < integer > _=1_-'-------------------,--__,
G18016

< string-variable> is defined under String Variables in this section. <integer> is any integer from 0 to 255
inclusive, and specifies the maximum number of characters allowed in< string-variable> . <string-variable >
can appear only once in a size declaration in a program.

Examples of size declarations:

DIM A$*7

DIM BI$*80. Z$*10

OPTION STATEMENT FOR STRINGS

Max size for A$ is 7.

Max size for 8 I$ and Z$ are 80 and
IO. respectively.

The OPTION statement may be used to specify which character set is used in a program unit. (Refer to Sec
tion 6 for descriptions of other uses of the OPTION statement.) The syntax for the OPTION statement when
used with strings follows.

Syntax:

G18017

OPTION-- COLLATE ----r-- NATIVE =-_]
L. STANDARD

Semantics:

The COLLATE option identifies the collating sequence to be used within a program unit for comparing strings.
OPTION COLLATE NATIVE specifies that the native collating sequence on the computer be used. For the
B 1000 systems the native collating sequence is EBCDIC. Table E-2 contains the EBCDIC character set. OP
TION COLLATE STANDARD specifies that the collating sequence ISO International Reference Version be
used. Table E-1 contains the ISO character set. The default character set is the ST AND ARD character set.

5-8

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 6
ARRAYS

Arrays are indexed collections of numbers or strings. The indices, referred to as subscripts in this manual,
are used to reference one of the elements of the array. Array elements can be manipulated one at a time or
an entire array can be manipulated by MAT statements. The keyword MAT derives from the word matrix.
A matrix is a 2-dimensional array, but is used in this manual to denote both 1- and 2-dimensional arrays.

ARRAY DECLARATIONS

Array declarations may be used to specify the dimension bound(s) of an array. There are two statements used
to declare array dimension bounds: the DIM statement and the OPTION statement.

DIM STATEMENT ARRAY SIZE DECLARATION

The DIM statement is used to specify the upper-dimension bound(s) of the subscript(s) of an array and/or to
limit the maximum length of a string variable. The use of the DIM statement with string variables is described
under DIM Statement String Size Declaration. The syntax for the DIM statement when used with arrays fol
lows.

Syntax:

--- DIM L <array-name > (<row > --[-- ' <column > ----)

G18018

<array-name> follows the same formation rules as a simple variable name; that is, a letter, optionally followed
by a digit, followed by a dollar sign ($) if the array is to contain string data. <row> and <column> must
be nonnegative integers. If both <row> and <column> are present, they must be greater than or equal to
the base for arrays in the program. Refer to the OPTION statement in this section for more information on
the base for arrays.

The declaration for an array, if present, must occur in a lower-numbered line than any reference to that array
or to one of its elements. An array may be dimensioned only once in a DIM statement in each program.

Semantics:

Each :array declaration occurring in a DIM statement declares the array named to be either 1- or 2-dimension
al, according to whether one or two <integer>s are specified within the parentheses following the array name.
These <integer>s specify the upper bounds of the array, the maximum values that subscripts for the array
may have. There may be a maximum of two subscripts for any array. The first subscript represents the rows,
the second represents the columns.

If the declaration for a string array in a DIM statement contains a string size declaration as described under
DIM Statement String Size Declaration in Section 5; the maximum length of any character string associated
with any element of that string array is the specified value.

Arrays that are not declared in any DIM statement are declared implicitly to be 1- or 2-dimensional according
to their use in the program: if one subscript appears in an array reference, the array is I-dimensional; if two

1108990 6-1

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Arrays

subscripts appear, the array is 2-dimensional. The upper-dimension bound on implicitly-declared arrays is 10.
The lower-dimension on arrays is 0 unless the BASE option in an OPTION statement has declared it to be
1. Refer to the OPTION Statement for Arrays in this section for more information on the BASE option.

Examples of DIM statements:

OPTION BASE 1

DIM A(6), B(9,10)

DIM A$(4,4), B$(100)*5

DIM P$(10,10)*10, C(50,2)

2 3 4

2

3

4

5

6

7

8 xx

9

G18019

5

! Lower-dimension bound is 1.

! A is I-dimensional with 6 elements.
! B is 2-dimensional with 9*10 elements.
! Refer to Figure 6-1. Element
~~ (8 ,2) is marked.

! A$ is 2-dimensional with 4 *4
! elements. B$ is I-dimensional
! with 100 elements.

! String array P$ is 2-dimensional
! with 10*10 elements. Maximum
! element size is 10. Numeric
! array C is 2-dimensional
! with 50*2 elements.

6 7 8 9 10

Element (8,2) is marked.

Figure 6-1. Representation of :a 9 by 10 Array (OPTION BASE 1)

OPTION STATEMENT FOR ARRAYS

The OPTION statement may be used to change the value of the lower··dimension bounds for arrays in a pro
gram. The syntax follows.

Syntax:

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Arrays .

----OPTION ---BASEL ~ =r-
G18020

Semantics:

If an OPTION statement specifies that the lower bound for array subscripts is 1, then no DIM statement in
the program can specify an upper bound of 0.

The OPTION statement with a BASE option, if present, must occur in a lower-numbered line than any DIM
statetnent or any reference to an array in the program. Only one BASE option may occur in a program. If
no OPTION BASE occurs in the program, the base defaults to zero.

Examples of OPTION statements:

OPTION BASE 1
OPTION COLLATE NATIVE, BASE 1

NUMERIC ARRAY MANIPULATION

! Lower dimension bound for arrays is 1.
! Collating sequence used
! in string comparisons
! is EBCDIC. Lower-dimension
! bound is 1.

BAS~C provides several statements to manipulate an entire array, rather than just one array element at a time.
The statements available for numeric array manipulation are explained in this subsection. These statements
follow normal rules of matrix algebra.

In all numeric array manipulation statements, overflow and underflow are reported to the user and program
execution continues. With overflow, the value 7.237E+75 is substituted. With underflow, zero is substituted.

MAT ADDITION STATEMENT

The purpose of the MAT addition statement is to add two numeric arrays and to assign the sum to a third
array. The syntax follows.

Syntax:

---·MAT < array-name1 > = < array-name2 > + < array-name3 > ----------------
G18021

<array-name!>, <array-name2>, and <array-name3> follow the same formation rules as a simple variable
name.

Semantics:

<arr~y-namel> is assigned the sum of <array-name2> and <array-name3>. If <array-name!> does not have
the same dimensions as <array-name2> and <array-11ame3>, it may be redimensioned. Rules for redimension
ing are described under the MAT assignment statement in this section. <array-name2> and <array-name3>
must have the same dimensions. <array-namel> and <array-name2> may be the same array.

1108990 6-3

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Arrays

Examples of the use of the MAT addition statement:

OPTION BASE 1
DIM A(3,3) B(3,3), C(3,3)
MAT READ A,B
DATA 1,2,3
DATA 4,5,6
DATA 7,8,9
DATA 1,4,7
DATA 2,5,8
DATA 3,6,9
PRINT "ARRAY A IS"
MAT PRINT A; ! MAT PRINT statement - Section 9
PRINT
PRINT ''ARRAY B IS''
MAT PRINT B;
PRINT
PRINT ''ARRAY C IS''
MAT C =A+ B
MAT PRINT C;

Execution of the above example causes the following to be displayed.

ARRAY A IS
1 2 3
4 5 6
7 8 9

ARRAY B IS
1 4 7
2 5 8
3 6 9

ARRAY C IS
2 6 10
6 10 14
10 14 18

MAT ASSIGNMENT STATEMENT

The purpose of the MAT assignment statement is to move the elements of one array to the elements of another
array.

Syntax:

---MAT < ·array-namel > = < array-name2 >
G18022

<array-namel> and <array-name2> follow the same naming conventions as simple numeric variables.

6-4

Semantics:

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Arrays

<array-name 1 > and <array-name2> must have the same number of dimensions but not necessarily the same
upper bounds on those dimensions. If the upper-dimension bounds are different, <array-namel> may be redi
mensioned to match <array-name2>. This is known as dynamic redimensioning. Dynamic redimensioning
takes place only if (1) the original total number of elements in <array-namel> is greater than or equal to the
total number of elements in <array-name2> and (2) the number of dimensions of <array-namel> and <array
name2> are the same. Otherwise, a fatal error occurs.

When a numeric array is redimensioned dynamically, the current upper bound for each subscript is changed
to match the size of its new value and the current lower bound for each subscript stays the same.

Example of a numeric array assignment statement with redimensioning:

DIM B(4,4)
MAT READ A(2,2)
DATA 1,2,3,4
MAT B =A
MAT PRINT B;

Execution of the example above causes the following to be displayed.

1 2
3 4

MAT CON STATEMENT

The MAT CON statement initializes all of the data elements of an array to the numeric constant 1 or to the
value of a numeric expression. The MAT CON statement may also be used to redimension an array. The syn
tax of the MAT CON statement follows.

Syntax:

---· MAT < array-name > = --- (< numeric-·expression >) -- * >

>---- CON L_<_s_u_b-sc-.r-ip_t_>-~~~~~-' _<_._ s-u-b-sc-r-ip_t_>-~~~~~~~~----
G '18023

<array-name> follows the same naming conventions as simple numeric variables. <numeric-expression> is
described under Numeric Expressions in Section 4.

Semantics:

If present, the <numeric-·expression> is evaluated and used in place of the numeric constant 1 to initialize
each element of the array.

1108990 6-5

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Arrays

The <subscript>s must be greater than or equal to the lower-dimension bound for arrays in the program unit
where the MAT CON statement occurs. If one or both of the <subscript>s are present, a redimension is im
plied. Arrays are redimensioned in the same manner as described for the MAT assignment statement in this
section.

Example of the use of the MAT CON statement:

OPTION BASE I
DIM A(3,5)
MAT A= CON
MAT PRINT A;
PRINT
MAT A = (2) * CON(3,3)
MAT PRINT A;

Execution of this example gives the following output:

1 .
1
1

2 2 2
2 2 .2
2 2 .2

DOT FUNCTION

The DOT function produces the dot product of two I-dimensional arrays.

Syntax:

--- DOT (< array-name > ' < array-name >)
G18024

<array-name>s follow the same formation rules as a simple numeric variable and must be singly subscripted
numeric arrays.

Semantics:

The dot product is the sum of the products of each of the corresponding elements of the arrays.

Example of the use of the DOT function:

OPTION BASE
DIM A(2), B(2)
DATA 2,3,4,3
MAT READ A, B
PRINT DOT(A,B)

Execution of this example produces the following output:

17

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Arrays

MAT ION STATEMENT

The MAT IDN statement zeros a square array and places the integer 1 or the value of a numeric expression
in each element on the main diagonal.

Syntax:

--- MAT < array-name > ----.....---- (< numeric-expression >) - *

>-- IDN ------.--,- (< subscr,_ip_t_> _____ , -<-subscr-ip_t_>_-_-_-_~:-) ----------~-

G18025

<array-name> follows the same naming conventions as simple numeric variables. <array-name> must be a
square array or must be redimensioned to be a square array. In a square· array, the upper-dimension bounds
are equal to each other. <numeric-expression> is described under Numeric Expressions in Section 4.

Semantics:

<numeric-expression>, if present, is evaluated and used as the value for each element of the array instead
of the integer 1. The <subscript>s must be greater than or equal to the lower-dimension bound for arrays
in the program unit where the MAT IDN statement occurs. The subscripts, if present, imply a redimension
of <array-name>.

Examples of MAT IDN statements:

OPTION BASE
DIM X(3,3)
MAT X=IDN
MAT Y=(10).*IDN(4,4)
MAT PRINT X; Y;

Execution of this example causes the following to be displayed.

1 0 0
0 l 0
0 0 l

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

MAT MULTIPLICATION STATEMENT

The purpose of the MAT multiplication statement is to multiply two numeric arrays and to assign the product
to a third array.

1108990 6-7

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Arrays

Syntax:

--- MAT< array-namel > = < array-name2 > * < array-name3 > ------------------1
G18026

<array-namel>, <array-name2>, and <array-name3> follow the same formation rules as a simple variable
name.

Semantics:

<array-namel> is assigned the product of <array-name2> and <array-name3>. If <array-namel> does not
have the row dimension of <array-name2> and the column dimension of <array-name3>, it may be redimen
sioned. Rules for redimensioning _are described under the MAT assignment statement in this section. The col
umn dimension of <array-name2> must be the same as the row dimension of <array-name3>. <array
namel>, <array-name2>, and <array-name3> may be the same array.

When two arrays are multiplied, the dot product of the first row of the first array and of each column of the
second array forms the first row in the answer; the dot product of the second row of the first array and each
column of the second array forms the sec·ond row in the answer, and so on.

Example of the MAT multiplication statement:

OPTION BASE 1
DIM C(2,2)
MAT READ A(2,3), B(3,2)
DATA 1,2,3,4,5,6
DATA 1,2,3,4,5,6
MAT C =A* B
PRINT ''MAT A
MAT PRINT A;
PRINT
PRINT ''MAT B
MAT PRINT B;
PRINT
PRINT "MAT C
MAT PRINT C;

Execution of this example causes the following to be displayed.

6-8

MAT A =
1 2
4 5

MAT B
1 2
3 4
5 6

MAT C
22 28
49 64

3
6

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Arrays

MAT SCALAR MULTIPLICATION STATEMENT

The MAT scalar multiplication statement allows each element of an array to be multiplied by any scalar num
ber.

Syntax:

---- MAT < array-name > = T < sign > T-(< numeric-expression >) * < array-name >

G18027

<array-name> follows the same naming conventions as simple numeric variables. The two <array-name>s
may name the same array. <numeric-expression> is described under Numeric Expressions in Section 4.

Example of the use of MAT scalar multiplication statements:

OPTION BASE 1
DIM A(3,3),B(3,3)
MAT READ A
DATA 1,2,3,4,5,6,7,8,9
PRINT ''ARRAY A IS''
MAT PRINT A;
PRINT
PRINT "ARRAY B IS"
MAT B = - (2) * A
MAT PRINT B;

Execution of this example gives the following output:

ARRAY A IS
1 2 3
4 5 6
7 8 9

ARRAY B IS
-2 -4 -6
-8 -10 -12
-14 -16 -18

MAT SUBTRACTION STATEMENT

The purpose of the MAT subtraction statement is to subtract one array from another array and to assign the
difference to a third array.

Syntax:

---·MAT < array-name1 > = < array-name2 > <minus-sign> < array-name3 > ---------

G18028

<array.-namel>, <array-name2>, and <array-name3>.follow the same formation rules as a simple variable
name.

1108990 6-9

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
Arrays

Semantics:

<array-namel> is assigned the difference of <array-name2> and <array-name3>. If <array-namel> does not
have the same dimensions as <array-name2> and <array-name3>, it may be redimensioned. Rules for redi
mensioning are described under the MAT assignment statement in this section. <array-name2> and <array
name3> must have the same dimensions. <array-namel> and <array-name2> may name the same array.

Example of the use of the MAT subtraction statement:

OPTION BASE 1
DIM A(3,3), B(3,3), C(3,3)
MAT READ A,B
DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 4, 6, 8, l, 3, 5, 7, 9
PRINT ''ARRAY A IS''
MAT PRINT A;
PRINT
PRINT ''ARRAY BIS''
MAT PRINT B;
PRINT
PRINT "ARRAY C IS"
MAT C =A - B
MAT PRINT C;

Execution of this example gives the following output:

ARRAY A IS
1 2 3
4 5 6
7 8 9

ARRAY B IS
2 4 6
8 1 3
5 7 9

ARRAY C IS
-1 -2 -3
-4 4 3

2 1 0

MAT ZER STATEMENT

The MAT ZER statement initializes the elements of the specified numeric array to the numeric constant 0,
and may optionally be used to redimension the array.

6-10

Syntax:

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Arrays

---- MAT < array-name > ----- (< numeric-expression >) -- *

>--- ZER ----- (<subscript > ---- ' < subscript > ----)

G18029

<array-name> follows the same naming conventions as simple numeric variables. <numeric-expression> is
described in Section 4.

Semantics:

The <subscript>s must be greater than or equal to the lower-dimension bound for arrays in the program unit
where the MAT ZER statement occurs. If one or both of the <subscript>s are present, a redimension is im
plied. Arrays are redimensioned in the same manner as described for the MAT assignment statement in this
subsection. <numeric-expression> has no effect on the execution of this statement.

Examples of the MAT ZER statement:

OPTION BASE 1
DIM A(2,10)
MAT A= ZER
MAT PRINT A;
PRINT
MAT A = ZER(4,2)
MAT PRINT A;

Execution of this example gives the following output:

0 0 0 d 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0
0 0
0 0
0 0

1108990 6-11

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Arrays

STRING ARRAY MANIPULATION

As with numeric arrays, an entire string array may be operated upon, rather than just one element. The state
ments available for string array manipulation are described in this subsection.

MAT ASSIGNMENT STATEMENT

The purpose of the MAT assignment statement is to move the elements of one array to the elements of another
array.

Syntax:

---MAT < array-name 1 > < .array-name2 >
G18022

<array-namel> and <array-name2> follow the same naming conventions as simple string variables.

Semantics:

<array-name 1 > and <array-name2> must have the same number of dimensions but not necessarily the same
upper bounds on those dimensions. If the upper-dimension bounds are different, <array-namel> is redimen
sioned to match <array-name2>. This takes place only if (1) the original total number of elements in <array
name 1 > is greater than or equal to the total number of elements in <array-name2> and (2) the number of
dimensions of <array-namel> and <array-name2> are equal; otherwise, a fatal error occurs.

When a string array is redimensioned dynamically, the current upper bounds for its subscripts are changed
to match the size of its new value and the current lower bounds stay the same.

Example of the use of a string array assignment statement:

OPTION BASE l
DIM Z$(3,4)
DATA AARDVARK,NEXT STRING,123456789,FOURTH.ELEPHANT.TACK
DATA COZUMEL, WRITE RING, 11 NO CAB0. 11

,
11 NO! NO QUEPO."

DATA "TU TAMPOCO?",END
MAT READ Z$
MAT Y$ = Z$
MAT PRINT Y$
PR I NT 11 - ---;'-----1- ---i'•-··--2-- - -i'•----3- -- -;'•----·4--- -i'•----5--- -;'' 11

Execution of this example gives the following output:

AARDVARK NEXT STRING 123456789 FOURTH
ELEPHAIH TACK COZUMEL \\IRITE RING
NO.CABO. NO! NO QUEPO. TU TAMPOCO? END
----*----1----*----2----*----3----*----4----*----5----*

6-12

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
Arrays

MAT NUL$ STATEMENT

The MAT NUL$ statement assigns the null string to each element of a string array. MAT NUL$ may also
be used to redimension an array.

Syntax:

---- MAT < array-name > NUL$ c:cript >L • <subscript> -~--)

G18030

<array-name> must follow the same naming conventions as simple string variables.

Semantics:

The <subscript>s must be greater than or equal to the lower-dimension bound for arrays in the program unit
where the MAT NUL$ statement occurs. If one or both of the <subscript>s are present, a redimension is
implied. Arrays are redimensioned in the same manner as described for the MAT assignment statement in this
subsection.

Examples of the MAT NUL$ statement:

MAT A$ NUL$

MAT B$ NUL$(5,6)

1108990

! Each element in A$ gets the null string.

Each element is B$ gets the null
string and the array is redimensioned
to a 5 by 6 array.

6-13

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 7
CONTROL STRUCTURES

Normally, the executable statements in a BASIC program are executed in line number sequence; that is, after
one statement is executed, the statement immediately following it is executed. Control statements are used
to alter the normal flow of a program. They may transfer the control to another part of the program, terminate
program execution, or control iterative processes. The control structures available in Burroughs B 1000 BASIC
and the expressions that are used in several of these structures are described in this section.

RELATIONAL EXPRESSIONS

Relational expressions enable the values of expressions to be compared in order to influence the flow of con
trol in a program unit.

Syntax:

~-----AND-------...

,____,-.........__ <exp > <rel > <exp > -----------------------------
------OR -------L

......___.__ <exp > <rel > <exp > ,---------------------
G18031

<exp> is either a string or a numeric expression as described in Sections 4 and 5, respectively. <rel> is
a relational symbol. Table 7-1 lists the valid relational symbols.

Semantics:

Table 7-1. Relational Symbols

Symbol(s)

<>or><
<
>
<= or=<
>= or=>

Meaning

equal to
not equal to
less than
greater than
less than or equal to
greater than or equal to

Two numeric expressions are considered equal only if the expressions have the same value. Two string expres
sions are considered equal only if the values of the two expressions have the same length and contain identical
sequences of characters.

In the evaluation of string relational expressions, the relation "less than" means "earlier in the collating se
quence than," and "greater than" means "later in the collating sequence than." If two strings of different
lengths occur in a relational expression and one is an initial leftmost segment of the other, the shorter string
is less than the other. Otherwise, the relationship between two strings of unequal length is determined by the
contents of the shorter string and the leftmost portion of the longer string which is the same length as the
shorter string.

1108990 7-1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Control Structures

The value of a relational expression involving the conjunction AND is true if the value of each separate rela
tion is true. The value of a relational expression involving OR is true if the value of at least one of each
separate relation is true. Each separate relational expression is evaluated from left to right until the truth or
falsity of the entire relational expression can be determined.

Examples of relational expressions:

A < B ! A is less than B.

A > = C ! A is greater than or equal to C.

A <= X AND X <= B ! A is greater than or equal to X
! and X is less than or equal to B.

A$ = B$ OR A$ = "" ! A$ equals B$ or A$ equals null string.0

A <B AND B<C AND C<D ! A is less than B and B is less than
C and C is less than D.

I < = 10 AND A(I) < > 0 I is less than or equal to 10
! and A(I) is not equal to 0.
! If I is greater than 10, the
! test A(I) < > 0 is not made.

CONTROL STATEMENTS

Control statements permit the interruption of the normal sequence of execution of statements and cause execu
tion to continue at a specified line, rather than at the line with the next line number in line number sequence.

GOTO STATEMENT

The GOTO statement causes an unconditional transfer of control.

Syntax:

·---GOTO <line-number> -·------1
G18032

< line-number > is described under Statement Lines in Section 3. Execution of a GOTO statement causes
program execution to continue at the line with the specified <line-number>.

Semantics:

<line-number> must not cause a jump into a FOR NEXT loop (refer to FOR NEXT structure in this section)
or a user-defined function.

Examples of GOTO statements:

7-2

GOTO 100
GO TO 5550

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Control Structures

GOSUB AND RETURN STATEMENTS

The GOSUB and RETURN statements allow for subroutine calls.

Syntax for GOSUB:

--- GOSUB < line-number > ------
G18033

Syntax for RETURN:

--- RETURN-----------

G18034

< line-number > is described under Statement Lines in Section 3.

Semantics:

Execution of a GOSUB statement causes program execution to continue at the line with the specified <line
number>. <line-number> must not cause a jump into a FOR NEXT loop or a used-defined function.

Execution of a RETURN statement causes execution to continue at the line immediately following the GOSUB
statement. GOSUB and RETURN statements may be nested; that is, one set of statements may be contained
within another set.

For every RETURN statement executed there must be at least one GOSUB statement for which no RETURN
has been executed.

Example of GOSUB and RETURN statements:

100 GOSUB 5160
110 REM -- THE RETURN STATEMENT TRANSFERS CONTROL HERE

5160 REM -- THE GOSUB STATEMENT TRANSFERS CONTROL HERE

5300 RETURN

ON GOTO STATEMENT

The ON GOTO statement allows control to be transferred to any one of a group of line numbers.

Syntax:

r< ,-~
--- ON <index > GOTO J__ <line-number >----'---.....---ELSE <statement > ---,----------1

G18035

ll08990 7-3

. B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Control Structures

<index> is a numeric expression as described in Section 4. <index> is rounded to obtain an integer:
INT(< index>+ 0.5). <line-number> is described under Statement Lines in Section 3. <statement>,
if present, can be any BASIC statement except the following:

IF
FOR or NEXT
DIM
OPTION
DATA
IMAGE
DEF or FNEND
END
REM
ON

Semantics:

When an ON GOTO statement is executed, the <index> is evaluated and used as an index into the list of
<line-numbers>. The list of <line-number>s is numbered from left to right, starting with the integer 1. If
an ELSE occurs, the <statement> following the ELSE is executed if the value of <index> is less than 1
or greater than the number of <line-number>s in the list. If there is no ELSE clause (ELSE part) and <in
dex> is less than I or greater than the number of <line-number>s in the list, a fatal error occurs.

Examples of ON GOTO statements:

ON L+ I GOTO 400, 400, 500
ON X GOTO I 00, 200, 150, 9999 ELSE LET A = 1

In the first statement, if L = 0 or L = I. line 400 is the next line executed. If L
next. Any other value for L causes a fatal error.

2, line 500 is executed

In the second statement, if X = 1, statement I 00 is executed next.. If X = 2, statement 200 is executed next.
If X = 3, statement 150 is executed next. If X = 4, statement 9999 is executed next. If X is none of these
values, variable A is assigned the value I and execution continues with the statement following the ON GOTO
statement.

