UNISYS REPORTER Il
Report
_anguage

Operations
Reference Manual

Copyright © 1983, 1985 Unisys Corporation.

All Rights Reserved.
Unisys is a registered trademark of Unisys Corporation.

Relative to Release : January 1985

Level 2.0
Printed in U S America

Priced Item 1177185

Unisys cannot accept any financial or other responsibilities that may be the
result of your use of this information or software material, including direct,
indirect, special or consequential damages. There are no warranties extended
or granted by this document or software material.

You should be very careful to ensure that the use of this software material and/
or information complies with the laws, rules, and regulations of the jurisdic-
tions with respect to which it is used.

The information contained herein is subject to change without notice. Revi-
sions may be issued to advise of such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
Field Communication Form (FCF) with the Class specified as ‘2" (System
Software), the Type specified as ‘1" (F.T.R.), and the Product specified as the
seven-digit form number of the manual (for example, “1177185"). The FCF
should be sent to the following address: Unisys Corporation, Product Assur-
ance and Support, 19 Morgan, Irvine CA 92718-9958 USA.

UNISYS Product Information
Announcement

o New Release © Revision e Update o New Mail Code

Title
REPORTER Il Report Language Operations Guide

This Product Information Announcement announces the release of Update 3 to the January 1985 publication of the
REPORTER III Report Language Operations Guide. This update is relative to the A Series Mark 4.0.2 System
Software Release, dated October 1993.

This update documents enhancements to REPORTER Il to process and generate COBOL85 programs. These
enhancements are being made to support users migrating from V Series systems to A Series systems.

Remove Insert

iiA through iiD
xi through xii xi through xii
1-1 through 1-2 1-1 through 1-2
2-17 through 2-18 2-17 through 2-18B
4-35 through 4-36 4-35 through 4-36
4-47 through 4-48 4-47 through 4-48
4-79 through 4-80 4-79 through 4-80
4-137 through 4-138 4-137 through 4-138
4-161 through 4-162 4-161 through 4-162
4-179 through 4-182B 4-179 through 4-182B
4-241 through 4-242 4-241 through 4-242
4-333 through 4-334 4-333 through 4-334
6-1 through 6-16 6-1 through 6-16
A-1 through A-4 A-1 through A-4
C-25 through C-26 C-25 through C-26B
C-39 through C-40 C-39 through C-40

Changes are indicated by vertical bars in the margins of the replacement pages.

Retain this Product Information Announcement as a record of changes made to the base publication.

To order additional copies of this document
o United States customers, call Unisys Direct at 1-800-448-1424,
® All other customers, contact your Unisys Sales Office.

e Unisys personnel, use the Electronic Literature Ordering (ELO) system.

Announcement only: Announcement and attachments: System: REPORTER I
AS244 Release: Mark 4.0.2 October 1993

Part number: 1177185-003

UNISYS Publication Change Notice (PCN)

Date Form—PCN number

1Q0/35/88 1177185-00&
REPORTER III Report Language Operations Guide

(Relative to the Mark 2.4 System Software Release)
Description

Title

This FCN provides vevisions to the REPORTER III Report
Language Operaticons Guide, relative to the 2.4 Software
Release.

Revisions to the text are indicated by black vertical bars
on the affected papges.

Replace These Papges Add These Papges
iii thru xi 4-92A
4—-1 4-94A
4—-17 thru 4-19 4-98R
4-23 thru 4-25 4—-148A
4-91 thru 4-99 4—-182R
4145 thruw 4-147 4—-z42A
4—-153 thru 4-155 4-312AR
4—-163 thru 4-169 C—-40A
4-181
4~187
4—-241
4-297
4-311
4-341 thru 4-347
cC-7
c-21
c-27
C-39

Index 1 thru 9

Copyright © 1988 Unisys Corporation
All Rights Reserved

Retain the PCN cover sheet as a record of changes made to
the basic publication.

Distribution Codes SC, SD, SE
1177185-002

Printed in U S America

INISYS Publication Change Notice (PCN)

te Form—PCN number

)1/20/86 1177185-001

le

EPORTER II1 Report Language User's Guide (January 1985)

scription

1is PCN provides revisions to the REPORTER III Report Language User's Guide,
:lative to the 2.1 Software Release. Revisions to the text are indicated by

lack vertical bars on the affected pages.

