UNISYS A Series
ALGOL

Programming
Reference Manual

Volume 2: Product Interfaces

September 1991
Printed in U S America
Priced Item 8600 0734-000

UNISYS

A Series
ALGOL

Programming
Reference Manual

Volume 2: Product Interfaces

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation

Release 3.9.0 September 1991
Printed in U S America
Priced Item 8600 0734-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the resuit of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by
using the Business Reply Mail form at the back of this manual or by addressing remarks directly to
Unisys Corporation, Technical Publications, 25725 Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page issue
i -000
iv Blank
v through xi =000
Xii Blank
xiii through xix =000
XX Blank
XXi -000
xxii Blank
1-1 through 1-12 -000
2-1 through 2-34 -000
3-1 through 3-65 -000
3-66 Blank
4-1 through 4-87 -000
4-88 Blank
5-1 through 5-61 -000
5-62 Blank
6-1 through 6-23 =000
6-24 Blank
7-1 through 7-88 -000
A-1 through A-9 -000
A-10 Blank
B-1 through B-10 -000
Glossary-1 through Glossary—42 -000
Bibliography~1 through -000
Bibliography-3

Bibliography-4 Blank
Index-~1 through index-17 -000
Index-18 Blank

Unisys uses an 11-digit document numbering system. The suffix of the document number
(1234 5678-xyz) indicates the document level. The first digit (x) designates a revision
level; the second digit (y) designates an update level. For example, the first release of a
document has a suffix of ~000. A suffix of —130 designates the third update to revision 1.
The third digit (2) is used to indicate an errata for a particuiar level and is not reflected in
the page status summary.

8600 0734-000 iii

About This Manual

Unisys Extended ALGOL is a high-level, structured programming language
designed for A Series systems. In addition to implementing virtually all of ALGOL
60, Unisys has developed extensions that enhance the basic capabilities of the
language.

Purpose

The programming reference material for Unisys Extended ALGOL is divided into
two volumes. The A Series ALGOL Programming Reference Manual, Volume 1:
Basic Implementation contains ALGOL language components that can be used for
all Unisys products. This volume, Volume 2, contains the ALGOL interfaces
specifically developed for the following products:

e Advanced Data Dictionary System (ADDS)

e Communications Management System (COMS)

e Data Management System II (DMSII)

e DMSII Transaction Processing System (TPS)

e Screen Design Facility Plus (SDF Plus)

e Semantic Information Manager (SIM)

ADDS and SIM are part of the InfoExec® (Information Executive) family of

products. COMS and SDF Plus are members of the InterPro (Interactive
Productivity) family of products.

Volume 2 is designed to be used in conjunction with product-specific
documentation. Before developing an application program, consult the product’s
documentation for a discussion of the product, programming considerations, and
concepts. (See “Related Product Information” later in this preface for a listing
and brief description of these manuals.)

Scope

Volume 2 includes the syntax, explanation, and examples for ALGOL language
interfaces with ADDS, COMS, DMSII, TPS, SDF Plus, and SIM.

IinfoExec is a trademark of Unisys Corporation.

8600 0734-000 v

About This Manual

Volume 2 describes

e The reason for developing ALGOL interfaces

e What product interfaces and extensions are available

e Prerequisites for and interrelationships among the interfaces and extensions
o What the interfaces and extensions do

e When and how to use the extensions

Audience

The primary audience for Volume 2 consists of the application programmers
responsible for implementing programs that use one or a combination of the
specified Unisys products.

Prerequisites

Volume 2 is written for application programmers who are familiar with Unisys
Extended ALGOL as described in Volume 1, and the Unisys A Series family of
systems. Readers should also be familiar with the product or products for which
they are developing applications.

How To Use This Manual

The phrase “Volume 1” refers to the first volume of the ALGOL Programming
Reference Manual set; ‘‘Volume 2" refers to the second volume.

For ALGOL syntax and rules not covered in this volume, refer to Volume 1. Also
refer to Volume 1 for information on

e Compiling programs

e The interface to the library facility

e The compile-time facility

e The batch facility

e Data representation

o Run-time format-error messages
Consult the product documentation for product error messages.

Unless otherwise specified, manuals referred to in this volume pertain to A Series
systems. Unisys documents that pertain directly to Unisys Extended ALGOL and
the interfaces covered in this volume are listed under ‘‘Related Product
Information” in this section. All documents relating to the products covered in
this volume or referred to in the text are listed in the Bibliography.

vi 8600 0734-000

About This Manual

For ease of reading, manual titles have been shortened within the text. However,
the first reference to a manual within a section always states the full title. The
shortened title contains the acronym for the product rather than the product’s
full name. For example, the Communications Management System (COMS)
Programming Guide is shortened to the COMS Programming Guide.

The Glossary includes the definition and full spelling of the acronyms found in
this volume, and terms that are important in understanding the functions or
extensions described in this volume. For definitions of product-specific terms,
refer to the appropriate programming guide.

Railroad syntax diagram notation is used to represent ALGOL syntax. A complete
description of this notation can be found in Appendix A, ‘“Understanding
Railroad Diagrams.”

Organization

After a brief introduction to ALGOL program interfaces, this volume describes
the individual program interfaces in product-specific sections. The sections are
organized alphabetically, by product. Each section summarizes the product,
examines the interface for the product, and details the extensions developed for
the product. Within a section, extensions are grouped by function. All required
syntax and explanations, as well as program examples, are included.

Each section describes how to implement the functions covered in the product
programming guide, both when the product is used by itself and when the
product is used with other products. Where an extension serves as an interface to
allow two products to work together, the products are cross-referenced. When
appropriate, requirements and options for using a combination of interfaces are
included.

Section 1. Introduction to ALGOL Program Interfaces

This section outlines the Unisys ALGOL interfaces for ADDS, COMS, DMSII, TPS,
SDF Plus and SIM. The outline of each interface lists the Unisys extensions that
make up the interface and briefly describes each extension. The brief descriptions
can be used as a quick reference aid.

Section 2. Using Advanced Data Dictionary System (ADDS) Extensions
This section presents the changes and additions made to ALGOL to allow you to
use ADDS to import record data definitions into an ALGOL program.

Section 3. Using Communications Management System (COMS) Features

This section discusses the additions made to ALGOL that make COMS features
available to an ALGOL program. The section.details how to implement headers,
service functions, and DMSII statements.

8600 0734-000 vii

About This Manual

Section 4. Using the Data Management System II (DMSII) Interface

This section contains the extensions developed for the DMSII interface. These
extensions allow you to invoke a database, use data management statements and
database items, and handle exception errors.

Section 5. Using DMSII Transaction Processing System (TPS) Extensions

This section examines the changes and additions that allow ALGOL to work with
TPS to perform online collection of input and output data for specific
transactions.

Section 6. Using the Screen Design Facility Plus (SDF Plus) Interface

This section contains the extensions developed for the SDF Plus interface. These
extensions allow you to define a complete form-based user interface for ALGOL
application systems.

Section 7. Using the Semantic Information Manager (SIM) Interface

This section describes how ALGOL can be used to manipulate data stored in a
SIM database. It covers declaring queries, performing transactions, and handling
exceptions.

Appendix A. Understanding Railroad Diagrams

This appendix explains how to read and interpret the diagrams used to depict the
syntax and use of ALGOL.

Appendix B. Extended ALGOL Reserved Words
This appendix explains and lists the three types of ALGOL reserved words.

A glossary, a bibliography, and a volume-specific index appear at the end of this
manual.

Results

After reading this document, you will be more familiar with the product
interfaces to the Unisys Extended ALGOL programming language.

Additionally, you will be able to use this document to find answers to specific

questions about the ALGOL product interfaces, and to interpret product interface
syntax in existing ALGOL programs.

viii 8600 0734-000

About This Manual

Related Product Information

The following list contains the Unisys decuments you should read to best
understand the material covered in this manual.

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with
programming concepts.

A Series ALGOL Test and Debug System (TADS) Programming Guide
(1169639)

This guide describes the features of ALGOL TADS, an interactive tool used for
testing and debugging ALGOL programs and libraries. ALGOL TADS allows the
programmer to monitor and control the execution of programs under test and
examine the data at any given point during program execution. This guide is
written for programmers who are familiar with ALGOL programming language
concepts and terms.

A Series Communications Management System (COMS) Programming Guide
(8600 0650)

The guide explains how to write online, interactive, and batch application
programs that run under COMS. This guide is written for experienced
applications programmers with knowledge of data communication subsystems.

A Series DMSII Application Program Interfaces Programming Guide
(6044225). Formerly A Series DMSII User Language Interface Programming
Guide.

This guide explains how to write effective and efficient application programs
that access and manipulate a Data Management System II (DMSII) database using
either the DMSII interpretive interface or the DMSII language extensions. This
guide is written for application programmers and database administrators who
are already familiar with the basic concepts of DMSII.

A Series DMSII Transaction Processing System (TPS) Programming Guide
(1164043)

This guide describes the various modules of TPS and provides information on the
TPS library of transaction processing procedures. This guide is intended for
experienced systems programmers who are familiar with Data Management
System II (DMSII).

8600 0734-000 ix

About This Manual

A Series File Attributes Programming Reference Manual (8600 0064).
Formerly A Series I/0 Subsystem Programming Reference Manual.

This manual contains information about each file attribute and each direct 1/0
buffer attribute. This manual is written for programmers and operations
personnel who need to understand the functionality of a given attribute. The
A Series I/0 Subsystem Programming Guide is a companion manual.

A Series InfoExec ADDS Operations Guide (8600 0197)

This guide describes InfoExec Advanced Data Dictionary System (ADDS)
operations, such as creating and managing Data Management System II (DMSII)
and Semantic Information Manager (SIM) database descriptions. This guide is
written for those who collect, organize, define, and maintain data and who are
familiar with DMSII and SIM.

A Series InfoExec Semantic Information Manager (SIM) Programming Guide
(1195104)

This guide describes InfoExec programming concepts and the capabilities of the
InfoExec language extensions in COBOL74, Pascal, and ALGOL. This guide is
written for programmers who know at least one of the host languages thoroughly
and who are familiar with SIM.

A Series InfoExec Semantic Information Manager (SIM) Technical Overview
(1196112) ‘ ‘

This overview describes the SIM concepts on which the InfoExec data
management system is based. This overview is written for end users, applications
programmers, database designers, and database administrators.

A Series Screen Design Facility Plus (SDF Plus) Capabilities Manual
(8600 0270)

This manual describes the capabilities and benefits of SDF. This manual is
written for executive and data processing management.

A Series Screen Design Facility Plus (SDF Plus) Installation and Operations
Guide (8600 0262)

This guide explains how to use SDF Plus to create and maintain a user interface.
It gives specific instructions for installing SDF Plus, using the SDF Plus forms,
and installing and running a user interface created with SDF Plus.

A Series Screen Design Facility Plus (SDF Plus) Technical Overview
(8600 0272)

This overview provides the conceptual information needed to use SDF Plus
effectively to create user interfaces.

X 8600 0734-000

About This Manual

A Series Software Release Installation Guide (8600 0981)

This guide explains how to use the Simple Installation (SI) program to install a
new software release on an established A Series system. This guide is written for
system administrators, operators, and others responsible for the installation of a
new software release.

A Series Task Attributes Programming Reference Manual (8600 0502)

This manual describes all the task attributes available on A Series systems. It
also gives examples of statements for reading and assigning task attributes in
various programming languages.

A Series X.25 MCS Operations and Programming Reference Manual
(8600 0677)

This reference manual describes how to use the X.26 message control system
(MCS) to interface with packet-switched data networks (PSDNs) that use the X.25
protocol recommended by the Consultative Committee on International
Telegraphy and Telephony (CCITT). This manual describes the operations
necessary for network data transfer and the functions available for application
programming. The manual is written for system administrators, system
programmers, and application programmers.

8600 0734-000 Xi

Contents

Section 1.

Section 2.

8600 0734-000

Introduction to ALGOL Program Interfaces

Advanced Data Dictionary System (ADDS) Extensions
Communications Management System (COMS) Extensions
Data Management System Il (DMSII) Extensions
DMSII Transaction Processing System (TPS) Extensions
Screen Design Facllity Plus (SDF PLUS) Extensions
Semantic Information Manager (SIM) Extensions

Using Advanced Data Dictionary System (ADDS)
Extensions

Guidelines for Retrieving Data Descriptions
Retrieving Descriptions
Retrieving Entities of the Same Type
Record Restrictionsl
Relating ADDS Data Types to ALGOL
Mapping ADDS Types to ALGOL Types
ALGOL Data Types for ADDS
Guidelines for Using ADDS Types
Entity Qualifiers,
Referencing Fields and Records
Compiler Controi Optiens
DICTIONARY Option: Establishing a Data Dictionary

..

..

RANGECHECK Option: Checking Ranges of Run-time

Values s

Data Dictionary Declarations
Specifying a DICTIONARY RECORD

TYPE Declaration and Invocation
Specifying a DICTIONARY ITEM

Passing Entities as Parameters

Binding Considerations for ADDS
Statements Usaed as ADDS Extensions
Assignment Statement

REPLACE and SCAN Statements

Functions Used as ADDS Extensions
LENGTH Functionccvveiiiiiieenenann,

OFFSET Function ccoviiiiiiiiiiannnens

POINTER Function coiieiiiiienn,

RESIZE Functionccvviiivnnnnnnenennnnn

SIZE Function i

2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-6
2-7
2-9
2-11

2-12
2-13

2-15
2-16
2-16
2-18
2-20
2-21
2-23
2-24
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-32

xiii

Contents

UNITS Functionciiiiiiiiiiiiniiinennn. 2-33

Section 3. Using Communications Management System
(COMS) Features

Using ADDS Extensions as COMS Extensions 3-2

Purpose of the Rangecheck Option 3-2

Purpose of Functionsc.c0viutn 3-2

Linkingto COMS i 3-4

Linkingto COMS by Title 3-4

Declaring Input and Output Headers 3-5
Type Declaration and invocation for COMS Headers

.................................... P 3-7

Binding Considerations for COMS 3-9

Accessing Header Fields 3-9

Input Header Structure and Type 3-10

Output Header Structure and Type 3-12

Designator Data Typeccciviinvennnn 3-14

Declaringa Message Area ccc00vens 3-16

COMS Statements ccocevvnnnnnnnnns 3-17

COMS BEGINTRANSACTION Statement 3-18

DISABLE Statement0ciunnn 3-20

ENABLE Statement ccciinnnnnn 3-22

COMS ENDTRANSACTION Statement 3-24

MESSAGECOUNT Statement 3-26

RECEIVE STATEMENT civiiiinrnnnes 3-27

SEND Statement ciiiiiiiiaiiinnn 3-29

ErmorHandlingt 3-32

STATUSVALUE Field Values 3-32

FUNCTIONSTATUS Field Values 3-32
Exception-condition Statements and DMTERMINATE

.. 3-32

COMS Service Functions coieiunnnn 3-33

Functional Descriptions 3-33

Declaring COMS Service Functions 3-34

CONVERT_TIMESTAMP ccvvieinnnen 3-36
GET_DESIGNATOR__ARRAY_USING__DESIGNATOR

.. 3-37

GET-_DESIGNATOR_USING_DESIGNATOR 3-38

GET_DESIGNATOR_USING_NAME 3-39

GET_INTEGER_ARRAY_USING_DESIGNATOR ... 3-40

GET_INTEGER__USING_DESIGNATOR 3-41

GET_NAME_USING_DESIGNATOR 3-42

GET._REAL_ARRAYccitiiiiinninnnn. 3-43

GET_.STRING_USING__DESIGNATOR 3-44

"STATION_TABLE_ADDccivinieinnne. 3-45

STATION_TABLE_INITIALIZE 3-46

STATION_TABLE_SEARCH 3-47

TEST_DESIGNATORSciiiiiiiiinnnn 3-48

Designators for COMS Entities 3-49

xiv 8600 0734-000

Contents

Service Function Mnemonics and Values 3-51
Service Function Result Values 3-51
COMS Sample Program ccoiviivninnnnnnn. 3-52

Section 4. Using the Data Management System |l (DMSII)

Interface

invoking a DMSIi Database 4-2
Declaring a Database 4-2
Example: Simple Database 4-6
Example: Invoking Disjoint Data Sets 4-7
Example: Invoking a Logical Database 4-8
Database Equation Operations 4-10
BDMSALGOL Basic Language Constructs 4-12
BDMS Naming and Qualification Conventions 4-12
BDMS Identifier Construct 4-12
Construct for identifiers of Occurring tems .. 4-13
Qualification of Database ltems 4-14
Referencing Database ltems 4-15

Input Mapping Used with Retrieval Statements
..................................... 4-16

Output Mapping Used with Storage Statements
..................................... 4-19
Selectinga RecordinaDataSet 4-22
BDMSALGOL Statementsccc00vvunn 4-26
ABORTTRANSACTION Statement 4-27
ASSIGN Statement iiiiea 4-28
DMSII BEGINTRANSACTION Statement 4-30
BDMS CANCELTRPOINT Statement 4-33
BDMS CLOSE Statement 4-34
CREATE Statementcoivivevininen 4-36
DMSII DELETE Statement 4-38
DMTERMINATE Statement 4-40
DMSII ENDTRANSACTION Statement 4-41
FIND Statement it 4-44
BDMS FREE Statement 4-46
GENERATE Statement ccovinnnnn, 4-48
GET Statement ittt 4-50
DMSII INSERT Statement 4-52
BDMS LOCK Statement ccconvvunnns 4-54
DMSII MODIFY Statement 4-57
BDMS OPEN Statement0.. 4-58
PUT Statement iiiiiiiiinnnen 4-61
RECREATE Statementcovnnunenn 4-63
REMOVE Statementccvvvvunnn 4-65
BDMS SAVETRPOINT Statement 4-67
SECURE Statement c00vnn 4-68
BDMS SET Statement ccc0vnnnnn. 4-71
STORE Statementcciviiiiinnnn 4-74
BDMSALGOL Functionscciiiiiinnnnn, 4-77

8600 0734-000 xv

Contents

Section 5.

DMTEST Functioncoviviiiiiinnennnn.
STRUCTURENUMBER Function
Exception Processingt
Database Status Word
Exception Handling ittt
BDMSALGOL Complier Control Options
Binding and SEPCOMP of Databases
Binding
SEPCOMP

.........................

..................
.....................
......................................

Using DMSII Transaction Processing System (TPS)
Extensions

Using the Transaction Formatting Language (TFL)
Declaring a Transaction Base
Creating Transaction Records
Declaring Transaction Record Variables
Creating Transaction Record Formats
Using Transaction Records 0.ts
Passing Transaction Record Variables as Parameters

........

...........................

............

--

Assigning Transaction Record Variables
Accessing Transaction Record items
Requirements for Data Item Qualification

Data item Qualification

Format Name and Data ltem Name Qualification

Subformat Name and Data item Name Qualification

Format Name, Subformat Name, and Data item

Name Qualification00t
Inquiring About Transaction Record Control ltems
Using Transaction Complle-time Functions
Using Transaction Library Entry Points

CREATETRUSER

CLOSETRBASE iiitiiiiiiienineennnns

HANDLESTATISTICS

LOGOFFTRUSER

LOGONTRUSER

OPENTRBASE i,

PROCESSTRFROMTANK

PROCESSTRNORESTART

PROCESSTRANSACTION

PURGETRUSER ... iiiiiiiiiiiiieeaens

READTRANSACTION

RETURNLASTADDRESS

RETURNLASTRESPONSE

RETURNSTARTINFO

SEEKTRANSACTION

SWITCHTRFILE et

TANKTRANSACTION

................

........

...............

...................

..............................

..............................

..............................

.......................

......................

..........................

........................

......................

..........................

8600 0734-000

Contents

TANKTRNORESTART iiiiiiiiinninan, 5-24
TRUSERIDSTRING , 5-24
Using Update Libraries 5-25
ACCESSDATABASE Entry Point 5-25
Methods of Structuring the Update Library 5-26
Example: Update Library Skeleton Program .. 5-26
Transaction Processing Statements 5-29
TPS BEGINTRANSACTION Statement 5-30
TPS ENDTRANSACTION Statement 5-32
MIDTRANSACTION Statement 5-33
BDMS OPEN Statement with TPS 5-34
Sample User-written Applications 5-36
Exampie 1: Declaring a Transaction Base and Library
.. 5-37
Example 2: Banking Application 5-39
DASDL Description of the database 5-39
TFL Description of the Transaction Base 5-41
ALGOL Banking Application Program 5-44
Update Libraryc..... 5-52
Example 3: Detanking Procedure 5-57
Section 6. Using the Screen Design Facility Plus (SDF Plus)
Interface
Understanding SDF Plus Interface Elements 6-2
Form Record Librariescco0ennn. 6-2
FormRecordsc.civiiiiiiniinennnnns 6-2
Form Record Numbers 6-3
Transaction Typescccvvvivveennnnnnnn 6-3
Transaction Numbers 6-3
Using ALGOL Functions as SDF Plus Extensions .. 6-4
Invoking the Form Record Library 6-5
Using the SDF Plus Remote Flle Interface 6-6
READFORM Statement 6-6
WRITEFORM Statement 6-7
Using the Form Record Number Attribute 6-10
Using the Transaction Number Attribute 6-12
Using SDF PLUSwWithCOMSconnn. 6-14
Using COMS input/Output Headers 6-14
Sending and Receiving Messages 6-15
Sending Transaction Errors 6-15
Sending Text Messages 6-16
SDF PLUS Sample Programs 6-17
Example 1: General Use of SDF Plus Program
Interface 6-17
Example 2: Using COMS with the SDF Plus Program
interfface e 6-20

8600 0734-000 xvii

Contents

Section 7. Using the Semantic Information Manager (SIM)

xviii

interface

Using ADDS Extensions as SIiM Extensions

Purpose of the Dictionary Option
Purpose of the Rangecheck Option
Purpose of Functions

Declaring 2 SiM Database
Mapping SIM Types Into ALGOL

Retrieval and Update Queries
Declaring a Query Data Type

Declaring DMRECORDSt

Type Declaration and Invocation for SIM
Referencing DMRECORD Fields
Using DMRECORDS and Their Fields
Passing Fields of Type Real, Boolean, Double,
and Integer iiiiiiiiiiinn
Passing Fields of Type Entity Reference
Passing Fields of Type Record
Passing Fields of Type EBCDIC Array
Passing an Entire DMRECORD Variable
Assigning Pointers 00l
Output of Real, Boolean, Double, integer, and
EBCDIC Array Fields
Output of Entity Reference and Record Fields
Qutput of DMRECORD Variables
Binding Considerations for SIM
Impact of How a Variable is Declared in a
Subprogramc.cciiiiiiiinn,
Impact of Packing0.

Declaring an Entity Reference Variable Data Type
Using Data Management Functions and Expressions

DM Arithmetic Functions
DM String Functions o
DM Symbolic Functions
DM Boolean Functions ccvveeiinn.
DM Primariesciiiiiiiiiiiineninann,
Selection Expressions ceiiiiennn

SiIMStatements it

Using Transactionsccoiivieivnnn,
ABORTTRANSACTION Statement
SIM BEGINTRANSACTION Statement
CANCELTRPOINT Statement
SIM CLOSE Statement cccun...
Database Attribute Assignments
SIM DELETE Statement c.ovvnnen
DISCARD Statement ccivieiinenenns
SIM ENDTRANSACTION Statement
SIM INSERT Statement ot

7-3
7-3
7-3
7-4
7-5
7-7
7-9
7-10
7-12
7-14
7-17
7-19
7-20

7-20
7-20
7-20
7-20
7-20
7-21

7-21

7-21
7-21
7-22

7-22
7-22
7-23
7-25
7-26
7-28
7-30
7-31
7-33
7-34
7-40
7-40
7-42
7-43
7-44
7-45
7-46
7-49
7-51
7-52
7-53

8600 0734-000

Contents

SIM MODIFY Statement 7-56
SIM OPEN Statement 7-59
RETRIEVE Statement 7-61
SAVETRPOINT Statement 7-62
SELECT Statementc.covviiiiinnn. 7-63
SETTO Statements ccoiivvviiinnnnn 7-70
Exception Handling of SIM Statements 7-72
SIMSample Programs coiiiiiiie., 7-76
Example 1: Using Project-employee Projects 7-77
Example 2: Archiving Assignments 7-79
Example 3: Listing Subprojects 7-81

Example 4: Using COMS with a SIM Database 7-83

Appéndix A. Understanding Railroad Diagrams

What Are Rallroad Diagrams? A-1
Constants and Variables A-2
Constraintsttt A-2
Vertical Bar ...ttt A-3
Percent Sign ...l e, A-3
Right AlTOW ... i i A-3
Required ltemsccciiiiiiininnnn. A-3
User-Selected lItems 0ntt. A-3
e T T AUt A-4
Bridge it i A-4
Foliowing the Paths of a Rallroad Diagram A-5
Rallroad Diagram Exampies with Sample input A-6

Appendix B. Extended ALGOL Reserved Words

Type 1 ReservedWordsc.00n B-1
Type 2 Reserved Words c000nns B-2
Type 3 Reserved Words cccntnnn B-5
RESERVED WORDS ALPHABETICAL LISTING B-7

Glossary

Bibliography

Index

8600 0734-000 Xix

Tables

1-2,
1-3.
1-4.
1-5.
1-6.

2-1.
2-2.

3-1.
3-2.
3-3.
3-4.
3-5.

7-1.
7-2.

8600 0734-000

ADDS Extensions cc0iiiinnnnn
COMS Extensions cccvvvvnnnn.
DMSII Extensions ciiiin.
TPS Extensions coviivevinnennn.
SDF Plus Extensions
SIM Extensions ciiiiinn.,

Mapping ADDS Types to ALGOL Types
Brief Description of ALGOL Data Types

Input Header Structure and Type
Output Header Structure and Type

A Brief Explanation of COMS Service Functions

COMS Entitiesccvvviiiiinnnnn.

TFL Item Interpretations

Mapping SIM Types into ALGOL

DM Function Keywords and Values Returned

......................

......................

......................

......................

......................

......................

......................

......................

...................

......................

......................

......................

......................

1-2
1-4
1-6
1-8
1-9
1-10

2-4
2-5

3-11
3-13
3-33
3-49
3-51

5-3

7-7
7-27

XXi

Section 1
Introduction to ALGOL Program
Interfaces

A program interface consists of the conventions, protocols, and syntax available
in a programming language to manipulate a software product to produce the
desired output.

As Unisys develops new software products, the existing program interface
components are not always able to manipulate the products for their intended
uses. When this occurs, Unisys also develops and implements any required,
additional program interface components.

The additional program interface components presented in the ALGOL
Programming Reference Manual are extensions of ALGOL 60. Collectively,
ALGOL 60 and Unisys extensions to ALGOL 60 are referred to as Unisys
Extended ALGOL. Extensions that are developed for use with a specific product
or products are described here, in Volume 2. These products are

e Advanced Data Dictionary System (ADDS)

e Communications Management System (COMS)

e Data Management System II (DMSII)

o DMSII Transaction Processing System (TPS)

e Screen Design Facility Plus (SDF Plus)

o Semantic Information Manager (SIM)

The following tables name and briefly describe the extensions used with each

product. The products are presented alphabetically, one per table. The extensions
are ordered alphabetically within the table.

8600 0734-000 1-1

Introduction to ALGOL Program Interfaces

Advanced Data Dictionary System (ADDS)
Extensions

The ADDS program interface allows programs to retrieve and incorporate data
descriptions as declarations. The ADDS extensions can be used to define records
and items. An ALGOL program can use ADDS extensions with COMS, DMSII, and
SIM extensions.

Outlined in Table 1-1 are the types, statements, dictionary entity declarations,
compiler control options, and functions that comprise the interface. Refer to
Section 2, “Using Advanced Data Dictionary System (ADDS) Extensions’ for more

1-2

DICTIONARY RECORD
declaration

Entity qualification
LENGTH function

information.
Table 1-1. ADDS Extensions
Extension Explanation
Assignment statement Causes item on the right of the assignment operator to be
evaluated and the resulting value to be assigned to the item
on the left of the assignment operator.
Data types Specific types for ADDS items and embedded items.
DICTIONARY option Establishes the dictionary to be used during compilation.
DICTIONARY ITEM Declares which nonstructural entity description is to be
declaration retrieved.

Declares which record description is to be retrieved.

Specifies the exact entity to be referenced.
Returns the length of a specified entity.

OFFSET function Returns the number of units a specified entity is offset from
the beginning of the outermost record.

POINTER function Returns a pointer to a specified input.

RANGECHECK option Causes range checking to be performed at run time.

REPLACE statement Transfers data from one or more sources to a destination.

RESIZE function Changes the size of the array underlying a given record

SCAN statement

identifier.

Examines a contiguous portion of data in a field or record.

SIZE function Returns the size of the array underlying a given record
identifier.

STATUS option Specifies the status of data descriptions to be retrieved from
the ADDS.

TYPE declaration Declares a user-defined type identifier with a format.

8600 0734-000

introduction to ALGOL Program Interfaces

Table 1-1. ADDS Extensions (cont.)

Extension

Explanation

Type invocation

UNITS function

Declares records which have their structures stored in a
specified type identifier.

Returns the default unit size of the data in the specified
entity.

8600 0734-000

Introduction to ALGOL Program Interfaces

Communications Management System (COMS)

Extensions

The COMS extensions, outlined in Table 1-2, allow you to write interactive and
batch application programs that run under COMS. The extensions are detailed in
Section 3, “Using Communications Management System (COMS) Features.”

Through extensions, the programs can also use ADDS functions, DMSII and SIM
synchronized recovery, and COMS service functions. Statements used specifically
for synchronized recovery with DMSII are included as COMS extensions.
Statements for synchronized recovery with TPS are included in Section 5, “Using
DMSII Transaction Processing System (TPS) Extensions.” Statements for
synchronized recovery with SIM are included in Section 7, “Using the Semantic

1-4

Information Manager (SIM) Interface.”

Additional information related to COMS extensions is included in Section 4,

“Using the Data Management System II (DMSII) Interface,” and Section 2, “Using

Advanced Data Dictionary System (ADDS) Extensions.”

Table 1-2. COMS Extensions

Extension Explanation

BEGINTRANSACTION Places the program in transaction state. it is used only with

statement audited databases.

COMSRECORD declaration Retrieves COMS-related format definitions from an external

~ system library.

DISABLE statement Logically disconnects COMS from a specified destination.

Designator type Allows programs, running under COMS, to control messages
symbolically.

ENABLE statement Logically connects COMS from a specified destination.

ENDTRANSACTION Takes the program out of transaction state. It is used only

statement with audited databases. :

INPUTHEADER declaration Associates message routing or descriptive information with
an identifier when a program receives a message from
COMS.

LENGTH function Returns the length of a specified entity.

MESSAGECOUNT Returns the number of messages in specified queues.

statement

OFFSET function Returns the number of units a specified entity is offset from
the beginning of the outermost record.

OUTPUTHEADER Associates message routing or descriptive information with

declaration an identifier when a program sends a message to COMS.

8600 0734-000

Introduction to ALGOL Program interfaces

Table 1-2. COMS Extensions (cont.)

Extension Explanation

POINTER function Returns a pointer to a specified input.

PROCEDURE declaration Declares a service function entry point in a predeclared
library.

RANGECHECK option Causes range checking to be performed at run time.

RECEIVE statement Requests a message to be transferred from the COMS
program queue to the message area.

RESIZE function Changes the size of the array underlying a given record
identifier.

SIZE function Returns the size of the array underlying a given record
identifier.

SEND statement Requests a message, or portion of a message, to be
transferred from the message area to a specified
destination.

UNITS function Returns the default unit size of the data in the specified
entity.

8600 0734-000 1-5

Introduction to ALGOL Program Interfaces

Data Management System Il (DMSII) Extensions

The DMSII extensions, outlined in Table 1-3, allow you to declare and use
databases in your application programs and to handle exception errors.

BDMSALGOL provides the extensions for declaring and using databases.
Programs that declare and use databases still can use the Binder program and the
separate compilation (SEPCOMP) facility.

DMSII and SIM databases can be manipulated in the same program. The DMSII
extensions must be used with the DMSII databases. The SIM extensions must be
used with the SIM databases. COMS can be used with DMSII for synchronized
recovery. TPS can also be used with DMSII. ADDS can be used to import
definitions.

For the details of the DMSII extensions, consult Section 4, “Usmg the Data
Management System II (DMSII) Interface.”

Additional information related to DMSII extensions is included in Section 2,
“Using Advanced Data Dictionary System (ADDS) Extensions,” Section 7, *“Using
the Semantic Information Manager (SIM) Interface,” Section 5, ‘“Using DMSII
Transaction Processing System (TPS) Extensions,” and Section 3, ‘“Using
Communications Management System (COMS) Features.”

Tabie 1-3. DMSII Extensions

Extension Explanation

ASSIGN statement Establishes a link from one record in a data set to another
record of the same data set.

BEGINTRANSACTION Places a program in transaction state. It is used only with
statement audited databases.
BDMS CLOSE statement Closes a database when further access is no longer required.
BDMS FREE statement Unlocks the current record.
BDMS LOCK statement Finds a record and locks it against a concurrent modification

by another user. The MODIFY and BDMS LOCK statements
are synonyms.

BDMS OPEN statement Opens a database for subsequent access and designates the
access mode.

BDMS SET statement Alters the current path or changes the vaiue of an item in
the current record.

CREATE statement Initializes the user work area of a data set record.

DATABASE declaration Specifies which database or parts of a database are to be
invoked.

8600 0734-000

Introduction to ALGOL Program Interfaces

Table 1-3. DMSII Extensions (cont.)

Extension

Expianation

database attribute
assignment statement

DATADICTINFO option

DELETE statement
DMTERMINATE statement
DMTEST function
ENDTRANSACTION

statement

FIND statement
GENERATE statement
GET statement
INSERT statement
LISTDB option
MODIFY statement
NODEFINE option
PUT statement
RECREATE statement

REMOVE statement

Selection expression

STORE statement

STRUCTURENUMBER
function

Allows the database to be specified at run time, and allows
access to databases under different usercodes and on packs
not visible to a task.

Determines whether information on the use of database
structure and items is placed in the object code file.

Deletes a specific record.
Aborts the current action.
Determines whether an item is nuill.

Takes a program out of a transaction state. It is used only
with audited databases.

Transfers a record to the work area associated with a data
set or global data.

Creates a subset in one operation. All subsets must be
disjoint bit vectors.

Transfers information from the user work area associated
with a data set or global data record into program variables
or arrays.

Places a record into a manual subset.

Determines whether information about the database is
included in the printer listing.

Finds a record and locks it against a concurrent modification
by another user. (See BDMS LOCK statement.)

Determines whether defines are expanded in BDMSALGOL
constructs.

Transfers information from program expressions into the
user work area associated with a data set or global data
record.

Partially initializes the user work area.
Removes a record from a subset.

Used in DELETE, FIND, MODIFY, and BDMS LOCK
statements to identify a specific record in a data set.

Places a new or modified record into a data set.

Determines the structure number of a data set, set, or
subset. It can be used to analyze exception condition results.

8600 0734--000

Introduction to ALGOL Program Interfaces

DMSII Transaction Processing System (TPS)
Extensions

1-8

The TPS extensions, outlined in Table 1-4, aid DMSII users in processing a high
volume of transactions with synchronized recovery. Statements used specifically
for synchronized recovery are available only in BDMSALGOL. Synchronized
recovery can be provided through COMS.

Refer to Section 5, “Using the DMSII Transaction Processing System (TPS)
Extensions,” for details of the extensions.

Additional information related to DMSII TPS extensions is included in Section 4,
“Using the Data Management System II (DMSII) Interface.”

Table 1-4. TPS Extensions

Extension Explanation
BEGINTRANSACTION Places a program in transaction state. {t is used only with
statement audited databases.

BDMS OPEN statement

Compile-time functions
CREATE statement

ENDTRANSACTION
statement

Item reference

MIDTRANSACTION
statement

TRANSACTION BASE
declaration

TRANSACTION RECORD
declaration

TRANSACTION RECORD
ARRAY declaration

Transaction record control
items

Transaction record variable

assignment

Opens a database for subsequent access and designates the
access mode.

Provide access to properties of transaction record formats.
Initializes a transaction record variable to a particular format.

Takes a prcgram out of a transaction state. It is used only
with audited databases.

Identifies and names a transaction record variable.

Causes the compiler to generate calls on the given
procedure prior to the call on the Data Management System
(DMS) procedure in Accessroutines.

Specifies which transaction base or subbase is to be
invoked.

Associates a transaction record variable with a transaction
base or subbase.

Allows transaction record to be passed to Transaction Library
as a parameter.

System-defined items maintained by TPS. Control items are
defined only after a transaction record has been created.

Copies content of one transaction record variable to another
transaction record variable in the same transaction base.

8600 0734--000

Introduction to ALGOL Program Interfaces

Screen Design Facility Plus (SDF Plus) Extensions

The SDF Plus extensions, outlined in Table 1-6, are used to write programs that
directly take advantage of SDF Plus. Programs also can be written to take
advantage of SDF Plus by way of the COMS interface.

Refer to Section 6, “Using the Screen Design Facility Plus (SDF Plus) Interface,”
for details of the SDF Plus extensions.

Additional information related to SDF Plus extensions is included in Section 3,

*Using Communications Management System (COMS) Features,” and Section 2,
*‘Using Advanced Data Dictionary System (ADDS) Extensions.”

Table 1-5. SDF Plus Extensions

Extension Explanation
DICTIONARY option Establishes the dictionary to be used during compilation.
DICTIONARY Invokes an SDF Pius form record library from the specified
FORMRECORDLIBRARY ADDS dictionary.
declaration

Form record number
attribute

LENGTH function
OFFSET function

POINTER function
READFORM statement

RESIZE function

SIZE function

Transaction number
attribute

UNITS function

WRITEFORM statement

Provides a means of performing |/O operations on form
record libraries to enable individual form records to be
specified at run time.

Returns the length of an entity in the designated units.

Returns the number of units a specified entity is offset from
the beginning of the outermost record.

Returns a pointer to the specified input.

Causes a form record to be read from the specified remote
file and stored in the specified buffer.

Changes the size of the array underlying a given record
identifier.

Returns the size of the array underlying a given record
identifier.

Provides a means of performing 1/0 operations on form
record libraries to enable individual transactions to be
specified at run time.

Accepts an entity as input and returns, as an integer value,
the default unit size expected by the LENGTH and OFFSET
functions.

Causes the contents of a form record to be written to the
specified remote file.

8600 0734-000

1-9

Introduction to ALGOL Program Interfaces

Semantic Information Manager (SIM) Extensions

The SIM extensions are used to manipulate the actual data stored in a SIM
database. These extensions are outlined in Table 1-6. Library programs can
define and access SIM databases. Query records can be passed to and from library
procedures.

COMS can be used with SIM for synchronized recovery. SIM and DMSII databases
can be manipulated in the same program. The SIM extensions must be used with
the SIM databases. The DMSII extensions must be used with the DMSII databases.

Data definitions can be retrieved from ADDS. Several ADDS functions can also be
used.

Consult Section 7, “Using the Semantic Information Manager (SIM) Interface,” for
details of the SIM extensions, including synchronized recovery.

Additional information relating to SIM extensions is included in Section 3, “Using
Communications Management System (COMS) Features,” Section 4, ‘Using the
Data Management System II (DMSII) Interface,” and Section 2, *“Using Advanced
Data Dictionary System (ADDS) Extensions.”

Table 1-6. SIM Extensions

1-10

Extension Explanation
ABORTTRANSACTION Aborts transaction state. It is used only with audited
statement databases.

BEGINTRANSACTION Places a program in transaction state. It is used only with

statement audited databases.

CANCELTRPOINT Cancels transaction state from a specified point. It is used

statement only with audited databases.

CLOSE statement Closes the specified database.

database attribute Alters immediate attributes of the perspective class.

assignment statement

DELETE statement Deletes all entities from the class satisfying the selection
expression.

DICTIONARY option Establishes the dictionary to be used during compilation.

DISCARD statement Frees control structure resources associated with query.

DMRECORD type Provides a means to access the data returned by SiM in a
RETRIEVE statement.

DM functions Data Management (DM) arithmetic, string, symbolic, and
Boolean functions forwarded to SIM for evaluation.

8600 0734-000

introduction to ALGOL Program Interfaces

Table 1-6. SIM Extensions (cont.)

Extension Explanation
DMRECORD variable Structured variable used for information retrieved from SIM.
declaration
DM field reference Accesses information in a DMRECORD variable.
ENDTRANSACTION Takes a program out of transaction state. It is used only with
statement audited databases.
ENTITY REFERENCE Contains an explicit reference to a database entity.
declaration

Exception expression

INSERT statement

Extension

LENGTH function
MODIFY statement
OFFSET function

OPEN statement
POINTER function
QUERY declaration
RANGECHECK option
RESIZE function

RETRIEVE statement

SAVETRPOINT statement

SELECT statement

Selection expression

SEMANTIC DATABASE
declaration

SETTOCHILD statement

SETTOPARENT statement

Provides additional information concerning data
management exceptions.

Causes attribute assignments to be applied to the database
and creates a new entity.

Explanation
Returns the length of a specified entity.
Causes attribute assignments to be applied to the database.

Returns the number of units a specified entity is offset from
the beginning of the outermost record.

Opens the specified database.

Returns a pointer to a specified input.

Declares classes or types used in query.

Causes range checking to be performed at run time.

Changes the size of the array underlying a given record
identifier.

Retrieves the attributes associated with the query variable.

Saves transaction state from the specified point. It is used
only with audited databases.

Selects a set of entities from the perspective class and
associates it with the query variable.

Used to determine which entities from the database are
eligible for retrieval, deletion, or modification.

Specifies which SIM database and ciasses are available to
the program.

Adjusts level of the next retrieval away from the root of the
query tree.

Adjusts level of the next retrieval toward the root of the
query tree.

8600 0734-000

1-11

Introduction to ALGOL Program Interfaces

Table 1-6. SIM Extensions (cont.)

Extension Explanation
SIZE function Returns the size of the array underlying a given record
identifier.
TYPE declaration Defines a data structure description which can be used to
define a structured variable.
UNITS function Returns the default unit size of the data in the specified
entity.

1-12 8600 0734-000

Section 2
Using Advanced Data Dictionary
System (ADDS) Extensions

The Advanced Data Dictionary System (ADDS) provides for the creation, storage,
and retrieval of data descriptions. A data description details the characteristics
of the data (such as length and type). It does not identify or define the value of
the data.

Through ADDS, a program can import record and item definitions. ALGOL
programs can incorporate the descriptions as declarations but cannot alter the
descriptions.

Consult the section ‘“Using the Semantic Information Manager (SIM) Interface”
for an explanation of the relationship between ADDS and SIM. Refer to the
section “Using the Data Management System II (DMSII) Interface” for further
information on the relationship between ADDS and DMSII.

Consult the InfoExec ADDS Operations Guide for a discussion of concepts,
procedures, and programming considerations when defining, using, and invoking
entities.

Conceptually, ALGOL regards ADDS as a ‘“‘global” type description storage
dictionary. Retrieved entities are seen as type descriptions which are applied to
variables being declared in the ALGOL program. Variables declared using the
same entity (type description) are distinct variables with separate data spaces.

Note: Entities defined using a previous release of ADDS and migrated to 3.8
ADDS are accessible through the interface.

Additional information related to ADDS extensions is included in Section 7,

“Using the Semantic Information Manager (SIM) Interface,” and Section 4, “Using
the Data Management System II (DMSII) Interface.”

8600 0734-000 2-1

Using Advanced Data Dictionary System (ADDS) Extensions

Guidelines for Retrieving Data Descriptions

Data descriptions, or metadata, are the stored format descriptions of the data,
not the data itself. The data descriptions reside in ADDS.

To retrieve data descriptions, use the DICTIONARY compiler control option to
identify the data dictionary where the data descriptions reside. The data
dictionary must be specified before the first syntactic element of the program.
Once the data dictionary is identified, retrieval of a data description can be
performed using a dictionary declaration.

The TYPE declaration can be used as a substitute for DICTIONARY RECORD
declarations. The TYPE declaration associates a user-defined name with a record
structure description. It can be used multiple times to define data spaces with the
same description or to describe parameters to procedures.

Retrieving Descriptions

Use the DICTIONARY RECORD declaration to specify the record description you
want to retrieve. Use the DICTIONARY ITEM declaration to specify the item
description you want to retrieve. (An item is any nonstructural entity that can be
retrieved directly from ADDS.) A data dictionary must be established, using the
DICTIONARY option, before using these declarations.

Retrieving Entities of the Same Type

To retrieve several entities of the same type from ADDS, you can declare each
corresponding variable separately or you can list the variables in one declaration
list. The ordering of entities has no significance.

Record Restrictions

2-2

To be compatible for operations such as assignment, record variables must share
the same entity description. The variables must be described by the same
dictionary entity identifier and entity qualifiers.

Parameters must also share the same type description. The TYPE declaration can
be used to retrieve a structure which is then used repeatedly. This guarantees
that all declared variables are the same type. Note that TYPE declarations are
not necessary for ADDS-retrieved entities.

Records that are described by separate, distinct entities, even if they are identical
in format, are not compatible. Even if they match field for field, they are not
compatible because they do not share the same type identifier.

Additional information related to data descriptions is included under “Entity
qualifiers,” and “TYPE Declaration and Invocation’ in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Relating ADDS Data Types to ALGOL

All the data types supported in ADDS are not supported in ALGOL. Some ADDS
types exist in ALGOL but cannot be retrieved through the interface. Therefore,
ALGOL programs can retrieve ADDS entities only if both of the following
conditions are met:

e ALGOL directly supports that data type.
o The ALGOL interface supports retrieving that description.
An entity can be any data type supported by both ADDS and the ALGOL

interface to ADDS. The data type of the entity received from ADDS is verified
against the type specified in the program.

ADDS entities that are not structures are called *“items.” The following list shows
the ALGOL data types for items:

Binary EBCDIC array
Boolean Event

Digit Real

Display Task

Some ADDS entities, such as Records, can contain embedded items. Any
embedded item within the structure must be one of the following ALGOL data

types:
Binary Display Integer
Boolean Double Real
Digit EBCDIC array Record

All embedded items within a structure do not have to be the same data type.
However, they must all be supported data types for the structure to be retrieved
and acted upon correctly. An error will be reported during compilation if a
structure is retrieved that contains a field of a type not supported by ALGOL.

Each retrieved ADDS item and entity type is mapped into an existing ALGOL
type.

Mapping ADDS Types to ALGOL Types
Table 2-1 shows which ADDS types can be mapped into which ALGOL types. The
table is in alphabetical order, by ALGOL type. In addition, the table notes

whether the type can be mapped when the entity is an item or an embedded
entity.

8600 0734-000 2-3

Using Advanced Data Dictionary System (ADDS) Extensions

Table 2-1. Mapping ADDS Types to ALGOL Types

ALGOL Type ltem Embedded ADDS Type

Binary X X Binary Numeric,
Binary filler

Boolean X X Boolean

Digits X X Number-Comp,
Comp filler

Display X X Display Numeric,
Numeric filler

Double X Double

EBCDIC array X X Alpha Display,
Alpha filler

Event X Event

Integer X Field

Real X X Real

Record X X Group, Record

Task X Task

Additional information related to types is included under *“Guidelines for Using
ADDS Types,” “Referencing Fields and Records,” and “ALGOL Data Types for
ADDS” in this section.

ALGOL Data Types for ADDS

Table 2-2 briefly defines the ALGOL data types that ADDS items and embedded
items can be mapped into. Consult Volume 1 for information on data
representation and for in-depth definitions.

2-4 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Table 2-2. Brief Description of ALGOL Data Types

ALGOL Type

Brief Definition

Binary

Boolean

Digits

Display

Double

EBCDIC array

Event

Integer

Record

Task

Can be used to map items and embedded items. A binary
is a 48-bit operand in integer format with an optional scale
factor. The sign can be ignored. As an embedded entity it
is byte-aligned.

Can be used to map items and embedded items. An
ALGOL *‘Boolean” aligned on a digit boundary. A 4-bit
type, all 4 bits are acted upon.

Can be used to map items and embedded items. As an
embedded entity it is digit-aligned and has 1 to 23
hexadecimal characters with an optional sign and scale
factor. In arithmetic expressions it is used as a number.
Negative numbers are rounded away from zero (0).

Can be used to map items and embedded items. A display
is 1 to 23 EBCDIC numeric characters with an optional
sign and an optional scale factor. In arithmetic expressions
it is used as a number. Negative numbers are rounded
away from zero (0). As an embedded entity it is
byte-aligned.

Can be used to map embedded items. An ALGOL
“Double’’, aligned on a byte boundary.

Can be used to map items and embedded items. Ali
EBCDIC characters are allowed. As an embedded entity it
is aligned on a byte boundary.

Can be used to map items. An ALGOL “Event’’.

Can be used to map embedded items. An integer is
aligned on a digit boundary. It is a 1 to 48 bit integer,
left-justifed at the boundary, and padded with ‘‘filler’’ bits
on the right to the closest digit boundary. (The filler bits
cannot be referenced.) It is unsigned but always
considered to be positive.

Can be used to map items and embedded items. An
ALGOL “Real,” as an embedded entity it is aligned on a
byte boundary.

Can be used to map items and embedded items. A
sequence of fields, as an embedded entity it is aligned on
a byte boundary.

Can be used to map items. An ALGOL ‘‘Task"'.

Additional information related to ADDS and ALGOL data types is included under

**Mapping ADDS Types to ALGOL Types,” and “Guidelines for Using ADDS

Types” in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Guidelines for Using ADDS Types

All actions (reference or assignment) performed on a specified field must be
contained within the boundaries of that field. No explicit actions on one field can
explicitly or implicitly affect a neighboring field except as provided for by the
POINTER function. Within this guideline

Fields of type EBCDIC array can be used anywhere an EBCDIC array can be
used.

Fields of type Display, Digits, Binary, or Real can be used anywhere an
arithmetic primary can be used.

Fields of type Boolean can be used anywhere a Boolean primary can be used.
Fields of type Integer can be used anywhere an integer primary can be used.
Fields of type Double can be used anywhere a double primary can be used.
Fields of any type filler can never be explicitly referenced.

Fields of type Record can be used anywhere a record can be used, except
where explicitly forbidden.