ON GOSUB AND RETURN STATEMENTS

The ON GOSUB and RETURN statements allow control to be transferred to and from any one of a group
of subroutines.

Syntax:

--- ON <index> GOSUB1 <line-nu,mber>--]._, -c.---ELSE <statement>--------

G18036

The syntax for the RETURN statement is the same as listed under GOSUB and RETURN Statements in this
section.

7-4

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Control Structures

<index> is a numeric expression as described in Section 4. <index> is rounded to obtain an integer:
INT(< index> + 0.5). <line-number> is described under Statement Lines in Section 3. <statement>,
if present, can be any BASIC statement except the following:

IF
FOR or NEXT
DIM
OPTION
DATA
IMAGE
DEF or FNEND
END
REM
ON

Semantics:

When an ON GOSUB statement is executed, the <index> is evaluated and used as an index into the list
of <line-numbers>. The list of <line-number>s is numbered from left to right, starting with the integer 1.
If an ELSE occurs, the <statement> following the ELSE is executed if the value of <index> is less than
1 or greater than the number of <line-number>s in the list. If there is no ELSE clause and <index> is less
than 1 or greater than the number of <line-number>s in the list, a fatal error occurs.

Examples of ON GOSUB and RETURN statements:

ON A+7 GOSUB 1000, 2000, 7000, 4000
ON Fl-2 GOSUB 4360, 4460, 4660 ELSE PRINT Fl

In the first statement, if A = -6, line 1000 is executed next. If A = ~5, line 2000 is executed next. If A = -4,
line 7000 is executed next, and! if A = -3, line 4000 is executed next. Any other value for A causes a fatal
error.

In the second statement, if Fl = 3, line 4360 is executed next. If ~l = 4, line 4460 is executed next. If
Fl == 5, line 4660 is executed next. If Fl is none of these values, variable Fl is displayed and execution con
tinues with the statement following the ON GOSUB statement.

LOOP STRUCTURES

Loop structures provide for the repeated execution of a sequence of statements. The loop structure available
in Burroughs B 1000 BASIC is described in this section.

FOR NEXT STRUCTURE
The FOR NEXT structure provides for the construction of counter-controlled loops.

Syntax for the FOR statement:

·---FOR <control-var> = <initial-value> TO <limit> ---- STEP <increment>---------

G18037

1108990 7-5

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Control Structures

Syntax for the NEXT statement:

----NEXT <control-var>

G18038

The FOR and NEXT statements must occur in corresponding pairs. <control-var> is a simple numeric
variable, and must be the same variable in corresponding FOR and NEXT statements. <initial-value>, <:lim
it>, and <increment> are numeric expressions. If the STEP clause is omitted, <increment> defaults to 1.

There may be any number of BASIC statements between corresponding FOR and NEXT statements. These
statements, plus the FOR and NEXT statements, comprise a FOR block. A FOR block may contain any BA
SIC statement except an END statement.

Semantics:

The FOR NEXT structure allows a group of statements to be executed a specified number of times. The action
of the FOR NEXT structure can be defined in terms of other BASIC statements as follows.

FOR NEXT structure:

LO FOR C = II TO L STEP U
(BASIC statements)

100 NEXT C

Equivalent BASIC statements:

10 LET Xl = L
20 LET X2 = I2
30 LET C = II
40 IF (C-Xl) * SGN(X2) > 0 THEN GOTO 100

(BASIC statements)
80 LET C = C + X2
90 GOTO 40

100 REM -- REMAINDER OF PROGRAM UNIT

Within the body of the FOR NEXT structure the value of <control-var> may be changed. Any such change
may affect the number of times that the body is executed. The numeric expressions <initial-value>, <limit>,
and <increment> may also be changed in the body if simple numeric variables. are used for these expressions,
but changes to these variables do not affect the number of times that the body is executed.

FOR NEXT structures may be nested, but nested FOR NEXT structures must use different <control-var>s.
When nesting is used, the innermost structure must be completely terminated before any of the outer struc
tures are terminated.

A line number within the body of a FOR NEXT structure cannot be referred to outside of that structure by
a GOTO, GOSUB, ON, or IF statement.

7-6

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Contrnl Structures

Examples of FOR NEXT structures:

FOR I = 1 TO 10
LET A(I) = I

NEXT I

FOR C7 = A TO B STEP -1
C$(C7) = D$
PRINT C$(C7)

NEXT C7

Example of the use of nested FOR NEXT structures:

OPEN #1: "INFILE", INTERNAL, INPUT !OPEN statement - Section 9
DIM A(l00,100)
FOR I = 1 TO 100

FOR J = 1 TO 100
INPUT # 1: A(I ,J)

NEXT J
NEXT I

The first FOR NEXT structure initializes elements one through ten of array A to the values I through 10.

The second FOR NEXT structure is similar to the first in that an array is being initialized, but in this example,
the initial and limiting values are variables instead of constants as in the first example. This example also
shows the use of the STEP clause with a negative increment.

The example of the nested FOR NEXT structures shows how a 2-dimensional array, A, can be easily loaded
from a disk file. The description of statements used with disk files is in Section 9.

DECISION STRUCTURES

Decision structures allow for the conditional execution of statements. One decision structure, the IF statement,
is available in B 1000 BASIC.

IF STATEMENT

The XF statement permits conditional transfer of control or conditional execution of a statement. The syntax
of the IF statement follows.

Syntax:

·---IF <rel-exp> THEN I <line-no!> -c ELSE <line-no2>

<stmt1 > --c ELSE <stmt2 > --~-----------

G18039

1108990 7-7

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Control Structures

<rel-exp> is a relational expression as described under Relational Expressions in this section. <line-nol> and
<line-no2> represent line numbers which refer to lines in the same program unit. <stmtl> and <stmt2> are
any BASIC statements except the following:

IF
FOR or NEXT
DIM
OPTION
DATA
IMAGE
DEF or FNEND
END
REM
ON

Semantics:

With the line number construction of the IF statement. control is transferred to the line represented by <line
no 1> if <rel-exp> is true. If <rel-exp> is false and the ELSE dause is present, control is transferried to
the line represented by <line-no2>. If <rel-exp> is false and the ELSE clause is not present, the statement
following the IF statement is executed next.

With the statement construction of the IF statement, <stmtl> is executed if <rel-exp> is true. If <rel-exp>
is false and the ELSE clause is present, <stmt2> is executed. If <rel-exp> is false and the ELSE clause
is not present, execution continues with the statement -following the IF statement.

Examples of IF statements:

7-8

IF A < B THEN 100
IF A$ < > B$ THEN 250
IF A > I AND A < 2 THEN 100 ELSE 200
IF X = > Y2 THEN GOSUB 900 ELSE GOSUB 2000
IF X$ <> "NO" OR X$ = "STOP" THEN LET A =

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 8
PROGRAM PARTITIONING

Burroughs B 1000 BASIC provides two facilities to partition programs. The first facility enables the user to
define functions. These user-defined functions are used in numeric and string expressions in the same manner
as the intrinsic numeric and string functions. The second facility, the CHAIN statement, enables separate pro
grams to be executed sequentially without user intervention.

USER-DEFINED FUNCTIONS

There are two types of user-defined functions: single-statement functions and multiple-statement functions.
Each type may be either a numeric or a string function.

SINGLE-STATEMENT FUNCTIONS

A single-statement function is a user-defined function that requires only one statement for its definition, the
DEF statement. The function definition specifies the method of evaluating the user-defined function based on
the values of the parameters, if any. The syntax of the DEF statement for a single-statement function definition
follows.

Syntax:

·---DEF -FN <letter>-T<digit>=-ri=· $

~-'=1 >---i= (<parameter_> _____)_-=1- = <expression>

G18040

<letter> is any English alphabet letter from A to Z. <digit> is any decimal digit. Spaces may not occur be
tween FN and <letter>, between <letter> and <digit>, nor between <digit> and $. The entities FN, <let
ter>, <digit>, and $, are referred to as the function name. <parameter> is a simple variable. <expression>
is either a string or numeric expression. <expression> may not reference the function being defined; that is,
recursion is not allowed in single-statement functions.

Semantics:

When a user-defined function is referenced, that is, when its name occurs in an expression, any arguments
in the function reference are evaluated and their values are assigned to the parameters which appear in the
function definition (parameters are passed by value to functions). After the arguments are passed, the expres
sion associated with the function is evaluated and its value is assigned as the value of the function.

A <parameter> is recognized only within the function definition in which it appears, that is, parameters are
local to the function; it is distinct from any variable with the same name outside the function definition. All
other variables in a function definition are recognized in the entire program, that is, they are global to the
program.

1108990 8-1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Program Partitioning

A function is executed only when its name is referenced. If a function definition statement is reached in some
other fashion, the function is not executed. and execution proceeds to the n~xt line.

Examples of single-statement function definitions:

DEF FNP = 3.14159

DEF FNA(X) == A * X + B

DEF FNC(A,B) = A * B + I

DEF FNA$(S$,T$) = S$ & T$

FNP is defined to be an
approximation of PI.

The second example defines FN A as a numeric function with one parameter. The value of the function is the
product of A and the parameter, X, added to B.

The third example defines FNC as a numeric function with two parameters. The value of the function is the
product of the two parameters plus 1.

The fourth example defines FNA$ as a string function with two parameters. The· value of the function is the
concatenation of the two parameters.

MULTIPLE-STATEMENT FUNCTIONS

A multiple-statement function is a us1:!r-defined function that requires more than one statement for its defini
tion. The function definition specifies the method of evaluating the user-defined function based on the value(s)
of the parameter(s), if any. The two statements required for this definition are the DEF statement for multiple
statement functions and the FNEND statement. The syntax for these statements follows.

Syntax for the DEF statement:

DEF - FN <tetter > 1- <digit>
~·~ J L~ <parameter> ----)

G18041

Syntax for the FNEND statement:

, ___ FNEND ---------------~----,

G18042

<letter> is any English alphabet letter from A to Z. <digit> is any decimal digit. Spaces are not allowed
between FN and <letter>, between <letter> and <digit>, nor between <digit> and $. The entities FN <let
ter>, <digit>, and $, are referred to as the function name. <parameter> is a simple variable.

Between the DEF statement and the FNEND statement, any BASIC statement may occur except another DEF
statement or an END statement. These intermediate statements specify what actions the function performs.
FOR NEXT statements must be entirely contained within the function. Recursive function calls are allowed.

8-2

Semantics:

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Program Partitioning

A user-defined function is referenced by using its name in an expression. The arguments in the function refer
ence, if any, are evaluated and their values assigned to the parameters which appear in the function definition,
that is, parameters are passed by value to functions. After the arguments are passed, the expression associated
with the function is evaluated and its value is assigned as the value of the function.

A <parameter> is local to the function definition in which it appears; it is distinct from any variable with
the same name outside the function definition. All other variables in a function definition are global to the
program unit in which the function occurs.

A function is executed only when its name is referenced. If a function DEF statement is reached in some
other fashion, the function is not executed; execution proceeds to the line following the FNEND statement.

A control statement must not transfer control to a line within a multiple-statement function definition from
outside the definition, or to a line outside a multiple-statement function definition from a line within it.

Examples of multiple-statement function definitions:

100 DEF FNA(A$)
I IO LET FNA = I
120 IF A$ = "YES" THEN 140
130 LET FNA = 2
140 FNEND

100 DEF FNBl$(T)
110 LET FNB 1$ = "YES"
120 IF T = I THEN 140
130 LET FNBI$ = "NO"
140 FNEND

Both of these examples show the use of the LET statement with a multiple-statement function. The LET state
ment is used to assign a value to the function. If no LET statement occurs in a multiple-statement function.
the value of the function is either zero or the null string depending on the type of the function. The assignment
statement for multiple-statement functions is fully described in the following subsection.

These examples are very similar to one another: the first assigns a numeric value to the function according
to the value of a string variable. A$. The second does the converse of the first in that a st.fog value is assigned
to the function according to the value of a numeric variable.

Assignment Statement For Multiple-Statement Functions

The assignment statement for multiple-statement functions resembles the assignment statement for numeric and
string variables as described in Sections 3 and 4. respectively. However. there is one difference: the assign
ment statement. as used with multiple-statement functions. is used to assign a value to a function name rather
than to a variabie.

Syntax:

~<function-name>= <expression>

G18043

1108990 8-3

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Program Partitioning

<function-name> must be a multiple-·statement function. <expression> is any numeric or string expression.
The assignment statement for multiple-statement functions must occur within a multiple-statement function.

For examples of the LET statement, refer to the previous subsection entitled Multiple-Statement Functions.

CHAIN STATEMENT

The CHAIN statement allows separate BASIC programs to be run serially without programmer intervention.

Syntax:

G18044

<program-designator> is a string expression which specifies the name of the next program to be run. <pro
gram-designator> must take the following form:

<program-name> LON <pack-name> -·------1
G18045

<program-name> must conform to th1;! rules for MCP file names as described under Syntax Definitions in Sec
tion 11. <pack-name> is described in the same subsection.

Semantics:

When <program-designator> is evaluated, <program-name> is the name of a BASIC source program residing
on disk. The ON option specifies the pack upon which the file resides. If ON is not specified, the default
pack is assumed. The default pack is the pack associated with the currently logged-on usercode, or it is the
system disk if no usercode is used.

Upon execution of a CHAIN statement, all files that are open (have an assigned channel number) in the cur
rently executing program, are closed (disassociated from the channel number) and must be explicitly opened
in the following program if they are to be used in that program. Variables in the program designated by <pro
gram-name> are independent of variables of the same name in the program containing the CHAIN statement;
that is, all variables in <program-name> are initialized to zero or to the null string, depending on their type.

Execution of a CHAIN statement causes termination of the program containing the CHAIN statement. The
CHAIN statement is not executed if the program containing the CHAIN statement has not been saved. Refer
to the SA VE command in Section 11.

Examples of CHAIN statements:

8-4

CHAIN "PROG2"

CHAIN A$

CHAIN "BASIC/PROO I ON
PACKI"

Chain to the program whose name 1s
contained in A$.
BASIC/PROO 1 is on the
pack named PACKI.

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual

SECTION 9
INPUT/OUTPUT

Input and output facilities provide for the interaction of a BASIC program with collections of data. Data may
be obtained by a program from statements within the program, from a terminal, or from an external file. Out
put data may be directed to a terminal, a line printer, or an external file. This section describes the statements
available in Burroughs B 1000 BASIC for input from and output to these sources and destinations. The section
is divided into three major subsections: Program-internal Input, Terminal I/O, and File I/O Statements.

PROGRAM-INTERNAL INPUT

Program-internal data is data that is obtained by a program from statements within the program. There are
three statements associated with program-internal data: the DAT A statement, the READ statement, and the
RESTORE statement.

DATA STATEMENT

The DAT A statement supplies data to a READ statement.

Syntax:

1<
----DATA ---- <datum> _ __._ ___ _

G18046

<datum> is either a numeric constant, a string constant, or a string constant without the enclosing quotation
marks. More than one DATA statement may appear in a program.

Semantics:

Data from all DAT A statements in a program is logically grouped into one data block and is read from that
block in the sequence in which the DAT A statements appear in the program.

If the execution of a program reaches a line containing a DAT A statement, execution proceeds to the next
line with no other effect.

The DAT A statement is always used in conjunction with the READ statement.

Examples of DATA statements:

DATA 5,12,50,1,8,734
DATA 3.14159, PI, 5E-30, ","
DATA COMMAS CANNOT OCCUR IN UNQUOTED STRINGS.

1108990 9-1

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
Input/Output

READ STATEMENT

The READ statement reads the data from the DATA statement(s).

Syntax:

--- READ--r.____ < vari:b~e > __ =i_.__ __________________________ ,
G18047

<variable> can be any numeric or string variable.

Semantics:

Execution of a READ statement causes variables in the READ statement to be assigned values from the
DATA statements in the program unit. If there are more <variablle>s in the READ statement than tht::re are
data items in the DATA statement, a fatal error occurs.

The type of a <datum> in the DAT A statements must correspond to the type of the variable to which it is
to be assigned. Numeric variables require as data unquoted strings which are numeric constants, and string
variables require quoted strings or unquoted strings as data. An unquoted string that is a valid numeric con
stant may be assigned by a READ statement to a string variable or to a numeric variable. If an attempt is
made to assign a quoted string constant to a numeric variable or to assign an unquoted string constant to a
numeric variable, a fatal error results.

Variables in the list of <variable>s for the READ statement are assigned values from left to right. Thus, any
variables that appear as subscripts in the list of <variable>s are evaluated after values are assigned to the
variables preceding (to the left of) the subscripted variable. Thus, a variable, I for example, may appear in
a READ statement as a simple numeric variable, and then to the iright of its first appearance, as the subscript
for a subscripted variable (for example, READ l,A$(1)).

If the assignment of a numeric <datum> causes an underflow, the value of the <datum> is replaced by the
value 0. If an overflow occurs, the <datum> is replaced by the largest machine value. In both of these cases
the condition is reported to the user and execution continues. If assignment of a string <datum> to a string
variable results in a string overflow, a fatal error results.

Examples of READ and DATA statements:

READ A,B,C
READ Z$,Y$,X$
READ D(A), El(B), F$(C), I
DATA 5,0,9,25,"THIS IS A QUOTED STRING."
DATA THIS IS AN UNQUOTED STRING.,1E+50,7,JOE S.MITH,1

Execution of these statements has the same effect as the following assignment statements:

9-2

LET A = 5
LET B = 0
LET C = 9
LET Z$ = "25"
LET Y$ = "THIS IS A QUOTED STRING."
LET X$ = ''THIS IS AN UNQUOTED STRING.''
LET D(A) = IE+ 50
LET El(B) = 7
LET F$(C) = "JOE SMITH".
LET I = 1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

RESTORE STATEMENT

The RESTORE statement allows the data in DAT A statements to be reread.

Syntax:

---RESTORE-----------

G18048

Semantics:

Execution of a RESTORE statement causes subsequent READ statements to take data starting from the begin
ning of the block of data formed from all of the DATA statements in the program.

Example of READ, DATA, and RESTORE statements:

READ I,J,K,L
DATA 1,2,10,100
RESTORE
READ M,N,O

Execution of these statements is equivalent to the following assignment statements:

LET I = 1
LET J = 2
LET K = 10
LET L = 100
LET M = 1
LET N = 2
LET 0 = 10

TERMINAL 1/0

Terminal input and output statements provide for user interaction with a program by allowing variables to be
assigned values supplied from a terminal. The various statements used in terminal 1/0 are described in this
section.

TERMINAL INPUT

There are two statements associated with terminal input: the INPUT statement and the LINPUT statement.

INPUT Statement

The INPUT statement allows the user to supply data from a terminal to variables within a program. The syntax
for the INPUT statement and for the user's reply follow.

Syntax for the INPUT statement:

--- INPUT r PROMPT <string-expression> : -Fri~ble > _......___.....,,..------__ -_ -...... ---------1

G18049

1108990 9-3

B I 000 System:s Interactive BASIC (IBASIC) Reference Manual
Input/Output

Syntax for the INPUT reply:

£-=1
<dat~m > ----,...., - _,_, _]--..--------·---------------------

G18050

<string-expression> is any string expression as described in Section 5. <variable> is any numeric or string
variable as described in Sections 4 and 5, respectively. The <datum> is either a numeric constant, a string
constant, or an unquoted string (a string constant not enclosed in quotation marks). An unquoted string must
be delimited by a comma if data follows it.

Semantics:

Execution of an INPUT statement causes program execution to be suspended until a valid reply is supplied.
The user of a program is informed of the need to supply data by the output of a prompt. If the PROMPT
option is not specified in the INPUT statement, the prompt is a question mark (?) followed by a space. If
PROMPT is specified, the prompt is the <string-expression>.

Each <datum> from the user's reply must correspond to the type of the variable to which it is to be assigned.
Numeric constants must correspond to numeric variables, and string constants or string constants not ernclosed
in quotation marks must correspond to string variables. Each <datum> must also be within the allowable
range of values for that <datum>, and there must be an adequate number of data items for the list of
<variable>s. No assignment of data is made until the preceding criteria are met. If these criteria are not met,
IBASIC requests that the user resupply the data.

After this validation process is completed and valid data have been supplied, the variables in the INPUT state
ment are assigned values from the lNPUT reply in the order in which they occur.

If an overflow occurs on a <datum>, whether numeric or string, IBASIC requests that the input be resup
plied. If an underflow occurs on a numeric <datum>, its value is replaced by the value zero; execution then
continues.

lf neither the INPUT statement nor the corresponding reply contains a final comma, the number of data items
in the reply must equal the number of variables in the INPUT statement.

If an INPUT statement contains a final comma, the number of data in the INPUT reply may exceed the num
ber of variables requiring values. The remaining data in an INPUT reply are retained to serve as the next
requested INPUT reply or LINPUT reply. Any such excess data are discarded upon execution of a PRINT
statement.

A comma at the end of an INPUT reply signifies that more data will be supplied. After the values contained
in the INPUT reply are assigned to variables in the INPUT statement, a prompt is reissued. Execution of
the program remains suspended until each <variable> in the <variable> list has been supplied with a value.

Subscripts in the list of <variables> are evaluated after values are assigned to the variables preceding (to the
left of) them in the list.

9-4

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

Examp1es of INPUT statements:

INPUT X
INPUT X, A$, Y(2)
INPUT PROMPT "What is your name? "· N$
INPUT X, Y,

Examples of corresponding INPUT replies:

2
25 "ABOVE" 0.2
JOHN DOE
1,2,3,4,5,6

UNPUT Statement

The LINPUT statement enables an entire line of input, including embedded spaces, commas, and quotation
marks, to be assigned as the value of a string variable. Both the syntax for the LINPUT statement and for
the reply to the LINPUT statement follow.

Syntax for the LINPUT statement:

--- LINPUT--.--- PROMPT <string-expression>~----- <string-variable>-----------

G18051

Syntax for the LINPUT reply:

---- 254 -----

~~====~-<_c_ha_r_ac_t_er_>_~~~~~~--J-.--------~---------------------

G18052

<string-expression> is any string expression as described in Section 5. <string-variable> is any string variable
as described in Section 5. <character> is any character.

Semantics:

Execution of a LINPUT statement causes program execution to be suspended until a valid reply is supplied.
The user of a program is informed of the need to supply data by the output of a prompt. If the PROMPT
option is not specified in the LINPUT statement, the prompt is a question mark (?) followed by a space. If
PROMPT is specified, the prompt is a <string-expression>. After the LINPUT reply is supplied, the string
of <character>s is assigned to the <string-variable>.

Examples of LINPUT statements:

LlNPUT A$

LINPUT PROMPT ""· A$, B$! Prompt is the null string

1108990 9-5

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

Examples of LINPUT replies:

NOW lS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY.
!"#$%&'(=-"'--" ?!<> + ;:. *@
Any valid character, including commas, may occur in a LINPUT reply.
THIS IS A LINPUT REPLY.

TERMINAL OUTPUT

There are four statements associated with terminal output: the PRINT statement, the PRINT USING and IM
AGE .statements, and the MARGIN statement.

PRINT Statement

The PRINT statement is used to generate output on a terminal.

Syntax:

__ ,_l: ~=1 ' _ _.._ ______ _
TAB (<index>) ; _J

---PR INT ----....---..--<expression> ---...---'--E-------------·---J

------ ' _J
G18053

<expression> is any numeric or string expression. <index> is a numeric expression which, when evaluated,
is the columnar position on the terminal where the next <expression> is to be displayed. Columnar position
is the number of print positions from the leftmost print position.

Semantics:

The execution of a PRINT statement generates a string of characters for transmission, to a terminal. This string
of characters is determined by the successive evaluation of each item in the PRINT statement as well as the
type of separator used to delimit the items. Refer to Print Separators and T ABs in this section.

Examples of PRINT statements:

PRINT X
PRINT X, Y
PRINT X, Y, Z,
PRINT ,,,X
PRINT
PRINT "X EQUALS", 10
PRINT X; (Y*Z)/2
PRINT TAB(lO); A$; "IS DONE."

The rules used for displaying the items in the PRINT statement are described in the four subsections that fol
low.

9-6

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Input/Output

PRINTING NUMERIC VALUES

Numeric expressions in a PRINT statement produce a string of characters consisting of a leading space if the
number is positive, or a leading minus sign if the number is negative. This leading space or minus sign is fol
lowed by the decimal representation of the absolute value of the number. This sequence of characters is termi
nated by a trailing space. The possible decimal representations of a number are the same as those described
for numeric constants in Section 4 and are used as follows:

1. A numeric value that is an integer in the range -16777215 to + 16777215 is written as an integer, that
is, a series of decimal digits without a decimal point or an exponent.

2. A numeric value that cannot be represented precisely as an integer is written as a real number, that
is, a series of decimal digits with a decimal point. A real value that can be represented with six or
less digits without losing accuracy is written without an exponent.

3. If accuracy would be lost by using only six digits, the value is displayed as a normalized decimal num
ber with the necessary significant digits and with an exponent. For example, 10**(-6) is written as
.000001 and 10 * *(-7) is written as 1.E-7. Exponents have a maximum of two decimal digits.