Replace These Pages Add This Page

3-2A

S wWww

-1
-3
-91
. 4-151
4-177 thru 4-179
4-225
4-271
6-9
6-23
6-35
A-3
B~-1 thru B-3
B-7 thru B-9
C-25
c-37

rtain this PCN cover sheet as a record of changes made to the basic publication.

coPYRIGHT © 1986
Unisys Corporation

PCN 1177185-001

Printed in U S America

Page Status

Page Issue
iiA through iiC -003
iiD Blank
iii through x -002
Xi -003
Xii Blank
1-1 through 1-2 -003
1-3 through 1-5 -000
1-6 Blank
2-1 through 2-17 -000
2-18 through 2-18A -003
2-18B Blank
2-19 through 2-35 -000
2-36 Blank
3-1 -000
3-2 through 3-2A -001
3-2B Blank
3-3 through 3-4 -001
3-5 through 3-19 -000
3-20 Blank
4-1 through 4-2 -002
4-3 through 4-16 -000
4-17 through 4-20 -002
4-21 through 4-22 -000
4-23 through 4-26 -002
4-27 through 4-35 -000
4-36 -003
4-37 through 4-46 -000
4-47 -003
4-48 through 4-79 -000
4-80 -003
4-81 through 4-90 -000
4-91 through 4-92 -002
4-92A through 4-92B -002
4-93 through 4-94 -002
4-94A through 4-94B -002
4-95 through 4-98 ~-002
4-98A through 4-98B -002
4-99 through 4-100 -002
4-101 through 4-137 -000
4-138 -003
4-139 through 4-144 -000
4-145 through 4-148A -002
continued

1177185-003 iiA

Page Status

iiB

continued

Page

4-148B

4-149 through 4-150
4-151

4-152

4-153 through 4-156
4-157 through 4-160
4-161

4-162

4-163 through 4-170
4-171 through 4-176
4-177 through 4-178
4-179

4-180 through 4-181
4-182 through 4-182A
4-182B

4-183 through 4-186
4-187 through 4-188
4-189 through 4-224
4-225

4-226 through 4-240
4-241

4-242

4-242A

4-242B

4-243 through 4-271
4-272

4-273 through 4-296
4-297 through 4-298
4-299 through 4-310
4-311 through 4-312A
4-312B

4-313 through 4-332
4-333

4-334 through 4-340
4-341 through 4-348
4-349

4-350

5-1 through 5-15
5-16

6-1

6-2

6-3 through 6-4

6-5 through 6-6

6-7

6-8 through 6-9
6-10

6-11

6-12

6-13 through 6-14
6-15

issue

Blank
-000

-001
-000
-002

-000
-003
-000
-002
-000
-001
-003
-000
-003
-002
-000
-002
-000
-001
-000
-002
-003
-002
Blank
-000
-001
-000
-002
-000
-002
Blank
-000
-003
-000
-002
-000
Blank
-000
Blank
-000
-003
-000
-003
-000
-003
-001
-003
-000
-003
-000

continued

1177185003

Page Status

continued
Page Issue
6-16 -003
6-17 through 6-23 -000
6-24 -001
6-25 through 6-34 -000
6-35 -001
6-36 through 6-37 -000
6-38 Blank
A-1 through A-3 -003
A-4 Blank
B-1 -001
B-2 -000
B-3 -001
B-4 through B-7 -000
B-8 through B-9 -001
B-10 through B-11 -000
B-12 Blank
C-1 through C-6 -000
C—7 through C-8 -002
C-9 through C-20 -000
C-21 through C-22 -002
C-23 through C-24 -000
C-25 through C-26A -003
C-26B Blank
C-27 through C-28 -002
C-29 through C-36 -000
c-37 -001
c-38 -000
C-39 through C-40 -003
C-40A -002
C-40B Blank
C-41 through C-43 -000
C-44 Blank
D-1 through D-4 -000
E-1 through E-7 -000
E-8 Blank
1 through 9 -002
10 Blank

Unisys uses an 11-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix
(x) designates a revision level; the second digit (y) designates an update level. For
example, the first release of a document has a suffix of -000. A suffix of ~130
designates the third update to revision 1. The third digit (2) is used to indicate an
errata for a particular level and is not reflected in the page status summary.