The ADDS extensions permit bit manipulation and partial reference of Real,
Boolean, and Integer fields.

Items can be used where their corresponding field types can be used (as described
above).

Arrays of fields are supported. An array of fields with a variable number of
elements is treated as an array of fields having the maximum possible number of
elements. A variable-length field is treated as a fixed-length field whose length is
the maximum possible length of that field. For example, if the length can vary
between 6 and 10 digits, a fixed length of 10 is assumed. Redefines are also
supported.

Additional information related to the use of ADDS types is included under
“POINTER function,” “Mapping ADDS Types to ALGOL Types,” ‘“ALGOL Data
Types for ADDS,” ‘‘Referencing Fields and Records,” and “RANGECHECK Option:
Checking Ranges of Run-Time Values” in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Entity Qualifiers

When entities are retrieved, to ensure the retrieval of the correct entity, the
entity must be identified in such a way that it cannot be confused with any other
entity. In an ALGOL program this is done with entity qualifiers. The entity
qualifiers are name, version, directory, and status.

The entity qualifiers are assigned to the entity previously in ADDS. The ALGOL
extensions only iterate the information. In the absence of specified entity
qualifiers, ADDS will apply default rules to locate and identify the appropriate
entity. Qualifiers do not have to be specified if the default rules uniquely identify
the entity. Consult the InfoExec ADDS Operations Guide for the default rules.

Note: Allowing the default rules to be applied can cause a previously
compilable program to become noncompilable due to the creation of new
entities in the dictionary.

An attempt to retrieve an entity that is not recognized by ADDS results in an
error at compile time.

Syntax

<entity qualifiers>

- (_.E.Jl\.. NAME = <entity name>) {

—1\— VERSION = <version number>

—/1\— DIRECTORY - _]: «directory name> T L
*

<status value>

—/1\— STATUS

Explanation

The entity qualifiers identify the exact entity to be retrieved from ADDS. Consult
the InfoExec ADDS Operations Guide for a discussion of entity name, version,
directory, and status and the default search rules.

An entity name is the name of the type description within ADDS. If it is not
specified, the value in the identifier declaring the variable is used as the default.
Note that an entity name might contain hyphens but an identifier cannot.

Hyphens (-) are permitted only in the <entity name> construct of an ALGOL
declaration. At declaration time, hyphens are translated into underscores (_.)
within the compiler. An error is generated if, in the same scope, the translated
identifier is already declared, or if a later declaration attempts to declare the
translated identifier.

A version number is an integer assigned to the entity by the data dictionary.

8600 0734-000 2-7

Using Advanced Data Dictionary System (ADDS) Extensions

2-8

The directory is a literal that represents a valid directory name recognized by
ADDS. The directory name is a maximum of 17 characters. An asterisk (*)
explicitly specifies that the entity to be retrieved has no directory name.

The status value allows a particular status to be retrieved. The qualifier specifies
the expected status value of the entity and overrides the status specified by the
STATUS compiler control option.

Valid status values are TEST and PRODUCTION. No other status can be invoked
by the ALGOL compiler.

Additional information related to status values is included under “STATUS
compiler control option” in this section.

Example
In the following example, all possible qualifiers are used to identify the entity:

(NAME = RECORD, VERSION = 123456,
DIRECTORY = "ACCOUNT", STATUS = TEST)

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Referencing Fields and Records

When referencing fields in a record, each field must be uniquely identified. The
field is qualified by the record identifier, the field identifier, and, as needed, by a
subscript field identifier.

Syntax

<qualified field ID and qualified record ID>

- <record ID> - . <field ID> |
<subscripted field ID> -J

<subscripted field ID>

- <field ID> - [- <subscript> -] {

Explanation

The <record ID> construct identifies the record that qualifies the field.

The <field ID> construct identifies the ADDS name for the field. If the field was
declared in the record as a subscripted field or as an EBCDIC array field, use the

<subscripted field ID> syntax to specify the occurrence of the field or the
element of an EBCDIC array.

The subscript can be any arithmetic expression. Arrays of fields (ADDS occurs)
are one-bounded. EBCDIC array fields are zero-bounded.

ADDS field identifiers might contain both underscores and hyphens. However, in
ALGOL, underscores must be used in place of the hyphens. This can cause two
fields in the same record to have the same name. For example, in ADDS the fields
can have the names NEW_ACCOUNT and NEW-ACCOUNT. In ALGOL they are
both noted as NEW_ACCOUNT and only the first field of that name can be
referenced.

Examples

In the following example, the field MAY is qualified by the record ACCOUNTS:
ACCOUNTS .MAY

Below, the field MAY is qualified by the form record ACCOUNTS and the form
record library GENERALLEDGER.

GENERALLEDGER.ACCOUNTS . MAY

8600 0734-000 2-9

Using Advanced Data Dictionary System (ADDS) Extensions

The following example illustrates how to reference occurrence three in the
STUDENT field in the INSTRUCTOR record.

INSTRUCTOR. STUDENT[3]

The next example shows the syntax to reference character four of occurrence two
in the field STUDENT in the record INSTRUCTOR.

INSTRUCTOR. STUDENT[2, 3]

2-10 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Compiler Control Options

One compiler control option is specific to ADDS: the STATUS option. The
DICTIONARY option can be used as an ADDS and SIM extension. The
RANGECHECK option can be used as an ADDS extension, as well as both a COMS
and SIM extension.

e The DICTIONARY option establishes the dictionary to use during compilation.

Note: A dictionary must be established before the first executable
statement in the program. A program that retrieves an entity must
specify a dictionary before it attempts the retrieval. If a dictionary is
not previously specified, the program will not compile. Only one
dictionary can be used by the program.

o The STATUS option specifies the status value of the retrieved data
description. The status value can be changed as needed. A status value is not
required for successful compilation of the program.

o The RANGECHECK option causes the compiler to perform range checking on
some run-time values; it is not required for successful compilation of the
program.

8600 0734-000 2-11

Using Advanced Data Dictionary System (ADDS) Extensions

DICTIONARY Option: Establishing a Data Dictionary

The DICTIONARY compiler control value option establishes the ADDS to use
during compilation. The option can be used without retrieving any descriptions
from ADDS.

Note: A data dictionary must be established before the first executable
statement. Only one data dictionary can be used by the program. If the
program attempts to retrieve a description and a data dictionary was
not previously specified, the program does not compile.

The compiler links to the specified ADDS (system library) when the first-
executable statement is encountered. The link is ended at the end of the
compilation. The data dictionary specified in the first occurrence of a
DICTIONARY option is used as the data dictionary. All other occurrences incur
warning messages but are otherwise ignored.

If the compiler cannot link to the specified data dictionary, the error message
DICTIONARY NOT PRESENT OR UNABLE TO LINK

is generated. The compilation is terminated.

Syntax

<dictionary options

- DICTIONARY —[——]— " <d1ctionary 10> L J 1

Explanation

The <dictionary ID> construct is the function name (system library) of the data
dictionary.

When using SIM, the dictionafy ID must be the ADDS to which SIM is linked.

Example

In the following example, the dictionary with the name DATADICTIONARY will
be used during program compilation:

$SET DICTIONARY = "DATADICTIONARY."

2-12 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

STATUS Option: Selecting the Status of Descriptions

The STATUS option is a value option used to specify the status of the data
descriptions to be retrieved. The STATUS option can appear anywhere within the
program. The value can be changed as often as desired. This option has no effect
on declarations which explicitly specify an entity status.

Additional information related to status values is included under ‘‘Entity
qualifiers,” “DICTIONARY RECORD declaration,” and “DICTIONARY ITEM
declaration” in this section.

Syntax

<status option>

— STATUS - = - <status value> i

<status value>

TEST i
_E PRODUCTION —
ANY

Explanation

Instances where no status value is specified and where the status value is ANY
are treated in the same way. Refer to the InfoExec ADDS Operations Guide for
more complete definitions of status values and default rules.

Examples

In the example below, the dictionary DATADICTIONARY will be used during
program compilation. From this dictionary, the system will first try to retrieve
the record MAYLEDGER with a PRODUCTION status. If none can be found, the
system will try to retrieve the record MAYLEDGER with a TEST status.

$SET DICTIONARY = "DATADICTIONARY."
$SET STATUS=ANY
DICTIONARY RECORD MAYLEDGER;

In the following example, the dictionary DATADICTIONARY will be used during
program compilation. From this dictionary, the system will only try to retrieve
the record MAYLEDGER with a TEST status.

$SET DICTIONARY = "DATADICTIONARY."
$SET STATUS=TEST
DICTIONARY RECORD MAYLEDGER;

As shown below, the dictionary DATADICTIONARY will be used during program
compilation. Although the status option is set to TEST, the system will only
retrieve the record MAYLEDGER with a PRODUCTION status because the status
is explicitly set in the declaration.

8600 0734-000 2-13

Using Advanced Data Dictionary System (ADDS) Extensions

$SET DICTIONARY = "DATADICTIONARY."
$SET STATUS=TEST
DICTIONARY RECORD MAYLEDGER (STATUS=PRODUCTION);

2-14 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

RANGECHECK Option: Checking Ranges of Run-time Values

The RANGECHECK option is a Boolean option that causes range checking to be
performed at run time. The option is set by default. Use $RESET to reset the
option.

The ranges checked include

e During assignments, checking if the numbers assigned into Display, Digits,
Integer, and Binary items or fields are too large to be assigned. (This also
checks for truncation errors.)

e Checking if subscripts are within the range for arrays of fields and for
EBCDIC array fields.

A run-time fault occurs if a value fails a range check; the program is discontinued
and an “Invalid Operation” is reported.

Syntax

<rangecheck option>

— RANGECHECK i

Example

In the example, the RANGECHECK option is reset. The compiler does not perform
range checking at run time. This means the compiler emits faster code but allows
incorrect assignments or indexing.

$RESET RANGECHECK

8600 0734-000 2-15

Using Advanced Data Dictionary System (ADDS) Extensions

Data Dictionary Declarations

The DICTIONARY RECORD and DICTIONARY ITEM declarations are used to
retrieve record descriptions and item descriptions from the specified ADDS.

A data dictionary must be set using the DICTIONARY option before the compiler
encounters any data dictionary retrieval declaration.

Additional information related to data dictionary declarations is included under

“DICTIONARY Option: Establishing a Data Dictionary,” and *“Guidelines for
Retrieving Data Descriptions” in this section.

Specifying a DICTIONARY RECORD

The DICTIONARY RECORD declaration specifies which record description is to be
retrieved from ADDS.

A DICTIONARY RECORD can also be declared using a TYPE declaration and
invocation. Because ADDS entities are considered to be global, the TYPE
declaration and invocation are not required with ADDS entities.

Additional information related to the DICTIONARY RECORD is included under
“TYPE Declaration and Invocation,” and “Binding Considerations for ADDS"” in
this section.

Syntax

<dictionary record declaration>

— DICTIONARY RECORD —E- <record ID> 4

|-- <entity qualifierss —-l

<record ID>

- <identifier> i

Additional information related to items of the DICTIONARY RECORD is included
under “Entity Qualifiers,” and “Referencing Fields and Records” in this section.

Explanation

The record ID is the name within the program of the variable being declared.

The record identifier can be qualified by any or all the entity qualifiers: entity
name, version number, directory, and status.

2-16 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

If the identifier is qualified by an entity name, the name identifies the entity
within ADDS. If an entity name is not specified, the record ID is used as the
entity name.

Hyphens (-) are permitted only in the <entity name>> construct. At declaration
time, hyphens are translated into underscores (_.) within the compiler. An error is
generated if, in the same scope, the translated identifier is already declared, or if
a later declaration attempts to declare the translated identifier.

More than one record description can be retrieved at one time using a single
DICTIONARY RECORD declaration.

Examples
In the example below, the records MONTH, DATE, and YEAR are retrieved from
the ADDS with the name DATADICTIONARY.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD MONTHS, DATE, YEAR;

In this example, version 2 of record YEARLY stored under the directory ALL is
retrieved from the ADDS with the name DATADICTIONARY.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD YEARLY (VERSION = 2, DIRECTORY = "ALL");

Shown below, version 2 of record B is retrieved from the ADDS with the the
name DATADICTIONARY. The default version of record A is retrieved.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD A, B (VERSION = 2);

This example retrieves the record description FACTORY from the data dictionary
DATADICTIONARY. The description is applied to the record variable
MANUFACTURE.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD MANUFACTURE (NAME = FACTORY);

In the following example, several records are declared in distinct declarations,
and the same records are declared in one declaration.

Separately Single Declaration
DICTIONARY RECORD X; DICTIONARY RECORD L, T, X;

DICTIONARY RECORD T;
DICTIONARY RECORD L;

8600 0734-000 2-17

Using Advanced Data Dictionary System (ADDS) Extensions

TYPE Declaration and Invocation

2-18

ADDS entities are assumed to be defined globally to the program. Thus, the TYPE
declaration and invocation are not required with ADDS entities. However, their
use does provide for a faster compilation when a dictionary record is declared
multiple times.

The TYPE declaration associates a user-defined type identifier with a data
description and must precede the type invocation. The type invocation declares
records that have the structure associated with the type identifier.

In the TYPE declaration, a type identifier is associated with DICTIONARY
RECORD declaration. In effect, the type identifier is the name of a record
structure description. The TYPE declaration does not create a variable, it simply
defines a type identifier that can be used to declare record variables. The -
variables are declared using the syntax notation shown below.

Only variables that share the same entity description and type are compatible.
Records described by separate, distinct entities and identical in content are not
compatible if they do not share the same type identifier.

Additional information related to type declarations is included under ‘‘Record
Restrictions” in this section.

Syntax

<type declaration>

’

— TYPE - DICTIONARY RECORD —r- <type ID> i

L <entity qualifierss —I

<type ID>

- <identifier> i

<type invocation>

- <type ID> —t <record ID> !

Additional information related to items in the type declaration is included under
“Specifying a DICTIONARY RECORD,” “‘Referencing Fields and Records,” and
“Entity Qualifiers” in this section.

Explanation

The DICTIONARY RECORD declaration in the TYPE declaration identifies the
record to be used as the data definition. When the declaration is used as part of

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

the syntax of a TYPE declaration and invocation, the type ID is the name of the
record structure description.

The type identifier is the user-defined name associated with the format. The
<type ID> construct includes the name of the record declared in the TYPE
declaration. Each record specified by a record identifier in the type invocation
has the structure defined by the type identifier.

The type identifier can be qualified by any or all the entity qualifiers: entity
name, version number, directory, and status.

Examples

In the example shown below, a TYPE declaration equates the identifier
NEWRECORDTYPE with the record structure of INSTRUCTOR. The record
PROFESSOR is then defined. By using the type invocation, the structure of
INSTRUCTOR becomes the structure of PROFESSOR.

TYPE DICTIONARY RECORD NEWRECORDTYPE (NAME=INSTRUCTOR);
NEWRECORDTYPE PROFESSOR;

In the following example, a TYPE declaration equates the identifier MYRECORD
with the record structure of PAYABLE. The type invocation is then used to
impose the record structure onto the record NEXTPAYABLE.

TYPE DICTIONARY RECORD MYRECORD (NAME = PAYABLE,

VERSION = 123456, DIRECTORY = "ACCOUNTING");
MYRECORD NEXTPAYABLE;

8600 0734-000 2-19

Using Advanced Data Dictionary System (ADDS) Extensions

Specifying a DICTIONARY ITEM

2-20

~ DICTIONARY —— REAL ———-————E- <item ID> |

The DICTIONARY ITEM declaration specifies which item description is to be
retrieved from ADDS. An item is an entity that is neither a structure nor
embedded in a structure.

Syntax

<dictionary item declaration>

- BOOLEAN [— <entity qualifiers> —J
— DISPLAY
— DIGITS
- BINARY
- EBCDIC ARRAY —
— EVENT

— TASK

Additional information related to dictionary items is included under “Entity
Qualifiers” in this section.

Explanation

Real, Boolean, Display, Digits, Binary,‘EBCDIC array, Event, and Task are
ALGOL-supported types.

The item ID is the name of the item. It can be qualified by name, version number,
directory, and status.

Hyphens (-) are permitted only in the <entity name> construct. At declaration
time, hyphens are translated into underscores () within the compiler. An error is
generated if, in the same scope, the translated identifier is already declared, or if
a later declaration attempts to declare the translated identifier.

Additional information related to dictionary items is included under ‘“‘Referencing
Fields and Records,” and “ALGOL Data Types for ADDS” in this section.

Example
After establishing the data dictionary DATADICTIONARY, the dictionary items
X, Y, and Z are retrieved. All three items are type Real.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY REAL X,

Y (VERSION = 2),

Z (NAME = A, DIRECTORY = "*");

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Passing Entities as Parameters

To specify a formal parameter that has a description residing in ADDS, the
<dictionary entity declaration> or <type invocation> constructs found in the
<specification> construct of the PROCEDURE declaration must be used to
declare the formal parameter. Note that the TYPE declaration can be used with
the <type invocation> construct. (The type identifier will not be interpreted as
a parameter.)

Dictionary Records, Displays, Digits, and Binaries must be specified in this
manner. Dictionary Reals, Booleans, EBCDIC arrays, Tasks, and Events can be
specified in this manner or by using normal ALGOL declarations.

Refer to Volume 1 for a full discussion of the PROCEDURE declaration.
Additional information related to entities is included under "’ *“‘Specifying a
DICTIONARY RECORD,” “Specifying a DICTIONARY ITEM,” and “TYPE
Declaration and Invocation” in this section.

Syntax

<specification>

’
- <specifier> —E <identifier> !

— <procedure specification>
-~ <array specification>
- <dictionary entity declaration> —

- <type invocation>

— <type declaration>

Additional information related to entities is included under ‘‘TYPE Declaration
and Invocation” in this section.

Explanation
All records are passed by name only. The actual and formal parameters must

have the same dictionary entity as their type description.

When passing embedded items to items or items to items, the entity type
determines the requirements, as shown below:

1. Types EBCDIC array, Display, Digits, or Record that are embedded entities:

When passed by reference, they are passed as a by-value pointer and a
lower bound. They cannot be passed by value only. In addition, for records
to be compatible, the actual and formal parameters must have the same
dictionary type description. For Display and Digits, signs, lengths, and scale
information is ignored.

8600 0734-000 2-21

Using Advanced Data Dictionary System (ADDS) Extensions

2-22

2. Types Real, Boolean, Binary, and Integer:

As fields, all specified types can be passed by value only. As items, types
Real and Boolean are treated normally. As items, when passed by name, type
Binary can be passed only to type Binary. Sign and scale information is
ignored.

As implemented, records are logical structures imposed by the compiler on
“*”.bound EBCDIC arrays. Items can be passed as normal ALGOL variables. A
field in a record cannot be specified as the formal parameter.

Additional information related to ADDS entities is included under “Relating
ADDS Data Types to ALGOL"” in this section.

Examples

The following two coding examples can be used to accomplish the same
programming task. In the first example, the record REC1 is declared. The formal
parameter for procedure P is REC2. REC2 is the same type as REC1. When
procedure P is called, REC1 is passed as a formal parameter.

$SET DICTIONARY = "DATADICTIONARY."

BEGIN

DICTIONARY RECORD REC1 (NAME=X, VERSION=2);
PROCEDURE P (REC2);

DICTIONARY RECORD REC2 (NAME=X, VERSION=2);
BEGIN

END;

P (REC1)

END.
In the example below, the record REC1 is declared. The identifier X is assigned
the type. The formal parameter for procedure P is REC2, declared to be type X.

By using X, REC2 is noted as the same type as REC1. When procedure P is called,
RECI1 is passed as a formal parameter.

$SET DICTIONARY = "DATADICTIONARY."
BEGIN

TYPE DICTIONARY RECORD X (VERSION = 2);
X REC1;

PROCEDURE P (REC2);
X REC2;

BEGIN

END;

P (REC1);

END.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Binding Considerations for ADDS

A DICTIONARY RECORD variable can be bound to another DICTIONARY
RECORD variable or to an ‘“*”’-bound EBCDIC array. A DICTIONARY RECORD
can also be bound to any other record type that can be bound to an *“*"’-bound
EBCDIC array. The Binder program does not check the record structures for
compatibility; therefore, it binds DICTIONARY RECORD variables to similarly
defined DICTIONARY RECORDs.

Procedures that have DICTIONARY RECORD formal parameters can also be
bound, but type checking will not be performed at bind time. The user must
ensure that the types of the formal and actual parameters are identical.

How the variable is declared in a subprogram determines what the subprogram
can do with the variable and whether the variable is properly protected against
write access.

e If the subprogram declares the variable as a DICTIONARY RECORD variable,
the DICTIONARY RECORD variable can be accessed through the described
fields.

e If the subprogram declares the variable as another type of record variable,
the variable can be accessed through the field names of the record. The
semantic rules for that type of record variable are enforced.

e If the subprogram declares the variable as an EBCDIC array, no field-oriented
access can be used. Assignment to the variable is allowed.

Refer to the Binder Programming Reference Manual for more information.
Additional information related to ADDS items used as parameters is included
under ‘“Passing Entities as Parameters” in this section.

8600 0734-000 2-23

Using Advanced Data Dictionary System (ADDS) Extensions

Statements Used as ADDS Extensions

The assignment, REPLACE, and SCAN statements can be used with ADDS
entities. The assignment statement syntax is shown below. Consult Volume 1 for
the syntax of REPLACE and SCAN statements. Additional information related to
ADDS and pointers is included under “POINTER Function” in this section.

Assignment Statement

The assignment statement causes the item on the right of the assignment operator
(:=) to be evaluated and the resulting value to be assigned to the item on the left
of the assignment operator.

Three types of assignment statements can be used: arithmetic, Boolean, and
record. Refer to Volume 1 for a discussion of the assignment statement,
specifically arithmetic and Boolean assignment statements.

Syntax
<arithmetic assignment statement>

-~ <display ID> := - <carithmetic expression>]
- <qualified display field ID> —
— <digits ID>
— <qualified digits field ID> —
~ <binary ID>
— <qualified binary field ID> —

- <real ID>
— <qualified real field ID> —f

- <qualified integer field ID> —
-~ <double ID>
- <qualified double ID>

<Boolean assignment statement>

—[<Boolean ID> — := — <Boolean expression> |
<qualified Boolean field ID> —]

<record assignment statement>

- <record> - := - <record> i

2-24 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Explanation

If the arithmetic value to be assigned into a field or item of type Display or Digits
does not fit, the value is rounded and/or the high-order characters are truncated.
In effect, a MOD operation for remainder division is performed (as described in
Volume 1). If the RANGECHECK compiler control option is set, a run-time fault
will be generated if any characters are truncated.

In assignments between Display fields or items, or between Digit fields or items,
the resulting value is converted into a 48- or 96- bit operand and then back into
characters. Blank fill is performed on unneeded character spaces.

The assignment of a Boolean value to a field of type Boolean affects all four bits
of the field.

If the arithmetic value to be assigned into a type Integer is too large, then the
high-order bits are truncated. In effect, a MOD operation is performed. If the
RANGECHECK compiler control option is set, a run-time fault will be generated if
any bits are truncated.

Records can only be assigned to records that share the same dictionary entity
type description. Two records described by disjoint type descriptions but that are
logically identical will not be compatible for the purposes of assignment.

Additional information relating to assignment statements is included under
“RANGECHECK Option: Checking Ranges of Run-time Values,” ‘‘Referencing
Fields and Records,” “Entity Qualifiers,” and ‘Relating ADDS Data Types to
ALGOL” in this section.

Examples

In the following example of an arithmetic assignment, the Integer field MONTH is
embedded in record YEAR:

YEAR.MONTH := 10;

REPLACE and SCAN Statements

The REPLACE statement, as described in Volume 1, causes character data from
one or more sources to be stored in a designated portion of an array row.

The SCAN statement, as described in Volume 1, examines a contiguous portion of
character data in an array row, one character at a time, in a left-to-right
direction. The source is always a pointer expression.

For both statements, fields and items of type EBCDIC array are considered to be
pointer expressions.

8600 0734-000 2-25

Using Advanced Data Dictionary System (ADDS) Extensions

Functions Used as ADDS Extensions

2-26

The ALGOL functions, LENGTH, OFFSET, POINTER, RESIZE, and SIZE are
extended for use with ADDS. ADDS also provides the UNITS function. Record,
field, display, and digit identifiers are valid input for all these functions.

e LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

e OFFSET function

The OFFSET function returns the number of units that the specified entity is
indexed from the beginning of the outermost record in which it is declared.

e POINTER function
The POINTER function returns a pointer to the specified input.
e RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier.

e SIZE function

The SIZE function returns the size of the array underlying a given record
identifier.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

LENGTH Function

The extended LENGTH function returns, as an integer value, the length of the
specified entity in designated units.

Syntax
<length function>

- LENGTH - (<record ID>) {
<qualified field ID> — I— , — <units value> J
<display ID>
<digit ID>

Explanation

The length of a record, field, display, or digit can be returned. If a field is
specified, the field must be qualified.

The valid values for units are 1, 4, 8, and 0 (zero). If a value is not specified, a
default is used. See “UNITS Function” for a list of defaults.

An error results if the length of the entity cannot be expressed as an integral
number of units. For example, the length of a 3-character EBCDIC array field
cannot be expressed in words.

Additional information related to the LENGTH function is included under
“Referencing Fields and Records,” ‘Relating ADDS Data Types to ALGOL,” and
“UNITS Function” in this section.

Examples

Shown below, A is assigned the Boolean field’s length of 1. The field Booleanfield
is qualified by the record R.

A := LENGTH (R.Booleanfield); %A =1

In the following example, A is assigned the record’s length of R. The default unit
size is bits.

A := LENGTH (R); %A = number bits in R

In this example, A is assigned the record’s length of R. The default unit size is
bits, but digits are specified.

A := LENGTH (R,4); %A = number digits in R

8600 0734-000 2-27

Using Advanced Data Dictionary System (ADDS) Extensions

OFFSET Function

The OFFSET function returns, as an integer value, the number of units that the
designated entity is indexed from the beginning of the outermost record in which
the entity is declared.

Syntax
<offset function>

— OFFSET - (<record ID>) i
<qualified field ID> — I- , — <units value> —l
<display ID>
<digit ID>

Explanation
The valid values for units are 1, 4, 8, and 0 (zero). If no value is specified, a
default is used. See ‘““UNITS Function” for a list of defaults.

An error results if the offset of the field, record, display, or digit cannot be
expressed in an integral number of units or if the offset can only be determined
at run time and might not be expressible as an integral number of units. This can
occur when units larger than the default unit are specified or when a field is an
element in an array of fields.

Additional information related to the syntax of the OFFSET function is included
under “Referencing Fields and Records,” *“‘Relating ADDS Data Types to ALGOL,”
and “UNITS Function” in this section

Examples

Below, A is first assigned the offset of field X in record R. The units are returned
in digits. A is then assigned the offset of field Y. The units are returned in bytes.

A := OFFSET (R.X,4) %A = the offset of X in R in digits
A := OFFSET (R.Y,8) %A = the offset of Y in R in bytes

In the following example, A is assigned the offset of T from the beginning of R, in
digits:

A := OFFSET (R.S.T,4)

In the next example, A is assigned an offset in bits to be determined at run time.
The assignment is allowed because the offset is known to be expressible in bits.

A := OFFSET (R.Q[N]);

2-28 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

POINTER Function
The POINTER function returns a pointer to the designated input. Records, while
. implemented as EBCDIC arrays, cannot be referenced as such without the explicit
use of the POINTER function.
Syntax

<pointer function>

— POINTER - (<qualified field ID>)

5

<record ID> [- , — <Character size> -J

<display ID>

«digit ID>

Explanation

The pointer acts as if it were pointing to data of the specified character size. If
the character size is not specified, and the designated field holds 4-bit characters,
a character size of 4 is assumed. In all other cases the default character size is 8.

The POINTER function bypasses all compiler restrictions related to field integrity
and type. A record can thus be referenced as a one-dimensional array.

Additional information related to the syntax of the POINTER function is included
under ‘‘Referencing Fields and Records,’”” and ‘‘Guidelines for Using ADDS Types"
in this section.

Examples
In the following example, R is an EBCDIC field which is filled with spaces.

REPLACE POINTER F.R BY '' '' FOR LENGTH (F.R)

Below, the quoted string “ABCDEF” is used to fill the entire length of R. The
string is repeated as many times as necessary to fill the entire length.

REPLACE POINTER (R,8) BY "ABCDEF" FOR LENGTH (R,8);

8600 0734-000 2-29

Using Advanced Data Dictionary System (ADDS) Extensions

RESIZE Function

2-30

The RESIZE function changes the size of the array underlying a given record
identifier.

Syntax
<resize function>

— RESIZE - (- <record ID> — , — <new size>

[, RETAIN
—E DISCARD]
PAGED

The RESIZE function changes the size of the array containing a record by
changing the upper bound of the array. The size of the entire array is changed,
regardless of the record’s position in the array.

Explanation

The <record ID> construct is the identifier of any valid record within the
ALGOL program.

The <new size> construct is an integer that represents the number of elements
in the array after the RESIZE function is performed. The size of each element
depends on the type of the underlying array. The element sizes of some common
record arrays are shown in the following table.

Record Element Size
Advanced Data Dictionary System (ADDS) records Bytes
Communication Management System (COMS) Input Headers, Output Words
Headers, or COMS records
Screen Design Facility Plus (SDF Plus) form record libraries Bytes
Semantic Information Manager (SIM) records Bytes

More detailed information on the RESIZE function is included in Volume 1, under
“RESIZE Statement’ in Section b, ‘‘Statements’’. Additional related information is
included under “Referencing Fields and Records,” and ‘“‘Relating ADDS Data
Types to ALGOL"” in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Examples
In the following example, the array containing the record INPUTRECORD is
changed to the value of NEWSZ and the previous contents of the array are
discarded.
RESIZE(INPUTRECORD, NEWSZ, DISCARD)
In the following example, the size of the array containing INPUTRECORD is
changed to be the same as the value of the MAXRECSIZE attribute of the file
INPUTFILE. The previous contents of the array are retained.
RESIZE(INPUTRECORD, INPUTFILE.MAXRECSIZE, RETAIN)
In this example, the size of the array containing INPUTRECORD is increased by
100 elements. The previous contents of the array are retained, but the array is
changed to be a paged (segmented) array.

RESIZE(INPUTRECORD, SIZE(INPUTRECORD)+100, PAGED)

8600 0734-000 2-31

Using Advanced Data Dictionary System (ADDS) Extensions

SIZE Function

The SIZE function returns the size of the array underlying a given record
identifier.

Syntax
<size function>

- SIZE - (~ <record ID> -) 1

Explanation

The SIZE function accepts a record identifier and returns the number of elements
in the array that contains the record. This function returns an integer
representing the size of the entire array, regardless of the record’s position in the
array.

The size of each element depends on the type of the underlying array. The
element sizes of some common record arrays are shown in the following table.

Record Element Size
Advanced Data Dictionary System (ADDS) records Bytes
Communication Management System (COMS) Input Headers, Output Words
Headers, or COMS records
Screen Design Facility Plus (SDF Plus) form record libraries Bytes
Semantic Information Manager (SIM) records Bytes

More detailed information on the SIZE function is included in Volume 1, under
“Intrinsic Function Descriptions” in Section 6, ‘‘Expressions’’. Additional related
information is included under ‘‘Referencing Fields and Records,” and ‘‘Relating
ADDS Data Types to ALGOL” in this section.

Examples

In the following example, ARRYLIMIT is assigned the size of the array that
contains the record INPUTRECORD.

ARRYLIMIT := SIZE(INPUTRECORD)

2-32 8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

UNITS Function

The UNITS function accepts a specified entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

Syntax
<units function>

- UNITS - (<record ID>) |

<qualified field ID> —

<display ID>

<digit ID>

Explanation

The default unit size is the lowest common unit of the target type in which the
length and offset of the target can be expressed. In general, if a target contains
4-bit or 8-bit character data, the value returned is 4 or 8, respectively. Otherwise,
the value returned is 1.

The following shows how the unit sizes are interpreted:

Unit Meaning
1 Bits
4 Digits
8 Bytes
0 Words

Default unit sizes for ADDS fields and records are shown below.

Fleld or Record Default Unit Size

Display fields
EBCDIC Array fields
Digits fields

Binary fields
Boolean fields
Double fields

Entity Reference fields
Integer fields

Real fields

Record fields
Records

= s b e e = B 00 00

8600 0734-000 2-33

Using Advanced Data Dictionary System (ADDS) Extensions

2-34

Note that, by definition

LENGTH(R.X) = LENGTH (R.X,UNITS(R.X))
Additional information related to the syntax of the UNITS function is included
under “Referencing Fields and Records,” ‘Relating ADDS Data Types to ALGOL,”
“LENGTH Function,” and “OFFSET Function”.

Example

The default unit size of field X in record R is returned.

A := UNITS (R.X)

8600 0734-000

Section 3
Using Communications Management
System (COMS) Features

The Communications Management System (COMS) is a Message Control System
(MCS) developed to control interactive environments. COMS supports the
processing of multiple program transactions as well as single-station and
multiple-station remote files.

The ALGOL interface to COMS allows programs to communicate through COMS
with terminals or other programs. ALGOL programs interact with COMS through
the COMS direct-window interface. The following features and functions are
available to the programs:

e Message routing by transaction codes (trancodes) and agendas.
e Security checking of messages that programs receive and send.

e Service functions for manipulating COMS entities by translating COMS values
to names and translating names to COMS values.

e Dynamic opening of direct windows to terminals not attached to COMS, and
dynamic communication over a modem.

e Synchronized recovery for multiple database processing programs running
asynchronously.

o External definition of record formats related to COMS (COMSRECORD
declarations)

For COMS to perform these functions, the required version of COMS must be
installed and the ALGOL program must link to a COMS library and declare an
input header, an output header, and a message area.

COMS can be used with Advanced Data Dictionary System (ADDS), Data
Management System II (DMSII), and Semantic Information Manager (SIM). This
section briefly overviews the ALGOL functions that can be used with COMS and
details the statements that can be used for synchronized recovery with DMSII.
Refer to the Section 7, “Using the Semantic Information Manager (SIM)
Interface,” in this volume and to the InfoExec Semantic Information Manager
(SIM) Programming Guide for information on synchronized recovery with SIM.

Refer to the Communications Management System (COMS) Programming Guide

for a discussion of COMS programming issues and a detailed explanation of the
COMS features and functions available with each version of COMS.

8600 0734-000 3-1

Using Communications Management System (COMS) Features

The COMS interface has created the following new ALGOL type 2 reserved words:

AFTER INPUTHEADER OUTPUTHEADER
BEFORE MESSAGECOUNT RECEIVE

EGI NOCR SEND

EMI NOLF TERMINAL

ESI

Additional information relating to COMS and SIM is included in Section 7, ‘“Using
the Semantic Information Manager (SIM) Interface.”

Using ALGOL Functions as COMS Extensions

The RANGECHECK compiler control option, as well as the LENGTH, OFFSET,
POINTER, and UNITS functions, can be used as COMS extensions. More detailed
information about these ALGOL functions is included in Section 2, ‘‘Using
Advanced Data Dictionary System (ADDS) Extensions.”

Purpose of the RANGECHECK Option

The RANGECHECK option is a Boolean option that causes the compiler to
generate code that performs range checking at run time on values that were not
known at compile time. The option is set by default. A run-time fault occurs if a
value fails a range check; the program is discontinued and an “Invalid Operation”
is reported.

Purpose of Functions
The following ALGOL functions can be used with COMS.

e LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

e OFFSET function

The OFFSET function returns the number of units that the specified entity is
offest from the beginning of the outermost record in which it is declared.

e POINTER function
The POINTER function returns a pointer to the specified input.
o RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For COMS input and output headers and COMS records, the size is
given in words. The size of the entire array is changed, regardless of the
record’s position in the array.

3-2 8600 0734-000

Using Communications Management System (COMS) Features

e SIZE function

The SIZE function returns the size of the array underlying a given record
identifier. For COMS input and output headers and COMS records, the size is
given in words. The size returned is an integer representing the size of the
entire array, regardless of the record’s position in the array.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000 3-3

Using Communications Management System (COMS) Features

-Linking to COMS

An ALGOL program accesses a COMS librai'y by declaring a COMS-releated record
format (for example, INPUTHEADER, OUTPUTHEADER, or COMSRECORD.

The library linkage is implicitly declared to the COMS library entry point entitled
DCIENTRYPOINT. A link to the library entry point is established when the first
COMS statement is encountered at run time. (This is preferable to declaring the
COMS DCILIBRARY and calling the entry point explicitly.)

The default library access is BYFUNCTION with a FUNCTIONNAME of
COMSSUPPORT. A LIBPARAMETER is generated by the compiler. The title,
function name, and library access attributes of the COMSSUPPORT library can be
changed in the same way as any other declared library, by using the internal
name of COMSSUPPORT. If these changes are made, they must be made prior to
the first executable statement in the program.

For further information on libraries and library declarations, consult Volume 1.
Refer to the System Software Utilities Operations Reference Manual for details
on library attributes, and the System Commands Operations Reference Manual
for a description of the SL (Support Library) command.

Additional information relating to COMS libraries is included under “COMS
Statements,” ‘‘COMS Service Functions,” “Declaring Input and Output Headers,”
and “Declaring a COMSRECORD" in this section.

Linking to COMS by Title

3-4

It is possible for an ALGOL program to link to COMS by title. The following is an
example of the statements that should be included at the beginning of the
program.

Example

COMSSUPPORT . LIBACCESS := VALUE (BYTITLE);
REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE := STRING(SCRATCH[O], 256);
% Store the family name so it can be temporarily changed
REPLACE SCRATCH BY MYSELF.FAMILY;
% Reset family name to null in case running on disk named DISK
REPLACE MYSELF.FAMILY BY ".";
ENABLE (<inputheadername>, "ONLINE");
% Restore family name for accessing files, etc.
REPLACE MYSELF.FAMILY BY SCRATCH;

Note: Unisys does not recommend linking to COMS by title because this feature

might be deimplemented in a future Mark release. Linking by function is
the recommended method.

8600 0734-000

Using Communications Management System (COMS) Features

Declaring an Input or Output Header

A header is a record structure with predefined field names and purposes. Consult
the COMS Programming Guide for information on the structure of the header.

An input or output header declaration associates a header identifier with a
header. It declares a header record as a variable. Input or output headers can
also be declared using TYPE declarations and invocations. Use the TYPE
declaration to declare a header record as a type identifier.

You can also declare input and output header formats using the COMSRECORD
declaration. The COMSRECORD declaration is the recommended way to declare
header formats. Refer to “Using COMSRECORD Declarations’ later in this section
for more information about the COMSRECORD declaration.

Input and output headers are used when a program communicates with COMS
through a direct-window interface. Each header is one record and is composed of
multiple fields. The fields contain routing or descriptive information for the
actual message.

Although the message is not part of the header, it is associated with the header
for routing when it is named as the message area variable in a RECEIVE or SEND
statement.

Both input and output headers can have an optional conversation area field at
the end of the structure. The conversation area field is the only user-defined field
in an input or output header. Consult the COMS Programming Guide for a
definition of what can be contained in the conversation area field of an input or
output header.

The conversation area field is accessed in the same manner as the predefined
fields. If 2 header has a conversation area field and the header is passed as a
parameter, a TYPE declaration is required.

Input and cutput headers can be bound to other input or output headers. The
headers must have the same conversation area description.

Because the layout of input or output headers can change with each software
release, a program should not preserve any designators across executions.
Designators should not be used as keydata in a database. To guarantee the
validity of the data, save all necessary information in the appropriate header
every time the header is used.

Additional information relating to input and cutput headers is included under
“Input or Output Header Type Declaration” in this section.

8600 0734-000 3-5

Using Communications Management System (COMS) Features

Input or Output Header Declaration
Syntax

<header declaration>

—[INPUTHEADER - <inputheadername>]
OUTPUTHEADER - <outputheadernames —J L <conversation area> —l
<addr equation>
<inputheadername>
- <identifier> i
<outputheadername>
- <identifier> i

<conversation area>

- (<Boolean declaration>

~
P Y

<integer declaration>

<real declaration>

<conversation array declaration> —

<conversation array declaration>

ARRAY - <identifier> ~ [— <bound pair> -]

——

Real et

Integer —

Boolean -

<addr equation>

— = —— <ADDS record ID> |
I~ <inputheader ID> —
— <outputheader ID> —
l— <DMRECORD ID>

— <real array ID> —

 <EBCDIC array ID> —

3-6 8600 0734-000

Using Communications Management System (COMS) Features

Explarnation

The <inputheadername> construct identifies an input header used to receive
messages through COMS. The <outputheadername> construct identifies an
output header used to send messages through COMS. A program can have one or
more input or output headers.

The conversation area declaration is optional. However, if a header has a
conversation area, this declaration defines the type and length of the
conversation area field.

The <addr equation> construct is optional. This construct is similar to the
<array row equivalence> construct of an array declaration in that it causes the
declared input or output header to refer to the same data as the specified record
Or array row.

Examples
As shown below, the input header RECEIVECOMS is declared. It has no
conversation area field.

INPUTHEADER RECEIVECOMS;

In the following example, the input header MYINPUT is declared as having a one
word Real conversation area identified as MYAREA.:

INPUTHEADER MYINPUT (REAL MYAREA);
The conversation area field is declared as a REAL array in the following example:

OUTPUTHEADER SENDCOMS (REAL ARRAY CONVERSATION[0:90]);

Input or Output Header Type Declaration

The TYPE declaration can be used to associate a user-defined name with a header
format specified in an input or output header declaration. The format can then be
used as a data description. The TYPE declaration is required if a header has a
conversation area field and the header is passed as a parameter.

Normally, declaring an input or output header creates a structure as a variable.
In contrast, the TYPE declaration does not create a variable; it simply defines a
type identifier that can be used to declare record variables. A type identifier is
associated with an input or output header declaration. In effect, the type
identifier is the name of a record structure description.

Only variables that share the same entity description and type are compatible.
The TYPE declaration provides compatibility for the headers. Records described
by separate, distinct entities and identical in content are not compatible if they
do not share the same type identifier.

A TYPE declaration must precede a type invocation. The type invocation declares
records that have the structure associated with the type identifier.

8600 0734-000 3-7

Using Communications Management System (COMS) Features

Syntax

<header type declaration>

- TYPE INPUTHEADER —J— <header type ID> |
OUTPUTHEADER L <conversation area> —l

<header type invocation>

9

-~ <header type ID> ——[<inputheadername> _I |

<outputheadername>

<header type ID>

- <identifier> |

Additional information on the <inputheadername>, <outputheadername>-, and
<conversation area>> constructs is included under “Declaring Input and Output
Headers” in this section. Related information is also included under *‘Accessing
Header Fields” in this section, and under ‘‘Referencing Fields and Records” in
Section 2, “Using the Advanced Data Dictionary System (ADDS) Extensions.”

Explanation

The header type identifier is the user-defined name associated with the format.
The <header type ID> construct includes the name of the input or output
header, as declared in the TYPE declaration. Each record specified by an
<inputheadername> or <outputheadername>> construct in the type invocation
has the structure defined by the header type identifier.

Examples

In this example, a TYPE declaration creates a data definition from the input
header MYINPUTHEADER. The type invocation is then used to impose the
structure onto the records NEXTHEADER and PREVHEADER.

TYPE INPUTHEADER MYINPUTHEADER; MYINPUTHEADER NEXTHEADER, PREVHEADER;
The following example creates a data definition from the output header OUTMSG.
The definition includes the conversation area CONAREA. The structure is then
imposed on the record ROUTE.

TYPE OUTPUTHEADER OUTMSG (REAL CONAREA); OUTMSG ROUTE;
Input Header Structure and Type

Table 3-1 shows the predefined fields of the input header that are available to an
ALGOL program. The fields are listed as they appear in the structure, including

3-8 8600 0734-000

Using Communications Management System (COMS) Features

the optional conversation area field. The listing gives their ALGOL name, data
type, and a brief description.

COMS places values (designators and integers) in the input header fields when an
ENABLE, MESSAGECOUNT, or RECEIVE statement is executed. You can use a
service function to translate a designator to a name representing a COMS entity.

input headers are used in receiving messages. For messages that are received, the
input header fields are used for the following tasks:

e Confirming message status

¢ Passing data in the conversation area field

e Detecting queued messages

e Determining message origin

e Obtaining direct-window notifications

e Processing transaction codes (trancodes) for routing

The fields, their COMS names and values, and their purposes are detailed in the
COMS Programming Guide.

Additional information relating to the fields of a COMS input header is included
under “COMS Service Functions” in this section.

Table 3-1. Input Header Structure and Type

Fleld Name Data Type Brief Description

PROGRAMDESG Designator Designator that COMS has assigned
to the program or designator of the
program that sent the message.

FUNCTIONINDEX Integer Module Function index (MFI) that
can be used in conjunction with
COMS trancode-based routing.

FUNCTIONSTATUS Integer Positive vaiue: COMS-defined error
value.

Negative value: Reports the status
of a dynamic attachment, a
confirmation request for output
messages, or a COMS notification
to a direct window.

USERCODE Designator Designator for the usercode
associated with the program or
station originating the message.

SECURITYDESG Designator Designator that can be used for
security checking.

8600 0734-000 3-9

Using Communications Management System (COMS) Features

Table 3-1. Input Header Structure and Type (cont.)

Field Name Data Type Brief Description

FIELDS.VTFLAG Boolean Virtual Terminal (VT) flag returned
by COMS.

FIELDS.TRANSPARENT Boolean Shows whether the input message
is being passed in transparent
mode.

TIMESTAMP Real Time and date message first

encountered by COMS.

STATION Designator Terminal number for the terminal
being dynamically attached or
detached, or the station originating
the message.

TEXTLENGTH Integer Number of characters in the text of
incoming message, length of
destination’s telephone number,
length of delivery confirmation, or
notification of a direct window
on/open activity.

STATUSVALUE integer Status of an input message.
MESSAGECOUNT Integer Number of messages queued to the
- program.

RESTART Designator Last message that COMS audited in
the DMSli-transaction trail.

AGENDA Designator Designator of the most recently
applied input agenda.

SDFINFO Real Identifies errors that cccurred

during the processing of a form
message. See '‘Using COMS
Input/Output Headers’ in Section
6, "'Using the Screen Design
Facility Plus (SDF Plus) Interface,”
for more information about the
values of this field.

SDFFORMRECNUM Real Designates the form record that is
received.
SDFTRANSNUM Real The number of the SDF Plus

transaction that is received. This
field should not be aitered by the
user application.

Conversation Area User-defined Information passed by program,
processing item, or telephone
number for a direct-window
interface.

3-10 8600 0734--000

Using Communications Management System (COMS) Features

Additional information relating to the fields of a COMS input header is included
under “Using COMS Input/Output Headers” in Section 6, ‘‘Using the Screen
Design Facility Plus (SDF Plus) Interface.”

Output Header Structure and Type

Table 3-2 shows the predefined fields of the output header that are available to
an ALGOL program. The fields are listed as they appear in the structure,
including the optional conversation area field. The listing gives their ALGOL
name, data type, and a brief description.

The output header is used in sending messages. You place designators into the
fields to route outgoing messages and describe their characteristics. You can
obtain designators by calling service functions to translate names representing
COMS entities to designators.

For messages that are output, the header fields are used in

e Specifying a destination

e Routing by transaction code (trancode)
o Sending messages using direct windows
¢ Confirming message delivery

e Checking the status of output messages

The fields, their COMS names and values, and their purposes are detailed in the
COMS Programming Guide.

Additional information relating to the fields of a COMS output header is included
under ‘“COMS Service Functions” in this section.

Table 3-2. Output Header Structure and Type

Field Name Data Type Brief Description
DESTCOUNT integer Number of destinations to
which the program sends the
message.
TEXTLENGTH Integer Number of characters

contained in the text of an
outgoing message.

STATUSVALUE integer Used to note whether the
message was successfully sent
to its destination or if an error
occurred.

FIELDS.VTFLAG Boolean Virtual Terminal (VT) flag set
by direct-window program.

8600 0734-000 3-11

Using Communications Management System (COMS) Features

Table 3-2. Output Header Structure and Type (cont.)

Field Name ' Data Type Brief Description
FIELDS.CONFIRMFLAG Boolean Used to request delivery
confirmation of an output
message.
FIELDS.CONFIRMKEY EBCDIC array User-defined tag for delivery
[0:2] confirmation of an output
message.
FIELDS.TRANSPARENT Boolean Used to specify transparent
mode for an output message.
DESTINATIONDESG Designator Destination for a message.
NEXTINPUTAGENDA Designator Agenda to be applied to the
next input for the current
dialog.
TOGGLES.SETNEXTINPUTAGENDA Boolean Used to specify if COMS
should use the contents of the
NEXTINPUTAGENDA field to

change the agenda for the
next input to the current
dialog of the destination
station.

TOGGLES.RETAINTRANSACTIONMODE Boolean Specifies whether or not
Transaction Mode is to be
retained for the current dialog.

AGENDA Designator Specifies an agenda for
postprocessing of the message
a program is sending.

SDFINFO Real Identifies type of form
message processing request.
See "‘Using COMS
Input/Output Headers" in
Section 6, ‘Using the Screen
Design Facility Plus
(SDF Plus) Interface,” for
more information about the
values of this field.

SDFFORMRECNUM Real Designates the form record to
be written.
Conversation Area User-defined Passes information, in addition

to the message data, to
processing items.

Additional information relating to the fields of a COMS output header is included
under ‘“‘Using COMS Input/Output Headers” in Section 6, “Using the Screen
Design Facility Plus (SDF Plus) Interface.”

3-12 8600 0734-000

Using Communications Management System (COMS) Features

Designator Data Type

The data type Designator is used only for specific fields of the COMS headers and
with COMS service functions. It is an internal code understood by COMS and used
to control messages symbolically in the data communications environment. COMS
can determine the kind of entity represented by a particular designator such as a
station or usercode.

In ALGOL, the data type Designator is acted upon as if it were the data type
Real. The compiler does not differentiate between the two types. However, COMS
operations require that no arithmetic operations are performed on a field of type
Designator. The Designator type should not be altered within a program unless
some type of operation is done by a COMS service function that decodes or
returns a value for the designators. Designators can be set to initial values by
setting them to 0 (zero).