The maximum widths for each format follow.

Format

Integer

Real, no exponent

Real, exponent

Examples of numeric output:

1
5000
3.1415
6.283E+25
0
1.E-7

PRINTING STRING VALUES

Maximum width

10 places: sign, 8 digits, trailing
space

9 places: sign, 6 digits, decimal
point, trailing space

13 places: sign, 6 digits, decimal
point, E, sign of exponent,
2-digit exponent, trailing
space

String expressions are evaluated to generate the corresponding string of characters.

PRINT SEPARATORS AND TABS

A print separator is either a comma (,) or a semicolon (;) and is used to separate items in a PRINT or OUT
PUT statement-: These separators are shown in the syntax for the PRINT and OUTPUT statements in this
section. TAB is also shown in the syntax for the PRINT and OUTPUT statements. The function of print se
parators and TABs is to specify what type of spacing is to be used between print items as they are displayed.
A print item is an expression or TAB call occurring in a PRINT or OUTPUT statement.

1108990 9-7

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

The evaluation of the semicolon separator generates the null string within the output. A null string is a string
of zero length.

Example:

LET A, l:S = 4
PR I NT '''A+B=11

; A+B; "A-*8=:11 ; 16

Execution of this example causes the following to be displayed.

A+B= 8 M•B= 16

The output from the evaluation of a comma separator or a TAB depends upon the string of characters :already
generated by the current or previous PRINT statements.

The use of the comma separator causes the columnar position to be advanced to the end of a predefine~d print
zone. A print zone has a width of 15 print positions. In an 80-character print line there are five fuH-width
print zones and one 5-character partial print zone. The length of the print line and, thus, the number of print
zones may be changed by the MARGIN statement. For more information, refer to the description of the MAR
GIN statement in this section.

The evaluation of the comma print sc;!parator depends upon the current columnar position. One of three actions
may be taken depending on this position. First, if the columnar position is neither in the last print zone on
a line nor beyond the margin, one or more spaces are generated to set the columnar position to the be:ginning
of the next print zone on the line.

Example:

LET A ,B=4
PR I NT 11 A+B= 11

, A+B, 11Mcff= 11
, 1 G

PR I NT 11
----•'•--- -1-- -· -•'•----2- ---•'•----3- ---•'•-- -·-4-- - -•'•--- -5''

Execution of the above example causes the following to be displayed.

A+i:S= 8 M•B= 16
----*----1----*----2----*----3----*----4----*----5

Second, if the current columnar position is in the last print zone on a line, an end-of-line character is generated
by IBASIC and subsequent displaying continues on the next line .. An end-of-line is a NUL, CR, LF, or ETX
character, or the end of the record.

Example:

MARGIN ~u ! The MARGIN statement is described in Section 9.
PRINT 1,2,3,4,S,6,7
PR I NT ''----;'c----1- ---;'c-- --2--- -;'c----3--- _,•c----4- - --;'c-- --5''

Execution of this example gives the following output:

1 2 3 4
5 6 7

----*----1----*----2----*----3----*----4----*----5

9-8

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

Third, if the current columnar position is beyond the margin, as it would be if evaluation of the last print
item exactly filled the line, an end-of-line character is generated and subsequent displaying begins in the first
print zone on the new line.

Example:

MARGIN SO
PRINT 1,2,3, 11 FOUR 11 ,!i,6,7
PRINT 11 ____ ,•c----] ____ ,•c----2----7'c----3----7'c----4----7'c----511

Execution of this example gives the following output:

r
·'

2
6

3
7

FOUR

·----*----1----*----2----*----3----*----4----*----5

The TAB call sets the columnar position of the current line to the specified value. The current line is the
string of characters generated by PRINT and OUTPUT statements since the last end-of-line character was gen
erated. The syntax for the TAB call is shown in the PRINT statement syntax and also in the OUTPUT state
ment syntax.

When TAB is used in a PRINT statement, <index> is evaluated and rounded to an integer, n. If n is less
than 1, an error message is displayed, n is replaced by 1, and execution continues. If n is greater than margin
m, n is reduced by an integral multiple of m so that it is within the range l < = n < = m; that is, n is set
equal to n - m * INT((n-1)/m).

If the current columnar position of the current line is less than or equal to n, spaces are generated, if neces
sary, to set the columnar position to n. If the current columnar position of the current line is greater than
n, an end-of-line character is generated followed by n-1 spaces to set the columnar position of the new current
line to n.

If the value of a TAB expression is so large that significance is lost, a nonfatal error occurs. A nonfatal error
is an error which causes an error message to be printed and allows execution to continue.

Example:

MARGIN SO
PRINT A; TAB(20); -1; TAB(40); B; TAB(65); C
PR I NT 11 ____ ,•c--- - 1-- -- ,•c--- -2- - - _,•c----3-- __ ,•c--- -4- --- ,•c-- --511

Execution of this example gives the following output:

0 -1 0
0

----*----1----*----2----*----3----*----4----*----5

END-OF-LINE CONDITIONS

Under certain conditions an end-of-line character is generated by IBASIC before subsequent action to a print
line. These conditions are described next.

1108990 9-9

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

Whenever the columnar position is greater than the integer 1 and the evaluation of the next print item would
cause that position to exceed the margin by more than one position, an end-of-line character is generated prior
to the characters generated by that print item.

During the evaluation of a print item whose length is greater than the margin length, if the generation of a
character would cause the columnar position to exceed the margin by more than one position, an end-of-line
character is generated before that character is displayed, resetting the columnar position to 1 on the following
line.

An end-of-Jine character is generated when evaluation of a list of print items is completed, if that list does
not end with a print separator. Otherwise, the rules for the print separator prevail.

Formatted Output

The PRINT USING statement is used to control the format of output by specifying an image to which that
output must conform. The following two subsections describe the PRINT USING statement and the images
used with it.

PRINT USING STATEMENT

The PRINT USING statement uses a user-created image to format the print items on the print line.

Syntax:

PRINTUSING <image>T
r---·-. ,=1

____ ,____<expression..-> _ __,....___L ____ ~-------------

G18054

<image> is either a string expression or a line number which references a separate IMAGE statement. <ex
pression> is either a numeric or a string expression. The items following the colon (:) are referred to as the
output list.

Semantics:

The execution of a PRINT USING statement generates a string of characters for transmission to a terminal.
This string, which is generated from the list of <expression>s, is formatted according to the <image>. Possi
ble values for the <image> are described next under Images.

Examples of PRINT USING statements:

PRINT USING 100: A, B ! Image is located at line 100.

PRINT USING A$: D, E, F; ! Image is located in string A$.

IMAGES

Images are used in conjunction with PRINT USING statements. An <image> is either a line number which
refers to an IMAGE statement containing a format string, or a string expression whose value is the format
string. The syntax for a string expression used as an image is th•~ same as for string expressions as dc!scribed
in Section 5. The syntax for a line number used as an image is the same as for line numbers as dc!scribed

9-10

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

under Statement Lines in Section 3. The syntax for the IMAGE statement follows. The value for a string ex
pression used as an image is also contained in the following syntax diagram, except that the word IMAGE
and the colon (:) are excluded from the string expression.

Syntax:

-LMAGE T : <literal-string>

G'l8055

<iustifier> J[~ <i-format> T <literal-string>~
- -~- [< f-format> J

<e-format>

<literal-string> is made up of any sequence of characters that may be used in a string constant except the
following:

Character Name
> Greater than
< Less than
Number sign
+ Plus sign

Minus sign
Period

" Circumflex accent
Quotation mark

Even though these characters cannot be used in a <literal-string>, the same effect may be obtained by putting
them in quoted strings in the output list.

<justifier> is either a greater than (>) or a less than (<) sign. <sign> is a plus (+) or a minus (-) sign. <cir
cumflex-·accent> is the circumflex accent character (A).

The format items, <i-format>, <f-format>, and <e-format>, are described in detail under Formatted Numeric
Output in this section. AIJ of the items following the colon in an image, which may include several format
items and <literal-string>s, are referred to as the format string. Any spaces following the colon are part of
the format string.

Semantics:

When the execution of a program encounters a line containing an IMAGE statement, executio.n proceeds to
the next line with no other effect.

When a PRINT USING statement is executed, the associated format string is scanned. Any <literal-string>s
are displayed exactly as they occur in the format string. Any format items generate an output field whose
length equals the number of characters in the format item (including the <justifier>, <sign>, number sign
(#), perfod (.), and <circumflex-accent>s). The contents of the output field depend upon the corresponding
<expression> in the PRINT USING statement. <expression>s are displayed in the sequence in which they
occur, according to the format item currently being scanned.

The <expression>s are displayed in the manner described in the following three main subsections: Formatted
Numeric Output, Formatted String Output, and End·-of-Line Conditions.

1108990 9-11

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

If a PRINT USING statement contains an output list, but there is no format item in the associated format
string, a fatal error occurs.

If the output from an <expression> in a PRINT USING statement is longer than its corresponding format
item, the current line is terminated by an end-of-line character, thie evaluated <expression> is displayed unfor
matted, and displaying continues according to the format. Refer to the second of the following five examples.

Examples of PRINT USING and IMAGE statements:

9-12

Assume X has the value 342 and Y has the value 42.021.

30 PRINT USING 40: X, Y
40 IMAGE:RATE OF LOSS #### EQUALS ####.## POUNDS

The output is the following:

RATE OF LOSS 342 EQUALS 42. 02 POUNDS

Example of format item overflow:

5 PRINT USING "OVERFLOW FORMAT ITEM #STARTS NEW LINE":34564

The output is the following:

OVERFLOW FORMAT ITEM
34564 STARTS NEW LINE

Assume A, B, and C have the value 1.

10 LET A$ = "<####://.: #### .#### ####.##://.:#A A A fl':
20 PRINT USING A$: A, B, C

The output is the following:

1.0000 1000.0000E-03

Use of the left justifier.

60 PRINT USING 70: "ONE", "TWO"
70 :Z<####<####Z

These two statements give the following output:

ZONE TWO Z

Use of both justifiers.

110 IMAGE :>-##<-##
120 PRINT USING 110: -2, -2

These two statements give the following output
(the quotation marks are not displayed):

II -2-2 II

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Input/Output

Formatted Numeric Output

There are three steps in displaying formatted numbers: generating the value, generating the sign, and justifying
the value.

The value is generated first. Numeric values are generated by being rounded and represented according to
the format used. The three possible formats are the i-format, the f-format, and the e-format.

i-format

The i-format consists of a series of contiguous number signs (#). For the i-format, the corresponding value
is rounded to the nearest integer and is represented using implicit-point, unscaled notation, with no superfluous
leading zeros. Implicit-point notation means that the decimal point is not present. Unscaled notation means
that there is no exponent part.

Syntax:

t#
G18056

Example of an i-format:

!-format

The f-format consists of a series of contiguous number signs (#)and an explicit decimal point (.). The decimal
point can occur at any point within, before, or after the string of number signs. For the f-format, the corre
sponding value is represented by explicit-point unscaled notation. Moreover, the representation is rounded or
extended according to the number of number signs (#) following the decimal point in the format item. Zeros
are not generated to the left of the decimal point unless the number is less than 1 and there is at least one
number sign (#)to the left of the decimal point in the format item. In that case, a zero is generated immediate
ly before the decimal point.

Syntax:

G'l8057

Examples off-formats:

###.
##.##
.#####

1108990 9-13

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Input/Output

e-format

The e-format consists of the i-format or the f-format followed by three or more circumflex accents (A). For
the e-format, the corresponding value is represented by explicit- or implicit-point scaled notation, with as many
digits to the left of the decimal poiint or within the integer as there are number signs (#) to the left of the
decimal point in the format item. The representation is rounded or extended according to the number of num
ber signs following the decimal point in the format item. A value of zero generates a single zero in the integer
to the left of the decimal point. The number of <circumflex-accent>s in an e-format determines the number
of characters in the exponent. The first of these characters is the letter E, the next is a mandatory sign, and
the re.maining characters represent the value of the exponent, with leading zeros added to ensure that the expo
nent has the proper length. If the exponent is zero, the mandatory sign is positive; the exponent of zero is
zero.

Syntax:

Wlff--------- 2* ~-----

----.....-------- <ci.rcumflex-accent > ----

_........__#

G18058

Examples of e-formats:

/\ !\ !\
.#### !\ !\ !\ /\ !\
#.!\!\!\

.###### !\ !\ !\ !\

The second step in displaying a formatted number is generating the sign. A leading sign or space is always
gener~ted with each number to be displayed according to the following rules.

1. If the rounded value of a number is negative, a minus sign (-) is generated regardless of the sign in
the format item.

2. If the rounded value is nonnegative and the format item contains a plus sign (+), a plus sign is gener
ated.

3. If the rounded value is nonnegative and the format item contains a minus sign, a space is generated.
4. If the rounded value is nonnegative and the format item contains no sign, no leading space or sign

is generated.

The third step taken by !BASIC before displaying a numeric value is to justify the value (extend it with
spaces), if necessary, so that its length equals that of the format item. Spaces are added on the left, unless
a format item begins with a less than sign (<), in which case the spaces are added on the right.

Formatted String Output

A string value may be written using any type of format item. The string is extended by spaces so that its
length equals that of the format item. These spaces are added on the left for right justification if the format
item begins with a greater than sign (>). They are added on th(;: right for left justification if the format item

9-14

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

begins with a less than sign. Otherwise, they are added equally on either side for centering. If the number
of spaces required in the last case is odd, the extra space is added on the right.

If the string value is longer than its corresponding format item, the current print line is terminated by an end
of-line character, the string value is displayed unformatted, and displaying continues according to the format.

Examples of formatted string output:

PRINT USING"<######//#################### LITERAL STRING11
;

11THIS IS A11

PRINT US I NG 11 ##############. ############# LI TE RAL STRING"; "TH IS IS A11

PRINT USING">######//#################### LITERAL STRING11
:

11THIS IS A11

Execution of these examples gives the following output:

THIS IS A LITERAL STRING
THIS IS A LITERAL STRING

THIS IS A LITERAL STR~NG

End-of-Line Conditions

The characters generated by each <literal-string> and each value under the control of a format item are trans
mitted in the same manner as described under Terminal Output in this section. In particular, if the generation
of characters for any <literal-string> or value would cause the columnar position of a nonempty line to exceed
the margin by more than one, an end-of-line character is generated before the characters of the <literal-string>
or value. Furthermore, an end-of-line character is generated each time the columnar position of the current
line exceeds a nonzero margin.

Example:

MARG IN 50
PRINT 1,2,3,"0VERLAP11

p R I NT I I - - - - .,., _ - - - 1 - - - - .,.,_ - - - 2 - - - - .,., - - - - 3-- - - .,., _ - - - 4 - - - - .,., - - - - 51 I

PRINT 1 ,2,3,4,~,6,7,8,9,lO
p RI NT 11 - ___ ,., __ --1 -- --;'c----2----;'c--- ·-3-- __ ,.,_ -- -4-- __ .,.,_ -- -5 11

Execution of this example gives the following output:

1 L 3
OVERLAP
----*----1----*----2--~-*----3----*----4----*----5

1 2 3 4
~ 6 7 8
~ 10
----*----~----*----2----*----3----*----4----*----5

If the number of values to be written exceeds the number of format items in the format string, an end-of
line character is generated and the format string is reused for the remaining expressions. If format items remain
in the format string after all values have been written, any succeeding <literal-string> is written, and
generation of characters is terminated beginning at the first unused format item.

1108990 9-15

B I 000 Systems Interactive BASIC (lBASIC) Reference Manual
Input/Output

Example:

A$ = "### ### END OF FORMAT ITEMS"
PRINT USING A$: 1,-1,2,-2,3,-3,4,-4,5

Execution of this example gives the following output:

-1 END OF FORMAT ITEMS
2 -2 END OF FORMAT ITEMS
3 -3 END OF FORMAT ITEMS
4 -4 END OF FORMAT ITEMS
5

Finally, an end-of-line character is generated after all other character generation is completed, unless the out
put list ends with a semicolon, in which case no end-of-line character is generated.

MARGIN Statement

The MARGIN statement provides programmatic control over the length of lines produced by the PRINT or
PRINT USING statement.

Syntax:

--- MARGIN <margin-value>

G18059

<margin-value> is a numeric expression.

Semantics:

The MARGIN statement resets the maximum number of bytes that the PRINT and PRINT USING statements
can generate in a print line. When <margin-value> is evaluated, it is rounded to the nearest integer and then
assigned as the new margin. The new margin takes effect immediately; thus, if a partial line is awaiting ieomple·
tion, the new margin is used when a subsequent PRINT or PRINT USING statement is executed.

A margin setting of 0 restores the margin to the default value for the terminal to which the user is aUached.

Examples of MARGIN statements:

9-16

MARGIN 20
PRINT "MARGIN LENGTH - 2011

PRINT "THIS SENTENCE GOES BEYOND THE MARGIN. 11

PRINT "THIS STAYS WITHIN. 11

MARGIN 50
PRINT "NOW THE MARGIN IS 50.
PRINT 11 ----;'c----1----;'c-·---2----;'c----3----;'c----4----·;'c----5 11

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

Execution of these examples gives the following output:

MARGIN LENGTH - 20
THIS SENTENCE GOES B
EYOND THE MARGIN.
THIS STAYS WITHIN.
NOW THE MARGIN IS 50.
----*----1----*----2----*----3----*----4----*----5

ARRAY 1/0

Array I/O statements enable entire arrays to be read or written.

ARRAY INPUT

One statement is provided to enable an entire array to be initialized from internal DATA. This statement is
the MAT READ statement.

MAT READ Statement

Execution of a MAT READ statement causes arrays to be assigned values from the data sequence created
by DATA statements.

Syntax:

re
·--- MAT READ --- <array-name> csubscript > r ' <subscript> T)

. ' ----------------.

G18060

<array-name> follows the same naming conventions as simple variables. <subscript> is a numeric expression.
This numeric expression must evaluate to a number which is greater than or equal to the lower-dimension
bound for arrays in the program.

Semantics:

If one or both of the <subscript>s are present, the array is redimensioned before values are assigned to it.
Arrays are redimensioned in the manner described for the MAT Assignment Statement in Section 6. <sub
script>s are evaluated after values are assigned to the arrays preceding (to the left of) them in the array list.

Elements in an array are assigned values from the DAT A statements in a row-by-row fashion. Refer to DAT A
Statement in this section for more information on DATA statements. The example in this subsection shows
row-by-row assignment.

The type of each datum in the data sequence must correspond to the type of the array element to which it
is to be assigned. Numeric variables require numeric constants as data and string variables require quoted
strings or unquoted strings as data. An unquoted string which is a valid numeric representation may be as
sngned to a string variable or to a numeric variable by a MAT READ statement. If data types do not match,
a fatal error occurs.

1108990 9-17

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

If the array list requires more data than are present in the remainder of the data sequence, a fatal error occurs.

Example of the use of a MAT READ statement:

OPTION BASE l
DIM A(lO, 10)
DATA l ,2,3,4,5,6,7,8,9,tO,ll, 12
MAT READ A(3,4)
MAT PRINT A;

Execution of this example gives the following output:

l 2 3 4
5 6 7 8
9 l 0 11 12

ARRAY OUTPUT

One statement is provided to enable entire arrays to be written to the terminal. This statement is the MAT
PRINT statement.

MAT PRINT Statement

The MAT PRINT statement displays an entire array on the terminal in row order.

Syntax:

---MAfMIITT~~~~>--~---~---------------
G18061

<array-name> follows the same naming conventions as simple variables.

Semantics:

Execution of a MAT PRINT statement causes the values of all elements in all arrays in the list of <array
name>s to be displayed on the terminal. The characters generated for transmission to the terminal by the dis
playing of one array in the list of <array-name>s are those that would be generated if the individual elements
in an array had been listed, row by row, in the list of <expression>s of a PRINT statement. Each array
element displayed with a MAT PRINT statement is separated from the following element by spaces according
to the separator (comma or semicolon) that follows the <array-name> in the list of <array-name>s, or by
a comma separator if the last separator is not specified.

An end-of-line character is generated prior to any characters generated by a MAT PRINT statement if the
current line of output is nonempty. An end-of-line character is also generated between the output for succes
sive arrays in the list of <array-name>s.

9-18

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

Example of the use of the MAT PRINT statement:

OPTION BASE l
MAT READ A$ (3, 3)
MAT PRINT A$; A$,
DATA ONE, 11 211

, THREE, 11 411
, FIVE, 11 611

, SEVEN, 11 811
, NINE

PR I NT 11 -- --;'c--- -1- ---;'c----2- - - -;'c-- ··- 3-- --;'c--- -4- - - _,.,_ - - -5 11

Execution of this example produces the following output:

ONE2THREE
·4FI VE6
SEVEN8NINE

ONE
4
SEVEN

2
FIVE
8

THREE
6
NINE

----*----1----*----2----*----3----*----4----*----5

Example of MAT PRINT with different separators:

OPTION BASE 1
MAT READ A (4,4)
MAT PRINT A
PR I NT 11 - -- -;'c----1----;'c--- -2----;'c--- -3----;'c-- - -4- - --;'c----5 11

MAT PRINT A,
PR I NT 11 -- - _,., ___ -1 -- - _,., __ --2- - - _ ,.,_ - -- 3- -- _,.,_ - - -4- -- _,.,_ - - -511

MAT PRINT A;
DATA 11 , 12, 13, 14, 21 , 22, 23, 24, 3 l , 32, 33, 34, 41 , 42, 43, 44

Execution of this example causes the following to be displayed.

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
----*----1----*----2----*----3-~--*----4----*--··5

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

----*----1----*----2----*----3----*----4----*----5
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

FILE 1/0 STATEMENTS

An external file is a collection of data stored on disk. BASIC has the capability of manipulating external files.
The statements and concepts necessary to use external files are described in this subsection.

R 108990 9-19

FILE ACCESS

B 1000 Systems Interactive BASIC (IBASlC) Reference Manual
Input/Output

The OPEN and CLOSE statements are provided to enable access to external files. A particular BASIC envi
ronment may access, for input only, any external disk file maintained by MCPII which may be accessed under
the currently logged on usercode. A particular BASIC environment may create or change only files which have
a family name of the currently logged on usercode. Thus, the rult::s for accessing a file for input only are more
flexible than those for files which are to be created or changed. If usercodes are not used, the scope of access
of the BASIC environment is limited to public files.

OPEN Statement

The OPEN statement makes an external file accessible to a program by establishing the connection between
the physical file (on disk) and the channel number within the program"

Syntax:

--- OPEN # <channel-number> <file-name>

G18062

'-r- DISPLAY

L INTERNAL

1 L_ VARIABLE <index>

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255. <file
name> is a string expression which, when evaluated, is the name of a disk file. Refer to Syntax Definitions
in Section 11 for the syntax of <file-·name>. <index> is a numeric expression which gives the maximum al
lowable length for a record of a file.

Semantics:

Through use of the OPEN statement, disk files can be assigned to a channel, and can then be accessed in
a program by referencing the assigned channel. If the file being accessed already exists, that file is assigned
to the channel. If the file does not exist, a new file is created and assigned to the channel. A maximum of
16 files can be opened at one time in a BASIC program.

At the beginning of program execution, all channels except channel zero are inactive, that is, no file is assigned
to them. Channel zero is always open during the execution of a program. The file associated with channel
zero is the terminal from which IBASIC is executed. This file is the source of data for INPUT statements

9-20

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Input/Output

and the destination of output from PRINT statements. The appearance of channel zero in an OPEN statement
is ignored. The appearance of a nonzero channel in an OPEN statement that is already active causes a fatal
error.

The keywords that can be listed after the <file-name> are called the file attributes. File attributes specify
logical characteristics of a file and the manner in which a file is to be accessed by a program. If the file to
be opened does not match the file attributes, the file is not opened and a fatal error occurs. The file attributes
that can be specified are access mode, file organization, file type, file pointer position, and record type.

The access mode specifies the manner in which data in the file are accessed. The possible modes of access
are INPUT, OUTPUT, and OUTIN, as can be seen from the syntax diagram. If INPUT is specified, it is
only possible to read from the file. If OUTPUT is specified, it is only possible to write to the file. If OUTIN
is specified, it is possible to read from and to write to the file. If no access mode is specified, the file is opened
OUTIN. '

The access mode of the terminal, channel zero, is OUTIN.

File organization is the logical organization of records within a file. Currently, there is only one organization
possible: SEQUENTIAL. A sequential file is a linearly ordered sequence of records, accessible in sequential
order. If no file organization is specified, the file organization is SEQUENTIAL.

The file organization of the terminal, channel zero, is SEQUENTIAL.

File type specifies the format of data in a record of a file. Two types are available: DISPLAY format and
INTERNAL format. In a DISPLAY format file, each record is a string of characters. The only file organiza
tion provided for DISPLAY format files is SEQUENBAL. In an INTERNAL format file, each record con
tains a sequence of numeric or string values. An end-of-record delimiter (NUL or physical end of the record)
separates records in the INTERNAL format file, but is not part of the record. If no file type is specified,
the type of the file is DISPLAY format.