1177185-003 iC

TABLE OF CONTENTS
INTmmcrION.................-........-oo-.........- ix

SECTION 1. SYSTEM DESCRIPTION...ceceeessscscscosnsas
SYSTEM FEATURES . ccescsosocscsosscesscososscsnscosesos
LANGUAGE INTERFACE TO SYSTEM.cccscooceccsasccsses
REPORT LANGUAGE AND SYSTEM OPERATION::seescesesss
EXAMPLE REPORT-LANGUAGE SPECIFICATION:coceeesosss

[S =Ty
|
D WK -

SECTION 2. BASIC INFORMATION ABOUT
THE REPORT LANGUAGE.:scececccscsacacssccsse
CHARACTER SET..cecccsocsscccccccnaccccsasasascens
SPECIFICATION FORM: ceeececesosssssscsccssssnsasnsse
COMMENT INDICATOR::ccccococcsossnanccccacasas coes
DEFINITION OF WORDS .. cecrececssccassescesscasanss
RESERVED WORDS e eeevetostsccccssctcssccsoacnasse
KeyWOrdS.ceoeeeoseeeseocossscsssssesonscoses
Optional WOrdS:.csceecessssscesccssccsssnsase
NAMES.:coceeosscsosssnsatssccoscsccccsossssossnssvse
METHOD OF LANGUAGE DEFINITION:eceeocsssccccccscss
SYNTAX DIAGRAMS..eeee. cesessessecsssesesssanss
"RESERVED WORDS . csesesceccccasssssssccssoscassne
PUNCTUATION .o e cceeeccacccccocassasscsscsscncss
SYNTACTIC VARIABIES..cccccececccscssccosnsscons
SEMANTIC RULES.:ecececocoessoccscccstsscsssssssns
TERMINOLOGY FOR DATA IDENTIFICATION.ccocscescscss
DATA ITEM OR ITEM.seocecococsssscsscnscassasnsse
GROUP e e seesoascssocessoscsssasscsssssncssaces
RECORD:e¢coeececccnccocccsscnsacsosossssannnnne
DATA STRUCTURE. ¢cccccescvccsosssssscscsssssnssse
DATA BASE...cececccccaccssssscscccssssssnsscne
LOGICAL RECORD:¢ccesescsocccsccsssssccsncscscas
CONTROL~BREAK ITEM: ccecceoooscssccsscsssaccnoss
RANGE~BREAK ITEM:ccccsscccscsscscssccsscsccscasse
INPUT DATA ITEM:ccocecocssccsassssocescosssssss
ACCEPTED DATA ITEMecccsceccccccccccsscssacsoscasse
DERIVED DATA ITEMeecccecovocsccssccscsconsocses
STATISTICAL DATA TTEMeeecesccccosccssssccsscas
NONSTATISTICAL DATA ITEM:cccececsssccssccscens
SUMMARY ITEM.eccceccccoconcsancocccsososcssccccne
VOCABULARY NAMES .cecoeseecseassosscsccccccacssnss
DATA~ITEM NAME.:eceescosecccncscccscsscosccsas
GROUP NAME. . :eeoeeoeeecccescsssscssssoscsacccasn
MACRO NAME . ccoecsocscossocccccccscssascssosocce
CONDITION NAME.ceeoeececssscscccsssssrcsncsssonse
RECORD NAME:ceoosssscsesscccscccsoscsssscssasse
FILE NAME..cceeeececeosoccscacancns ceeenn e
LINK NAME...cocooccvoscocscscsscsscssosscoccnsne
DATA-BASE, NAME :«ccoeeccecosessssaccsascsassscs
DATA=SET NAME.:ccccooccoscenscsccccssssssscssss
SET NAME. . escoaeeceacescscoscscsasssenonsonsass

|
NN

|
QVWOONNPPWWWWW

- 10

NN
NNNNNNNNMNMNNNNNNNNNTNNN NN NLNLNLR DN D NN
-

-

iii PCN 1177185-002

INPUT-PROCEDURE NAME.«ctoecoecscsscsosnccancas
VOCABULARY EXAMPLES:ccesecccceccsccscsccsscscccsssss
SAMPLE VOCABULARY 1: "VOCEMP"...eeveeescocecss
SAMPLE VOCABULARY 2: "VOCAST":eoeeeeccoscncocs
SAMPLE VOCABULARY 3: "INVENT"..cceceoocecconss
SAMPLE VOCABULARY 4: "CLIENT".eoeeeococcoccocs
SAMPLE VOCABULARY 5: "CUSTV"..¢eveecereoenccns
SAMPLE VOCABULARY 6: "SHIPV"..¢eeceesconcesons