Additional information relating to the Designator data type is included under

“Fields of the Input Header,” *“Fields of the Output Header,” and ‘“COMS Service
Functions” in this section.

8600 0734-000 3-13

Using Communications Management System (COMS) Features

Declaring a Message Area

3-14

The message area is the variable reserved for the actual message. You must
declare a message area variable before you can send or receive a message. (The
program builds messages in the message area.) Once information is returned from
COMS in the message area, the program determines any further processing.

The variable can be an EBCDIC array or an ADDS record, including SDF Plus
form record libraries stored in ADDS. If the variable is not large enough to
contain all the text of the message, COMS truncates the message. The
TEXTLENGTH field of the header is used to report the length of the valid text in
the message area.

Refer to the COMS Programming Guide for details of how COMS uses and
interprets the message area and for information on the fields of the headers.

Additional information on the message area is included under “COMS
BEGINTRANSACTION Statement,” “COMS ENDTRANSACTION Statement,”
“RECEIVE Statement,” and ‘“SEND Statement,” in this section. Related
information is also included under “Using SDF Plus with COMS" in Section 6,
“Using the Screen Design Facility Plus (SDF Plus) Interface.”

8600 0734-000

Using Communications Management System (COMS) Features

Declaring a COMSRECORD

The COMSRECORD declaration is a way to obtain the declarations for COMS
record formats from an external system library, instead of from information
contained in the ALGOL compiler.

When the ALGOL compiler encounters a COMSRECORD declaration, it extracts a
character string (called a format mnemonic) from the declaration. The character
string is passed to the COMSLANGSUPPORT external system library. The library
checks the character string against an internal list of COMS record formats.

o If the character string i¢s a valid format mnemonic, the COMSLANGSUPPORT
library returns a description of the format to the compiler. This description
contains the explicit declarations and definitions for the desired record
format (including the names, types and locations of the fields in the record).

e If the character string is not a valid format mnemonic, the
COMSLANGSUPPORT library returns an error condition to the compiler. The
compiler generates a syntax error.

The ALGOL compiler has no information about the format mnemonics or record
formats. It simply passes the format mnemonic to the COMSLANGSUPPORT
library and receives either the record format definitions or the error condition.

Syntax

<COMSRECORD declaration>

~ COMSRECORD >

p—— <format mnemonic> <record id> |

I—- <conversation area> —J L <addr equation> —l
Explanation

The keyword COMSRECORD causes the compiler to request the desired record
format from the COMSLANGSUPPORT external system library.

The <format mnemonic>> construct is the identifier of a character string up to
64 characters long. There are currently three valid format mnemonics.

s INPUTHEADER

This format mnemonic represents the normal COMS input header record
format described earlier in this section. The results of a COMSRECORD
declaration with a fermat mnemonic of INPUTHEADER are identical to
explicitly declaring a COMS input header in your application program.

Refer to ‘‘Declaring an Input or Output Header”’ for the structure, field
names, and field types of a COMS input header record. Consult the COMS

8600 0734-000 3-15

Using Communications Management System (COMS) Features

Programming Guide for information about the use and meaning of the input
header fields.

e OUTPUTHEADER

This format mnemonic represents the normal COMS output header record
format described earlier in this section. The results of a COMSRECORD
declaration with a format mnemonic of OUTPUTHEADER are identical to
explicitly declaring a COMS output header in your application program.

Refer to ‘‘Declaring an Input or Output Header” for the structure, field
names, and field types of a COMS output header record. Consult the COMS
Programming Guide for information about the use and meaning of the output
header fields.

e X2b

This format mnemonic represents the record format used with the A Series
X.26 MCS product.

Refer to “COMSRECORD Structures and Types’’ later in this section the
structure, field names, and field types of an X.25-format COMSRECORD.
Consult the A Series X.25 MCS Operations and Programming Reference
Manual for information about the use and meaning of the individual fields in
the record.

The <record id> construct identifies the individual COMSRECORD.

The <conversation area>> construct is optional. If a COMSRECORD has a
conversation area, this declaration defines the type and length of the
conversation area field. The syntax used to declare a conversation area is
described under “Input or Output Header Declaration” in this section.

The <addr equation> construct is optional. This construct is similar to the
<array row equivalence>> construct of an array declaration in that it causes the
declared COMSRECORD to refer to the same data as the specified record or array
row.

Type Declaration of a COMSRECORD

3-16

A COMSRECORD type declaration associates a user-defined name (called a type
id) with a specific COMSRECORD format. After a COMSRECORD type is declared,
the user-defined name can be used as a data description. COMSRECORD type
declarations are used in the same way as type declarations for normal COMS
input and output headers. Refer to “Input or Output Header Type Declaration”
earlier in this section for more information.

Syntax

<COMSRECORD type declaration>

8600 0734-000

Using Communications Management System (COMS) Features

- TYPE —]‘— COMSRECORD - <format mnemonic>

<type id> ——-
l— <conversation av‘ea>j

Explanation

The <format mnemonic> construct is the identifier of a character string up to

64 characters long. There are currently three valid format mnemonics:

INPUTHEADER, OUTPUTHEADER, and X25.

The <conversation area>> construct is optional. If a COMSRECORD has a

conversation area, this declaration defines the type and length of the

conversation area field. The syntax used to declare a conversation area is

described under ‘“‘Input or Qutput Header Declaration” in this section.

The <type id> construct is a user-defined name that is associated with the
specific COMSRECORD format.

Type Invocation of a COMSRECORD
A COMSRECORD type invocation must follow a COMSRECORD type declaration.
The type invocation declares a COMSRECORD that has whatever format is
associated with the type id.

<COMSRECORD type invocations

- <type id> —[<record id> {

The <type id> construct is a user-defined name that is associated with the
specific COMSRECORD format.

The <record id> construct identifies the individual COMSRECORD.

COMSRECORD Structures and Types

There are currently three different COMSRECORD formats: INPUTHEADER,
OUTPUTHEADER, and X25.

e INPUTHEADER

A COMSRECORD with a format mnemonic of INPUTHEADER has the same
structure and type as the normal COMS input header record described earlier
in this section. Refer to ‘‘Declaring an Input or Output Header” for the
structure, field names, and field types of a COMS input header record.
Consult the COMS Programming Guide for information about the use and
meaning of the input header fields.

e OUTPUTHEADER

8600 0734-000 3-17

Using Communications Management System (COMS) Features

A COMSRECORD with a format mnemonic of OUTPUTHEADER has the same
structure and type as the normal COMS output header record described
earlier in this section. Refer to *“Declaring an Input or Output Header” for the
structure, field names, and field types of a COMS output header record.
Consult the COMS Programming Guide for information about the use and
meaning of the output header fields.

o X256

The structure and type of a COMSRECORD with a format mnemonic of X25 is
described on the following pages.

Structure and Type of an X.25 COMSRECORD
Table 3-3 shows the predefined fields in an X.25-format COMSRECORD that are

available to an ALGOL program. The fields are listed as they appear in the
structure. The listing gives their ALGOL name, data type, and a brief description.

Table 3-3. X.25 COMSRECORD Structure and Type

Field Name Data Type Brief Description

CLASS Integer The CLASS field describes the class or type -
of the record. The record must contain a
CLASS field. The initial value for this field is
X25. X25 is the only possible value for use
with the A Series X.25 MCS.

VERSION Integer The VERSION field contains the record
version number. All records must contain a
VERSION field. if changes occur in the
future to the structure of a record, this fieid
will be incremented. The initial value for this
field is X25PIRVERSION.

FUNCTION Integer The FUNCTION field contains a description
of the packet type of the record. All records
must contain a FUNCTION field.

COMMUNICATIONNUMBER Integer The COMMUNICATIONNUMBER field
contains the communication number
assigned to the connection by the A Series
X.25 MCS. The possible values for this field
are in the range O to (2**39) — 1.

QBIT Boolean The QBIT field contains the qualifier bit.
When set, this field qualifies a data packet
and corresponds to the qualifier bit in the
X.25 network packet.

3-18 8600 0734-000

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Field Name Data Type Brief Description

DBIT Boolean Use of this field is not currently supported.

The DBIT field, when set, requests
acknowledgment from the remote DTE and
corresponds to a D-bit description of an X.25
levei 3 packet.

DATAIDENTIFIER Integer Use of this field is not currently supported.

The DATAIDENTIFIER field is used to identify
the data message being sent or the data
message being acknowledged when the DBIT
field has been set to TRUE. The possible
values for this field are in the range O to
65535.

ORIGINATOR Integer The ORIGINATOR field is used in conjunction
with the CAUSE and DIAGNOSTIC fields. The
ORIGINATOR field describes the originator of
a message that is received by the application
program. The possibie values for this field
are NETWORKORIGINATED,
SYSTEMORIGINATED, and
APPLICATIONORIGINATED.

CAUSE Integer The CAUSE field describes the reason the
record was sent. It corresponds to the Cause
field in an X.25 level 3 packet when the
ORIGINATOR field contains the value
NETWORKORIGINATED. The possible values
for this field are in the range O to 255.

DIAGNOSTIC Integer The DIAGNOSTIC field describes the
diagnostic information sent with the record.
It corresponds to the Diagnostic field in an
X.25 level 3 packet when the ORIGINATOR
fieid contains the value
NETWORKORIGINATED. The possible values
for this field are in the range O to 255.

ALREADYACCEPTED Boolean The ALREADYACCEPTED field is meaningful
only with the A Series X.25 MCS on a BNA
Version 2 platform.

This field is valid only with the
INCOMINGCALL function. The A Series

X.25 MCS sets this field to TRUE on an
incoming call if the connection has already .
been accepted by a CP 2000.

8600 0734-000 3-19

Using Communications Management System (COMS) Features

3-20

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Field Name

Data Type

Brief Description

WAITFORCHANNEL

TRUNCATED

REMOTEADDRESSLENGTH

REMOTEADDRESS

LOCALSUBADDRESSLENGTH

Boolean

Boolean

Integer

Hexadecimal

Integer

The WAITFORCHANNEL field is valid only
with the CALLREQUEST function.

e On a BNA Version 1 platform, if a
logical channel is not currently available,
a TRUE value in this field instructs the
A Series X.25 MCS to hold the call to
the remote DTE until a channel is
available to make the connection.

e On a BNA Version 2 platform, a TRUE
value in this field instructs the A Series
X.25 MCS to initiate or wait for a
dialogue with the CP 2000.

The TRUNCATED field is valid only with the
DCEDATA function. A TRUE value in this
field indicates that the data message is
truncated.

The REMOTEADDRESSLENGTH field
contains the length of the REMOTEADDRESS
field in hex digits. The maximum value for
this field is 40. However, the A Series

X.25 MCS limits this field to 15 hex digits on
a BNA Version 1 platform or a BNA

Version 2 platform.

The REMOTEADDRESS field contains the
address of the remote DTE endpoint in hex
digits. The maximum value for this field is 40
hex digits. However, the A Series X.25 MCS
limits this field to 15 hex digits on a BNA
Version 1 platform or a BNA Version 2
platform.

The LOCALSUBADDRESSLENGTH field
contains the length of the
LOCALSUBADDRESS in hex digits. The
maximum value for this field is 14. However,
the A Series X.25 MCS limits this field to 10
hex digits on a BNA Version 1 platform or a
BNA Version 2 platform.

8600 0734-000

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Field Name Data Type Brief Description

LOCALSUBADDRESS Hexadecimal The LOCALSUBADDRESS field contains the
local endpoint identification address in hex
digits. The maximum value for this field is 14
hex digits. However the A Series X.25 MCS
limits this field to 10 hex digits on a BNA
Version 1 piatform or a BNA Version 2
platform. The data in this field must be
left-justified, binary-coded decimal (BCD)
characters.

FACILITIESLENGTH Integer The FACILITIESLENGTH field contains the
length of the FACILITIES field specified in
octets. This field corresponds to the X.25
level 3 Facility Length field. The maximum
value for this field is 109.

FACILITIES EBCDIC The FACILITIES field contains untranslated
information. It does not contain message
data. This field corresponds to the X.25 level
3 facility field. The maximum value for this
field is 109 octets.

Information in the FACILITIES field is passed
unchanged by the A Series X.25 MCS directly
to and from the X.25 network. Therefore, the
application program must format the
FACILITIES field exactly according to the
CCITT standards in use by the X.25 network.

ENSEMBLELENGTH Integer The ENSEMBLELENGTH field contains the
length of the ENSEMBLE field specified in
octets. The maximum value for this field is
17.

ENSEMBLE EBCDIC The ENSEMBLE field identifies the ensemble
through which the specified message is
routed. The same remote DTE address can
be reached through different ensembles. The
maximum value for this field is 17 octets.
This field is used for load balancing and
corresponds to a preferred station in the UK
and US formats of X.25 records.

PHONENUMBERLENGTH Integer The PHONENUMBERLENGTH field contains
the length of the PHONENUMBER fieid
specified in hex digits. The maximum value
for this field is 30. However, the A Series
X.25 MCS limits this field to 17 hex digits on
a BNA Version 2 platform and ignores this
field on a BNA Version 1 platform.

8600 0734-000 3-21

Using Communications Management System (COMS) Features

3-22

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Field Name Data Type Brief Description

PHONENUMBER Hexadecimal The PHONENUMBER field contains the
complete phone number, in hex digits, that a
CP 2000 must call to establish a
connection. This field is meaningful only on a
BNA Version 2 platform for the
CALLREQUEST function. It is ignored for all
other functions.

DATALENGTH Integer The DATALENGTH field contains the length
of the DATA field (specified in octets). For
call user data, the maximum value for this
field is 128. For message data, there is no
maximum value.

DATA EBCDIC The DATA field contains data. This field
corresponds to the data following an X.25
level 3 Data Packet header or untranslated
message in the X.25 level 3 User Data field.
This field is the only variable-length field in a
PIR.

8600 0734-000

Using Communications Management System (COMS) Features

Using Records in COMS

The following pages describe techniques used to work with records in a COMS
application program and considerations that affect how the records are used. The
information includes

e accessing individual fields within a record

e binding considerations for COMS

Accessing Header Fields

Input headers, output headers, and COMSRECORDS are defined in ALGOL as
record structures whose fields have predefined names and purposes. The
individual fields can be accessed through fully qualified record syntax.

When referencing fields in a record, each field must be uniquely identified. The
field is qualified by the record identifier, the field identifier, and, as needed, by a
subscript field identifier.

Additional information relating to the fields of input or output headers is
included under “Input Header Structure and Type ", ‘““‘Output Header Structure
and Type”, and “COMSRECORD Structures and Types” in this section.

Syntax

<input or output headers>

- <record ID> ~ . <field ID> {

<subscripted field ID> —J

<subscripted field ID>

- <field ID> —- [- <subscript> —] i

Explanation

The <record ID> construct is the user-declared name of the input header, output
header or COMSRECORD.

Both the field and subscripted fieid identifiers are defined by COMS. The <field
ID> construct identifies the COMS name for the field. If the field is subscripted,
use the <<subscripted field ID>. Subscripting is used to access a field in an
embedded packed record with a header.

When a field within a record is passed as a parameter in a procedure call, the
value of the field, rather than a reference to it, is passed. If you want to modify a
field through a procedure call, pass the record itself (input header, output
header, or COMSRECORD) rather than the field.

8600 0734-000 3-23

Using Communications Management System (COMS) Features

Examples

The example below accesses the subscripted field FIELDS.TRANSPARENT in the
record MYHEADER.

MYHEADER. FIELDS. TRANSPARENT

In the following example, the input header named MYIN assigns the value 32 into
the TEXTLENGTH field of the input header and the value of REQUESTDATA
into word 7 of the conversation area field.

REAL REQUESTDATA;

INPUTHEADER MYIN (ARRAY CONVERSATION[0:8]);
MYIN.TEXTLENGTH := 32;

MYIN.CONVERSATION[6] := REQUESTDATA;

Binding Considerations for COMS

The ALGOL interface to COMS contains three types of header records: input
headers, output headers and COMSRECORDs. The following paragraphs detail
some considerations that apply when you use the Binder program to bind
procedures or programs that contain COMS header records.

e A header record variable can be bound to another header record variable or
to an star-bounded REAL array. A header record can also be bound to any
other record type that can be bound to an star-bounded REAL array.

The Binder program does not check the record structures for compatibility
when they are bound. Because of no checking occurs, the Binder program
binds header record variables to similarly-defined header record variables.

e Procedures that have declared formal parameters can be bound, but no type
checking will be performed when the procedures are bound. Ensure that the
types of the formal and actual parameters are identical.

e When a variable is declared in a subprogram, the declaration of the variable
determines what the subprogram can do with the variable and whether the
variable is properly protected against write access.

- If the subprogram declares the variable as a header record variable, the
header record variable can be accessed through the described fields.

-~ If the subprogram declares the variable as another type of record
variable, the variable can be accessed through the field names of the
record. The semantic rules for that type of record variable are enforced.

- If the subprogram declares the variable as a REAL array, no field-oriented
access can be used. Assignment to the variable is allowed.

Refer to the Binder Programmirig Reference Manual for more information.

3-24 8600 0734-000

Using Communications Management System (COMS) Features

COMS Statements

The COMS interface supports statements that pertain to the use of COMS features
and statements that provide synchronized recovery for application programs that
update Data Management System II (DMSII) and Semantic Information Manager
(SIM) databases.

The COMS interface supports the following two database statements. These
statements provide synchronized recovery for application programs that update
Data Management System II (DMSII) databases, as detailed in the COMS
Programming Gutide.

BEGINTRANSACTION ENDTRANSACTION

The ALGOL interface to COMS also supports the following statements:

DISABLE RECEIVE
ENABLE SEND
MESSAGECOUNT

This section describes each of the above statements. The statements are
presented in alphabetical order. For information on when and why to use these
statements, consult the COMS Programming Guide.

Refer to Section 5, ‘“Using DMSII Transaction Processing System (TPS)
Extensions,” for the TPS statements that work with COMS. These statements are

BEGINTRANSACTION MIDTRANSACTION
ENDTRANSACTION OPEN

Access to the functional Semantic Information Manager (SIM) environment is
accomplished through the use of a COMS window. Refer to Section 7, “Using the
Semantic Information Manager (SIM) Interface,” for the database management
statements that work with COMS. These statements are

ABORTTRANSACTION ENDTRANSACTION
BEGINTRANSACTION OPEN
CANCELTRPOINT SAVETRPOINT
CLOSE

Refer to Section 6, ‘“‘Using the Screen Design Facility Plus (SDF Plus) Interface,”
for an explanation of how to access SDF Plus from COMS. There are no
extensions specific to COMS that are required for SDF Plus.

Additional information relating to COMS statements is included in Section 6,
‘‘Using the Screen Design Facility Plus (SDF Plus) Interface,” Section 7, “Using
the Semantic Information Manager (SIM) Interface,” Section 4, “Using the Data
Management System II (DMSII) Interface,” and Section 5, ‘“Using DMSII
Transaction Processing System (TPS) Extensions.”

8600 0734-000 3-25

Using Communications Management System (COMS) Features

COMS BEGINTRANSACTION Statement

The COMS BEGINTRANSACTION statement places a program in transaction
state. It allows a program interfacing with COMS to support synchronization of
transactions and recovery. The statement is used in application programs that
update a DMSII database. It provides synchronized recovery if an exception
occurs while a program is in transaction state. (The SIM BEGINTRANSACTION
statement is used for SIM databases.)

Note: At any given time, a program can be in transaction state with only one
database. For proper recovery, the name of the database in transaction
state should be the name of the database noted in the COMS Utility.

If the message area is specified, COMS stores restart information in the
transaction trail.

COMS updates the STATUSVALUE field of the declared input header with the
result of the BEGINTRANSACTION statement.

Consult the COMS Programming Guide for more information about the
STATUSVALUE field, synchronized recovery and transaction trails, message
areas, the restart data set, and handling a BEGINTRANSACTION exception.

Additional information on to the COMS BEGINTRANSACTION statement is
included under ‘‘Fields of the Input Header,” “‘Service Function Result Values,”
and “STATUSVALUE Field Values” in this section. Related information is also
included under ‘“DMSII BEGINTRANSACTION Statement’ in Section 4, and *“SIM
BEGINTRANSACTION Statement” in Section 7.

Syntax

<begintransaction statement>

~ BEGINTRANSACTION - <inputheadername>

A 4

I— <message area> -J

<restart data set>

v

v

(- <transaction record variable> -) —
AUDIT
NOAUDIT

T]
<exception handling>

Additional information on the <inputheadername>> construct is included under
“Declaring Input and Output Headers” in this section. Information on the
<message area> construct is included under ‘“Declaring Input and Output
Headers” in this section. Information on transaction processing and the
<exception handling> construct is included under ‘‘Passing Transaction Record

3-26 8600 0734--000

Using Communications Management System (COMS) Features

Variables as Parameters "’ and ‘‘Database Status Word” in Section 4, ‘“Using the
Data Management System II (DMSII) Interface”

Explanation
The construct <inputheadername> identifies the declared input header.

The <message area> construct identifies the declared variable reserved for the
actual message.

The <transaction record variable> construct identifies a transaction record
created through the Transaction Processing System (TPS).

If AUDIT is specified, the restart area is captured. If NOAUDIT is specified, the
restart area is not captured. AUDIT is the default action.

The restart data set contains the restart records an application program can
access to recover database information after a system failure.

An exception is returned if the BEGINTRANSACTION statement is encountered
while the program is in transaction state. An ABORT exception frees all records
that the program locked. Note that deadlock can occur during execution of a
BEGINTRANSACTION statement.

Additional information is included under ‘‘Declaring a Message Area’ in this
section, and under “Exception Processing’ in Section 4, *“Using the Data
Management System II (DMSII) Interface.”

Example

The following BEGINTRANSACTION statement is for the input header declared
as MYHEADER. COMS will store restart information in the transaction trail
because the message area, MSG, is specified. Since AUDIT is included, the restart
area will be trapped. The restart data set is RDS.

BEGINTRANSACTION MYHEADER MSG AUDIT RDS;

8600 0734-000 3-27

Using Communications Management System (COMS) Features

DISABLE Statement

3-28

The DISABLE statement logically disconnects the program from the station in the
STATION field of the declared input header.

The DISABLE statement can be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSVALUE field of the
input header. For example, a returned value of 0 (zero) means the STATION field
of the header contains a valid station designator and the disconnect was
successful.

COMS updates the FUNCTIONSTATUS field of the input header. Consult the
COMS Programming Guide for an explanation of the FUNCTIONSTATUS and
STATUS fields.

Additional information relating to DISABLE statement is included under *Fields
of the Input Header,” “Service Function Result Values,” “FUNCTIONSTATUS
Field Values,” and “STATUSVALUE Field Values” in this section.

Syntax

— DISABLE - (— <inputheadername> , — <keyname> -) {
l— TERMINAL -J

<keyname>

—]: <"alpha string literal"> !

<EBCDIC array rows

Additional information relating to the <inputheadername> construct is included
under ‘“‘Declaring Input and Output Headers” in this section.

Explanation

The construct <inputheadername>> identifies the input header.

The word “TERMINAL” specifies a disconnect from a station. If it is not
specified, it is assumed.

The valid values for the construct <keyname> are: “DIAL”, “DONTCARE",
“RELEASE"”, and “RETAIN". They are detailed in the COMS Programming Guide.
Note that these values are literals and require quotation marks. If blanks are
entered or no keyname is specified, the default state of “DONTCARE" is
assumed.

Consult Volume 1 for an explanation of alpha string literals.

Additional information is included under “ENABLE Statement” in this section.

8600 0734-000

Using Communications Management System (COMS) Features

Exa.mple_s

The DISABLE statement below disconnects a previously enabled dial-out station.
DISABLE(MYINPUT TERMINAL, "DIAL");

In the following example, the program is disconnected from the station specified
in the STATION field of the input header INCOMS. If the station is a CP2000
station, the physical attachment will be released.

DISABLE (INCOMS TERMINAL, "RELEASE");

Shown below is an example of the DISABLE statement using the default options.
Even though the TERMINAL option is not specified, the disconnect is from the
station in the STATION field of the input header THEINPUTHEADER. Since no
keyname is given, the default state is “DONTCARE". If the station is a CP2000,
the terminal gateway will decide whether to retain or release the physical
attachment.

DISABLE (THEINPUTHEADER) ;

8600 0734-000 3-29

Using Communications Management System (COMS) Features

ENABLE Statement

3-30

The ENABLE statement logically connects COMS and the destination specified in
the Station Designator field of the declared input header.

The ENABLE statement can be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSVALUE field of the
input header. For example, a returned value of 0 (zero) means the ENABLE was
successful.

The STATUSVALUE field of the input header contains the status of the connect.

Consult the COMS Programming Guide for an explanation of the fields of the
headers.

Additional information relating to the ENABLE statement is included under
“Fields of the Input Header,” *‘Service Function Result Values,’” and
“STATUSVALUE Field Values” in this section.

Syntax

<enable statement>

- ENABLE - (- <inputheadername> » — <keyname> -) |
LTEI!MINAL —I

Additional information relating to the <inputheadermname> construct is included
under ‘‘Declaring Input and Output Headers” in this section. Information on the
<keyname> construct is included under “DISABLE Statement” in this section.

Explanation
The construct <inputheadername> identifies the input header.

If the word “TERMINAL” is not specified, the ENABLE statement initializes the
program with COMS. If TERMINAL is specified, the ENABLE statement performs
a dynamic attachment to a station.

The valid keynames depend on whether the TERMINAL syntax is used in the
ENABLE statement. “BATCH” and “ONLINE” cannot be specified if the word
“TERMINAL"” appears in the statement.

The other valid keynames are: “DIAL”, “NOWAIT"”, “WAIT”, “WAITDIALOUT",
and “NOBUSY".

The “(HOSTNAME= <hostname>)" syntax can be used with the TERMINAL
option for “WAIT”, “NOWAIT"”, “WAITDIALOUT”, and “WAITNOBUSY”
keynames. HOSTNAME is the name of the host of the station in the Destination
field. The hostname string is not checked for accuracy by the compiler; it is used
by COMS at run time to define a host.

8600 0734-000

Using Communications Management System (COMS) Features

Note that the keyname values are literals and require quotation marks. Consult
the COMS Programming Guide for information on keynames and on batch and
interactive processing.

Additional information relating to the ENABLE statement is included under
“DISABLE Statement” in this section. ‘
Examples
The following ENABLE statement informs COMS that it is dealing with an
interactive program:

ENABLE (MYINPUT, "ONLINE");

In the example below, the conversation area field of the input header holds the
telephone number, the TEXTLENGTH field holds the telephone number length,
and the STATION field holds the station designator. The statement connects the
program for data transfer to a dial-out station.

ENABLE (MYHEADER TERMINAL,"DIAL");
The example below shows the syntax when a hostname, shown here as
MACHINE, is specified. The hostname is the name of the host of the station in the
Destination field. The hostname string is not checked for accuracy by the
compiler; it is used by COMS at run time to define a host.

ENABLE (MYHEADER TERMINAL,"WAIT (HOSTNAME = MACHINE)");

8600 0734-000 3-31

Using Communications Management System (COMS) Features

COMS ENDTRANSACTION Statement

3-32

The COMS ENDTRANSACTION statement takes a program out of transaction
state. It is used only in application programs that update a DMSII database. (The
SIM ENDTRANSACTION statement is used for SIM databases.)

Two of the basic tasks performed by the COMS ENDTRANSACTION statement
are to

1. Ensure that the information passed to COMS during the midtransaction
phase is safely stored in the transaction trail.

2. Perform a DMSII ENDTRANSACTION.

If the DMSII ENDTRANSACTION returns an exception, COMS resubmits the
current transaction after synchronized recovery is complete.

COMS updates the STATUSVALUE field of the declared output header with the
result of the ENDTRANSACTION statement.

Consult the COMS Programming Guide for more information on the
STATUSVALUE field, synchronized recovery, the restart data set, and handling
an ENDTRANSACTION exception.

Additional information on the COMS ENDTRANSACTION statement is included
under °‘Fields of the Output Header,” *‘Service Function Result Values,"
“STATUSVALUE Field Values,” and “SEND Statement” in this section. Related
information is also included under “DMSII ENDTRANSACTION Statement” in
Section 4, ‘‘Using the Data Management System II (DMSII) Interface,” and under
“SIM ENDTRANSACTION Statement” in Section 7, *Using the Semantic
Information Manager (SIM) Interface.”

Syntax
<endtransaction statement>

~ ENDTRANSACTION - <outputheadername with send options>

v

I-AUDIT {
L NOAUDIT

p— <restart data set> — |
I— SYNC -J L <exception handling> J

<outputheadername with send options>

.

- <outputheadername> _L

[- <send options> -] -I — <message area> —

Additional information on the <exception handling> construct is included under
“Exception Processing” in Section 4, “Using the Data Management System II

8600 0734-000

Using Communications Management System (COMS) Features

(DMSII) Interface.” Information on the <outputheadername> construct is
included under ‘Declaring Input and Output Headers” in this section. Information
on the <send options> construct is included under “SEND Statement,” in this
section. Information on the <message area> construct is included under
“RECEIVE Statement,” in this section.

Explanation
The construct <outputheadername> identifies the output header.

The send options describe the carriage and message controls that can be used
with a send operation.

The <message area>> construct identifies the declared variable reserved for the
actual message. If a message area is specified, COMS ensures that the message is
sent before the DMSII ENDTRANSACTION is executed.

If AUDIT is specified, the restart area is captured. If NOAUDIT is specified, the
restart area is not captured. AUDIT is the default action.

The restart data set contains the restart records an application program can
access to recover database information after a system failure.

The word “SYNC" forces a syncpoint.

An exception is returned if an ENDTRANSACTION statement is attempted and
the program is not in the transaction state. Records are freed in all cases. The
transaction is not applied to the database.

Additional information relating to the COMS ENDTRANSACTION statement is
included under ‘“Exception Processing” in Section 4, “Using the Data Management
System II (DMSII) Interface.”

Example

In the following example, the output header is MYOUT. The send option instructs
the system to skip two lines. Since a message area (MSGQG) is specified, a message
will be sent during synchronized recovery. The restart area is captured in the
restart data set RDS.

ENDTRANSACTION MYOUT [SKIP 2] MSG AUDIT RDS;

8600 0734-000 3-33

Using Communications Management System (COMS) Features

MESSAGECOUNT Statement

(

AN

The MESSAGECOUNT statement returns the number of queued messages for the
program. COMS places the number of messages into the MESSAGECOUNT field of
the designated input header.

The MESSAGECOUNT statement can be used as an integer-valued function. The
returned integer is the number of queued messages. The STATUSVALUE field of
the input header is also updated. It contains the status of the MESSAGECOUNT
request. A status value of 0 (zero) means the operation was successful.

Consult the COMS Programming Guide for more information about the
MESSAGECOUNT and STATUSVALUE fields.

Additional information relating to the MESSAGECOUNT statement is included
under ‘‘Fields of the Input Header,” *‘Service Function Result Values,” and
“STATUSVALUE Field Values” in this section.

Syntax

<messagecount statement>

— MESSAGECOUNT - (- <inputheadername> -) i

Additional information relating to the <inputheadername>> construct is included
under ‘‘Declaring Input and OQutput Headers” in this section.

\Explanation

3-34

The <inputheadername>> construct identifies the input header.

Example

The number of messages associated with the input header MYINPUT is assigned
to the variable COUNT and COMS puts the message count into the
MESSAGECOUNT field of MYINPUT.

COUNT := MESSAGECOUNT (MYINPUT);

8600 0734-000

Using Communications Management System (COMS) Features

RECEIVE STATEMENT

The RECEIVE statement requests that a message be transferred from the program
queue to the designated message area. Information about the message is provided
in the specified input header.

The RECEIVE statement can also be used as an integer-valued function. The
returned integer is the same as the value COMS places in the STATUSVALUE
field of the input header. For example, a returned value of 0 (zero) means a
message was received successfully.

Consult the COMS Programming Guide for an explanation of the fields of the
input header.

Additional information relating to the RECEIVE statement is included under
“Service Function Result Values,” “Fields of the Input Header,” and
“STATUSVALUE Field Values” in this section.

Syntax

<receive statement>

~ RECEIVE - (- <inputheadername>

,» — <message area> —) —

L[-mrmmn -]-J
<message area>
—[<EBCDIC array row> 1
<ADDS structure> ——]
Additional information relating to the <inputheadername>> construct is included
under “Declaring Input and Output Headers” in this section.

Explanation

The construct <inputheadername> identifies the input header to receive the
message.

The DONTWAIT option allows the user to specify that a receive operation will
not wait for a message. If DONTWAIT is not specified, the receive operation
waits for a message.

The <message area> construct identifies the variable into which the actual
message will be placed.

Example

In the following example, the first RECEIVE statement is a conditional receive
operation. The variable COMSSTATUS, as well as the status value, will be
nonzero if there is no message waiting or if some other exception occurs. The
second receive operation will wait forever or until a message comes in.

8600 0734-000 3-35

Using Communications Management System (COMS) Features

3-36

INTEGER COMSSTATUS;
INTEGER RECEIVECODE;

COMSSTATUS := RECEIVE(MYINPUT [DONTWAIT],MSG);

IF RECEIVE(MYINPUT,MSG) > O THEN
BEGIN

RECEIVECODE := MYINPUT.STATUS;
CASE RECEIVECODE OF

BEGIN

95:

HANDLE_AGENDA_ERROR;

ELSE:
HANDLE_COMS_ERROR;
END;

END

ELSE
PROCESS_MESSAGE ;

8600 0734-000

Using Communications Management System (COMS) Features

SEND Statement

The SEND statement requests a message or portion of a message to be transferred
from the specified message area to the program or station queue designated by
either the DESTINATIONDESG or AGENDA field of the output header.

The SEND statement can be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSVALUE field of the
output header and represents the result of the transfer. For example, a returned
value of 0 (zero) means the transfer was successful.

Delivery confirmation uses the CONFIRMFLAG and CONFIRMKEY fields of the
output header. If the value of the CONFIRMFLAG is TRUE when the SEND is
executed, the three bytes of the CONFIRMKEY field are used as the tag for
delivery confirmation.

Consult the COMS Programming Guide for an explanation of the fields of the
headers.

Additional information relating to the SEND statement is included under “Fields
of the Output Header,” ‘‘Service Function Result Values,” and “STATUSVALUE
Field Values” in this section.

Syntax

<send statement>

- SEND - (- <outputheadername> , — <message length> -

l— [- <send options> —] J

- , — <message area> -) |

<send options>

I— <message control indicator> —I E BEFORE j

AFTER

v

’
}—EIIT SKIP __l_ <arithmetic expression> i

SPACE
—/1— PAGE
—/1\— NOCR
/1 NOLF

<message control indicator>

8600 0734-000 3-37

Using Communications Management System (COMS) Features

3-38

ESI !
EMI :
EGI

<arithmetic expression> -

<message length>

-[<arithmetic expression> |

*

Additional information relating to the <outputheadername> construct is
included under ‘‘Declaring Input and Output Headers” in this section.

Explanation
The <outputheadername>> identifies the'output header.

The send options describe the message controls and carriage controls to be
applied to the send.

A message control indicator is either the mnemonic or arithmetic value used to
select a type of output for the message. The output can be nonsegmented or
segmented. Segmented messages can be defined by changing the TEXTLENGTH
field of the output header and using one of the three segmenting options. The
TEXTLENGTH field is used by COMS to determine how much of the message area
variable is to be used as the segment in the SEND statement. Unless the
TEXTLENGTH field is set, COMS uses the entire message area.

The message control indicator mnemonics and their arithmetic equivalent are
shown in the following table. The default is EMI (the value 2). For a detailed
explanation of the indicators, consult the COMS Programming Guide.

Mnemonic Value Type of Indicator
ESI 1 End-of-Segment Indicator
EM! 2 End-of-Message Indicator (default)
EGI 3 End-of-Group Indicator

If multiple SEND statements are processed with the ESI control, and a SEND
statement with the EMI control is processed in the middle of these, the SEND
statement with the EMI control is sent immediately, while the other statements
wait until one of the ESI output conditions is TRUE. This means that, in some
cases, it can appear that the messages are not being sent in the correct order.

The results of the carriage control options can differ depending on the output

device. If no carriage controls are specified, the default value of AFTER SPACE
1" is used. This sends the message and advances one line.

8600 0734-000

Using Communications Management System (COMS) Features

The carriage control options, summarized below, pertain to the output device.

BEFORE and AFTER determine if the message is sent to the output device
before or after the rest of the carriage control options are executed.

SKIP causes the printer to skip to the channel specified by the value of the
arithmetic expression.

SPACE causes the printer to space the number of lines specified by the
arithmetic expression.

PAGE skips to the next page.
NOCR suppresses the carriage return.

NOLF suppresses line feed.

The <<message length> construct gives the length, in bytes, of the data contained
in the message area. If a value is specified in the <message length> construct,
the TEXTLENGTH field of the cutput header is updated with that value.

Example

The following SEND statement sends the message specified by the EBCDIC array
MSG, with a text length of 32 characters, and then uses the SKIP option to skip to
channel 10 using the message control indicator EMI.

EBCDIC ARRAY MSG[O: 32];

IF SEND(MYOUT [EMI AFTER SKIP 10], 32, MSG) THEN
BEGIN

CASE SENDCODE OF

BEGIN

98:

COMS_SECURITY_VIOLATION;

ELSE:
HANDLE_COMS_ERROR
END;

END

ELSE
RESUME_PROCESS;

8600 0734-000 3-39

Using Communications Management System (COMS) Features

Error Handling

When an error occurs during communication processing, the result of a COMS
statement can be determined in two ways:

1. The COMS statement can be used as a function.

2. The value stored in the STATUSVALUE field of the header can be compared
to the error codes for the particular statements.

All COMS statements can be used as functions. Each statement returns an integer
value. Except for the MESSAGECOUNT statement, the integer value is the same
as the status value COMS places in the STATUSVALUE field of the respective
header. The MESSAGECOUNT statement returns the value COMS places in the
MESSAGECOUNT field.

When detaching a station or program, or when using the Modular Function Index
(MFTI), the status of the operation is reported in the FUNCTIONINDEX field of the
input header. The value stored in this field can be used to check if the
detachment was successful or if an error occurred.

STATUSVALUE Field Values -

The values and meanings for the STATUSVALUE field of the input header and
output header and for the status of a call are listed and detailed in an appendix
of the COMS Programming Guide.

FUNCTIONSTATUS Field Values

COMS places values in the FUNCTIONSTATUS field of the input header when
performing a DISABLE statement or any MFI operation. These values are listed
and detailed in the COMS Programming Guide. Define these values in the
program using the DEFINE declaration, as shown in Volume 1 of this manual. For
example,

DEFINE CONTROLMSG = —1#, GOOD_DELIVERY = -12# ;

Exception-Condition Statements and DMTERMINATE

3-40

If you must use exception-condition statements to close a database, use the
DMTERMINATE statement for those exceptions not specifically handled by the
program.

Additional information relating to the DMTERMINATE statement is included

under “DMTERMINATE Statement” in Section 4, “Using the Data Management
System II (DMSII) Interface.”

8600 0734-000

Using Communications Management System (COMS) Features

COMS Service Functions

COMS service functions are entry points that allow programs to obtain
information on COMS entities and to translate designators and names that
represent these entities.

Umbrella service functions provide simple access to numerous specialized service
function entry points. The umbrellas map requests to specific service functions.

COMS umbrella service functions exchange either a name for a designator or a
designator for a name. When you pass a name or a designator to a service
function, the name or designator is used as an input parameter. The COMS library
returns output parameters and function values. The function values are given
under ‘“‘Service Function Result Values.”

To determine the length of a string returned by a service function, the program
must test for a blank. The string is always terminated by a blank character.

The following pages briefly describe the umbrella service functions, detail their
calling parameters, and define the values used to report the results of the call.

Consult the COMS Programming Guide for further information on the COMS
service functions.

Additional information relating to COMS service functions is included under
“Service Function Result Values,” ‘‘Designator Data Type,” “COMS Statements,”
“Error Handling,” *“Linking to COMS,” and *‘Designators for COMS Entities” in
this section.

Functional Descriptions

The COMS service functions can be called by application programs and by
processing items. The service functions and a description of how to use input
aqnd output headers in conjunction with service functions are covered in the
COMS Programming Guide. The service functions are explained briefly in Table

3-4.
Table 3-4. A Brief Expianation of COMS Service Functions
Service Function Brief Explanation
CONVERT_TIMESTAMP Converts value in a COMS

TIMESTAMP field to the date or
time as an EBCDIC array.

GET_DESIGNATOR_ARRAY_USING__DESIGNATOR Gets a designator vector from a
structure represented by a
designator.

8600 0734-000 3-41

Using Communications Management System (COMS) Features

Table 3-4. A Brief Explanation of COMS Service Functions (cont.)

Service Function

Brief Explanation

GET_DESIGNATOR_USING_.DESIGNATOR

GET_DESIGNATOR..USING__.NAME

GET_INTEGER_ARRAY_USING_DESIGNATOR

GET_INTEGER_USING_DESIGNATOR

GET_.NAME_USING_DESIGNATOR

GET_REAL_ARRAY

GET_STRING_USING_DESIGNATOR

STATION_TABLE_ADD

STATION_TABLE_INITIALIZE

STATION..TABLE_SEARCH

TEST_DESIGNATORS

Gets a specific designator out of the
structure represented by a
designator.

Converts a COMS entity name to a
COMS designator.

Gets a vector of integers from the
structure represented by a
designator.

Gets a specific integer out of the
structure represented by a
designator.

Converts a COMS designator to a
COMS name for that designator.

Gets a structure of data with no
connection to any entity.

Gets an EBCDIC string out of the
structure represented by a
designator.

Adds a station designator to an
existing station table.

Initializes a station table so that
station index values can be added
using STATION_TABLE_.ADD.

Finds a station designator within a
station table.

Tests whether a designator is part of
a structure represented by another
designator.

Declaring COMS Service Functions

3-42

To declare the individual functions needed for an application, use the
PROCEDURE declaration with the library entry point specification. The syntax
for each service function is shown on the following pages.

The internal name “COMSSUPPORT" should not be used as the internal name of

the library ““COMSSUPPORT". If it is, the appropriate version of COMS is
required as the FUNCTIONNAME or TITLE of the library.

8600 0734-000

Using Communications Management System (COMS) Features

Example 1: Use of FUNCTIONNAME
LIBRARY SERVICE_LIB (FUNCTIONNAME = "COMSSUPPORT.");
Example 2: Use of TITLE
LIBRARY SERVICE_LIB (LIBACCESS = BYTITLE, TITLE = "SYSTEM/COMS ON PACK.");

Consult Volume 1 of this manual for a complete explanation of the PROCEDURE
declaration, its syntax, and its constructs.

Consult the COMS Programming Guide for the valid designators for COMS
entities and for the service function mnemonics and values. The guide contains
detailed information regarding each service function.

The Pascal Programming Reference Manual, Volume 2: Product Interfaces
contains service functions specifically designed for Pascal arrays.

Additional information relating to declarations of COMS service functions is
included under “Linking to COMS"” in this section.

8600 0734-000 3-43

Using Communications Management System (COMS) Features

CONVERT_TIMESTAMP

3-44

The following declares a procedure to convert a COMS TIMESTAMP field to a
date or time EBCDIC array.

LIBRARY SERVICE.LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE CONVERT_TIMESTAMP
(ENTY_.TIMESTAMP, ENTY_MNEMONIC, ENTY_TIME);

VALUE ENTY_MNEMONIC;
REAL ENTY_TIMESTAMP;
INTEGER ENTY_MNEMONIC;
EBCDIC ARRAY ENTY_TIME([O];

LIBRARY SERVICE_LIB;
ENTY_TIMESTAMP is the TIME (6) timestamp used as input in the conversion.

The ENTY_MNEMONIC is the requested information. The only valid mnemonics
are TIME and DATE (with ALGOL values of 72 and 71, respectively.) The time is
returned in the form HHMMSS. The date is returned in the form MMDDYY.

ENTY_TIME is the array where the result from COMS is returned.

COMS provides a timestamp in the TIME(6) format for application programs
using a direct-window interface. The TIME(6) intrinsic returns a unique 48-bit
pattern for the time and date. The TIME(6) timestamp returns positive numbers
for the years 1970 through 1986 and negative numbers for the years 1987 and
beyond. This affects software that uses arithmetic compare operators, such as
greater than, less than, or equal to, against the TIME(6) format timestamp.
Consult Volume 1 for a definition and explanation of the TIME function.

8600 0734-000

Using Communications Management System (COMS) Features

GET_DESIGNATOR_ARRAY_USING_DESIGNATOR

The following declares a procedure to retrieve a designator vector from the
structure represented by the designator.

LIBRARY SERVICE_LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE GET_DESIGNATOR_ARRAY_USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY_DESGTOTAL, ENTY_DESGVECTOR);

INTEGER ENTY_DESGTOTAL;
REAL ENTY_DESIGNATOR;
REAL ARRAY ENTY_DESGVECTOR[O] ;

LIBRARY SERVICE_LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. The
only valid entry is a station list designator (ALGOL value 10).

ENTY_DESGTOTAL is the total number of designators returned in the vector.

The ENTY_DESGVECTOR is the vector in which the designators for the stations
are returned.

8600 0734-000

3-45

Using Communications Management System (COMS) Features

GET_DESIGNATOR_USING_DESIGNATOR

3-46

The following declares a procedure to retrieve a specific designator from the
structure represented by the designator:

LIBRARY SERVICE.LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE GET_DESIGNATOR-USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY_MNEMONIC, ENTY_DESGRES);
VALUE ENTY_MNEMONIC;

REAL ENTY_DESIGNATOR, ENTY_DESGRES;
INTEGER ENTY_MNEMONIC;

LIBRARY SERVICE-LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All
designators shown in ‘‘Designators for COMS Entities’ can be used.

The ENTY_MNEMONIC is the requested designator type. For example, DEVICE
can be used only as an entry for a station designator.

Valid ALGOL values and ENTY_MNEMONIC names for the various structures are
given in the following table.

If ENTY_DESIGNATOR Represents Valid ALGOL Value/ENTY__MNEMONIC Is
Any Designator ‘ 52 - INSTALLATION_DATA_LINK
Program 5 - SECURITY
Station 9 - DEVICE
5 - SECURITY
User 5 - SECURITY

ENTY_DESGRES is the designator returned by COMS.

Additional information relating to COMS designators is included under
“Designators for COMS Entities” in this section.

8600 0734-000

Using Communications Management System (COMS) Features

GET_DESIGNATOR_USING_NAME

The following declares a procedure to convert a COMS entity name to a COMS
designator.

LIBRARY SERVICE_LIB
(FUNCTIONNAME="COMSSUPPORT.") ;

INTEGER PROCEDURE GET_DESIGNATOR_USING_NAME
(ENTY_NAME, ENTY_TYPE, ENTY_DESIGNATOR);

VALUE ENTY_TYPE;
EBCDIC ARRAY ENTY_NAME[O] ;
REAL ENTY_DESIGNATOR;
INTEGER ENTY_TYPE;

LIBRARY SERVICE_LIB;

The ENTY_NAME contains the name of the entity. If the entity is an agenda, a
trancode, or installation data, and if the program calling the service function is
running in another window or outside of COMS, the format of the entity name
can be

<entity name> OF <window name>

For installation data, use the “ALL"” entity when no window is specified and the
window in which the program is running does not have an entity of the same
name.

The ENTY_TYPE is the mnemonic or value for the requested name. See the tables
in “Designators for COMS Entities” for the ALGOL values.

The ENTY_DESIGNATOR is the returned designator.

To ensure the return of a valid designator when the entity is an agenda, trancode,
or installation data
e (Call the service function only from a direct-window program.

e Call the service function only after a direct-window program has executed an
ENABLE statement.

¢ Do not allow a processing item to call the service function until the processing
item’s library code has executed a FREEZE statement.

Additional information relating to COMS designators is included under
“Designators for COMS Entities” in this section.

8600 0734-000 3-47

Using Communications Management System (COMS) Features

GET_INTEGER_ARRAY_USING_DESIGNATOR

The following declares a procedure to retrieve a vector of integers from the
structure represented by the designator.

LIBRARY SERVICE_LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE GET_INTEGER_ARRAY_USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY_MNEMONIC, ENTY_INTEGERTOTAL,
ENTY_INTEGERVECTOR) ;

VALUE ENTY_MNEMONIC;

REAL ENTY_DESIGNATOR;

INTEGER ENTY_INTEGERTOTAL, ENTY_MNEMONIC;
INTEGER ARRAY ENTY_INTEGERVECTOR[O] ;

LIBRARY SERVICE_LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All
designators shown in ‘“Designators for COMS Entities”’ can be used.

The ENTY_MNEMONIC describes which integer vector is requested. For example,
INSTALLATION_INTEGER_ALL can be used as an entry for all designators.
However, MIXNUMBERS is valid only if the designator represents a program.

Valid ALGOL values and ENTY_MNEMONIC names for the various structures are
given in the following table.

If ENTY_DESIGNATOR Represents Valid ALGOL Value/ENTY_MNEMONIC Is
Any Designator 45 - INSTALLATION_INTEGER-ALL
Program 84 - MIXNUMBERS

The ENTY_INTEGERTOTAL is the number of integers returned in the vector.
ENTY_INTEGERVECTOR is the vector itself.

Additional information relating to COMS designators is included under
“Designators for COMS Entities” in this section.

3-48 ' 8600 0734-000

Using Communications Management System (COMS) Features

GET_INTEGER_USING_DESIGNATOR

The following declares a procedure to extract a specific integer from the
structure represented by the designator.

LIBRARY SERVICE_LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE GET_INTEGER_USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY_MNEMONIC, ENTY_INTEGER);

VALUE ENTY_MNEMONIC;
REAL ENTY_DESIGNATOR;
INTEGER ENTY_MNEMONIC, ENTY_INTEGER;

LIBRARY SERVICE_LIB;

The ENTY_DESIGNATOR is the designator representing the structure. All
designators shown in ‘‘Designators for COMS Entities”’ can be used.

The ENTY_MNEMONIC describes which integer is requested. For example,
INSTALLATION_INTEGER_4 can be used as an entry for all designators.
However, CURRENT_USER_COUNT is valid only if the designator represents a
window.

Valid ALGOL values and ENTY_MNEMONIC names for the various structures are
given in the following table.