The file type of the terminal, channel zero, is DISPLAY format.

A file pointer position specifies the initial position of the file pointer when the file is opened. This pointer
indicates the position in the file that is affected by the next file input or output statement. The possible choites
for the file pointer are BEGIN or END. If the pointer position is END, the pointer is positioned at the end
of the file, the position immediately following the last record of the file. If the pointer position is BEGIN,
the pointer is positioned at the beginning of the first record of the file, which is also the end of the file if
it contains no records.

If the pointer position is not specified, the position is assumed to be the beginning of the file if the access
mode is INPUT or the end of the file if the access mode is either OUTPUT or OUTIN.

A record type specifies the type and maximum length of records in a file. Currently, the only record type
available i's VARIABLE. A VARIABLE type record contains records whose lengths may be any value be
tween 0 and <index>. The length of a record in a DISPLAY format file is the number of characters in that
record. The length of a record in an INTERNAL format file is either (1) <index> * 5 bytes if <index> is
specified following the VARIABLE attribute, (2) the size of the records in an existing file, or (3) 180 bytes
if the file does not already exist and no <index> is specified following the VARIABLE attribute. The length
of each numeric item in the record is five bytes. The length of each string in the record is the number of
characters in the string plus 1.

1108990 9-21

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Input/Output

lf no record type is specified, the type;: of records in the file is VARIABLE. The maximum length of the rec
ords in the file is either 180 bytes or the record size of the file if it already exists before execution of the
corresponding OPEN statement.

The record type for the terminal, channel zero, is VARIABLE with a record length corresponding to a default
value defined by the type of terminal attached. For example, for a TD830 the record length is 80.

NOTE
A record is variable only to IBASIC. A file actually appears as a fixed record
length file on the B 1000 system. Also, the end-of-record delimiter generated by
!BASIC is not recognized as such by the B 1000 system, so that old data in a rec
ord after the end-of-record delimiter are invisible to !BASIC but visible to the
B 1000 system.

Examples of OPEN statements:

OPEN #1: ''MYFILE''
OPEN #1: "MYFILE", BEGIN
OPEN #2: "RESULT", OUTPUT, VARIABLE 132
OPEN #N: A$, SEQUENTIAL, DISPLAY, OUTIN, BEGIN

CLOSE Statement

The CLOSE statement closes the file assigned to the specified channel.

Syntax:

--- CLOSE # <channel-number> ----------------------------,

G18063

<channel-number> has the same syntax as the <channel-number> in an OPEN statement: a numeric expres
sion that must evaluate to an integer in the range 0 to 255.

Semantics:

Execution of a CLOSE statement closes the file assigned to the specified channel, causing the channel to be
come inactive. All files still assigned to channels when execution of a program terminates are closed. It is
possible to close a file and then reopen it in the same program.

If an inactive nonzero channel appears in a CLOSE statement, a fatal error occurs.

Examples of CLOSE statements:

CLOSE #3
CLOSE #N

FILE 1/0 STATEMENTS

!BASIC provides for input from and output to disk files, and for c!nd-of-file testing on these files through the
use of file input and output statements. The statements necessary for the capabilities previously mentioned
are described in this section under the headings File Input, File Output, and Exception Statement.

9-22

File Input

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
lnJPut/Output

File input statements enable the user to obtain input from files. Two statements provide this capability: the
file INPUT statement and the file LINPUT statement.

FILE INPUT STATEMENT

The file INPUT statement allows data to be transferred from a disk file to variables within a program.

Syntax:

--- INPUT # <channel-number>
(

_ __.___ < variabie > _ __.__,.L---~---r---------------1

G18064

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255, and
specifies the channel through which data transfer takes place. <variable> is any numeric or string variable
as described in Sections 4 and 5, respectively. The list of <variable>s specifies the variables within the pro
gram that are to receive data.

Semantics:

lf channel zero is specified in a file INPUT statement, the statement is executed as if no <channel-number>
were specified; it performs the same function as the INPUT statement for terminal 1/0. If a nonzero <channel
number> is specified, execution is similar to the INPUT statement for terminal 1/0, except that no prompt
is transmitted and no error occurs if all values are not supplied in a single record of the file. If an inactive
channel is specified, a fatal error occurs.

Each time a value is required from a file, the datum which begins at the current position of the file's pointer
is used to supply that value. The type of this datum must correspond to the type of the variable to which
it is to be assigned. Overflow and underflow are handled in the same manner as for assignment statements.
After the value has been supplied, the file pointer is advanced to the beginning of the next datum in the record,
if more data follow; otherwise, the pointer is advanced to the beginning of the next record. If there is insuffi
cient data in a file to satisfy an INPUT request, a fatal error occ1:1rs.

If the file pointer is not at the beginning of a record following execution of a file INPUT statement which
does not end with a final comma, the pointer is advanced to the beginning of the next record in the file. If
the statement does end with a comma, the file pointer remains where it was until subsequent 1/0 operations
take place. A pointer positioned in the middle of a record is advanced to the beginning of the next record
if an output statement is executed on that file.

Examples of file INPUT statements:

INPUT #1: X
INPUT #N:· X, A$, Y(2)
INPUT #N+l: X,Y,

FILE LINPUT STATEMENT

The file LINPUT statement enables an entire record, including embedded spaces, commas, and quotation
marks to be assigned as the value of a string variable. The syntax for the LINPUT statement follows.

1108990 9-23

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Input/Output

Syntax:

--- LINPUT # <channel-number> <string-variable>

G18065

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255, and
specifies the channel through which data transfer takes place. <string-variable> is any string variable as de
scribed in Section 5. <string-variable> receives the data as a res.ult of execution of the LINPUT statement.

Semantics:

If channel zero is specified in a file LINPUT statement, the statement is executed as if no <channel-number>
were specified; it performs the same function as the LINPUT statement for terminal 1/0. If a nonzero channel
is specified, execution is similar to the LINPUT statement for terminal 1/0, except that no prompt is transmit
ted and the string of characters starting at the current position of the file's pointer and continuing to the end
of the record is assigned as the value of <string-variable>. FoBowing this assignment, the file's pointer is
positioned at the beginning of the next record in the file.

If LINPUT is requested from an INTERNAL format file, a fatal error occurs.

Examples of file LINPUT statements:

LINPUT # 1: A$
LINPUT #N: A$

OUTPUT Statement

The OUTPUT statement allows data to be transferred from variables within a program to a disk file.

Syntax:

OUTPUT# <channel-number>[:

-L-~-- <expression> ____ __.__~---~--

.TAB (<index>)

G18066

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255, and
specifies the channel through which data transfer takes place. <expression> is any numeric or string expres
sion. The list of <expression>s or TABs specifies the items which are written when the OUTPUT statement
is executed. <index> is a numeric expression which, when evaluated, is the position within the file where
the next <expression> is printed.

Semantics:

The execution of the OUTPUT statement is similar to the execution of the PRINT statement. The following
paragraphs explain the differences between the two statements.

9-24

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

If the <channel-number> is nonzero, the output media is disk instead of terminal.

The end-of-line character is the end-of-record for the file.

The margin is the record length and the columnar position is one more than the number of characters generated
since the last end-of-record.

The OUTPUT statement may be used with a file whose format is either DISPLAY or INTERN AL.

Output to a file is appended to the file starting at the current position of the file's pointer. Any data previously
in the file beyond the file pointer are lost. When an output operation is complete, the file pointer is positioned
at the end of the file.

When an OUTPUT statement that ends with a comma or a semicolon is executed, the last record transmitted
to the file has no end-of-record. However, if input is requested from a file left in this state, if the file is closed,
or if its pointer is reset to the beginning of the file, an end-of-record is appended to the file before the re
quested operation is performed.

A fatal error occurs if the length of a string written to an INTERN AL format file exceeds the maximum record
length of that file.

Examples of file OUTPUT statements:

OUTPUT #N
OUTPUT #N: "X EQUALS"; X
OUTPUT #3: TAB(lO); A$; "IS DONE."

Exception Statement

The exception statement allows programmatic action when the end of a file is encountered.

Syntax:

----AT EOF # <channel-number> THEN <line-number> ---------------------1
G18067

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255, and
specifies the channel through which data transfer takes place. <line-number> is a line number which specifies
the place where execution continues if an end-of-file condition occurs for the file specified by <channel-num
ber>.

Semantics:

An end-of-file condition occurs when the amount of data remaining in the file is not enough to satisfy a request
for input from that file, or when the physical end of a finite-capacity file is reached before output to that file
is completed. Execution of an exception statement specifies the line number at which execution continues
whenever an end-of-file occurs during a data transfer operation on the specified channel. The statement itself
does not test for an end-of-file condition existing, nor does it branch, that is, transfer control to a line number
other than the one next in sequence, it only specifies the action to be taken when an end-of-file condition
is detected. If no exception statement is executed for ·a given channel prior to the occurrence of an end-of
file condition for that channel, a fatal error results. If more than one AT EOF statement is executed for a
<channel-number>, the latest one executed takes precedence if an end-of-file condition occurs.

,

1108990 9-25

B 1000 Systems Interactive BASIC (IBASIC') Reference Manual
Input/Output

The effect of the exception statement is nullified if the file assigned to <channel-number> is closed.

Example of the use of an exception statement:

100 AT EOF #2 THEN 400 ! Go to line 400 when end-of-file
200 INPUT #2: A, B$! is detected.
300 GOTO 200
400 STOP

FILE CONTROL STATEMENTS

Statements are provided to control the position of the pointer for an open file and to erase the contents of
a file. There are two statements that accomplish these tasks: the fille RESTORE statement and the SCRATCH
statement.

File RESTORE Statement

The file RESTORE statement resets the pointer for a file to the beginning of the file.

Syntax:

--- RESTORE # <channel-number>

G18068

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255.

Semantics:

Execution of a file RESTORE statement resets the pointer for the file assigned to the specified channel to
the beginning of the file.

Examples of file RESTORE statements:

9-26

RESTORE #I
RESTORE #15

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Input/Output

SCRATCH Statement

The SCRATCH statement erases the contents o:f a file and resets the pointer to the beginning of the file.

Syntax:

---- SCRATCH # <channe~-number > --
G18069

<channel-number> is a numeric expression which must evaluate to an integer in the range 0 to 255.

Semantics:

Execution of a SCRATCH statement erases the contents of the file assigned to the specified channel and resets
the pointer for that file to the beginning of the file. If the <channel-number> is zero, no action occurs.

Examples of SCRATCH statements:

SCRATCH #2
SCRATCH #Z

1108990 9-27

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 10
DEBUGG~NG AIDS

Three statements are provided in BASIC for the purpose of debugging a program. They are the DEBUG state
ment, the BREAK statement, and the TRACE statement.

DEBUG STATEMENT

The DEBUG statement either activates or deactivates the debugging facilities in BASIC. The statements avail
able to the user when debugging is active are the BREAK and the TRACE statements. The syntax for the
DEBUG statement follows.

Syntax:

----DEBUG ~ON ~

L-oFF -
G18070

Semantics:

DEBUG ON activates debugging. DEBUG OFF deactivates debugging. The default is DEBUG ON.

Examples of DEBUG statements:

DEBUG ON
DEBUG OFF

BREAK STATEMENT

The BREAK statement causes program execution to be temporarily stopped. The syntax for the BREAK state
ment follows.

Syntax:

---BREAK ___ ,

G18071

Semantics:

When debugging is active and a BREAK statement is executed, program execution is stopped and a message
is sent to the terminal. This message informs the user that a break has occurred and gives the line number
where execution stopped. Execution may be continued by the execution of a CONTINUE or a STEP com
mand,, The STEP and CONTINUE commands are described in Section 11.

If debugging is not active, the BREAK statement has no effect.

1108990 10-1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Debugging Aids

TRACE STATEMENT

The TRACE statement causes each source line (a line of source code) of a program to be displayed as it is
executed.

Syntax:

TRACE ---i- ON ---r
L__OFF-_J

G18072

Semantics:

When debugging is active and a TRACE ON statement is executed, tracing is turned on. When tracing is on,
each source line is displayed on the terminal as it is executed. TRACE OFF turns tracing off. If debugging
is not active, the TRACE statement has no effect.

NOTE
If TRACE ON is in effect and DEBUG is switched off, tracing continues until DE
BUG ON is set and a TRACE OFF statement is executed.

Examples of TRACE statements:

TRACE ON
TRACE OFF

Example of TRACE ON output:

10-2

90 IF A = B THEN 150
100 IF A < B THEN 130
130 B = B - A
140 GO TO 90
90 IF A = B THEN 150
100 IF A < B THEN 130
130 B = B - A
140 GO TO 90
90 IF A = B THEN 150
150 PRINT "THE GREATEST COMMON DIVISOR OF;C;"AND";D;"IS";A
THE GREATEST COMMON DIVISOR OF 10 AND 5 IS 2
160 PRINT

170 PRINT "DO YOU WANT TO CONTINUE? Y OR N"

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 11
SYSTEM COMMANDS AND CAPABILITIES

System and editing commands are provided to allow the user to interact with !BASIC in Command mode.

SYNTAX DEFINITIONS

Several of the system commands described in this section require the use of the constructs explained in this
subsection. These constructs are line number range, BASIC file name, pack name, and MCP file name.

LINE NUMBER RANGE

A line number range aHows a successive group of lines to be specified in a command.

Syntax:

- <line-numberl > ---~-------·

I-< minus> --ri= < line-number2 >

-TO -END------

-FIRST ____ _.

LAST --------

-r--- LAST
L_ ALL ___ ___,

G18073

The line number syntax is diagrammed under Statement Lines in Section 3. <minus> is a minus sign (&).

Semantics:

<line-number2> must be greater than or equal to <line-numberl>. Also, the pseudo line number FIRST,
which refers to the first line in the program, must refer to a line number smaller than or equal to <line
number2>. The pseudo line number LAST (or END) must refer to a line number greater than or equal to
<line-numberl>. The special cases of FIRST TO LAST or ALL refer to the entire program.

Examples of valid line number ranges:

100-200
FIRST TO 3000
2000 - LAST
FIRST
ALL
FIRST TO 200

Examples of invalid line number ranges:

1108990

200-100
3000 TO FIRST
LAST TO 2000
END - 100
FIRST TO 200

! First lines <= 200.

! Where the first line > 200.

11-1

B 1000 Systems Interactive BASIC (IBASIC)i Reference Manual
System Commands and Capabilities

BASIC FILE NAME

Syntax:

------'9L----
~ ~alphanumeric> -=r-

"~===,_=1 ___ _
G18074

<character> is any character valid to the MCP. <alphanumeric> i:s an alphabetic character or decimal digit.

A BASIC file name, that appears inside quotation marks, can contain a quotation mark by using two
consecutive quotation marks instead of one (for example, "MY""FILE"). A BASIC file name, that does not
use quotation marks, is translated to upper-case characters and must begin with an alphanumeric character.

A BASIC file name cannot begin with an asterisk (*), space (), or equal sign (=). The file name can begin
with a number sign (#) as long as the name is within quotation marks. The first and last characters of a BASIC
file name cannot be a left parenthesis and a right parenthesis, respectively.

Examples of valid BASIC file names:

ABCD
1234
P.Q
""!""'#$'"
Q123ABC
abed (equivalent ABCD)
''abed''
c ___ d

Examples of invalid BASIC file names:

11-2

ABCDEFGHIJK
!"#$
.ABC
"qwe
*ABC

(ME)
"(ME)"

PACK NAME

Syntax:

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

--r- <BASIC-file-name> _J
L_" <up to 10 blanks> "

G18075

A pack name can contain up to I 0 characters according to the same formation rules as described under BASIC
File Name in this section. Spaces for the pack name indicate the system pack.

Examples of valid pack names:

USER.243
"I &2"
" "

Examples of invalid pack names:

(ME)
= or "="

"
MCP FILE NAME

Syntax:

1
-<BASIC-file-name> -~ /
- * <BASIC-file-name> --

- (< BASIC-file-name >)

- * (<BASIC-file-name>)

G18076

<BASIC-file-name> ----------------

The use of quotation marks in a <BASIC-file-name> needs further explanation in relation to an MCP file
name. If the first BASIC file name uses quotation marks, they must enclose any asterisk, and/or parentheses
used.

Examples of valid MCP file names:

(IBASIC)/PQR
XYZ
XYZ/P.Q.R
*QWER
*(QWER)/LKJ
"*AS$F"
"*(qwer)" /"zxcv"
X""""' Y/L.K

1108990 11-3

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

Examples of invalid MCP file names:

''(IBASIC)/PQR''
*"QWER"
X$/Y$
XI=
" ASD"
"(qwe'"

=I=

SYSTEM COMMANDS

System commands can be entered at any time. although their effect may depend upon the state of the BASIC
environment. Unless stated to the contrary, the effect of the command is immediate. These commands cannot
be preceded by a line number nor can they be imbedded within a BASIC statement or BASIC command. The
system commands are listed in alphabetical order.

BYE COMMAND

The BYE command causes the BASIC environment to be cleared and the IBA SIC program to go to EOJ.

Syntax:

---BYE---------

G18077

Semantics:

The action of the BYE will not occur if either of the following conditions applies: the source file is not saved
or the BASIC environment is running.

CONTINUE COMMAND

The CONTINUE command causes the BASIC environment to continue execution from wherever it last stop
ped.

Syntax:

----------i
-TRACE ~~r__.~~--~~~~~~~~~~~~-

-PRINT =1
--- CONTINUE

G18078

Semantics:

When a CONTINUE command is emered, the BASIC data environment is not cleared, that is, data variables
retain the values they had when the BASIC environment last stopped. A RUN or WALK command must pre
cede the use of the CONTINUE command.

Certain editing functions, for example:, deletion of the next statememt to be executed, changing the dimensions
of an array, or changing a FOR NEXT statement, cause the CONTINUE command to be disallowed until
after a RUN or WALK command is executed.

11-4

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

The TRACE option causes the statements to be displayed on the remote device as they are executed.

The PRINT option causes the output from BASIC PRINT statements and the input from BASIC INPUT and
LINPUT statements to be written to the file LINE and to the remote device. The file LINE is closed on
execution of an END statement in the BASIC program.

If both the PRiNT and TRACE options are specified, the trace of statements executed is directed to the file
LINE interspersed with the BASIC PRINT, INPUT, and LINPUT output, and is not displayed on the remote
device.

The PRINT and TRACE options have effect until the program is stopped by a STOP statement, an END state
ment, or by a fatal error.

The CONTINUE command has effect only when the BASIC environment is in a stopped state.

Examples of CONTINUE statements:

CON

CON TRACE

CONTINUE

CONTINUE TRACE

CON PRINT

CON PRINT TRACE

DELETE COMMAND

! Continue and commence tracing.

! Continue and commence tracing.

! Continue, and commence or continue
! writing to file LINE.

! Continue, commence tracing, and writing
! to file LINE.

The DELETE command deletes the specified line numbers from the workfile file:

Syntax:

--r- DELETE <line-number-range>

L_ <line-number> ________ _,

G'l8079

< line-number> is described under Statement Lines in Section 3. < line-number-range > is described under
Line Number Range in this section. <line-number> and< line-number-range> must specify lines that
actually exist.

Semantics:

If the deleted line would have been the next line executed, program execution can be initiated only by entering
a RUN or WALK command.

The line numbers requested must be present in the workfile. No deletion occurs if any requested line number
is not present in the workfile.

If the BASIC environment is running, the DELETE command is ignored.

1108990 11-S

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
System Commands and Capabilities

Examples of DELETE commands:

DELETE 123
DELETE 2000-3000
123
DELETE 4000 TO LAST
DEL FIRST
DEL FIRST TO 100
DEL FIRST TO LAST

FILE COMMAND

! Delete line 123 only.

! Delete line: 123 only.

Delete all program statements.

The FILE command provides the capability to obtain information about a disk file.

Syntax:

Fl LE < MCP-file-name > -L-ON <pack-name_> __ _

G18080

<MCP-file-name> and <pack-name> are described under Syntax Definitions in this section.

Semantics:

The FILE command scans the disk directories available to the current usercode (refer to Scope of File Access
in the Glossary) to determine whether the file exists. If the file exists, information about it is returned .. If no
<pack-name> is specified, the default pack associated with the current usercode is queried.

Examples of FILE statements:

FILE IBASIC
FILE *XY
FILE X/Y ON P
FILE (PQR)/ZXY ON USER
FILE BLACKJACK ON '"' Look for BLACKJACK on system

! pack.

FIX COMMAND

The FIX command enables the user to change portions of one or more lines without re-entering the entire
line.

Syntax:

FIX L ~--r- <delim ><text> <:delim ><new-text> -r-- -r-f
<line-number-range .> _J L <delim > __ _j

1

G18081

11-6

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

<line-number-range> is described under Syntax Definitions in this section. <delim> can be any character
other than A through Z, 0 through 9, or space. <text> may be any string of characters excluding <delim>
and may contain zero characters, in which case <new-text> is inserted after the line number of the line
scanned, and the rest of the line is shifted right accordingly. <new-text> may be any string of characters
excluding <delim>. If the trailing <delim> is omitted, any trailing blanks are not included in <new text>.
<new-text> may contain zero characters, implying that occurrences of <text> are deleted from the scanned
line, and that the rest of the line is shifted to the left accordingly.

Semantics:

The FIX command searches the specified <line-number-range> for the occurrence of the required <text>,
replaces each occurrence of <text> within each line scanned with the <new-text>, and displays the new line.
If <text> and <new-text> are not the same length, the rest of the line is shifted appropriately.

If the <line-number-range> is omitted, the whole program is scanned.

If a statement is changed, the modified statement is checked for syntax and included in the current file. As
a result, the previous line having the line number of the modified statement is overwritten. Any syntax errors
that result must be resolved before the program can be run.

If the resulting statement exceeds 256 characters, the excess is truncated. No warning message is given.

Examples of FIX commands:

FIX /3.14159/PI

FIX 100 .X/Y. Y/X

FIX LAST /END/ END

FIX 2230 TO 2500 : : ! :

GET COMMAND

Move the END statement three
characters to the right.

! Make lines 2230 through 2500
! comment lines.

The GET command allows BASIC source files to be loaded into the BASIC environment.

Syntax:

--- GET < MCP-file-name >
L ON <pack-name> :.:J

G 18082

<MCP-file-name> and <pack-name> are described under the heading Syntax Definitions in this section.

Semantics:

The GET command searches the directory for <MCP-file-name> and proceeds to load the file into the BASIC
environment. If any syntax errors are found in the file, suitable error messages are emitted and the file cannot
be run until these errors are fixed. If syntactically incorrect statements are listed with the LIST command,
they are highlighted: reverse video on TD820 and TD830 terminal types, preceded by an asterisk (*) otherwise.

1108990 11-7

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

Only those files within the current usercode scope of access are available. The default pack for the current
usercode can be overridden by using the ON option.

Various parameters of the file are checked to make sure that it is a BASIC source file; for example, file type
is data, record size is less than or equal to 256 bytes, and number of records is less than the maximum allowed
(1979 records). Any record in this file which does not start with a valid line number is not included in the
loaded file. The records in the file do not have to be in strict line number sequence. The lines are entered
in the workfile just as if they were being entered from the terminal.

Examples of GET commands:

GET BLACKJACK

GET PQR ON ""

GET *MYPROG

GET (HIS)/FILE

GET (MY)/FILE ON OTHER

HELLO COMMAND

Load BLACKJACK from default
pack.

! Load PQR from system pack.

Load MYPROG from system pack,
bypassing usercode defaults.

! Access another user's file.

Load a file from a specific
pack.

The HELLO command allows a user to log on or off.

Syntax:

---HELLO---------------

L <usercode > -L--1-~-..,-
G18083

L <password > =3
Formation of a <usercode> follows the same rules as for a <BASIC-file-name> except that the maximum
length of a <usercode> is seven characters. Formation of a <password> follows the same rules as for a <BA
SIC-file-name>. The syntax for a <BASIC-file-name> is described in this section under Syntax Definitions.

Semantics:

If only "HELLO" is entered, a log off function is requested. Log off occurs only if the current BASIC envi
ronment permits. Refer to conditions for the BYE command in lthis section. If the HELLO command is al
lowed, the current BASIC environment is cleared, and only the HELLO, BYE, and TEACH commands are
allowed thereafter.

If <usercode> and, optionally, <password> follow HELLO, an implicit log off of the current usercode is
performed, if necessary, followed by a log on of the requested usercode/password pair.

11-8

B I 000 Systems Interactive BASIC (IBASIC') Reference Manual
System Commands and Capabilities

The <usercode> and <password> pair must be in the SYSTEM/USERCODE file if !BASIC was executed
under a privileged usercode. (Refer to the B 1700/B 1800 Systems System Software Operation Guide, Volume
2, form number 1108966 for more information on privileged usercodes.) If !BASIC is not running under an
MCP usercode, <password> has no meaning and is not allowed (refer to U sercode Considerations in Appen
dix C).

HELLO is ignored if the !BASIC system is not privileged (refer to U sercode Considerations in Appendix C
for more information on a privileged !BASIC system).

