

Burroughs

B 1700 SYSTEMS

BASIC

REFERENCE MANUAL

Burroughs Corporation.
Detroit, Michigan 48232

$3.00

Printed in U. S. America 6-73 1067535

Copyright © 1973 Burroughs Corporation

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con
sequences arising out of the use of this material. The infor
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, TIC-Central, Burroughs Corporation, Burroughs Place, Detroit,
Michigan 48232.

TABLE OF CONTENTS

Section Page

INTRODUCTION •••....•.•.•....•.•...... ,,•.•••..•..••••..•.. v

1 COMPONENTS OF BASIC•.•............ 1-1

General • . • . • . • . . . • • . • . • . . • 1-1

Numeric Constants • • • • • • • . . . • • • • • • 1-1

String Constants • . . . • . . . • . • • . • • . . . • • . . • • • . • . • 1-1

Numeric Variables • . • • • • . . . • • . • • . • . . • . • . • • • 1-2

Subscripted Variables . . • . • • . • . . • . . . • • . • • . 1-2

Expressions • • • . . • . . . • . . . • . • • • • . • . . • . • • • 1-3

Arithmetic Expressions . • • • . • • • • • . . • . . • . . • . • • • • • • 1-3

Relational Expressions • . . • . . • • • . . . • • • • • • • • • • • . • • • . • . • • . . • • 1-4

Syntax Rules . • . • • • . • . . • • • . . • • . • • • . • • • • • . • • . • . • • • . . . 1-4

2 ASSIGNMENT STATEMENTS•. « .•.•••••••.•••.•••.••.•••••..••.•. 2-1

General . . • • • . . • . . . • • . • • • • • . • . • • . • • • • • . • • • • . . . • . . . • 2-1

Arithmetic Assignment Statement • . . • • . . . • . • . . • . • • • . . . • • • • • • . • • 2-1

Multiple Arithmetic Assignment Statement .••.••.••.•. ••••.•..• 2-1

3 CONTROL STATEMENTS ...•.•.•••••..••.....•.•.•••.••..••••.••••. 3-1

General . . . • . • • • • . • . • • • . • • • • • • • • • . • . . • . • • • • • • . • • • . • • . . • . . • . • • • 3-1

GO TO Statement • • • • • • . • • . • . • . . . • 3-1

IF Statement • • • • . • • . . . • . • . . • . • . • . . • • • • • . . . • • • • . • • . • • 3-2

ON Statement . 3-2

Program Loops • . . . • • • . • . . . • . . • . . • • . . • • . • . . • • . 3-3

FOR and NEXT Statements . • • . • . . • • • • • • • • . • . • • • • . . . • • . • . • . • . • • . . 3-3

END Statement . . . • . . • • • • • • • • • • • . • . • • • • • • • • • . • • • • . • • 3-6

STOP Statement . . . • . • . • • • . • • • • • • . • • . • • . • • . • . • • • • • . • . • • • . . 3-6

4 SPECIFICATION STATEMENTS ••.••••••••.•••..•.••..••••••..•..••. 4-1

General , . 4-1

DIM Statement . • . • • • • • • • • • • • • • • • • . • . . • • . . • • • • • • • • . • • . . • . . • • . • • 4-1

i

Section

5

6

'7

ii

TABLE OF CONTENTS (Cont)

Page

PROGRAM DOCUMENTATION .•..•.....•.•..•.•.••••••••••.•.....•.••• ~i-1

General • . • • • . • • • • • • • • • • . • . • • • • . • • • • . • • • • • • • • • • . • • • . • • • . • • ~•-1

REM Statement . . . • • • • • • • . • • • • • • • • • • • • • • • • • • . • . . . • • • . • • . • • . ~i-1

Comments . . • • • • • • • • • . • . • • • . • . . • . • • • • • • • . • • • • • • • • . • • • .. • • • • • • • • • • fi-2

INPUT/OUTPUT ..•••••••••••••..•.•••••••••••••••••••••.••.••.••• €i-l

General • • • • • . . . • . • . . • • 6i-l

READ and DATA Statements•. .•••. ..•.. •• •.•..••• .••• .• 6-1

RESTORE Statement • • . • . • . • . • • • • • • • • • . • • . • . • . 6i-2

INPUT Statement

PRINT Statement

Zoned Format

Packed Format • • • • • • . . • • • . • • • • • • • • • • . • . • • . . 6i-5

Vertical Spacing • • . . . • • • • • . • • . • • • • . • • 6i-7

TAB Function • • . • • • • . • • • • . . • • • • • • • • • • • • • . . • • • • • 6i-8

EXTERNAL FILES•..•..•..••••.••••••.••••...

General•.............•..•..•..•....••..•....•.......•..

FILES Sta temeht•....••••••.•••.••..•.••.

7'-1

7'-1

7'-1

File Designator . • . • 7'-3

FILE Statement . • • . • . • • • • 'i'-4

Fi le Modes . • • . • • • • • • • • • • . • • • . . . 7'-6

Fi le READ Statement . . • • . • • • • • • • • . . . • • • . . • . • . • . • . 7'-6

File INPUT Statement

File WRITE Statement ..•.•...•••••••••••..•.•••••••.••.•..•....

Fi le PRINT Statement ••••......•••••.•••..•.•••.••.•...••.•••..

File Manipulation Statements ...•.•••••••..••••••••••••••••••••

SCRATCH Statement .•••••.•••....••••••.•••..•.••••.......•••

RESTORE Statement

1·F E:ND Statement ...•.••..•••••••.••....••.••.•••.•.••..••..

IF MORE Statement ..•.••..••...•.••..•••••.•.•.•••••.•.......

APPEND Statement .•..•.••.••••.•.........••.•.•..•....•.•...

DELIMIT Statement ...•.....•..•..••.•.....••.•••••.•.•..•....

MARGIN Statement ...•......••......•.•.•..•..•.•...••.••..••.

BACKSPACE Statement ...•...•.•.••.••..•.•.•••••..•.••.•••...

7'-8

7'-10

7'-12

7'-13

7'-14

7'-14

7'-15

7'-18

7-20

7-21

7-22

7-23

TABLE OF CONTENTS {Cont)

Section Page

7 EXTERNAL FILES (Cont)

8

9

File Functions • . • • • . . . • • 7-23

HSP (#N) Function

LIN (#N) Function

VPS (#N) Function

INTRINSIC FUNCTIONS ...•..•....•...•................•.........

7-23

7-24

7-24

8-1

General • . • 8-1

Ma thema ti cal Functions . • 8-1

INT (X) Function . • • • . • . . • • • • . • 8-1

SGN (X) Function • . • • . . • • • 8-1

MOD (X, Y) Function . . . • • • . 8-2

RND Function . . . • . • 8-2

Randomize Statement . 8-2

SUBPROGRAMS•.......•...............•....•........... 9-1

General . . • • • • • . . • • . . . 9-1

Function Subprograms . 9-1

Single Statement Functions••.•. 9-1

Multiple Statement Functions . 9-2

Sub1·outine Subprograms . • 9-4

APPENDIX A - BASIC CARD READER INPUT......................... A-1

iii

INTRODUCTION

The purpose of this manual is to provide a description of the BASIC language

as implemented on the B 1700 systems. BASIC, an acronym for Beginners All

purpose Symbolic Instruction Code, was initially developed under the direction

of Professors Kemeny and Kurtz at Dartmouth College. B 1700 BASIC includes

the capabilities of the original Dartmouth College BASIC plus extensions pro

vided for compatability with the General Electric MARK II BASIC language.

BASIC is a problem-oriented language designed for a wide range of applications

and may be easily applied to both business/commercial, as well as engineering/

scientific processing tasks. The BASIC language is designed for use both by

individuals who have little previous knowledge of computers, as well as indi

viduals with considerable programming experience. A distinct advantage of

BASIC is that its rules of form and grammar are learned quite easily.

A program written in B 1700 BASIC, called a source program, is accepted as

input by the BASIC compiler. The compiler first verifies that each source

statement is syntactically correct and then converts the source program into

BASIC S-CODE. The S-CODE generated by the compiler can then be executed on

the B 1700 using the BASIC INTERPRETER. The INTERPRETER causes the systems

hardware to perform the operations specified by the S-CODE and thus the source

program. For more detailed information regarding the function of S-CODE and

its relation to the INTERPRETER and the hardware, refer to the B 1700 System

Reference Manual (form 1057155).

The B 1700 BASIC compiler operates under the control of a Master Control Pro

gram (MCP). Similarly the S-CODE generated by the compiler is executed under

control of the MCP.

B 1700 BASIC, at this time, does not provide the following capabilities which

will be implemented at a later date:

a. String variables.

b. String expressions.

c. String variable assignment statement.

v

d. CHANGE statement.

e. PRINT USING statement.

f. Image statement.

g. Binary files.

h. CHAIN statement.

i. CALL statement.

j . Matrix operations.

vi

SECTION 1
COMPONENTS OF BASIC

GENERAL

BASIC statements are composed of certain key words used together with the

fundamental elements of the language. The fundamental elements of B 1700

BASIC are discussed in this section.

NUMERIC CONSTANTS

A numeric constant consists of a series of decimal digits, may be preceded by

a sign (+or -), and may, but need not, contain a 'decimal point. Unlike some

programming languages, BASIC does not distinguish between numbers containing

a decimal point (i.e., real numbers) and those written without a decimal point

(i.e., integers). All numeric values, in BASIC, are stored internally in

floating-point form and thus are handled as if they were real numbers.

A numeric constant may be expressed in scientific form through the use of the

letter E followed by a signed or unsigned 1- or 2-digit integer which is the

power of 10 that the number preceding the letter E is to be raised. As an

example, 2.145E-4 represents the value .0002145. The decimal point in a

number expressed in E notation may follow or precede any digit as long as the

correct power of 10 is expressed.

In B 1700 BASIC, the range for numeric values is approximately 10** (-77)

through 10**77. Zero is also allowed. The precision for numeric values is 9

significant digits.

STRING CONSTANTS

A string constant is enclosed in quotation marks and consists of any sequence

of EBCDIC characters valid to the B 1700 processor. Since the quotation mark

is used to define the beginning and the end of a string constant, the quota

tion mark may not be embedded in the string. Examples of string constants

are: "A", "12", and "$*1-Cfo#".

Blank characters are significant in BASIC only when contained in a string

constant.

In B 1700 BASIC, a string constant may contain a maximum of 255 characters.

1-1

NUMERIC VARIABLES

A numeric variable is a symbolic name used to represent a numeric value.

Unlike a constant, whose value remains fixed, a variable name represents a

data item whose value may be changed during program execution.

A numeric variable name may be a single alphabetic letter or a single alpha

betic letter followed by a single decimal digit. Valid numeric variable names

are:

A, AO, Al, A2, Z, ZO, Zl, Z9.

In B 1700 BASIC, each numeric vari.able used in a program is initialized to

zero during compilation.

SUBSCRIPTED VARIABLES

In addition to the previously described variables (referred to as simple vari

ables) a variable may also be subscripted to refer to a particular element in

an array. A subscripted variable in BASIC represents an element of a one- or

two-dimensional array. The general form 'of a subscripted variable is as

follows:

n(sl,s2)

where n is the array name and sl and s2 are arithmetic expressions

which determine the values of the subscripts. The second subscript,

s2, is optional depending on the number of dimensions the array has.

A subscripted variable represents a specific element in a numeric array and

consists of the name of the array followed by a set of subscripts indicating

the position of the element within the array enclosed in parentheses. An

array may have a maximum of two dimensions.

An array name must be a single alphabetic letter. Tl)e same letter, however,

may be used in a program as both a simple variable name and an array name.

Unless an array is dimensioned in a DIM statement, BASIC assumes that each

subscript of a subscripted variable can range from 0 through 10. When either

subscript of a subscripted variable exceeds 10, the dimensions associated with

the array name must be declared in a DIM statement. (See Section 4 for addi

tional information on the DIM statement.)