If ENTY_DESIGNATOR Represents Valid ALGOL Value/ENTY_MNEMONIC Is

Any Designator 41 - INSTALLATION_INTEGER__1
42 - INSTALLATION_INTEGER 2
43 - INSTALLATION_INTEGER_3
44 - INSTALLATION_INTEGER_4

Program 61 - QUEUE_DEPTH
62 - MESSAGE_COUNT
63 - LAST_RESPONSE
64 - AGGREGATE_RESPONSE

Station 83 - LSN

Window 81 - MAXIMUM_.USER_COUNT
82 - CURRENT_USER_COUNT

The ENTY_INTEGER is the result.

Additional information relating to COMS designators is included under
“Designators for COMS Entities” in this section.

8600 0734-000 3-49

Using Communications Management System (COMS) Features

GET_NAME_USING_DESIGNATOR

The following declares a procedure to convert a COMS designator to a COMS
name.

LIBRARY SERVICE_LIB
(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE GET_NAME_USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY_NAME);

REAL ENTY_DESIGNATOR; -

EBCDIC ARRAY ENTY_NAME [0];

LIBRARY SERVICE_LIB;

The ENTY_DESIGNATOR is the supplied designator. All valid designators, as
shown in *‘Designators for COMS Entities,”” can be used.

The ENTY_NAME is the returned name. It is a string of 1 to 255 characters.

Additional information relating to COMS designators is included under
“Designators for COMS Entities” in this section.

3-50 8600 0734-000

Using Communications Management System (COMS) Features

GET_REAL_ARRAY

The following declares a procedure to retrieve a structure of data that has no
connection to any entity.

LIBRARY SERVICE_LIB

(FUNCTIONNAME = "“COMSSUPPORT.");

INTEGER PROCEDURE GET_REAL_ARRAY

(ENTY_MNEMONIC, ENTY_REALTOTAL, ENTY_REALVECTOR);

VALUE ENTY_MNEMONIC;
INTEGER ENTY_MNEMONIC, ENTY_REALTOTAL;
REAL ARRAY ENTY_REALVECTOR[0] ;

LIBRARY SERVICE_LIB;

The ENTY_MNEMONIC is the requested structure of data. The only valid
mnemonic is STATISTICS (with an ALGOL value of 65).

ENTY_REALTOTAL is the total number of elements returned in the array.
ENTY_REALVECTOR is the array where the information is returned.

The service function returns a table. Consult the COMS Programming Guide for

details.

8600 0734-000

3-51

Using Communications Management System (COMS) Features

GET_STRING_USING_DESIGNATOR

The following declares a procedure to retrieve an EBCDIC string from the
structure represented by the designator.

LIBRARY SERVICE.LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE GET_STRING.USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY_MNEMONIC, ENTY_STRINGTOTAL,
ENTY_STRING) ;

VALUE ENTY_MNEMONIC;

REAL ENTY_DESIGNATOR;

INTEGER ENTY_STRINGTOTAL, ENTY_MNEMONIC;
EBCDIC ARRAY ENTY_STRING[O] ;

LIBRARY SERVICE_LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All
designators shown in *“Designators for COMS Entities’” can be used.

The ENTY_MNEMONIC describes which string is requested.

Valid ALGOL values and ENTY-MNEMONIC names for the various structures are
given in the following table.

‘If ENTY__DESIGNATOR Represents Valid ALGOL Value/ENTY_MNEMONIC Is

Any Designator 46 - INSTALLATION_STRING-1
47 - INSTALLATION_STRING-2
48 - INSTALLATION_STRING_3
49 - INSTALLATION_STRING4
50 - INSTALLATION_HEX_1
51 - INSTALLATION_HEX_2

Station Designator * 95 - LANGUAGE
120 - CONVENTION

1 To retrieve either the LANGUAGE or CONVENTION strings, you must use a station designator as
ENTY_DESIGNATOR.

The ENTY_STRINGTOTAL is the number of valid characters in the string.
ENTY_STRING is the returned string.

Additional information relating to COMS designators is included under
“Designators for COMS Entities” in this section.

3-52 8600 0734-000

Using Communications Management System (COMS) Features

STATION_TABLE_ADD

The following declares a procedure that adds a station designator to an existing
table of station designators (sometimes called a station table). The procedure
accepts the station table and a station designator. It returns a unique index into
the station table.

INTEGER PROCEDURE STATION_TABLE_ADD (STATION_HASH,
STATION_DESIGNATOR) ;

REAL ARRAY
STATION_HASH[0] ;

REAL
STATION_DESIGNATOR;

LIBRARY DCILIBRARY;

STATION_HASH represents the station table. The station table is implemented as
a hash table.

STATION_DESIGNATOR is the designator of the station that is added to the
station table.

8600 0734-000 3-53

Using Communications Management System (COMS) Features

STATION_TABLE_INITIALIZE

The following declares a procedure that initializes a table of station designators
(sometimes called a station table). The procedure accepts a station table and a
table modulus.

PROCEDURE STATION_TABLE_INITIALIZE (STATION_HASH, SHMOD);

REAL ARRAY
STATION_HASH[O];
INTEGER
SHMOD;
LIBRARY DCILIBRARY;

STATION_HASH represents the station table. The station table is implemented as
a hash table.

SHMOD is the table modulus. The modulus determines the density of the station
table and the time required to access it.

e For fast access and lower table density, choose a value for the modulus that
is twice the maximum number of entries in the station table.

e For slower access and greater table density, choose a value for the modulus
that is one half of the maximum number of entries in the station table.

3-54 8600 0734-000

Using Communications Management System (COMS) Features

STATION_TABLE_SEARCH

The following declares a procedure that finds a given station designator within a
table of station designators (sometimes called a station table). The procedure
accepts a station table and a station designator. It returns the index of the station
designator within the station table. If the station designator is not found, the
returned index is zero.

INTEGER PROCEDURE STATION_TABLE_SEARCH (STATION_HASH,
STATION_DESIGNATOR) ;

REAL ARRAY
STATION_HASH[O];

REAL
STATION_DESIGNATOR;

LIBRARY DCILIBRARY;

STATION_HASH represents the station table. The station table is implemented as
a hash table.

STATION_DESIGNATOR is the designator of the desired station (the station that
the procedure looks for in the station table).

8600 0734-000 3-55

Using Communications Management System (COMS) Features

TEST_DESIGNATORS

The following declares a procedure to test if a designator is part of a structure
represented by another designator.

LIBRARY SERVICE_LIB

(FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE TEST_DESIGNATORS
(ENTY_DESIGNATOR_1, ENTY_DESIGNATOR.2);

REAL ENTY_DESIGNATOR.1, ENTY_DESIGNATOR 2;
LIBRARY SERVICE.LIB;

ENTY_DESIGNATOR_1 and ENTY_DESIGNATOR_2 are both designators. The
order in which they are passed does not affect the service function. However,
only device, device list, security, and security category designators are valid.
Device and device list designators can be used in combination. Security and
security category designators can be used in combination. The valid designators

are:
CATEGORY_LIST INSTALLATION_INTEGER..3
DEVICE INSTALLATION_INTEGER_4
DEVICE_LIST INSTALLATION_STRING_1
INSTALLATION_DATA INSTALLATION_STRING_2
INSTALLATION_DATA_LINK INSTALLATION_STRING..3
INSTALLATION_HEX_ 1 INSTALLATION_STRING_4
INSTALLATION_HEX_ 2 SECURITY
INSTALLATION_INTEGER_ALL SECURITY._CATEGORY
INSTALLATION_INTEGER_1 SECURITY_CATEGORY_LIST
INSTALLATION_INTEGER_2

The valid ALGOL values for these are listed in ‘‘Designators for COMS Entities.”

3-56 8600 0734-000

Using Communications Management System (COMS) Features

Designators for COMS Entities

Each entity in the COMS configuration has an associated designator that can be
used in service calls. Table 3-5 lists the most common entities, their ALGOL
value, and the information a program can request. Table 3-6 lists the mnemonics
for the installation data. Consult the COMS Programming Guide for information
on passing these values to service functions and for a complete listing of values.

Each designator for agendas, trancodes, and installation data must uniquely
identify a particular combination of a window and that entity. Each designator
for a station must uniquely identify a particular combination of a window, a
dialog, and a station.

Because the layout of COMS designators can change with each software release, a

program should not preserve any designators across executions. It is advisable
not to use designators as keydata in a database.

Table 3-5. COMS Entities

Entity Mnemonic Value Type of information

AGENDA 3 Name
Installation Data

AGGREGATE_RESPONSE 64

CURRENT_USER_COUNT 82

DATABASE 13 Name
Instaliation Data

DATE 71

DEVICE 9 Name

Installation Data

DEVICE_LIST 11 Name
Installation Data

INSTALLATION_DATA 20 Name
Installation Data

LAST_RESPONSE 63

LIBRARY 18 Name
Installation Data

LSN 83

MAXIMUM_USER_COUNT 81

MESSAGE_COUNT 62

MIX_NUMBERS 84

8600 0734-000 3-57

Using Communications Management System (COMS) Features

Table 3-5. COMS Entities (cont.)

Entity Mnemonic Value Type of Information
PROCESSING_ITEM 14 Name
Installation Data
PROCESSING_ITEM__LIST 15 Name
Installation Data
PROGRAM 4 Name
Installation Data
Security Designator
Current Input Queue Depth
Total Number of Input Messages
Handled
Response Time for Last Transaction
Response Time Aggregate
Mixnumbers for Active Copies
SECURITY 5
SECURITY_CATEGORY 8 Name
Installation Data
SECURITY_CATEGORY_LIST 19 Name
Installation Data
STATION 1 Name
Installation Data
Logical Station Number
Security Designator
Device Designator
Language
Convention
STATION_LIST 10 Name
Installation Data
Stations in List
STATISTICS 65
TIME 72
TRANCODE 16
QUEUE_DEPTH 61
USERCODE 2 Name
Instailation Data
WINDOW 12 Name
Installation Data
Maximum number of users
Current number of users
WINDOW_LIST 17 Name
Installation Data

3-58 8600 0734-000

Using Communications Management System (COMS) Features

The mnemonics and values for installation data are showin in Table 3-6.

Table 3-6. Installation Data Values

Entity Mnemonic Value
INSTALLATION_DATA 20
INSTALLATION_INTEGER_1 41
INSTALLATION_INTEGER_2 42
INSTALLATION_INTEGER_3 43
INSTALLATION_INTEGER_4 44
INSTALLATION_INTEGER_ALL 45
INSTALLATION_STRING_.1 46
INSTALLATION_STRING_2 47
INSTALLATION_STRING_3 48
INSTALLATION_STRING_4 49
INSTALLATION_HEX_1 50
INSTALLATION._HEX_2 51
INSTALLATION_DATA_LINK 52

Service Function Mnemonics and Values
The mnemonics used by the generalized service functions are detailed in the
COMS Programming Guide. Each mnemonic indicates which data item(s) is being
requested. When passing values to the service functions, use the DEFINE
declaration as shown in Volume 1. For example,

DEFINE AGENDA = 3#;
Service Function Result Values

The values returned by COMS to give the status of the call are detailed in the
COMS Programming Guide.

8600 0734-000 3-59

Using Communications Management System (COMS) Features

COMS Sample Program

The following sample program monitors a sailboat race and updates a DMSII
database by using features of the COMS direct-window interface. The program
illustrates the techniques used in writing transaction processors that allow
synchronized recovery.

3-60

The program runs in a COMS environment that has been configured to include a
DMSII database called SAILDB. The database contains three data sets.

RACE_CALENDAR contains one record for every race.

ENTRY contains one record for each boat entered in the race. A boat can have
multiple records, depending on the number of races it enters.

RDS is the restart data set.

An example of a program using COMS and a SIM database is included under
“Example 4: Using COMS with a SIM Database’ in Section 7, ‘“Using the Semantic
Information Manager (SIM) Interface.”

BEGIN
% ONLINESAIL

REAL
COMS_STATUS;

TYPE INPUTHEADER

COMS_IN_TYPE (ARRAY CONVERSATION [0:59]);
COMS_IN_TYPE

COMS_IN;
OUTPUTHEADER

COMS_OUT;

DATABASE
SAILDB;
DEFINE
EOF_NOTICE = 99 #,
TEXT_LEN = 113 #;
EBCDIC ARRAY
SCRATCH[0:255],
MSG_TEXT[O : TEXT_LEN-1];

DEFINE MSG_TCODE = MSG_TEXT([0] #,
% MSG_FILLER
% MSG_CREATE_.RACE

MSG_CR_ID = INTEGER(MSG-TEXT[7],6) #,
MSG_.CR_NAME = MSG.TEXT[13] #,
MSG_CR_DATE = MSG_TEXT[33] #,
MSG_CR_TIME = MSG_TEXT[39] #,
MSG_CR_LOCATION = MSG_TEXT[43] #,
MSG_CR_SPONSOR = MSG_TEXT[63] #,

% FILLER

8600 0734-000

Using Communications Management System (COMS) Features

% MSG_ADD_ENTRY REDEFINES MSG_CREATE_RACE
MSG_AE_RACE_ID = INTEGER(MSG_TEXT[7],6) #,
MSG_AE_ID = MSG_TEXT[13] #,
MSG_AE_NAME = MSG_TEXT[19] #,
MSG_AE_RATING = INTEGER(MSG_TEXT[39],3) #,
MSG_AE_OWNER = MSG_TEXT[42] #,
MSG_AE_CLUB = MSG_TEXT[62] #,

3 FILLER

% MSG_DELETE_ENTRY REDEFINES MSG_CREATE_RACE
MSG_DE_RACE_ID = INTEGER(MSG_TEXT[7],6) #,
MSG_DE_ID = MSG_TEXT[13] #,

% FILLER
MSG_STATUS = MSG_TEXT[83] #;

BOOLEAN B;

PROCEDURE SEND_MSG;
% Send the message back to the originating station. Do
% not specify an output agenda. Make sure to test
% the result of the SEND statement.
BEGIN
COMS_OUT.DESTCOUNT := 1;
COMS_OUT.DESTINATIONDESG := COMS_IN.STATION;
COMS_OUT. STATUSVALUE := 0;
COMS_STATUS := SEND(COMS_OUT, TEXT_LEN, MSG_TEXT);
IF NOT(COMS_STATUS = 0 OR COMS_STATUS = 92) THEN
DISPLAY("Online Program SEND Err: " !! STRING8(COMS_STATUS,*));
END SEND_MSG;

PROCEDURE CREATE_RACE;
% Enter a new race record into the database. Since the
% transaction is done in online mode, save the restart
% data in the conversation area only. If the program aborts
% at BEGINTRANSACTION or ENDTRANSACTION, go back to the
% RECEIVE statement.

BEGIN

CREATE RACE-CALENDAR;

PUT RACE-CALENDAR (RACE-NAME 1= MSG_CR_NAME);
PUT RACE-CALENDAR (RACE-ID 1= MSG_CR_ID);
PUT RACE-CALENDAR (RACE-DATE 1= MSG_CR_DATE);
PUT RACE-CALENDAR (RACE-TIME 1= MSG_CR_TIME);

PUT RACE-CALENDAR (RACE-LOCATION := MSG_CR_LOCATION);
PUT RACE-CALENDAR (RACE-SPONSOR := MSG.CR_SPONSOR);

BEGINTRANSACTION COMS_IN NOAUDIT RDS : B;

IF B THEN
BEGIN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE(B) ;
END
ELSE
BEGIN
STORE RACE-CALENDAR : B;
IF B THEN
REPLACE MSG_STATUS BY "Store Error”, " " FOR 19

8600 0734-000 3-61

Using Communications Management System (COMS) Features

ELSE
REPLACE MSG_STATUS BY "Race Added", " " FOR 20;
ENDTRANSACTION COMS_OUT AUDIT RDS : B;
IF B THEN
BEGIN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE (B) ;
END
ELSE
SEND_MSG;
END;
END CREATE.RACE;

PROCEDURE ADD_ENTRY;
% Enter a boat in a race. The restart requirements are the
% same as those for creating a race.
BEGIN
FIND RACE-SET AT RACE-ID = MSG_AE_RACE_ID: B;
IF B THEN
IF REAL(B.DMERROR) = NOTFOUND THEN
BEGIN
REPLACE MSG_STATUS BY "Race does not exist", " " FOR 11;
SEND_MSG;
END
ELSE
DMTERMINATE(B)
ELSE
BEGIN
CREATE ENTRY;
PUT ENTRY (ENTRY-BOAT-NAME := MSG_AE_NAME);
PUT ENTRY (ENTRY-BOAT-ID := MSG_AE_ID);
PUT ENTRY (ENTRY-BOAT-RATING := MSG_AE_RATING);
PUT ENTRY (ENTRY-BOAT-OWNER := MSG_AE_OWNER);
PUT ENTRY (ENTRY-AFF-Y-CLUB := MSG_AE_CLUB);

PUT ENTRY (ENTRY-RACE-ID 1= MSG.AE.RACE.ID);
BEGINTRANSACTION COMS_IN NOAUDIT RDS : B;
IF NOT B THEN

BEGIN

STORE ENTRY: B;

IF B THEN

REPLACE MSG_STATUS BY "Store Error", " " FOR 19
ELSE

REPLACE MSG_STATUS BY "Boat Added", " " FOR 20;
ENDTRANSACTION COMS_OUT AUDIT RDS : B;
END;

IF B THEN
BEGIN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE(B) ;
END
ELSE
SEND_MSG;
END;
END ADD_ENTRY;

3-62 8600 0734-000

Using Communications Management System (COMS) Features

PROCEDURE DELETE_ENTRY;
% Delete a boat from a race. The restart requirements are
% the same as those for add1ng an entry.
BEGIN
LOCK ENTRY-RACE-SET AT
ENTRY-RACE-ID = MSG_DE_RACE_ID AND
ENTRY-BOAT-ID = MSG_DE_ID : B;
IF B THEN
IF REAL(B.DMERROR) = NOTFOUND THEN
BEGIN
REPLACE MSG_STATUS BY "Boat Entry Not Found", " " FOR 10;
SEND_MSG;
END
ELSE
DMTERMINATE(B)
ELSE
BEGIN
BEGINTRANSACTION COMS_IN NOAUDIT RDS : B;
IF NOT B THEN
BEGIN
DELETE ENTRY : B;
IF B THEN
REPLACE MSG_STATUS BY "“Found But Not Deleted", " " FOR 9
ELSE
REPLACE MSG_STATUS BY "Boat Deleted", " " FOR 18;
ENDTRANSACTION COMS_OUT AUDIT RDS : B
END;
IF B THEN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE(B) ;
SEND_MSG;
END;
END DELETE_ENTRY;
PROCEDURE CHECK_COMS_INPUT_ERRORS;
% Check for COMS control messages.
BEGIN
CASE COMS_STATUS OF
BEGIN
93: REPLACE MSG_STATUS BY "MSG Causes Abort, Do Not Retry";
SEND_MSG;
20:
100:
101:
102: REPLACE MSG_STATUS BY "Error in STA Attach/Detachment"”;
SEND_MSG;
0:
92:
99:
ELSE:; % A good message, recovery message, or EOT notification.
END
IF COMS_IN.FUNCTIONINDEX < O THEN
BEGIN
REPLACE MSG.STATUS BY "Negative Function Code", " " FOR 8;
SEND_MSG;
END;
END CHECK_COMS_INPUT_ERRORS;

8600 0734-000 3-63

Using Communications Management System (COMS) Features

3-64

PROCEDURE CLOSE_DOWN;
% Close the database.
BEGIN
CLOSE SAILDB;
END CLOSE_DOWN;

PROCEDURE PROCESS.TRANSACTION;
% Since the transaction type is based on the
% function index, make sure it is within
% range.
BEGIN
CASE COMS_IN.FUNCTIONINDEX OF
BEGIN
ELSE:BEGIN
REPLACE MSG_STATUS BY
"Invalid Trans Code", " " FOR 12;
SEND_MSG;
END;
1: CREATE_RACE;
2: ADD_ENTRY;
3: DELETE_ENTRY;
END;
END PROCESS_TRANSACTION;
PROCEDURE PROCESS_COMS_INPUT;
% Gets the next message from COMS. If the status
% returned is an EOF_NOTICE, go to EOT, else make sure
% that it is a valid message before processing it.
BEGIN
REPLACE MSG_TEXT BY " " FOR TEXT_LEN;
COMS_STATUS := RECEIVE(COMS_IN, MSG_TEXT);
IF COMS_STATUS NEQ EOF_NOTICE THEN
BEGIN
CHECK_COMS_INPUT_ERRORS;
IF (COMS_STATUS = 0 OR COMS_STATUS = 92) AND
COMS_IN.FUNCTIONINDEX >= 0 THEN
PROCESS_TRANSACTION;
END;
END PROCESS_COMS_INPUT;

q
o

3R

COMSSUPPORT . LIBACCESS := VALUE(BYTITLE);
REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT. TITLE := STRING(SCRATCH[0],256);
OPEN UPDATE SAILDB: B;
IF B THEN
DMTERMINATE(B) ;
ENABLE (COMS_IN, "ONLINE");
CREATE RDS;

DO
PROCESS_COMS_INPUT

8600 0734-000

Using Communications Management System (COMS) Features

UNTIL COMS_STATUS = EOF_NOTICE;

CLOSE_DOWN;
END.

8600 0734-000 3-65

Section 4
Using the Data Management System II
(DMSII) Interface

An interface to the Data Management System II (DMSII) is provided in the
BDMSALGOL language. BDMSALGOL is based on Unisys Extended ALGOL and
contains extensions that enable a programmer to declare and use databases. The
extensions to ALGOL that make up the BDMSALGOL language are described in
this chapter. These extensions provide the following capabilities:

e Invoking a database
e Manipulating data through data management statements
e Using database items through a mapping syntax

e Processing exceptions

Programs written in the BDMSALGOL language must be compiled with the
BDMSALGOL compiler. Typically, this compiler is titled “SYSTEM/BDMSALGOL".

Refer to the DMSII Application Program Interfaces Programming Guide for a
discussion of DMSII programming issues, such as audit and recovery. Consult the
DMSII Data and Structure Language (DASDL) Programming Reference Manual
for detailed information on DASDL.

DMSII and Semantic Information Manager (SIM) databases can be accessed and
used in the same program. Each database must be invoked, manipulated, and
processed with its own extensions. Use DMSII and BDMSALGOL extensions for
DMSII databases. Use SIM extensions for SIM databases.

You can also use DMSII with other products described in this volume, such as
Communications Management System (COMS), Advanced Data Dictionary System
(ADDS), and Transaction Processing System (TPS).

Additional information relating to DMSII extensions is included in Section 3,
“Using Communications Management System (COMS) Features,” Section 2, “Using
Advanced Data Dictionary System (ADDS) Extensions,” Section b5, ‘“Using DMSII
Transaction Processing System (TPS) Extensions,” and Section 7, *Using the
Semantic Information Manager (SIM) Interface.”

8600 0734-000 4-1

Using the Data Management System |l (DMSII) Interface

Invoking a DMSII Database

Invoking a database involves both database declarations and database equations.

Declaring a Database

4-2

Like all variables, a database must be declared in a BDMSALGOL program before
it is referenced. However, a DATABASE declaration is unlike other declarations
in that it is actually an invocation of a database that has already been fully
described and declared in the Data and Structure Definition Language (DASDL).

Two different databases can be updated in the same program only if they are the
same physical database.

If the compiler control options LIST and LISTDB are both TRUE, all invoked
structures, together with the record formats, item and key descriptions, database
titles, and other pertinent information, are written on the program listing. When
database application programs are being developed, the LISTDB option should be
used, and the resulting information should be studied carefully.

Additional information relating to the LIST and LISTDB options is included under
“BDMSALGOL Compiler Control Options’’in this section.

Syntax
<database declaration>

— DATABASE - <database reference> i

<database reference>

<database name> —————)
l— <internal name> = —' L <logical database name> OF -l

b
| 4

v

— (- TITLE = " - <database title> - " -) —I

A 4

’

— <data set reference>

<set references>

<internal name>

<BDMS identifier> |

8600 0734-000

Using the Data Management System Il (DMSII) Interface

<logical database name>

L

~ <BDMS identifier>

<database name>

— <BDMS identifiers

<database title>

A properly formed <file title constant> (as defined in the Work Flow

Language (WFL) Programming Reference Manual) that has only one node;

that is, a file title constant that does not contain any slashes (/).

<data set reference>

<data set name>
'— <internal name> = —] l— (<set part>) -I

<data set name>

- <BDMS identifier>

<set part>

—— ALL
— NONE

- SET

- SETS —t «<set reference> —]-—

<set reference>

<set name>

L <internal name> = —,

<set name>

- <BDMS identifier>

Additional information relating to the <BDMS identifier> construct is included

under ‘“BDMS Identifier Construct” in this section.

8600 0734-000

4-3

Using the Data Management System Il (DMSII) Interface

4-4

Explanation

A DATABASE declaration declares a database and specifies which database or
which parts of a database are to be invoked. If no data set reference parts and no
set reference parts are specified in a DATABASE declaration, then all data sets
and all sets for each data set are implicitly invoked.

The <internal name> construct assigns an internal name by which a database,
data set, set, or subset is known within the program. When an internal name is
specified, all subsequent references to the structure must use this internal name.

A database, data set, set, or subset can be invoked more than once; however, the
external name (the name in the description file) can be used to reference only one
invocation of a structure. Internal names must be used to provide unique names
for all other invocations of a structure. The default internal name of a structure
is its external name.

By using the internal names in the <<data set reference> or the <set reference>
constructs, multiple record areas or set paths can be established. Thus, several
records of a single data set can be manipulated simultaneously.

The <logical database name>> construct allows the program to reference a logical
database. A program can invoke structures selectively from a logical database, or
it can invoke the entire logical database. Selective invocations are specified in the
same manner as for physical databases; however, the choice of structures is
limited to those structures included in the logical database.

The database name form gives the external name of the database to be invoked.

The <database title> construct is an alphanumeric string. A usercode, if any, is
the usercode of the control file. The single node of the title is the directory node
under which the database files are stored. The family name, if any, is the family
name of the control file. The default database title is the external name of the
database plus the control file usercode and family name, if any, from the
description file. When opening the database, the Master Control Program (MCP)
builds the control file title from the database title specified in the declaration. See
the DMSII DASDL Programming Reference Manual for a discussion of control
files and description files.

This title equation is used only at run time, and cannot be used at compile time to
specify the title of the database description file. The primary use of the
<database title> construct is for modeling. See the DMSII DASDL Programming
Reference Manual for a description of modeling.

The <data set reference>> construct specifies a particular data set from the
declared database. If a data set reference is used, only the specified structures
are invoked. A data set reference must be used to invoke a disjoint data set.

The <data set name> construct gives the external name of the data set to be
invoked.

8600 0734-000

Using the Data Management System |l (DMSII) Interface

The <set part> construct invokes specific sets from the data set declared in the
data set reference that contains it. If the set part construct is omitted, all sets are
implicitly invoked. If the set part construct is used, all sets (ALL), no sets
(NONE), or only the specified sets are invoked.

The <set reference> construct establishes a set that is not implicitly associated
with any particular record area. To load a record area using the set name
specified in a set reference, the ‘‘<data set> VIA” form of the selection
expression must be used.

The <set name>> construct gives the external name of the set to be invoked.

Only disjoint structures can be explicitly invoked. When a master data set is
invoked (either implicitly or explicitly), its embedded data set, sets, and subsets
are always implicitly invoked. When a data set containing an embedded set
associated with a disjoint data set is invoked, or a data set containing a link to
another disjoint data set is invoked, then a path is established. However, the
disjoint data set must be invoked if it is to be used.

Multiple invocations of a structure provide multiple record areas or set paths, or
both, so that several records of a single data set can be manipulated
simultaneously. Selecting only needed structures for UPDATE and INQUIRY
provides better use of system resources.

If remaps are declared in DASDL, they are invoked in the same manner as
conventional data sets.

8600 0734-000 4-5

Using the Data Management System Il (DMSII) Interface

Example: Simple Database

4-6

The following examples apply to the database DB described by the following
DASDL description:

D DATA SET (
K NUMBER (6);
R NUMBER (5);

)
S1 SET OF D KEY K;
S2 SET OF D KEY R;

DATABASE DB: D

This declaration establishes one current record area for the data set D, one
path for the set S1 of data set D, and one path for the set S2 of data set D.
The statements “FIND S1”, “MODIFY S1”, “FIND S2”, and “MODIFY S2”
automatically load the data into the D record area.

DATABASE DB: D, X=D (NONE)

This declaration establishes two current record areas (D and X) and two
paths (S1 and S2). The sets S1 and S2 are implicitly associated with the D
record area. The set part NONE prevents a set from being associated with X.
Thus, the statements “FIND S1”” and “FIND S2” load the D record area. The
statements “FIND X VIA S1” and “FIND X VIA S2” must be executed to
load the X record area using a set.

DATABASE DB: D, X=D

This declaration shows how multiple current record areas and multiple
current paths can be established. The statement “FIND S1 OF D” loads the D
record area without disturbing the path S1 OF X, and the statement “FIND
S1 OF X” loads the X record area without disturbing the path S1 OF D.
Qualification of S1 is necessary to distinguish the paths.

DATABASE DB: D (SET S1), X=D (SET S1), Y=D (NONE)

This declaration shows how more current record areas than paths can be
established. Three record areas (D, X, and Y) are established, but only two
paths (S1 OF D and S1 OF X) are established. The program must execute the
statement “FIND Y VIA S1 OF D”, “FIND Y VIA S1 OF X", or “FIND Y"” to
load the Y record area.

DATABASE DB: X=D (SET S1), Y=D (SET T=S1)

This declaration explicitly associates a set with a given work area. The
statement “FIND S1” loads the X record area, and the statement “FIND T”
loads the Y record area. S1 and T both use the same key.

DATABASE DB: D, SY=S1

This declaration shows how a set reference can be used to establish a set
that is not implicitly associated with any particular record area. The
statement “FIND D VIA SY” must be executed to load a record area using
the set S1.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

Example: Invoking Disjoint Data Sets

The following example shows when a data set reference must be used to invoke

disjoint data sets. The database DB is described by the following DASDL
description:

F DATA SET (
FI NUMBER (4);

)s
E DATA SET (
EK NUMBER (8);
)s
D DATA SET (
A NUMBER (6);
SE SET OF E KEY EK;
LINK REFERENCE TO F; o
)s

If data set references are not specified to invoke E and F, as in the declaration

DATABASE DB: D

the paths are established by invoking the embedded set SE and the link item
LINK. However, these paths cannot be used unless data set references for E and

F are specified to establish record areas associated with these paths, as in the
declaration

DATABASE DB: D,E,F

8600 0734-000 4-7

Using the Data Management System Il (DMSII) interface

Example: Invoking a Logical Database

4-8

In this example, the database EXAMPLEDB, shown on the following page, is
described by the DASDL description given below:

D1 DATA SET (
A REAL;
B NUMBER (5);
C ALPHA (10);
)s
S1A SET OF D1 KEY IS A;
S1B SET OF D1 KEY IS (A,B,C);
D2 DATA SET (
X FIELD (8);
Y NUMBER (2); s
Z REAL; h
E DATA SET (
V1 REAL;
V2 ALPHA (2);
)s
SE SET OF E KEY IS V1;
)s
S2A SET OF D2 KEY IS X;
S2B SET OF D2 KEY IS (X,Y,Z);
LDB1 DATABASE (D1(NONE), D2(SET S=S2A));
LDB2 DATABASE (D1(SET S1=S1B), D2(SET S2=S2B));
LDB3 DATABASE (D=D2);

The following BDMSALGOL program invokes the logical database LDB1 of
EXAMPLEDB. Data sets D1 and D2 are available to the program; however, none
of the sets associated with D1 are available. The only set associated with D2 that
is available is set S2A, which appears as set S. The output produced by the
LISTDB compiler control option is shown with the program.

$ SET LIST LISTDB
BEGIN

DATABASE LDB1 OF EXAMPLEDB;
*DATABASE TITLE: EXAMPLEDB ON DISK
*01 D1: DATA SET (#2)

* INVOKED SETS:

* RECORD ITEMS:

*02 REAL A

*02 INTEGER B: NUMBER (5)
*02 STRING C: ALPHA (10)
*01 D2: DATA SET (#5)

* INVOKED SETS:

* S (#8, AUTOMATIC), KEY = X
* RECORD ITEMS:

*02 REAL X: FIELD (8)

*02 INTEGER Y: NUMBER (2)
*02 REAL Z

8600 0734-000

Using the Data Management System |l (DMSII) Interface

*02 E: DATA SET (#6)

* INVOKED SETS:

* SE (#7, AUTOMATIC), KEY = V1
* RECORD ITEMS:

*03 REAL V1

*03 STRING V2: ALPHA (2)
*DESCRIPTION TIMESTAMP: 06/09/82 @ 17:30:34
END.

8600 0734-000 4-9

Using the Data Management System 1l (DMSII) Interface

Database Equation Operations
The term ‘‘database equation” refers to three separate operations:

e Specification of database titles during compilation.

e Work Flow Language (WFL) database equation to override compiled-in titles.
(For more information, refer to the DMSII Application Program Interfaces
Programming Guide for the WFL syntax.)

e Run-time manipulation of database titles.

To take advantage of the reentrance capability of the Accessroutines, the user
must be able to specify the title of a database at run time. Database equation
allows the database title to be specified at run time and allows access to
databases that are stored under other usercodes and on families that are not
visible to a task. For further information about the Accessroutines, consult the
DMSII Application Program Interfaces Programming Guide.

Database equation is operationally similar to file equation. WFL database
equation overrides the specification of a database title in the DATABASE
declaration, and run-time modification of a database title overrides both WFL
database equation and the DATABASE declaration. However, database equation
differs from file equation in that a run-time error resulits if a BDMSALGOL
program attempts to assign a value to or examine the TITLE attribute of a
database while it is open. For an explanation of the TITLE database attribute,
refer to “DATABASE Declaration” in this section.

The following syntax shows how the database TITLE attribute can be
manipulated during program execution.

Syntax

<database attribute assignment statement>

- <string-valued database attribute> — := — <string expression> i

<string-valued database attribute>

- <internal name> - . - TITLE {

Additional information relating to the <internal name> construct is included
under ‘“‘Declaring a Database” in this section.

4-10 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Explanation

The string expression must evaluate to a string in the form of a database title.

The string-valued database attribute construct can be used anywhere a string
expression is valid.

Database titles never end with a period, and a replace pointer-valued attribute
statement is not valid for making assignments to database titles.

Note: BDMSALGOL programs employing database equation must be compiled
with a BDMSALGOL compiler with a release level later than Mark 3.2.

Example

In this example, the first BDMS OPEN statement opens the database with the title
LIVEDB, whose data and control files are stored under the user’s directory. The
second OPEN statement invokes the database TESTDB, whose files are stored on
TESTPACK under the usercode UC.

BEGIN

STRING S;

DATABASE MYDB (TITLE="LIVEDB");
OPEN UPDATE MYDB;

CLOSE MYDB;
MYDB.TITLE := "(UC)TESTDB ON TESTPACK";
OPEN UPDATE MYDB;

CLOSE MYDB;
S := TAKE(MYDB.TITLE,5);

END.

8600 0734-000 4-11

Using the Data Management System Il (DMSII) interface

BDMSALGOL Basic Language Constructs

The constructs described on the following pages are used within the DMSII
“DATABASE" declaration and in DMSII data management statements and
functions. The descriptions cover the following topics.

e the conventions for naming databases, data sets, sets, items, and so forth
e input mapping and output mapping

e selection expressions

BDMS Naming and Qualification Conventions
Naming conventions in DASDL for databases and their components follow COBOL
rules; that is, names can contain hyphens, and some item and structure names can
require qualification. Although both of these conventions contradict normal

ALGOL naming rules, they must be allowed in programs that declare and use
databases.

BDMS Identifier Construct

The identifier of a database, data set, set, item, and so on is in the form of a
<BDMS identifier>.

Syntax

<BDMS identifier>

—E <identifier> |

Explanation

The BDMS identifier construct must be fewer than 64 characters long.

Examples
If a database is described in DASDL by the following:

D-S DATA SET (
A-1 NUMBER (5);
A-2 NUMBER (10);
)s

then in a BDMSALGOL program, the data set D-S and the items A-1 and A-2 can
be referenced as in the following examples:

INTEGER I;
GET D-S (I := A-1);
PUT D-S (A-2 := I);

4-12 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Construct for Identifiers of Occurring ltems

If an item is declared in the DASDL description to have an OCCURS clause, then
its identifier must be subscripted to denote which of its occurrences is to be used.

Syntax

<subscripted BDMS identifier>

- <BDMS identifier> - [.Ji <arithmetic expression> —l-]

Explanation

The leftmost arithmetic expression denotes the subscript of the outermost
OCCURS clause that affects the item, the next arithmetic expression to the right
denotes the subscript of the next outermost OCCURS clause, and so on.

Examples
If items A and B are described in DASDL as follows:

DS DATA SET (
G GROUP (
A ALPHA (10);
B NUMBER (4) OCCURS 3 TIMES;

)
OCCURS 2 TIMES;
)s
there are two occurrences of A, denoted

A[1] A(2]

and there are six occurrences of B, denoted

B[1,1] B[2,1]
B[1,2] B[2,2]
B[1,3] B[2,3]

8600 0734-000 4-13

Using the Data Management System |1 (DMSII) Interface

Qualification of Database Items

Database item names need not be unique within a database. Qualification is used
to distinguish between database items with the same names.

Syntax

<qualification>

_E OF
<BDMS identifier> |

Explanation

An item name can be qualified by the name of any structure that physically
contains the item. Any number of qualification names desired can be used,
provided that the result is unique. If improper or insufficient qualification is
used, a syntax error is given.

A set name can be qualified by the name of the data set it spans.
A group name can be used to qualify an item it contains.

Qualification need not be used if the unqualified name is unique. Qualification
must be used whenever there is ambiguity. A variable name can be declared with
the same name as a database item in BDMSALGOL without requiring qualification
of the item name.

Examples
If a database is described in DASDL as follows:

DS1 DATA SET (
N NUMBER (4) OCCURS 4 TIMES;
)s

DS2 DATA SET (
N NUMBER (4) OCCURS 4 TIMES;

)s

then the following BDMSALGOL statements indicate how qualification is used to
distinguish between the two data items named N.

SET N OF DS1 TO NULL;
SET N OF DS2 TO NULL;

SET N(1) OF DS1 TO NULL;
SET N(1) OF DS2 TO NULL;

4-14 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Referencing Database Items

The record area (user work area) is not directly accessible to a BDMSALGOL
program. Instead, an explicit mapping between database data items and program
variables must be specified whenever access to those items is desired.

Mappings specify the source and destination of data to be transferred into or out
of a user work area. Mappings are of two kinds: input mappings and output

mappings.

Example
If a database is described in DASDL by the following:

D1 DATA SET (
A NUMBER (5);
X NUMBER (5) OCCURS 3 TIMES;

)3
then the items of data set D1 can be referenced in the following ways:

INTEGER B,Y1,Y2,Y3;

% The following statement transfers the value of database item
% A to the locally declared integer B.

GET D1 (B := A);

% The following statement transfers the value of locally
% declared integer B to the work area for D1.
PUT D1 (A := B);
% The following statement transfers the values of all three
% occurrences of X into Y1, Y2, and Y3.
GET D1 (Y1 := X[1],
Y2 := X[2],
Y3 := X[3]);

% The following statement transfers the values of locally
% declared integers Y1, Y2, and Y3 into the three occurrences
% of database item X.
PUT D1 (X[1] := Y1,
X[2] := Y2,
X[3] := Y3);

8600 0734-000 4-15

Using the Data Management System || (DMSII) Interface

Input Mapping Used with Retrieval Statements

4-16

Input mappings can be used with the retrieve statements DELETE, FIND, GET,
BDMS LOCK, and MODIFY. Input mappings transfer the value of a
DASDL-declared data item to a program variable. If the data item is an occurring
item (that is, if the item is declared in DASDL with an OCCURS clause), it must
be subscripted appropriately.

Syntax

<input mapping>

-r— <input assignment> i

<input assignment>

—r— <arithmetic variable> - := — <count item name> i

— <field item name>

- <pumeric item name>

— <population item name> —

- <real item name>

- <record type item name> —

— <Boolean variable> - := — <Boolean item name>

- <pointer variable> - := <alpha item name>
<group item name>

<numeric item name>

<alpha item name>
<Boolean item name>
<count item name>
<field item name>
<group item name>
<numeric item name>
<population item name>
<real item name>
<record type item name>

—[<BDMS identifier> - :
<subscripted BDMS identifier> —I

Additional information relating to the <BDMS identifier> construct is included
under ‘“BDMS Identifier Construct” in this section. Information related to the

<subscripted BDMS identifier> construct is included under “Construct for
Identifiers of Occurring Items” in this section.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

For more information concerning the arithmetic variable, Boolean variable, and
pointer variable constructs, refer to Volume 1.

Explanation

An arithmetic variable can be an integer, real, or a double simple or subscripted
variable. A Boolean variable can be a subscripted or Boolean simple variable. A
pointer variable can be a pointer identifier or an element of a character array.

Syntax
<arithmetic variable> := <field item name>
Explanation

If the field item is defined to contain N bits, then N bits are stored right-justified
in the arithmetic variable. All other bits are set to zero.

Syntax

<arithmetic variable> := <numeric item name>
<arithmetic variable> := <real item name>

Explanation

The numeric item or real item is converted into a binary value with a scale factor
of zero (its true value). The value is stored in the arithmetic variable as in a
normal arithmetic assignment; that is, it is converted to an integer or extended, if
necessary. An error and termination results if it is not possible to convert the
item to an integer, as in normal ALGOL arithmetic assignments.

Syntax

<arithmetic variable> := <count item name>
<arithmetic variable> := <population item name>
<arithmetic variable> := <record type item name>

Explanation

The value of the count item, population item, or record type item is placed in the
arithmetic variable. Use of a count item, population item, or record type item
allows read-only access to the particular field. Those items cannot be changed
directly. They are accessed only through input mappings, and cannot be used in
output mappings.

8600 0734-000 4-17

Using the Data Management System |l (DMSII) Interface

Syntax
<Boolean variable> := <Boolean item name>
Explanation

The Boolean variable is assigned the truth value (the value of bit 0) of the
Boolean item. Bits 1 through 47 of the Boolean variable are set to zero.

Syntax

<pointer variable> := <alpha item name>
<pointer variable> := <group item name>

Explanation

If the alpha item or group item is defined to contain N EBCDIC characters, then N
characters are transferred to the location pointed to by the pointer variable. A
fault results if one of the following conditions is satisfied:

1. The pointer is uninitialized.

2. The pointer is not an EBCDIC (8-bit) pointer.

3. Fewer than N character positions remain in the referenced array.

A group item is treated as if it were an alpha item; all subordinate data items are
transferred without change.

Syntax
<pointer variable> := <numeric item name>
Explanation

This assignment takes advantage of the fact that a numeric item is maintained as
a hexadecimal string. If the numeric item is defined to contain N digits (including
the sign digit, if specified), the N hexadecimal characters are transferred to the
location pointed to by the pointer variable. A fault results if one of the following
conditions is satisfied:

The pointer is uninitialized.
The pointer is not a hexadecimal (4-bit) pointer.

Fewer than N hexadecimal character positions remain in the referenced
array.

4-18 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Output Mapping Used with Storage Statements

Output mappings can be used with the storage statements PUT and STORE.
Output mappings transfer the value of a program variable or expression to a
DASDL-declared data item. If the data item is an occurring item (that is, if the
item is declared in DASDL with an OCCURS clause), it must be subscripted
appropriately.

Syntax

<output mapping>

’
—E <output assignment> |

<output assignment>

- <field item name> ——— := - <arithmetic expression> {

<numeric item name> —

<real item name>

— <Boolean item name> — := — <Boolean expression>
<alpha item name> tm —[<pointer expressio~n>j———
<group item name> <string literal>

<numeric item name>

Additional information relating to the <field item name>, <numeric item
name>, <real item name>, <Boolean item name>, <alpha item name>, and
<group item name> constructs is included under *“Input Mapping Used with
Retrieval Statements” in this section.

Explanation

An arithmetic expression used in an output mapping can be single precision or
double precision.

Syntax

<field item name> := <arithmetic expression>
Explanation
If the field item is defined to contain N bits, then the N rightmost bits of the
value of the arithmetic expression are assigned, unaltered, to the field item. Care
should be taken if the arithmetic value is real or double precision (that is, not

integer) because the value might be normalized, in which case the N rightmost
bits would not contain the value.

8600 0734-000 4-19

Using the Data Management System Il (DMSII) Interface

4-20

Syntax

<numeric item name> := <arithmetic expression>
<real item name> := <arithmetic expressions

Explanation

The value of the arithmetic expression is scaled appropriately and assigned to the
numeric item or real item. If the numeric item or real item is unsigned, the
absolute value of the arithmetic expression is used.

Syntax
<Boolean item name> := <Boolean expression>
Explanation

The truth value (the value of bit 0) of the Boolean expression is assigned to the
Boolean item. Bits 1 through 47 of the value of the Boolean expression are
ignored.

Syntax

<alpha item name> := <pointer expression>
<group item name> := <pointer expressions

Explanation

If the alpha item or group item is defined to contain N EBCDIC characters, then N
characters are transferred from the location pointed to by the pointer expression
to the alpha or group item. A fault results if any of the following conditions is
satisfied: :

1. The value of the pointer expression is an uninitialized pointer.

2. The value of the pointer expression is not an EBCDIC (8-bit) pointer.

3. Fewer than N character positions remain in the referenced array.
Syntax
<numeric item name> := <pointer expression>

Explanation

This mapping takes advantage of the fact that a numeric item is maintained as a
hexadecimal string. If the numeric item is defined to contain N digits (including
the sign digit, if specified), then N hexadecimal characters are transferred to the
numeric item from the location pointed to by the pointer expression. The user is
responsible for ensuring that the string is a valid representation of the item
declared in DASDL; that is, the proper sign and numeric characters, in the proper
format, must be used.

8600 0734-000

Using the Data Management System |l (DMSII) Interface

A fault results if any of the following conditions is true:

The value of the pointer expression is an uninitialized pointer.

The value of the pointer expression is not a hexadecimal (4-bit) pointer.
Fewer than N hexadecimal character positions remain in the referenced
array.

Syntax

<alpha item name> := <string literal>
<group item name> := <string literal>

Explanation

The string literal is transferred to the alpha item or group item. The string literal
must be EBCDIC, or a syntax error resuits. If the string literal is shorter than the
alpha item or group item, it is extended with blank fill characters on the right. If
the string literal is longer than the alpha item or group item, the excess
characters on the right are truncated.

Syntax
<numeric item name> := <string literal>

Explanation

The string literal is transferred to the numeric item. The string literal must be a
hexadecimal string and must contain the exact number of characters for the
numeric item or a syntax error results. The user is responsible for ensuring that
the string literal is a valid representation of the numeric item.

8600 0734-000 4-21

Using the Data Management System Il (DMSII) Interface

Selecting a Record in a Data Set

4-22

A selection expression is used in DELETE, FIND, BDMS LOCK, and MODIFY
statements to identify a particular record in a data set.

Syntax

<selection expression>

FIRST
LAST
NEXT

<data set>

PRIOR

<data set>

- <qualification>

r <set selection expression>
I— <data set> VIA-I I- <link item>

<set selection expression>

<set>
l-- <subset> -'

—~ FIRST —
~ LAST —
— NEXT —

— PRIOR -

<set>

-~ <qualification>

-

AT
WHE

—]— <key condition> —J
RE

s S

<subset>

- <qualification>

<key condition>

[o]

— <numeric relation>

-

I~ <alphanumeric relation>

L—[——j- (- <key condition> -) —
NOT

8600 0734-000

Using the Data Management System Il (DMSII) Interface

<numeric relation>

<numeric item identifier> —— <relational operator>

v

<field item identifier> —

<real item identifiers ——
)—[<arithmetic expression> i
<pointer expression> J
<numeric item identifier>

<field item identifier>
<real item identifier>

— <BDMS identifiers> |

<alphanumeric relation>

<alpha item identifier> — <relational operator> -[: <constant string expression> :]4
<pointer expression>

<alpha item identifier>

—~ <BDMS identifier> {

<link item>

<qualification> |

Additional information relating to the <BDMS identifier> construct is included
under “BDMS Identifier Construct” in this section. Information on the
<qualification> construct is included under ‘‘Qualification of Database Items” in
this section.

For more information concerning constant string expression and relational
operators, refer to Volume 1.

Explanation

A set selection expression selects the record to which the set path refers. A
NOTFOUND exception is returned if the record has been deleted or if the path
does not refer to a valid current record.

The construct ‘‘<data set> VIA” identifies the record area and current path to
be affected if the desired record is found. This option is used for link items and
for sets that are not implicitly associated with the data set.

The link item form is used to specify a link item defined in the DASDL

description. The record to which the link item refers is selected. An exception is
returned if the link item is NULL.

8600 0734-000 4-23

Using the Data Management System Il (DMSII) Interface

4-24

The data set form is used to select the record to which the data set path refers. A
NOTFOUND exception is returned if the record has been deleted or if the path
does not refer to a valid current record.

The word “FIRST” selects the first record in the specified data set, set, or subset.
If a key condition is also specified, the first record of the specified set or subset
that satisfies the key condition is selected. FIRST is assumed by default.

The word “LAST” selects the last record in the specified data set, set, or subset.
If a key condition is also specified, the last record of the specified set or subset
that satisfies the key condition is selected.

The word “NEXT" selects the next record relative to either the set path (if a set
or subset is specified) or the data set path (if a data set is specified). If a key
condition is also specified, the next record (relative to the current path) of the
specified set or subset that satisfies the key condition is selected.

The word “PRIOR” selects the prior record relative to either the set path (if a set
or subset is specified) or the data set path (if a data set is specified). If a key
condition is also specified, the prior record (relative to the current path) of the
specified set or subset that satisfies the key condition is selected.

In a set selection expression, the set or subset construct selects the record to
which the set or subset path refers. A NOTFOUND exception is returned if the
record has been deleted or if the path does not refer to a valid current record.

The words “AT"” or “WHERE"” indicate that a key condition follows. AT and
WHERE are synonyms.