Examples of HELLO commands:

HELLO ME/SECRET

HELLO

HELLO MYOWN

LIST COMMAND

! Log ME on.

! Log off, if allowed.

! Log on, not running under the
! MCP usercode system.

The LIST command causes the requested lines or all of the current program to be listed at the remote terminal.

Syntax:

--- LIST ---=--------------~

L <line-number-range> __J L_ PRINT =mJ
G18084

<line-number-range> is described! under Syntax Definitions in this section.

Semantics:

With the LIST command, any syntactically incorrect lines are highlighted by means of reverse video (for
TD820 and TD830 terminals) or a preceding asterisk (i*). If the line which is displayed would be the next line
executed as a result of a CONTINUE or STEP command, it is highlighted by means of bright video (for TD830
terminals) or by a preceding greater than sign (>) (for all other terminal types).

If the PRINT option is requested, the list is written to the file LINE and not to the remote devic~. The file
LINE is defined as a printer file.

Examples of LIST commands:

LIST

LIST FIRST TO 100

LIST 1234

LIST PRINT

1108990

! List the whole program.

! List up to line 100.

! List line 1234 only.

! List the current file on the
! printer.

11-9

B 1000 Systems lr,iteractive BASIC (IBASllC) Reference Manual
System Commands and Cap:abilities

MAKE COMMAND

The MAKE command allows a file to be named and created.

Syntax:

--- MAKE <BASIC-file-name>------------

G18086

<BASIC-file-name> is described under Syntax Definitions in this section.

Semantics:

The MAKE command clears the BASIC environment under the same restrictions as the BYE command and
prepares for entry of a file to be called <BASIC-file-name>. If <BASIC-file-name> already exists, the MAKE
command is ignored.

If no MAKE command has been entered. IBASIC will still accc!pt BASIC statements (line number present)
and put them into the current workfile. but the file must be named (TITLE or SA VE AS command) before
it can be saved.

Examples of MAKE commands:

MAKE NEWPROG
MAKE "ODDNAME?"

MERGE COMMAND

! Quotation marks used because of special
! character "?".

The MERGE command allows BASIC source code (BASIC language statements) to be merged into thie work
file.

Syntax:

MERGE L I
<line-number-range> L

-FROM _J

<MCP-file-name > [yi
ON <pack-name>

G18086

<line-number-range>. <MCP-file-name>. and <pack-name> are described in this section.

Semantics:

The MERGE command searches the directory for <MCP-file-name> and proceeds to load the requested por
tion of it (or the entire file if <line-·number-range> is omitted) into the current BASIC environment. If a line
that already exists is merged, the new merged line overwrites the existing line.

The merged file need not necessarily be in ascending line number sequence. The MERGE command searches
the whole merged file. and if there are duplicate line numbers to be merged, the physically last in sequence
is the one finally merged.

11-10

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

If a syntax error is found in a merged line, a suitable error message is displayed on the terminal, and runs
of the file are inhibited until these errors are fixed. If those syntactically incorrect statements are listed with
the LIST command, they are highlighted by reverse video on TD820 and TD830 terminal types, or preceded
by an asterisk (*), otherwise.

Only those files within the current usercode scope of ftle access are available. The default pack for the current
usercode can be overridden by using the ON option.

Various parameters of the file are checked to make sure that it is a BASIC source file; for example, file type
is data, record size is less than or equal to 256 bytes, and number of records is less than the maximum allowed
(approximately 2000 records).

Any record in the merged file which does not start with a valid line number is ignored.

Examples of MERGE commands:

MERGE OTHER/FILE

MERGE 1000 TO 2000 FROM OTHER/FILE

MERGE LAST OTHER/FILE ON OTHERPACK

PASSWORD COMMAND

! Merge the whole of OTHER/FILE
! into the current environment.

The PASSWORD command changes the password for the current usercode in the MCP usercode file.

Syntax:

--- PASSWORD <old-password> <new-password> <new-password> ----------------t
G18087

Formation of <old-password> and <new-password> follow the same rules as for a <BASIC-file-name>.

Semantics:

The PASSWORD command is only valid if the IBASIC system runs under an MCP usercode. The new pass
word must be entered twice identically to ensure correct and intentional entry.

Example of a PASSWORD command:

PASSWORD SECRET TOPSECRET TOPSECRET

PSEUDO BREAK FEATlJRE

The pseudo BREAK feature can be used to prematurely terminate a function.

Syntax:

--- . BAK----------------,

G18088

1108990 11-11

B I 000 Systems Interactive BASIC (!BASIC) Reference Manual
System Commands and Capabilities

To terminate a function, a special message of the precise form .BRK with no leading or trailing spaces can
be entered, the SPCFY key can be depressed for CRT terminals, that is, display screen terminals,, or the
BREAK key can be depressed. (The BREAK key is supported for TTY-type devices and has the same effect
as .BRK; however, the BREAK key is only effective on these devices during the printing of an output mes
sage.)

Semantics:

This pseudo BREAK feature may be used from any supported terminal type to terminate the following com
mands: LIST, RUN, WALK, CONTINUE, STEP, GET, SAVE, FIX, and a CHAIN statement or command.

In addition, a pseudo BREAK may be used to terminate the automatic recovery of a prior user session, the
period of time during which a user is logged on. If a pseudo BREAK is used in this context, that session
is thereafter irrecoverable. Refer to Recovery in this section for more information on automatic recovery .

. BRK may also be used to interrupt the execution of an INPUT or LINPUT statement which is currently
soliciting a response from the remote terminal. In the case of CRT terminals, .BRK must be typed over the
input prompt character in the top left portion of the screen. Interruption of an INPUT or LINPUT statement
also implies changing the state of the BASIC environment from running to stopped.

RENAME COMMAND

The RENAME command provides the capability of changing the name of a file.

Syntax:

RE.NAME <BASIC-file-name1 > -T..-----.-- < BASIC-file-name2 >

LON <pack-name>_J LAS .J
G18089

<BASIC-file-name!>, <BASIC-file-name2>, and <pack-name> are described under Syntax Definitions in
this section.

Semantics:

The RENAME command checks for the presence and availability of <BASIC-file-namel> on the requested
pack, ensures the absence of <BASIC-file-name2>, and causes the MCP to change the name of <BASIC
file-name 1> to <BASIC-file-name2>. Only files within the current user's scope of access for files may be
changed.

Examples of RENAME commands:

RENAME ORANGES AS LEMONS ! On default pack.

RENAME PROGl ON '"' AS PROG ! Force change on system pack.

RENAME X Y

11-12

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
System Commands and Capabilities

RENUMBER COMMAND

The RENUMBER command is used to resequence the line numbers in a BASIC source program.

Syntax:

---·RENUMBER----------......___

_/"j__ STEP <increment>=]
--'1\._ AT <line-number>

<line-number-range>

G18090 1

<line-number-range> is described under Syntax Definitions in this section. <line-number> is described under
Statement Lines in Section 3. <increment> is an integer constant.

Semantilcs:

The RENUMBER command is used to resequence the line numbers of, and the references to, all or part of
the currently loaded source program. The STEP parameter defines the am·ount to increment each new Jine
number. The AT parameter defines the starting value for the new numbers. If the STEP parameter is omitted,
a value of 10 is assumed. If the AT parameter is omitted, a value of 100 is ass".'med.

Before the actual renumbering is done, checks are performed to make sure that (1) no overlap of existing state
ments would occur, (2) the order of execution of statements is not changed, (3) a previously unresolved line
number reference would not become implicitly resolved by the renumber process, and (4) the last line number
in the program would not exceed 99999.

The RENUMBER command cannot be interrupted by the pseudo BREAK feature. If the system fails during
a RENUMBER command, the workfile may be partially renumbered.

Examples of RENUMBER commands:

RENUMBER ! Renumber the whole program
! with implicit step lO and
! starting with a value of 100.

RENUMBER 100 TO 1000 ! Renumber the specified part
! of the program and all
! references to that part
! with the default parameters.

RENUMBER 5000 TO LAST AT 5000 STEP 100 ! Renumber the
! last part of the program,
! incrementing the line
! numbers by 100.

1108990 11-13

B 1000 Systems Interactive BASIC (IBASlC) Reference Manual
System Commands and Capabilities

RUN COMMAND

The RUN command causes a program to be executed.

Syntax:

---RUN------

L <line-number>·

G18091

TRACE-r

PRINT--

<line-number> is described under Statement Lines in Section 3.

Semantics:

The RUN command initiates the continuous execution of the statements in the current workfile, starting either
from the first statement in the workfile, or from <line-number>, if specified. The BASIC data environment
is cleared so that all numeric data items are zero and all string items have the value of the null string (' "').
The line number, if specified, must be a valid line number within the program. RUN <line-number> causes
the program to be executed as if GOTO <line-number> were the first statement of the program.

The TRACE option causes the statements to be displayed on the remote device as they are execuited.

The PRINT option causes the output from BASIC PRINT statements and the input from BASIC INPUT and
LINPUT statements to be written to the file LINE as well as to the remote device. The file LINE is closed
on execution of an END statement in the BASIC program.

If both the PRINT and TRACE options are specified, the trace of statements executed is directed to the file
LINE interspersed with the BASIC PRINT, INPUT, and LINPUT output. In this instance, the traced state
ments are not displayed on the remote device.

The PRINT and TRACE options have effect until the program is stopped by a STOP or END stati;:~ment or
by a fatal error.

Examples of RUN commands:

RUN

RUN TRACE

RUN 1234

RUN PRINT

11-14

Run the program from its first
executable statement.

Run the program from its first
executable statement and trace execution.

! Run from line 1234 and clear the
! program's data variables.

! Print output to be written to file LINE.

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

SAVE COMMAND

The SAVE command causes the current workfile to be saved on disk.

Syntax:

--- SAVE LAS <BASIC-file-name> =mJ [_ ON <pack-name> ~ L FOR CANOE~
G18092

<BASIC-file-name> and <pack-name> are described under Syntax Definitions in this section.

Semantics:

The SA VE command writes the current source program to a file on the current usercode default pack with
the name of the current file. The pack can be overridden by the ON option and the name can be overridden
by the AS option.

If the FOR CANDE option is used, an attempt is made to make the saved file compatible with CANDE BA
SIC files: leading zeros are appended to the line numbers, if necessary, to make them five characters long.
The resulting line is checked for a maximum of 80 characters. If a line exceeds 80 characters, the save is
not done, and a message is emitted to identify the line (or lines) which cannot be made compatible.

If the current workfile does not have a name associated with it, either the AS option or the TITLE command
must be used to associate a name with the workfile.

Examples:

SAVE

SAVE AS PQR ON P

SA VE FOR CANDE

1108990

Save the current workfile.

Save the current workfile on
pack P with name PQR.

! Save the current workfile and
! attempt to make the file
! compatible with CANDE.

11-15

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

SCRATCH COMMAND

The SCRATCH command causes a file to be removed or the current environment to be cleared, or causes
both.

Syntax:

--- SCRATCH----.----,

L <BASIC-file-name> --r- _J
L __ ON <paclk-name >

G18093

Semantics:

<BASIC-file-name> and <pack-name> are described under Syntax Definitions in this section.

The SCRATCH command is used to clear the current BASIC code and data environment or to remove a file
in the current usercode scope of access from the disk directory. If no file name follows SCRATCH, the clear
ing of the current file in the BASIC environment is assumed. If the file name is specified, files can be removed
from disk, from the default pack, or from an explicit pack if the ON option is used. The scratched file is
irrecoverably removed.

Examples of SCRATCH commands:

SCR

SCRATCH OLDFILE

SCR BADFILE ON P

STEP COMMAND

! Clear the current workfile.

! Remove OLDFILE from the user's
! directory.

! Remove BADFILE from the user's
! directory on pack P.

The STEP command causes single stepping of a program. Single stepping is stopping after the execution of
a statement.

Syntax:

--- STEP-------,

G18094

Semantics:

The STEP command can be used during the execution of a program when the BASIC environment is stopped.
It causes the next statement to be displayed and then executed. After this statement, an implicit BREAK state
ment is executed. Thus, the STEP command enables the statement-by-statement execution of a BASIC pro
gram at the user's discretion.

When a STEP command is entered, the BASIC data environment is not cleared, that is, data variables retain
the values they had when the BASIC environment last stopped.

11-16

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
System Commands and Capabilities

Certain editing functions, such as deletion of the next statement to be executed, changing the dimensions of
an array, or changing a FOR NEXT statement cause the STEP command to be disallowed until after a RUN
or WALK command is entered.

The STEP command has effect only when the BASIC environment is in a stopped state.

The STEP command may be simulated by using the SPCFY key. Refer to SPCFY Key Use in this section.

TEACH COMMAND

Tlhe TE~CH command lists the syntax of a command on the user's terminal.

Syntax:

--- TEACH --.-----------.-----·

L <command> _J
G18095

<command> is any system or editing command contained in this section except pseudo BREAK.

Semantics:

The TEACH command causes a syntax diagram of tlh.e requested <command> to be displayed on the remote
terminal. If no particular <command> is requested, a list of available commands is returned.

Examples:

TEACH
TE XREF
TEACH CONT

TITLE COMMAND

The TITLE command gives a name to the current workfile.

Syntax:

--- TITLE <BASIC-file-name>-----

G~8096

<BASIC-file-name> is described under Syntax Definitions in this section.

Semantics:

The TITLE command changes the name of the BASIC environment. The new name is used as the file name
for a SAVE operation, unless explicitly overridden by the SAVE AS syntax.

Example of a TITLE command:

TITLE THIS

1108990

! The current workfile is assigned
! the name THIS.

11-17

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

USER COMMAND

The USER command allows a user to log on.

Syntax:

USER <usercode >I_ / ~ L <password> .T
G18097

Formation of <password> follows the same naming conventions as a <BASIC-file-name>.

Semantics:

The USER command is identical in function to the HELLO command, except that USER cannot be used for
log off only. The intent of this command is to enable the SMCS auto log on feature, but its use is general.

Example of a USER command:

USER ME/SECRET ! Logs off the current usercode, if
! one exists. and logs on ME/SECRET.

WALK COMMAND

The WALK command causes program execution to be initiated m a single-stepping fashion.

Syntax:

--- WALK----------,

L <line-number>~
G18098

<line-number> is described under Statement Lines in Section 3.

Semantics:

The WALK command initiates the execution of the BASIC env:ironment. clearing the BASIC data environ
ment, and causes execution to be halted after the first statement is executed. The statement executed is dis
played on the remote terminal. The STEP or CONTINUE command may be used to continue program execu
tion after this command.

The presence of the optional <line-number> implies a GOTO <line-number> before execution begins. If
<line-number> is invalid. a suitable message is returned.

Examples of WALK commands:

WALK

WALK 1234

11-18

! Run the first executable statement of
! the current workfile.

Run line I 234 as the first executable
statemen1t of the current workfile.

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

WHAT COMMAND

The WHAT command returns a statement that indicates the status of the current BASIC environment.

Syntax:

-~--WHAT~--~---------------------~--1
G18099

Example of WHAT command output:

YOU ARE (SOONER) AT SS, LSN = 12 (TD832)
THE TIME IS 14:55:33.2 AND THE DATE IS 80 AUG 30
YOUR FILE IS CALLED "IBTEST" AND IS SAVED
AND BEGINS AT LINE 10 AND ENDS AT LINE 230

WHERE COMMAND

The WHERE command returns information about the execution of a program.

Syntax:

G18100

Semantics:

The WHERE command, with no options, returns a message that contains the next statement to be executed.

If the FROM option is used, the last few (not more than 20) statements and commands executed are displayed.

If the CALLED option is used, the last few (not more then 20) GOSUB and user-defined FN<x> calls are
displayed.

Examples of WHERE commands:

WHERE
WHERE FROM
WHERE CALLED

1108990 11-19

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
System Commands and Capabilities

Example of WHERE FROM command output:

last 20 statements executed
90 IF A = B THEN 150
IOO IF A < B THEN 130
l IO LET A = A - B
120 GOTO 90
90 IF A = B THEN 150
IOO IF A < B THEN 130
l IO LET A = A - B
120 GOTO 90
90 IF A = 8 THEN 150
IOO IF A < B THEN 130
110 LET A = A - B
120 GOTO 90
90 IF A = B THEN 150
IOO IF A < B THEN 130
1 IO LET A = A - B
120 GOTO 90
90 IF A = B THEN 150
100 IF A < B THEN 130
BREAK
WHAT
you are stopped - ready to continue at line 110

XREF COMMAND

The XREF command displays BASIC statements containing items which the user specifies.

Syntax:

--- XREF----<variable-name> -------+---i= ~

<line-number>--------- <line-number-range>

- <line-number-range >---------i

- <user-defined-function > --·-----i

<delim > <string> <delim > -

G18101

<variable-name> is any numeric or string variable. <line-number> is described under Statement Lines in Sec
tion 3. <line-number-range> is described under Syntax Definitions in this section:· <user-defined-function>
is any user-defined function as described in Section 8. <delim> is any non-alphabetic character. <string> is
any string of characters, excluding <delim>.

Semantics:

The XREF command displays the BASIC statements that reference the requested item(s).

If a <line-number-range> is specified after a requested item, only that part of the BASIC program is searched.

A request for a <variable-name> (A-Z9,A$-Z9$) looks for both scalar and array references that use the given
name.

11-20

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
System Commands and Capabilities

A request for a <line-number> returns only the statements which reference that <line-number>.

A request for a <line-number-range> returns references to items within that range inclusively.

A request for a user FN name (FNA-FNZ9,FNA$-FNZ9$) returns the statements which call, define, or assign
that name.

A request for a delimited string initiates a search through the source statement(s) for occurrences of that string
as a strictly literal string.

Examples of XREF statements:

XREF A$

XREF 100

XREF 100-·200 2000-3000

XREF FNX 123-654

XREF "X"

BASIC COMMANDS

Lists those statement lines
which reference A$.

! Lists those statement lines
! which reference line. 100.

! Lists those statement lines,
! between lines 2000 and 3000,

which reference lines 100-200.

! Lists those statement lines
! between 123 and 654 which
! reference FNX.

! Lists those statement lines in
! which the character X occurs.

A BASIC command is similar to a BASIC statement in function, except that a BASIC command is executed
immediately, is required to be re-entered completely if the user desires to have it executed again, and is en
tered without a preceding line number.

Many of the BASIC statements described in Sections 3 through 10 of this manual can be used as BASIC com
mands but, by definition, some BASIC statements have no meaning unless properly accompanied by another
statement or statements. A list of BASIC statements that are not allowed as commands follows·.

DATA
DEF
DIM
END
FNEND
FOR
GO SUB
IMAGE or:
INPUT (disallowed only if the remote terminal is accessed)
LINPUT (same as for INPUT)
NEXT
ON GOSUB
OPTION
User-defined function references

1108990 11-21

B I 000 Systems Interactive BASIC (IBASllC) Reference Manual
System Commands and Capabilities

BASIC commands which reference line numbers, for instance, GOTO and ON GOTO, simply change the next
statement pointer (a memory location that contains the address of the next statement to be executed). Hence,
if the BASIC environment is in a stopped state and a GOTO command is entered, a CONTINUE command
causes execution to resume where the next statement pointer points, not necessarily where the environment
was stopped. If the BASIC environment is running and a GOTO command is entered, execution continues
as if the BASIC GOTO command were the next statement. Hence, the flow of execution of the running pro
gram may be changed dynamically.

If the statement following a THEN or ELSE in an IF statement is disallowed in Command mode, then the
whole IF statement is disallowed.

Examples of BASIC commands:

PRINT A;B;C
BREAK
LET A = I
PRINT A+B
MAT A= B - C
GOTO 500

BASIC STATEMENT ENTRY

BASIC statements may be entered in any line number order. If a statement with a particular line number is
entered more than once. the last entered line is retained. and all previously entered lines with that line number
are lost.

The syntax of the statement is checked at the time of entry. and the line is retained even if there is a syntax
error. Some BASIC statements rely on corresponding BASIC statements for complete correctness of syntax
and function (for example. the FOR statement and the corresponding NEXT statement; the GOTO statement
and the o~ject of the GOTO). Any errors relating to this type of statement are detected and suitable error
messages are emitted when any attempt is made to execute tht:: program.

Thus. there are two kinds of syntax error message. One is emitted at statement entry time and the other is
emitted when an attempt is made to run the program. These kinds of error messages are not mutually exclu
sive. hence. they may appear interspersed as a result of an attempt to run a program.

A BASIC statement may not excet::d 256 characters in length.

Examples of BASIC statements:

IO PRINT A.B.C.D
5000 LET A$ = "IN THE " & A$

RECOVERY

The !BASIC system is able to recover the current user's BASIC source program if the central system or the
!BASIC system fails. At user log on time, HELLO time or at BOJ of IBASIC if auto log on is requested,
!BASIC checks the system for the presence of a workfile left over from a previous session. If this file is pres
ent, IBASIC automatically reloads itself with the contents of this workfile. Only BASIC source code is main
tained in this file, so the values of data variables from the previous session are lost.

If the recovery is not wanted, the workfile must be removed before log on, the recovered file must be
scratched after log on, or a BREAK command must be entered during recovery. In order to remove the work
file before log on. it is necessary to determine the name of the workfile.

11-22

B I 000 Systems Interactive BASIC (I BASIC) Reference Manual
System Commands and Capabilities

If IBASIC was using the MCP usercode system, the workfile name is <default-pack-name>/(<usercode>)/
WORKFILE<xx>. The expression <xx> is a unique pair of characters generated from the usercode index
in the MCP usercode file. Refer to the Recovery feature in the B 1000 Systems CANDE Reference Manual,
form number 1090586.

If IBASIC was not using the MCP usercode system, the workfile name is called <usercode>/(WORKFILE).

SPCFV KEV USE (TD820 and TD830 terminals only)

Depending on the state of the BASIC environment, the SPCFY key can be used as a shorthand way of typing
a particular function.

The SPCFY key can be used in all cases where the pseudo BREAK feature can be used. Refer to Pseudo
BREAK Feature in this section.

The SPCFY key can also be used as a shorthand notation for the STEP command or for the BASIC BREAK
command, according to the state of the BASIC environment. If the BASIC environment is in a stopped state,
ready to continue execution from wherever it was halted, a depression of the SPCFY key will have the same
effect as entering the STEP command. If the BASIC environment is running, the effect is the same as when
the BASIC BREAK command is entered: the program is halted and can be continued from that point.

To make sure that the SPCFY key does what is expected, it is suggested that the terminal be put in local
mode by depressing the LOCAL key before depressing the SPCFY key.

1108990 11-23

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

SECTION 12
SPECIAL COMMANDS ('DOT' COMMANDS)

Dot commands are special commands which are primarily intended for debugging the !BASIC system. These
commands do not go through the normal process of compilation and execution. Their syntax is simple.

General syntax:

t<
______ <dot-command> --~--,

G18102

BACKSPACE <new !backspace char>

BACKSPACE changes the character to be used as a backspace character for TTY type terminals only. By
default, this character is a reverse solidus <""'-).

CASE

CASE enables or disables the use of lower-case letters in system responses. By default, lower-case is enabled
for TD820 and TD830 terminal types and disabled for TTY and TD800 terminal types.

CONTINUOUS

CONTINUOUS changes the setting of continuous or wait mode for consecutive output messages. CANDE
does not recognize the change and assumes that the mode is unchanged. Continuous mode means that the
terminal is not switched to local mode after receiving a message. Wait mode means that the terminal is
switched.

DEBUG

DEBUG sets or resets a debug toggle which enables various compiler trace and dump functions.

DUMP

DUMP causes a dumpfile of !BASIC and !BASIC/RUNNER to be created.

FREEZE

FREEZE inhibits the MCP rollout process; thus, !BASIC is frozen in memory.

HELLO

HELLO returns the opening message.

HINTS <string>

HINTS prints the contents of a memory area called HINTS, which is useful in the analysis of the !BASIC
system. This memory area contains the values of several variables pertinent to the system. If <string> is pres
ent, it is included in the heading of the printout.

This command should be used if a problem is believed to exist. To initiate a dump to be sent to Burroughs
for analysis, enter .DUMP HINTS.

1108990 12-1

LOCAL

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Special Commands (''DOT'' Commands)

LOCAL sets or resets a toggle which forces the remote terminal to be put in local mode after every command
response.

LOG

LOG opens or closes a print file of all input and output messages. This command sets or resets a togglle ac
cordingly.

OL

OL returns the data communication status of the remote station.

OVERLAY

OVERLAY returns the number of data and code overlays IBA SIC has performed since BOJ.

PROMPT

PROMPT switches the form of the prompt for user input from a single "#'" to the word "ready" as a prompt
message and vice versa.

RY

RY, entered from the ODT, changes STATION(READY) to true.

SS <string>

SS displays <string> on either the remote terminal or the system 1;onsole, the opposite of where the message
originated. The RMSG system option must be set for system console messages to be displayed.

ST

ST changes STATION(READY) to false.

STATUSLINE

ST ATUSLINE switches on or off the maintenance of the TD830 status line.