When an array is used in a program, whether dimensioned in a DIM statement or

not, the elements n(O) and n(O,O) are available in a one-dimensional and two

dimensional array, respectively.

1,-2

A subscript may be any arithmetic expression. When an arithmetic expression

is used as a subscript, it is evaluated and the resulting value is truncated

to an integer before being used as a subscript.

In B 1700 BASIC, each array used in a program is initialized to zero during

compilation.

EXPRESSIONS

An expression is any constant, variable, function reference, or a combination

of these separated by operators or parentheses. There are two types of

expressions:

a. Arithmetic.

b. Relational.

Arithmetic Expressions

An arithmetic expression is a rule for computing a numerical value and is any

numeric constant, numeric variable (either simple or subscripted), arithmetic

function reference, or combination of these separated by arithmetic operators

or parentheses.

An arithmetic expression may contain the following arithmetic operators:

Operator Meaning

*
I
+

or /\ or ** Exponentiation

Multi plication

Division

Addition

Subtraction

Negation

Negation is a unary operator; that is, it operates on only one variable. The

other operators are binary operators requiring two variables (or constants).

No arithmetic operator may be assumed to be present. Examples of invalid

arithmetic expressions are:

A//B

(A+B) (C+D)

Parentheses may be used in an arithmetic expression to denote the order in

which operations are to be performed. Parentheses have first precedence in

determining the order of evaluation; when nested parentheses occur, evaluation

proceeds from the innermost set to the outermost set.

1-3

The precedence order (or hierarchy of arithmetic operators) used in evaluating

an arithmetic expression is as follows:

(highest) Function reference

Exponentiation

Multiplication and division

(lowest) Addition and subtraction

The order in which opera tors of the same level are performed is from left to

right, except for exponentiation, where evaluation is from right to left,

e.g., A**B**C is evaluated as A**(B**C).

References to both user-defined functions and mathematical functions may also

appear in arithmetic expressions. User defined functions and mathematical

functions are discussed in subsequent sections of this manual.

Relational Expressions

A relation expresses a condition between two arithmetic expressions that,

when evaluated, is either true or false. A relational expression consists of

any two arithmetic expressions separated by a relational operator. The

relational operators and their meanings are:

Operator Meaning

<

<=

>

>=

Less than

Less than or equal to

Equal to

Not equal to

Greater than

Greater than or equal to

Chains of relations are not permitted, e.g., A<B<C.

SYNTAX RULES

The following rules must be observed in the formation of a BASIC program:

1-4

a. Each source statement must be punched on a separate card.

b. A statement may not be continued onto a second card.

c. Each statement must begin with a unique line number. The Line

number starts in column 1 and may consist of as many as five decimal

digits. The line number is used as both a statement label and a

sequence number. The source statements comprising a program are

required to be in ascending numerical sequence as each source

statement being read by the compiler is sequence checked.

d. Spacing (blanks) has no significance within a source statement except

for information contained in string constants. Spaces can be used to

make a program more readable.

1-5

SECTION 2
ASSIGNMENT STATEMENTS

GENERAL

The assignment statement is used to assign a value to a simple or subscripted

variable. The following assignment statements are discussed in this section:

a. Arithmetic assignment statement.

b. Multiple arithmetic assignment statement.

ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement is used to assign a value to a numeric

variable. The arithmetic assignment statement has the following format:

n LET< variable>= <arithmetic expression>

where n is the line number of the LET statement, <variable> is either

a simple or subscripted numeric variable, and <arithmetic expression> is

a numeric constant, numeric variable (either simple or subscripted), or

an arithmetic expression.

The word LET is optional.

Examples:

100 LET A = 4

15 LET P(2,3) = SQR(A**2 + B**2)

10 Zl = ABS(B(l,l))

MULTIPLE ARITHMETIC ASSIGNMENT STATEMENT

The multiple arithmetic assignment statement is used to assign a value to

more than one numeric variable. The multiple arithmetic assignment statement

has the following format:

n LET <variable!> =<variable2>=<variable3>= ... =<arithmetic expression>

where n is the line number of the multiple arithmetic assignment state

ment; <variable!> = < variable2 > = <variable3> = ... represents a sequence of

simple or subscripted ~umeric variable names separated by the equal sign;

and <arithmetic expression> is a numeric constant, numeric variable

(either simple or subscripted), or an arithmetic expression.

2-1

This statement assigns the value of the

variable name on a left-to-right basis.

assignment statement

10 LET x=r=A(I)=4

<arithmetic expression> to each

For example, the multiple arithmetic

assigns the value 4 to X, I, and A(4) as though the following statements had

been used:

10 LET X=4
20 LET !=4

30 LET A(4)=4

The word LET is optional in this statement.

Example~:

10 LET A=B=c=o
55 LET V(l) =w=x=Y=X= 2*A+B

2-2

SECTION 3
CONTROL STATEMENTS

GENERAL

Normally, the executable statements in a BASIC program are executed in line

number sequence; that is, after one statement has been executed, the statement

immediately following it is executed. Control statements are used to alter

the normal flow of a program. They may transfer control to another part of

the program, terminate program execution, or control iterative processes. The

following control statements are discussed in this section:

a. GO TO statement.

b. IF statement.

c. ON statement.

d. FOR statement.

e. NEXT statement.

f. END statement.

g. STOP statement.

GO TO STATE.MENT

At some point in a program it may be necessary to unconditionally transfer

control to a line number out of the physical (line number) sequence of

instructions. The GO TO statement is used to transfer control to the state

ment whose line number is· specified. The GO TO statement has the following

format:

n GO TO <line number>

where n is the line number of the GO TO statement and <line number> is

the line number of the statement to which control will be transferred.

Example:

110 GO TO 200

3-1

IF STATEMENT

Execution of the IF statement causes a relational expression to be evaluated

and the sequence of execution of the program statements to be altered only if

the specified condition is satisfied. The IF statement has the following

format:

r } . . 'THEN
n IF <re la ti.anal expression>~

'GO TO 1,

< line number >

where n is the line number of the IF statement, <relational expression>

is a relational expression as described in section 1, under the heading

RELATIONAL EXPRESSIONS, and < li.ne number> is the line number to which

control will be transferred if the< relational expression> is satisfied.

Either of the key words THEN or GO TO may be used in the syntax of this

statement.

If the <relational expression> is satisfied, program control will be trans

ferred to the statement specified by <line number>. If the <relational

expression> is not satisfied, program control will be passed on to the next

statement in line number sequence following n. As an example,

30 IF A<lOO THEN 70

specifies that program control is to be transferred from line number 30 to

line number 70 as long as A is less than 100. If A is equal to or greater

than 100, control will pass to line 4:0 or whatever line number is the next

line number in sequence following line 30.

ON ST'ATEMENT

Execution of the ON statement allows program control to be transferred to one

of several line numbers, depending upon the value of a specified arithmetic

expression. The ON statement has the following format:

n ON <arithmetic expression> {THEN } <linel>,<line2>,<line3>, ...
GO TO

where n is the line number of the ON statement; <arithmetic expression>

is any numeric constant, numeric variable (either simple or subscripted)

or arithmetic expression; and <linel>, <line 2>, <line3>, ... represent

the line numbers to which program control will be transferred, depend

ing upon the value of the <arithmetic expression>.

If the value of the <arithmetic expression> is 1, program control will trans

fer to the statement whose line numb1.3r is <linel>; a value of 2 will transfer

control to the statement whose line number is <line2>, and so on. After eval

uation, if the integer part of the value of the <arithmetic expression> is less

3-2

than 1 or greater than the number of line numbers listed in the computed GO

TO statement, a run-time error message is printed and program execution is

terminated.

Example:

10 K = 4

20 ON K GO TO 60, 40, 50, 70

Execution of the above two statements causes program control to be trans

ferred to the statement at line number 70.

PROGRAM LOOPS

Often it is necessary to have the same portion of a program r?peated several

times, possibly with some slight modification each time that portion is

executed. This repetitive process in a program is referred to as a loop. An

example of a program loop is:

10 READ A,B

20 LET C A+B/10

30 LET D A*C

40 PRINT "C= "; C, "D= "; D

50 GO TO 10

60 DATA 10,20,30,40,50,60

70 END

In this example, line numbers 10 through 40 would be executed in the normal

manner. When line number 50 is executed, program co '.trol would be uncondi

tionally transferred back to line number 10 once more. Line number 10 through

40 would again be r,epea ted and when line number 50 is executed, control is

once more returned to line number 10. This repetitive action continues until

all of the data items in line number 60 are exhausted. At that time, program

execution would be terminated. Since the loop is one of the most useful tools

in programming, two statements are provided in BASIC for controlling program

loops.

FOR AND NEXT STATEMENTS

The FOR statement together with the NEXT statement is used to cause the same

portion of a program to be repeated a specified number of times. The FOR

statement may have either <': the following formats:

1. n FOR <variable>= <expression!> TO <expression2>

2. n FOR <variable>= <expression!> TO <expression2> STEP <expression3>

where n is the line number of the FOR statement; <variable> is a simple

numeric variable; and <expression!>, <expression2>, and <expression3> are

3-3

any numeric constant, numeric variable (either simple or subscripted),

or arithmetic expression.

The <variable> ·following the word FOR must be an unsubscripted numeric

variable and is called the index of the loop. In the general form

<expression!>, <expression2 >, and <expression3> are referred to as the

initial, final, and incremental parameters, respectively, for the index

<variable>. The value of <express:lonl> is the initial value assigned to the

index <variable>; the value of <expression2> is the maximum value which the

index <variable> may attain; and the value of <expression3> is the increment

or decrement to be added to the index <variable> on each pass through the

loop. If a STEP clause is not specified (option 1), the value of

<expression3> is assumed to be 1.

A NEXT statement must follow the FOR statement. The NEXT statement is usE~d

to delimit the statements which are to be executed repeatedly (the range of

the loop). The NEXT statement has the following format:

n NEXT <variable>

where n is the line number of the NEXT statement and <variable> is the

same index <variable> used in the companion FOR statement.

Execution of a FOR E!tatement results in the following action:

3-4

a. The values of <expression!>, <expression2>, and <expression3> are

calculated. If a STEP clause is not specified, the value of

<expression3> is 3.ssumed to be 1.

b. The value of <expression!> is assigned to a temporary simple variable

supplied by the compiler.

c. The value of <expression3> is tested to determine whether the step

size is positive or negative. If the value of <expression3> is

greater than or equal to zero, step d. is performed; otherwise,

step e. is performed.

d. The value of the temporary variable is compared to the value of

<expression2>. If the value of the temporary variable is greater than

the value of <expression2 >, the loop is completed and pro gr am control

is transferred to the statement following the NEXT statement; other

wise, step f. is performed.

e. The value of the temporary variable is compared to the value of

<expression2>. If the value of the temporary variable is less than

the value of <expression2 >, the loop is completed and program control

is transferred to the statement following the NEXT statement; other

wise, step f. is performed.

f. The value of the temporary variable is assigned to the index

<variable>.

g. All executable statements between the FOR and the NEXT statements,

i.e., the range of the loop, are executed.

h. The value of <expression3> is added to the temporary variable, and

steps c. through g. are repeated until the loop is satisfied.

When it is desired to increment the index <variable> by something other than

1, the STEP clause (format 2) is used in the FOR statement. The step-size

need not be an integer. For example, 10 FOR I = 1 TO 3 STEP .1 is a valid

FOR statement. When the STEP clause is used, <expression3> must always assume

a non-zero value; otherwise, the range of the loop will be executed

indefinitely.

The value of <expression!>, <expression2>, and <expression3> may each be

either positive or negative. However, if the initial final and incremental

values in the FOR statement form an impossible combination, the range of the

loop will not be executed and program control will be transferred to the state

ment following the companion NEXT statement. The following FOR statement con

tains an impossible combination of control parameters: 10 FOR I = 3 TO -3.