A key condition specifies values used to locate specific records in a data set
referenced by a particular set or subset. If the name of a data item specified in a
key condition is not unique, the compiler provides implicit qualification through
the set or subset of the set selection expression. Although not necessary,
qualification of the item name by the name of the data set that contains the item
is allowed; however, the compiler handles this qualification as documentation
only.

The expressions that appear in a key condition cannot contain any transaction
item references.

A numeric relation specifies a particular numeric, field, or real item and
compares it to the value of an arithmetic expression or a pointer expression. The
pointer expression must evaluate to a hexadecimal pointer.

An alphanumeric relation specifies a particular alpha item and compares it to the
value of a constant string expression or a pointer expression. The pointer
expression must evaluate to an EBCDIC pointer. The constant string expression
must be an EBCDIC string.

8600 0734-000

Using the Data Management System |l (DMSII) Interface

Examples
These examples use the database described in DASDL by the following:
D DATA SET (
A ALPHA (3);
N NUMBER (5);
)i
S SET OF D KEY IS N, DATA A;
LOCK S WHERE N NEQ 10

This LOCK statement acts upon the first S where the value of N is not equal
to 10.

FIND S AT A = "ABC" AND (N = 50 OR N = 90)

This statement locates the first S where A is equal to the string “ABC" and
either N is equal to 50 or N is equal to 90.

8600 0734-000 4-25

Using the Data Management System Il (DMSII) Interface

BDMSALGOL Statements

4-26

The following data management statements allow a BDMSALGOL program to use
and manipulate the data in a database.

ABORTTRANSACTION GET
ASSIGN INSERT
BEGINTRANSACTION BDMS LOCK
CANCELTRPOINT MODIFY
BDMS CLOSE BDMS OPEN
CREATE PUT
DELETE RECREATE
DMTERMINATE REMOVE
ENDTRANSACTION SAVETRPOINT
FIND SECURE
BDMS FREE BDMS SET
GENERATE STORE

Note that the BEGINTRANSACTION statement initiates a transaction which is
concluded by an ENDTRANSACTION statement. A transaction is a series of
changes to the database which are considered to be an indivisible logical change.
A transaction is the basic unit effecting change in the DMSII database.

Transaction state is that period of execution time when the DMSII database can
be updated. Every update program of an audited database must enter transaction
state in order to perform any data record update statements. Transactions are
applied but not actually committed until the ENDTRANSACTION statement is

executed.

COMS and DMSII can be used together to provide a recoverable transaction
system. Consult Section 3, “Using Communications Management System (COMS)
Features” for more information and for the needed syntax.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

ABORTTRANSACTION Statement
The ABORTTRANSACTION statement backs out all updates that occurred during
a transaction and takes a program out of the transaction state. The DMSII
database is returned to the point before the BEGINTRANSACTION statement
(which initiated the transaction) was executed.

The ABORTTRANSACTION statement is equivalent to performing a
CANCELTRPOINT statement followed by an END TRANSACTION statement.

Syntax

<aborttransaction statement>

— ABORTTRANSACTION <restart data set>

v

[- <COMS header ID> -J

| 4
I— <exception handling> —I

Additional information relating to the <exception handling> construct is
included under “Database Status Word” in this section.
Explanation

The <COMS header ID> construct identifies the COMS Output Header. If the
system fails during transaction state, COMS resubmits the message when the
program is reexecuted.

The <restart data set>> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

Example
In this example, the ABORTTRANSACTION statement notifies DMSII of the abort,
and assigns the result of the abort call to the variable DMSTATUS. All
transactions are backed out to the BEGINTRANSACTION statement, and the
program is taken out of transaction state.
BEGINTRANSACTION RSTDS;
SAVETRPOINT (1);

ABORTTRANSACTION RSTDS : DMSTATUS;

8600 0734-000 4-27

Using the Data Management System Il (DMSII) interface

ASSIGN Statement

4-28

The ASSIGN statement establishes a link from one record in a data set to another
record of the same or a different data set. It assigns either the value of the
current record in a data set or the value in a link item to another link item. The
value of the second link item, called the target link item, then allows the system
to locate the record in the referenced data set.

The ASSIGN statement is effective immediately; therefore, the record containing
the target link item does not need to be stored unless data items of this record
have been modified.

Syntax

<assign statement>

- ASSIGN <data set> —— TO - <link item>
E NULL l— <exception handling> J

<link item> -

-

Additional information relating to the <data set> and <link item> constructs is
included under ‘‘Selecting a Record in a Data Set” in this section. Information on
the <exception handling>> construct is included under “Database Status Word”
in this section.

Explanation

The data set must be declared in DASDL as the object data set of the target link
item. A value that points to the current record in the data set is assigned to that
link item.

If the <data set> form is used, the current path of the specified data set must
be valid, but the record need not be locked. If the data set path is not valid, an
exception occurs.

If the word ‘“NULL” is used, the relationship between records is severed by
assigning a NULL value to the target link item. If that link item is already NULL,
this option is ignored. A FIND, BDMS LOCK, or MODIFY statement on a NULL
link item results in an exception.

If the ASSIGN statement specifies two link items, the value of the first link item
is assigned to the target link item. The first link item must be declared in DASDL
to have the same object data set as the target link item and be the same type of
link (counted link, self-correcting link, symbolic link, unprotected link, or verified
link). If the link items are counted links, the count item is automatically updated,
even if the record that is referenced is locked by another program.

The current path of the data set containing the first link must be valid, but the
record need not be locked. If the data set path is not valid, an exception occurs.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

After the ASSIGN statement has executed, the target link item points to either
the current record in the specified data set or to the record pointed to by the first
link item.

The current path of the data set containing the target link item must be valid,
and the record must be locked; otherwise, an exception occurs.

If the target link item references a disjoint data set, then that link item can point
to any record in the data set. If the target link item references an embedded data
set, then only certain records in the data set can be referenced. In this case, the
record being referenced must be owned by the record containing the target link
item or by an ancestor of the record containing this link item. (An ancestor is the
owner of the record, the owner of the owner, and so forth.)

If an exception is returned, the ASSIGN statement is not completed, and a NULL
value is assigned to the target link item.

Example
If the database EXAMPLEDB is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
L IS IN E VERIFY ON N;
)s
S SET OF D KEY A;

E DATA SET (
N NUMBER (3);
R REAL;
)s

T SET OF E KEY N;

then the following BDMSALGOL program uses the ASSIGN statement to assign
the value of the current record of data set E to link item L.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE EXAMPLEDB;
EBCDIC ARRAY X[0:2];
INTEGER Y;

OPEN UPDATE EXAMPLEDB;

WHILE NOT READ(CARD_FILE,<A3,I3>,X,Y) DO
BEGIN
FIND S AT A = X;
FIND TATN =Y;.
ASSIGN E TO L;
END;

CLOSE EXAMPLEDB;

END.

8600 0734-000 4-29

Using the Data Management System Il (DMSII) Interface

DMSII BEGINTRANSACTION Statement

The DMSII BEGINTRANSACTION statement places a program in transaction
state. This statement can be used only with audited databases.

The BEGINTRANSACTION statement performs the following steps in order:

1. It captures the restart data set if AUDIT is specified.

2. It places a program in transaction state.
Refer to the DMSII Application Program Interfaces Programming Guide for
further details regarding audit and recovery. Refer toc the COMS

BEGINTRANSACTION statement when using DMSII and COMS and refer to the
TPS BEGINTRANSACTION statement when using DMSII and TPS.

Additional information relating to DMSII transactions is included under
“Declaring Transaction Record Variables” and ‘‘Transaction Processing
Statements” in Section b, ‘‘Using DMSII Transaction Processing System (TPS)
Extensions.”

Syntax

<begintransaction statement>

— BEGINTRANSACTION

l— <inputheadername> — <message area> -J

A 4

<restart data set>

v

(- <transaction record variable> —) —

AUDIT

NOAUDIT

A 4

|—- <exception handling> -J

Additional information relating to the <exception handling> construct is
included under ‘‘Database Status Word” in this section. Information on the
<inputheadername> and <message area>> constructs is included under
“Declaring Input and Qutput Headers” and ‘“RECEIVE Statement’’in Section 3,
“Using Communications Management System (COMS) Features.” Related
information is also included under ‘‘Passing Transaction Record Variables as
Parameters” in Section 5, ‘“Using DMSII Transaction Processing System (TPS)
Extensions.”

The <transaction record variable>' construct identifies a transaction record
created through the Transaction Processing System (TPS).

4-30 8600 0734-000

Using the Data Management System Ii (DMSII) Interface

<restart data set>

- <qualification> |

Additional information relating to the <qualification> construct is included
under ‘“‘Qualification of Database Items” in this section.

Explanation

If the <transaction record variable> construct is used, it is the formal input
transaction record variable, and NOAUDIT is the default action.

The word “AUDIT” causes the restart area to be captured. The path of the
specified restart data set is not altered when the restart record is stored. AUDIT
is the default action.

The word “NOAUDIT” causes the restart area to not be captured. The <restart
data set> construct specifies the restart data set to be updated.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

An exception is returned if the BEGINTRANSACTION statement is attempted
while the program is in transaction state. If any exception is returned, the
program is not placed in transaction state. If an ABORT exception is returned, all
records that the program had locked are freed.

Deadlock can occur during execution of a BEGINTRANSACTION statement.
Any attempt to modify an audited database when the program is not in

transaction state results in a fault. The BDMSALGOL statements that modify
databases are:

ASSIGN INSERT

DELETE REMOVE

GENERATE STORE
Example

If the database DBASE is described in DASDL as follows:

OPTIONS (AUDIT);

R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)3

D DATA SET (
A ALPHA (3);
N NUMBER (3);
)3

S SET OF D KEY N;

8600 0734-000 4-31

Using the Data Management System Il (DMSII) Interface

4-32

then the following BDMSALGOL program demonstrates how the
BEGINTRANSACTION statement can be used:

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY_A[0:2];
INTEGER MY_N;

OPEN UPDATE DBASE;

MY_N := 1;

WHILE MY_N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY_N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY_N := * +],
END;

WHILE NOT READ(CARD_FILE,<I3,A3>,MY_N,MY_A[0]) DO
BEGIN
LOCK S AT N = MY_N;
BEGINTRANSACTION R;
PUT D (A := MY_A[0]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

BDMS CANCELTRPOINT Statement

The BDMS CANCELTRPOINT statement backs out all updates in a transaction to
an intermediate save point (set through the SAVETRPOINT statement) or to the
beginning of the transaction. The CANCELTRPOINT statement allows you to
cancel all or part of the update assignments without having to terminate the
transaction state. The program execution continues with the statement following
the CANCELTRPOINT statement.

Syntax
<canceltrpoint statement>

~ CANCELTRPOINT <restart data set> ————|

l— (- <integer expression> —) -J

Explanation

The inclusion of the <integer expression> construct causes DMSII to search for
the corresponding SAVETRPOINT statement and cancel only those transactions
lying between the two. If no corresponding SAVETRPOINT statement is found, or
if the <integer expression> construct is omitted or is zero, then all update
assignments performed during the current transaction state are discarded.
However, the current transaction state is not terminated.

The <restart data set™> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

Additional information on the BDMS SAVETRPOINT statement is included under
“BDMS SAVETRPOINT Statement” in this section.

Example
In this example, there is an intermediate transaction point with an integer value
of 1. If an error is detected, the CANCELTRPOINT statement backs out all
updates accumulated after the SAVETRPOINT statement.
BEGINTRANSACTION R;
SAVETRPOINT (1) R;
IF ERROR ... THEN CANCELTRPOINT (1) R;

ENDTRANSACTION R;

8600 0734-000 4-33

Using the Data Management System |l (DMSII) Interface

BDMS CLOSE Statement

4-34

The BDMS CLOSE statement closes a database when further access is no longer
required and performs the following steps in order:

1. It closes the database.
2. It frees all locked records.

Syntax

<BDMS close statement>

- CLOSE - <database identifier>

l— <exception handling> —I

<database identifier>

~ <BDMS identifier> i

Additional information relating to the <BDMS identifier> construct is included
under ‘“BDMS Identifier Construct” in this section. Information on the
<exception handling> construct is included under ‘“Database Status Word” in
this section.

Explanation

The database identifier specifies the database to be closed. If the database was
declared to have an internal name, this internal name is the database identifier. If
the database does not have an internal name but is a logical database, then the
logical database name is the database identifier. For databases that do not have
an internal name and are not logical databases, the database name is the database
identifier.

An exception is returned if the CLOSE statement attempts to close a database
that is not open. A database abort occurs if the CLOSE statement attempts to
close a database that is in transaction state.

Use of the CLOSE statement is optional; the system closes any open database
when a program terminates. A syncpoint in the audit file occurs when a database
is successfully closed.

The CLOSE statement is the only BDMSALGOL statement in which the status
word has meaning when no exception is indicated. Therefore, after a CLOSE
statement, the status word should be examined by the program and appropriate
action taken, whether or not an exception is returned. An ABORT exception can
be obtained in this manner.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

Example
If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)s
D DATA SET (

A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

)i
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how to use the CLOSE statement
to close DBASE.

BEGIN

FILE CARD_FILE(KIND=READER),
PRINT_FILE(KIND=PRINTER) ;

DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
GET D (MA[O] := A,MB := B);
IF MB THEN
GET D (MR := N)
ELSE
MR := 0;
WRITE(PRINT_FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0],MB,MR);
END;
CLOSE DBASE;
END.

8600 0734-000 | 4-35

Using the Data Management System |l (DMSII) Interface

- CREATE Statement

4-36

The CREATE statement initializes the user work area of a data set record and
performs the following steps in order:

1. 1t frees the current record of the specified data set. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the
program is in transaction state, the CREATE statement does not free the
current record.)

2. It reads any specified expression to determine the format of the record to be
created.

3. It initializes data items to one of the following values:
a. The DASDL-declared INITIALVALUE, if present
b. The DASDL-declared NULL, if present
c¢. The default NULL

Note: When creating partitioned data sets, you must establish the partition
master record prior to execution of the CREATE command.

Additional information relating to the CREATE statement is included under
“Creating Transaction Record Formats” in Section 5, ‘““Using DMSII Transaction
Processing System (TPS) Extensions.”

Syntax

<create statement>

- CREATE - <data set>

l— (- <arithmetic expression> -) —,

| 4
I- <exception handling> —}

Additional information relating to the <data set> construct is included under
‘“Selecting a Record in a Data Set” in this section. Information on the <exception
handling> construct is included under “Database Status Word" in this section.

Explanation

The <data set> construct specifies the data set to be initialized. The current
path of the data set is not changed until a subsequent STORE statement has
completed successfully.

The arithmetic expression specifies the type of record to be created. This
arithmetic expression is required when a variable-format record is created;
otherwise, it must not appear.

An exception is returned if the arithmetic expression does not represent a valid
record type.

8600 0734-000

Using the Data Management System li (DMSII) Interface

Normally, the CREATE statement is eventually followed by a STORE statement,
which places the newly created record into the data set. However, if a subsequent
STORE operation is not desired, the CREATE statement can be nullified by a
subsequent CREATE, DELETE, FIND, BDMS FREE, BDMS LOCK, MODIFY, or
RECREATE statement.

The CREATE statement sets up only a record area. If the record contains
embedded structures, the master record must be stored before entries can be
created in the embedded structures. If only entries in the embedded structure are
created (that is, if items in the master are not altered), the master need not be
stored a second time.

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (10);
B BOOLEAN;
N NUMBER (3);

S SET OF D KEY N;

then the following BDMSALGOL program shows how a record of data set D can
be created and stored.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y,Z;

OPEN UPDATE DBASE;

WHILE NOT READ(CARD_FILE,<A10,I11,13>,X[0],Y,Z) DO
BEGIN
CREATE D;
PUT D (A := X[0]);
IF Y = 1 THEN

PUT D (B := TRUE);

PUT D (N := Z);
STORE 0;
END;

CLOSE DBASE;

END.

8600 0734-000 4-37

Using the Data Management System |l (DMSII) Interface

DMSII DELETE Statement

4-38

The DMSII DELETE statement is identical to the FIND statement except that if a
record is found, it is locked and then deleted. The DELETE statement performs
the following steps in order:

1. It frees the current record, unless the selection expression is the name of the
data set and the current record is locked. In that case, the locked status is
not altered. (If the INDEPENDENTTRANS option is set in DASDL for the
database and the program is in transaction state, the DELETE statement
does not free the current record.)

2. It alters the current path to point to the record specified by the selection
expression, and locks this record.

3. It transfers that record to the user work area.

It removes the record from all sets and automatic subsets, but not from
manual subsets.

b6. It removes the record from the data set.

If the record is found but cannot be deleted, an exception is returned and the
DELETE statement terminates, leaving the current path pointing to the record
specified by the selection expression.

If a set selection expression is used and the record is not found, then an
exception is returned and the set path is changed and invalidated. It refers to a
location between the last key less than the condition and the first key greater
than the condition. A set selection expression using NEXT or PRIOR can be done
from this point provided keys greater than and less than the condition exist. The
current path of the data set, the current record, and the current paths of any
other sets for that data set remain unchanged.

It is the responsibility of the programmer to ensure that no manual subset refers
to the record being deleted.

Syntax
<delete statement>

~ DELETE - <selection expression>

v

L <exception handling> —l

| 4
I- (= <input mapping> -) —I

Additional information relating to the <selection expression> construct is
included under ‘Selecting a Record in a Data Set” in this section. Information on
the <exception handling> construct is included under “Database Status Word”
in this section. Information on the <input mapping> construct is included under
“Input Mapping Used with Retrieval Statements” in this section.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

Explanation

The selection expression identifies the record to be deleted.

An exception is returned and the record is not deleted if the record has counted
links pointing to it, or if the record contains a nonnull link or a nonempty
embedded structure.

When the DELETE statement completes, the current paths still refer to the
deleted record. Therefore, a FIND statement on the current record results in a
NOTFOUND exception; however, FIND NEXT and FIND PRIOR statements are
still appropriate.

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s

S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the DELETE
statement to delete a record of the data set D where item N is equal to the value
of X: ‘

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<I3>,X) DO
DELETE S AT N = X;
CLOSE DBASE;
END.

8600 0734-000 4-39

Using the Data Management System |l (DMSII) Interface

DMTERMINATE Statement

The DMTERMINATE statement aborts the current action. When an exception
occurs that the program does not handle, the DMTERMINATE statement can be
called to produce the same results as if the exception-handling syntax had not
been specified in the statement; that is, the DMTERMINATE statement causes the
program to terminate with a fault.

Syntax

<dmterminate statement>

-~ DMTERMINATE <Boolean identifiers i
E <integer identifier> —

<real identifier>

For more information concerning the Boolean identifier, integer identifier, and
real identifier, refer to Volume 1.

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;

)3
S SET OF D KEY N;

then the following BDMSALGOL program shows an example of the use of the
DMTERMINATE statement.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
BOOLEAN RSLT;
REAL RRSLT = RSLT;
INTEGER X;

OPEN UPDATE DBASE;
FIND FIRST D :RSLT;
IF RSLT THEN

BEGIN
DISPLAY("D IS EMPTY DATA SET");
DMTERMINATE (RSLT) ;

END

ELSE

WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN

DELETE S AT N = X :RSLT;
IF RRSLT.DMERROR = NOTFOUND THEN
DMTERMINATE (RSLT) ;
END;
CLOSE DBASE;
END.

4-40 8600 0734-000

Using the Data Management System 1l (DMSII) interface

DMSII ENDTRANSACTION Statement

The DMSII ENDTRANSACTION statement takes a program out of transaction
state. This statement can be used only with audited databases. The
ENDTRANSACTION statement performs the following steps in order:

1. It captures the restart area if AUDIT is specified.

2. It forces a syncpoint if the SYNC option is specified.

3. It implicitly frees all records of the database that the program has locked.
Refer to the DMSII Application Program Interfaces Programming Guide for
information regarding audit and recovery. Refer to the COMS ENDTRANSACTION

statement when using COMS and DMSII and refer to the TPS ENDTRANSACTION
statement when using TPS and DMSII.

Additional information relating to DMSII transactions is included under
“Declaring Transaction Record Variables” and “Transaction Processing
Statements” in Section 5, ‘“Using DMSII Transaction Processing System (TPS)
Extensions.”

Syntax

<endtransaction statement>

~ ENDTRANSACTION <restart data set> ——Pp

(- <endtransaction parameters> -) —
AUDIT
NOAUDIT

T J L] '
SYNC <exception handling>

<endtransaction parameters>

- <transaction record variable ID> -~ , - <saveoutput procedure identifiers ——e0—w-—u--{

<saveoutput procedure identifiers

- «<procedure identifiers - 1

Additional information relating to the <exception handling> construct is
included under “Database Status Word” in this section.

For information concerning transaction records, consult Section 5, *Using DMSII

Transaction Processing System (TPS) Extensions.” For more information
concerning <procedure identifier>s, refer to Volume 1.

8600 0734-000 4-41

Using the Data Management System |l (DMSII) Interface

Explanation

If the <endtransaction parameters> form is used, the <transaction record
variable ID> construct is the formal input transaction record variable. The
saveoutput procedure identifier is the name of the SAVERESPONSETR formal
procedure. For more information about the SAVERESPONSETR procedure, refer
to the DMSII Transaction Processing System (TPS) Programming Guide.

The word “AUDIT” causes the restart area to be captured. The path of the
restart data set is not altered when the restart record is stored.

The word “NOAUDIT” causes the restart area to not be captured. NOAUDIT is
the default action.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

The word “SYNC” forces a syncpoint.

An exception is returned if an ENDTRANSACTION statement is attempted and
the program is not in transaction state.

Records are freed in all cases. If an exception occurs, the transaction is not
applied to the database.

Example
Assume a database named DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)s
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)s
S SET OF D KEY N;

4-42 8600 0734-000

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program demonstrates how the ENDTRANSACTION
statement can be used with this database. ‘

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;

EBCDIC ARRAY MY_A[0:2];
INTEGER MY_N;

OPEN UPDATE DBASE;

MY_N := 1;

WHILE MY_N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY_N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY_N := * +];
END;

WHILE NOT READ(CARD_FILE,<I3,A3>,MY_N,MY_A[0]) DO
BEGIN
LOCK S AT N = MY_N;
BEGINTRANSACTION R;
PUT D (A := MY_A[O0]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

8600 0734-000 4-43

Using the Data Management System Il (DMSII) Interface

FIND Statement

The FIND statement transfers a record to the user work area associated with a
data set or global data and performs the following steps in order:

1. It frees a locked record in the data set if a data set is specified in the FIND
statement, or frees a locked record in the associated data set if a set is
specified in the FIND statement. (If the INDEPENDENTTRANS option is set
in DASDL for the database and the program is in transaction state, the FIND
statement does not free the locked record.)

2. It alters the current path to point to the record specified by the selection
expression or database name.

3. It transfers that record to the user work area.

The FIND statement does not prevent reads by other transactions before an
update transaction is complete.

Syntax

<find statement>

FIND -l: <selection expression> — 3
<database identifier> —' J l— <exception handling> -J

FIND KEY OF - <set selection expression>

-

>
L (- <input mapping> -) _|

Additional information relating to the <selection expression> and <set selection
expression> constructs is included under *“Selecting a Record in a Data Set” in
this section. Information on the <<database identifier> construct is included
under “BDMS CLOSE Statement” in this section. Information on the <exception
handling> construct is included under ‘‘Database Status Word” in this section.
Information on the <input mapping> construct is included under “Input
Mapping Used with Retrieval Statements” in this section.

Explanation

The selection expression form is used to specify the record to be transferred to
the user work area.

The database identifier form is used to specify the global data record to be
transferred to the user work area associated with the global data. If no global
data was described in DASDL for the database, a syntax error occurs.

If the invoked database contains a remap of the global data, the name of the

logical database, not the name of the global data remap, is used to LOCK the
global data record.

4-44 8600 0734-000

| Using the Data Management System Il (DMSII) Interface

The form “FIND KEY OF <set selection expression>" moves the key and any
associated data (as specified in DASDL) from the key entry to the user work
area. A physical read is not performed on the data set; consequently, all items in
the record area that do not appear in the key entry retain whatever value they
had before the FIND statement. The current path of the data set is not affected.

If an exception is returned, the record is not freed. If a set selection expression is
used and the record is not found, then an exception is returned and the set path
is changed and invalidated. It refers to a location between the last key less than
the condition and the first key greater than the condition. A set selection
expression using NEXT or PRIOR can be done from this point provided keys
greater than and less than the condition exist. The current path of the data set,
the current record, and the current paths of any other sets for that data set
remain unchanged.

To access data items, input mapping is required.

Additional information relating to the <input mapping> construct is included
under “Input Mapping Used with Retrieval Statements” in this section.

Examples

FIND FIRST EMP AT DEPT-NO = 1019 :RSLT;
IF RSLT THEN
POP-EMPS[1019] := 0;

FIND EMP AT EMP-NO = SSN :RSLT;
IF RSLT THEN
ERR_OUT (INV_EMP_NO_ERR) ;

FIND NEXT EMP :RSLT;
IF RSLT THEN
GO NO_MORE_EMP;

FIND FIRST OVR-65 AT DEPT-NO = 1019 :RSLT;

IF RSLT THEN
POP-OVR-65[1019] := 0;

8600 0734-000 4-45

Using the Data Management System Il (DMSII) Interface

BDMS FREE Statement

4-46

The BDMS FREE statement unlocks the current record or structure.

Normally, a FREE statement can be executed after any operation. However, the
FREE statement is ignored if the current record or structure is already free, if no
current record or structure is present, or if the INDEPENDENTTRANS option is
set in DASDL for the database and the program is in transaction state.

The FREE statement can be used to unlock a record or structure that the user
anticipates cannot be implicitly freed for a relatively long time. A FREE
statement executed on a record or structure allows other programs to lock the
record.

Syntax

<BDMS free statement>

- FREE <data set> |
E <database identifier> L <exception handling> -J

STRUCTURE - <data set name> -

Additional information relating to the <data set> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <database
identifier> construct is included under ‘“BDMS CLOSE Statement” in this section.
Information on the <exception handling> construct is included under ‘“‘Database
Status Word” in this section.

Explanation

The data set form is used to specify the data set whose current record is to be
unlocked. The data set path and current record area remain unchanged.

The database identifier form is used to specify the global data record to be
unlocked. The data set path and current record area remain unchanged.

The STRUCTURE < data set name> construct frees all records in the structure.
If an exception is returned, the state of the database remains unchanged.

The FREE statement is optional in many situations because DELETE, FIND, BDMS
LOCK, and MODIFY statements can free a record before they execute. FIND,
LOCK, and MODIFY statements that use sets or subsets can free the locked record
or structure only if a new record or structure is successfully retrieved.

Otherwise, the previously locked record or structure remains locked. In general,
an implicit FREE statement is performed, if necessary, during any operation that
establishes a new data set path.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the FREE
statement to unlock the current record of data set D.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D;
END;
CLOSE DBASE;
END.

8600 0734-000 4-47

Using the Data Management System Il (DMSII) Interface

GENERATE Statement

4-48

The GENERATE statement creates an entire subset in one operation. All subsets
must be disjoint bit vectors. The GENERATE statement performs the following
steps in order:

1. It deletes all the records from the subset to be generated if it is not already
empty.

2. It assigns a null value, the records in another subset, or a combination of the
records in two other subsets to the subset that is generated.

Syntax
<generate statement>

— GENERATE - <subset> — = —— NULL

]— <subset>

v

AND —— <subset> —I

|
<exception handling>

Additional information relating to the <subset> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <exception
handling> construct is included under ‘“Database Status Word” in this section.

Explanation

The <subset> to the left of the equal sign (=) is the name of the subset to be
generated. This subset must be a manual subset, which must be a disjoint bit
vector.

The word ‘“NULL” assigns a null value to the generated subset.

If <subset> follows the equal sign, it is the name of the subset whose records
are to be assigned to the generated subset. This subset must be of the same data
set as the generated subset, and it must be a disjoint bit vector.

If to the right of the equal sign there are two <<subset>s joined by the operation
AND, OR, +, or -, then these two subsets are to be combined in the specified
manner. The result is then assigned to the generated subset. The two subsets
must be of the same data set, and must be disjoint bit vectors.

The operator “AND” specifies that the intersection of the two subsets is to be

assigned to the generated subset. The intersection is defined to be all the records
in the first subset that are also in the second subset.

8600 0734-000

Using the Data Management System |l (DMSII) Interface

The operator ‘“OR” specifies that the union of the two subsets is to be assigned to
the generated subset. The union is defined to be all the records that are in either
the first subset or the second subset.

The operator *“+" specifies that the exclusive OR of the two subsets is to be
assigned to the generated subset. The exclusive OR consists of the records in
either the first subset or the second subset, but not the records that appear in
both subsets.

The operator *-"’ specifies that the subset difference of the two subsets is to be
assigned to the generated subset. The subset difference is defined to be the
records in the first subset that are not in the second subset.

Example
If the database DBASE is described in DASDL as the following:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D WHERE (N GEQ 21 AND NOT B) BIT VECTOR;
Y SUBSET OF D WHERE (R LSS 1000) BIT VECTOR;
7 SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the GENERATE statement
can be used to assign all the records that are in both X and Y to subset Z.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY §[0:2];
INTEGER T,U,V;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<A3,I11,13,14>,5,T,U,V) DO
BEGIN
CREATE D;
PUT D (A :=S);
IF T = 1 THEN
PUT D (B := TRUE);
PUT D (N := U);
PUT D (R := V);
STORE D;
END;
GENERATE Z = X AND Y;
CLOSE DBASE;
END.

8600 0734-000 4-49

Using the Data Management System Il (DMSII) Interface

GET Statement

The GET statement is used to transfer information from the user work area
associated with a data set or global data record into program variables or arrays.

The GET statement does not access the database; it assumes that prior database
operations have loaded the proper record or data items into the user work area.

Syntax

<get statement>

- GET —[<data set> ———j- (- <input mapping> -) i
<database identifiers

Additional information relating to the <data set> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <database
identifier> construct is included under ‘‘BDMS CLOSE Statement” in this section.
Information on the <input mapping> construct is included under “Input
Mapping Used with Retrieval Statements” in this section.

Explanation

The <data set> construct is used to transfer information from the user work
area associated with this data set into a program variable or array.

The <database identifier> is used to transfer information from the user work
area associated with the global data record into a program variable or array.

No exceptions are associated with the GET statement. However, if the database
containing the referenced data set or global data record has not been opened at
the time execution of the GET statement is attempted, the program terminates
with a fault.

Example
Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s

S SET OF D KEY N;

4-50 8600 0734-000

Using the Data Management System 1l (DMSII) interface

The following BDMSALGOL program demonstrates how the GET statement can be
used to assign current values of data items to program variables and arrays.

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT_FILE(KIND=PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
GET D (MA[0] := A,MB := B);
IF MB THEN
GET D (MR := R)
ELSE
MR := 0
WRITE(PRINT_FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0] ,MB,MR) ;
END;
CLOSE DBASE;
END.

8600 0734-000 4-51

Using the Data Management System || (DMSII) Interface

DMSII INSERT Statement

The DMSII INSERT statement places a record into a manual subset and performs
the following steps in order:

1. It inserts the current record of the specified data set into the specified
subset.

2. It alters the set path for the specified subset to point to the inserted record.
Syntax
<insert statement>

- INSERT - <data set> — INTO - <subset>

|-- <exception handling> -J

Additional information relating to the <subset> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <exception
handling> construct is included under “Database Status Word" in this section.
Information on the <data set>> construct is included under “Selecting a Record in
a Data Set” in this section.

Explanation

The <data set> construct specifies the data set whose current record is inserted
into the subset specified by <subset>>. The path of the specified data set must be
the object data set of the specified subset.

The subset must be a manual subset, and it must be a subset of the specified data
set.

The path of the specified data set must refer to a valid record; if not, an
exception is returned. Other reasons an exception is returned are:

e If duplicates are not allowed for the specified subset and the record to be
inserted has a key identical to that of a record currently in that subset.

o If the specified subset is embedded in a data set that does not have a valid
current record.

e If “LOCK TO MODIFY DETAILS” was specified in DASDL and the current
record is not locked.

4-52 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Example _
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the INSERT statement can
be used to place the current record of data set D into subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;

SET D TO BEGINNING;

FIND NEXT D :RSLT;

WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN > 10 THEN

INSERT D INTO X;

FIND NEXT D :RSLT;
END;

CLOSE DBASE;

END.

8600 0734-000 4-53

Using the Data Management System || (DMSII) Interface

BDMS LOCK Statement

The BDMS LOCK statement is similar to the FIND statement, except that if a
record or structure is found, it is locked against a concurrent modification by
another user. The LOCK statement provides an exclusive lock and can designate
either a structure lock or a record lock. The program owning an exclusive lock
prevents all other programs from successfully executing a SECURE or LOCK
statement. However, other programs can successfully execute a FIND statement.
Use the SECURE statement to allow other programs to secure the record or
structure.

The words “LOCK"” and *“MODIFY” are synonyms.

If the record or structure to be locked has already been locked by another
program, the system performs a contention analysis. In this case, the present
program waits until the record or structure is unlocked. However, if a wait would
result in a deadlock, all records or structures locked by the program with the
lowest priority involved in the deadlock are unlocked, and the operation in that
program terminates with a DEADLOCK exception.

A DEADLOCK exception also occurs if the program waits on a LOCK statement
longer than the period specified by the MAXWAIT task attribute.

Consult the DMSII Application Program Interfaces Programming Guide for more
information on the DEADLOCK exception. For information about task attributes,
consult the Task Attributes Programming Reference Manual.

The LOCK statement performs the following steps in order:

1. If the LOCK statement specifies a data set, then a locked record or structure
in the data set is freed. If the LOCK statement specifies a set, then a locked
record or structure in the associated data set is freed. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the
program is in transaction state, the statement does not free the locked
record or structure.)

2. It alters the current path to point to the record or structure specified by the
selection expression or database identifier.

3. It locks the specified record or structure and then transfers that record to
the user work area.

Implicit structure locks are freed after execution of the ENDTRANSACTION
statement.

Additional information relating to locked records and structures is included under
“SECURE Statement” in this section.

4-54 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Syntax

<BDMS lock statement>

—[LOCK <selection expression> >
MODIFY <database identifier> ——— I— <exception handling> —-|
STRUCTURE - <data set name> —

[N .
L]
(= <input mapping> -)

Additional information relating to the <selection expression> construct is
included under ‘Selecting a Record in a Data Set” in this section. Information on
the <database identifier>> construct is included under ‘“BDMS CLOSE Statement”
in this section. Information on the <exception handling> construct is included
under “‘Database Status Word” in this section. Information on the <input
mapping> construct is included under “Input Mapping Used with Retrieval
Statements” in this section.

Explanation
The selection expression is used to specify the record to be locked.

The database identifier is used to specify the global data record to be locked. If
the invoked database contains a remap of the global data, the name of the logical
database, not the name of the global data remap, is used to LOCK the global data
record.

The STRUCTURE <data set name> construct locks all records in the structure.
This is an explicit structure lock; therefore, the records are not freed after the
execution of the ENDTRANSACTION statement. Explicit structure locks are freed
with the FREE STRUCTURE statement or by closing the database.

If an exception is returned, the record is not freed.

If a LOCK statement using a set selection expression returns an exception, the
current path of the specified set is invalidated. However, the current path of the
data set, the current record, and the current paths of any other sets for that data
set remain unaltered.

To access data items, the <input mapping> construct must appear.

Because no other user can lock a record or structure once it is locked, a record or
structure must be freed when it is no longer required to be locked. A record or
structure can be freed explicitly by a BDMS FREE statement or implicitly by a
subsequent CREATE, DELETE, FIND, BDMS LOCK, or RECREATE statement on
the same data set.

8600 0734-000 4-55

Using the Data Management System |I (DMSII) Interface

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the LOCK

statement to lock records of subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET X TO BEGINNING;
LOCK NEXT X :RSLT;
WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN <= 10 THEN
BEGIN
REMOVE D FROM X;
DELETE D;
END
ELSE
BEGIN
PUT D (B := TRUE);
STORE D;
END;
LOCK NEXT X :RSLT;
END;
CLOSE DBASE;
END.

4-56

8600 0734000

Using the Data Management System 11 (DMSII) Interface

DMSII MODIFY Statement

The DMSII MODIFY statement is described under the BDMS LOCK statement in
this section. They are synonyms.

8600 0734-000 4-57

Using the Data Management System il (DMSII) Interface

BDMS OPEN Statement

4-58

The BDMS OPEN statement opens a database for subsequent access and specifies
the access mode. The OPEN statement performs the following steps in order:

1. It opens an existing database. Appropriate “NO FILE" messages are
displayed if files required for invoked structures are not present in the
system directory.

2. It performs an implicit CREATE statement on the restart data set.
Additional information relating to the BDMS OPEN statement is included under
“BDMS OPEN Statement with TPS” and “Transaction Processing Statements” in
Section b, *‘Using DMSII Transaction Processing System (TPS) Extensions”.
Syntax

<BOMS open statements

- OPEN <database identifiers i

- INQUIRY |- <exception handling> —I

-~ TRUPDATE

-~ UPDATE

— SINGLEUPDATE -

Additional information relating to the <database identifier> construct is
included under “BDMS CLOSE Statement” in this section. Information on the
<exception handling> construct is included under ‘“Database Status Word” in
this section.

Explanation

The word “INQUIRY” enforces read-only access to the database. This option is
specified when no update operations are to be performed on the database. An
exception is returned if the following BDMSALGOL statements are used when the
database has been opened with the INQUIRY option:

ASSIGN GENERATE
BEGINTRANSACTION INSERT
DELETE REMOVE
ENDTRANSACTION STORE

The data management system does not open any audit files if the “OPEN
INQUIRY” form has been used by all programs accessing the database.

The word “UPDATE" allows the program to modify the database being opened.
The UPDATE option must be specified in order to use the BDMSALGOL
statements listed above under the INQUIRY option. UPDATE is the default
option.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

The word “TRUPDATE" must be specified in order to use the MIDTRANSACTION
statement or the <transaction record variable ID> form of the
BEGINTRANSACTION or ENDTRANSACTION statements. Refer to Section
B,“Using the DMSII Transaction Processing System (TPS) Extensions,” for more
information on the MIDTRANSACTION statement.

The word “SINGLEUPDATE” allows only one user to modify the database being
opened. The SINGLEUPDATE option can use the BDMSALGOL statements listed
under the INQUIRY option.

The database identifier specifies the database to be opened.

If an exception is returned, the state of the database remains unchanged. An
exception is returned if the database is already open.

An OPEN statement must be executed before the first access of the database;
otherwise, the program terminates with a fault.

Examples
Assume a database named DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)i
D DATA SET (
A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

)i
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

The following BDMSALGOL program demonstrates the use of the OPEN statement
with the INQUIRY option to open database DBASE and perform read-only actions
on the database.

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT_FILE (KIND=PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;

8600 0734-000 4-59

Using the Data Management System |l (DMSII) Interface

WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
GET D (MA[0] := A,MB := B);
IF MB THEN
GET D (MR := N)
ELSE ;
MR := 0;
WRITE (PRINT_FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0] ,MB,MR) ;
END;
CLOSE DBASE;
END.

The following BDMSALGOL program demonstrates the use of the OPEN statement
with the UPDATE option to open database DBASE and perform update actions on
the database.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD.FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D;
END;
CLOSE DBASE;
END.

4-60 8600 0734-000

Using the Data Management System Il (DMSII) Interface

PUT Statement

The PUT statement transfers information from program expressions into the user
work area associated with a data set or global data record.

The PUT statement does not update the database; a subsequent STORE statement
must be executed to place the data in the user work area into the database.

Any number of PUT statements can be used to update items before a STORE
statement is executed.

Syntax

<put statement>

- PUT —[<data set> —_—]— (- <output mapping> -) {
<database identifier>

Additional information relating to the <data set> construct is included under
“‘Selecting a Record in a Data Set” in this section. Information on the <database
identifier> construct is included under ‘“BDMS CLOSE Statement” in this section.
Information on the <output mapping> construct is included under *“Output
Mapping Used with Storage Statements’ in this section.

Explanation

The <data set>> form is used to transfer information associated with this data
set into the user work area.

The <database identifier> form is used to transfer information associated with
the global data record into the user work area.

Output mappings transfer the value of a program variable or expression to a
DASDL-declared data item. If the data item is an occurring item, it must be
subscripted appropriately.

No exceptions are associated with the PUT statemexit. However, if the database
containing the specified data set or the specified database has not been opened,
the program terminates with a fault.

Example
Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

8600 0734-000 4-61

Using the Data Management System 1l (DMSII) Interface

The following BDMSALGOL program demonstrates how the PUT statement can be
used to assign values to data items. ‘

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;

EBCDIC ARRAY S[0:2];
INTEGER T,U,V;

OPEN UPDATE DBASE;

WHILE NOT READ(CARD_FILE,<A3,I1,13,I4>,S[0],T,U,V) DO
BEGIN
CREATE D;
PUT D (A :=S);
IF T = 1 THEN

PUT D (B := TRUE);

PUT D (N := U,R :=V);
STORE D;
END;

CLOSE DBASE;

END.

4-62 8600 0734-000

Using the Data Management System 1l (DMSII) Interface

RECREATE Statement

The RECREATE statement partially initializes the user work area. All data items
remain unaltered; however, control items such as links, sets, counts, and data sets
are unconditionally set to NULL.

For variable-format records, the record type supplied must be the same as that
supplied in the CREATE statement that created the record. If not, the subsequent
STORE statement results in a DATAERROR subcategory 4.

The RECREATE statement performs the following steps in order:

It frees the current record of the specified data set.

2. It reads any specified arithmetic expression to determine the format of the
record to be created.

3. It unconditionally sets links, sets, counts, and data sets to NULL.
Syntax
<recreate statement>

- RECREATE - <data set>

v

I— (- <arithmetic expression> -) -J

T]
<exception handling>

Additional information relating to the <data set> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <exception
handling> construct is included under ‘“Database Status Word” in this section.
Explanation

The <data set> construct specifies the data set to be initialized.

The arithmetic expression specifies a value indicating the type of record to be

created. This arithmetic expression is required when a variable-format record is
created; otherwise, it must not appear.

An exception is returned if the arithmetic expression does not represent a valid
record type.

8600 0734-000 4-63

Using the Data Management System Il (DMSIl) Interface

4-64

Example
If the database DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)s
D DATA SET (

A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

)s
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y,Z;

OPEN UPDATE DBASE;

WHILE NOT READ(CARD_FILE,<A10,I1,13>,X[0],Y,Z) DO
BEGIN
CREATE D;
PUT D (A := X[0]);
IF Y = 1 THEN

PUT D (B := TRUE);

PUT D (N :=2);
STORE D;
RECREATE D;
PUT D (N := Z+1);
STORE D;
END;

CLOSE DBASE;

END.

then the following BDMSALGOL program demonstrates how the RECREATE
statement can be used to partially initialize a record of data set D.

8600 0734-000

Using the Data Management System Il (DMSII) interface

REMOVE Statement

The REMOVE statement is similar to the FIND statement, except that if a record
is found, it is locked and then removed from the specified subset.

The REMOVE statement performs the following steps in order:

1. It frees the current record. (If the INDEPENDENTTRANS option is set in
DASDL for the database and the program is in transaction state, the
REMOVE statement does not free the current record.)

2. It alters the current path to point to the record specified by CURRENT or
the data set. '

3. It locks the previously found record and then removes the record from the
specified subset.

If an exception occurs after step 2, the current path is invalid. If an exception
occurs after step 3, the operation terminates, leaving the current path pointing to
the record specified by CURRENT or by the data set.

Syntax

<remove statement>

-~ REMOVE —l: CURRENT T FROM - <subset> {
<data set> l—- <exception handling> -I

Additional information relating to the <data set> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <subset>
construct is included under “Selecting a Record in a Data Set” in this section.
Information on the <exception handling> construct is included under ‘“Database
Status Word” in this section.

Explanation

The word “CURRENT"” removes the current record from the specified subset. If
this option is specified, the subset must have a valid current record; if it does not
have a valid current record, an exception is returned.

The <data set> construct is used to find and remove from the specified subset
the record referenced by the current path. An exception is returned if the record
is not in the subset.

The <subset> construct specifies the subset from which a record is to be
deleted. The subset must be a manual subset of the specified data set.

If the subset is embedded in a data set, the data set must have a current record
defined and that record must be locked; if not, an exception is returned.
Exceptions are also returned

1. If CURRENT is specified and the specified subset does not have a valid
current record.

8600 0734-000 4-65

Using the Data Management System |l (DMSII) Interface

2. If a data set is specified and the record is not in the subset.

3. If the specified subset is embedded in a data set, and the data set does not
have a current record defined and locked.

After the REMOVE statement is executed, the current paths still refer to the

. deleted record. Therefore, a subsequent FIND statement on the current record
results in a NOTFOUND exception. However, the FIND NEXT and FIND PRIOR
forms of the FIND statement give valid results.

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
SS SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the REMOVE
statement to lock and remove the record of data set D that is referenced by the
current path from the subset SS.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;

SET SS TO BEGINNING;

FIND NEXT SS :RSLT;

WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN < 10 THEN

REMOVE D FROM SS;

FIND NEXT SS :RSLT;
END;

CLOSE DBASE;

END.

4-66 8600 0734-000

Using the Data Management System Il (DMSII) interface

BDMS SAVETRPOINT Statement

The BDMS SAVETRPOINT statement creates an intermediate transaction point.
The SAVETRPOINT statement is used in conjunction with the CANCELTRPOINT
statement. All updates occurring between a SAVETRPOINT statement and a
CANCELTRPOINT statement can be backed out if an error condition is
encountered that disrupts the integrity of the updates.

Syntax
<savetrpoint statement>

— SAVETRPOINT - (- <integer expression> —) - <restart data set> {

Explanation

The <integer expression>> construct marks the intermediate transaction point. It
must have the same value as the <integer expression> construct of the
corresponding CANCELTRPOINT statement.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

Additional information relating to the BDMS CANCELTRPOINT statement is
included under “BDMS CANCELTRPOINT Statement” in this section.

Example
In this example, there is an intermediate transaction point with an integer value
of 1. If an error is detected, the CANCELTRPOINT statement backs out all
updates accumulated after the SAVETRPOINT statement.
BEGINTRANSACTION R;
SAVETRPOINT (1) R;
IF ERROR ... THEN CANCELTRPOINT (1) R;

ENDTRANSACTION R;

8600 0734-000 4-67

Using the Data Management System || (DMSII) Interface

SECURE Statement

The SECURE statement is similar to the FIND statement, except that if a record
or structure is found, it is locked against a concurrent modification by another
user. The SECURE statement provides a shared lock and allows other programs
to execute a SECURE statement or a FIND statement successfully. However, other
programs cannot execute a LOCK statement successfully.

If the record or structure to be locked has already been locked by another
program, the system performs a contention analysis. In this case, the present
program waits until the record or structure is unlocked. However, if a wait would
result in a deadlock, all records or structures locked by the program with the
lowest priority involved in the deadlock are unlocked, and the operation in that
program terminates with a DEADLOCK exception.

A DEADLOCK exception also occurs if the program waits on a SECURE statement
longer than the period specified by the MAXWAIT task attribute.

Consult the DMSII Application Program Interfaces Programming Guide for more
information on the DEADLOCK exception. For information about task attributes,
consult the Task Attributes Programming Reference Manual.

' The SECURE statement performs the following steps in order:

1. If the SECURE statement specifies a data set, then a locked record or
structure in the data set is freed. If the SECURE statement specifies a set,
then a locked record or structure in the associated data set is freed. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the
program is in transaction state, the statement does not free the locked
record or structure.) ’

2. It alters the current path to point to the record or structure specified by the
selection expression or database identifier.

3. It locks the specified record or structure and then transfers that record to
the user work area.

Implicit structure locks are freed after execution of the ENDTRANSACTION
statement.

Syntax

<secure statement>

- SECURE <selection expression> -
E <database identifiers> L <exception handling> -I

STRUCTURE - <data set name> —

-t

>
L (- <input mapping> -) -l

4-68 ' 8600 0734-000

Using the Data Management System 11 (DMSII) Interface

Additional information relating to locked records and structures is included under
“BDMS LOCK Statement” in this section.

Additional information relating to the <selection expression> construct is
included under ‘Selecting a Record in a Data Set” in this section. Information on
the <database identifier> construct is included under *“BDMS CLOSE Statement”
in this section. Information on the <exception handling> construct is included
under ‘““Database Status Word” in this section. Information on the <input
mapping> construct is included under *“Input Mapping Used with Retrieval
Statements’ in this section.

Explanation
The selection expression is used to specify the record to be locked.

The database identifier is used to specify the global data record to be locked. If
the invoked database contains a remap of the global data, the name of the logical
database, not the name of the global data remap, is used to lock the global data
record.

The STRUCTURE <data set name>> construct locks all records in the structure.
This is an explicit structure lock; therefore, the records are not freed after
execution of the ENDTRANSACTION statement. Explicit structure locks are freed
with the FREE STRUCTURE statement or by closing the database.

If an exception is returned, the record is not freed.

If a SECURE statement using a set selection expression returns an exception, the

current path of the specified set is invalidated. However, the current path of the

data set, the current record, and the current paths of any other sets for that data
set remain unaltered.

To access data items, the <input mapping> construct must appear.

Because no other user can lock a record or structure once it is locked, a record or
structure must be freed when it is no longer required to be locked. A record or
structure can be freed explicitly by a BDMS FREE statement or implicitly by a
subsequent CREATE, DELETE, FIND, BDMS LOCK, or RECREATE statement on
the same data set.

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

8600 0734-000 4-69

Using the Data Management System Il (DMSII) Interface

then the following BDMSALGOL program demonstrates the use of the SECURE

statement to lock records of subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET X TO BEGINNING;
SECURE NEXT X :RSLT;
WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN <= 10 THEN
BEGIN
REMOVE D FROM X;
DELETE D;
END
ELSE
BEGIN
PUT D (B := TRUE);
STORE D;
END;
SECURE NEXT X :RSLT;
END;
CLOSE DBASE;
END.

4-70

8600 0734-000

Using the Data Management System Il (DMSII) Interface

BDMS SET Statement

The BDMS SET statement alters the current path or changes the value of an item
in the current record. Only the record area is affected. The data set is not
affected until a subsequent STORE statement is executed.