TIME

NOTE
Firmware prior to the 2.0 release level in the TD830 does not implement the STA
TUSLINE feature, so STATUSLINE must be switched off by entering .STATUS
LINE as the first message to !BASIC.

TIME returns the elapsed time since the current user logged on and the total amount of cpu time accumulated
this session.

12-2

active channel

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

APPENDIX A
GLOSSARY OF IBASIC TERMS

A channel that has a file assigned to it.

alphanumeric
An alphabetic or a numeric character.

American Standard Code for Information Interchange (ASCII)
The standard code, consisting of 7-bit code characters, used for information interchange among data pro
cessing systems.

argument
An expression used in a function reference to communicate data between the calling program unit and
the function.

arithmetic operator
A symbol used in a numeric expression to indicate the arithmetic operation to be performed by !BASIC.

array
A group of string or numeric values stored under an array name and organized in columns, or in rows
and columns.

array element
One element of an array.

array name
A symbolic name for an array.

ASCII
Refer to American Standard Code for Information Interchange.

assign
To give a variable a value through use of a READ, INPUT. LINPUT. or assignment statement.

automatic log off
The log off action that takes place when a remote terminal is prematurely disconnected from !BASIC.

automatic log on
The function of automatically logging a user on to !BASIC without a specific log on action for the
specified usercode.

BASJ[C
Beginner's All-Purpose Symbolic Instruction Code.

BASIC command
A BASIC statement used in Command mode.

BASIC environment
The set of BASIC code and data that are maintained in the workfile by !BASIC.

BASIC file name
The name for an external file that can be specified within IBASIC.

1108990 A-1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Glossary of !BASIC Terms

BASIC statement (also BASIC language statement)
A group of BASIC keywords and expressions associated with a single line number.

BASIC program
A sequence of BASIC statements terminated by an END statement.

branch
Transfer to another line in a program other than the next line in sequence.

break
Temporary interruption in the execution of a program caused by the execution of a BREAK command
or statement.

bridge
A part of railroad syntax that specifies the number of times a path may or must be traversed.

channel number
A numeric expression which evaluates to an integer in the range 0 to 255. The channel number specifies
the channel through which a file is accessed.

character
A letter, symbol. digit, or blank.

clause
Part of some BASIC statements. A clause starts with a key word such as STEP, ELSE, USING, or
THEN.

closed file
A file that is not assigned a channel.

column
The dimension of an array which represents the vertical arrangement of elements of that array.

columnar position
The print position that is occupied by the next character transmitted to the current line; print positions
are numbered consecutively from the left, starting with position one.

command
Operating instruction to the system that is executed immediately when entered.

Command AND Edit (CANDE)
An editor program on the B 1000 systems.

command mode
The mode of interaction that is in effect when a command (no preceding line number) is entered.

constant
A nonvariable numeric or string value.

continuous mode
A type of message transmission that does not leave the terminal in local mode.

A-2

control statement

8 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Glossary of IBASIC Terms

A statement that can alter the sequence of execution for statement lines by causing the program to
branch.

control variable
A simple numeric variable used in a FOR NEXT loop to count and control the number of iterations of
the loop.

conversational mode
The "talking" mode in which !BASIC and a user interact.

CRT terminal
Display screen terminal, most likely a cathode ray tube.

current line
The string of characters (possibly zero) generated by PRINT and OUTPUT statements since the last end
of-line character was generated.

current program
The program that is currently loaded into the BASIC environment.

data block
List of constant values to be assigned to variables in a program through DATA and READ statements.

datum
One item in a logical group of data.

debug
To find and correct errors in a program.

default
An attribute or value which is automatically selected by the system when not specified by the user.

default pack
The pack associated with a specified usercode.

delimit
To separate items of data with a delimiter.

delimiter
A character that separates items of data.

digit
A graphic character that represents an integer, for example, one of the characters 0 to 9.

dimension
The size of an array.

dot command
A special !BASIC command preceded by a dot.

dummy variable
A variable used in the definition for a function that is defined in a program. When the function is used,
the values listed as arguments are substituted for the dummy variables in the definition.

1108990 A-3

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Glossary of !BASIC Terms

EBCDIC
Refer to Extended Binary-Coded Decimal Interchange Code.

end of line
The end of the record, or the first occurrence of a NUL, CR, LF, or ETX character.

end of record

enter

A NUL character or the physical end of the record.

To submit information to the !BASIC system for processing by pressing the transmit key (XMT key on
a·TD830).

entry mode
The mode of interaction that is in effect when a BASIC statement is entered.

error
A mistake in BASIC syntax, program logic, or system operation.

error number
A number used by the system to identify an error.

execute
To pertorm the operation or task indicated by a statement, program, or command. !BASIC executes a
program by executing individual statements in a prescribed order.

explicit-point notation
A method of representing a decimal number with decimal digits and a decimal point.

expression
A constant, variable, function reference, or combination of these separated by operators and used to rep
resent numbers or strings.

Extended Binary-Coded Decimal Interchange Code (EBCDIC)
A character set, consisting of 8-bit coded characters, used for information interchange in data proc1essing
systems.

fatal error
A run-time error which halts execution. An error message is displayed to inform the user of the error.

file name
The name assigned to an external file.

file pointer
An indicator of the position in a file that is affected by the next file input or output statement.

floating-point notation
A method of representing a real number. For example, 0.0001234 is 0.1234E-3, where 0.1234 is thie frac
tional part and E-3 is the exponent.

function

A-4

An algorithm for making a c~lculation which yields a single value. Functions for some common calcula
tions are provided by !BASIC.. Other functions can be defined in programs with DEF statements.

function name

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Glossary of !BASIC Terms

A symbolic name used to identify a function.

globa1 variable
A variable which can be referenced from anywhere within a program.

!BASIC
Refer to Interactive BASIC system.

image
The format according to which one or more data items are to be printed.

implicit-point notation
A method of representing a decimal number that contains only decimal digits. The decimal point is as
sumed to occur to the right of the rightmost digit of the number.

inactive channel

index

nnput

A channel with no file assigned to it.

A numeric expression which evaluates to an integer and identifies the position of an item of data with
respect to some other item of data.

Data supplied for processing through external media.

integer
A whole number that can be represented exactly. using only decimal digits.

interaction
The conversational dialogue that takes place between the user and the computer.

Interactive BASIC system
The compiler, interpreter, message control system (MCS). editor. external intrinsics, and dummy program
that comprise IBASIC.

interactive command
An instruction to IBASIC.

intrinsic numeric function
A predefined function supplied as part of IBASIC for the evaluation of commonly used numeric func
tions.

intrinsic string function

jump

A predefined function supplied as part of IBASIC for the evaluation of commonly used string-valued
functions and numeric-valued functions whose arguments are strings.

Refer to branch.

justifier
A greater than (>) or less than (<) sign, occurring in an image, which specifies right or left justification,
respectively.

1108990 A-5

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Glossary of !BASIC Terms

keyword

letter

A character string which provides a distinctive identification of a statement or a component of a :state
ment.

An English alphabet character: A through Z or a through z.

line number
A number used to sequence a statement line. It may contain up to five decimal digits.

line number range
A syntactic construction that allows a sequential group of line numbers to be specified.

local variable

loop

A variable that is only understood in a user-defined function. Parameters are the only variables that fall
into this class.

A sequence of statements in a program that are executed repeatedly; a repeating path in a railroad syntax
diagram.

margin
The number of characters, excluding the end-of-line character, that can be written on one output line.

matrix
A 2-dimensional array.

MCP file name
A name for an external file that is valid to the MCP.

MCS
Refer to message control system.

memory
A place where the system can temporarily store programs and data during processing.

message control system (MCS)

NDL

nest

A program which opens a remote file with the HEADERS option and thereby controls the stations in
that remote file.

Refer to Network Definition Language.

To imbed a language structure within itself.

Network Controller
The program generated through compilation of a Network Definition Language source program. The Net
work Controller handles the line discipline for the data communication devices of a system and the inter
face queue between an MCS and the operating system.

Network Definition Language

A-6

A descriptive free-form language for defining and implementing a data communications network. The
NDL compiler analyzes the input statements and generates a network controller.

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Glossary of !BASIC Terms

next statement pointer
A memory location that contains the address of the next statement to be executed.

nonfatal error
A run-time error that does not halt execution of the BASIC program. An error message is displayed to
inform the user of the error.

null string
A string value of zero characters, represented in BASIC by

numeric constant
A series of decimal digits, occurring with a BASIC program, that denote a numeric value.

numeric expression
A numeric constant, numeric variable, numeric function reference, or a combination of these separated
by arithmetic operators.

numeric function reference
An intrinsic numeric function or a user-defined numeric function.

numeric overflow
A condition that occurs when a numeric value exceeds the maximum numeric value allowed.

numeric variable
A symbolic name used to represent a numeric value which may be changed during program execution.

object of a loop
An item within a loop of a railroad syntax diagram.

open file
A file that is assigned to a channel.

operand
A numeric or string expression used as part of a larger numeric or string expression.

operator
The symbol used in a numeric, string, or relational expression to indicate the operation to be performed
by !BASIC in order to find the value of the expression.

optional item
An item in a railroad syntax diagram that may be omitted.

order of operations
The standard sequence in which IBASIC performs operations to find the values of expressions.

ordinall position
The position of a character in either of the character sets used in BASIC (ASCII or EBCDIC).

output
The results of a program, written to external media.

overflow
Refer to numeric overflow and/or string overflow.

1108990 A-7

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Glossary of IBASIC Terms

parameter
A simple variable used in a function to pass data between the calJing routine and the function.

password
A word associated with a usercode that allows access to !BASIC.

path
The sequence of execution for statements in a program.

print item
An expression or a TAB call occurring in a PRINT or OUTPUT statement.

print line
A transmission of characters, from PRINT and/or OUTPUT statements, which terminates with an end
of-line character.

print zone
A contiguous set of 15 character positions in an output fine which may contain an evaluated PRINT or
OUTPUT statement expression.

privileged status
The status that the !BASIC system has if it is executed unde:r a privileged MCP-type usercode or a non
MCP usercode. Privileged status affects the types of files that may be accessed.

program
A sequence of instructions for doing a task on a computer.

program designator
A string expression whose value specifies the name of a program to which chaining is to be performed.

prompt
A message displayed to signal the user to enter input.

quoted string character
Any character in Table E-· 1 in Appendix E, except those characters in ordinal positions 0 through 31,
34, 64, 91, 92, 96, and 123 through 127. Ordinal position 34, the quotation mark ("), may appear as a
quoted string character if it is represented by two adjacent quotation marks.

real number
Decimal number containing a decimal point.

record length
The number of characters between the beginning of a record and the end of the record.

redimension
To change the bounds of an c!xisting array.

relational expression
An expression containing a relational operator and having the value of true or false. Relational expres
sions are used only in IF statements to cause the program to take one path if the expression is true
and another path if the expression is false.

relational operator
Symbol used in an expressiont to define a comparison to be made between two numbers or strings.

A-8

remark string

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Glossary of IBASIC Terms

A string of characters occurring in either a tail comment or a REM statement.

required item
An item in a railroad syntax diagram that may not be omitted.

reverse video
A method of highlighting a line on a display screen terminal.

row
The dimension of an array which represents the horizontal arrangement of elements of that array.

run-time
Occurring during program execution.

scalar
A quantity characterized by a single numeric or string value.

scaled notation
A method of representing a number by using a real number raised to a power of IO.

scope of file access
A particular BASIC environment may access, for input only, any disk file maintained by MCPII which
may be accessed under the currently logged on usercode. The BASIC environment may only create or
change a file which has the family name of the currently logged on usercode. Thus, the rules for forming
a file name, which is for input only, are more flexible than those for files which are to be created.

sign
A plus (+) or minus (-) sign.

simple variable
A variable that is not subscripted.

single stepping
A method of executing a BASIC program in which each BASIC statement is performed in response to
a single manual operation.

SMCS
Refer to Supervisory Message Control System.

source code
BASIC language statements.

source line
A line of source code.

statement
An instruction in a BASIC program occurring on one statement line.

statement line
A line number followed by a BASIC statement.

1108990 A-9

string

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Glossary of !BASIC Terms

A series of consecutive characters treated as a group.

string constant
A string of characters enclosed within quotation marks (").

string expression
A string constant, string variable, string function reference, or a concatenation of these.

string function reference
An intrinsic string function or a user-defined string function.

string length
The number of characters represented by a string.

string overflow
A condition occurring when a string variable is assigned more characters than its length allows.

string variable
A symbolic name used to represent a string value which may be changed during program execution.

subscript
An index into a row or a column of an array. A I-dimensional array has one subscript and a 2-dimension
al array has two subscripts.

subscripted variable
A variable with one or two subscripts.

Supervisory Message Control System (SMCS)
The standard message control system available on the B 1000 systems.

symbolic name
A symbol or symbols used to represent a numeric or string variable.

syntax error
An error in the syntax of a command or statement.

system command
See command.

underflow
A condition that occurs when an attempt is made to represent a numeric value smaller than the smallest
value representable in BASIC.

unscaled notation
Notation for a number characterized by the absence of an exponent part as occurs in scaled notation,

usercode
A name assigned to a user and used for file security.

user-defined function
A function defined by a user with a DEF statement.

A-10

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Glossary of !BASIC Terms

user session
The period of time during which a user is logged on.

value
A number or a string represented by a constant, variable, or expression.

variable
A data name within a program whose value can be changed.

wait mode
A type of message transmission that leaves the terminal in local mode.

workfile
The temporary file that !BASIC uses to store user-entered BASIC statements.

zoned format
Design for output that allocates 15 character positions for each value.

A-11

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

APPENDIX B
IBASIC LOG ON, LOG OFF, AND EXECUTION

EXECUTION UNDER SMCS

!BASIC may be initiated by using the execute or the sign on syntax. If the execute syntax is chosen, no entry
in the SMCS jobs file is required. If the sign on syntax is used, an entry in the SMCS jobs file is required.
In either case, the signal character for !BASIC must not be either '#' or '.' or SUB (refer to Table E-1 in
Appendix 'E).

Termination of the current !BASIC session may be caused, in either case, by using the sign off syntax (that
is, "<signal> OFF").

EXECUTE SYNTAX

IBASIC can be initiated by entering "EX !BASIC". If the terminal is logged .on under an MCP usercode,
!BASIC is executed under that usercode. The normal usercode considerations apply. If automatic log on is
required and the logged on usercode is privileged, modify !BASIC with 'SW = USER' or enter 'EX !BASIC
SW = USER' (refer to Usercode Considerations artd Switch Values in Appendix C).

ON SYNTAX

!BASIC can be initiated by entering 'ON !BASIC'. The SMCS jobs file must have an entry with the following
format:

column 1
column 2

$
!BASIC LOG-ON NO-SESSION
US <any privileged usercode/password>
EX !BASIC SW = AUTO
ME <user site default>
PR <user site default>

EXECUTION UNDER C:ANDE

Use the execute command to cause execution under the usercode which is logged on to CANDE. If automatic
log on to this usercode is required, the switches must be set to "USER".

Examplle:

EX *IBASIC;<optional ME and/or SW parameters>

1108990

NOTE
If IBASIC does a display to the ODT (for instance, as a result of a .SS command),
the display messages are repeated at the remote terminal and are displayed only
at the ODT if the RMSG system option is set.

B-1

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
IBASIC Log On, Log Off, and Execution

EXECUTION WITH NO MCS

The IBASIC program must be executed from the ODT with the file given the name of the remote file declared
in the network controller which contains only the remote station r1equired. If automatic log on to the usercode,
under which IBASIC is executed, is required, the switches must be set to "USER". If other than the default
memory is required, a memory clause should be added to the control string.

Example:

US ME/MINE EX IBASIC SW USER FI FO NAM MYTERM;

AUTOMATIC LOG OFF

If the remote terminal is prematurely disconnected from IBASIC before a proper log off (BYE or HELLO
command) occurs, an automatic log off occurs regardless of the state of the BASIC environment. The remote
user must re-establish connection and log on again to IBASIC in the normal manner. The source file that was
loaded at the time of the log off can be recovered, but any data values are lost.

The TERMINATE ERROR mechanism .in the network controller implements this feature. Thus, if lBASIC
receives a TERMINATE ERROR message from the remote terminal with one or more of the relevant error
conditions true, a log off procedure is initiated. The following data communication errors are relevant:

TIMEOUT
LOSS OF DSR
LOSS OF CARRIER
ADDRESS ERROR
TRANSLATE ERROR
FORMAT ERROR
READ NOT READY

The same procedure is invoked if the SMCS sign OFF command is us.ed before proper log off procedures
occur.

It is strongly recommended that the remote user log off !BASIC in the proper manner if conditions allow.

B-2

B l 000 Systems Interactive BASIC (I BASIC) Reference Manual

APPENDIX C
OPERATIONAL CONSIDERATIONS

NETWORK CONTROLLER CONSIDERATIONS

There are some constraints on the generation of the Network Controller. The Interactive BASIC system as
sumes the validity of the TYPE field specified in the TERMINAL Section of the NDL source. Currently, only
the following values for the TYPE field are valid:

Type Terminal
0 B9350 (TTY)

26 TC4000
41 TD801
42 TD802
43 TD821
44 TD822
45 TD831
46 TD832

Scrolling of input and output lines is supported only for TD820 and TD830 type terminals. To enable scrolling,
the standard CANOE request and control sets must be used.

For correct operation of TTY type terminals, the CANDE IOTTY request set must be used.

The following considerations are only relevant if nonstandard request and control sets are used. A knowledge
of NDL coding and the use of station TOG and TALLY values is assumed. The special meanings for the fol
lowing values are assumed.

When TOG[1] is set on an output message, it means that this message is not to be scrolled.

A true value in station TOG[2] in an input message means that the input message was scrolled or that the
output message is to be scrolled.

Station TOG[3] is set for all output messages to a teletype, and associated TOG[7] can be set to indicate inhibi
tion of transmission of trailing CR and LF characters for this message.

Station TOG[3] is also set for all messages that are to be scrolled. This method is used to enable multiple
line output scrolling which is in the CANOE request sets.

A true value in station TOG[5] means that BREAK was detected in the last output attempt. This must only
be true in a 'GOOD RESULTS REPLY' type message.

If station TALL Y[O] = 2, a screen type terminal is forced to local after this output message (even in scroll
mode).

INTERACTIVE BASIC SYSTEM CONSIDERATIONS

!BASIC may or may not require modifications to suit the particular user. These modifications may be applied
through MODIFY MCP syntax or as parameters with the execute control syntax.

There is one copy of the !BASIC program per user of the system. Thus, the following considerations may
be applied differently to each user, or globally to all users as required.

1108990 C-1

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Operational Considerations

DYNAMlC MEMORY

!BASIC relies heavily on SDL paged array structures. Both s-code and data are maintained in paged arrays;
therefore, if the average BASIC program has many statements or uses large amounts of data, !BASIC may
require a larger dynamic memory size. Dynamic memory size can be changed only at BOJ time of !BASIC,
so either an ME control parameter can be included in the execute command or a particular installation can
modify a default value to suit its particular median requirements. Use of the .OVERLAY dot command may
help in determining the need for more memory.

HARDWARE REQUIREMENTS

The Interactive BASIC system requires the following minimum hardware:

B 1700/B 1800/B 1900 processor (excluding B 1710 and B 1830)
128K bytes (dependent on number of users)
1 MB disk per user
TD820, TD830, TC4000, TTY type terminals

ODT OPERATION

If no remote operation is required (that is, if no data communication system exists or is needed), IJBASIC
can be operated from the system console. To do this, !BASIC must be executed or modified as follows.

FILE FO DSK (or nonremote) NAM <any nonexistent name>

By default, file PO has an external name of PO, so if FO does not exist in the system, the NAMe parameter
is unnecessary.

Further communication with !BASIC is achieved through the normal MCP accept (unsolicited) and display in
terface.

The ensuing log on process is identical to the normal remote log on process according to the usercode (if any)
under which the !BASIC program is logged on. There is no implied limit to the number of users who may
use the ODT.

PRIORITY

For quick servicing of a request from a user station, !BASIC must be run at a priority (both memory and
processor) higher than any batch jobs, as is the case for most remote applications.

SOFTWARE REQUIREMENTS

The Interactive BASIC system requires the following software.

C-2

!BASIC
IBASIC/INTERP
!BASIC/INTRINSICS
IBA SIC/RUNNER
MCPII
NDL

(compiler)
(interpreter)
(intrinsics)
(dummy program called when programs are run)
(Systems software release 9.0 or later)
(Systems software release 9.0 or later)

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Operational Considerations

SWITCH VALUES

There are three switch values of concern to the user:

SW == USER
Requests that !BASIC always log on automatically to the usercode under which it was executed (refer
to U sercode Considerations in this appendix).

SW== AUTO
JR~quests that !BASIC wait for a log on message, in particular for one sent by the SMCS auto log on
feature, and requests that !BASIC check whether it was executed under a privileged usercode.

SW== WW
Enables extensions to the ANSI language as explained in Appendix F, and forces auto log on.

USERCODE CONSIDERATIONS

][BASIC may or may not be executed under the MCP usercode system.

ff !BASIC is not executed under the MCP usercode system, the scope of access of the BASIC environment
is limited to public files. In this mode, the concept of a password does not exist: a logged on usercode is
simply a default family name of a file accessed for input only; and is also a mandatory family name for a
file to be created or changed.

If IBASIC is executed under a nonprivileged MCP usercode, IBASIC automatically logs on that usercode. Log
on of another usercode is disallowed. IBASIC must be logged off and re-executed under a different usercode
to effect a change of user.

ff IBASIC is executed under a privileged MCP usercode, automatic log on to the execution usercode may
or may not occur, depending on the value of the switches. If automatic log on is not requested, !BASIC re
quests an explicit log on from the user before continuing. The usercode and password must be defined in the
MCP's usercode file. Regardless of the switch settings, another user may log on after the current user has
logged off without IBASIC going to EOJ.

1108990 C-3

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual

ABS FUNCTION

APPENDIX D
SYNTAX SUMMARY

----ABS (<numeric-expression>) -------------------------1
G18103

ACOS FUNCTION

--- ACOS (<numeric-expression>) --

G18104

ANGLE FUNCTION

--- ANGLE (<numeric-expression> , <numeric-expression>) -------------

G18105

ASIN FUNCTION

---- ASIN (<numeric-expression>) ---------------------------t
G18106

ATN FUNCTION

---- ATN (<numeric-expression >) ---

G18107

.BACKSPACE COMMAND

--- . BACKSPACE <new backspace char>

G18108

BASIC FILE NAME

rtF------___. 9 '"---·----·

_______ ___ <alphanumeric> ---r-----'---..---------------------1

"

-<-----~9 ·----,~

<character > -------- "
G18074

1108990 D-1

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

BREAK STATEMENT

G18071

.BRK

--.BRK------

G18088

BYE STATEMENT

G18077

.CASE COMMAND

--- .CASE-----

G18109

CEIL FUNCTION

--CEIL (<numeric-expression>) ---- -------------------

G18110

CHAIN STATEMENT

-- CHAIN <program-designator>----- ------------------

G18044

CHR$ FUNCTION

-- CHR$ (<numeric-expression>) ---- -----------------·

G18111

CLOSE STATEMENT

--CLOSE # <channel-number> ----- ---

G18063

CONTINUE COMMAND

--CONTINUE -....1.---=-------,_.....__ _____________ _
-TRACE ~
-PRINT

G18078

1108990 D-2

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

.CONTINUOUS COMMAND

--- . CONTINUOUS--------

G1s112

COS FUNCTION

-- COS (<numeric-expression>) ---------------------------1

G18113

COSH FUNCTION

---COSH (<numeric-expression>)---·------------------

G18114

COT FUNCTION

--- COT (<numeric-expression>) -----·--------------------1

G18115

CSC FUNCTION

·--- CSC (<numeric-expression >) ---

G 18116

DATA STATEMENT

(<
--- DATA _ _.. __ <datum> ------

G18046

DATE FUNCTION

·---DATE------------
G18111

DATE$ FUNCTION

·----DATE$------------------------------i
G18118

DEBUG STATEMENT

--- DEBUG ---r- ON -

L__OFF -
G18070

1108990 D-3

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

.DEBUG COMMAND

--- . DEBUG -----

G18119

DEF STATEMENT c-,=-i
DEF-FN <letter> rdigit~ <parameter>) --rr = <expression>I'

G18120

DEG FUNCTION

--- DEG (<numeric-expression>) ----------------------

G18121

DELETE COMMAND

---i- DELETE <line-number-range> _J
L_ <tine-number> ---

G18079

DIM STATEMENT

G18122

DIM Fray-name> (<row>·~ <column>]-)

<string-variable> * <integer>

DOT FUNCTION

--- DOT (<array-name > ' <array-name >) ------------------
G18024

.DUMP COMMAND

---.DUMP~-~---

G18123

END STATEMENT

--END-------

G18004

D-4

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

EPS FUNCTION

---EPS---------------------------------__.