A FOR ... NEXT loop may appear within the range of another FOR ... NEXT loop. When

nested loops are used, the inner loop must completely reside within the range

of the outer loop, that is, they must not cross as illustrated in the

following:

Legal Nesting Illegal Nesting

10 FOR X=l TO 5 10 FOR X=l TO 5

20 FOR Y=l TO 5

50 FOR Y=l TO 5

80 NEXT x
60 NEXT Y 90 NEXT y

90 NEXT X

The same index <variable> may not be used in two loops, one of which is nested

within the other.

FOR ... NEXT loops may not be nested to more than 20 levels.

Example:

05 FOR I=l TO 3

10 READ A,B

20 LET C=A+B/10

3-5

30 LET D=A*C

40 PRINT "C= II; c' "D= "; D

50 NEXT I

60 DATA 10,20,30,40,50,60

70 END

END STATEMENT

The END statement is used to indicate the end of a BASIC program. The END

statement has the following format:

n END

where n is the line number of the END statement.

In B 1700 BASIC, the END statement is optional in a program. The END state

ment, if used, is treated in the same manner as the STOP statement.

STOP STATEMENT

The STOP statement is used to stop the execution of a program. The STOP

statement may appear anywhere in the program. The STOP statement has the

following format:

n STOP

where n is the line number of the STOP statement.

More than one STOP statement may be used within a BASIC program.

3-6

SECTION 4
SPECIFICATION STATEMENTS

GENERAL

Specification statements are non-executable statements used to supply compile

time information about program variables to the compiler. The DIM statement

is the only specification statement in the BASIC language and must be used in

a program to declare the size of an array whenever one or both dimensions

exceed 10.

DIM STATEMENT

The DIM statement is used to specify the dimensions of a designated array.

The DIM statement has the following format:

n DIM <array declarator list>

where n is the line number of the DIM statement and <a,,.ray declarator

list> is a list of one or more array declarations sep ated by commas.

An array declaration consists of an array name followed by a left paren

thesis, followed by either a single positive integer indicating a one

dimensional array or two positive integers separated by a comma indicating

a two-dimensional array, followed by a right parenthesis. The integer or

integers specify the maximum subscript value for each dimension of their

respective array names.

An array name in B 1700 BASIC may be any single ~lphabetic letter. Valid

array names are:

A,B,C, ,z

The DIM statement specifies the number of data elements which may be contained

in an array. Unless an array name appears in a DIM statement, BASIC by default

reserves space for elements 0 through 10 for one-dimensional arrays (11 spaces

total), and elements in both rows and columns 0 through 10 for two-dimensional

arrays (121 spaces total).

When an array is used in a program, whether dimensioned in a DIM statement or

not, the elements <array name>(O) and <array name>(O,O) are available in a

one-dimensional and two-dimensional array, respectively.

4-1

The maximum number of elements permitted in an array is 262143 (i.e., 2**18•1).

An array may have a maximum of 2 dimensions.

10 DIM A(30), B(20,40), C(3), D(2,2)

4-2

SECTION s
PROGRAM DOCUMENTATION

G~NERAL

E:x;planatory remarks, included throughout a program for documentational

purposes, are an important part of any program. In BASIC, comments preceded

by an apostrophe may follow a statement, or entire lines in a program may be

devoted to remarks through use of the REM statement.

REM STATEMENT

The REM (REMARKS) statement is used to insert explanatory remarks at any point

within a BASIC program. The REM statement has the following format:

n REM <remark>
where n is the line number of the REM statement and <remark> consists

of any valid EBCDIC characters.

Th~ REM statement allows entire lines of documentation to be included in a

B~SIC progr~m. When the first three characters following the line number of

a statement are REM, the compiler ignores the entire statement. Although the

contents of each REM statement are ignored, the line number of a REM state

ment may be referenced in a GO TO, IF-THEN, ON-GO TO, or GOSUB statement.

This enables control to be transferred to a description of the routine which

fqllows, thus enhancing the readability of a BASIC program.

5-1

COMMENTS

Comments may be included on the same line following a BASIC statement if the

comment is separated from the statement by an apostrophe (') character. Any

thing in the columns following the ' character through the end of that line

will be ignored by the compiler and treated as a comment.

_Exa~p~~:

5-2

010 REM ** FINAL GRADE CALCULATION PROGRAM **

020 REM G EXAMINATION

030 REM w EXAMINATION

040 REM F FINAL GRADE

050 REM

060 DIM W(5)

070 FOR E = 1 TO 5

080 READ W(E)

090 NEXT E

100 FOR S = 1 TO 4

110 LET F = 0

120

130

140

FOR E 1 TO 5

READ G

LET F = F+W(E)*G

150 NEXT E

GRADE

WEIGHT OF EACH EXAM

BASED ON FIVE EXAMS

'READ EXAM WEIGHTS

'FOR FIVE EXAMS

'S = STUDENT NUMBER

'INITIALIZE FINAL GRADE TO 0

'READ EXAM(E)

'ACCUMULATE FINAL GRADE

160 PRINT "STUDENT NUMBER ";S, "FINAL GRADE= ";F

170 NEXT X

180 STOP

190 DATA .10, .15, .20, .25, .30

200 DATA 75,82,85,79,91

210 DATA 100,76,88,92,98

220 DATA 63,60,75,72,83

230 DATA 94,87,90,91,95

240 END

'EXAM WEIGHTS

'STUDENT 1 GRADES

'STUDENT 2 GRADES

'STUDENT 3 GRADES

'STUDENT 4 GRADES

SECTION 6
INPUT /OUTPUT

GENERAL

In BASIC, data files are considered to be either internal or external to the

program which processes those files. External files, discussed in section 7,

are files which reside on disk. Internal files are data contained within the

program in DATA statements or data entered into the program by means of an

INPUT statement. The following input/output statements pertaining to internal

files are discussed in this section:

a. READ and DATA

b. RESTORE

c. INPUT

d. PRINT

READ AND DATA STATEMENTS

The READ statement is used to assign values to the variables listed in the

READ statement, using data elements from the associated DATA statement(s).

The READ statement has the following format:

n READ <list of variable names>

where n is the line number of the READ statement, and <list of variable

names> is a list of one or more numeric variables (either simple or sub

scripted) separated by commas.

The DATA statement is always used in conjunction with the READ statement and

contains the data values which are to be assigned to the variables appearing

in the READ statement list. The DATA statement has the following format:

n DATA <list of constants>

where n is the line number of the DATA statement and <list of constants>

is a list of one or more numeric constants separated by commas.

Only numeric constants may appear in a DATA statement.

Prior to execution of a BASIC program, all DATA statements contained in a

program are combined into one numeric data block according to the order in

which the DATA statements appear in that program. Each time a READ statement

6-i

is executed, a constant is accessed from the data block for each variable

name contained in the read statement list. If the data block is exhausted

and a READ statement attempts to initialize another variable, program execu

tion i.s terminated with an OUT OF DATA message. When more constants are

supplied in DATA statements in a program than are required by the READ state

ment (s), the extra constants are ignored.

The READ statement must always be associated with a DATA statement.

Examples:

10 READ X,Y,Z
20 DATA 10,20,30

The above statements result in the same action as:

10 LET X 10

15 LET Y 20

20 LET Z 30

RESTORE STATEMENT

The RESTORE statement is used to position the data pointer associated with

the numeric data block to the beginning of that data block. The RESTORE

statement has the following format:

n RESTORE

where n is the line number of the RESTORE statement.

All DATA statements contained in a program are combined into one numeric data

block according to the order in whlch the DATA statements appear in that pro

gram. The RESTORE statement enables the data pointer associated with that

data block to be reset from its current position to the first element in the

block, so that subsequent READ statements can reread the data.

Example:

10 READ X,Y
20 RESTORE

:rn READ Z

40 DATA 10,20,30

50 END

Execution of the above example causes the numeric constant 10 to be assigned

to variables X and Z, and the numeric constant 20 to be assigned to variable Y.

6-2

INPUT STATEMENT

The INPUT statement is used to assign values from a card file labeled INPUT to

the variables whose names are listed in the INPUT statement. The INPUT state

ment has the following format:

n INPUT <list of variable names>

where n is the line number of the INPUT statement and <list of variable

names> is one or more numeric variables (either simple or subscripted)

separated by commas.

The INPUT statement allows data values to be assigned to variable names during

the time that the program is being executed. In a batch BASIC environment,

the INPUT statement is used to obtain input from a card device or card reader

during program execution. The data values to be entered into the program are

obtained from a card file whose file-id is INPUT. In the absence of a DELIMIT

statement referencing this file, individual data values are punched free

field, delimited by commas, in this card file. Individual punch cards in the

INPUT card file must not contain line numbers, as any line numbers in the file

will be treated as data elements.

Example:

10 INPUT A,B

20 END

?DATA INPUT

12.5,256

?END

Execution of the above example causes the numeric constants 12.5 and 256 from

the card file labeled INPUT to be assigned to variables A and B, respectively.

PRINT STATEMENT

The PRINT statement is used to print output on the line printer during program

execution. The PRINT statement has the following format:

n PRINT <list>

where n is the line number of the PRINT statement and <list> consists of

one or more numeric constants, string constants, numeric variable names

(either simple or subscripted), arithmetic expressions, or references to

the TAB function separated by commas or semicolons.

6-3

The PRINT statement enables numeric and/or string data to be printed in ei.ther

a zoned or packed format on the line printer during program execution. Zoned

or packed output format is specified through use of commas or semicolons,

respectively, as separators between data items in the PRINT statement list.

Zoned Format

In BASIC, the output line is considered to be divided into five prLnt zones,

each 15 spaces in width. Use of the comma to separate multiple items in the

PRINT statement list causes the first item to be printed starting at the

beginning of the first zone (print position 0), the second item at the next

zone (print position 15), the third item at the next zone, etc. If more than

five items are to be printed in the zoned format, the carriage is advanced to

the first zone of the next output line when the fifth zone is used, and print

ing continues in this same manner until the PRINT statement list is exhausted.

Upon completion of the PRINT statement list, the carriage is advanced to the

beginning of the next output line in preparation for subsequent PRINT

statements.

A comma encountered in a PRINT statement list causes the carriage to be

advanced to the first position of the next print zone within the current out

put line or to the beginning of the first print zone on the next output line

if the last zone of the current line has been used. Since each comma

encountered in the PRINT statement list causes the carriage to be advanced to

the beginning of the next print zone, successive commas may be used when

skipping of print zones in the output lin~ is desired. If the PRINT statement

list ends in a comma, the carriage is merely advanced to the first position of

the next print zone and not to the beginning of a new line unless the fifth

zone of the current line has been used.

10 LET A=B=4

20 PRINT 11A-rB= 11
, A+B, "A *B= 11

, 16

30 END

Execution of the above example causes the following output line to be printed

on the line printer:

A+.B=

6-4

8

10 LET A=B=4

20 PRINT 11A+B=", A+B,

A*B= 16

30 LET C = 16

40 PRINT "A *B=", C

50 END

Execution of the above example causes the following output line to be printed

on the line printer:

A+B= 8 A*B= 16

Packed Format

Use of the semicolon to separate multiple items in the PRINT statement list

causes the output line to be printed in a more closely packed format. No

spacing of the carriage is made in the output line other than those spaces

automatically outputted when a numeric value is printed. If insufficient

positions for another item remain in the output line after a semicolon is

encountered in the PRINT statement list, the carriage is advanced to the

next line.

Unlike zoned format where the output line is divided into specific print

segments, packed format uses the length of the item to be printed to deter

mine the length of a print segment. To determine what will be printed in

packed format, it is necessary to understand how string constants and numeric

values are printed by the PRINT statement.