The SET statement performs the following steps in order:

1. It frees the current path of the data set, set, or subset.
2. It performs one of the following actions:

a. Alters the current path of the data set, set, or subset to point to the
beginning or the ending of the indicated structure

b. Alters the set or subset path to point to the current path of another data
set

c. Assigns a NULL value to a particular item
Syntax

<BDMS set statement>

BEGINNING —

- SET <set> TO <«data set> <exception handling> ———]
‘ l- <subset> —I ‘E
ENDING

<data set> - T0 —[BEGINNING

ENDING —

- <item> - TO - NULL

<item>

- <qualification> {

Additional information relating to the <data set>, <set>>, and <subset>
constructs is included under ‘‘Selecting a Record in a Data Set” in this section.
Information on the <qualification> construct is included under ‘“‘Qualification of
Database Items” in this section. Information on the <exception handling>
construct is included under ‘“Database Status Word” in this section.

Explanation

The constructs <data set>, <set>, or <subset> following the word “SET"
specify the data set, set, or subset, respectively, whose path is altered.

If “TO <data set>" is specified, the current path of the set or subset is altered
to point to the current record of the specified data set.

If “TO BEGINNING" is specified, the current path of the set, subset, or data set
is altered to point to the beginning of the set, subset, or data set, respectively.

8600 0734-000 4-71

Using the Data Management System Il (DMSII) interface

If ““TO ENDING” is specified, the current path of the set, subset, or data set is
altered to point to the ending of the set, subset, or data set, respectively.

The <item> construct specifies an item of the current record that is assigned a
NULL value. The item cannot be a link item. NULL can be the DASDL-declared
NULL value or the system default NULL value. Consult the DMSII DASDL
Programming Reference Manual for more information.

After a SET TO BEGINNING form of the SET statement, the FIND NEXT and
FIND FIRST forms of the FIND statement are equivalent; similarly, after a SET
TO ENDING, a FIND PRIOR and FIND LAST are equivalent.

Example
Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (20);
B BOOLEAN;
N NUMBER (2);
R REAL;
)s
S SET OF D KEY (N);
SS SUBSET OF D WHERE (N = 3);

The following BDMSALGOL program demonstrates different ways to use the SET
statement.

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT_FILE (KIND=PRINTER) ;
DATABASE DBASE;
BOOLEAN MB,RSLT;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];
LABEL CLOSE_DATABASE;

OPEN INQUIRY DBASE;
SET SS TO BEGINNING :RSLT;
IF RSLT THEN
BEGIN
WRITE(PRINT_FILE,<"** NO ENTRIES IN SS. **">);
GO CLOSE_DATABASE;
END;
WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
SET SS TO D :RSLT;
IF RSLT THEN
WRITE(PRINT_FILE,<I3," NOT IN SS.">,MN)
ELSE

4-72 8600 0734-000

Using the Data Management System |1 (DMSII) Interface

BEGIN
GET D(MA[0] := A,MB := B);
IF MB THEN
GET D (MR := R)
ELSE
MR := 0;
WRITE(PRINT_FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0] ,MB,MR) ;
END;
END;

CLOSE_DATABASE :

CLOSE DBASE;
END.

8600 0734-000 . 4-73

Using the Data Management System | (DMSII) Interface

STORE Statement

The STORE statement places a new or modified record into a data set or a global
record area. The data from the user work area for the data set or global record is
inserted into the data set or global record area.

4-74

The STORE statement performs the following actions after a CREATE or
RECREATE statement:

1.

Check the data in the user work area for validity if a VERIFY condition is
specified in the DASDL.

Test the record for validity for insertion in each set in the data set (for
example, tests whether or not duplicates are allowed).

Evaluate the WHERE condition for each automatic subset.

Insert the record into all sets and automatic subsets if all conditions are
satisfied.

Lock the new record.
Alter the data set path to point to the new record.

After a BDMS LOCK or MODIFY statement, the STORE statement performs the
following actions:

1.

Check the data in the user work area for validity if a VERIFY condition is
specified in the DASDL.

Reevaluate the conditions if items involved in the insertion conditions have
changed. If the condition yields FALSE, the record is removed from each
automatic subset that contains the record. If the condition yields TRUE, the
record is inserted into each automatic subset that does not contain the
record.

Delete and reinsert the record in the proper position if a key used in the
ordering of a set or automatic subset is modified so that the record must be
moved within that set or automatic subset.

Store the record in a2 manual subset, but performs no reordering on that
subset. The user is responsible for maintaining manual subsets. A
subsequent reference to the record using that subset produces undefined
results.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

Syntax

<store statement>

v

- STORE —[<data set>
<database identifier> — - <exception handling> -J

| 4
L (- <output mapping> -) —'

Additional information relating to the <data set> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the <database
identifier> construct is included under ‘“BDMS CLOSE Statement” in this section.
Information on the <exception handling> construct is included under ‘‘Database
Status Word" in this section. Information on the <output mapping> construct is
included under “Output Mapping Used with Storage Statements” in this section.

Explanation

If the <data set> form is used, the data in the user work area for the data set is
returned to the specified data set.

If the <database identifier> form is used, the data in the user work area for the
global data is returned to the global data record area. The global data record
must be locked before a STORE statement references it; otherwise, the STORE
statement is terminated with an exception.

An exception is returned and the record is not stored if the record does not meet
any of the validity conditions.

An exception is returned if the data set path is valid and the current record is
not locked, or if the global data record is not locked.

Example
If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)s
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)s
S SET OF D KEY N;

then the following BDMSALGOL prograin demonstrates how the STORE statement
can be used to place a record into the data set D.

8600 0734-000 4-75

Using the Data Management System Il (DMSII) Interface

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;

EBCDIC ARRAY MY_A[0:2];
INTEGER MY_N;

OPEN UPDATE DBASE;

MY_N :=1;

WHILE MY_N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY_N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY_N := *+];
END;

WHILE NOT READ(CARD_FILE,<I3,A3>,MY_N,MY_A[0]) DO
BEGIN
LOCK S AT N = MY_N;
BEGINTRANSACTION R;
PUT D (A := MY_A[0]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

4-76 8600 0734-000

Using the Data Management System |l (DMSII) Interface

BDMSALGOL Functions

There are two data management functions available in the BDMSALGOL
language: DMTEST and STRUCTURENUMBER. These functions are described in
this section.

DMTEST Function
The DMTEST function determines whether an item is null. The function returns a
Boolean value of TRUE or FALSE. It is TRUE if the value of the relationship
expressed between the parentheses is TRUE; otherwise, it is FALSE. No status
value is associated with the DMTEST function.
Syntax
<dmtest function>

~ DMTEST - (<alpha items EQL NULL =) |

<link item ——— |— = ———

<numeric item> —H (= IS —

<real item» — |- NEQ —

a
pe M o

L ISNT -

<alpha item>
<numeric item>
<real item>

~ <qualification> - |

Additional information relating to the <link item> construct is included under
“Selecting a Record in a Data Set” in this section. Information on the

< qualification> construct is included under “Qualification of Database Items’ in
this section.

Explanation

The <alpha item> construct specifies an alpha item declared in the DASDL. The
alpha item contains a NULL value after a “SET <item> TO NULL"” form of the
BDMS SET statement, where <item> is the alpha item.

The <numeric item> construct specifies a numeric item declared in the DASDL.
The numeric item contains a NULL value after a “SET <item> TO NULL" form
of the BDMS SET statement, where <item> is the numeric item.

The <real item> construct specifies a real item declared in the DASDL. The real

item contains a NULL value after a “SET <item> TO NULL” form of the BDMS
SET statement, where <item> is the real item.

8600 0734--000 4-77

Using the Data Management System Il (DMSII) interface

4-78

The <link item> construct specifies a link item declared in the DASDL. The link
item contains a NULL value if either of the following is TRUE:

The link item does not point to a record.

2. No current record is present for the data set that contains the link item. This
condition occurs following a BDMS OPEN statement, following the SET TO
BEGINNING and SET TO ENDING forms of the BDMS SET statement, or
when the record containing the link item has been deleted.

The link item contains a nonnull value if the link item points to a record, even if
that record has been deleted.

The word ‘“NULL” represents the DASDL-defined NULL value.

Example
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the DMTEST
function can be used to determine whether or not the alpha item A is NULL:

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D;
END;
CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

STRUCTURENUMBER Function
The STRUCTURENUMBER function allows the programmer to determine
programmatically the structure number of a data set, set, subset, or of global
data. This function can be used to analyze the result of exception conditions.
This capability is most useful when several sets span a data set and the previous
operation against the data set yielded an exception. The program can determine
which structure caused the exception from the corresponding structure number.
Syntax

<structurenumber function>

~ STRUCTURENUMBER - (<database identifier> ——) |
<data set>

<set>

<subset>

Additional information relating to the <database identifier> construct is
included under “BDMS CLOSE Statement” in this section. Information on the
<data set>, <set>>, and <subset> constructs is included under “‘Selecting a
Record in a Data Set” in this section.

Explanation

If the <database identifier> construct is used, the STRUCTURENUMBER
function returns the structure number of the global data. Otherwise, the function
returns the structure number of the data set, set, or subset specified by its
respective construct.

When a partitioned structure is declared in DASDL, it is assigned one or more
structure numbers, depending on <unsigned integer> in the “OPEN PARTITIONS
= <unsigned integer>"" form of the DASDL OPEN data set option. For example,
if “OPEN PARTITIONS = 3" is specified, three structure numbers are assigned to
the partitioned structure. Refer to the DMSII DASDL Programming Reference
Manual for further information.

The STRUCTURENUMBER function returns the smallest structure number
assigned to the structure; however, DMSTRUCTURE, the value in the exception
status word, can evaluate to any of these values; that is, it does not necessarily
evaluate to the same structure number every time.

Example
REAL ERRORWORD;

IF STRUCTURENUMBER(D) = ERRORWORD.DMSTRUCTURE THEN
REPLACE EA BY "D FAULT";

8600 0734-000 4-79

Using the Data Management System 1l (DMSII) Interface

Exception Processing

When executing BDMSALGOL statements, any one of several exception
conditions, which prevent the operation from being performed as specified, can
be encountered. These conditions result if the operation encounters a fault or
does not produce the expected action. For example, execution of the statement

FIND S AT NAME = "JONES"

would result in an exception if there is no entry in S that has a value of “JONES”
for the key item. If the operation terminates normally, no exception occurs.

A database status word is returned to the BDMSALGOL program at the
conclusion of each BDMSALGOL statement. The value of this word indicates
whether or not an exception has occurred and specifies the nature of the
exception.

4-80 8600 0734-000

Using the Data Management System Il (DMSII) Interface

Database Status Word

In a BDMSALGOL statement, the user must specify the name of a real variable or
Boolean variable in which the value of the database status word is stored at the
completion of the BDMSALGOL statement. If no such variable is specified, the
status value cannot be interrogated.

The <exception handling> construct is used in the syntax of the BDMSALGOL
statements to denote those statements where a program variable can be
designated to receive the value of the database status word.

Syntax

<exception handling>

- : — <exception variable> |

<exception variable>

—[: <Boolean variable> i

<real variable>

Explanation

A Boolean variable is a Boolean simple variable or an element of a Boolean array.
A real variable is a real simple variable or an element of a real array.

For more information concerning Boolean and real variables, refer to Volume 1.
Example

REAL ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;

8600 0734-000 4-81

Using the Data Management System |l (DMSII) Interface

Exception Handling

4-82

If the database status word is treated as a Boolean quantity, its value is TRUE if
the operation containing it results in an exception; otherwise, it is FALSE.

If an exception results from a database operation, but the value of the database
status word is not assigned to an exception variable in the program, the program
is terminated. If the value is assigned to an exception variable, no other
indication of the exception is given. The BDMSALGOL program is responsible for
determining the nature of the exception and responding appropriately. Failure to
do so can cause unpredictable results.

To determine the nature of an exception, the database status word is interrogated
by specifying a period (.) and an attribute name following the exception variable.
The attribute names are recognized by the BDMSALGOL compiler as
representations of the appropriate fields of the database status word.

The values that can be stored in the database status word are noted and
explained in the DMSII Application Program Interfaces Programming Guide.

Syntax

<exception value>

- <exception variable> - . DMERROR
EDMERRORTYPE j
DMSTRUCTURE

Explanation

The DMERROR attribute yields a numeric value identifying a major category.
Mnemonic names are also available to represent these numeric values. Either the
category number or the category mnemonic can be used to test for a particular
category.

The DMERRORTYPE attribute yields a numeric value identifying the subcategory
of the major category.

The DMSTRUCTURE attribute yields a numeric value identifying the structure
number of the structure involved in the exception. The structure numbers of all
invoked structures are shown in the program listing if the program was compiled
with the compiler control options LIST and LISTDB equal to TRUE.

8600 0734-000

Using the Data Management System Il (DMSII) Interface

Example

The following example illustrates one way of handling exceptions in a
BDMSALGOL program:

REAL ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;
IF BOOLEAN(ERRORWORD) THEN
IF ERRORWORD.DMERROR = OPENERROR THEN
IF ERRORWORD.DMERRORTYPE = 1 THEN
DISPLAY("I/O ERROR ON ACCESSROUTINES CODE FILE");

If the exception variable is a Boolean variable, the preceding example is changed
as follows:

BOOLEAN ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;
IF ERRORWORD THEN
IF REAL (ERRORWORD) .DMERROR = OPENERROR THEN
IF REAL(ERRORWORD) .DMERRORTYPE = 1 THEN
DISPLAY("I/0 ERROR ON ACCESSROUTINES CODE FILE");

8600 0734-000 | 4-83

Using the Data Management System Il (DMSII) Interface

BDMSALGOL Compiler Control Options

4-84

The following compiler control options are available in the BDMSALGOL language
in addition to the options available in the ALGOL language. For information on
the compiler control options available in ALGOL, refer to Volume 1.

Syntax
<datadictinfo option»

- DATADICTINFO

Explanation

(Type: Boolean, Default value: FALSE) If the DATADICTINFO option is TRUE,
information about the usage of database structures and items is placed into the
object code file. This information shows which database structures and items
were invoked by the program and whether they were read or written. This option
cannot be assigned a value after the appearance of the first syntactical item in
the program.

—_

Syntax
<1istdb option>

- LISTDB i

Explanation

(Type: Boolean, Default value: FALSE) If both the LIST option and the LISTDB
option are TRUE, the printer listing contains information about the invoked
databases, structures, and items, including the declared database titles. If the
LIST option is TRUE but the LISTDB option is FALSE, the printer listing does not
contain this information. The value of LISTDB is ignored if the LIST option is
FALSE.

Syntax
<nodmdefines option>

— NODMDEF INES i

Explanation

(Type: Boolean, Default value: FALSE) If the NODMDEFINES option is TRUE, no
defines are expanded in BDMSALGOL constructs.

When the NODMDEFINES option is FALSE, defines in BDMSALGOL constructs
are expanded, including defines in the following situations:
A database item has the same identifier as a define.

2. An alphanumeric string that is part of a database item identifier (between
two hyphens, before the first hyphen, or after the last hyphen) is the same
as the identifier of a define.

8600 0734-000

Using the Data Management System |l (DMSII) interface

Binding and SEPCOMP of Databases

Programs that declare and use databases can use the Binder program and the
separate compilation (SEPCOMP) facility of the compiler.

Binding

Programs that declare and reference databases can be bound together by the
Binder program. The following example shows a BDMSALGOL host program that

e Declares a database

® Declares an external procedure

e Declares a separate procedure that is to be bound to the host
e Declares the database in its global part

The DASDL description of the database TESTDB is as follows:

DS DATA SET (
NAME GROUP (
LAST ALPHA (10);
FIRST ALPHA (10);
)s
AGE NUMBER (2);
SEX ALPHA (1);
SSNO ALPHA (9);
)s
NAMESET SET OF DS KEY (LAST, FIRST);

The following program, compiled with the name SEP/HOST, is the BDMSALGOL
host program:

BEGIN
DATABASE TESTDB;
PROCEDURE P; EXTERNAL;
OPEN UPDATE TESTDB;
P;

CLOSE TESTDB;

END.

The following separate procedure, P, compiled with the name SEP/P, is to be
bound to the external procedure P of the host. Note how the database TESTDB is
declared in the global part.

[DATABASE TESTDB;]
PROCEDURE P;
BEGIN
BOOLEAN EXCEPTIONWORD;
EXCEPTIONWORD := FALSE;
SET NAMESET TO BEGINNING;

8600 0734-000 4-85

Using the Data Management System |l (DMSII) Interface

WHILE NOT EXCEPTIONWORD DO
BEGIN
FIND NEXT NAMESET AT LAST = "SMITH"
AND FIRST = "JOHN" :EXCEPTIONWORD;
% Other statements
END;
END;

The separate procedure P in SEP/P can be bound to the host SEP/HOST using the
following Work Flow Language (WFL) job. The resulting bound code file is named
GLOBDB.

?BEGIN JOB BIND/GLOB;

BIND GLOBDB WITH BINDER LIBRARY;
BINDER DATA

HOST IS SEP/HOST;

BIND P FROM SEP/P;

?END JOB.

SEPCOMP

Programs that declare and use databases can also make use of the SEPCOMP
facility of the compiler, as shown in the following example.

The DASDL description of the database TESTDB is as follows:

DS DATA SET (
NAME GROUP (
LAST ALPHA (10);
FIRST ALPHA (10);
)s
AGE NUMBER (2);
SEX ALPHA (1);
SSNO ALPHA (9);
)3
NAMESET SET OF DS KEY (LAST, FIRST);

Because the MAKEHOST compiler control option is TRUE, the following program,
compiled as MY/HOST, can be used as a host program for SEPCOMP:

$ SET MAKEHOST
BEGIN
DATABASE TESTDB;
PROCEDURE P;
BEGIN
BOOLEAN EXCEPTIONWORD;
EXCEPTIONWORD := FALSE;
SET NAMESET TO ENDING;
WHILE NOT EXCEPTIONWORD DO
BEGIN
FIND NEXT NAMESET AT LAST = "SMITH"

O WO NP WN =

=)

4-86 8600 0734-000

Using the Data Management System Il (DMSII) Interface

AND FIRST = "JOHN": EXCEPTIONWORD; 11

% Other statements 12

END; 13

END; 14

OPEN UPDATE TESTDB; 15

P; 16
CLOSE TESTDB; 17
END. 18

The following source input invokes the SEPCOMP facility to change the record of
the host MY/HOST with sequence number 7, recompile the procedure P, and bind
the new P to the host:

$ SET SEPCOMP "MY/HOST" % Patch follows
SET NAMESET TO BEGINNING; 7

8600 0734-000 4-87

Section 5
Using DMSII Transaction Processing
System (TPS) Extensions

The Transaction Processing System (TPS) provides Data Management System II
(DMSII) users the software means to process a high volume of transactions. TPS
separates into modules the various functions needed to perform database
processing. TPS also supplies a library of transaction processing procedures. By
using TPS, the DMSII user can

e Minimize program coding and maintenance.

o Eliminate much of the complexity that characterizes programming for
database processing.

o Centrally define all transactions to be performed against a database.

e Rely on comprehensive recovery capabilities.
Basically, there are two types of programs you write for TPS:
1. The application program, which can call Transaction Library points to

invoke library procedures.

2. The Update Library, which is a collection of transaction-processing routines
that provide an interface between the Transaction Library and a DMSII
database.

Consult the DMSII Transaction Processing System (TPS) Programming Guide for
a thorough discussion of TPS, its modules and libraries, and its associated
Transaction Formatting Language (TFL). Pertinent information about the DMSII
and BDMSALGOL interface can be found in this volume.

The TPS program interface consists of extensions that provide access to a
transaction base. You can

e Invoke a transaction base.

e Create transaction records.

e Use transaction records to pass variables as parameters and to assign (or
copy) the contents of a variable to another transaction record variable.

e Access transaction record items.
e Inquire about transaction record control items.

e Use transaction record compile-time functions to access certain properties of
transaction record formats.

8600 0734-000 5-1

Using DMSII Transaction Processing System (TPS) Extensions

e Use Transaction Library entry points to invoke library procedures.

e Use the Update Library to perform data management of the database with
transaction processing statements.

Sample ALGOL programs at the end of this section demonstrate the uses of the
TPS interface.

The ALGOL compiler enforces all restrictions on the use of transaction record
variables noted in this section and, when appropriate, issues syntax errors.

Additional information relating to DMSII transactions is included in Section 4,
“Using the Data Management System II (DMSII) Interface.”

5-2 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Using the Transaction Formatting Language (TFL)

Transaction Formatting Language (TFL) is a symbolic language used to define
information related to transaction processing. The symbolic descriptions of

transaction record structures are collectively referred to as a transaction base.
Consult the DMSII TPS Programming Guide for a complete description of TFL.

Table 5-1 shows what type must be declared for each TFL item in ALGOL
application programs that access a transaction base. In the listing, <name> is
the declared item name. For ALPHA and FIELD TFL items, “n"” is the length. For
all other items, “n” is an unsigned integer, “Sn”’ is a signed integer, and “m” is a

decimal.
Table 5-1. TFL item Interpretations
TFL ltem ALGOL Type

<name> ALPHA(n) STRING <name>
<name> NUMBER(n) INTEGER <name>
<name> NUMBER(Sn) INTEGER <name>
<name> NUMBER(n,m) REAL <name>
<name> NUMBER(Sn,m) REAL <name>
<name> REAL ' REAL <name>
<name> REAL(n) INTEGER <name>
<name> REAL(Sn) INTEGER <name>
<name> REAL(n,m) REAL <name>
<name> REAL(Sn,m) REAL <name>
<name> BOOLEAN BOOLEAN <name>
<name> FIELD(n) REAL <name>
<name> GROUP STRING <name>

8600 0734-000 5-3

Using DMSII Transaction Processing System (TPS) Extensions

Declaring a Transaction Base

5-4

Before making any references to formats or items defined within a transaction
base, a user-written program must declare that transaction base. In the
declaration, you can

e Specify only the transaction base and, by default, invoke all structures in the
transaction base.

e Optionally specify a list of transaction record formats and subformats to
invoke only those structures of the transaction base.

Any program that invokes the Transaction Library should not be a library itself.

The program can also specify alternate internal names for the transaction base
and for any of the formats or subformats declared. If alternate internal names
are used for the base name, subbase name, format name, or subformat name, the
program must reference these internal identifiers rather than the TFL source
identifiers.

If a subbase has been defined for the transaction base, the program also can
invoke the subbase. When a subbase is invoked, only the transaction record
formats and subformats defined within that subbase are accessible to the
program. As in transaction base invocation, the program can specify a list of
transaction record formats and subformats, possibly using internal names that
can be invoked from the defined subbase.

Syntax

— TRANSACTION BASE - <base spec> ; 1'

s
l— : - <format list> —|

<base spec>

<base name> ——M8M8M M

L <internal base ID> - = —I [— <subbase name> - OF —]

<format list>

L <format spec> |

l— (- <subformat list> -) —|

<format spec>

<format name> i

I- <internal format ID> — = -'

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

<subformat list>

ALL |
NONE

<subformat spec> J—

<subformat spec>

<subformat name> i

|— <internal subformat ID> — = --I

Explanation

The syntax “TRANSACTION BASE <base spec>"' specifies the name of the
transaction base or subbase to be invoked. Optionally, a list of transaction record
formats and subformats can be invoked. If the list is not included, all transaction
record formats and subformats are invoked for the designated transaction base or
subbase. If the list is included, only the indicated transaction record formats and
subformats are invoked.

The different forms of the base spec construct specify either the transaction base
or subbase. The syntax * <internal base ID>=<base name>"' is used to invoke a
transaction base with the designated internal name. The syntax *‘<subbase
name> OF <base name>>" designates the name of a transaction subbase to be
invoked.

The format list is a list of transaction record format and subformat names
including, possibly, internal names. If only <format name> is specified in the
<format spec> syntax, by default all subformats of that format are invoked.

When a subformat list is used in a <format spec> construct, it specifies the
name of the transaction record format being invoked. If the *<internal format
ID>=<format name>>"" syntax is used, it specifies its internal name, an
indication of the transaction record subformats to be invoked, or both.

A subformat list indicates the specific subformats of a transaction record format.
If no subformat list is inciluded for a particular format name, ALL is assumed.

If a transaction base with a list of formats has been invcoked, specifying ALL
invokes all the subformats of that format. If a transaction subbase has been
invoked, specifying ALL invokes only those subformats specified for this format
in the TFL subbase declaration.

If only a format name is listed in the TFL subbase declaration, then by default
TFL includes all subformats of the format in the subbase declaration.

If NONE is specified for a particular transaction format, then no subformats are
invoked.

8600 0734-000 5-5

Using DMSII Transaction Processing System (TPS) Extensions

5-6

If a list of <subformat spec>s is specified, .only those subformats on the list are
invoked. If a transaction subbase is invoked, then <subformat spec>>s can
include only those subformats defined within the transaction subbase for a
particular format.

Examples

In the example below, the transaction base BANKACCT is invoked. Since no
format list is invoked, all transaction record formats and subformats are also
invoked.

TRANSACTION BASE BANKACCT;

As seen in the following example, the transaction base MANUFACT is equated to
the internal name MNF and invoked. All transaction record formats and
subformats are invoked.

TRANSACTION BASE MNF = MANUFACT;

In the following example a transaction base with the internal base identifier
DOC1 is equated to DOC and invoked. The format list includes several formats
with subformat lists.

IFMT1, IFMT6, IFMT3, IFMT4, and IFMT5 are internal format identifiers that are
each equated to a format name. '

The ALL option specifies that all the subformats of IFMT3 are invoked. Because
neither NONE nor a specific subformat is noted, any subformats of FMTO, IFMT1,
and IFMT6 are also invoked. (The default is ALL.)

The NONE option specifies that none of the subformats of IFMT4 are invoked.
Only the subformats S1 and IS3 are invoked for IFMTb6. The internal subformat
identifier IS3 is equated to the subformat S3.

TRANSACTION BASE DOC1 = DOC :
FMTO,
IFMT1 = FMT1,
IFMT6 = FMT6,
IFMT3 = FMT3 (ALL),
IFMT4 = FMT4 (NONE),
IFMT5 = FMTS (S1,1S3 = $3);

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Creating Transaction Records

A transaction record is an array row that can contain the transaction data of one
of several transaction formats declared in the TFL source. A transaction record
variable names one of these array rows. A transaction record variable can
contain the transaction data of one of several transaction formats and can make
the transaction record, in effect, a structured variable.

A transaction record variable can be associated with only one transaction base or
transaction subbase. A transaction record variable can contain only formats and
subformats that have been invoked from its associated transaction base or
transaction subbase. The size of the array row is large enough to accommodate
the largest of all the formats invoked for it.

The following information explains how transaction record variables are declared
and how transaction records are created.

Declaring Transaction Record Variables

The transaction record can be declared as a one-dimensional or a two-dimensional
array. Use the <transaction record declaration> syntax to declare a
one-dimensional array. Use the <transaction record array> syntax to declare a
two-dimensional array.

Additional information relating to transaction record variables is included under
“Inquiring About Transaction Record Control Items,” ‘‘Passing Transaction
Record Variables as Parameters,” and ‘“Accessing Transaction Record Items " in
this section.

Syntax

<transaction record declaration>

-[————T TRANSACTION RECORD (<base ID>) -[- <transaction variable ID> —|— ;s —
LONG

<transaction record array declaration>

— TRANSACTION RECORD ARRAY - (— <base ID> -) >

L]
)—E <transaction array ID 1ist> —~ [— <bound pair list> -] -|— 3 |

<transaction array ID list>

9
-ﬂ <transaction array ID> {

8600 0734-000 5-7

Using DMSII Transaction Processing System (TPS) Extensions

<bound pair list>

-r- <arithmetic expression> — : — <arithmetic expression> i

Explanation

The <transaction record declaration> syntax is used with one-dimensional
arrays. The <transaction record array declaration> syntax is used with
two-dimensional arrays.

The option LONG suppresses the segmentation of transaction records. Ordinarily,
transaction records larger than 1024 words are segmented into 512-word entities.
(This segmentation is standard for all ALGOL arrays declared to have more than
1024 elements.) '

The <base ID> construct is the name, or internal name, of a transaction base or
transaction subbase. Specifying a base ID in the declaration of a transaction
record or transaction record array associates a transaction base or transaction
subbase with the particular record(s).

The <transaction variable ID>> construct identifies the name of a transaction
record variable. The <transaction array ID> construct identifies the name of an
array of transaction record variables. Each fully subscripted element of a
transaction array ID is a transaction record.

The <bound pair list> construct gives the lower and upper bounds of all
subscripts taken in order from left to right.

Refer to Volume 1 for information about arithmetic expressions and bound pair
lists.

Examples

As shown below, the transaction variables TRIN, TROUT, LASTINPUT, and
LASTRESPONSE are associated with the transaction base BANKACCT.

TRANSACTION RECORD (BANKACCT)
TRIN,
TROUT,
LASTINPUT,
LASTRESPONSE ;

In the next example, the LONG cption suppresses segmentation for the
transaction records in the transaction base DOC.

LONG TRANSACTION RECORD (DOC);
In the example below, the transaction base DOC is an array. TRARRAY]1,
TRARRAY2, and TRARRAYS3 are transaction array identifiers. The lower and

upper bounds of TRARRAY?2 are O and 9, respectively. The lower and upper
bounds of TRARRAY3 are 0 and 0, respectively.

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

TRANSACTION RECORD ARRAY (DOC)
TRARRAY1,
TRARRAY2 [0:9],
TRARRAY3 [0:0];

Creating Transaction Record Formats

The contents of a transaction record variable are undefined until the variable is
initialized to a particular format by a CREATE statement. A CREATE statement
assigns the initial values of all items in the transaction record format (and
transaction subformat) to the record variable and initializes the transaction
record control items.

When a format is created, only those items in the common part are assigned
initial values. When a subformat is created, the common part items as well as the
subformat part items are assigned initial values. The record variable continues to
contain the given format until it is reinitialized by a subsequent CREATE
statement. It is never cleared by the system.

Once a transaction record variable has been created in a particular transaction
format and, optionally, subformat, the items defined within the format and
subformat can be accessed and manipulated. If a transaction record is created in
a particular transaction record format, the record contains only the data items
associated with that transaction record format. If a transaction record is created
in a particular transaction record format and subformat, then the record contains
the data items associated with the format and the data items associated with the
subformat.

Additional information relating to transaction record formats is included under
“Declaring Transaction Record Variables” and ‘“‘Requirements for Data Item
Qualification” in this section. Related information is also available under
“CREATE Statement” in Section 4, “Using the Data Management System II
(DMSII) Interface.”

Syntax

<Create statement>

- CREATE - <transaction record> — . — <format ID>

.
’ 1

I- . — <subformat ID> —I

<transaction record>

—[<transaction record variable ID> 1

<transaction record array ID> — [— <subscript list> -] -J

8600 0734-000 5-9

Using DMSII Transaction Processing System (TPS) Extensions

<subscript list>

<subscript> 1

Explanation

The <transaction record> construct is the name of the transaction record
variable to be initialized. If a transaction record array element is referenced, it
must be fully subscripted.

The <format ID> and <subformat ID> constructs are, respectively, the names
of the format and subformat (if given) whose data item’s initial values are
assigned to the record variable.

The <subscript list> construct gives one or more <subscript>s that are
required to qualify the referenced item. In this syntax, it is a <transaction
record array ID>. The <subscript> form is defined as any legitimate ALGOL
arithmetic expression. Refer to Volume 1 for further details on subscripting.

Examples

In this example, the transaction record variable TRIN is initialized. The data
items of the format ACCT are assigned to TRIN.

CREATE TRIN.ACCT;

Below, the transaction record variable TRRECORD is initialized. The data items
of the format ACCT and the subformat MAY are assigned to TRRECORD.

CREATE TRRECORD.ACCT.MAY;
As seen in the following example, the transaction record array TRARRAY1 is
initialized. It has a subscript of 7. The data items of the format ACCT are
assigned to TRARRAY1.

CREATE TRARRAY1[7].ACCT;

5-10 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Using Transaction Records

The compiler enforces certain restrictions on the use of transaction record
variables. Transaction record variables can be used only as shown below.

e To create transaction records and use compile-time and run-time functions.
e To store data in transaction records.

e To obtain data from transaction records.

e To pass transaction records as parameters in procedures.
Transaction record variables cannot be used

o In lists.
e In input or output statements.

e In assignment statements except as described in *‘Assigning Transaction
Record Variables.”

Additional information relating to transaction records is included under
**Assigning Transaction Record Variables” in this section.

Passing Transaction Record Variables as Parameters

In transaction processing, most of the work is carried out by Transaction Library
procedures. Transaction records are passed to these procedures as parameters.
Transaction records cannot be passed to intrinsics or to external procedures
initiated through a CALL or PROCESS statement.

The formal and actual parameters must refer to the same transaction base, but
they need not specify the same list of transaction record formats. If a procedure
is given a transaction record in a format it has not invoked, the procedure is
limited as to what it can do with that record.

The transaction base or subbase must be declared before specifying the syntax
for a formal transaction record variable.

The compiler checks that all the uses of a particular transaction record variable
within a code file are compatible. When the variable is passed as a parameter to a
separately compiled code file (such as the Transaction Library), parameter
checking code ensures that the following attributes of the variable are those that
are expected:

e Transaction record format level

e Transaction record control item length

e Transaction base creation date-time stamp

The contents of the variable need not be inspected to make this check. If any of
these three attribute values do not match, the error message “MISMATCH AT

8600 0734-000 5-11

Using DMSII Transaction Processing System (TPS) Extensions

PARAMETER NUMBER <number>, TRANSACTION RECORD <attribute>s
DIFFER” is issued when an attempt is made to call a separately compiled code
file.

Additional information relating to transaction record variables is included under
“Declaring Transaction Record Variables” and *Using Transaction Library Entry
Points” in this section.

Assigning Transaction Record Variables

The contents of a transaction record variable can be assigned (that is, copied) to
another transaction record variable, provided that both variables represent the
same transaction base. Both the control and data portions of the transaction
record are transferred when an assignment is performed.

In DMALGOL, the implementation language for the Transaction Library, an
ARRAY reference variable can be assigned to a transaction record variable. This
construct is not permitted in user-written programs. Consult the DMALGOL
Programming Reference Manual for more information on DMALGOL.

Additional information relating to transaction record variables is included under
“Inquiring About Transaction Record Control Items” in this section.

Syntax

- <transaction record> - := — <transaction records i

Explanation

The construct <transaction-record-1> is the name of the transaction record
variable that receives its contents from another transaction record variable.

The construct <transaction-record-2>> is the name of the transaction record
variable whose contents are being assigned or copied to another transaction
record variable.

Example

The contents of the transaction record TRRECORD are assigned to the transaction
record TRRECEIVE.

TRRECEIVE := TRRECORD;

5-12 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Accessing Transaction Record ltems

A transaction record can contain only a transaction that has a format and
subformat declared for it in the TFL source. Data items in the declared format
and subformat of that transaction can be referenced.

Transaction record data items are considered normal data items and can be
referenced in the same manner as normal data items.

Syntax

<item reference>

- <transaction record>
I— . — <format ID> -I L . = <subformat ID> J

p— <item name> L

A 4

[- <subscript list> -] -I

<item name>

—r— <group item name> |
— <alpha item name> —
-~ <Boolean item name> —
— <numeric item name> —

— <real item name>

- «<field item name> —

Explanation

The construct <transaction record> is used to nan:e a transaction record
variable. If a transaction record array element is used, it must be fully
subscripted.

The <format ID> and <subformat ID> constructs are normally optional.
However, they can be required for qualification.

The <item name> construct specifies an item within the transaction record
format or subformat presently occupying the record variable. The item name
must be fully subscripted if it is an element of an occurring item.

An item name can be used either as the left part of an assignment or REPLACE
statement or as a primary in an expression. The type of the item must be
consistent with the context in which it is used.

Data items of transaction record formats or subformats that are occurring items,

items embedded within one or more occurring groups, or items that occur and are
embedded within occurring groups must be subscripted. The <subscript>s

8600 0734-000 5-13

Using DMSII Transaction Processing System (TPS) Extensions

5-14

within a <subscript list> construct are listed from left to right, from the outer
most occurring GROUP to the innermost occurring GROUP or occurring items.

Additional information relating to transaction record items is included under
“Using the Transaction Formatting Language (TFL)” and ‘“‘Requirements For Data
Item Qualification” in this section.

Examples

In the example, the item GR is within the transaction record format TRONE. The
content of the transaction record MANUFACT is assigned to the item GR.

TRONE.GR := MANUFACT;
The next example contains a subscript construct. The item ST is qualified by the
format GENLED and the subformat JONOQ. ST is an occurring item within the

transaction record format TRTWO. The content of AX is copied to the item.

TRTWO.GENLED.JONO.ST[9] := AX;

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Requirements for Data Item Qualification

A data item is qualified in order to make it unique or to differentiate it from
other similar items. Use qualification to assure that the items referenced are the
desired data items.

The amount of qualification required to access a data item of a particular
transaction record format or subformat varies. In every case, however, the
transaction record variable containing the desired data item must be referenced.

Shown below are the varying requirements and syntaxes for qualification. The
following tokens are used in the syntaxes.

Token Name
DATAITEMNAME Data item name
FORMATNAME Format name
SUBFORMATNAME Subformat name
TRANREC Transaction record

Data Item Qualification

If the name of the desired data item is unique with respect to data items of other
invoked formats, specify only the data item name.

Example

TRANREC. DATAITEMNAME

Format Name and Data item Name Qualification
If the name of the desired data item is not unique with respect to data items of
other invoked formats, but is unique to the format that contains it, specify both
the format and the data item name.

Example

TRANREC. FORMATNAME . DATAI TEMNAME
Subformat Name and Data Item Name Qualification

Specify both the subformat name and the data item name whenever any of of the
following are true:

8600 0734-000 5-15

Using DMSII Transaction Processing System (TPS) Extensions

1. The name of the desired data item is not unique with respect to the common
portion of another invoked format.

The name of the desired data item is contained within a subformat.
Another data item within a different subformat of the same format has the
same name as the desired data item.

Also, if the desired data item is contained within a subformat whose name is
unique to all invoked formats and subformats, and the desired data item is not
unique with respect to a subformat of another format, then both the subformat
name and the data item name are needed.

Example

TRANREC. SUBFORMATNAME . DATAI TEMNAME

Format Name, Subformat Name, and Data Item Name
Qualification

When all the following statements are true, specify the format name, subformat
name, and data item name for qualification.

1. The desired item is not unique with respect to a subformat of another
invoked format.

The item is not unique with respect to the format that contains it.

The name of the subformat that contains the desired item is not unique with
respect to all invoked formats and subformats.

Example

TRANREC . FORMATNAME . SUBFORMATNAME . DATAT TEMNAME

5-16 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Inquiring About Transaction Record Control Items

Control items are system-defined items contained within every transaction
record. These items are maintained by the TPS and are read-only in all
BDMSALGOL programs. The initial values of these control items are assigned
when a transaction record is created. These items are defined only after a
transaction record has been created using the TPS CREATE statement.

Additional information relating to transaction record control items is included
under “Creating Transaction Record Formats,” “Assigning Transaction Record
Variables,” and “‘Declaring Transaction Record Variables’ in this section.

Syntax

- <transaction record ID> . — <record control item> ————————o
[— [<subscript>] -J

Explanation

The <transaction record ID> construct is a transaction record variable. The
variable must be fully subscripted if a transaction record array element is used.

A subscript is an ALGOL arithmetic expression that identifies a particular
transaction record variable within an array of transaction record variables.

The <record control item> construct identifies the specific control item. The
valid items are described in the DMSII TPS Programming Guide.

Example

In the example, the record control item TRCONTROLSIZE is used to specify the
size, in bytes of the control portion of the transaction record TRIN. The content is
assigned to the variable STOREBYTES.

STOREBYTES := TRIN.TRCONTROLSIZE;

8600 0734-000 5-17

Using DMSII Transaction Processing System (TPS) Extensions

Using Transaction Compile-time Functions

Transaction compile-time functions provide access to certain properties of
transaction record formats that are constant at compile time. These compile-time
constructs are particularly useful when coding an Update Library.

Additional information relating to these compile time constructs is included under
*“Using Update Libraries’ in this section.

Syntax
<transaction compile-time functions>

-~ <transaction compile-time function name> — (

v

p— <transaction compile-time function argument> —) i

<transaction compile-time function argument>

l—- <base ID> - . -|

[.]
v

<format ID>

v

l— . — <subformat ID>—J

L . = <transaction item ID> —I

Explanation

The transaction compile-time function names are identified and described in the
DMSII TPS Programming Guide.

The constructs <base ID>, <format ID>, <subformat ID>, and <transaction
item ID> are all components of the transaction compile-time function argument.
The base ID is the name of a transaction base that has been invoked within the
program. The format ID specifies the name of a transaction format that has been
invoked within the program. A subformat ID is the name of a transaction
subformat that has been invoked within the program. The transaction item ID is
the name of a data item contained within an invoked transaction format or
subformat.

5-18 ‘ 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Shown below are the possible arguments for each of the compile-time functions
available in ALGOL. Not all arguments apply to all functions. For example, the
<base ID> construct needs to be referenced only when transaction base
qualification is required.

Function Arguments

TRBITS <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item ID>
TRBYTES <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item |ID>
TRDATASIZE <format ID>

<format ID>.<subformat ID>
TRDIGITS <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item ID>
TRFORMAT <format ID>
TROCCURS <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item ID>

TRSUBFORMAT <format ID>.<subformat ID>

Examples

TRBITS will return, in bits, the size of the transaction item REQUESTCASE. The
subformat is REMOTEREQUEST and the format is ACCT.

TRBITS(ACCT.REMOTEREQUEST.REQUESTCASE)
TROCCURS will return the maximum number of occurrences of the transaction
item REQUESTCASE. ACCT is the format and REMOTEREQUEST is the
subformat.

TROCCURS (ACCT. REMOTEREQUEST . REQUESTCASE)

TRSUBFORMAT will return the numeric valued assigned to the subformat
REMOTEREQUEST. The format is ACCT.

TRSUBFORMAT (ACCT . REMOTEREQUEST)

8600 0734-000 5-19

Using DMSII Transaction Processing System (TPS) Extensions

Using Transaction Library Entry Points

The Transaction Library is a collection of procedures that are accessed by
user-written programs to process or tank transactions and read them back from
transaction journal files. The procedures are accessed through a set of entry
points supplied by the Transaction Library.

The Transaction Library is tailored for a particular transaction during
compilation. The library performs functions such as

e (Calling the Update Library to process a transaction against the data base.

e Saving transaction records in transaction journal files.

e Automatically reprocessing transactions backed out by DMSII recovery.

The external entry points to the Transaction Library are called by user- written
programs. Calling these entry points is the only method of invoking them. If the
Library detects an exception condition, the entry point returns a nonzero result

as the value of the procedure. The value can be examined to determine the cause
of the exception. .

The TPS application program should not be a library itself whose entry points
invoke the Transaction Library’s entry points.

The Transaction Library recovery mechanism requires that each program that
submits a transaction record for processing must have its own private library.
The first program that invokes an entry point which in turn invokes the
OPENTRBASE Transaction Library entry point becomes the only TPS user
recognized by the Transaction Library.

The following alphabetical listing briefly describes the purpose of each entry
point. The syntax used to declare the entry point is shown. Consult the DMSIT

TPS Programming Guide for a detailed explanation of the entry points and
parameters.

CREATETRUSER

Creates and identifies a new transaction for the currently open journal.
INTEGER PROCEDURE CREATETRUSER({IDSTRING,IDNUM);

STRING IDSTRING;
STRING IDNUM;

CLOSETRBASE
Ends the use of TPS by the calling program.

INTEGER PROCEDURE CLOSETRBASE;

5-20 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

HANDLESTATISTICS

Allows the user to print out all TPS statistics and reset the statistics while the
transaction base is open.

INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);

VALUE STATOPTION;
INTEGER STATOPTION;

LOGOFFTRUSER

Deactivates a transaction user.

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;

LOGONTRUSER

Makes a transaction user active.

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;

OPENTRBASE

Initiates transaction processing and opens a specified transaction journal for
subsequent use. OPENTRBASE must be the first Transaction Library entry point
called.

INTEGER PROCEDURE OPENTRBASE (USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;

PROCESSTRFROMTANK

Similar to PROCESSTRANSACTION except a transaction user number other than
that of the input transaction is used to restart programs. It is used primarily for
processing transactions from a tank file.

INTEGER PROCEDURE PROCESSTRFROMTANK(IDNUM, TRIN, RESTARTNUM,
RESTARTTR) ;

INTEGER IDNUM, RESTARTNUM;

TRANSACTION RECORD (TRBASE) TRIN, RESTARTTR;

8600 0734-000 5-21

Using DMSII Transaction Processing System (TPS) Extensions

PROCESSTRNORESTART

Sends an input transaction record to the user’s Update Library for processing
against the database. No restart transaction record is passed. Use
PROCESSTRNORESTART to process transactions against the database if the
program does not require the use of a restart transaction record.

INTEGER PROCEDURE PROCESSTRNORESTART(IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, TROUT;

PROCESSTRANSACTION

Sends an input transaction record to the user’s Update Library for processing
against the database. A restart transaction record is passed.

INTEGER PROCEDURE PROCESSTRANSACTION(IDNUM, TRIN, TROUT,
RESTARTTR);

INTEGER IDNUM;

TRANSACTION RECORD (TRBASE) TRIN, TROUT, RESTARTTR;

PURGETRUSER

Purges or deletes a transaction user previously created by CREATETRUSER.
After PURGETRUSER is called, the transaction user is no longer known to the
currently open journal. Information about that user’s transactions is discarded.

INTEGER PROCEDURE PURGETRUSER (IDNUM) ;
INTEGER IDNUM;

READTRANSACTION

Reads the next transaction record in sequence from the transaction journal and
returns the record in the parameter TRREC. The READTRANSACTION entry
point can be called only after the entry point SEEKTRANSACTION has opened
and positioned the current record pointer within a specific journal data file.

INTEGER PROCEDURE READTRANSACTION(TRREC);
TRANSACTION RECORD (TRBASE) TRREC;

5-22 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

RETURNLASTADDRESS

Returns the address of the last transaction to be either tanked or processed by a
transaction user. .

INTEGER PROCEDURE RETURNLASTADDRESS (FILENUM, BLOCKNUM, OFFSET,
IDNUM) ;

REAL FILENUM, BLOCKNUM, OFFSET;

INTEGER IDNUM.

RETURNLASTRESPONSE

Returns the last saved response transaction record for the user.

INTEGER PROCEDURE RETURNLASTRESPONSE (IDNUM, TRREC);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRREC;

Note: For reliable program restarting, the response record returned from
RETURNLASTRESPONSE should be used in conjunction with the restart

or input transaction record returned from the entry point
RETURNRESTARTINFO.

RETURNSTARTINFO

Helps restart a user-written program.
INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TRREC);

INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRREC;

SEEKTRANSACTION

Positions a current record pointer at a particular address within a journal data
file.

INTEGER PROCEDURE SEEKTRANSACTION(TRFILE, TRBLOCK, TROFFSET);
INTEGER TRFILE, TRBLOCK, TROFFSET;

8600 0734-000 5-23

Using DMSII Transaction Processing System (TPS) Extensions

SWITCHTRFILE

Forces a file switch on the current data file of the journal. The current file is
closed, the file number associated with the current file is incremented by 1, and
the next file in sequence is created. The next write to the journal occurs on the
new file.

If SWITCHTRFILE is not called, the Transaction Library creates the next journal
data file in sequence when the current file becomes full.

INTEGER PROCEDURE SWITCHTRFILE;

TANKTRANSACTION

Tanks an input transaction record and restart transaction record.

INTEGER PROCEDURE TANKTRANSACTION(IDNUM, TRIN, RESTARTTR);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, RESTARTTR;

TANKTRNORESTART

Tanks an input transaction record only. It performs the same function as
TANKTRANSACTION except that no restart transaction record is passed and
subsequently audited in the tank journal. For TANKTRNORESTART, only the
input transaction TRIN is saved in the tank journal.

INTEGER PROCEDURE TANKTRNORESTART (IDNUM,TRIN);

INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN;

TRUSERIDSTRING

Returns, in the parameter IDSTRING, the user identification string that
corresponds to the value of the input parameter IDNUM.

INTEGER PROCEDURE TRUSERIDSTRING (IDSTRING, IDNUM);

INTEGER IDNUM;
STRING IDSTRING;

5-24 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Using Update Libraries

The Update Library is a collection of user-written transaction processing routines
that serve as an interface between the Transaction Library and a DMSII database.

The Update Library is the only user-written module within TPS that contains the
database declaration and all the code that performs data management statements
against the database.

To ensure effective interaction between the Update and Transaction Libraries,
follow the conventions regarding database consistency and reproducing
transactions when programming the Update Library. The Update Library
conventions and ACCESSDATABASE entry point are briefly explained here. For a
full explanation, refer to the DMSII TPS Programming Guide.

Additional information relating to the transaction library is included under
*Using Transaction Library Entry Points” in this section.

ACCESSDATABASE Entry Point

The Update Library must provide one entry point that makes it accessible to the
Transaction Library. For ALGOL Update Libraries, the procedure entry point
must be named ACCESSDATABASE.

The ACCESSDATABASE entry point accepts the following parameters, listed in
the order in which they must be declared:

1. A function flag indicating which basic function the Update Library should
perform. This value is input to the Update Library from the Transaction
Library.

2. An input transaction record containing input data for one of the transaction
update routines.

3. An output transaction record containing the data output from a transaction
update routine also known as the ‘‘response transaction record.”

4. A Transaction Library procedure named SAVEINPUTTR that is passed as a
formal parameter to the Update Library and used in the MIDTRANSACTION
statement.

1. A Transaction Library procedure named SAVERESPONSETR that is passed

as a formal parameter to the Update Library. This procedure is used in the
TPS ENDTRANSACTION statement.

8600 0734-000 5-25

Using DMSII Transaction Processing System (TPS) Extensions

Methods of Structuring the Update Library

There are three approaches to structuring the Update Library:

1. Invoking the entire database using a single update library.
2. Invoking part of the database using a single update library.
3. Invoking multiple parts of the database using multiple update libraries.