G18124

EXCEPTION STATEMENT

--- AT EOF # <channel-number> THEN <tine-number> ----------------

G18067

EXP FUNCTION

--- EXP (<numeric-expression>) ---------------------------t
G18126

FILE COMMAND

--- FILE <MCP-file-name>·---.--ON <pack-name>--------------------

G18080

FIX COMMAND

--FIX

L <line-number-range > _J
G18081

FNEND STATEMENT

G18042

FOR STATEMENT

<delim> <text><delim><new-text> L ~

<delim>

----FOR <control-var> =<initial-value> TO <limit> ---- STEP <increment >--r--------1

G18037

FP FUNCTION

--- FP (<numeric-expression>) ---

G18126

.FREEZE COMMAND
~--.FREEZE------------·

G18127

1108990 D-5

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

GET COMMAND

GET <MCP-file-name> L ~

- ON <pack-name>
G18082

GOSUB STATEMENT

-- GOSUB < line-number >

G18033

GOTO STATEMENT

--GOTO <line-number >

G18032

HELLO COMMAND

--HELLO--.---------------------·---.----------·

L<usercode>-L / _J L _J
<password > _ _J

G18083

.HELLO COMMAND

--- . HELLO -----

G18128

.HINTS COMMAND

-- . HINTS <string>

G18129

IF STATEMENT

IF <rel-exp> THEN I<line-no1 > L ELSE <line-no2> __j----..--------------1

-<stmt1 > [·ELSE <stmt2> __j------.,....---------·------1

G18039

D-6

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Syntax Summary

IMAGE STATEMENT

---c· IMAGE T : <literal-string> <justifier~<sign> <i-format> T <literal-string>1i

< f-format > J
<e-format>

G18055

INF FUNCTION

G18130

INPUT REPLY

--- INPUT T PROMPT <string-expression> : r1:= < vari:ble > c # <channel-number> : --

G1813'1

~NPUT STATEMENT

L, =mJ

1<
·--- INPUT T PROMPT <string-expression> : ---:-

1

____ <variable> --JL--rL---_J-.,...--------1 c # <chanm?l-number > : -- '

G18131

INT FUNCTION

---- INT (<numeric-expression>) ----·----------------------1
G18132

IP FUNCTION

----IP (<numeric-expression>) ---------------------------!
G18133

LDIM FUNCTION

·--- LDIM (<array-name> ' <numeric-expression>) -------------------t
G18134

LEN FUNCTION
·--LEN (<string-expression>) ----

G1813&

1108990 D-7

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

LINE NUMBER

-r-r-:0----
--- <digit> -----

G18136

LINE NUMBER RANGE
-........-- < line-number1 > -.....-.--t- <minus> ----c- < line-number2 >

-TO END--------

LAST -------

FIRST----

.....___,___ LAST -----.--

A LL----'

G18073

LINPUT REPL V

~ ---c=_~:haracter > T
G18052

LINPUT STATEMENT

G18137

LINPUT ---r~- PROMPT < string-expression> : !<:string-variable>

L # <channel-number> : --~

LIST COMMAND

-- LIST ----.L--<-li-ne--n-umber .. range> ~ L PRINT ~-------------f
G18084

.LOCAL COMMAND

---.LOCAL-----

G18138

LOG FUNCTION

--- LOG (<numeric-expression>) ---------

G18139

D-8

B 1000 Systems Interactive BASIC (IBASIC) Referen.ce Manual
Syntax Summary

.LOG COMMAND

~--.LOG~--------------------------------~

G18140

LOG10 FUNCTION
---LOG10 (<numeric-expression>) --------------------------1
G18141

LOG2 FUNCTION

--- LOG2 (<numeric-expression >) ---
G18142

MAKE COMMAND

--- MAKE <BASIC-file-name>----

G1808!5

MARGIN STATEMENT

--- MARGIN <margin-value>-----

G18059

MAT ADDITION STATEMENT

·--- MAT < array-name1 > == < array-name2 > + < array-name3 > ------------
G18021

MAT ASSIGNMENT STATEMENT

---MAT <array-name1 > = <array-name2 > ·------------------~
G18022

MAT CON STATEMENT

·---MAT< array-name>= -...--- (<numeric-expression >) - * --r----------->~

>--- CON -~- (< subscript > -- ' < subscript > ----

G18023

1108990 D-9

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

MAT ION STATEMENT

MAT <array-name > = ---c < numeric-<>xpression >) - * --r---------,~

>-- IDN L <subscript> L ' <subscript> -y) ------------i

G18025

MAT MULTIPLICATION STATEMENT

--- MAT< array-name1 > = < array-name2 > * < array-name3 > ------------
G18026

MAT NUL$ STATEMENT

--- MAT < array-name > = NU L$ c < subscript > L_<_s_u-bs_c.-ri-pt->-~~~~~~-)--

G18030

MAT PRINT STATEMENT

G18061

MAT READ STATEMENT

1<
MAT READ --- <array-name> I (<subscript> L ' <subscript> T) -......-------~

G18060

MAT SCALAR MULTIPLICATION STATEMENT

--- MAT <array-name > = -r <sign> ---i-- (< numeric-expression >) * <array-name > ------1
Gl8027 L __J

D-10

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

MAT SUBTRACTION STATEMENT
----MAT < array-name1 > = < array-name2 > <minus-sign > < array-name3 > ----------4
G18028

MAT' ZER STATEMENT

---· MAT < array-name > = ., ____ (< numeric-expression >) -- * >

)-· ZER --......-- (<subscript > --- ' <subscript > ----)

G'i8029

MAX FUNCTION

--- MAX (<numeric-expression> ' <numeric-expression>) ----------------i
G'l8143

MCP FILE NAME

1
<BASIC-file-name> ~ /
* <BASIC-file-name>

· (<BASIC-file-name>) -

· * (<BASIC-file-name>)

G18076

MERGE COMMAND

<BASIC-file-name>------------------*

---MERGE L ;r-<MCP-file-name > [J
<line-number-range> L ON <pack-name>

FROM

G18086

MIN FUNCTION

--- Mt'JYJ ~;#'<::::numeric-expression> ' <numeric-expression>) ---==--------------1
G18144

MOD FUNCTION

---MOD (<numeric-expression> ' <numeric-expression>) -----------------1
G1814&

1108990 D-11

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

MULTIPLE-STATEMENT FUNCTION ASSIGNMENT STATEMENT

.___L_E_T. T <function-name > = <expression >

G18043

NEXT STATEMENT
--- NEXT <control-var>

G18038

NUMERIC ASSIGNMENT' STATEMENT

< numeric-E~xpression > -----------l
G18007

NUMERIC CONSTANT

-<-in-teg-er_>_1~ ·. ~t:~:~e-r >_' _..11 [E 1- <sign > r <integer > r
G18005

NUMERIC EXPRESSION

~-----<operator > ---

------<sign>-.......--......-< numeric-constant>-----'--------------

G18008

< numeric-variable > ----1

< numeric-function-ref > -

(< numeric-expression >)

NUMERIC VARIABLE

--- < letter > --<digit >-=re (<subscript > 1- • < subscript > T)

G18006

D-12

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

.OL COMMAND
·-~.OL~--i

G18146

ON GOSUB STATEMENT

J(,_==i_
ON <index> GOSUB - <tine-number> T ELSE <statement>

G18036

ON GOTO STATEMENT

---- ON < index > GOTO f _ < line-n~mber >~ELSE <statement > --r-------

G18035

OPEN STATEMENT

---- OPEN # <channel-number> : <file-name> IN PUT ----.--------.--.----1

OUTPUT--

G18062

OPTION STATEMENT

G18147

1108990

- BASE--___,. 0

l_ 1

OUTIN ---

SEQUENTIAL -------i

D ISPLA Y ----..------

INTERNAL

BEGIN -----.--------

END-----

VARIABLE <index>

-COLLATE---NATIVE ----

l_STANDARD --

D-13

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

ORD FUNCTION
--ORD (<string-expression>) -------- ------,---4
G18148

OUTPUT STATEMENT
-- OUTPUT # <channel-number>-.-----------------------

L : _._,...--r--~ expressi~n~>~~~~-_ -----r-....... - -----r-----,.---
G18066

.OVERLAV COMMAND
--- .OVERLAY----

G18149

PACK NAME

~<BASIC-file-name> ----r
L_" <up to 10 blanks> " _ _j

G18075

PASSWORD COMMAND

T AB (<index>)

-- PASSWORD <old-password> <new-password> <new-password>----------,

G18087

Pl FUNCTION

~--Pl-----------------~--

G18150

POS FUNCTION

POS (<string-exp> • <string-exp> L<numeric-exp> j)

G18151

D-14

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Syntax Summary

PRINT STATEMENT

G18053

PRINT USING STATEMENT

---- PRINT USING <image> T : _L~r:ssion >

G18054

.PROMPT COMMAND
----.PROMPT--t
G18162

RAD FUNCTION

--- RAD (<numeric-expression>) ---
G18163

RANDOMIZE STATEMENT

--,.RANDOMIZE-----------
G18010

READ STATEMENT

---· READ--r- <variable> -----------------------------------.i
G18047

RELATIONAL EXPRESSION

[AND·

1

·r-<-ex_p_>_< ~·: >_<_ex_p_> __ _

· - <exp > <rel > <exp > ---,

G18031

1108990 D-15

B 1000 Systems Interactive BASIC (!BASIC') Reference Manual
Syntax Summary

REM FUNCTION

---REM (<numeric-expression> ' <numeric-expression>)--------------

G18154

REM STATEMENT

---REM <remark-string>

G18002

RENAME COMMAND

RENAME <BASIC-file-name1 > [J [J <BASIC-file-name2 >-~
ON <pack-name> - AS

G18089

RENUMBER COMMAND

---RENUMBER ___--------------------------1
L <line-number-range > 1 STEP <increment > j

.fl__ AT <line-number>
G18090

RESTORE STATEMENT

--- RESTORE -....-- # <channel-number> ---r-------------------
-· __ J

G18155

RETURN STATEMENT

--RETURN-----·

G18034

RND FUNCTION

--- RND ··------ -·--------i
G18156

RUN COMMAND

~-RUN--r-L~<-lin-e--nu-m-be-r> ___ J ____ L-r-~---,~-T-RA_C_E_=--=----~TJ---~------~-
G18091 ~ PRINT--j·

D-16

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Syntax Summary

.RV COMMAND

~--.RY-------------~---------------------1

G18167

SAVE COMMAND
--~SAVE~-----------------·------------..-------~----i

L AS <BASIC-file-name>~ [_ ON <pack-name>~ L FOR CANOE~
G18092

SCRATCH COMMAND

---·SCRATCH -------------·

L <BASIC-file-name> I _J
l_ ON <pack-name>

G18093

SCRATCH STATEMENT

----SCRATCH # <channel-number> -------------------------1
G18069

SEC FUNCTION

----SEC (<numeric-expression>) -------------------------1

G18168

SGN FUNCTION

--- SGN (<numeric-expression>) ---

G18159

SIN FUNCTION

---SIN (<numeric-expression>) -------------------------1
G18160

SINH FUNCTION
---- SINH (<numeric-expression>) ------------------------!
G18161

1108990 D-17

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

SQR FUNCTION

--SOR (<numeric-expression>) --------

G18162

.SS COMMAND
--.SS <string> ---

G18163

.ST COMMAND

--.ST------

G18164

STATEMENT LINE

i f4\
<digit > _ __,___ < BASIC··language-statement > -----------------,

G18000

.STATUSLINE COMMAND
-- .STATUSLINE ___ ,

G18165

STEP COMMAND

--STEP------

G18094

STOP STATEMENT

-- STOP ------

G18003

STA$ FUNCTION

-- STR$ (<numeric-expression>) --------

G18166

STRING ASSIGNMENT STATEMENT

I
--LE-T J < string-variable > --- = < string-expression >

G18013

D-18

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

STRING CONSTANT

r------~
--- " --,..-------- <quoted-string-character > ~ " ----------------1

G18011

STRING EXPRESSION

_L &-

I
< string-constant > ·----.--4----

< string-variable > ----

< string-function-ref >
G18014

STRING VARIABLE

--- < letter > ---r--<dig~ $ [_(_<_s_u-bs-c-rip_t_> __ ·I __ , -<-su-b-sc-r-ip-t _>_T ___) ___..

G18012

TAIL COMMENT

·L- < statement-line > ~- <exclamation-mark > < remark-string >

G18001

TAN FUNCTION

---TAN (<numeric-expression>) ---

G18167

'TANH FUNCTION

·---TANH <numeric-expression> --------------------------i
G18168

TEACH COMMAND

~--TEACH--~---------·---=--oJ----r-----·-----------------------1

L<command>
G18096

1108990 D-19

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

TIME FUNCTION

---TIME------

G18169

.TIME COMMAND

---.TIME------

G18170

TIME$ FUNCTION

--- TIME$ -------------- ·----

G18171

TITLE COMMAND

--- TITLE <BASIC-file-name>

G18096

TRACE STATEMENT

TRACE --i- ON I
L_OFF

G18072

UDIM

-- UDIM (<array-name> ' <numeric-expression>) ---------------

G18172

USER COMMAND

·--USER <usercode> L _J L
- / <password > _J

G18097

VAL FUNCTION

G18173

WALK COMMAND

--WALK------

L <line-number>~
G18098

D-20

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Syntax Summary

WHAT COMMAND

G18099

WHERE COMMAND

--WHERE~· ~
FROM ___ __.

CALLED

G18100

XREF COMMAND

--- XREF---<variable-name> ---·

G18101

1108990

<line-number>----·

<line-number-range > ----

<user-defined-function > --

<delim > <string> <delim >

<line-number-range>

D-21

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

APPENDIX E
CHARACTER SETS

Tables E-1 and E-2 list the character sets available to IBASIC for comparing strings and for computing values
with the CHR$ and ORD functions. Table E-1 contains the STANDARD character set (ASCII). Table E-2
contains the NATIVE character set (EBCDIC).

Hexadecimal representation is the standard convention for the 8-bit internal codes. Examples of the translation
of these codes to the equivalent binary values follows.

Examples:

1108990

Hex
Number

Pair

@39@
~DBE@

(lvOF@

Ordinal
Position

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

8-Bit
Internal Code

8 4 2 1 8 4 2

0 0 11 1
1 o n 1
0 0 0 0

1 0 0 1
1 1 1 0
1 1 1 1

Table E-1. Standard BASIC Character Set (ASCII)

Hex ORD
Code Graphic Mnemonic Name

00 NUL Null
01 SOH Start of heading
02 STX Start of text
03 ETX End of text
04 EOT End of transmission
05 ENQ Enquiry
06 ACK Acknowledge
07 BEL Bell
08 BS Backspace
09 HT Horizontal tab
OA LF Line feed
OB VT Vertical tab
oc FF Form Feed
OD CR Carriage Return
OE so Shift Out
OF SI Shift In
10 DLE Data link escape
11 DCl Device control 1
12 DC2 Device control 2
13 DC3 Device control 3
14 DC4 Device control 4
15 NAK Negative Acknowledge
16 SYN Synchronous idle
17 ETB End of transmission block
18 CAN Cancel
19 EM End of medium

E-1

Ordinal
Position

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

I 45 I

46
47
48
49
50
51
52

I 53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
73

I
74

E-2

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Character Sets

Table E··l. Standard BASIC Character Set (Cont) (ASCII)

Hex
Code

IA
lB
JC
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A

ORD
Graphic Mnemonic

4/:
$

%
&

(
)

*
+

I
0
1
2
3
4
5
6
7
8
9

<

>
?

@

A
B
c
D
E
F
G
H
I
J

SUB
ESC
FS
GS
RS
us
SP

Substitute
Escape

Name

File separator
Group separator
Record separator
.Unit separator
Space
Exclamation mark
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Plus sign
Comma
Minus sign, hyphen
Full stop, period, or decimal point
Solidus
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Colon
Semicolon
Less than sign
Equals sign
Greater than sign
Question mark
At sign
U pper·-case A
Upper-case B
Upper-case C
Upper-case D
Upper-case E
Upper-case F
Upper-case G
Upper-case H
Upper-case I
Upper-case J

Ordinal
Position

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

1108990

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Character Sets

Table E-1. Standard BASIC Character Set (Cont) (ASCII)

Hex ORD l Code Graphic Mnemonic Name

4B K Upper-case K
4C L Upper-case L
4D M Upper-case M
4E N Upper-case N
4F 0 Upper-case 0
50 p Upper-case P
51 Q Upper-case Q
52 R Upper-case R
53 s Upper-case S
54 T Upper-case T
55 u Upper-case U
56 v Upper-case V
57 w Upper-case W
58 x Upper-case X
59 y Upper-case Y
5A z Upper-case Z
5B [Left bracket
5C

"""
Reverse solidus

5D] Right bracket
5E /\ Circumflex accent
5F - UND Underline
60 ' GRA Grave accent
61 a LCA Lower-case a
62 b LCB Lower-case b
63 c LCC Lower-case c
64 d LCD Lower-case d
65 e LCE Lower-case e
66 f LCF Lower-case f
67 g LCG Lower-case g
68 h LCH Lower-case h
69 i LCI Lower-case i
6A j LCJ Lower-case j
6B k LCK Lower-case k
6C 1 LCL Lower-case 1
6D m LCM Lower-case m
6E n LCN Lower-case n
6F 0 LCO Lower-case o
70 p LCP Lower-case p
71 q LCQ Lower-case q
72 r LCR Lower-case r
73 s LCS Lower-case s
74 t LCT Lower-case t
75 u LCU Lower-case u
76 v LCV Lower-case v
77 w LCW Lower-case w
78 x LCX Lower-case x
79 y LCY Lower-case y
7A z LCZ Lower-case z
7B { LBR Left brace

E-3

,...

Ordinal
Position

124
125
126
127

Ordinal
Position

0
I
2
3
4
5
6
7
8
9

IO
I I
I2
13
I4
I5
I6
I7
I8
I9
20
2I
22
23
24
25
26
27
28
29
30
3I
32
33

E-4

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Character Sets

Table E-1. Standard BASIC Character Set (Cont) (ASCII)

Hex ORD
Code Graphic Mnemonic Name

7C I VLN Vertical line
7D } RBR Right brace
7E -- TIL Tilde
7F DEL Delete

Table E-:t Native BASIC Character Set (EBCDIC)

Hex ORD
Code Grap.hie Mnemonic

00 NUL
OI SOH
02 STX
03 ETX
04
05 HT
06
07 DEL
08
09
OA
OB VT
oc FF
OD CR
OE so
OF SI
IO OLE
I I DCI
I2 DC2
13 DC3
I4
I5 NL
I6 BS
I7
I8 CAN
I9 EM
IA
lB
IC FS
ID GS
IE RS
IF us
20
2I

Name

Null
Start
Start

of heading
of text

Endo f text

Horiz onital tab

Delete

Vertie al tab
feed Form

Carri a ge return
out Shift

Shift i n
Data l ink escape

e control I
e control 2
e control 3

De vie
De vie
De vie

New I ine
pace Backs

Cance
Endo f medium

File s
Group

eparator
separator

d separator
eparator

Recor
Units

Ordinal
Position

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

1108990

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Character Sets

Table E-2. Native BASIC Character Set (Cont) (EBCDIC)

Hex ORD
Code Graphic Mnemonic Name

22
23
24
25 LF Line feed
26 ETB End of transmission block
27 ESC Escape
28
29
2A
2B
2C
2D ENQ Enquiry
2E ACK Acknowledge
2F BEL Bell
30
31
32 SYN Synchronous idle
33
34
35
36
37 EOT End of transmission
38
39
3A
3B
3C DC4 Device control 4
30 NAK Negative acknowledge
3E
3F
40 SP Space
41
42
43
44
45
46
47
48
49
4A [Left bracket
4B Full stop, period, decimal point
4C < Less than sign
40 (Left parenthesis
4E + Plus sign
4F I VLN Vertical line
50 & Ampersand
51

E-5

Ordinal
Position

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Character Sets

Table E-2. Native BASIC Character Set (Cont) (EBCDIC)

Hex
Code

52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80
81

Graphic

]
$

*
)

'
/\

-

I

'
%
-
>
?
!

@
,

= ..
a

ORD
Mnemonic

Right bracket
Dollar sign
Asterisk

Name

Right parenthesis
Semicolon
Circumflex accent
Minus sign, hyphen
Solidus

Comma
Percent sign

UND Underline
Greater than sign
Question mark
Exclamation mark

Colon
Number sign
At sign
Apostrophe
Equals sign
Quotation mark

LCA Lower-case a

Ordinal
Position

130
131
132
133
134
135
136
137
13S
139
140
141
142
143
144
145
146
147
14S
149
150
151
152
153
154
155
156
157
15S
159
160
161
162
163
164
165
166
167
16S
169
170
171
172
173
174
175
176
177

1108990

B 1000 Systems Interactive BASIC (I BASIC) Reference Manual
Character Sets

Table E-.2. Native BASIC Character Set (Cont) (EBCDIC)

Hex ORD
Code Graphic Mnemonic Name

S2 b LCB Lower-case b
S3 c LCC Lower-case c
S4 d LCD Lower-case d
S5 e LCE Lower-case e
S6 f LCF Lower-case f
S7 g LCG Lower-case g
SS h LCH Lower-case h
S9 i • LCI Lower-case i
SA
SB
SC
SD
SE
SF
90
91 j LCJ Lower-case j
92 k LCK Lower-case k
93 1 LCL Lower-case I
94 m LCM Lower-case m
95 n LCN Lower-case n
96 0 LCO Lower-case o
97 p LCP Lower-case p
9S q LCQ Lower-case q
99 r LCR Lower-case r
9A
9B
9C
9D
9E
9F
AO
Al ~ TIL Tilde
A2 s LCS Lower-case s
A3 t LCT Lower-case t
A4 u LCU Lower-case u
A5 v LCV Lower-case v
A6 w LCW Lower-case w
A7 x LCX Lower-case x
AS y LCY Lower-case y
A9 z LCZ Lower-case z
AA
AB
AC
AD
AE
AF
BO
Bl

E-7

Ordinal
Position

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

I
I 218 ;

I
I 219

220
221
222
223
224
225

E-8

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual
Character Sets

Table E-2. l\'ative BASIC Character Set (Cont) (EBCDIC)

Hex
Code

82
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
co
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
cc
CD
CE
CF
DO
DI
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
El

Grap~n-~_!_~_n_ic ____ , Name

{
A
B
c
D
E
F
G
H
I

}
J
K
L
M
N
0
p

Q
R

LBR

RBR

Left brace
Upper-case A
Upper-case B
Upper-case C
U pper-c:ase D
U pper-c:ase E
U pper-c:ase F
U pper-c:ase G
Upper-case H
Upper-case I

Right brace
Upper-case J
Upper-case K
Upper-case L
Upper-case M
Upper-case N
Upper-case 0
Upper-case P
Upper-case Q
Upper-case R

Reverse solidus

Ordinal
Position

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

1108990

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Character Sets

Table E-2. Native BASIC Character Set (Cont) (EBCDIC)

Hex ORJD
Code Graphic Mnemonic Name

E2 s Upper-case S
E3 T Upper-case T
E4 u Upper-case U
E5 v Upper-case V
E6 w Upper-case W
E7 x Upper-case X
E8 y Upper-case Y
E9 z Upper-case Z
EA
EB
EC
ED
EE
EF
FO 0 Zero
FI 1 One
F2 2 Two
F3 3 Three
F4 4 Four
F5 5 Five
F6 6 Six
F7 7 Seven
F8 8 Eight
F9 9 Nine
FA
FB
FC
FD
FE
FF

E-9

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

APPENDIX F
EXTENSIONS TO BASIC

The following extensions to the ANSI language are recognized only when !BASIC is executed with SW=WW.
The intent of these extensions is to enable the writing of external intrinsic functions and subprograms in BA
SIC. A side effect of this extension is that while !BASIC is being executed with SW=WW, the intrinsic file
it is using is inaccessible to any other copy of !BASIC. Therefore, it is desirable to have a separate copy
of the intrinsic file (not the system's copy) when it is desired to run in this mode. This is done by executing
With FI INTRINSICS NAM <your own name>. By default, !BASIC calls the runner program named
*!BASIC/RUNNER. If it is desired to call some other runner program, !BASIC must be invoked with
SW=WW and FI WORKFILE NAM <your-own-runner-name>.

INTRINSIC STATEMENT

The INTRINSIC statement is used to identify an intrinsic.

Syntax:

----INTRINSIC <intrinsic-name>

L (<parameters>) _J L <local-variable-list> _J
G18174

Semantics:

The INTRINSIC statement must be the first statement of an intrinsic function. The <intrinsic-name> must
match an entry in the intrinsic function table in the compiler and the <parameters> must match, in type and
number, the parameters of this entry. The <local-variable-list> may be any valid BASIC simple variable (up
to seven variables). The statements that follow may only reference those names that are either in the
<parameters> or in the <local-variable-list> (enforced at COMPILE or RUN time). If the intrinsic being de
fined is run, it supercedes the intrinsic in the intrinsic file. The external intrinsic file is only changed after
a COMPILE INTRINSICS command is executed. While the local intrinsic is being executed, the
<parameters> and the <local-variable-list> are global. The compilation process and ensuing intrinsic call pro
cess "localize" the references.