String constants are printed by the PRINT statement just as they are declared

in the program, with no leading or trailing spaces. Numeric values, however,

are printed with a sign position preceding the number and a trailing space

following the number. Negative values are preceded by a minus sign, and posi

tive numbers are preceded with a blank sign position. The number of print

positions occupied by a numeric value in the output line depends upon the

magnitude of the number and whether or not it is an integer. Numeric values

are printed in one of the following forms:

a. Integer form - a number containing 1 to 10 decimal digits printed

without a decimal point.

b. Fractional form - a number containing 1 to 6 decimal digits printed

with a decimal point. Trailing (right-most) zeros are not printed,

and a number less than one is printed with a zero to the left of the

decimal point.

c. Scientific form - a number expressed as a number greater than 1 and

less than 10 printed in fractional form followed by a space, followed

by the letter E, followed by a signed or unsigned 1- or 2-digit

6-5

integer, which is the power of ten that the number in fractional form

preceding the letter E is to be raised.

Numeric values are printed by the PRINT statement in the above forms according

to the following rules:

1. An integer whose absolute value is less than 1073741824 (i.e., 2**30)

is printed in integer form.

2. An integer whose absolute value is greater than or equal to 1073741824

is rounded away from zero to six significant digits and printed in

sci en ti fie form.

3. A number whose absolute value is less than 0.1 and which can be

represented exactly by six or fewer digits is printed in fractional

form.

4. A number whose absolute value is greater than or equal to 0.1 and

less than 999999 is rounded away from zero to six significant digits

and printed in fractional form.

5. A number whose absolute value is less than 0.1 and which cannot be·

represented exactly by six or fewer digits is rounded away from ze!ro

to six significant digits and printed in scientific form.

6. A number whose absolute value is greater than 999999 which is not an

integer is rounded away from zero to six significant digits and

printed in scientific form.

10 LET A=B=4

20 PRINT "A+B="; A+B; "A*B="; 16

30 END

Execution of the above example causes the following output line to be printed

on the line printer:

A+B= 8 A*B= 16

If a PRINT statement list ends with a semicolon-, the first element in the list

of the next PRINT statement begins at the end of the current print segment.

10 LET A=B=4

20 PRINT "A+B="; A+B;

30 LET C=l6

40 PRINT "A*B="; c
50 END

6-6

Execution of the above example causes the following output line to be printed

on the line printer:

A+B= 8 A*B= 16

Vertical Spacing

Since completion of a PRINT statement advances the carriage to the beginning

of the next print line, vertical spacing can be achieved through use of the

PRINT statement consisting of only the word PRINT. If the previous PRINT

statement did not end with a comma or semicolon, a blank line is left in the

output.

Example:

100 PRINT "SALES FOR WEEK ENDING MARCH 8"

110 PRINT

120 PRINT "JONES", "SMITH", "MILLER"

130 END

Execution of the above example causes the following output to be printed on

the line printer:

SALES FOR WEEK ENDING MARCY 8

JONES SMITH MILLER

Use of the PRINT statement consisting of only the word PRINT following a PRINT

statement ending with a comma or a semicolon causes a partially filled output

line to be printed on the line printer as illustrated by the following example.

Example:

10 FOR I 1 TO 5

20 FOR J 1 TO I

30 PRINT J·
'

40 NEXT J

50 PRINT

60 NEXT I

99 END

Execution of the above example causes the following output to be printed on

the line printer:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

6-7

TAB Function

The TAB function, TAB(X), may be used in the PRINT statement list to move the

print mechanism to the position determined by the argument of the TAB. The

letter X, shown as the argument of the TAB function, may be replaced by any

numeric constant, numeric variable (either simple or subscripted), or arith

metic expression.

If a MARGIN statement referencing the line printer has not been used, the

output line consists of print positions 0 through 74. Use of the comma in the

PRINT statement list can be thought of as performing a tabulation to the next

tab-stop; these stops being set at print positions O, 15, 30, 45, and 60. The

TAB function does not cause anything to be printed, but provides the ability

to tab to any desired position within the output line.

The value of the argument, which may be any arithmetic expression, represents

a print position in the output line. After the argument is evaluated, the

integer part of its value is taken and treated modulo the current margin

setting (75 in the absence of a MARGIN statement) to obtain a print position.

The print mechanism is then moved to this position in the output line. If the

tab position specified by the value of the argument is less than the current

position of the print mechanism, then the TAB is ignored.

To achieve the desired tabulation, semicolons should be used to separate the

items in a PRINT statement which is to be controlled by the TAB function.

10 PRINT A;TAB(20); B; TAB(40);C

Execution of the above PRINT statement causes an output line to be printed.

This line contains the value of A starting in print position O, the value of

B starting in print position 20, and the value of C starting in print

position 40.

6-8

SECTION 7
EXTERNAL FILES

GENERAL

One of the features of BASIC is the ability to READ or WRITE external data

files. External data files reside on disk and can be read or written under

program control. External files enable data to be stored separately from the

program in which it is to be processed, thus permitting the construction of

larger and more complex programs. In addition, external files enable a given

set of data to be accessed by more than one program.

External data files in B 1700 BASIC are sequential EBCDIC files. These files

are accessed in a sequential manner and contain data stored as a set of EBCDIC

character codes. The statements pertaining to external files are discussed in

this section. Through the remainder of this section, the term "files" should

be understood to mean external data files.

FILES STATEMENT

The FILES statement is used to specify the maximum number of files to be open

at any one time to the program during execution and, optionally, the file

name of the files to be opened. The FILES statement has the following format:

n FILES <list of file names>

where n is the line number of the FILES statement, and <list of file

names> is a list of 1 to 16 file names and/or asterisks separated by

semicolons.

The FILES statement specifies the maximum number of files to be open to the

program at any one time and reserves space in the program to access the indi

cated number of files. In B 1700 BASIC the FILES statement may contain from

1 to 16 file names, that is, during execution a maximum of 16 files may be

open at any one time to a program.

An external file can be named in two different ways: It can have one name up

to 10 characters long, or two names divided by a slash (/), each of which can

be up to 10 characters long. External files may reside on a removable disk,

as well as the system disk. When an external file resides on a removable disk,

the disk cartridge or disk pack identifier (dp-id) must precede the file names

7-1

so that the system may locate the proper file. If a single name is used on a

removable disk, it must be followed by a slash (/), with no spaces between the

last character of the file-name and the slash. This trailing slash is

required in order that the system can tell that the file is on a removable

disk and has a single name. In summary, file names in B 1700 BASIC consist

of one of the following fornIB:

a. identifier-I

b. identifier-2/identifier-3

c. dp-id/identifier-4/

d. dp-id/identifier-5/identifier-6

For additional information concerning the construction of file names refer to

the B 1700 Software Operational Guide (Form 1057171).

Each file-name (or asterisk) entry in a FILES statement is referenced through

out a BASIC program by means of a number reflecting the position of the file

name entry within the FILES statement. In other words the first file-name

entry is considered to be file one, the second file two; etc. An asterisk

may be used instead of a file-name in the FILES statement. When this is done

a file may be associated with the position occupied by the asterisk at a later

point in the program through use of the FILE statement. The FILE statement

is subsequently discussed in this section, under the heading of FILE STATEMENT.

If the desired list of file names cannot be contained in one FILES statement,

then more than one FILES statement may be used in a program. A file-name may

not appear more than once in the FILES statement(s) of a program.

10 FILES HOURS; ACCTPAC/PAYROLL/MASTERFILE

20 FILES ACCTPAC/PAYCHECKS/; *; TAXABLE/ITEMS

999 END

In the above file names, HOURS and TAXABLE/ITEMS are examples of a single-·name

file and a two-name file,. respectively, both of which reside on the system

disk. File names ACCTPAC/PAYCHECKS/ and ACCTPAC/PAYROLL/MASTERFILE are

examples of a single-name file and a two-name file, respectively, both of

which reside on a removable disk cartridge labeled ACCTPAC. In this case the

disk cartridge identifier, ACCTPAC, must precede the file names so that the

system may locate the files. In addition, a single-name file residing on a

7-2

removable disk must be followed by a slash (/),with no spaces between the last

character of the file-name and the slash. This trailing slash is required in

order that the system can tell that the file resides on a removable disk and

has a single name.

File Designator

Each file-name (or asterisk) entry specified in a FILES statement in a given

program is referenced in that program by means of a numeric argument called

the file designator. The value of this numeric argument designates the posi

tion of a file-name (or asterisk) within the file name list of the FILES

statement. When the file designator has a value of 1, the first file-name

(or asterisk) entry appearing in the FILES statement is referenced. When the

file designator has a value of 2, the second file-name (or asterisk) entry

appearing in the FILES statement is referenced. When the file designator has

a value of three, the third entry in the FILES statement is referenced, etc.

If more than one FILES statement appears in a program, each file-name (or

asterisk) entry is referenced in sequential order as if the file name list of

each subsequent FILES statement were a continuation of the list from the prior

FILES statement.

The file designator may be an integer constant, a numeric variable (either

simple or subscripted), or an arithmetic expression. If a numeric variable

or an arithmetic expression is used as a file designator, it will be evaluated

and truncated to an integer before being used as the file designator.

If the value of the file designator is greater than the number of entries

appearing in the FILES statement(s), program execution is terminated with an

error message.

Example:

010 FILES FILE!; FILE2

020 FILES FILE3; FILE4

100 READ #1, A

190 LET F2=2

200 READ #F2,B

'INPUT FILES

'OUTPUT FILES

7-3

290 SCRATCH #F(I)+N

300 WRITE #F(I)+N,C

999 END

In the above example, the file READ statement at line 100 assigns a numeric

value from the file named FILE! to the variable A, because the value of the

file designator in this file READ statement refers to the first file-name in

the FILES statement. Likewise, the file READ statement at line 200 assigns a

numeric value from the file named FILE2 to the variable B, because the value

of the file designator refers to the second file-name in the FILES statement.

At line number 300 the integral value of the file designator determines

whether the value of variable C is written to FILE3 or FILE4.

When the value of the file designator is O, the internal files discussed in

section 6 are referenced. A file READ statement referencing a file designator

of 0 will cause the system to search the program for data contained in DATA

statements. A file INPUT statement referencing a file designator of 0 will

cause the system to expect input from a card file labeled INPUT. A file out

put statement referencing a zero file designator will print output to the line

printer.

FILE STATEMENT

The F'ILE statement is used to open or close a designated file. The FILE

statement may have either of the following formats:

1. n FILE# <file designator>, "<file-name>"

2. n FILE# <file designator >, "*"
where n is the line number of the FILE statement, <file designator> is as

described previously in this section, under the heading FILE DESIGNATOR,

and <file-name> is the name of a file as describedpreviously under the

heading FILES STATEMENT. The punctuation between the <file designator>

and the "<file-name>" or "*" may be either a. comma. or a colon.

In order for an external file to be accessed by a program the file must be

open to the program. Those file names listed in the FILES statement are

opened to the program and thus may be accessed. The FILE statement enables a

file appearing in the file name list of a FILES statement to be closed and

another file to be opened to the program in its place.

7-4

Example:

10 FILES FILEA;*;FILEC

20 READ #1, x
30 FILE #1, "FILE!"

40 READ #1, y

50 FILE #2, "FILE2"

60 READ #2, z
99 END

In the above example, execution of the FILE statement in line 30 causes FILEA

to be closed and FILE! to be opened to the program and associated with the

file designator previously occupied by FILEA. In effect, the FILES statement

in line 10 has now become

10 FILES FILE!; *; FILEC

Execution of the FILE statement in line 50 associates FILE2 with the file

designator associated with the asterisk (*) in the FILES statement and opens

this file to the program. At this point the FILES statement in line 10 has,

in effect, become

10 FILES FILE!; FILE2; FILEC

Use of an asterisk (*) instead of a file-name in a FILE statement causes the

designated file to be closed and the associated file designator to be invali

dated to the program. Once a given file designator is invalidated, it remains

invalidated to the program until a subsequent FILE statement associates a file

name with that file designator and thus validates it to the program.