Whatever approach is used to implement the Update Library, the library must
provide the external entry point ACCESSDATABASE and must be compiled as

<base name>/CODE/UPDATELIB
so that the Transaction Library can find it.

Synchronizing TPS and DMSII recovery is an important consideration in deciding
which approach to use. Refer to the synchronization statements in this section for
more information.

Information relating to the synchronization statements is included under “TPS
BEGINTRANSACTION Statement,” “TPS ENDTRANSACTION Statement,”
“MIDTRANSACTION Statement,” “BDMS OPEN Statement with TPS,” and
“Transaction Processing Statements” in this section.

Example: Update Library Skeleton Program

5-26

An example of the correct structure for an Update Library is shown in a skeleton
program on the following pages. The example uses multiple libraries to provide
the code that actually processes the transaction records. .

$ SHARING = PRIVATE
BEGIN % Transaction Update Library

LIBRARY DBSUBONE (TITLE = "TRBASE/UPDATELIB/SUBONE ");

PROCEDURE ACCESSSUBBASEONE (FUNCTIONFLAG, INQ, TRIN, TROUT,
SAVEINPUT, SAVERESPONSE);

VALUE FUNCTIONFLAG, INQ;
REAL FUNCTIONFLAG, INQ;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
LIBRARY DBSUBONE;

LIBRARY DBSUBTWO (TITLE = "TRBASE/UPDATELIB/SUBTWO ");

PROCEDURE ACCESSSUBBASETWO(FUNCTIONFLAG, INQ, TRIN, TROUT,
SAVEINPUT,SAVERESPONSETR);
VALUE FUNCTIONFLAG, INQ;
REAL FUNCTIONFLAG, INQ;
TRANSACTION RECORD (TRB) TRIN, TROUT;

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
LIBRARY DBSUBONE;

DEFINE UPDATEV = 1 #,
FORCEABORTV = 2 #;

% Global variables
REAL LASTSUBBASE, OPENTYPE;

PROCEDURE FORCEABORT;

BEGIN
CASE LASTSUBBASE OF
BEGIN
(2):
ACCESSSUBBASEONE (FORCEABORTV , SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT, SAVERESPONSE) ;
(3)

. ACCESSSUBBASETWO (FORCEABORTV, SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT,SAVERESPONSE) ;

END OF CASE;
END; o

PROCEDURE UPDATE(TRIN,TROUT,SAVEINPUTTR,SAVERESPONSETR) ;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
BEGIN

LASTSUBBASE := TRIN.TRSUBBASE;
CASE TRIN.TRSUBBASE OF
BEGIN
(2):
ACCESSSUBBASEONE (UPDATEV, SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT,SAVERESPONSE) ;
% Invokes library DBSUBONE
(3):
ACCESSSUBBASETWO (UPDATEV, SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT,SAVERESPONSE) ;
% Invokes library DBSUBTWO
END OF CASES;

END;

PROCEDURE ACCESSDATABASE (FUNCTIONFLAG, TRIN,TROUT,SAVEINPUT,
SAVERESPONSE) ;
VALUE FUNCTIONFLAG;
REAL FUNCTIONFLAG;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUT(); FORMAL;
PROCEDURE SAVERESPONSE(); FORMAL;
% External entrypoint
BEGIN

CASE FUNCTIONFLAG OF
BEGIN
1: % Open update
OPENTYPE := FUNCTIONFLAG;
2: % Open inquiry

8600 0734-000 5-27

Using DMSII Transaction Processing System (TPS) Extensions

OPENTYPE := FUNCTIONFLAG;
3: % Update

UPDATE (TRIN, TROUT, SAVEINPUT, SAVERESPONSE);
4: % Force abort

FORCEABORT;
5: % Close database

% Let BLOCKEXIT Do It;

END;
END ACCESSDATABASE;

RRR R Rhhd i h ik hdd bt dhh it tdbrddiiittiiiddtidihiidiidikidikiddididddidiid

EXPORT
ACCESSDATABASE ;

FREEZE (TEMPORARY) ;
END OF LIBRARY.

5-28

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Transaction Processing Statements

Generally, DMSII program interface statements are used for programming the
Update Library in TPS. The following extensions and statements are required for
the Update Library to synchronize TPS recovery with DMSII recovery.

The MIDTRANSACTION statement.

2. Optional extensions to the BEGINTRANSACTION and ENDTRANSACTION
statements.

3. The TRUPDATE option for the BDMS OPEN statement.

These extensions are detailed in alphabetical order on the following pages.
Examples of their use are in the sample programs at the end of this section.
Consult the DMSII TPS Programming Guide for further information on using the
statements. Refer to the DMSII Application Program Interfaces Programming
Guide for information on exception handling.

Note that the TPS syntax of these statements is uniquely designed for TPS. DMSII
applications that do not use TPS can continue to use the DMSII syntax that
existed prior to the implementation of TPS. However, user-written code in the
Update Library must use the syntax as it is defined here.

Additional information relating to the syntax of the TPS statements is included
under “TPS BEGINTRANSACTION Statement,” “TPS ENDTRANSACTION
Statement,” “MIDTRANSACTION Statement,” “BDMS OPEN Statement with
TPS,” and *“‘Sample User-Written Applications” in this section.

8600 0734-000 5-29

Using DMSII Transaction Processing System (TPS) Extensions

TPS BEGINTRANSACTION Statement

The TPS BEGINTRANSACTION statemenf places a program in transaction state.
This statement can be used only with audited databases. Any attempt to modify
an audited database when the program is not in transaction results in a fault.

The database must be opened with the TRUPDATE form of the BDMS OPEN
statement.

If a BEGINTRANSACTION statement is attempted while the program is in
transaction state, an exception is returned. The program is not placed in
transaction state. If an ABORT exception is returned, all records that the
program has locked are freed.

Deadlock can occur during execution of a BEGINTRANSACTION statement.
Additional information relating to the TPS BEGINTRANSACTION statement is
included under “Transaction Processing Statements,” ‘‘Declaring Transaction
Record Variables,” “BDMS OPEN Statement with TPS,” Related information is
also available under *“DMSII BEGINTRANSACTION Statement” in Section 4,
*‘Using the Data Management System II (DMSII) Interface.”

Syntax

—~ BEGINTRANSACTION

l— <inputheadername> I_

<message area> —-I

p- <transaction record variable> -) - <restart data set>

]
1

L <exception handling> —'

Additional information relating to the <transaction record variable> construct is
included under ‘‘Passing Transaction Record Variables as Parameters” in this
section. Information on the <inputheadername> and <message area>>
constructs is included under “Declaring Input and Output Headers,” and
“RECEIVE Statement” respectively in Section 3, ‘‘Using Communications
Management System (COMS) Features.” Information on the <exception
handling> construct is included under “database Status Word” in Section 4,
“Using the Data Management System II (DMSII) Interface.”

5-30 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Explanation

The <transaction record variable> construct is the formal input transaction
record variable.

The restart data set name is detailed in the DMSII TPS Programming Guide.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.
Example

In the following BEGINTRANSACTION statement, the transaction record variable
is TRIN, the restart data set is RDS, and the exception variable is RSLT. Note
that the colon preceding the exception variable is part of the exception handling
syntax.

BEGINTRANSACTION (TRIN) RDS :RSLT;

8600 0734-000 5-31

Using DMSII Transaction Processing System (TPS) Extensions

TPS ENDTRANSACTION Statement

5-32

The TPS ENDTRANSACTION statement takes a program out of transaction state.
This statement can be used only with audited databases. The database.must be
opened with the TRUPDATE form of the BDMS OPEN statement.

If an ENDTRANSACTION statement is attempted and the program is not in

transaction state, an exception is returned. Records are freed in all cases of an
exception and the transaction is not applied to the data base.

Refer to the DMSII Application Program Interfaces Programming Guide for
information regarding audit and recovery.

Additional information relating to the ENDTRANSACTION statement is included
under ‘“‘Declaring Transaction Record Variables,” ‘“Transaction Processing
Statements,” and ‘“BDMS OPEN Statement with TPS” in this section. Information
is also available under “DMSII ENDTRANSACTION Statement” in Section 4,
“Using the Data Management System II (DMSII) Interface.”

Syntax

— ENDTRANSACTION - (- <endtransaction parameters> - b) - <restart data set name> —)

A
“Lawe JL] |
SYNC <exception handling>

<endtransaction parameters>

- <transaction record variable ID> - , — <saveresponsetr procedure ID> ——]

Explanation

The <transaction record variable ID> construct is the formal input transaction
record variable. The <saveresponsetr procedure ID> identifies the
SAVERESPONSETR formal procedure.

The restart data set name is detailed in the DMSII TPS Programming Guide.
The word ‘“SYNC"” forces a syncpoint.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

Example

In the following ENDTRANSACTION statement, the transaction record variable is
TRIN and the name of the saveresponsetr procedure variable is SAVERESPONSE.
The restart data set is RDS. There is no forced syncpoint. The exception variable
is RSLT. Note that the colon preceding the exception variable is part of the
exception handling syntax.

ENDTRANSACTION (TRIN,SAVERESPONSE) RDS :RSLT;

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

MIDTRANSACTION Statement

The MIDTRANSACTION statement causes the compiler to generate calls on the
given procedure immediately before the call on the DMS procedure in the
Accessroutines.

The database must be opened with the TRUPDATE form of the BDMS OPEN
statement.

Additional information relating to the MIDTRANSACTION statement is included
under ‘“Declaring Transaction Record Variables,” ‘‘Transaction Processing
Statements,” and “BDMS OPEN Statement with TPS” in this section.

Syntax

— MIDTRANSACTION - (- <midtransaction parameters> —) — <restart data set name> —p

L4
[— <exception handling> —l

<midtransaction parameters>

- <transaction record variable ID> - , -~ <saveinputtr procedure ID> i

Explanation

The <transaction record variable ID> construct is the formal input transaction
record variable. The <saveinputtr procedure ID> is the name of the SAVEINPUT
formal procedure.

The restart data set name is detailed in the DMSII TPS Programming Guide.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.
Example

In the following MIDTRANSACTION statement, the transaction record variable is
TRIN and the name of the saveinputtr procedure variable is SAVEINPUT. The
restart data set is RDS. The exception variable is RSLT. Note that the colon
preceding the exception variable is part of the exception handling syntax.

MIDTRANSACTION (TRIN,SAVEINPUT) RDS :RSLT;

8600 0734-000 5-33

Using DMSII Transaction Processing System (TPS) Extensions

BDMS OPEN Statement with TPS

5-34

The BDMS OPEN statement opens a database for subsequent access and specifies
the access mode.-

An exception is returned if the database is already open. If an exception is
returned, the state of the database remains unchanged.

An OPEN statement must be executed before the first access of the database;
otherwise, the program terminates with a fault.

Additional information relating to the BDMS OPEN statement is included under
“Transaction Processing Statements’ and ‘“‘Methods of Structuring the Update
Library” in this section. Related information is also available under “BDMS OPEN
Statement” in Section 4, ‘“‘Using the Data Management System II (DMSII)
Interface.”

Syntax

<BDMS open statement>

— OPEN <database identifier> i
l: INQUIRY —j L <exception handling> —|
TRUPDATE
Explanation

The word “INQUIRY” enforces read-only access to the database. This option is
specified when no update operations are to be performed on the database. An
exception is returned if the following BDMSALGOL statements are used when the
database has been opened with the INQUIRY option:

ASSIGN GENERATE
BEGINTRANSACTION INSERT
DELETE REMOVE
ENDTRANSACTION STORE

The data management system does not open any audit files if the “OPEN
INQUIRY"” form has been used by all programs accessing the database.

The TRUPDATE option must be specified in order to use the MIDTRANSACTION
statement or the <transaction record variable> form of the
BEGINTRANSACTION or ENDTRANSACTION statements.

The <database identifier> specifies the database to be opened.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Examples
In the following example, the word INQUIRY forces read-only access to the
database DB. The exception variable is RSLT. Note that the colon preceding the
exception variable is part of the exception handling syntax.

OPEN INQUIRY DB :RSLT;

In the example below, the word TRUPDATE allows write access to the database
DB.

OPEN TRUPDATE DB;

8600 0734-000 5-35

Using DMSII Transaction Processing System (TPS) Extensions

Sample User-written Applications

5-36

Three examples are shown in the following pages. The first example is a
user-written skeleton program that demonstrates how the transaction base and
Transaction Library entry points are declared. The second example shows a
complete transaction base banking application. The third example is a detanking
procedure.

The banking application, Example 2, includes the needed DASDL description, TFL
description, and Update Library. The descriptions are written in their respective
language (DADSL or TFL). The application program and Update Library are
written in ALGOL.

Example 3, the detanking procedure, builds on the banking application shown in
Example 2.

Related information about these user-written programs can be found in the DMSII
TPS Programming Guide.

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Example 1: Declaring a Transaction Base and Library

Any user-written program that invokes the TPS Transaction Library should not
be a library itself. Each program that submits a transaction record for processing
must have its own private library for recovery to be successful. If an application
program is written as a shared library, then the Transaction Library might not
work. The first program that invokes an entry point becomes the only TPS user
recognized by the Transaction Library.

BEGIN % Sample batch program using transactions.

TRANSACTION BASE TRB = BANKTR;
LIBRARY L(TITLE="BANKTR/CODE/HOSTLIB.");

% Declare all entrypoints to be used.

INTEGER PROCEDURE CREATETRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT,
LIBRARY L; -

INTEGER PROCEDURE RETURNLASTRESPONSE (IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT:
LIBRARY L;

INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY L;

INTEGER PROCEDURE PROCESSTRNORESTART (IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT;
LIBRARY L;

INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY L;

INTEGER PROCEDURE CLOSETRBASE;
LIBRARY L;

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;

INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY L;

INTEGER PROCEDURE SWITCHTRFILE;

8600 0734-000 5-37

Using DMSII Transaction Processing System (TPS) Extensions

LIBRARY L;
INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION;
INTEGER STATOPTION;
LIBRARY L;

% Declare transaction record variables to be used.
TRANSACTION RECORD (TRB)
TRIN,
TROUT,
LASTINPUT,
LASTRESPONSE;

STRING JOURNALNAME ;

% Siart of program.
% Set LIBPARAMETER in declaration or before first call on entrypoint.

L.LIBPARAMETER := JOURNALNAME;
% Body of program.

END.

5-38 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Example 2: Banking Application

The following example is a typical DMSII application using TPS. In the example,
bank accounts are created and deleted, deposits and withdrawals are made, and
account balances are determined.

For the application to operate properly, several pieces of user-supplied software
are needed:
e a Data Structure and Definition Language (DASDL) description
In DMSII, DASDL is used to describe a database logically and physically.
¢ a Transaction Formatting Language (TFL) description

In the TPS, the TFL is used to describe the transaction base logically and
physically.

e a3 user-written application program

The user-written ALGOL program shows how TPS can be used for a number
of simple banking transactions.

e an Update Library
The Update Library is capable of maintaining database consistency and
ensuring reproducibility.

The ALGOL application program and the TPS need both the DASDL and TPS
descriptions to ensure the integrity of data stored in the database and transaction
base.

Examples of the user-supplied software are included under “DASDL Description

of the database,” “TFL Description of the Transaction Base,” ‘ALGOL Banking
Application Program,” and “Update Library” on the following pages.

DASDL Description of the database

OPTIONS (AUDIT);

PARAMETERS (SYNCPOINT = 10 TRANSACTIONS);

ACCOUNT DATA SET % Specify a data set to hold the account
(% numbers and info associated with them.

ACCOUNT-NUM NUMBER(6);
NAME ALPHA(20);
BALANCE REAL(S10,2);

DEPOSIT UNORDERED DATA SET % Used to keep history of the deposits

(% and withdrawals made.

TRANDATE REAL; '
OLD-BALANCE REAL(S10,2);
AMOUNT REAL(S10,2); % Negative for withdrawal.
NEW-BALANCE REAL(S10,2);

)s

8600 0734-000 5-39

Using DMSII Transaction Processing System (TPS) Extensions

)s

ACCOUNT-SET SET OF ACCOUNT
KEY ACCOUNT-NUM;

RDS RESTART DATA SET % Remember, a restart data set must be specified.
X ALPHA(10);

5-40 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

TFL Description of the Transaction Base

BANKTR TRANSACTION BASE; % First declare the name of the transaction
% base we are about to describe.
PARAMETERS

STATISTICS,

DATABASE = BANKDB ON DISK,
RESTARTDATASET = RDS,
HOSTSYSTEM = SYS456

)i

DEFAULTS % Specify defaults for items of transaction formats
% and for journal control and data files.
(

ALPHA (INITIALVALUE = BLANKS),
BOOLEAN (INITIALVALUE = FALSE),
NUMBER (INITIALVALUE = 0),
REAL (INITIALVALUE = 0),
CONTROL FILE
(
AREAS = 100,
AREASIZE = 100 BLOCKS, -
BLOCKSIZE = 20 SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE

)»

DATA FILE

(
AREAS = 100,
AREASIZE = 100 BLOCKS,
BLOCKSIZE = 30 SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE

)

)s

CREATEACCT TRANSACTION FORMAT % The following formats are
% used in the application
ACCTNUM NUMBER(6); % program and the Update
NAME ALPHA(20); % Library.

PURGEACCT TRANSACTION FORMAT
ACCTNUM NUMBER(6);

%éPOSIT TRANSACTION FORMAT
ACCTNUM NUMBER(6);
TRANDATE REAL;

AMOUNT REAL(10,2);

)s

WITHDRAWAL TRANSACTION FORMAT
ACCTNUM NUMBER(6);

AMOUNT REAL(10,2);
TRANDATE REAL;

8600 0734-000 5-41

Using DMSII Transaction Processing System (TPS) Extensions

)s

STATUS TRANSACTION FORMAT

(
ACCTNUM NUMBER(6)
BALANCE REAL(S10,2);
G GROUP
(A ALPHA(20);
B REAL;);
)s

RESTARTDETANKER TRANSACTION FORMAT % This format illustrates possible
% information to be kept in a
TANKFILENUM FIELD(14); ' % restart transaction record.
TANKBLOCKNUM FIELD(32);
TANKOFFSET FIELD(16);

)s
MANAGER TRANSACTION SUBBASE % Example subbase that a manager might

(% use. Note that a GUARDFILE is attached
CREATEACCT, % to the subbase for security.
PURGEACCT,

DEPOSIT,
WITHDRAWAL,
STATUS,

)s
GUARDFILE = BANKTR/MANAGER/GUARDFILE;

TELLER TRANSACTION SUBBASE % Example subbase a teller might use.

DEPOSIT,
WITHDRAWAL ,
STATUS
)s
TRHISTORY TRANSACTION JOURNAL % Example of specifying explicit values
CONTROL FILE % for the attributes of the TRHISTORY
(% journal.

AREAS = 100,

AREASIZE = 100 BLOCKS,
BLOCKSIZE = 20 SEGMENTS,
FAMILY = DISK,

CHECKSUM = TRUE

),

DATA FILE

(
AREAS = 100,
AREASIZE = 2 BLOCKS,
BLOCKSIZE = 3 SEGMENTS,

FAMILY = DISK,
CHECKSUM = TRUE

)i

TANK1 TRANSACTION JOURNAL % Example of TANK journal attribute
CONTROL FILE % specification.

USERCODE = SAMPLEUSER,
FAMILY = PACK

),
DATA FILE
USERCODE = SAMPLEUSER,

5-42 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

DUPLICATED ON DISK

.
9

8600 0734-000 5-43

Using DMSII Transaction Processing System (TPS) Extensions

ALGOL Banking Application Program

BEGIN % Sample batch program using transactions.
ézzz%zzzzz%zz%zz%%zzzzzzzzzzzzzzz%%zzz%zzzzz%zzzzzzzzzzzzzzzzzzz%zzzz:

% The library routines, declared below, provide the proper function %
% for either envircnment. 2

% %
B R R b R R L R L LR R R R BB R XL XREL X%
ARRAY LIBPARAM[0:9];

B L e L L R AR L R L LB AR E BB E B e B bR RRREHE%
%

%
% Declare the transaction base to be used. 2

% %
B e R R L Bk BB LR R BB LR R BT B TR%

TRANSACTION BASE TRB = BANKTR; % Example of equating an internal

% name to the transaction base.
LIBRARY L(TITLE="BANKTR/CODE/HOSTLIB.");

Py S S Y Sy A S A S SN S AN NS A RS A F SN A S5 555
% %
% Declare all the library entry points to be used. %
% %
Py S Sy S a S A A AR S A AN S AN SRR ARSI RSN E RS SN S S

INTEGER PROCEDURE CREATETRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L; ‘
INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;
INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;
INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

" INTEGER PROCEDURE RETURNLASTADDRESS (FILENUM, BLOCKNUM, OFFSET, IDNUM);

INTEGER IDNUM;
REAL FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE RETURNLASTRESPONSE (IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY L; .

INTEGER PROCEDURE PROCESSTRANSACTION(IDNUM, TRIN, TROUT, RESTARTTRREC);
INTEGER IDNUM;

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

TRANSACTION RECORD (TRB) TRIN, TROUT, RESTARTTRREC;
LIBRARY L;
INTEGER PROCEDURE PROCESSTRNORESTART(IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT;
LIBRARY L;
INTEGER PROCEDURE OPENTRBASE (USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY L;
INTEGER PROCEDURE CLOSETRBASE;
LIBRARY L;
INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;
INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY L;
INTEGER PROCEDURE SWITCHTRFILE;
LIBRARY L;
INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION; INTEGER STATOPTION;
LIBRARY L;

FILE LINE(KIND=PRINTER);
FILE RMOTE(KIND=REMOTE, MYUSE = I0);
TRANSACTION RECORD (TRB)
TRIN,
TROUT,
LASTINPUT,
RESTARTTRREC,
LASTRESPONSE ;
REAL IDNUM, N, OPT;
INTEGER ACCT,TIMEOUT,STATISTICSOPTION;
INTEGER ACCT,TIMEOUT;
INTEGER RSLT;
ARRAY SP[0:14];
BOOLEAN ERROR;
LABEL EXIT;
STRING ID, FNAME, JOURNALNAME;

Py Sy S S S A S N A Ay S NS AN S S A S A4S 5 5 55 5]
% %
% Body of the program. %

% %
LY Iy Yy y Sy Yy Sy y Yy A Sy a Iy Y YA aF I AT IS I 55555

DEFINE TANKING = 3#;

DEFINE ERR =

BEGIN

WRITE(RMOTE, <"RSLT = ", I3, " @ ", 18>, RSLT, LINENUMBER);
ERROR := TRUE;

END#;

DEFINE GETSTRING(S, X) =

BEGIN
REPLACE SP BY " " FOR 15 WORDS;
REPLACE SP BY "ENTER STRING FOR ", S;
WRITE(RMOTE, 15, SP);
READ(RMOTE, 15, SP);
SCAN SP FOR N:80 WHILE IN ALPHA;
X := STRING(SP, 80-N);

END#;

8600 0734-000 5-45

Using DMSII Transaction Processing System (TPS) Extensions

DEFINE GETINTEGER(S, I) =

BEGIN

REPLACE SP BY " " FOR 15 WORDS;
REPLACE SP BY "ENTER INTEGER FOR ", S;
WRITE(RMOTE, 15, SP);

READ(RMOTE, /, I);

END#;

DEFINE GETREAL(S, R) =

BEGIN
REPLACE SP BY " " FOR 15 WORDS;
REPLACE SP BY "ENTER VALUE FOR ", S;
WRITE(RMOTE, 15, SP);

READ(RMOTE, /, R);

END#;

DEFINE GETACCT = GETINTEGER("ACCOUNT NUMBER", ACCT)#;

PROCEDURE PROCESSTR;
BEGIN
IF OPT = TANKING THEN
BEGIN
IF RSLT := TANKTRNORESTART(IDNUM, TRIN) > O THEN ERR;
END
ELSE
IF RSLT := PROCESSTRANSACTION(IDNUM, TRIN, TROUT, RESTARTTRREC)
> 0 THEN ERR;
END PROCESSTR;
PROCEDURE GETLASTP;

BEGIN
IF OPT = TANKING THEN
BEGIN
IF RSLT := RETURNRESTARTINFO(IDNUM, LASTINPUT) > O THEN
ERR
ELSE
WRITE(RMOTE,
<"LAST RESTART (FILE, BLOCK, OFFSET, FORMAT): ", 4I5>,
LASTINPUT.TRFILENUM,
LASTINPUT.TRBLOCKNUM, LASTINPUT.TROFFSET,
LASTINPUT.TRFORMAT);
END ELSE
BEGIN
IF RSLT := RETURNRESTARTINFO(IDNUM, LASTINPUT) > O THEN
ERR
ELSE
BEGIN
WRITE (RMOTE,
<"LAST RESTART (FILE, BLOCK, OFFSET, FORMAT): ", 4I5>,
LASTINPUT.TRFILENUM,
LASTINPUT.TRBLOCKNUM, LASTINPUT.TROFF3ET,
LASTINPUT. TRFORMAT);
IF Eng := RETURNLASTRESPONSE (IDNUM, LASTRESPONSE) > O THEN
ELSE
WRITE (RMOTE,
<"LAST RESPONSE (FILE, BLOCK, OFFSET, FORMAT): ", 415>,
LASTRESPONSE . TRFILENUM,
LASTRESPONSE . TRBLOCKNUM, LASTRESPONSE.TROFFSET,
LASTRESPONSE . TRFORMAT);
END;
END;

5-46 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

END GETLASTP;

PROCEDURE DISPLAYSTATUS;
BEGIN
IF TROUT.TRFORMAT NEQ TRFORMAT(STATUS) THEN
ERR
ELSE
WRITE(RMOTE, <"ACCOUNT NUMBER ", I5,
": CURRENT BALANCE IS ", F10.2>,
TROUT.STATUS.ACCTNUM,
TROUT. STATUS . BALANCE) ;
END DISPLAYSTATUS;
PROCEDURE CREATEP; % Create a new account number.
BEGIN
STRING NAME;
WRITE(RMOTE, <"FUNCTION IS CREATE">);
GETACCT;
GETSTRING("CUSTOMER NAME", NAME);
CREATE TRIN.CREATEACCT;
TRIN.CREATEACCT.ACCTNUM := ACCT;
TRIN.CREATEACCT.NAME := NAME;
PROCESSTR;
END CREATEP;

PRgCEDURE PURGEP; % Eliminate an account number.
BEGIN

WRITE(RMOTE, <"FUNCTION IS PURGE">);

GETACCT;

CREATE TRIN.PURGEACCT;

TRIN.PURGEACCT.ACCTNUM := ACCT;

PROCESSTR;
END PURGEP;

PROCEDURE STATUSP; % Display the status of an account.
BEGIN

WRITE (RMOTE, <"FUNCTION IS STATUS">);

GETACCT;

CREATE TRIN.STATUS;

TRIN.STATUS.ACCTNUM := ACCT;

PROCESSTR;

IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;
END STATUSP;

;Eg%EDURE DEPOSITP; % Deposit some amount in an account.
N

REAL AMT;

WRITE(RMOTE, <"FUNCTION IS DEPOSIT">);

GETACCT;

GETREAL ("AMOUNT OF DEPOSIT", AMT);

CREATE TRIN.DEPOSIT;

TRIN.DEPOSIT.ACCTNUM := ACCT;

TRIN.DEPOSIT.TRANDATE := TIME(6);

TRIN.DEPOSIT.AMOUNT := AMT;

PROCESSTR;

IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;
END DEPOSITP;
PROCEDURE WITHDRAWALP; % Withdraw some amount from an account.
BEGIN

REAL AMT;

8600 0734-000 5-47

Using DMSII Transaction Processing System (TPS) Extensions

WRITE(RMOTE, <"FUNCTION IS WITHDRAWAL">);

GETACCT;

GETREAL ("AMOUNT OF WITHDRAWAL", AMT);

CREATE TRIN.WITHDRAWAL;

TRIN.WITHDRAWAL .ACCTNUM := ACCT;

TRIN.WITHDRAWAL . TRANDATE := TIME(6);

TRIN.WITHDRAWAL .AMOUNT := AMT;

PROCESSTR;

IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;
END WITHDRAWALP;

PROCEDURE NEWUSERP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS NEWUSER">);
GETSTRING("USER ID", ID);
WRITE(RMOTE, <"USER: ", Al5>, ID);
IF RSLT := LOGONTRUSER(ID, IDNUM) > O THEN
ERR
ELSE
WRITE(RMOTE, <"USER #: ", I3>, IDNUM);
END NEWUSERP;

PROCEDURE REOPENP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS REOPEN">);
IF RSLT := CLOSETRBASE > O THEN
ERR
ELSE
BEGIN
WRITE(RMOTE, <"WHAT DO YOU WANT TO DO?">);
GETINTEGER("CHOICE (1=UPDATE, 2=INQUIRY, 3=TANK, 4=READ,"
"5=EXCLUSIVEUPDATE)", OPT);
IF RSLT := OPENTRBASE(OPT, 0) > O THEN ERR;
END;
END REOPENP;

PROCEDURE SEEKP;
BEGIN
REAL FILENUM, BLOCKNUM, OFFSET;
WRITE(RMOTE, <"FUNCTION IS SEEK">);
WRITE(RMOTE, <"ENTER FILENUM, BLOCKNUM, OFFSET">);
READ(RMOTE, /, FILENUM, BLOCKNUM, OFFSET);
IF RSLT := SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > O THEN ERR;
END SEEKP;
PROCEDURE READP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS READ">);
IF ESLT := READTRANSACTION(TRIN) > O THEN
RR
ELSE
BEGIN
WRITE(RMOTE, <"FILE, BLOCK, OFFSET:", 3I5>,
TRIN.TRFILENUM,
TRIN. TRBLOCKNUM,
TRIN.TROFFSET) ;
WRITE(RMOTE, <"FORMAT, SUBFORMAT:", 2I5>,
TRIN.TRFORMAT, ’
TRIN.TRSUBFORMAT) ;
END;

END READP;
PROCEDURE CREATEUSERP;

5-48 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

BEGIN
WRITE(RMOTE, <"FUNCTION IS CREATEUSER">);
GETSTRING("USER ID", ID);
WRITE(RMOTE, <"USER: ", Al5>, ID);
IF RSLT := CREATETRUSER(ID, IDNUM) > O THEN
ERR
ELSE
IF RSLT := LOGONTRUSER(ID, IDNUM) > O THEN
ERR
ELSE
WRITE(RMOTE, <"USER #: ", I3>, IDNUM);
END CREATEUSERP;

PRgCEDURE PURGEUSERP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS PURGEUSER">);
IF RSLT := PURGETRUSER(IDNUM) > O THEN ERR;
END PURGEUSERP;
PROCEDURE QUITP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS QUIT">);
CLOSETRBASE;
GO EXIT;
END QUITP;

PROCEDURE SWITCHP;

BEGIN
WRITE(RMOTE, <"FUNCTION IS SWITCH">);
IF RSLT := SWITCHTRFILE > O THEN ERR;

END SWITCHP;

PROCEDURE STATISTICSP;

BEGIN
WRITE(RMOTE, <"FUNCTION IS STATISTICS">);
WRITE(RMOTE, <"WHAT DO YOU WANT TO DO?");
GETINTEGER("CHOICE (1 = PRINT & RESET, 2 = PRINT"

"ONLY, 3 = RESET)", STATISTICSOPTION);

IF RSLT := HANDLESTATISTICS(STATISTICSOPTION) > O;
THEN ERR;

END STATISTICSP;

PROCEDURE HELPP;
BEGIN
WRITE(RMOTE, <"FUNCTIONS ARE:", /,

“CREATE", /,
"PURGE", /,
“DEPOSIT", /,
"WITHDRAWAL", /,
“QUIT", /,
"STATUS", /,
"NEWUSER", /,
“REOPEN", /,
“SEEK", /,
“READ", /,
"GETLAST", /,
"CREATEUSER", /,
"PURGEUSER", /,
“SWITCH", /,
"STATISTICS", /,
"HELP" >);

END HELPP;

8600 0734-000 5-49

Using DMSII Transaction Processing System (TPS) Extensions

%%

%
% Set LIBPARAMETER before first call on a library entry point. The %
% LIBPARAMETER can be set in the library declaration rather than %
% here. %
%

%
B o o o o s e L e A L L e b b b b b L LR b BB L LB LR LERERRDREXT

GETSTRING("JOURNAL NAME", JOURNALNAME);
L.LIBPARAMETER := JOURNALNAME;

WRITE(RMOTE, <"WHAT DO YOU WANT TO DO?">);
GETINTEGER("CHOICE (1=UPDATE, 2=INQUIRY, 3=TANK, 4=READ,"
" 5=EXCLUSIVEUPDATE)", OPT);

WRITE(RMOTE,<"WHAT VALUE FOR TIMEOUT SHALL WE USE?">);

READ(RMOTE, /, TIMEOUT) ;

IF RSLT := OPENTRBASE(OPT, TIMEOUT) > O THEN ERR;
B e o o o o o o o o oo o o e o e o b L L L b b b b b b b b B R E LR R R L LR EXRE XX LR L L LR ERRE%
]

% A restart transaction record is created. It will be written to %
% the TRHISTORY file along with an input transaction. Here, we have %
% not assigned values to the items or this record. Normally, values %
% are assigned but, for simplicity, the code was left out of this %
% example. 9
% %
E Ny S A S S S Ay A A S A A S AN N S S S Y Sy Y S A A A S S A AN S AN A S Y AN S 5 55)

IF NOT ERROR THEN
BEGIN
CREATE RESTARTTRREC.RESTARTDETANKER;
GETSTRING("USER ID", ID);
WRITE(RMOTE, <"USER: ", Al15>, ID);
IF RSLT := LOGONTRUSER(ID, IDNUM) > O THEN ERR;
IF NOT ERROR THEN
WRITE(RMOTE, <"USER #: ", I3>, IDNUM);
END;

ERROR := FALSE;

WHILE TRUE DO

BEGIN
GETSTRING("FUNCTION NAME (OR HELP)", FNAME);
IF SP = "CREATEUSER" THEN CREATEUSERP ELSE
IF SP = "PURGEUSER" THEN PURGEUSERP ELSE
IF SP = "CREATE" THEN CREATEP ELSE
IF SP = "PURGE" THEN PURGEP ELSE
IF SP = "DEPOSIT" THEN DEPOSITP ELSE
IF SP = "WITHDRAWAL" THEN WITHDRAWALP ELSE
IF SP = "QUIT" THEN QUITP ELSE
IF SP = "STATUS" THEN STATUSP ELSE
IF SP = "NEWUSER" THEN NEWUSERP ELSE
IF SP = "REOPEN" THEN REOPENP ELSE
IF SP = "SEEK" THEN SEEKP ELSE
IF SP = "R" THEN READP ELSE
IF SP = "HELP" THEN HELPP ELSE
IF SP = "GETLAST" THEN GETLASTP ELSE
IF SP = "SW" THEN SWITCHP ELSE
IF SP = "STAT" THEN STATISTICSP ELSE
WRITE(RMOTE, <"DID NOT RECOGNIZE FUNCTION NAME">);
ERROR := FALSE;

END;

EXIT:

5-50 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

END OF THE APPLICATION PROGRAM.

8600 0734-000 5-51

Using DMSII Transaction Processing System (TPS) Extensions

Update Library

Py S N Y S A A S S A S A S S S SN A A E AN NS SR IS S S A 544
% %
% SHARING must be PRIVATE in order to ensure that each application %
% program will get its own copy of the Update Library %
% %

Py Sy Y S S Sy A A A A S S Y E S A AN A S Yy S AN AR AN S TS YIS AN SN A 5555

$SET SHARING=PRIVATE
BEGIN % User's Transaction Update Library

B b e b e D L e R b b L b b e b b e BB bR L R R XX R R R R R L LB EBEEREETED
%

%

% This library is written by the user of the transaction system.
It consists of a single procedure, called "ACCESSDATABASE", which
is designed to perform four basic functions: OPENDATABASE (for
update or inquiry), UPDATE, FORCEABORT, and CLOSEDATABASE. The
function to be performed is identified by the first parameter to
the procedure.

OPENDATABASE for update or inquiry is required to open the data
base.

%
% %
% %
% %
% %
% %
% %
% %
% %
% %
% UPDATE is called by the transaction system once for each input %
% transaction to be processed. It must observe a few simple rules, %
% such as when to lock records and when to call the formal 1
% procedures. It is expected to examine each input transaction %
% record, perform the appropriate actions, create a response %
% transaction, and exit. %
% %
% %
% %
% %
% %
% %
%

FORCEABORT is required so that the transaction system can cause
an abort, if necessary.

CLOSEDATABASE must close the database.
b b T b R o bR bR R RN b DR BRBRT DDl BHDH

P Y Ay Y N N Sy AN S S N S A A A S Sy Y Sy SN S AN A A T S I AN S5 A 55 555551
% %
% Library global declarations. %
% %
F Sy Ny Sy A A A SN F A A S5 55544

DATABASE DB = BANKDB; % Invoke the database and transaction
% base to be used.

TRANSACTION BASE TRB = BANKTR;

EBCDIC ARRAY SP0[0:79];

P r Sy Sy S S Ay A S S S AN N N S Ty Y I E SN S S A S S ST IR A A S5 F 5544]
%

%
% Procedure update. %
% %

Py Ty A N S N S Sy A A S A A S Sy A A A S A Y SIS AN A RS S T IS ISR 4555555475
PROCEDURE UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);

TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVERESPONSE(); FORMAL;

5-52 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

PROCEDURE SAVEINPUT(); FORMAL;
BEGIN '

LABEL EXIT;

BOOLEAN RSLT;

CASE TRIN.TRFORMAT OF
BEGIN

(TRFORMAT (CREATEACCT)) : % Routine for creating a new account.
BEGIN

STRING SNAME;

EBCDIC ARRAY NAME[0:29];

SNAME := TRIN.CREATEACCT.NAME;

REPLACE NAME[Q] BY SNAME;

CREATE ACCOUNT:RSLT;

IF RSLT THEN GO EXIT;

PUT ACCOUNT

ACCOUNT-NUM := TRIN.CREATEACCT.ACCTNUM,
NAME := NAME[O];

)3
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
TROUT := TRIN; % Return same TR as good TR-RESPONSE.
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;
END CREATEACCT FORMAT;
(TRFORMAT (PURGEACCT)) : % Routine for purging an existing
% account.
BEGIN

REAL ACCT;
ACCT := TRIN.PURGEACCT.ACCTNUM;
LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, Si%/=TNPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
DELETE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
TROUT := TRIN; % Signal OK
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;
END PURGEACCT FORMAT;

(TRFORMAT (STATUS)) : % Example of an inquiry routine. It
BEGIN % returns the balance of a particular
% account.

REAL ACCT, BAL;

ACCT := TRIN.STATUS.ACCTNUM;

FIND ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;

GET ACCOUNT

(
BAL := BALANCE

)3
TROUT := TRIN; % Signal OK
TROUT.STATUS .BALANCE := BAL;

8600 0734-000 5-53

Using DMSII Transaction Processing System (TPS) Extensions

END STATUS FORMAT;
(TRFORMAT (DEPOSIT)):
BEGIN % account.

REAL OLDBAL, NEWBAL;

REAL ACCT;

ACCT := TRIN.DEPOSIT.ACCTNUM;

LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;

GET ACCOUNT

OLDBAL := BALANCE
)3
NEWBAL := OLDBAL + TRIN.DEPOSIT.AMOUNT;
CREATE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
PUT DEPOSIT
(
TRANDATE := TRIN.DEPOSIT.TRANDATE,
AMOUNT := TRIN.DEPOSIT.AMOUNT,
OLD-BALANCE := OLDBAL,
NEW-BALANCE := NEWBAL

)5
PUT ACCOUNT
BALANCE := NEWBAL

)5

BEGINTRANSACTION (TRIN) RDS :RSLT;

IF RSLT THEN GO EXIT;

MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;

STORE ACCOUNT:RSLT;

IF RSLT THEN GO EXIT;

STORE DEPOSIT:RSLT;

IF RSLT THEN GO EXIT;

CREATE TROUT.STATUS;

TROUT.STATUS.BALANCE := NEWBAL;
TROUT.STATUS.ACCTNUM := TRIN.DEPOSIT.ACCTNUM;

ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;

IF RSLT THEN GO EXIT;

END DEPOSIT FORMAT;
(TRFORMAT (WITHDRAKAL)) :

% account.

BEGIN % Uses DEPOSIT data set, not WITHDRAWAL

REAL OLDBAL, NEWBAL;

REAL ACCT;

ACCT := TRIN.WITHDRAWAL.ACCTNUM;

LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;

GET ACCOUNT

OLDBAL := BALANCE

)5

NEWBAL := OLDBAL - TRIN.WITHDRAWAL.AMOUNT;
CREATE DEPOSIT:RSLT;

IF RSLT THEN GO EXIT;

PUT DEPOSIT

TRANDATE := TRIN.WITHDRAWAL.TRANDATE,
AMOUNT := - TRIN.WITHDRAWAL.AMOUNT,
OLD-BALANCE := OLDBAL,

NEW-BALANCE := NEWBAL

)3

% Routine to perform a deposit into an

% Routine to withdraw money from an

8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

PUT ACCOUNT
BALANCE := NEWBAL

)3
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
STORE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
CREATE TROUT.STATUS;
TROUT.STATUS.BALANCE := NEWBAL;
TROUT.STATUS.ACCTNUM := TRIN.DEPOSIT.ACCTNUM;
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;
END WITHDRAWAL FORMAT;
ELSE: % Flag an error .
DISPLAY("NO UPDATE ROUTINE FOR THE FORMAT PASSED IN");

END CASES;
EXIT:
IF REAL(RSLT) ISNT O THEN
BEGIN
REPLACE SPO BY 0 FOR 10 WORDS;
WRITE(SPO[*], <"UPDATE RSLT:", H13>, RSLT);
DISPLAY(SPO);
END;
END UPDATE;
b SN A SRy S S Sy SN AR S S AN Y SRS SR Y S A NS A AN A S AN N S A S S S S AN A ISR SN SN SN AN 555 54

% %
% Procedure ACCESSDATABASE. %
% %

B o b L e e L L L LR b e B LR LR BB ERERREXXTE Y

PROCEDURE ACCESSDATABASE (FUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT, SAVERESPONSE);
VALUE FUNCTIONFLAG;
INTEGER FUNCTIONFLAG;
TRANSACTION RECORD (TRB) TRIM, TROUT;
PROCEDURE SAVERESPONSE (); FORMAL;
PROCEDURE SAVEINPUT(); FORMAL;
BEGIN
CASE FUNCTIONFLAG OF
BEGIN
1: % Open update
OPEN TRUPDATE DB;
2 % Open inguiry
OPEN INQUIRY DB;
3: % Update
UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);
4 % FORCEABORT is called by the
CLOSE DB; % Transaction Library when the last call
% resulted in exiting this library while
% still in transaction state.
5: % Close.
CLOSE DB,
END CASES;
END ACCESSDATABASE;

B L R R e L Rk AR R R AR R L L LA XRR TR RRRLLTLLTLX%

8600 0734-000 5-55

Using DMSII Transaction Processing System (TPS) Extensions

% %
% Initialize library. %
% %
Y Y Ay Y S Y Y Y S Sy Sy Sy A Sy S Y S Ny A S A A S A S S NS A A S A5 45
EXPORT
ACCESSDATABASE ;
FREEZE (TEMPORARY) ;

END UPDATE LIBRARY.

5-56 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

Example 3: Detanking Procedure

The ALGOL procedure on the following pages illustrates ‘“‘detanking.” A
detanking procedure reads transactions from a tank journal and processes them
against the database.

The input parameter is the name of the Tank journal. This procedure opens both
the Tank journal and the TRHISTORY journal, and then reads transactions from
the Tank journal and processes them against the data base.

The transaction base invoked by this procedure is defined in “Example 2:
Banking Application.” The procedure also uses the previously defined DASDL
description and Update Library. Refer to “DASDL Description of the database,”
“TFL Description of the Transaction Base,”” and “Update Library” on the
preceding pages for details.

PROCEDURE DETANKER(TANKNAME) ;
ARRAY TANKNAME[*];
BEGIN

B bt b b bbb BB BB BB BB BB BB BN BE XD
2 This program can run on either the host system or a remote system. é
% The iibrary routines declared below provide the proper function %
% for either environment. %
;%%2
STRING TANKLIBPARAM;

B e L L A L e b R B R AR BB LR R BN BB BT DEY
% Declare the transaction base to be used. %
é%%é
TRANSACTION BASE TRB = BANKTR;

%%%g

%

% Declare all the library entry points to be associated with the %
% TRHISTORY journal. %
% %

EE Iy Yy S A S S S S A A S Yy F S A S A S S S RN S AN S S SIS NS TS F 5NN 5 4551

LIBRARY PROCESSLIB(TITLE="BANKTR/CODE/HOSTLIB.",
LIBPARAMETER = "TRHISTORY");

INTEGER PROCEDURE CREATETRHISTORYUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY PROCESSLIB(ACTUALNAME = “"CREATETRUSER");

INTEGER PROCEDURE LOGONTRHISTORYUSER(IDSTRING, IDNUM);

STRING IDSTRING; INTEGER IDNUM;
LIBRARY PROCESSLIB (ACTUALNAME = "LOGONTRUSER");

8600 0734-000 5-57

Using DMSII Transaction Processing System (TPS) Extensions

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE PROCESSTRFROMTANK(IDNUM, TRIN, RESTARTNUM, RESTARTTR),
INTEGER IDNUM, RESTARTNUM;
TRANSACTION RECORD (TRB) TRIN RESTARTTR;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE OPENTRHISTORY(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY PROCESSLIB(ACTUALNAME = "OPENTRBASE");

INTEGER PROCEDURE CLOSETRHISTORY;
LIBRARY PROCESSLIB(ACTUALNAME = "CLOSETRBASE");

Ea Ay Yy S S Ay Ny S S S A A Ny S S A A AN S S A A A A S A S S 5554
% %
% Declare all the library entry points to be associated with the %
% Tank journal. . %
% %
VS Y Sy Yy Ay Y Ay S A A A A A A A SN NS S AR A A A 454

LIBRARY TANKLIB(TITLE="BANKTR/CODE/HOSTLIB.");

INTEGER PROCEDURE CREATETANKUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB (ACTUALNAME = "CREATETRUSER");

INTEGER PROCEDURE LOGONTANKUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB(ACTUALNAME = "LOGONTRUSER");

INTEGER PROCEDURE TANKUSERIDSTRING(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB(ACTUALNAME = "TRUSERIDSTRING");

INTEGER PROCEDURE TANKTRNORESTART (IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY TANKLIB;

INTEGER PROCEDURE OPENTANK(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY TANKLIB(ACTUALNAME = "OPENTRBASE");

INTEGER PROCEDURE CLOSETANK;
LIBRARY TANKLIB(ACTUALNAME = "CLOSETRBASE");

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY TANKLIB;

INTEGER PROCEDURE READTRANSACTION (TRREC);

TRANSACTION RECORD (TRB) TRREC;
LIBRARY TANKLIB;

5-58 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions

TRANSACTION RECORD (TRB)

TRIN,

TROUT,

RESTARTTR;

INTEGER TDNUM, N,

RESTARTNUM, TANKNAMESIZE,
FILENUM, BLOCKNUM,
OFFSET, cT,
TANKER, UPDATER,

MAXTANKER, RSLT;
ARRAY TRHISTORYUSERS[0:99];
ARRAY SP[0:14];
LABEL EXIT, LOOP, PRINTLAST;
STRING ID, FNAME;
BOOLEAN ALLDONE;
EBCDIC ARRAY SPO[0:79];

DEFINE ERR(L) =
BEGIN
REPLACE SPQ BY "RSLT = ", RSLT FOR * DIGITS,
" @ ", LINENUMBER FOR 8 DIGITS, NULL;

ACCEPT(SPO);

GO L;
END#,
NULL = 48"00"#,
NORESTARTREC = 3#,
REJECTED = 2%,
EOF - 1#;

MAXTANKER := 99;
B e L L L e L R LB L R L L bbb e R B L AR R EXERRRRRERERD

% %
% Set the 1ibrary parameter "LIBPARAMETER" for the Tank journal. %
% Then open the TRHISTORY journal for updating and the Tank journal %
% for reading. %

% %
Fy Ty N Sy Y A S Sy SN N S Sy I N S S S S T S S AN AN NS SN 555555551

SCAN TANKNAME[*] FOR N:99 UNTIL = 0;

TANKNAMESIZE := 99-N;

TANKLIBPARAM := STRING(POINTER(TANKNAME,8), TANKNAMESIZE);
TANKLIB. LIBPARAMETER := TANKLIBPARAM;

IF RSLT := OPENTRHISTORY(l, 0) > O THEN ERR(EXIT); % Open update.
IF RSLT := OPENTANK(4, 0) > 0 THEN ERR(EXIT); % Open for reading.
ID := TANKLIBPARAM;

% Create a user of the History file and then log him on.

CREATETRHISTORYUSER(ID, RESTARTNUM); % NO-OP if not necessary.

IF RSLT := LOGONTRHISTORYUSER(ID, RESTARTNUM) > O THEN ERR(EXIT);
Py S N Y Sy S N N Sy A A A N E S S A AN RS A S S 55555 555 54

% %
% The following code determines if the program has been restarted %
% after a HALT/LOAD. If so, it determines the location in the Tank %
% Jjournal where we should begin reading transactions. It does this %
% by extracting the file, block, and offset from the items within %
% the restart transaction record: TANKFILENUM, TANKBLOCKNUM, and %
% TANKOFFSET. If the program was not restarted, start reading from %
% the beginning of the Tank journal. %
% %

A b b L L A L R A bbb bR e bbb BB BT R 2%

8600 0734-000

5-59

Using DMSII Transaction Processing System (TPS) Extensions

éF MYJOB.RESTARTED THEN
EGIN
REPLACE SPO BY "DETANKING PROCESS RESTARTING", NULL;
DISPLAY(SPO); ‘
IF RSLT := RETURNRESTARTINFO(RESTARTNUM, RESTARTTR) =
NORESTARTREC THEN
BEGIN

FILENUM := 1;
BLOCKNUM := OFFSET := 0; % Start at first record of file.
IF RSLT := SEEKTRANSACTION(FILENUM,BLOCKNUM,OFFSET) > 0 THEN
ERR(EXIT);
END ELSE
IF RSLT > O THEN
ERR(EXIT)
ELSE % A restart record exists.
BEGIN
FILENUM := RESTARTTR.TANKFILENUM;
BLOCKNUM := RESTARTTR.TANKBLOCKNUM;
OFFSET := RESTARTTR.TANKOFFSET;
REPLACE SPO BY "LAST GOOD TR FROM TANK AT (",
FILENUM FOR * DIGITS, ",",
BLOCKNUM FOR * DIGITS, “,",
OFFSET FOR * DIGITS, ")", NULL;

DISPLAY(SPO);
IF RSLT := SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > O
THEN
ERR(EXIT);

% Now skip last good transaction.