SECTION 3. DESIGNING REPORTS.:eccecescccssccccscoscs
REPORT SPECIFICATION:. cceveosscoscccccscossscssscss
SINGLE-REPORT SPECIFICATION:cccocsesccoccosons
MULTIPLE-REPORT SPECIFICATION.ceccesceccsccoscs
SPECIFICATION CONSTRAINTS.ecocescessssccscasconcs
ORDER OF LANGUAGE STATEMENTS..eeccesosccccoscs
CONTROL~BREAK ITEMS AND ORDERING KEYS.eeseooes
ABSTRACT STATEMENT . .ececeecccsccsssosssasooscs
BASTC LANGUAGE CONSTRUCTS:ccecessesssocccsossases
EXAMPIE REPORT SPECIFICATIONS:sccecessccccccocnss
EXAMPLF, SINGLE-REPORT SPECIFICATION:eccsosasss
EXAMPLE MULTIPLE-REPORT SPECIFICATION.:cecsose

SECTION 4. REPORT LANGUAGE STATEMENTS..eceeoeeesons
ABSTRACT STATEMENT ¢« e ceveesesooasscacscnsescnocns
ACCEPT STATEMENT.+.eoce.. Ceeeeeeetecetcnneenreanne

USE OF ACCEPT STATEMENT ON
B 2000/B 3000/B 4000 SERIES..cccecccecscens
ACCESS CLAUSE e+ e o eseosecsosesescsscnsscassssnasons
AGE FUNCTION.:eeeeeeeocecoananscens Chetecesnaenns
ASSIGN LISTING STATEMENT . ceeecaossccocacocsaassns
BASE-DATE OPTION .+ eceeeececcecaoascnscsnonansesns
BUILD INTERNAL ATTRIBUTES CLAUSE...coceccecccacess
BUILD STATEMENT « ¢ et eoeeesesccocassasesacsossanons
C—B~HEADING DESCe e eceseocecssasesoscsssassscacsas
C~B~SUBHEADING DESCeeeeeeencescscscsanacsacncnnes
COBOL PICTURE .« cecscocessosocccceasasscscasesanosse
COLUMN DESCe e eoeeveoceeesesosasssseanssosocsasaces
DEFAULT IDENTIFIERS. eeceeeeseocscossseoscscnes
COLUMNIS « + « e e eoveoceoooosaosansssssssasesansesnoss
LINE OVERFLOW. e ¢ o e eoeoscccosssonssascasnonnones
PAGE OVERFLOW. ¢ et oeeeececcoseossasnoasosnnnss
COMBINE STATEMENT ¢ v ceoeeeesccscscacsacssscscncnnns
COMPOUND-DATA~STRUCTURE CLAUSE. « e veveeeeoceensens
OOMPOUND-DATA-STRUCTURE~CIAUSE LISTecececesccecses
CONDITIONAL PRINT SPECIFICATION:.:ccecsoscassancss
CONTROL~BREAK HEADINGS . e s e eeeoescoccccsonsancnosns
DATA=BASE CLAUSE . ¢ eeeveessescccsnsnonssoncseasans
DATA NAME s ¢ e oo eoesoeceoacssocacscanosssasssanoses
DATA-PROCESSING-OPTION STATEMENT ¢ cevceececscscses
. DATA=SET CLAUSE.: ¢ s ceeoesesoscccscasesassasosscans
DATA~STRUCTURE CLAUSE .. ceevececccsssasscscncossns

PCN 1177185-002 iv

NN
!