Example:

10 FILES FILEX; FILEY

20 READ#2, A,B,C

30 FILE#2, "*"

40 READ#l, D,E

50 FILE#2, "FI LEA"

60 READ#2, X, Y

70 END

In the above example, the FILE statement in line 30 causes FILEY to be closed

and the associated file designator to be invalidated to the program. Follow

ing line 50 FILEA is associated with this file designator and may be accessed

by the program.

7-5

As specified previously in this section in the discussion of the FILES

statement, a maximum of 16 external files may be open at any one time to a

program during execution. This does not imply that the maximum number of

files that can be accessed by a program is limited to 16. Use of the FILE

statement enables files to be closed and other file names to be associated

with previously used file designators, thus permitting more than this number

of files to be physically processed by a program.

FILE MODES

When an external data file is being processed by a program, it is either in

the read mode or the write mode. In the read mode, only file READ or file

INPUT statements may be executed on a file; likewise only file WRITE or file

PRIN11 statements may be executed on a file in the write mode. A file is

i ni ti.ally opened to a program in the read mode. In order to execute file

WRITE statements, a file must first be placed in the write mode by execution

of ei.ther a SCRATCH or an APPEND statement. If read statements are to be

executed on a file while in the write mode, the file must first be placed in

the read mode by means of either a RESTORE or a BACKSPACE statement. While

in the write mode, a file may also be placed in the read mode by closing and

re-opening the file through use of the FILE statement.

FILE READ STATEMENT

The file READ statement is used to assign values from the file specified by

the file designator to the variables whose names are listed in the READ state

ment. The file READ statement has the following format:

n READ # <file designator>, <list of variable names>

where n is the line number of the file READ statement, <file designator>

is as previously discussed in this section under the heading FILE DESIG

NATOR, and <list of variable names> is a list of one or more numeric

variables (either simple or subscripted) separated by commas. The punctu·

a tion between the <file designator> and the <list of variable names> may

be a comma or a colon.

The file READ statement assumes that each line in the designated EBCDIC fjLle

begins with a line number. The line number, however, is not considered to be

part of the data file. As elements are read from an EBCDIC file by the fJLle

READ statement, the first number present on each line is considered to be the

line number of that line and is ignored. In addition, the file READ statE~ment

assumes that an EBCDIC file contains the standard delimiter, i.e., the comma.

7-6

If a file contains other than the standard delimiter, the delimiter contained

in the file must be specified with a DELIMIT statement prior to the execution

of file READ statements on that file.

The file READ statement is data item oriented. Execution of the file READ

statement causes the number of data items required to satisfy the list of

variable names associated with that READ statement to be read from the desig

nated file. The first number on each line is considered to be a line number

and is disregarded. Each time a file READ statement is executed, sufficient

data items are read, beginning with the next available item, until the list

of variable names is satisfied.

Example:

External file FILEA contains the following lines of data:

100 11,12,13,14

110 15,16,17

120 18,19

130 20

The following program accesses the above file:

10 FILES FILEA

20 READ#l, X,Y

30 READ#l, A,B,C

99 END

In this example the file READ statement at line 20 assigns the data values 11

and 12 to variables X and Y, respectively. After execution of line 20, the

data pointer associated with FILEA points to data value 13. Execution of the

file READ statement at line 30 assigns the data values 13, 14, and 15 to the

variables A, B, and C, respectively, leaving the data pointer pointing to the

data value 16 as the next available item in FILEA.

The file READ statement does not inform the user when the last data item has

been accessed from a file, as is the case when the READ statement accesses

the last data item from a DATA statement. When an external file is out of

data, avalue of zero (0) is assigned to each numeric variable encountered in

all subsequent READ statements on that file. The IF END and IF MORE state

ments allow an end-of-data condition to be handled programmatically when

external files are used.

7-7

Zero may be used as the file designator in a file READ statement. A zero

file designator causes the file READ statement to read data items from DATA

statements contained within the program, rather than from an external file.

FILE INPUT STATEMENT

The file INPUT statement is used to assign values from the file specified by

the file designator to the variables whose names are listed in the INPUT

statement. The file INPUT statement has the following format:

n INPUT # <file designator>, <list of variable names>

where n is the line number of the file INPUT statement, <file designator>

is as described in this section, under the heading FILE DESIGNATOR, and

<list of variable names> is a list of one or more numeric variables

(either simple or subscripted) separated by commas. The punctuation

between the <file designator> and the <list of variable names> may be a

comma or a colon.

The file INPUT statement and the file READ statement serve the same purpose,

but the manner in which elements are accessed from an EBCDIC file by these

statements differs in two ways. The file READ statement considers the first

number present on each line in the designated file to be a line number, but

the file INPUT statement assumes that the specified file does not contain line

numbers and treats any line numbers in the file as data i terns. In addition,

the file READ statement is data item oriented, and the file INPUT statement

is line oriented.

Execution of the file INPUT statement causes the number of elements requi:red

to satisfy the list of variable names associated with that INPUT statement to

be accessed from the designated file. The first number on each line is not

considered to be a line number and is accessed as a data element. If insuf

ficient elements to satisfy the list of variable names reside on the current

file line, elements are accessed from the next file line until each variable

in the list has been assigned a value. When the list is satisfied, the

remainder of the current line is ignored irrespective of whether or not more

data elements are contained on that line, and the beginning of the following

file line is considered to be the next available data element in that file.

7-8

Example:

External file FILEA contains the following lines of data:

100 11,12,13,14

110 15,16,17

120 18,19

130 20

The following program accesses the above file:

10 FILES FILEA

20 INPUT #1, X,Y

30 INPUT #1, A,B,C

99 END

In this example, the file INPUT statement at line 20 assigns the values 10011

and 12 to variables X and Y, respectively. After execution of statement 20,

the data pointer associated with FILEA points to the first element on the next

file line. Execution of the file INPUT statement at line 30 assigns the values

11015, 16, and 17 to the variables A, B, and C, respectively, advancing the

data pointer associated with this file to the beginning of the next line.

The file INPUT statement assumes that the designated EBCDIC file contains the

standard delimiter, i.e., the comma. If a file contains other than the

standard delimiter, the delimiter contained in the file must be specified with

a DELIMIT statement prior to the execution of file INPUT statements on that

file.

The file INPUT statement does not inform the user when the last data item has

been accessed from a file. When an EBCDIC file is out of data, a value of

zero (0) is assigned to each numeric variable encountered in all subsequent

INPUT statements on that file. The IF END or IF MORE statements allow an end

of-data condition to be handled programmatically when using external files.

Zero may be used as the value of the file designator in a file INPUT statement.

When the file designator is zero, the file INPUT statement causes values to be

obtained from a card file in the same manner as the INPUT statement. Refer to

section 6, under the heading INPUT STATEMENT, for information concerning the

INPUT statement.

7-9

FILE WRITE STATEMENT

The file WRITE statement is used to place the value of each listed item l.nto

the file specified by the file designator. The file WRITE statement has the

following format:

n WRITE # <file designator>, <list>

where n is the line number of the file WRITE statement, <file designator>

is as described under FILE DESIGNATOR and <list> consists of one or more

numeric constants, string constants, numeric variable names (either simple

or subscripted), arithmetic expressions, or references to the TAB function

separated by commas or semicolons. The punctuation between the <file

designator> and the <list> may be a comma or a colon.

The file WRITE statement writes the data items specified in the file WRI1rE

statement list to the drsignated EBCDIC file. Prior to the execution of a

file WRITE statement, the designated file must have been placed in the write

mode by execution of a ~CRATCH or an APPEND statement.

The file WRITE statement for EBCDIC files generates a line-numbered file. The

line numbers begin with the number 00100, are incremented by 10, and are fol

lowed by a space. In the absence of a DELIMIT statement, the standard delim

iter, i.e., the comma, is output immediately following each data item wr:Ltten

to the file. If other than the standard delimiter is desired, then the

delimiter to be used must be specified with a DELIMIT statement prior to the

execution of any file WRITE statements on that file.

Each file WRITE statement for EBCDIC files generates one line of output unless

the margin limit for the designated file is exceeded, or unless a comma or a

semicolon follows the last item in the file WRITE statement list. When the

margin limit is exceeded, output to the current file line is terminated, the

next line number is generated, and output continues to the new file line.

When the file WRITE statement list ends in a comma or a semicolon, subsequent

file WRITE statements to that EBCDIC file continue on the current file Line if

space is available.

The zoned and packed format conventions discussed in section 6, under the

PRINT statement apply wµen writing to an EBCDIC file. A comma following an

item in the file WRITE statement list causes the next item to be placed in

the file line at the beginning of the next 15-character zone; a semicolon

suppresses this spacing. The file WRITE statement differs, however, from the

PRINT statement in that each file output line begins with a line number and

thus position zero (0) in the file output line is considered to be the second

7-10

character position following the last digit of the line number. As discussed

in section 6, re~erences to the TAB function may also be included in the file

WRITE statement list, thus enabling output to be placed in any described posi

tion within the file line.

The character position used as the right margin limit in an EBCDIC file may

be specified by means of the MARGIN statement. In the absence of a MARGIN

statement, the margin limit is set at character position 75. If other than

the standard margin limit is desired, then the margin limit to be used must be

specified with a MARGIN statement prior to the execution of any file WRITE

statements on that file.

Example:

10 FILES OUTPUT/FILEWRITE

20 LET A=B=4

30 SCRATCH #1

40 WRITE #1, "A+B=", A+B, "A*B=", 16

50 LET C=l6

60 WRITE #1, "A+B="; A+B; "A *B="; C

70 END

After execution of the above example, the EBCDIC file OUTPUT/FILEWRITE con

tains the following:

00100 A+B=, 8 A*B=, 16 '
00110 A+B=, 8 ,A*B=, 16

A file WRITE statement may not reference an external file following a file

PRINT statement to that file.

Zero may be used as the value of the file designator in a file WRITE state

ment. In this case the list of items in the file WRITE statement is written

to the line printer; however, no line numbers are supplied. When a zero file

designator is referenced in a file WRITE statement, no prior SCRATCH state

ment referencing the zero file designator is required.

Example:

10 FOR I = 1 TO 5

20 WRITE #0,I;

30 NEXT I

40 END

7-11

Execution of the above example causes the following output to be printed on

the line printer:

1 ' 2 ' 3 ' 4 ' 5 '

FILE PRINT STATEMENT

The file PRINT statement is used to place the value of each item listed in the

file PRINT statement into the file specified by the file designator. The file

produced by the file PRINT statement contains no line numbers and no delim

iters. The file PRINT s,ta tement has the following format:

n PRINT # <file designator>, <list>

where n is the line number of the file PRINT statement, <file designator>

:Ls as described in this section under FILE DESIGNATOR, and <list> consists

of one or more numeric constants, string constants, numeric variable names

(either simple or subscripted), arithmetic expressions, or references to

the TAB function separated by commas or semicolons. The punctuation

between the <file designator> and the <list> may be a comma or a colon.

The file PRINT statement serves the same purpose as the file WRITE statement,

except that the file PRINT statement generates an external file with no line

numbers and no delimiters. The DELIMIT statement has no effect on PRINT state

ments which reference external files. Output from the file PRINT statement

will be written to an external file with no line numbers and no delimiters

regardless of previously executed DELIMIT statements referencing that file.

Prior to execution of a file PRINT statement, the designated file must be

placed in write mode by means of the SCRATCH or the APPEND statement.

Each file PRINT statement generates one line of output unless the margin limit

for the designated file is exceeded, or unless a comma or a semicolon follows

the last item in the file PRINT statement list. When the margin limit is

exceeded, the current file line is terminated, and output continues on the

next file line. When the file PRINT statement list ends in a comma or a semi

colon, subsequent file PRINT statements to that file continue on the current

file line if space is available.