The parameters may be arrays which are passed by reference. Array parameters are only allowed if the intrin
sic requires them and are denoted by appending a left parenthesis "(" to the array name which is passed.
Within the intrinsic, the array may be referenced with one or two subscripts (with obviously bad results if
a 2-dimensional array is accessed with one subscript, and vice versa). The special function NDIM should be
used to ensure correct usage. Refer to Special Functions in this section.

Within the intrinsic definition the following statements are invalid:

Array references (unless
CHAIN

they are passed as parameters)

CLOSE
DATA
DEF (and any FN references)
DIM

END MAT
FNEND OPTION
INPUT READ
LINPUT RESTORE
MARGIN SCRATCH

Example of an INTRINSIC statement:

INTRINSIC SIN (A) X,Y,Z

1108990

STOP
SUB
SUB END
SUB EXIT

F-1

B l 000 Systems Interactive BASIC (IBASlC) Reference Manual
Extensions to BASIC

INTEND STATEMENT

The INTEND statement identifies the end of an intrinsic and returns the value of the intrinsic.

Syntax:

INTEND ----.-L- <numeric:-exptession >

<array-name> (----

G18175

Semantics:

The INTEND statement must be the last statement in the intrinsic. Its function is to return the value of the
intrinsic or to return an array name to the calling code. There must be a corresponding INTRINSIC statement.
Normal BASIC statements or another INTRINSIC statement may follow.

ERROR STATEMENT

The ERROR statement allows error messages to be displayed.

Syntax:

ERROR (---r- FATAL ' <integer>)

I__ NONFATAL __ _.

G18176

The ERROR statement causes the displaying of an error message which is the <integer>th one in the list
of error messages in the compiler. If NONFATAL is specified, execution continues. If FATAL is specified,
intrinsic, and thus program (or command) execution, is terminated immediately. The following error numbers
are currently used with the intrinsics:

Error
Number

14
15
102
103
104
105
106
107
108
133
134

SPECIAL FUNCTIONS

Meaning
Numeric overflow
Numeric underflow
Zero argument
Negative argument
Negative number to nonintegral power
Argument too big, inaccurate result
Argument out of range
Both arguments zero
Zero to negative power
Square matrix required
Array dimension mismatc:h

The following special functions are available with the extensions to BASIC.

NDIM(X)

Returns the number of dimensions of array X.

F-2

MSV(X)

B I 000 Systems Interactive BASIC (IBASIC) Reference Manual
Extensions to BASIC

Returns the number of elements that were originally defined for array X, whether the array was explicitly or
ilmplicitly dimensioned. Dynamic redimensioning does not change this value.

MXI

Returns the maximum integer that the current numeric representation may hold precisely.

RDUC(X)

Returns the value of X, such that . 5 < = X < 1, as if X were divided or multiplied by 2 repetitively until
X is in that range.

XPND(X,Y)

Returns the value of X as if multiplied by 2 * *Y.

XPON(X)

Returns the power to which the value 2 must be raised so that X/2 **XPON(X) results in .5 <= X < 1.

XTIM

Returns the current cpu time usage of IBASIC in tenths of a second.

SPECIAL VARIABLE NAMES

The following special variables can be used when the extensions are enabled.

DET
When used as a destination in an assignment statement, DET assigns a value to the function DET (no
parameters).

RANI, RAN2, AND RAN3
May be used as sources or destinations. These variables are initialized to particular values at the begin
ning of any particular RUN of a program and are intended for use by the RND intrinsic function.

COMPILE COMMAND

The COMPILE command compiles intrinsics.

Syntax:

---·COMPILE --- INTRINSICS ----------------------------1
018178

Semantics:

Tlhe COMPILE command is used to convert the locally defined intrinsic function to a form which can be put
into the external intrinsic file. This code is then written to the intrinsic file, overwriting whatever code may
already have been compiled for the function or functions being defined locally. The local definition of the func
tion is used until the local definition is deleted from the workfile. If a syntax error exists in the workfile, noth
ing is written to the external file, and Command mode invocations of the intrinsic function yield an "invalid
op code" run-time error message.

1108990 F-3

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual
Extensions to BASIC

EXTERNAL INTRINSICS

The following intrinsic functions are defined as external intrinsics and are maintained in a 'compiled' form in
the intrinsics file:

F-4

ACOS
ASIN
ATN
ATN2
cos
COSH
COT
csc
EXP
LOG
LOG IO
LOG2
RND
SEC
SIN
SINH
SQR
TAN
TANH

B 10.00 Systems Interactive BASIC {!BASIC) Reference Manual

.BRK, 11-11
+ operator, 4-4
I, 3-2
& operator, 5-3
$

in string function names, 8-1, 8-2
in string variable names, 5-1

* in string declarations, 5-8
* operator, 4-4
* * operator, 4-4
; print separator, 9-7 thru 9-9
-, opera tor, 4-4
- operator, 4-4
I operator, 4-4
, print separator, 9-7 thru 9-9

image, 9-11 thru 9-16
image BASIC command restriction, 11-21

" ' 5-1

ABS function, 4-6
absolute value function, 4-6
access mode, 9-21
ACOS function, 4-6
addition, 4-4

array, 6-3, 6-4
ADDRESS ERROR, B-2
ALL, 11-1
AND, 7-2
ANGLE function, 4-6.
arccosine function, 4-6
arcsine function, 4-6
arctangent function, 4-6
arguments

multiple-statement functions, 8-3
single-statement functions, 8-1

array
addition, 6-3, 6-4
assignment

numeric, 6-4, 6-5
string, 6-12

declarations, 6-1 thru 6-3
input, 9-17, 9-18
multiplication, 6-7, 6-8
numeric, 6-3
OPTION statement for, 6-2, 6-3
output, 9-18, 9-19
redimensioning of, 6-5, 6-12
scalar multiplication, 6-9
string, 6-12
subtraction, 6-9, 6-10

1108990

INDEX

ASIN function, 4-6
assignment statement

array, 6-4, 6-5
multiple-statement functions, 8-3, 8-4
numeric, 4-3
string, 5-2, 5-3

AT EOF statement, 9-25, 9-26
ATN function, 4-6
AUTO switch value, C-3
automatic log off, B-2

BACKSPACE dot command, 12-1
BASE option, 6-3
BASIC

commands, 11-21, 11-22
definition, 1-1
environment, 2-1
file name, 11-2
language commands, 2-1
language statements, 2-1
statement entry, 11-22

BEGIN, OPEN statement, 9-20 thru 9-22
BREAK feature, pseudo, 11-11, 11-12
BREAK key, 11-12
BREAK statement, 10-1

with DEBUG statement, 10-1
bridges, 1-4
BYE command, 2-8, 11-4

CALLED. option, WHERE command, 11-19, 11-20
CASE dot command, 12-1
CEIL function, 4-6
ceiling function, 4-6
CHAIN statement, 8-4

pseudo BREAK feature, 11-12
channel number, 9-23, 9-24, 9-25
character function, 5-4, 5-5
character set, 3-1, E-1 thru E-9

OPTION statement, 5-8
CHR$ function, 5-4, 5-5
CLOSE statement, 9-22
COLLA TE option, 5-8
comma print separator, 9-7 thru 9-9
command mode, 2-1, 2-7, 2-8, 11-21, 11-22
common logarithm function, 4-9
comparisons, 7-1
COMPILEJNTRINSICS command, F-1, F-3
concatenation, 5-3
CONTINUE command, 11-4, 11-5

BREAK statement, 10-1
pseudo BREAK feature, 11-12

Index-I

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual

INDEX (Cont)

CONTINUOUS dot command, 12-1
continuous mode, 12-1
control statements, 7-2 thru 7-5

file, 9-26, 9-27
restrictions with multiple-statement functions,

8-3
COS function, 4-7
cosecant function, 4-7
COSH function, 4-7
cosine function, 4-7
COT function, 4-7
cotangent function, 4-7
CSC function, 4-7
current line, 9-9
current program, 2-5

data block, 9-1
DATA statement, 9-1

BASIC command restriction, 11-21
IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4

data types, 4-1, 5-1
DATE function, 4-7
DATE$ function, 5-5
DEBUG dot command, 12-1
DEBUG statement, 10-1
debugging aids, 10-1
decision structures, 7-7, 7-8
DEF statement

BASIC command restriction, 11-21
IF statement restriction, 7-8
multiple-statement functions, 8-2
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4
single-statement functions, 8-1, 8-2

default pack, 8-4
DEG function, 4-7
degree function, 4-7
DELETE command, 11-5, 11-6
DET special variable, F-3
DIM statement

array size declaration, 6-1, 6-2
BASIC command restriction, 11-21
IF stat<tment restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4
string size declaration, 5-8

disk file, 9-19
DISPLAY, OPEN statement, 9-20 thru 9-22

Index-2

division, 4-4
by zero, 4-5

documentation, program, 3-1 thru 3-3
dollar sign

in string function names, 8-1
in string variable names, 5-1

dot commands, 12-1, 12-2
DOT function, 6-6
dot product, 6-6
DUMP dot command, 12-1
dynamic memory, C-2
dynamic redimensioning, 6-5, 6-12

E, 4-1
e-format, 9-11, 9-14
editing a program, 2-3
ELSE clause

ON GOTO statement, 7-3, 7-4
ON GOSUB' statement, 7-4, 7-5
IF statement, 7-7, 7-8

END, 11-1
END statement, 3-3

BASIC command restriction, 11-21
FOR block restriction, 7-6
IF statement restriction, 7-8
multiple-statement function restriction, 8-2
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4

end-of-file condition., 9-25
end-of-lilne character, 9-8

MAT PRINT statement, 9-18
end-of-line conditions, 9-9, 9-10

images, 9-15, 9-16
END, OPEN statement, 9-20 thru 9-22
entry mode, 2-1, 2-7
EPS function, 4-7
epsilon function, 4-7
ERROR statement, F-2
errors, statement entry, 2-2
exception statement, 9-25, 9-26
exclamation mark, 3-2
EXECUTE syntax, B-1
executing a program, 2-3
execution, B-1
execution under CANDE, B-1
execution under SMCS, B-1
execution with no MCS, B-2
EXP function, 4-7
exponential function, 4-7
exponentiation, 4-4

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

INDEX (Cont)

exponents, 9-7
expressions

numeric, 44, 4-5
string, 5-3, 54

external file, 9-19
external intrinsics, F 4

f-format, 9-11, 9-13
FATAL option, F-2
file

access, 9-20 thru 9-22
attributes, 9-21
control statements, 9-26, 9~27
creation, 2-2 .
input, 9-23, 9-24
INPUT statement, 9-23
input/output, 9-19
LINPUT statement, 9-23, 9-24
organization, 9-21
OUTPUT statement, 9-24, 9-25
pointer, 9-21, 9-23

RESTORE statement, 9-26
SCRATCH statement, 9-27

RESTORE statement, 9-26
type, 9-21

FILE command, 11-6
files, 9-19

with CHAIN statement, 84
FIRST, 11-1
FIX command, 11-6, 11-7

pseudo BREAK feature, 11-12
floating-point form, 4-1
FNEND statement, 8-2

BASIC command restriction, 11-21
IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 74

FOR block, 7-6
FOR CANDE option, 11-15
FOR NEXT loop, GOSUB statement restriction,

7-3
FOR NEXT loop, GOTO statement restriction, 7-2
FOR NEXT structure, 7-5 thru 7-7

GOSUB statement restriction, 7-6
GOTO statement restriction, 7-6
IF statement restrictions, 7-6
multiple-statement function restriction, 8-2
ON statements restrictions, 7-6

FOR statement, 7-5 thru 7-7
BASIC command restriction, 11-21
IF statement restriction, 7-8

1108990

ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 74

format string, 9-11
FORMAT ERROR, B-2
formatted output, 9-10 thru 9-16
formatted string output, 9-14, 9-15
FP function, 4-8
fractional part function, 4-8
FREEZE dot command, 12-1
FROM option

MERGE command, 11-10, 11-11
WHERE command, 11-19, 11-20

functions
user-defined, multiple-statement, 8-2 thru 8-4
user-defined, single-statement, 8-1, 8-2

GET command, 11-7, 11-8
pseudo BREAK feature, 11-12

global variables, 8-1, 8-3
GOSUB statement, 7-3

BASIC command restriction, 11-21
GOTO command, 11-22
GOTO statement, 7-2

hardware requirements, C-2
HELLO command, 11-8, 11-9
HELLO dot command, 12-1
HINTS dot command, 12-1
hyperbolic cosine function, 4-7
hyperbolic sine function, 4-10
hyperbolic tangent function, 4-11

i-format, 9-11, 9-13
identity function, array, 6-7
!BASIC

definition, 1-1
execution, B-1
extensions to, F -1 thru F 4

!BASIC/RUNNER, F-1
IF command, 11-22
IF statement, 7-7, 7-8

IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4

IMAGE statement, 9-11, 9-12
BASIC command restriction, 11-21
IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 74

images, 9-10 thru 9-16
implicit-point notation, 9-13

Index-3

B 1000 Systems Interactive BASIC (!BASIC) Reference Manual

inactive file, 9-20
INF function, 4-8
infinity function, 4-8
INPUT reply, 9-4, 9-5
INPUT statement, 9-3 thru 9-5

BASIC command restriction, 11-21
pseudo BREAK feature, 11-12

input, array, 9-17, 9-18
INPUT, OPEN statement, 9-20 thru 9-22
INT function, 4-8
integer function, 4-8
integer part function, 4-8
integer representation, 9-7
integers, 4-1
INTEND statement, F-2
interaction, 2-1
INTERNAL format file

LINPUT statement, 9-24
OUTPUT statement, 9-25

INTERNAL, OPEN statement, 9-20 thru 9-22
intrinsic numeric functions, 4-5 thru 4-11
INTRINSIC statement, F-1
intrinsic string functions, 5-4 thru 5-7
intrinsics, F-1
IP function, 4-8

jobs file, B-1
justifier, 9-11

largest positive number function, 4--8
LAST, 11-1
LDIM function, 4-9
LEN function, 5-5
length

DISPLAY format file, 9-21
function, 5-5
INTERNAL format file, 9-21
of string variable, 6-1
print line, 9-8

LET statement
arithmetic, 4-3
multiple-statement functions, 8-3, 8-4
string, 5-2, 5-3

line number range, 11-1
lines, 3-1
LINPUT reply, 9-5, 9-6
LINPUT statement, 9-5, 9-6

BASIC command restriction, 11-21
files, 9-23, 9-24
pseudo BREAK feature, 11-12

Index-4

INDEX (Cont)

LIST command, 11-9
pseudo BREAK feature, 11-12

LOCAL dot command, 12-2
local parameters, 8-1, 8-3
LOG dot command, 12-2
LOG function, 4-9
LOG 10 function, 4-9
LOG2 function, 4-9
log off, B-1

HELLO command, 11-8, 11-9
USER command, 11-18

log on, B-1
HELLO command, 11-8, 11-9
USER command, 11-18

logarithm function
base 2, 4-9
common, 4-9
natural, 4-9

loop structures, 7-5 thru 7-7
loops, railroad syntax, 1-3
LOSS OF CARRIER, B-2
LOSS OF DSR, B-2
lower dimension function, 4-9
lower-case function, 5-5
lower-dimension bounds, 6-2
LWRC$ function, 5-5

MAKE command, 11-10
MARGIN statement, 9-16, 9-17
MAT addition statement, 6-3, 6-4
MAT assignment statement, 6-4, 6-5, 6-12
MAT CON statement, 6-5, 6-6
MAT IDN statement, 6-7
MAT multiplication statement, 6-7, 6-8
MAT NUL$ statement, 6-13
MAT PRINT statement, 9-18, 9-19
MAT READ statement, 9-17, 9-18
MAT scalar multiplication statement, 6-9
MAT subtraction statement, 6-9, 6-10
MAT ZER statement, 6-10, 6-11
matrix, 6-1
MAX function, 4-9
maximum function, 4-9
MCP file name, 11-3, 11-4
MERGE command, 11-10, 11-11
MIN function, 4-9
minimum function, 4-9
MOD function, 4-9
modulo function, 4-9
MSV function, F-3

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

multiple-statement functions, 8-2 thru 8-4
multiplication, 4-4

array, 6-7, 6-8
MXI function, F-3

NATIVE, 5-8
natural logarithm function, 4-9
NDIM function, F-2

w:ith intrinsics, F-1
nesting

FOR NEXT structures, 7-6
GOSUB and RETURN statements, 7-3

network controller, C-1
NEXT statement, 7-6, 7-7

BASIC command restriction, 11-21
IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4

nonfatal error, 9-9
NONFAT AL option, F-2
nonprivileged MCP u.sercode, C-3
nonstandard request and control sets, C-1
null string, 5-2, 9-8
numeric array manipulation, 6~3 thru 6-11
numeric assignment statement, 4-3
numeric constants, 4-1

in numeric expressions, 4-4
numeric expressions, 4-4, 4-5
numeric function reference, 4-4
numeric functions, intrinsic, 4-5 thru 4-11
numeric overflow, 4-5
numeric underflow, 4-5
numeric values, printing, 9-7
numeric variables, 4-2

in numeric expressions, 4-4

ODT operation, C-2
OL dot command, 12-2
ON command, 2-1, B-1
ON GOSUB statement, 7-4, 7-5

BASIC command restriction, 11-21
ON GOTO statement, 7-3, 7-4
ON statements

IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4

OPEN statement, 9-20
operator precedence, 4-4
operators, 4-4
OPTION statement

arrays, 6-2, 6-3
1108990

11\IDEX (Cont)

BASIC command restriction, 11-21
IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4
strings, 5-8

OR, 7-2
ORD function, 5-6
ordinal position function, 5-6
OUTIN, OPEN statement, 9-20 thru 9-22
OUTPUT statement, 9-24
output

array, 9-18, 9-19
formatted, 9-10 thru 9-16

OUTPUT, OPEN statement, 9-20 thru 9-22
OVERLAY dot command, 12-2, C-2

pack name, 11-3
parameters

in multiple-statement functions, 8-3
in single-statement functions, 8-1

parentheses in numeric expressions, 4-4
PASSWORD command, 11-11
PI function, 4-9
pointer, file, 9-26, 9-27
POS function, 5-6, 5-7
position function, 5-6, 5-7
precedence of operators, 4-4
precision, 4-1
print item, 9-7
print line, MARGIN statement, 9-16
PRINT option

CONTINUE command, 11-4, 11-5
LIST command, 11-9
RUN command, 11-14

print separators, 9-7 thru 9-9
PRINT statement, 9-6 thru 9-10
PRINT USING statement, 9-10
print zone, 9-8
printing numeric values, 9-7
printing string values, 9-7
priority, C-2
privileged MCP usercode, C-3
program designator, 8-4
program-internal input, 9-1 thru 9-3
prompt, 2-4
PROMPT dot command, 12-2
PROMPT option

INPUT statement, 9-3 thru 9-5
LINPUT statement, 9-5

pseudo BREAK feature, 11-11, 11-12
SPCFY key, 11-12, 11-23

Index-5

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

quotation mark, in string constant, 5-1
quoted strings, READ statement, 9-2

RAD function, 4-10
radian function, 4-10
railroad diagrams, 1-2 thru 1-4
RAN 1 special variable, F-3
RAN2°special variable, F-3
RAN3 special variable, F-3
random function, 4-1 0
RANDOMIZE statement, 4-11
RDUC function, F-3
READ NOT READY, B-2
READ statement, 9-2
real number representation, 9-7
real numbers, 4-1
record length, 9-25
record type, 9-21
recovery, 11-22, 11-23

pseudo BREAK feature, 11-12
recursive function calls, 8-2
redimensioning, 6-5, 6-12
relational expressions, 7-1, 7-2
relational symbols, 7-1
REM function, 4-10
REM statement, 3-2

IF statement restriction, 7-8
ON GOSUB statement restriction, 7-5
ON GOTO statement restriction, 7-4

remainder function, 4-10
RENAME command, 11-12
RENUMBER command, 11-13
RESTORE statement

files, 9-26
program internal data, 9-3

RETURN statement, 7-3, 7-4
RND function, 4-10
rounded value, 4-2, 5-2
RUN command, 11-14

pseudo BREAK feature, 11-12
runner program, F-1
RY dot command, 1 ~-2

SA VE AS and TITLE command, 11-1 7
SAVE command, 2-8, 11-15

pseudo BREAK feature, 11-12
scalar multiplication, 6-9
scope of file access, 9-20

nonusercode, C-3
SCRATCH command, 2-8, 11-16
SCRATCH statement, 9-27

Index-6

INDEX (Cont)

scrolling, C-1
SEC function, 4-10
secant function, 4-10
semicolon print separator, 9-7, 9-9
SEQUENTIAL, OPEN statement, 9-20 thru 9-22
SGN function, 4-10
sign function, 4-10
sign generation, 9-14
simple variables, 4-2
SIN function, 4-· 10
sine function, 4·· l 0
single stepping, 11-16

WALK command, 11-18
single-statement functions, 8-1, 8-2
SINH function, 4-10
smallest positive number function, 4-7
SMCS jobs file, B-1
software requirements, C-2
source line, 10-2
SPCFY key, 11-23

pseudo BREAK feature, 11-12
STEP command, 11-17

SQR function, 4-10
square array, 6-7
square root function, 4-10
SS dot command, 12-2
ST dot command, 12-2
STANDARD, 5-8
statement lines, 3-1

length, 3-1
maximum per program, 3-1

status line, 2-2
STATUSLINE dot command, 12-2
STEP clause, 7 .. 5, 7-6, 7-7
STEP command, 11-16, 11-17

pseudo BREAK feature, 11-12
SPCFY key, 11-23
with BREAK statement, 10-1

STEP option, RENUMBER command, 11-13
STOP statement, 3-2
stopping program execution, 2-4
STR$ function, 5-7
string array manipulation, 6-12, 6-13
string assignment statement, 5-2, 5-3
string constants, 5-1
string declarations, 5-8
string expressions, 5-3, 5-4
string function, 5-7
string fonctions, intrinsic, 5-4 thru 5-7
string overflow, 5-3
string variables, 5-1, 5-2

B 1000 Systems Interactive BASIC (IBASIC) Reference Manual

initial value, 5-2
length, 5-2, 6-1

string-related functions, 5-4 thru 5-7
subroutine calls, 7-3
subroutines, 7-4
subscripted variables, 4-2
subscripts, 4-2, 6-1
subtraction, 4-4

array, 6-9, 6-10
switch values, C-3
syntax checking, 11-22
syntax conventions, 1-2 thru 1-4
syntax rules, 3-3
system commands, 2-1, 11-4 thru 11-21

TAB, 9-7, 9-9
tail comments, 3-2
TAN function, 4-11
tangent function, 4-11
TANH function, 4-11
TEACH command, 11-17
terminal input, 9-3 thru 9-6
terminal output, 9-6 thru 9-16
TERMINATE ERROR mechanism, B-2
TIME dot command, 12-2
TIME function, 4-11
TIME$ function, 5-7
TIMEOUT, B-2
TITLE command, 11-17
TO, 11-1
TRACE option

CONTINUE command, 11-4, 11-5
RUN command, 11-14

TRACE statement, 10-2
with DEBUG statement, 10-1

TRANSLATE ERROR, B-2
transmit .lcey, 2-1
TTY type terminals, C-1
TYPE field, C-1

1108990

INDEX (Cont)

UDIM function, 4-11
unquoted strings, READ statement, 9-2
unscaled notation, 9-13
upper dimension function, 4-11
upper-case function, 5-7
upper-dimension bounds, 6-1
UPRC$ function, 5-7
USER command, 11-18

MCP, 2-1
USER switch value, C-3
user-defined functions, 8-1 thru 8-4

BASIC command restriction, 11-21
GOTO statement restriction, 7-2

usercode considerations, C-3

VAL function, 5-7
value function, 5-7
VARIABLE, OPEN statement, 9-20 thru 9-22
variables

effect of CHAIN statement on, 8-4
numeric, 4-2
string, 5-1, 5-2

wait mode, 12-1
WALK command, 11-18

pseudo BREAK feature, 11-12
WHAT command, 11-19
WHERE command, 11-19, 11-20
workfile, 2-2
WW switch value, C-3

extensions to BASIC, F-1

XMT key, 2-1
XPND function, F-3
XPON function, F-3
XREF command, 11-20, 11-21
XTIM function, F-3

Index-7

Documentation Evaluation Form

1108990 B 1000 Systems Interactive BASIC (!BASIC) Reference
Title: ·----------------------- Form No:-------------------

Manual Date:. July 1981

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

D Addition D Deletion 0 Revision D Error

Comments:

From:

Name --------------------
Title

Company --
Address

Phone Number ---·--------·

Remove form and mail to:

Burroughs Corporation
Documentation Dept., TIO - West

P .0. Box 4040
El Monte, CA 91734

U.S.A.

Date --------------

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	12-01
	12-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	F-01
	F-02
	F-03
	F-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	replyA