> L
Phh#bbb#»&#bbb'&-& t o S

WWWwwwwwww
|
VOO0

DATE~CONVERT FUNCTION:cccecosececcscosscscccsnnes
DATE FORMAT e e cceveccccscssscsccscsssssscccscssccsss
DMS II DATA-STRUCTURE CLAUSE..sccececcsesscccscose
B 1000 SERIES OF SYSTEMS..ccoceccescscocncsnccsnse

B 2000/B 3000/B 4000 SERIES OF SYSTEMS........
EDITING ATTRIBUTES :ccsccteeossecccossscescscsssccsas
ENTRY FUNCTION: ¢eceeesoccccscsosssscassscssscosse
ARITHMETIC EXPRESSION: cccccocsoccccsccocnssses
STRING EXPRESSION:ecccescsoossscoccscascscsscs
Simple Boolean EXPresSiONeeccececccccescssss

Basic Boolean EXpressioNeccccccecsccccscccs
Camplex Boolean EXpressiON.e.cccccccccscsscss
Pattern Matching.eeeeceecsscceccsssncccccsne
EXTENSION: e eosectcssscoctoassccsscsccssssssssossase
EXTENSION STATEMENT . e coceoecsossccssscoscscsssscss
EXTERNAL FIIE NAME..ococooesscssvsccccccsscscccens
A SERIES OF SYSTEMS.:ceccccccsscccsccsssccosssnse

B 1000 SERIES OF SYSTEMS..ccocsccscesoscccscas

B 2000/B 3000/B 4000 SERIES OF SYSTEMS..eees..
EXTRACT=ITEM DESC.cceooesccccsssscccscsssosscscnns
EXTRACT STATEMENT ¢ coecctccccccsccccsccssosasccsscse
EXAMPLE OF EXTRACT STATEMENTS:cccccesooscocces
FILE MOD¢ccececovoscsossccnscacossccsscscscsssssns
FORM ATTRIBUTES e cccecsscesscsecsascscssesscsccsns
INPUT STATEMENT ¢ coccccccocsssccscscscsssssssssasse
INTERNAL ATTRIBUTES . c.ccccccccccccccsccccnssscsssnse
ITEM DESCeecescccocsoseccoscssscscscnnsssscscsscsssss
ITEM SIZE.ccoccccessoscccssssrcscsossnssscscssosensnse
NUMBERS :ccsecceccssscscscsscssscssossssssscsssss
NONSTATISTICAL EXPRESSION::csccocccscosscccscscss
ORDER STATEMENT ¢ ¢ c ccoesesoccsscscssscscsnosessnsocs
PASSWORD STATEMENT ¢ e eccosscesccccscscsssosccssssss
SIMPLE BOOLEAN EXPRESSION:c.ccoccocccssccsssccs
BASIC AND COMPLEX BOOLEAN EXPRESSIONS:.eecco..
Valid OperatOrSececcecescccccccssccscccscces
PRESELECT CLAUSE:cccccccccccscscacaces sesescsssns
SINGLE DATA-STRUCTURE ACCESSescecsceocsccsccss
ONE-TO-ONE DATA~-STRUCTURE ACCESS:cceocccccscss
ONE-TO-MANY DATA-STRUCTURE ACCESS:ccecescssccs
PRINT EXCEPTIONS . cececccoacsscscccscacssascsssssne

- 92
- 96
- 92
- 99
- 92
105
111
112
114
114
117
117
117
118
120
121
124
126
127
127
- 128
- 129
- 131
- 137
- 143
- 145
149
- 151
- 154
- 157
- 16l
- 163
- 170
- 174
- 178
- 180
- 180
- 181
- 181
- 182
- 182B
- 183
- 186
- 188
- 189
- 189
- 190
- 191
- 192
- 193
- 193
- 199
- 203

vbnb#ab»b‘bnbhhkkbbbbbbhh&bb&bbhbbbh&hb%bbbhbbbb&bb&bbépbpb
!