The zoned and packed format specifications discussed in section 6 under the

PRINT statement apply to the file PRINT statement. A comma following an item

in the file PRINT statement list causes the next item to be placed in the file

line at the beginning of the next 15 character zone; a semicolon suppresses

this spacing. As discussed in section 6, references to the TAB function may

also be included in the file PRINT statement list, thus enabling output to be

placed in any desired position within the file line.

7-12

The character position used as the right margin limit in an EBCDIC file may

be specified by means of the MARGIN statement. In the absence of a MARGIN

statement, the margin limit is set at character position 75. If other than

the standard margin limit is desired, the margin limit to be used must be

specified with a MARGIN statement prior to the execution of any file PRINT

statements on that file.

The file PRINT statement may reference an external file following the execu

tion of a file WRITE ,statement to that file. A file WRITE statement, however,

may not reference an external file following a file PRINT statement to that

file.

Example:

10 FILES OUTPUT/FILEPRINT

20 LET A=B=4

30 SCRATCH #1

40 WRITE #1, "A+B="; A+B; "A*B="; 16

50 PRINT #1, "A+B="; A+B; "A*B="; 16

99 END

After execution of the above example, the EBCDIC file OUTPUT/FILEPRINT con

tains the following:

00100 A+B=,

A+B= 8 A*B=

8 ,A*B=,

16

16

Zero may be used as the file designator in the file PRINT statement. In this

case the list of items in the file PRINT statement is written to the line

printer. When a zero file designator is referenced in a file PRINT statement

no prior SCRATCH statement referencing the zero :file designator is required.

FILE MANIPULATION STATEMENTS

The following file manipulation statements provide additional capability when

processing external files:

a. SCRATCH.

b. RESTORE.

c. IF END.

d. IF MORE.

e. APPEND.

f. DELIMIT.

g. MARGIN.

h. BACKSPACE.

7-13

SCRATCH Statement

The SCRATCH statement is used to erase the contents of an external file, posi

tion the data pointer to the beginning of the file, and place the file in

write mode. The SCRATCH statement has the following format:

n SCRATCH #<file designator>

where n :ls the line number of the SCRATCH statement and <file designator>

is as described in this section:, under the heading FILE DESIGNATOR.

An EBCDIC file is opened to a program in the read mode when its name appears

in a FILES statement, or when its name replaces the name of another file or

asterisk in a FILE statement. Before any output statement may be executed

with that file, it must be placed in the write mode by means of either the

SCRATCH statement or the APPEND statement.

The SCRATCH statement, in addition to placing the designated EBCDIC file in

the write mode, erases any existing data in the file and positions the data

pointer for that file to the beginning of the file. In contrast, the APPEND

statement, while placing an EBCDIC file in the write mode, does not affect

any existing data in the file, but merely positions the data pointer after

the last data item in the file.

The SCRATCH statement may not reference a file designator of zero.

10 FILES OUTPUT/FILE!

20 SCRATCH #1

30 WRITE #1, A, B, C

50 END

RESTORE Statement

The RESTORE statement is used to position the data pointer of the designated

EBCDIC file from its current position to the beginning of the file. In :addi

tion, the RESTORE statement places the designated file in the read mode. The

RESTORE statement has the following format:

n RESTORE #<file designator>

where n is the line number of the RESTORE statement and <file designator>

is as described in this section under the heading FILE DESIGNATOR.

Once an EBCDIC file has been placed in the write mode, a RESTORE statement

(or a BACKSPACE statement) must be executed with that file before it may be

accessed by a file READ or a file INPUT statement. Execution of a RESTORE

7-14

statement places the designated EBCDIC file in the read mode and returns the

data pointer from its current position to the beginning of the file.

Example:

External file FILE/INPUT contains the following lines of data:

100 10,11,12

;uo 13, 14

120 15

The following program accesses the above file:

10 FILES FILE/INPUT; FILE/OUTPUT

20 READ #1, A, B, C, D, E, F

30 SCRATCH #2

40 WRITE #2, A;B;C;D;E;F

50 RESTORE #1

60 READ #1, A, B, C, D, E, F

70 WRITE #2, A;B;C;D;E;F

80 END

After execution of the above program the file FILE/OUTPUT contains the

following:

00100 10

00110 10

11

11

IF END Statement

12

12

13

13

14

14

15

15

The IF END statement is used to check for an end-of-file condition when read

ing from an EBCDIC file, or to check for an end-of-file space condition when

writing to an EBCDIC file. The IF END statement has the following format:

n IF END # <file designator> THEN <line number>

where n is the line number of the IF END statement, <file designator> is

as described under the heading FILE DESIGNATOR, and <line number> is the

line number of the statement to which program control is to be transferred

when the tested condition is true. The punctuation between the <file

designator> and the word THEN may be a space, a comma, or a colon.

When reading from an EBCDIC file, neither the file READ statement nor the file

INPUT statement informs the user when an attempt has been made to read beyond

the end of the designated file. If there are no more data items in an EBCDIC

file, the value zero (0) is automatically assigned to all numeric variables

encountered in subsequent file READ or file INPUT statements referencing that

7-15

file. 'The IF END statement enables the user to check the last file READ or

file INPUT statement executed on the designated file for the occurrence of an

end-of-file condition.

When an end of file condition has been encountered by the last file READ or

file INPUT statement executed on the designated file, program control is

transferred by the IF END statement to the specified line number; otherwise,

program control continues with the next statement following the IF END state

ment. It should be noted that the IF END statement does not test the desig

nated file directly; instead it checks the last file READ or file INPUT

statement executed with the designated file for the occurrence of an end-of

file condition. For this reason the IF END statement, to be used effectively,

must be executed after a read operation as one additional file READ or file

INPUT statement will be executed after all data elements have been accessed

from a designated file.

Exam:e~!_:

External file FILEA contains the following lines of data:

100 10,11,12

llO 13,14,15

The following program reads the above file:

10 FILES FILEA

20 READ #1, x, Y, z
30 PRINT "AT LINE 20 x, Y, z =";X;Y;Z

40 READ #1, x, Y, z
50 PRINT "AT LINE 40 x, Y, z =";X;Y;Z

60 READ #1, x, Y, z
70 PRINT "AT LINE 60 x, Y, Z =";X;Y;Z

Execution of the above program prints the following output on the line

printer:

AT LINE 20 X, Y, Z

AT LINE 40 X, Y, Z

AT LINE 60 X, Y, Z

7-16

10 11 12

13 14 15

0 0 0

In order to test for an end-of-file condition when reading from FILEA, IF END

statements are placed in the above program as follows:

10 FILES FILEA

20 READ #1, X,Y,Z

25 IF END #1 THEN 75

30 PRINT "AT LINE 20 X, Y, Z =";X;Y;Z

40 READ #1, X, Y, Z

45 IF END #1 THEN 75

50 PRINT "AT LINE 40 X, Y, Z =";X;Y;Z

60 READ #1, X, Y, Z

65 IF END #1 THEN 75

70 PRINT "AT LINE 60 X, Y, Z =";X;Y;Z

75 PRINT "END OF FILE - FILEA"

80 END

Execution of the above program prints the following output on the line printer:

AT LINE 20 X, Y, Z = 10 11 12

AT LINE 40 X, Y, Z = 13 14 15

END OF FILE - FILEA

Example 2:

The following program uses the file, FILEA, from the previous example as input.

10 FILES FILEA

20 READ #1, A, B, C

30 PRINT "AT LINE 20 A, B, C =";A;B;C

40 READ #1, A, B, C, D

50 PRINT "AT LINE 40 A, B, C, D =";A;B;C;D

60 END

Execution of the above program prints the following output on the line printer:

AT LINE 20 A, B, C = 10 11 12

AT LINE 40 A, B, C, D = 13 14 15 0

7-17

In order to test for an end-of-file condition when reading from FILEA, IF END

statements are placed in the above program as follows:

10 FILES FILEA

20 READ #1, A, B, c
25 IF END #1 THEN 60

30 PRINT "AT LINE 20 A, B, C =";A;B;C

40 READ #1, A, B, c, D

45 IF END #1 THEN 60

50 PRINT "AT LINE 40 A, B, c, D =";A;B;C;D

60 END

Execution of the above program prints the following output on the line printer:

AT LINE 20 A, B, C = 10 11 12

When writing to an EBCDIC file in B 1700 BASIC, additional areas of file space

are allocated to a designated file as data items are written to that file.

For this reason it is impractical to test for an end-of-file space condition

when writing an EBCDIC file.

The IF END statement may not be used with a zero file designator.

IF MORE Statement

The IF MORE statement is used to check for more data when reading from an

EBCDIC file or to check for more file space when writing to an EBCDIC file!.

The IF MORE statement has the following format:

n IF MORE # <file designator> THEN <line number>

where n is the line number of the IF MORE statement, <file designator>

is as described under the heading FILE DESIGNATOR, and <line number> is

the line number of the statement to which program control is to be trans

ferred when the tested condition is true. The punctuation between the

<file designator> and the word THEN may be a space, a comma, or a colon.

When reading from an EBCDIC file, neither the file READ statement nor the file

INPUT statement informs the user when an attempt has been made to read beyond

the end of the designated file. If there are no more data items in an EBCDIC

file, the value zero (0) is automatically assigned to all numeric variables

encountered in subsequent file READ or file INPUT statements referencing that

file. The IF MORE statement enables the user to programmatically check a

designated EBCDIC file for the presence of more data.

The IF MORE statement tests the designated file to determine whether or not

another data item remains in the file. If a data item remains in the

7-18

designated file, program control is transferred to the specified line number;

otherwise, program control continues with the next statement following the IF

MORE statement. In contrast to the IF END statement, it should be noted that

the IF MORE statement checks the designated file directly for the presence of

additional data. For this reason the IF MORE statement should be executed

prior to the file READ or file INPUT statement referencing the designated file.

Example 1:

External file FILEA contains the following lines of data:

.The

100 10,11,12

110 13' 14, 15

followi.ng program

10 FILES FILEA

20 IF MORE #1

30 GO TO 70

reads

THEN

40 READ #1, X,Y,Z

the above file:

40

50 PRINT "AT LINE 40 X, Y, Z =";X;Y;Z

60 GO TO 20

70 PRINT "END OF FILE - FILEA"

80 END

Execution of the above program prints the following output on the line printer:

AT LINE 40 X, Y, Z 10

AT LINE 40 X, Y, Z 13

END OF FILE - FILEA

Example 2:

11 12

14 15

The following program uses the file, FILEA, from the previous example as input.

10 FILES FILEA

20 IF MORE #1 THEN 40

30 GO TO 140

40 READ #1, A, B, C

50 PRINT "AT LINE 40 A, B, C =";A;B;C

60 IF MORE #1 THEN 80

70 GO TO 140

80 READ #1, A, B, C, D

90 PRINT "AT LINE 80 A, B, C, D =";A;B;C;D

100 IF MORE #1 THEN 120

7-19

110 GO TO 140

120 READ #1, A, B, C, D, E

130 PRINT "AT LINE 120 A, B, C, D, E =";A;B;C;D;E

140 END

Execution of the above program prints the following output on the line printer:

AT LINE 40 A, B, C = 10 11 12

AT LINE 80 A, B, C, D = 13 14 15 0

When writing to an EBCDIC file in B 1700 BASIC, additional areas of file space

are allocated to a designated file as data items are wirtten to that file.

For this reason it is impractical to test for the availability of more file

space when writing an EBCDIC file.

The H' MORE statement may not be used with a zero file designator.

APPEND Statement

The APPEND statement is used to place an EBCDIC file in the WRITE mode and to

position the data pointer associated with that file after the last data item

in the file. The APPEND statement has the following format:

n APPEND # <file designator>

where n is the line number of the APPEND statement and <file designator>

is as described in this section under FILE DESIGNATOR.