IF RSLT := READTRANSACTION(TRIN) > 0 THEN ERR(EXIT);
END;
END ELSE
BEGIN
FILENUM := 1;
BLOCKNUM := 0;
OFFSET := 0; % Start at first record of file 1.
IF RSLT := SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > O THEN
ERR(EXIT);
END;

CREATE RESTARTTR.RESTARTDETANKER;

LOOP:
IF ALLDONE THEN
BEGIN
CLOSETANK;
CLOSETRHISTORY;
GO PRINTLAST;
END;

% Read a transaction from the Tank journal.
IF RSLT := READTRANSACTION(TRIN) > O THEN
BEGIN
IF RSLT = EOF THEN
BEGIN
ALLDONE := TRUE;
GO LOOP;
END ELSE
ERR(EXIT);
END;

% If we read a system transaction ignore it and continue with the

5-60 8600 0734-000

Using DMSII Transaction Processing System (TPS) Extensions »

% next transaction in sequence.

IF TRIN.TRFORMAT = TRFORMAT(SYSTEMTR) THEN GO LOOP;
TANKER := TRIN.TRUSERNUM;
IF TANKER > MAXTANKER THEN
UPDATER := 0 ELSE
UPDATER := TRHISTORYUSERS[TANKER];
IF UPDATER = 0 THEN
BEGIN
IF RSLT := TANKUSERIDSTRING(ID, TANKER) > O THEN ERR(EXIT);
CREATETRHISTORYUSER(ID, UPDATER); % NO-OP if necessary.
IF TANKER > MAXTANKER THEN
RESIZE(TRHISTORYUSERS[*], (MAXTANKER:=TANKER)+1, RETAIN);
TRHISTORYUSERS [TANKER] := UPDATER;
END;
% Set up the restart record values to be the address of the input
% transaction and then process the transaction.

RESTARTTR.TANKFILENUM := TRIN.TRFILENUM;

RESTARTTR. TANKBLOCKNUM := TRIN.TRBLOCKNUM;

RESTARTTR. TANKOFFSET := TRIN.TROFFSET;

IF RSLT := PROCESSTRFROMTANK(UPDATER, TRIN, RESTARTNUM, RESTARTTR)
> 0 THEN

ERR(EXIT);
GO LOOP;

PRINTLAST:
FILENUM := RESTARTTR.TANKFILENUM;
BLOCKNUM := RESTARTTR.TANKBLOCKNUM;
OFFSET := RESTARTTR.TANKOFFSET;
REPLACE SPO BY "LAST GOOD TR FROM TANK AT (",
FILENUM FOR * DIGITS, ",",
BLOCKNUM FOR * DIGITS, “,",
OFFSET FOR * DIGITS, ")", NULL;
DISPLAY(SPO);

EXIT:
END OF THE DETANKER PROCEDURE;

8600 0734-000 5-61

Section 6 |
Using the Screen Design Facility Plus
(SDF Plus) Interface

Screen Design Facility Plus (SDF Plus) is a user interface management system
that gives programmers the ability to define a complete form-based user interface
for an application system. It is a programming tool for simple and efficient
designing and processing of forms. SDF Plus provides form processing that
eliminates the need for complicated format language or code, and validates data
entered on forms by application users.

The program interface developed for SDF Plus includes

e Extensions that allow you to read and write form records or form record
libraries easily.

e Extensions that allow you to send and receive form records or form record
libraries easily. :

e Extensions that allow you to invoke form record library descriptions into
your program as ALGOL declarations.

This section provides information about the extensions developed for SDF Plus.
Each extension is presented with its syntax and an example; sample programs are
also included.

For an alphabetized list of the extensions, see ‘“‘Screen Design Facility Plus
(SDF Plus) Extensions” in the section ‘“Introduction to ALGOL Program
Interfaces.”

Refer to the Screen Design Facility Plus (SDF Plus) Capabilities Manual for
information defining the concepts and principles of SDF Plus. For information on
general implementation and operation considerations, refer to the Screen Design
Facility Plus (SDF Plus) Installation and Operations Guide. For information on
general programming concepts and considerations, refer to the Screen Design
Facility Plus (SDF Plus) Technical Overview.

SDF Plus can be be used with the Advanced Data Dictionary System (ADDS), and
the Communications Management System (COMS). Refer to the specific product
documentation for information on the concepts and programming considerations
for using these products with SDF Plus. For more information on the extensions
used with these products, refer to Section 2, “Using Advanced Data Dictionary
System (ADDS) Extensions,” and Section 3, “Using Commumcatlons Management
System (COMS) Features.”

8600 0734-000 6-1

Using the Screen Design Facility Plus (SDF Plus) interface

Understanding SDF Plus Interface Elements

Communication between ALGOL application programs and SDF Plus form record
libraries is achieved through either the remote file interface or the COMS
interface. Using the remote file interface, you can interact with SDF Plus
applications by means of remote files. By using the COMS interface, you can
interact with SDF Plus applications through COMS windows and have access to
all COMS capabilities and features.

SDF Plus interface elements include

e Form record libraries

e Form records

e Form record numbers

o Transaction types

e Transaction numbers

e ALGOL functions used as SDF Plus extensions

Form Record Libraries

Form record libraries are collections of form records and transaction types. This
union is achieved in the data dictionary. Form record libraries can be either
retrieved or invoked by the ALGOL program. The form records can then be used
in various ALGOL statements to transfer data.

Form Records

Form records are elements of form record libraries. Form records represent
records of data. This data is used either to output data from a form or to input
data to a form. A form can require several form records; therefore, a one-to-one
relationship between forms and form records does not exist.

In some manuals the term ‘“message type” is a synonym for “form record.”

Forms and form processing are established through the use of SDF Plus. The
ALGOL program reads and writes data to these forms. This arrangement provides
complete separation between data entered on a terminal and actions completed
within the program. A user interface can be completely reconstructed without
modifying the application program, provided the form records are not changed.

‘When referenced, a form record must be qualified with the form record library
name by which it was invoked. Each form record within a form record library

shares the same storage area. The storage area is created large enough to hold

the largest form record.

6-2 8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) interface

Form Record Numbers

Form record numbers for form records are unique integers assigned at compile
time to each form record in a form record library.

In some manuals the term “message type number” is a synonym for ‘“‘form record
number.”

A form record number for a form record library is an attribute of the form record
library. This attribute contains the form record number of a specific form record.
Form record numbers determine I/O operations for form record libraries, allowing
the form record to be specified at run time.

A self-identifying read is used when the executing program has not established
which form record in a specific form record library has been read. The program
must access the form record number attribute for the form record library to
determine the form record that has been read.

A self-identifying write allows the executing program to specifically identify the
form record to be written by placing the appropriate form record number value
into the form record number attribute of the form record library.

Transaction Types

Transaction types are elements of form record libraries. A transaction type
contains a pair of form records: an input form record and an output form record.
A transaction type identifies the relationship of the two form records that are
under it, namely, the input form record to the transaction type and the output
form record from the transaction type.

Transaction Numbers

Transaction numbers are similar to form record numbers. A transaction number is
a unique integer assigned at compile time to each transaction type in a form
record library.

A transaction number for a form record library is an attribute of the form record
library. This attribute contains the transaction number of a specific transaction
type. Transaction numbers provide another means of determining I/O operations
for form record libraries at run time.

After a self-identifying read, the application program must access the transaction

number attribute of the form record library being read to determine the
transaction type that has been executed.

8600 0734-000 6-3

Using the Screen Design Faciiity Plus (SDF Plus) interface

Using ALGOL Functions as SDF Plus Extensions

Several ALGOL fuctions have been extended to work with SDF Plus. The
DICTIONARY compiler control option, as well as the LENGTH, OFFSET,
POINTER, RESIZE, SIZE and UNITS functions can be used as SDF Plus
extensions.

Additional information relating to these functions is included in Section 2, *“Using
Advanced Data Dictionary System (ADDS) Extensions.”

DICTIONARY option

The DICTIONARY compiler control value option establishes the data
dictionary to use during compilation. This option is an ADDS extension that
can be used when SDF Plus is used with ADDS. A dictionary must be
established before the first executable statement. The dictionary specified in
the first occurrence of a DICTIONARY option is used as the data dictionary.
All other occurrences are ignored.

LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

OFFSET function

The OFFSET function returns the number of units that the specified entity is
indexed from the beginning of the outermost record in which it is declared.

POINTER function
The POINTER function returns a pointer to the specified input.
RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For SDF Plus form record libraries, the size is given in bytes. The
size of the entire array is changed, regardless of the record’s position in the

array.

SIZE function

The SIZE function returns the size of the array underlying a given record
identifier. For SDF Plus form record libraries, the size is given in bytes. The
size returned is an integer representing the size of the entire array, regardless
of the record’s position in the array.

UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

Invoking the Form Record Library
A form record library is invoked from a data dictionary that is specified with the
$SET DICTIONARY option. The form record library was placed in the data
dictionary by SDF Plus at the time that the form library dictionary was created.
Syntax

<dictionary form record library declaration>

— DICTIONARY FORMRECORDLIBRARY

)—E <form record library ID> 5

|— <entity qualifiers> —I

v

Explanation
The DICTIONARY FORMRECORDLIBRARY declaration invokes a form record
library with a description retrieved from the dictionary.

The form record library ID is the name by which the allocated record area is
recognized within the program and within the compiler. If the entity qualifier is
not specified, the form record library ID is used as the default name for both the
type and space. .

The DICTIONARY FORMRECORDLIBRARY declaration can be declared using a
TYPE declaration and invocation. This type of declaration is not normally used.

Refer to the “Using the Advanced Data Dictionary System (ADDS) Extensions”
section of this volume for information describing entity qualifiers and TYPE
declarations.

Additional information relating to the <entity qualifiers> construct is included
under “Entity Qualifiers” in Section 2, ‘“Using the Advanced Data Dictionary
System (ADDS) Extensions.”

Examples

In the following example, the form record library titled APPLFORMRECLIB is
invoked from the dictionary and is allocated a buffer:

DICTIONARY FORMRECORDLIBRARY APPLFORMRECLIB;

In the following example, the form record library titled APPLFORMRECLIB is
invoked from the dictionary and is allocated a buffer called RECLIB:

DICTIONARY FORMRECORDLIBRARY RECLIB (NAME=APPLFORMRECLIB);

8600 0734-000 6-5

Using the Screen Design Facility Plus (SDF Pius) Iinterface

Using the SDF Plus Remote File Interface

The following paragraphs describe the syntax of the READFORM and
WRITEFORM statements. These statements are used to perform I/0 operations
when interacting with SDF Plus by means of remote files.

READFORM Statement

6-6

The READFORM statement causes a form record to be read from the specified
remote file and stored in the specified storage area. Particular form records can
be read by designating the form record name. Self-identifying form records are
read by specifying the form recerd library name.

Syntax

<readform statement>

— READFORM - (= <file> -, —[<form record>) |
<form record library> -J

Explanation

The READFORM statement returns the results of the I/O operation as a Boolean
value. If the I/O operation succeeds, the result is FALSE. The file used with this
statement must be a remote file. The compiler generates an error message if the
file is declared DIRECT.

A specific read of a form record is completed by identifying the form record. The
result of the READFORM statement is to store that particular form record in the
storage area associated with the form record library.

A self-identifying read is performed by designating the form record library name
in the READFORM syntax. The form record returned is determined by the forms
processing performed in SDF Plus. A form record number is returned by

SDF Plus to be used to determine the form record that was read.

Examples

In the following example, a self-identifying read of a form record library is
performed. The form record number field contains the form record number of the
form record that was read.

READFORM (RMTFILE, APPLFORMRECLIB);
FORMNUM := APPLFORMRECLIB.FORMRECNUM;

In the following example, the form record FORMRECORDA is read from the form
record library APPLFORMRECLIB:

READFORM (RMTFILE, APPLFORMRECLIB.FORMRECORDA);

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

WRITEFORM Statement

The WRITEFORM statement causes a form record to be written to a specified
remote file. Specific form records can be written by designating the form record
name.

Syntax
<«writeform statement>

— WRITEFORM - (- <file>

, —>
*: [- DEFAULT -] ———]

[— DATAERROR -- <error #> -] -

<form records) i

<form record library>

<text length> - , — <text> -

<text lengths

-~ <arithmetic expressions 1

<text>

- <EBCDIC pointer> {

Explanation

The WRITEFORM statement returns the results of the I/O operation as a Boolean
value. If the I/0 operation succeeds, the result is FALSE.

The file used with this statement must be a remote file. The compiler generates
an error message if the file is declared DIRECT.

The DEFAULT option on a WRITEFORM statement causes SDF Plus to use
default values when it displays the form. This option is used when the
application program does not supply data for the form.

The DATAERROR option on a WRITEFORM statement allows you to respond to a
record received from the dictionary with an error indicator instead of another
record.

A specific write of a form record is completed by designating the form record. A
self-identifying write is performed by designating the form record library name in
the WRITEFORM statement and using the form record number attribute to assign
the form record number for that form record library. The form record number or
transaction number in the form record library must be assigned before the write
operation; otherwise, an error occurs.

8600 0734-000 6-7

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the WRITEFORM statement with the text option causes the contents of a
text array to be written to a designated remote file.

6-8 8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

Examples

In the following example, a self-identifying write of the form record library
APPLFORMRECLIB is performed. The form record number attribute assigns the
form record number of the form that is to be written.
APPLFORMRECLIB.FORMRECNUM :=
APPLFORMRECLIB. FORMRECORDB . FORMRECNUM;
WRITEFORM (RMTFILE, APPLFORMRECLIB);

In this example, the form record FORMRECORDA is written from the form record
library APPLFORMRECLIB:

WRITEFORM (RMTFILE, APPLFORMRECLIB.FORMRECORDA);

In the following example, the default values for the form record FORMRECORDA
are written:

WRITEFORM (RMTFILE [DEFAULT], APPLFORMRECLIB.FORMRECORDA);

In the following example, the program responds to the record received with an
error indicator:

WRITEFORM (RMTFILE [DATAERROR 5], FORMRECLIB);

In this example, the first 30 words of the text array T_ARRAY are written to the
remote file RMTFILE and displayed in the text area of the form:

WRITEFORM (RMTFILE, 30, T_.ARRAY);

8600 0734-000 6-9

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the Form Record Number Attribute

6-10

The form record number attribute is used with either individual form records or
form record libraries. In some manuals the term ‘“message type number’ is used
as a synonym for ‘‘form record number.”

The form record number attribute associated with individual form records is
preassigned by SDF Plus at compile time.

The form record number attribute associated with form record libraries is used
with self-identifying reads and self-identifying writes.

Syntax

<form record number>

_l: <form record> ———-:j— . — FORMRECNUM]
<form record library>

<form record>

~ <form record 1ibrary> - . -~ <form record name> i

<form record name>

- <identifiers |

Explanation

The form record name must be qualified with the form record library name.

A form record number attribute of a form record library contains the form record
number field of the last form record read. This field should be queried after a
read of a specific form record to verify that the specific form record was actually
read. The transaction number field should be queried after a read of a
self-identifying form record to determine the action to be taken.

Changing the form record number attribute of a form record library allows
self-identifying writes. The form record number determines the form record that
is written.

A form record number attribute of a form record is the preassigned form record
number of the specified form record. These numbers are integer constants
assigned at compile time.

Attempting to change the form record number attribute of a form record resuits
in an error.

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

Examples

In the following example, B is assigned the integer value of the form record
FORMRECORDB:

B :=APPLFORMRECLIB.FORMRECCRDB. FORMRECNUM;

In this example, the integer value B is assigned as a form record number for a
form record that is to be written in a self-identifying write:

APPLFORMRECLIB.FORMRECNUM := B;

In the following example, the form record number of the form record
FORMRECORDB is assigned to be written using a self-identifying write:

APPLFORMRECLIB.FORMRECNUM :=
APPLFORMRECLIB. FORMRECORDB . FORMRECNUM;

This example shows an attempt to change the form record number attribute of
form record FORMRECORDB. This action results in an error.

FORMRECORDB . FORMRECNUM := B;

8600 0734-000 6-11

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the Transaction Number Attribute
The transaction number attribute is used with either individual transaction types
or form record libraries. Each transaction number is associated with a transaction
name.

Syntax

<transaction number>
—[<transaction type> —_l— . — TRANSNUM i
<form record library>

<transaction type>

- <form record library> - . - <transaction name> i

<transaction name>

- <identifier>

4

Explanation

The transaction name must be qualified with the form record library name.

A transaction number of a form record library contains the transaction number of
the last transaction read. This field should be queried after every read to
determine what action the program should take. Note that the transaction
number uniquely indicates both the form record that was read and the action to
take with it, but the same form record can appear in two different transactions.
For example, one transaction might return an empty form record that is to be
prefilled, while another transaction might return the same form record that now
contains data to be processed. Both reads returned the same form record, but the
actions to be taken by the application differed. Only the transaction number
uniquely indicates which action to take—the form record number is not sufficient
in most cases.

Changing the transaction number of a form record library or a transaction type is
not allowed. You should use the form record number of the form record library to
indicate to SDF Plus the action to take on the next write.

Attempting to change the transaction number attribute of a transaction type
results in an error.

6-12 8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

Examples

In the following example, G is assigned the integer value of the transaction
TRANSACTIONL:

G := APPLFORMRECLIB.TRANSACTIONL.TRANSNUM;

In this example, the transaction number of a form record library is queried to
verify that a specific transaction has just been read. MYFORMRECPITT is a prefill
request from SDF Plus to the application program. MYFORMRECPRE is a prefill
response from the application program to SDF PLus.

IF APPLFORMRECLIB.TRANSNUM = FORMRECLIB.MYFORMRECPTT.TRANSNUM THEN
APPLFORMRECLIB.FORMRECNUM := FORMRECLIB.MYFORMRECPRE.FORMRECNUM;

The next example shows the processing of an update transaction.
MYFORMRECTT is an update transaction that transfers data entered by the user
from SDF Plus to the application program. FORMRECLIBSR is a standard
response. There is one standard response per library. The standard response
indicates that the application program accepted the update transaction. Use this
technique when the application program allows SDF Plus to decide which form to
display next.

IF FORMRECLIB.TRANSNUM = FORMRECLIB.MYFORMRECTT THEN
FORMRECLIB.FORRECNUM := FORMRECLIB.FORMRECLIBSR.FORMRECNUM;

8600 0734-000 6-13

Using the Screen Design Facility Plus (SDF Plus) Interface

Using SDF PLUS with COMS

SDF Plus can be used with COMS to take advantage of COMS direct windows.
Using SDF Plus with COMS provides enhanced routing capabilities for forms and
also allows preprocessing and postprocessing of form records.

Refer to the Communications Management System (COMS) Programming Guide
for detailed information on the use of the COMS direct window interface. The
following guidelines explain the steps to follow when using SDF Plus and COMS
together.

Using COMS Input/Output Headers

6-14

SDF Plus supports the use of COMS headers. Three fields are defined within the
headers for use with SDF Plus. These fields are SDFINFO, SDFFORMRECNUM,
and SDFTRANSNUM. A description of each follows.

The SDFINFO field is used to identify specific form message processing requests
(on output) or to return form message processing errors (on input). On the output
(sending) path, this field can contain the following values:

Value Eiplanatlon

0 Normal form message processing
100 Last transaction error. This value is used for outgoing messages only.

101 Transaction error. Used when more than one transaction error is sent.
The application can send multiple messages in which the value of the
SDFINFO field is 101. This value is used for outgoing messages only.

200 Text message processing

On the input (receiving) path, this field can contain the following values, which
correspond to status information concerning the requested form message
processing:

Value Explanation
0 No error
-100 Form message timestamp mismatch

—200 Incorrect form record number specified on the send operation

—300 Incorrect transaction number specified on the send operation

The SDFFORMRECNUM field is used to designate the form record to be written
(on output) or the form record that is to be received (on input).

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

The SDFTRANSNUM field is meaningful only on input and contains the number
of the SDF Plus transaction that was received. This field should not be altered by
the user application.

Sending and Receiving Messages

When using SDF Plus and COMS together, follow the usual statements for each
product, with the following guidelines:

1. COMS input/output headers should be used instead of binary communication
descriptions to take advantage of the new features in SDF Plus.

2. To send normal messages, the application program must move the value 0
(zero) into the SDFINFO field of the output header. The application program
must set the SDFFORMRECNUM field. The form record library must then be
passed as the <message area> construct in a SEND statement.

3. To receive a message, the application program must do the following:

a. If the SDFINFO field contains a value less than 0 (zero), this field also
contains an error code that indicates a problem with message processing.
In addition, the FUNCTION-INDEX field of the input header contains the
value 100.

b. If the SDFINFO field contains the value 0 (zero), the application program
can query the form record number and transaction number attributes for
the form record library from the SDFFORMRECNUM and
SDFTRANSNUM fields of the input header.

Sending Transaction Errors

SDF Plus supports the ability to send error codes in response to incorrect data
received by the user application. These error codes are sent as integer values,
which are used by SDF Plus to process a user-defined error procedure for the
form record library.

To send transaction error codes, the user application must do the following:

e Move the value 100 or 101 into the SDFINFO field of the output header.

e Move the value of the transaction error into the SDFFORMRECNUM field of
the output header.

¢ Move the SDFTRANSNUM field from the input header to the output header.
e Send the output header to display the message.

The user application can send any arbitrary message area along with the output
header. SDF Plus only processes the information within the output header.

8600 0734-000 6-15

Using the Screen Design Facility Plus (SDF Plus) Interface

Example

In this example, INX contains the number of the transaction error.
COMS_OUT.SDFINFO := 100;
COMS_OUT . SDFFORMRECNUM := INX;
COMS_OUT.SDFTRANSNUM := COMS_IN.SDFTRANSNUM;

COMS_OUT.TEXTLENGTH := COMS_IN.TEXTLENGTH;
SEND(COMS_OUT ,COMS_IN.TEXTLENGTH,APPLFORMRECLIB) ;

Sending Text Messages

SDF Plus supports the ability to send text messages for display on the text area
of a form.

To send a text message, the user application must do the following:

e Move the value 200 into the SDFINFO field of the output header.
e Move the text message into a message area to be sent through COMS.
e Use the SEND statement to send the text message.

The text message will be displayed when the next form is displayed.

For information about the extensions used with COMS, refer to Section 3, “Using
Communication Management System (COMS) Features.”

Example

In this example, literal text is moved into the message area. The form to display
the text message is FORM1.

COMS_OUT.SDFINFO := 200;

REPLACE STEXT[0] BY "This is an example of application text" FOR 38;
SEND (COMS_OUT, 38, STEXT);

COMS_OUT.SDFINFO := 0;

COMS_OUT.SDFFORMRECNUM := FORM1.FORMRECNUM;

SEND (COMS_OUT, COMS_IN.TEXTLENGTH, FORM1);

6-16 8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

SDF PLUS Sample Programs

Example 1 highlights the different uses of the SDF Plus program interface.

Example 2 demonstrates the use of the SDF Plus program interface with COMS.

Example 1: General Use of SDF Plus Program Interface

The following is a sample program showing different uses of the SDF Plus
program interface. For information about handling remote file errors in an
application program, refer to the SDF Plus Technical Overview.

In this program, a READFORM statement is performed. The transaction number
attribute is then interrogated to determine the form record that was read. The
appropriate response is then indicated by setting the form record number
attribute.

The program accepts two string or binary inputs from a remote file, concatenates
or adds them together, and returns the original inputs and the result as outputs
on the terminal screen. The form record library was created in SDF Plus.

$SET LIST STACK
$SET DICTIONARY = "SDFPLUSDICT"
BEGIN
FILE REMFILE (BLOCKSIZE = 2040,
KIND = REMOTE,
MAXRECSIZE = 2040,
BLOCKSTRUCTURE = EXTERNAL,
MYUSE = 10,
UNITS = CHARACTERS);
DICTIONARY FORMRECORDLIBRARY DTCOMPLEXLIB
(DIRECTORY = "SMITH",
VERSION = 1);
BOOLEAN END_PGMV;
EBCDIC ARRAY MYSTRING1[0:24],
MYSTRING2[0:24],
MYSTRING[0:49];

INTEGER MYBNUMBER,
MYBNUMBER1,
MYBNUMBER2;

DEFINE BLANK = " "#;

PROCEDURE INITIALIZE_ALL;
BEGIN
REPLACE MYSTRING1 BY BLANK FOR 25;
REPLACE MYSTRINGZ BY BLANK FOR 25;
REPLACE MYSTRING BY BLANK FOR 50;
MYBNUMBER := 0;
MYBNUMBER1L := 0;
MYBNUMBER2 := 0;
END; % INITIALIZE_ALL

8600 0734-000 6-17

Using the Screen Design Facility Plus (SDF Plus) Interface

%
PROCEDURE CONCATSTRINGS;

BEGIN

REPLACE MYSTRING1 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING1 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS .PASTRING1);

REPLACE MYSTRING2 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING2 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS . PASTRING2) ;

REPLACE MYSTRING BY MYSTRING1 FOR 25, MYSTRING2 FOR 25;

END; % CONCATSTRINGS

PROCEDURE BINARYADD;

BEGIN

MYBNUMBER] :=
INTEGER(DTCOMPLEXLIB.APUTBINARY . PBNUMBER1) ;

MYBNUMBER2 :=
INTEGER(DTCOMPLEXLIB.APUTBINARY . PBNUMBER2) ;

MYBNUMBER := MYBNUMBER] + MYBNUMBER2;

END; % BINARYADD

PROCEDURE GETBINARY;
BEGIN
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER] := MYBNUMBERI;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER2 := MYBNUMBER2;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER := MYNUMBER;
END; % GETBINARY

PROCEDURE GETALPHAS;

BEGIN

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING1
BY MYSTRING1 FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING2
BY MYSTRING2 FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING
BY MYSTRING FOR 50;

END; % GETALPHAS

PROCEDURE MAIN_FORM;
BEGIN
LABEL MAIN_FORM-EXIT;
IF READFORM (REMFILE, DTCOMPLEXLIB) THEN
BEGIN % true result implies I0 operation failed
WRITE(REMFILE,//,"READFORM ERROR");
END_PGMV := TRUE;
GO MAIN_FORM_EXIT;
END;
CASE DTCOMPLEXLIB.TRANSNUM OF
BEGIN
(DTCOMPLEXLIB.AGETALPHASPTT . TRANSNUM) :
BEGIN
DTCOMPLEXLIB. FORMRECNUM :=m
DTCOMPLEXLIB.AGETALPHASPRE . FORMRECNUM;
GETALPHAS;
END;
(DTCOMPLEXLIB.AGETBINARYPTT. TRANSNUM) :

6-18 8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.AGETBINARYPRE. FORMRECNUM;
GETBINARY;
END;
(DTCOMPLEXLIB.APUTALPHASTT . TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR. FORMRECNUM;
CONCATSTRINGS;
END;
(DTCOMPLEXLIB.APUTBINARYTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
BINARYADD;
(DTCOMPLEXLIB.AGETALPHASTT . TRANSNUM) :
(DTCOMPLEXLIB.AGETBINARYTT. TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR. FORMRECNUM;
END;
ELSE:
BEGIN
WRITE(REMFILE,//,"UNKNOWN TRANSACTION");
END_PGMV := TRUE;
GO MAIN_FORM_EXIT;
END;
END; % CASE

IF WRITEFORM (REMFILE, DTCOMPLEXLIB) THEN

BEGIN % true result implies I0 operation failed
WRITE(REMFILE,//,"WRITEFORM ERROR");

END_PGMV := TRUE;

END;

MAIN_FORM_EXIT:

END MAIN_FORM;

INITIALIZE_ALL;
DO MAIN_FORM
UNTIL END_PGMV;

END.

8600 0734-000

6-19

Using the Screen Design Facility Pius (SDF Plus) Interface

Example 2: Using COMS with the SDF Plus Program Interface

This sample program uses the same programming logic as that in Example 1.
However, this COMS interface example shows the application program interacting
with users through a COMS window. The SDFTRANSNUM field, which is located
in the COMS input header, is interrogated to determine the form record that was
read. The response is indicated by setting the SDFFORMRECNUM field, located in
the COMS output header. Additionally, the program accepts two string or binary
inputs from COMS into a message area declared in the program.

Refer to the COMS Programming Guide for a discussion of COMS programming
issues and a detailed explanation of the COMS features and functions available
with each version of COMS.

$SET LIST STACK
$SET DICTIONARY "SDFPLUSDICT"
BEGIN
DICTIONARY FORMRECORDLIBRARY DTCOMPLEXLIB
(DIRECTORY = "SMITH",
STATUS = ANY,
VERSION = 1);

BOOLEAN END_PGMV;;

EBCDIC ARRAY MYSTRING1[0:24],
MYSTRING2[0:24],
MYSTRING[0:49],
STEXT[0:32];

INTEGER MYBNUMBER,
MYBNUMBERI ,

~ MYBYNUMBER2;
DEFINE = BLANK = " "#;

% COMS declarations
INPUTHEADER COMS_IN;
OUTPUTHEADER COMS_OUT;

EBCDIC ARRAY MSG[0:255];

REAL SDF_AGENDA;
DEFINE EOF_NOTICE = 99#;

LIBRARY SERVICE_LIB
(LIBACCESS = BYFUNCTION,
FUNCTIONNAME = "COMSSUPPORT.",
LIBPARAMETER = "02");

INTEGER PROCEDURE GET_DESIGNATOR_USING_NAME
(ENTY_NAME,
ENTY_TYPE,
ENTY_DESIGNATOR) ;
VALUE ENTY.TYPE;
EBCDIC ARRAY ENTY_NAME([O];
REAL ENTY_DESIGNATOR; -
INTEGER ENTY_TYPE;
LIBRARY SERVICE_LIB;

6-20 8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

%
PROCEDURE INITIALIZE_COMS;
BEGIN
% get the title of COMS
COMSSUPPORT. LIBACCESS := VALUE(BYTITLE);
REPLACE MSG BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE := STRING(MSG[0],256);
ENABLE (COMS_IN,"ONLINE");
% get the agenda designator
REPLACE MSG[O] BY "JONES", " " FOR 251;
GET_DESIGNATOR_USING_NAME (MSG, 3, SDF_AGENDA) ;
END; % INITIALIZE_COMS;
%
PROCEDURE INITIALIZE_ALL;
BEGIN
REPLACE MYSTRING1 BY BLANK FOR 25;
REPLACE MYSTRING2 BY BLANK FOR 25;
REPLACE MYSTRING BY BLANK FOR 50;
MYBNUMBER := 0;
MYBNUMBER1 := 0;
MYBNUMBER2 := 0;
END; % INITIALIZE_ALL
%
PROCEDURE CONCATSTRINGS;
BEGIN
REPLACE MYSTRING1 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING1 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRING1) ;
REPLACE MYSTRING2 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING2 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS .PASTRING2) ;
REPLACE MYSTRING BY MYSTRING1 FOR 25, MYSTRING2 FOR 25;
END; % CONCATSTRINGS
%
PROCEDURE BINARYADD;
BEGIN
MYBNUMBER] :=
INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBER1]) ;
MYBNUMBER2 :=
INTEGER(DTCOMPLEXLIB.APUTBINARY . PBNUMBER2) ;
MYBNUMBER := MYBNUMBER1 + MYBNUMBER2;
END; % BINARYADD
%
PROCEDURE GETBINARY;
BEGIN
DTCOMPLEXLIB.AGETBINARYPRE .GBNUMBER] := MYBNUMBER1;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER2 := MYBNUMBERZ2;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER := MYBNUMBER;
END; % GETBINARY;
%
PROCEDURE GETALPHAS;
BEGIN
REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING1
BY MYSTRING1 FOR 25;
REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING2
BY MYSTRING2 FOR 25;

8600 0734-000 6-21

Using the Screen Design Facility Plus (SDF Plus) Interface

6-22

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING
BY MYSTRING FOR 50;
END; % GETALPHAS

PROCEDURE SENDTEXT;

BEGIN
REPLACE STEXT[O0] BY

"-- THIS IS A SEND TEXT TEST -- " FOR 31;
COMS_OUT.SDFINFO := 200;
COMS_OUT.TEXTLENGTH := 31;
SENDSTATUS := SEND (COMS_OUT, 31, STEXT);
END; % SENDTEXT

MAIN PROGRAM

3R 3R 3R R R

%

%

Do
BEGIN
RECEIVE (COMS_IN, DTCOMPLEXLIB);
IF COMS_IN.STATUSVALUE NEQ EOF_NOTICE THEN
BEGIN
IF COMS_IN.FUNCTIONSTATUS GEQ O THEN

LABEL MAIN_EXIT;

INITIALIZE.ALL;
INITIALIZE_COMS;

BEGIN

COMS_OUT.DESTCOUNT := 1;
COMS_OUT.DESTINATIONDESG := COMS_IN.STATION;
COMS_OUT.SDFTRANSNUM := COMS_IN.SDFTRANSNUM;
COMS_OUT .AGENDA := SDF_AGENDA;

CASE COMS_IN.SDFTRANSNUM OF
BEGIN
(DTCOMPLEXLIB.AGETALPHASPTT. TRANSNUM) ;
BEGIN
COMS_OQUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.AGETALPHASPRE . FORMRECNUM;
GETALPHAS;
SENDTEXT;
END;
(DTCOMPLEXLIB.AGETBINARYPTT. TRANSNUM) :
BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.AGETBINARYPRE . FORMRECNUM;
GETBINARY;
END;
(DTCOMPLEXLIB.APUTALPHAS . TRANSNUM) :
BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR. FORMRECNUM;
CONCATSTRINGS ;
END;
(DTCOMPLEXLIB.APUTBINARYTT. TRANSNUM) :

3R 3R 3

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR. FORMRECNUM;
BINARYADD;
END;
(DTCOMPLEXLIB.AGETALPHASTT. TRANSNUM) :
(DTCOMPLEXLIB.AGETBINARYTT. TRANSNUM) :
BEGIN ‘
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR. FORMRECNUM;
END;
ELSE:
BEGIN
END_PGMV := TRUE;
GO MAIN_EXIT;

END;
END; % CASE
%
% set up COMS output header
COMS_OUT.TEXTLENGTH := COMS_IN.TEXTLENGTH;
COMS_OUT.SDFINFO := 0;
SEND (COMS_OUT, COMS_IN.TEXTLENGTH,DTCOMPLEXLIB);
END; % COMS_IN.FUNCTIONSTATUS GEQ O
END % COM_IN.STATUSVALUE NEQ EOF_NOTICE
ELSE
END_PGMV := TRUE;
END
%
MAIN_EXIT:

UNTIL END_PGMV;

END.

8600 0734-000

6-23

Section 7
Using the Semantic Information
Manager (SIM) Interface

Semantic Information Manager (SIM) is a database management system that
provides for the control, retrieval, and maintenance of data.

This section explains how to use ALGOL to manipulate data in an SIM database
and provides samples of typical applications used with SIM. It contains
discussions of the ALGOL extensions developed for the following functions:

e Declaring a SIM database.

e Mapping SIM types into ALGOL.

e Declaring or discarding a query to a SIM database.

e Declaring an entity reference variable to explicitly hold a reference to a SIM
database entity.

e Opening and closing a SIM database.
e Assigning SIM database attributes.
o Using statements for transaction state and transaction points.

e Using selection expressions to determine entities or values within SIM
database statements.

e Selecting a set of entities and associating it with the query.

e Altering level values in a transitive closure retrieval.

e Retrieving entities from the SIM database.

o Updating entities with single- or multiple-statement updates.

o Exception handling of SIM statements.

Refer to the InfoExec Semantic Information Manager (SIM) Programming Guide
for detailed information on SIM programming considerations. Consult the
InfoExec Semantic Information Manager (SIM) Technical Overview for SIM

concepts. For information on defining files and elements in SIM, refer to the
InfoExec ADDS Operations Guide.

For programming considerations when using SIM and COMS together, consult the
InfoExec SIM Programming Guide.

8600 0734-000 7-1

Using the Semantic Information Manager (SIM) Interface

7-2

The SIM interface uses the following ALGOL type 2 reserved words:

ABORTTRANSACTION DMMATCH INVERSE

ALL DMMAX MODIFY
APPLYINSERT DMMIN NONE
APPLYMODIFY DMNEXTEXCEPTION ORDER
BINARY DMPOS ORDERING
CANCELTRPOINT DMPRED QUERY
COLLATING DMRECORD RECORD
CURRENT DMRPT REFERENCE
DISCARD DMSQRT RETRIEVE
DMABS DMSUCC SAVETRPOINT
DMAVG DMSUM SELECT
DMCHR DMTRUNC SEMANTIC
DMCONTAINS ENTITY SETTOCHILD
DMCOUNT EQV_EQL SETTOPARENT
DMEQUIV EQV_GEQ SOME
DMEXCEPTIONINFO EQV_GTR STARTINSERT
DMEXCEPTIONMSG EQV_LEQ STARTMODIFY
DMEXCLUDES EQV_LSS SUBROLE
DMEXISTS EQV_NEQ TRANSITIVE
DMEXT EXCLUDE TYPE

DMISA EXISTS USING
DMLENGTH INCLUDE WHERE

The SIM, Data Management System II (DMSII), Communications Management
System (COMS), and Advanced Data Dictionary System (ADDS) interfaces can be
used within the same program. For example, both SIM and DMSII data bases can
be accessed in the same program. COMS and SIM work together to provide a
recoverable transaction system for a SIM database. The DICTIONARY and
RANGECHECK options of the ADDS interface can also be used as SIM extensions.

Note: If the DICTIONARY comptler control option does not appear before the

JSirst executable statement, SIM defaults to the dictionary titled
“DATADICTIONARY”’ and the program might not compile properly.

Note that if DMSII and SIM databases are accessed in the same program, each
database must be invoked, manipulated, and processed with its own extensions.
Use DMSII and BDMSALGOL extensions for DMSII databases. Use SIM extensions
for SIM databases.

Additional information relating to ADDS, COMS and DMSII is included in Section

3, “Using Communications Management System (COMS) Features,” and Section 4,
*“Using the Data Management System II (DMSII) Interface.”

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Using ADDS Extensions as SIM Extensions

ADDS can be used to define a SIM database. However, different methods of data
retrieval are used when directly interfacing to ADDS and when using SIM to
interface to ADDS.

e When a program accesses ADDS directly, the compiler links directly to ADDS
to get the non-SIM data descriptions.

e When a program accesses SIM, it indirectly accesses ADDS. The compiler does
not link directly to ADDS.

If a program accesses both ADDS and SIM, it gets two links to ADDS; one direct
and one indirect. Tracking data is not integrated.

The DICTIONARY and the RANGECHECK compiler control options, as well as the
LENGTH, OFFSET, POINTER, and UNITS functions can also be used as SIM
extensions. More detailed information about the ADDS extensions that are used
with SIM is included in Section 2, ‘‘Using Advanced Data Dictionary System
(ADDS) Extensions.”

Purpose of the Dictionary Option'

The DICTIONARY compiler control value option establishes the data dictionary to
use during compilation. A dictionary must be established before the first
executable statement. The dictionary specified in the first occurrence of a
DICTIONARY option is used as the data dictionary. All other occurrences are
ignored. If a dictionary is not specified, SIM defaults to the dictionary titled
“DATADICTIONARY” and the program may not compile properly.

Purpose of the Rangecheck Option

The RANGECHECK option is a Boolean option that causes the compiler to
generate code that performs range checking at run time on values that were not
known at compile time. The option is set by default. A run-time fault occurs if a
value fails a range check; the program is discontinued and an *“Invalid Operation”
is reported.

8600 0734-000 7-3

Using the Semantic Information Manager (SIM) Interface

Purpose of Functions

The following ADDS functions can be used with SIM. All of these functions can be
used with DMRECORDs.

e LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

e OFFSET function

The OFFSET function returns the number of units that the specified entity is
indexed from the beginning of the outermost record in which it is declared.

e POINTER function
The POINTER function returns a pointer to the specified input.
e RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For SIM DMRECORDSs, the size is given in bytes. The size of the
entire array is changed, regardless of the record’s position in the array.

e SIZE function

The SIZE function returns the size of the array underlying a given record
identifier. For SIM DMRECORDS, the size is given in bytes. The size returned
is an integer representing the size of the entire array, regardless of the
record’s position in the array.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

7-4 8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Declaring a SIM Database

A SEMANTIC DATABASE declaration specifies the SIM database to be used in a
query. Only included classes and attributes belonging to the included classes can
be used in a query.

Multiple SIM databases can be declared in a program. A SIM database can be
declared more than once in the same program. Refer to the InfoExec SIM
Programming Guide for the SIM-defined limit to the number of SIM databases
that can be declared in one program.

SIM and DMSII databases can be used in the same program, including separately
compiled programs that are bound. Each database must be declared in its own
DATABASE declaration. A DMSII database is available only from BDMSALGOL.

Note that if DMSII and SIM databases are accessed in the same program, each
database must be invoked, manipulated, and processed with its own extensions.
Use DMSII and BDMSALGOL extensions for DMSII databases. Use SIM extensions
for SIM databases.

Two different databases can be updated in the same program only if they are the
same physical database. :

Before a SIM database can be used in a SIM statement, it must be declared and
opened. Also, an access method must be stated. The ADDS for the database must
be specified in the DICTIONARY compiler control value option that appears
before the first executable statement.

Any hyphens in the identifier of an entity are translated to underscores by the
ALGOL compiler before the identifier is passed to SIM.

Additional information relating to SIM database declarations is included under
“SIM OPEN statement” in this section and “Invoking a DMSII Database” in
Section 4, “Using the Data Management System II (DMSII) Interface.” Related
information is also available under ‘‘DICTIONARY Option: Establishing a Data
Dictionary” and ‘Entity Qualifiers” in Section 2, “Using Advanced Data
Dictionary System (ADDS) Extensions.”

Syntax
<database declaration>

— SEMANTIC - DATABASE - <database reference> {

8600 0734-000 7-5

Using the Semantic Information Manager (SIM) interface

7-6

<database reference>

- <database name>

(<class ID list>) ——————]
l—- <entity qualifiers> —J

Additional information relating to the <entity qualifiers> construct is included

under ‘“Entity Qualifiers” in Section 2, “Using Advanced Data Dictionary System
(ADDS) Extensions.”

<class ID list>
r <class ID> |
I— <alias ID> - = —l

<alias ID>

- <identifier> |

<class ID>

- <identifier> |
Explanation

The prefix “SEMANTIC” identifies the database as a SIM database. If the prefix
is not used, a DMSII database is assumed.

A SIM database can be invoked more than once. The <database name> construct
is the name of the declared SIM data base. If there are multiple SIM databases
involved in a query, the entity qualifiers are used to resolve any ambiguity. The
database name must be unique within scope rules.

The <class ID list> construct is a list of the SIM database classes used by the
program. If the program accesses more than one SIM database, naming conflicts
can occur among the database classes. Using the <alias ID> construct ensures
uniqueness of the class names. If only one SIM database is declared in the
program or if there are no conflicts, no alias is needed.

Example

In the following example, the SIM database UNIVDB is declared. It is qualified by
its name and version. The class list includes the classes INSTRUCTOR and
COURSE. An alias, CLASS, is equated with the class COURSE. Note the colon (:)
preceding the class list.

SEMANTIC DATABASE UNIVDB

(NAME = UNIVERSITYDB, VERSION = 103) :
(INSTRUCTOR, CLASS = COURSE);

8600 0734-000

Using the Semantic information Manager (SIM) Interface

Mapping SIM Types Into ALGOL

SIM data items are normally mapped from the SIM database into an ALGOL
program according to the default types shown below in Table 7-1. Fields,
however, can be declared in DMRECORDs with any of the allowed types. When
this occurs, the compiler emits code to perform the mapping to the default type.

Table 7-1. Mapping SIM Types into ALGOL
SIM Type Defauit Type Allowed Type
Integer, Date, Time, Integer Real, Double, Integer

Subrole
Real
Number
Character

Fixed & Variable String,
Symbolic

KANJI Character
KANJI String
Boolean

Compound Attribute
Entity Reference
Range

Enumeration

Real

Double, Integer
EBCDIC array [0:0]
EBCDIC array[0:n]

EBCDIC array[0:n*2]
Coerced into EBCDIC
Boolean

Record

Entity Reference
Base type

Base type

Double, Integer, Real
Integer, Real, Double
EBCDIC array[O:n]
EBCDIC

None

None

Real, Boolean
Record

Entity Reference

Base type
Base type

The SIM type “date’” is mapped into an ALGOL integer. In an arithmetic form, the
date can be used with arithmetic operators such as MOD and DIV. The date is in
the format “YYYYMMDD"”. The format is explained below.

Symbol Meaning
YYYY A four-digit representation of the year
MM A two-digit representation of the month
DD A two-digit representation of the day

For example, *“19891003" is October 3, 1989.
As a default, the SIM type “number” is mapped as either a double or an integer.

The default is double when the number is greater than 11 digits. The default is
integer when the number is less than or equal to 11 digits.

8600 0734-000 7-7

Using the Semantic Information Manager (SIM) Interface

7-8

If you use a string type or a symbolic type, remember that the upper bound of
the default ALGOL type is set up to handle the largest possible string or symbolic
value.

e For string types, the default upper bound is equal to the maximum string
length allowed by the compiler minus one.

e Symbolic types have a fixed length of 30 regardless of the symbolic value.
The default upper bound is therefore 29.

If you declare an upper bound that is less than the default, the compiled program
displays a warning message when an associated SELECT statement is executed.

SIM types are explained in the InfoExec Semantic Information Manager (SIM)
Technical Overview. ALGOL types, except Record and Entity Reference, are
explained in Volume 1 of this manual.

Additional information relating to SIM types is included under ‘‘Declaring an
Entity Reference Variable Data Type,” and “Type Declaration and Invocation for
SIM” in this section. Related information is also available in the definintion of
record types under “ALGOL Data Types for ADDS” in Section 2, *“Using
Advanced Data Dictionary System (ADDS) Extensions.”

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Queries

A query refers to both inquiry and update requests to a SIM database. A query
consists of the query statement, the query variable, and the DMRECORD.

A query statement is sent to SIM to instruct the SIM database about the action to
be performed. Query statements are constructed by the compiler from the
SELECT, MODIFY, INSERT, and DELETE statements. (The multiple-statement
MODIFY and INSERT update assignments are constructed as query statement
fragments.) The query statements are precompiled and stored with the object
code until run time, when SIM acts on the precompiled statements. One query
statement can be associated with more than one query variable.

The query variable represents an active query. It contains information about the
state of the query. The query variable can be associated with more than one
query statement, but only one query variable can be active at any time.

The DMRECORD gives the format of the data to be retrieved. A DMRECORD can
be used for multiple query statements, as long as the structure of the record is
compatible with the data to be retrieved.

Perform the following steps to create and use a query:

Declare and open the SIM database.
Declare the query variable and all other needed variables.

If desired, put the program in transaction state.

L

Execute the query. A query consists of statements that select, retrieve, and
manipulate the entities.

5. Take the program out of transaction state as needed. When the query is no
longer needed, close it with a DISCARD statement.

The DATABASE declaration specifies the SIM database. Only the classes included
in the declaration can be used in queries. The OPEN statement makes the SIM
database accessible and specifies an access mode.

The BEGINTRANSACTION statement initiates transaction state.

The SELECT, SETTOPARENT, SETTOCHILD, and RETRIEVE statements are used
to select the entities for the query and to retrieve the data.

The SELECT statement is used to associate a selected set of entities with the
query and to map SIM database attributes to previously defined DMRECORDs.
Selection expressions can be used within the SELECT statement to specify which
entities are to be included in the selected set.

For all queries, a selection expression is used to identify the set of entities upon

which the query operates. The selection expression serves to narrow the group of
entities in the perspective class and classes of interest for the scope of the query.

8600 0734-000 7-9

Using the Semantic Information Manager (SIM) Interface

A global selection expression applies to the whole query. A local selection
expression applies only to a specific entity-valued attribute (EVA).

The RETRIEVE statement is used to retrieve the data.

The SETTOCHILD and SETTOPARENT statements are used to manipulate the
levels involved in a selection and retrieval in transitive closure.

The query can be closed by ending the transaction state with an
ENDTRANSACTION statement (if the selection occurred within transaction
state), by closing the SIM database with a CLOSE statement, or discarding the
current query with a DISCARD statement.

Query variables can be passed as by-name parameters. Program variables and
expressions can be used within query statements. DMRECORDs cannot be the
target of an assignment; however, database attributes to be modified or inserted
that are associated with a query variable can be the target of a SIM database
assignment.

The SIM statements and the data management (DM) functions described in this
section are used to manipulate the query and the retrieved data.

SIM supports a variety of functions which, when used within a query, are
evaluated during the course of the query execution by the SIM system. These
functions are explained in this section.

Additional information relating to SIM queries is included under *“SIM
Statements,” ‘‘Using Data Management Functions and Expressions,” “Type
Declaration and Invocation for SIM” and “Declaring an Entity Reference Variable
Data Type” in this section.

Retrieval and Update Queries
Retrieval queries are always used with the SELECT statement.

A retrieval query can span one or more classes. Generally, there is one class that
a query is directed from, the perspective class. Additional classes are viewed in
relation to the perspective class. The relationships are maintained via
entity-valued attributes (EVAs).

When there are multiple classes of interest in a retrieval query, the classes must
be connected sc that common entities can be selected. For example, if STUDENT
and INSTRUCTOR are both classes, it is possible to find students and instructors
with the same name or with the same age.

The layout of retrieved data is specified as part of the query and does not need

to bear any direct resemblance to the physical or conceptual layout of the data.
However, it must b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>