v PCN 1177185-002

PRINT SPECIFICATIONS:ccocecescccscscsscsccscncons
PRINT STATEMENT s ¢ ccooeevcscscccccccscsscaccacnsss
PROCESSING MODEcccccccccccessssassosssscocsaccsss
PROCESS—OPTION ASSIGN STATEMENT . .ccoccecasesoscss
PROCESS—OPTION SAVE STATEMENT . ececececcccccccssse
PROCESS-OPTION SET STATEMENT:cceccooccccsassscces
PROCESS—OPTION STATEMENT:.eeceeecccccscccsccccnacs
PROCESS-OPTION SUPPRESS STATEMENT..eecccsccccosss
RANDOM-SAMPLE DESCesseeesesccscccssssccccscsconns
RANGE-BREAK—-ITEM DESC.cccoeseseccsesscsccsccccses
RANGE STATEMENT + e eeeseescocscssscsesscascsscsssss
REIATIONAL OPERATOR:cccccesaccsocssosscsssssscssss
REPLACE STATEMENT ¢ ¢cceoccccccsssoscscsascsssseocss
REPORT~ITEM MOD:ccecesocccccososcccscascscssoscsns
REPORT-CPTION SET STATEMENT . ccecevessscccsccccace
REPORT—OPTION STATEMENT ¢ ccccocsccoccscscssscecsss
REPORT-OPTION SUPPRESS STATEMENT ¢ccccoececccoccssses
REPORT STATEMENT « cesecocecasssssvesssscscscsssoce
ROW DESCeceescosnccesstscscsscosstscsssscccnsosssssse
SAMPLE STATEMENT ¢ cecoeocesocscsscscsscscsocsssosns
SAVE LISTING STATEMENT ceccccsscscccscosccsoscccsns
SELECT STATEMENT e ccoeoeccsessssssessscsenssccsssne
SET SORT BLOCKING STATEMENT ¢ ¢eeecececccscosccnces
SET SORT SIZE STATEMENT . «csesecccsssscccccccssces
STATISTICAL EXPRESSION::ccccceccesssssesscssssasse
STATISTICAL FUNCTION:eeecescecessacscssascsssscce
STAT PARAMETERS . cecesecscascccscccsascscccscssoncs
SUMMARIZE STATEMENT:eeecccassssocscscaccssccsssne
SUMMARY STATISTICS.seececcscscsscsscscccncsansnse
SUPPRESS SORT STATEMENT ¢ «ccsoessocssosscccsccsssce
SYSTEMATIC-SAMPLE DESC.veceeececsascsccscssnsnsas
SYSTEM-FILE~DATA-STRUCTURE CLAUSE:.:eseecceccccccs
TABLE STATEMENT ¢ ¢coecocsessoecrscocctscnnssascssss
TEXT¢eeeeooeceeessessssascesncssssscsonosssscssssass
TITLE STATEMENT ¢ ¢eceveecosccscsvecscsssssssasncsss
TOTAL~POPULATION . ¢ ceeeeseoccssscossorsoncsssssssss
VOCABULARY STATEMENT :¢eseosestscscctctoccsasssesss

N N A N N O T T T S S S S S S S S g S S R N S L
. |
N
fos}
W

SECTION 5. EXAMPLES OF REPORTS..cceveeseacnsavesaes 5 =1
EXAMPLE Loteecececssssocessasssaasncssnnceansaeee 5 =1
EXAMPLE 2.¢eceecscnsscsesccsosoasescscsacssassesse 5 =3
EXAMPLE 3.ececesesssosasansncasacsnssacnseansnsas 5 =4
EXAMPLE 4vevececncssscacosessasasscsncancacncsse 5 =7
EXAMPLE 5.cvvecsesesescascesssoncacnsascssnsesese 5 =8
EXAMPLE 6.vvvevecnscnsescnsosscasscsssasssassesse 5 = 11
EXAMPLE 7eeeeenseosososensosescncssasanscnansnees 5 =13
EXAMPLE B.vveeecesesosescasnssansscossasssasansee 5 = 15

PCN 1177185-002 vi

SECTION 6. SYSTEM OPERATIONS ASSOCIATED
WITH REPORT PREPARATION:ecccsccscsosssse
A SERIES OPERATIONS.scccsesesascccsscsssconssoccse
FILES REQUIRED FOR EXECUTION:. :ccccescsascosass
INPUT REQUIRED FOR EXECUTION.:ecescecsccssacss
RUN Statement.ccceesccecsccccsccoccsassssnce
FILE Statement(S)ecececsccsccccscccscscsscss
DATA Statement.ssescccceccccccecsccscacscscnce
Report=Specification Fil€.eeeesoassacccesss
2END Statement.cccecceececscccsscccsosccscans
EXECUTION PROCEDURE e« esecscscescscssscncsanns
Autamatic Execution ProcedUre.csseeesssssse
User—-Controlled Execution Procedure..ese..s
Execution Using Work Flow Language (WFL)...
B 1000 OPERATIONS . cevccseacacsscsescocossssassansse
FILES REQUIRED FOR EXECUTION:ccsceccsscccsccse
INPUT REQUIRED FOR EXECUTION: cecesscesacccasss
?EXECUTE Statement.ecceecscscecscscsessoscsose
2FILE Statement(S)eeescsccececccessossssons
?DATA Statement..cecescsccccsccccsacssossnns
Report-Specification File.ceeseeeessscenass
2End Statement..cceeeescecesesccscscssnncsss
EXECUTION PROCEDURE. . cccccoeccccossscsscsscsvsssss
Autamatic Execution ProcedUre...ceceeesssces
User-Controlled Execution Procedure........
B 2000/B 3000/B 4000 OPERATIONS:+.csecsesscsscsss
FILES REQUIRED FOR EXECUTION:.ccsceeccsscsscossse
INPUT REQUIRED FOR EXECUTION:ceecessecccccssasee
PEXECUTE Statement.ccsccececesccsccscscccnscs
?FILE Statement(S).eecceceocscccaccecscccons
?DATA Statementeceeeecesccsccscsccsccsssssscns
Report-Specification Fil€eeeseeceeeescacces
PEND Statement.eccceeesscescccoscosscsconssacas
EXECUTION PROCEDURE. cccsesssscccsccscscssscccns
Automatic Execution Procedur@.....csseeeces
User—-Controlled Execution Procedur.c.sssee..