The APPEND statement enables data to be added to an EBCDIC file. Both the

SCRATCH statement and the APPEND statement place the designated file in the

write mode. When a file is scratched, the file's data pointer is positioned

to the beginning of the file and all data previously contained in the file

are lost. The APPEND statement positions the data pointer associated with the

designated file immediately following the last data item in that file, thus

enabling a file to be placed in the write mode without losing previously

stored data. If the file contains no data the APPEND statement positions the

data pointer at the beginning of the file.

External file EXAMPLE/APPEND contains the following data:

00100 1 ' 2 ' 3 ' 4 '

7-20

The following program appends data to the above file:

10 FILES EXAMPLE/APPEND

20 APPEND #1

30 FOR I = 5 TO 8

40 WRITE #1, I;

50 NEXT I

60 END

After execution of the above program file EXAMPLE/APPEND contains the

following:

00100 1

00110 5

DELIMIT Statement

2

6

3

7

4

8

The purpose of the DELIMIT statement is to specify the delimiter, other than

the standard file delimiter (i.e., the comma), to be used with a designated

EBCDIC file. The DELIMIT statement for EBCDIC files has the following format:

n DELIMIT #<file designator>, (<delimiter>)

where n is the line number of the DELIMIT statement, <file designator> is

as described for EBCDIC files in this section under FILE DESIGNATOR, and

<delimiter> is a single character to be used as the delimiter with the

designated EBCDIC file. The punctuation between the <file designator>

and the left parenthesis may be a comma or a colon.

If a file contains a delimiter other than the standard comma, the non

standard delimiter contained in the file must be specified with a DELIMIT

statement prior to the execution of any file READ and/or file INPUT statements

with that file.

If a delimiter other than the standard comma is to be written to a file, the

delimiter to be used must be specified with a DELIMIT statement prior to the

execution of any file WRITE statements with that file. The DELIMIT statement

has no effect on the file PRINT statement. Output from the file PRINT state

ment will be written to an external file with no line numbers and no delim

iters, regardless of previously executed DELIMIT statements referencing that

file.

The DELIMIT statement may be used with a zero file designator to specify the

use of a non-standard delimiter in input from the card reader and output to

the line printer. Use of a zero file designator in the DELIMIT statement has

no effect on the DATA statement. DATA statements contained in a program must

use the standard delimiter.

7-21

Example:

External file FILEIN contains the following lines of data in which a blank is

used instead of the standard delimiter:

100 11 12 13 14

110 15 16 17 18

120 19 20

The following program reads the above file:

10 FILES FILEIN; FILEOUT

20 DELIMIT #1, ()

30 READ #1, A, B, C, D

40 SCRATCH #2

50 DELIMIT #2, (@)

60 WRITE #2, A;B;C;D

70 END

After execution of the above program the file FILEOUT contains the following:

ooioo 11 @ 12 @ 13 @ 14 @

MARGIN Statement

The purpose of the MARGIN statement is to specify the character position to be

used as the right margin limit for the designated EBCDIC file. The MARGIN

statement for EBCDIC files has the following format:

n MARGIN # <file designator>, <expression>

where n is the line number of the MARGIN statement, <file designator> is

as described for EBCDIC files, under FILE DESIGNATOR, and <expression> is

a numeric constant, a numeric variable (either simple or subscripted) :i or

an arithmetic expression. The punctuation between the <file designator>

and the <expression> may be a comma or a colon.

In the absence of a MARGIN statement, the right margin limit is set at char

acter position 75. If the right margin in an EBCDIC file is other than

character position 75, the non-standard margin must be specified in a MARGIN

statement prior to the execution of file READ or file INPUT statements with

that file.

If the value of the expression used :in the MARGIN statement is not an int43ger,

it is truncated and the integer part is used to specify the character pos:L tion

of the right margin. Character position 158 is the maximum value to which the

7-22

margin may be set. If the value of the expression is less than 1 or greater

than 158, the margin is set at character position 158.

BACKSPACE Statement

The BACKSPACE statement is used to backspace the data pointer associated with

a designated EBCDIC file and to place the file in the read mode. The BACK

SPACE statement for EBCDIC files has the following format:

n BACKSPACE # <file designator>

where n is the line number of the BACKSPACE statement and <file designator>

is as described for EBCDIC files in this section, under the FILE DESIGNA

TOR heading.

The manner :in which the data pointer is backspaced depends upon the last

statement that was executed with the designated EBCDIC file prior to execution

of the BACKSPACE statement. If the last statement to access the file was a

file INPUT statement or a file PRINT statement, execution of a BACKSPACE

statement moves the data· pointer to the beginning of the current line. If the

data pointer is presently at the beginning of a line, each execution of a

BACKSPACE statement moves the data pointer to the beginning of the previous

line.

If the last statement to access the designated file was a file READ or file

WRITE statement, each execution of a BACKSPACE statement moves the data pointer

back over one delimiter to the previous data item. If the data pointer is

presently at the first data item on a line, execution of the BACKSPACE state

ment moves the pointer to the last item on the previous line.

When the BACKSPACE statement is executed with the data pointer positioned at

the beginning of the designated file, the pointer is moved to the end of the

first line in the file. Backspacing past the beginning of the file proceeds

as described above utilizing the first line of the file for subsequent execu

tions of the BACKSPACE statement.

FILE FUNCTIONS

File functions are provided in BASIC to give additional capability when using

EBCDIC files. Each file function requires a file designator as an argument

and returns a number as the function value.

HPS(#N) Function

The HPS(#N) function returns the location of the file pointer in the current

line of the designated EBCDIC file. The letter N, shown as the argument,

7-23

represents a file designator as described in this section, under the heading

FILE DESIGNATOR.

LIN(#N) Function

The LIN(#N) function returns the line number of the current line in the

designated EBCDIC file. The letter N, shown as the argument, represents a

file designator as described in this section, under the heading FILE

DESIGNATOR.

VPS(#N) Function

The VPS (#N) function returns the number of lines which have been read from or

written to the designated EBCDIC file. The letter N, shown as the argument,

represents a file designator as described in this section, under the heading

FILE DESIGNATOR.

7-24

SECTION 8
INTRINSIC FUNCTIONS

GENERAL

Certain functions are provided in the BASIC language. The names of these

functions are known to the compiler and need only be referenced in order to

be used.

MA TH EMA TIC.AL FUNCTIONS

In addition to the arithmetic operators described in section 1 under the head

ing ARITHMETIC EXPRESSIONS, BASIC has the capability to evaluate the following

mathematical functions. The letter X, shown as the argument of each function,

can be replaced by any numeric constant, numeric variable (either simple or

subscripted), or arithmetic expression.

Function

SIN(X)

COS(X)

TAN(X)

COT(X)

ATN(X)

ABS(X)

EXP(X)

LOG(X)

SQR(X)

INT(X) Function

Meaning

Sine of X(X in radians).

Cosine of X(X in radians).

Tangent of X(X in radians).

Cotangent of X(X in radians).

Arctangent of X, expressed in radians.

Absolute value of X.

Natural exponential of X.

Natural logarithm of X.

Square root of X.

The integer function, INT(X), returns the greatest integer algebraically less

than or equal to the argument. As an example, the value of INT(7.5) is 7; the

value of INT(-7.5) is -8.

SGN(X) Function

The sign function, SGN(X), determines the sign of the argument and returns the

value of O, +1, or -1, depending on whether the value of the argument is O,

positive and non-zero, or negative and non-zero, respectively. As an example,

the value of SGN(-5) is -1; the value of SGN(O) is 0.

8-1

MOD(X, Y) Function

The modular function, MOD(X,Y), returns the value of X-INT(X/Y)*Y. Each o:f

the arguments X and Y may be replaced by any numeric constant, numeric varia

ble (either simple or subscripted), or arithmetic expression.

RND Function

The random function, RND, is used to generate a sequence of pseudo-random

numbers between 0 and 1. The RND function does not require an argument.

The fi.rst reference to RND executed in a BASIC program returns the same number

as thE~ first in the sequence of random numbers. Repeated execution of RND

always generates the same set of pseudo-random numbers.

RANDOMIZE STATEMENT

The random function, RND, always generates the same set of random numbers.

While this can be very useful, particularly during the debugging of a BASIC

program, the capability to generate different sets of random numbers is often

required. The RANDOMIZE statement, when included in a BASIC program that

references the RND function, causes the RND function to produce different sets

of random numbers.

The RANDOMIZE statement may be abbreviated as RAN.

10 RAN

20 FOR I = 1 TO 10

30 Z(I) RND

40 NEXT I

50 STOP

60 END

Each time the program in the above example is executed, a different set of

random numbers will be assigned to the array Z. If line number 10, that i.s,

the RANDOMIZE statement, is removed from the program, the first 10 values

from the standard set of random numbers will be assigned to array Z each time

the program is executed.

8-2

SECTION 9
SUBPROGRAMS

GENERAL

Subprograms allow a particular calculation or a given routine to be coded

once within a program and then referenced repeatedly throughout the program.

Subprograms in BASIC are of two types:

a. Function subprograms.

b. Subroutine subprograms.

FUNCTION SUBPROGRAMS

In addition to the standard functions provided by the BASIC compiler, the user

may define functions within his program with the DEF statement. User-defined

functions may have two forms -- single statement functions or multiple state

ment functions.

Single Statement Functions

A single statement function, as its name suggests, is a function that can be

defined by a single DEF statement. A single statement function is useful when

a particular arithmetic expression must be evaluated repeatedly within a pro

gram for different values of the arguments involved. The single statement

function may have either of the following formats:

1. n DEF FN<letter> = <arithmetic expression>

2. n DEF FN<letter> (<argument list>) = <arithmetic expression>

where n is the line number of the DEF statement; <letter> is any single

alphabetic letter; <arithmetic expression> is any arithmetic expression;

and, in option 2., <argument list> is a list of one to seven unsubscripted

dummy variable names separated by commas.

The name of a defined function must consist of three letters, the first two of

which must be the letters FN. In the general form, <letter> completes the

function name and distinguishes a given function from other functions which

may be defined in the same program. In a given program each user-defined

function must have a unique name. Since defined functions are given

9-1

three-character names, the first two of which are always FN, as many as 26

unique functions may be defined. Valid function names are FNA, FNB, FNC,

... ,FNZ.

The <argument list> consists of one to seven dummy variables, separated by

commas, each o:E which must be a distinct unsubscripted variable name. Each

variable appearing in the <argument list> is replaced by the value of the

corresponding actual argument when the function is referenced. Dummy argu·

ments merely reserve a place for the actual arguments, and thus are undefined

outside of the function definition. A dummy variable is not related to any

variable of the same name appearing elsewhere in the program.

The <arithmetic expression> on the right side of the equal sign may be any

arithmetic expression that can be placed on the remainder of that statement

line. Aside from the dummy variables the <arithmetic expression> may contain

any combination of variable names (either simple or subscripted) appearing

elsewhere in the program, references to other functions (including functions

previously or subsequently defined by other DEF statements), and numeric con

stants. Variable names not listed in the <argument list> use their current

values assigned elsewhere in the program.

The DEF statement defining a single statement function may be placed at any

point within a BASIC program. The function definition is only evaluated when

a reference to that function is executed. Execution of a function reference

in an expression results in an association of the actual argument values with

the corresponding dummy arguments i.n the function definition and a subsequent

evaluation of the function definition. If a function reference or an arith

metic expression is used as an actual argument, then these quantities are

evaluated before the association can take place. After the evaluation of the

function definition, the resultant value assigned to the function name then

replaces the function reference in the expression.