APPENDIX A. REPORTER III SYSTEM FIOW.:ccococcvacess

APPENDIX B. LIMITS AND DEFAULTS:.¢cccccocaccssscancs
ITEMS, FUNCTIONS, AND CONSTRUCTS:.cccecscccoosoass
I EMS . cecececaccssescncsosossssscsasscsssscosnscs
FUNCTIONS e ceecacsassoscssssssssscscscsscssssasas
BASIC LANGUAGE CONSTRUCTS .t ccaecccscocssscsess
COBOL: PiCtUrE.cesesececssocscsocsscosasoassnscse

Data NaMEeeessesvscesavscssocsssscsasssssosss
EXPreSSiON.cecececscccccrsccsssesssssssassosss
External File NamE€..eseecesssccoscsassennas
Iateraleceecescsersecscsenscasconcsssssanancscas
REPORT LANGUAGE STATEMENTS .« scecccscccssccasssaas
PROCESS—OPTION STATEMENTS .cceccccocscccncsvcanscscs
DATA-PROCESSING-OPTION STATFMENTS.ecccccsesscccss
REPORT-OPTION STATEMENTS .. ccscseccsscocsscccsscscs

vii

1
oMU WWNHFHEFK

QOO ANANNAOROADAORNRNRRNO | O
!
'.—l
N]

WowwowwWwwwoww @ P
t

i
CVOUNWWNDNNNHERFFEM

to
!
-

PCN 1177185-002

M[LTIPLE"RER)RT SPK:IFI(:ATICN‘.........-...oooo-.o B-ll
APPENDIX C. ERROR AND WARNING MESSAGES
ANDE)(CEPI‘IWS LISTINGS.--............. C-l
ERK)RANDV@RNIm MESSAGES............-...--..... C"l
m@wlms'.........l......'.........l‘....'..'.I C-39
APPmDKD. mmmRm.'.......".............. D_l

APPENDIXE' GLOSSARYO.Qooo.o.oo-o-.o.oooooooo-noooo E_l

IN]EX..-.;...........‘.‘-.-.0....oooot'oo'.o.coooo.o l

PCN 1177185-002 viii

INTRODUCTION

This manual defines the report language of the REPORT writER III
(REPORTER III) system and its use in the system. The report language is
used in conjunction with the vocabulary language of the system to
prepare reports reflecting information in the user data files or data
bases. Before a report can be produced, a vocabulary of terms that
describe pertinent information in the data files or data bases must be
designed and created. When this vocabulary exists, a report-language
specification which uses it can be designed and processed to produce the
desired report.

This manual is directed to all users of the report language. It
presents basic information about the language and system to the
first-time or occasional user, while it is arranged to allow easy
reference by the more experienced user. It furnishes all users with the
detailed information they need to design and specify their reports. It
is anticipated that as the user gains experience in the report language,
the REPORTER III Reference Card will be increasingly relied on when
camposing report-language specifications.

The contents of the manual are organized as follows:

Section 1 Section 1 of this manual provides a general
description of REPORTER III, including
features of the system.

Section 2 Section 2 presents basic information about
the report language.

Section 3 Section 3 is a guide for designing and
specifying reports.