10 DEF FNA(X,Y) = X**2 + 2*X*Y + Y**2

20 DEF FNB(X,Y,Xl,Yl) = FNA(X,Y)/FNA(Xl,Yl)

30 DEF FNZ(A,B) = X * SIN(A) + 4*INT(A*B-Z)

Multiple Statement Functions

The single statement function is limited to those functions which can be

expressed in a single DEF statement. The multiple statement function is not

restricted to a single statement and is written in the following manner--

9-2

The first statement of the multiple statement function is a DEF statement and

may have either of the following formats:

1. n DEF FN<letter>

2. n DEF FN<letter > (<argument list>)

where n is the line number of the DEF statement; <letter> is any single

alphabetic letter; and, in option 2, <argument list> is a list of one to

seven unsubscripted dummy variable names separated by commas.

Following the DEF statement in a multiple statement function are those state

ments which define the function. These statements must be followed by an

FNEND statement. The FNEND statement indicates the end of the function defi

nition and has the following format:

n FNEND

where n is the line number of the FNEND statement.

As discussed in this section under SINGLE STATEMENT FUNCTIONS, the name of a

defined function must consist of three letters, the first two of which must be

FN. In the general form, <letter> completes the· function name, thus enabling

a maximum of 26 functions (either single statement and/or multiple statement)

to be defined in the same program. Valid user-defined functioll' names are FNA,

FNB, FNC, ... FNZ.

The absence of the equals sign and the arithmetic expression in a DEF state

ment indicates that a multiple statement function follows· the DEF statement.

A multiple statement function may consist of as many statements as desired;

the end of the function definition being indicated by the FNEND statement.

Multiple statement functions may not be nested. In addition, transfer of pro

gram control from within a multiple statement function to some point in the

program outside the function, and vice-versa, is not permitted.

As with single statement functions, dummy variables appearing in the< argument

list> represent the corresponding actual arguments which are substituted for

the dummy arguments when the function is referenced. In addition to the dummy

variables the statements appearing in the multiple statement function defini

tion may contain any combination of variable names (either simple or sub

scripted) appearing elsewhere in the pr,ogram, references to other' functions

(including single statement functions defined within the program), and numeric

constants. Variable names not listed in the <argument list> use their current

values assigned elsewhere in the program.

9-3

When using a multiple statement function, the function name,<FN letter>,

should be assigned a value before the FNEND statement is encountered. If the

function name has not been assigned a value when control reaches the FNEND

statement, zero is returned for the function value.

The multiple statement function may be placed at any point within a BASIC

program. The function definition is only evaluated when a reference to that

function is executed.

Example:

010 REM

020 REM

030 REM

COMPUTE THE LARGEST FACTOR FOR

THE ODD NUMBERS 1001 TO 1019.

040 PRINT "NUMBER", "LARGEST FACTOR"

050 FOR I=l TO 10

060 READ N

070 PRINT N, FNF(N)

080 NEXT I

100 DEF FNF(N)

110 FOR F = INT(N/2) TO 1 STEP -1

120 IF N/F <> INT(N/F) THEN 150

130 LET FNF=F

140 GO TO 160

150 NEXT F

160 FNEND

170 DATA 1001, 1003, 1005, 1007, 1009

180 DATA 1011, 1013, 1015, 1017, 1019

190 END

SUBR01 UTINE SUBPROGRAMS

A subroutine enables a repetitive calculation that produces more than one

value to be coded once as a subprogram and then referenced as needed through

out the program. Program control is transferred to a subroutine through the

GOSUB statement. The GOSUB statement has the following format:

9-4

n GOSUB <line number>

where n is the line number of the GOSUB statement, and <line number> is

the line number of the first statement in the subroutine.

A subroutine is called using the GOSUB statement. The RETURN statement is

used to exit the subroutine and return program control to the statement

immediately following the calling GOSUB statement. The RETURN statement has

the following format:

n RETURN

where n is the line number of the RETURN statement.

A GOSUB statement may be used inside a subroutine to call another subroutine.

When subroutines are nested, the first RETURN statement to be executed returns

control to the statement following the most recently. executed GOSUB. The next

RETURN statement returns control to the statement following the GOSUB state

ment which was previously executed, and so on. Execution of a RETURN state

ment prior to the execution of a GOSUB statement terminates program execution

with an error message.

A subroutine may contain more than one RETURN statement.

Example:

100 INPUTX,Y

llO IF X > = 0 THEN 140

120 LET A B = 0

130 GO TO 160

140 GOSUB 400

150 LET B = A/X

160 PRINT A,B

170 INPUT Z
180 GOSUB 420

190 PRINT A

200 STOP

400 REM

410 LET Z
420 LET U

430 LET A

440 RETURN

999 END

SUBROUTINE TO CALCULATE Z, U, AND A

SQR(X)

y - z
SQR(U*U+l)

'RETURN TO LINE 150 OH 190

9-5

APPENDIX A

BASIC CARD READER INPUT

GENERAL

The BASIC Compiler, in conjunction with the Master Control Program, enables

source programs to be compiled through use of a card reader or a card device.

Compilation of the BASIC source language input is achieved by presenting the

compilation card deck to the MCP~ Control cards included in the compilation

deck are of two general types -- MCP control cards and compiler option control

cards ($cards). The structure of the BASIC compilation deck is discussed in

the text that follows.

COMPILATION CARD DECK

The entities comprising the structure of the BASIC compilation deck and the

order of their occurrence are as follows:

a. COMPILE Card.

b. Label Equation Card (optional).

c. MCP Label Card.

d. Compiler option control card (Optional).

e. Source input cards.

f. END (end-of-file) Card.

MCP control cards are made distinguishable from other cards by an invalid

character in column 1, for SO-column cards, or by a valid question mark (?),

for 96-column cards. An invalid character is represented by a ? for clarity

in this manual. MCP control information is punched in a free-form format in

columns 2 through 72. The presence of a period in a MCP control card ter

minates the control information on that card and any information following the

period is treated as a comment by the MCP. Refer to the B 1700 Systems Soft

ware Operational Guide (form 1057171) for further information regarding MCP

control cards.

A-1

COMPILE Card

The COMPILE Card instructs the MCP to compile the indicated program-name w:ith

BASIC using one of the following options:

a.. ?COMPILE program-name BASIC

This option causes the source program to be compiled and executed

(i.e., compile and go). The resultant object program is not entered

in the disk directory.

b.. ?COMPILE program-name BASIC LIBRARY

This option causes the source program to be compiled and the resultant

object program to be entered in the disk directory with the identifier

program-name for future execution.

c .. ?COMPILE program-name BASIC SAVE

This option causes the source program to be compiled and the resultant

object program to be entered in the disk directory and then execut·ed

(i.e., a combination of a. and b. above).

d.. ?COMPILE program-name BASIC SYNTAX

This option causes the source program to be compiled only for a syntax

check.

In the absence of this control card the system operator may manually execute

one of the COMPILE options through the console printer by keying in the appro

priate message.

Label Equation Card

The Label Equation Card optionally may be included in the compilation deck to

change a compiler file-name in order to avoid duplication of file-names when

operating in a multiprogramming environment. If used, the Label Equation Card

(or cards) must immediately follow the COMPILE Card and, precede the MCP Label

Card.

The general form of the Label Equation Card is:

?FILE internal-file-name file-attribute-I [file-attribute-2 ...]

A-2

The BASIC Compilers internal file-names and external file-identifiers for use

in label equation are as follows:

Internal File-Name

CARDS

LINE

MCP Label Card

External File-Id

CARDS

LINE

Description

Input file from the

card reader.

Compilation output

listing to the·line

printer.

The MCP Label Card informs the MCP which type of input card code to expect

and provides the file-id of the card file.

The MCP Label Card is coded as follows:

?DATA CARDS

The word DATA specifies to the MCP that the card input is punched in standard

EBCDIC mode for 80-column devices, and in BCD mode for 96-column devices.

Compiler Option Control Card ($ CARD)

The BASIC Compiler Option Control Card ($sign following the line number),

optionally, may be included in the compilation deck. This control card, if

used, notifies the compiler as to which options are required during the com

pilation. When this card is omitted, $ CARD LIST SINGLE is assumed. There

must be at least one space between each option specified on a $-card; however,

the options may be listed in any order. Any number of $-cards may be used and

may appear anywhere in the source deck. The options specified will become

either active or inactive from that point on. The format of the BASIC Com

piler Option Control Card is as follows:

line-number $ option option

The options which may be specified on the Compiler Option Control Card are as

follows:

a. CARD

Symbolic input is from source language cards. This option is for

documentation purposes only.

A-3

b. LIST

Creates a compilation output listing of the source language input,

with error and/or warning messages, where required. LIST is the

default option and thus need not be specified.

c. SINGLE

Causes the compilation output listing to be printed in a single-spaced

format. SINGLE is the default option and need not be specified.

d. DOUBLE

Causes the compilation output listing to be printed in a double-spaced

format.

e. CODE

Lists the object code generated for a source statement following that

source statement from the point of insertion in the compilation deck.

f. NO

Each of the above options may be preceded with NO, thus enabling

options to be turned on for selected program parts and then turned

off as desired. When an option is preceded by NO, there must be at

least one space between the word NO and the option to be terminated.

Source Input Cards

These cards are the statements comprising the source program. When using

BASIC with the card reader, each card is taken as a different line and must

contain only one statement. Each card between the ?DATA card and the ?END

card must contain a line number. A l:ine number starts in column 1 and con-

tains 1 to 5 digits; it is terminated by a non-numeric character. The line

number is used as both a statement label and a sequence number. Each card is

sequence checked as it is read. When using BASIC through the card reader, the

INPUT statement causes data to be read from a card file labeled INPUT. Like

wise, the PRINT statement causes output to be written to the line printer.

END CARD

The END Card designates the end-of-file for the compilation deck to the MCP.

The END Card is coded as follows:

?END

The END Card must be the last card in the compilation deck.

A-4

SAMPLE COMPILATION DECK

In the following example, a BASIC program is to be compiled and executed from

the card reader. A $-card is enclosed in the compilation deck to cause the

compilation output listing to be printed in a double-spaced format. The

options CARD and LIST are not required but are included for documentation

purposes only. The card file labeled INPUT, following the compilation deck,

will be required during execution of the resultant object program.

Example:

?COMPILE PROGRAM/GCD WITH BASIC

?DATA CARDS

100 $CARD LIST DOUBLE

110 REM CALCULATE THE GREATEST COMMON

120 REM DIVISOR OF THREE NUMBERS

130 REM X, Y, AND Z

140 DEF FNG (A,B)

150 LET R = A-INT(A/B)*B

160 IF R = 0 THEN 200

170 LET A = B

180 LET B = R

190 GO TO 150

200 LET FNG B

210 FNEND

220 INPUT X,Y,Z

230 LET G = FNG(X,Y)

240 LET G = FNG(G,Z)

250 PRINT "X"' "Y"'
260 PRINT X,Y,Z,G

270 END

?END

?DATA INPUT

12,32,56

?END

"Z"' "GCD"

A-5

Q)
c

""O
Q) --0

""O

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 1700 SYSTEMS
BAS~IC:;__ ________ _

REFERENCE MANUAL

FORM: 1067535
DATE: _6_-73 __________ . ___ . __ _

-------------- ---- ··----·----· -·-- - -

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION 0ERROR

,g>
_Q
0 L-------------------~------------~

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: -::::>
u

FROM: NAME
TITLE
COMPANY---------
ADDRESS

DATE _____ _

STAPLE

IFOLD DOWN SECOND FOLD DOWN

---~----------------------------

attn: Systems Documentation

------~~~~~~~-

[
BUSINESS REPLY MAIL J

.. First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
Burroughs Place
Detroit, Michigan 48232

---Technical Information Organization, TIC-Central

--------------------~--------~------------·--~-------------------------...__.-----~-----------
FOLD UP FIRST FOLD UP

1067535

Wherever There's
Business There's

6-73 Printed 1~ l.J. S. Amer1cq

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	8-01
	8-02
	9-01
	9-02
	9-03
	9-04
	9-05
	A-01
	A-02
	A-03
	A-04
	A-05
	replyA
	replyB
	xBack