Section 4 Detailed explanations of all language
statements, clauses, language coonstructs,
and functions used to design and prepare
reports are provided in Section 4, in
alphabetical order.

Section 5 Examples of report-language specifications
and the reports produced are presented in
Section 5.

ix PCN 1177185-002

Section 6 Section 6 contains information on system

operations associated with report
preparation.
Appendices The four-phase system process of report

preparation 1is depicted and discussed
briefly in Appendix A. Limits and defaults
associated with report-language
specification are indicated in Appendix B.
Error and warning messages associated with
system analysis of report-language
specifications are listed and explained in
Appendix C. Exceptions also are listed and
explained, separately, in Appendix C.
Appendix D presents a list of all reserved
words of the report language. Appendix E is
a glossary of terms used within this manual.

The following manuals explain the use of the REPORTER III system and the
optional On-Line REPORTER III module.

Operations Guide, REPORTER III Vocabulary Language (Relative to 2.4
Software Release), form 1177177.

Reference Card, REPORTER III (Relative to 2.0 Software Release),
form 1177318.

Capabilities Manual, REPORTER III (Relative to 2.0 Software
Release), form 1177300.

User's Guide, On-Line REPORTER III (Relative to 2.0 Software
Release), form 1177151.

Note that the "REPORTER II1 Vocabulary Language Operations Guide" was
formerly titled "REPORTER III Vocabulary Language User's Guide."
Subsequent references to the guide do not reflect its new title.

The REPORTER III System is designed for use with the following:

l. A Series of Systems.

2. B 1000 Series of Systems.

3. B 2000/B 3000/B 4000 Series of Systems.
4. B 5000/B 6000/B 7000 Series of Systems.

PCN 1177185-002 X

Note that throughout this guide, instructions for A Series also pertain
to B 5000/B 6000/B 7000 Series of Systems. Also note that when the word
"COBOL" is used, it refers to the appropriate ANSI-74 COBOL for each

system. If you are using an A Series System, the term "COBOL" also
refers to ANSI-85 COBOL.

xi 1177185-003

SECTION 1

SYSTEM DESCRIPTION

The REPORTER III System provides an effective means for creating a wide
variety of management reports reflecting information maintained on a
computer system in the Unisys A Series, and B 1000 through B 7000 Series
of Systems.

SYSTEM FEATURES

REPORTER III greatly facilitates the retrieval, analysis, and reporting
of data by using the power of the computer system to perform tasks such
as the following:

1. Select data on the basis of simple to complex criteria.
2. Match records on the basis of data field values.

3. Sort data as specified in ascending and/or descending order
according to multiple keys.

4. Automatically age data, using a variety of date formats.

5. Determine statistics including count, total, average, maximum,
minimum, sum squares, mean squares, variance, and standard
deviation.

6. Handle multilevel control breaks and ranges, and give summary
statistics for each control break or range.

7. Automatically format information for printed reports.

8. Automatically schedule phases of report processing, while
providing override options.

9. Create one or more files of extracted data for subsequent
processing or reporting.

An important aspect of REPORTER III is that its features can be used in
auditing applications. The system is applicable to both internal and
external auditing activities. REPORTER III provides the auditor with an
effective means to test and evaluate the information maintained on the
computer system. It greatly aids the auditor's analysis by using the
power of the computer system to perform such tasks as the following:

1-1 1177185-003

1. Test derived data items (extensions) and footings.
2. Select and print audit samples.

3. Examine records for completeness, consistency, and wvalid
conditions.

4. Summarize data.

5. Compare duplicate or related data for correctness and
consistency.

6. Compare audit data with computerized records.
7. Extract information for subsequent processing and evaluation.
8. Print confirmation letters.

The REPORTER III System can produce multiple reports in one pass of the

input data. Also, the system enables you to control the formatting of
reports as well as output information on preprinted forms, if desired.

REPORTER III can report information from data files contained on
magnetic tape, disk, and punched cards. The system also can report
information from DMS II data bases.

LANGUAGE INTERFACE TO SYSTEM

The REPORTER III System includes two free-form languages:

1. Vocabulary Language - a language designed to create a
vocabulary (dictionary) of descriptions and definitions of the
data to be reported. The vocabulary language can accept an
independent description, or it can use existing COBOL record
descriptions and/or data-base directories.

2. Report Language - a report-description language which enables
the specification of a wide variety of reports. The language
is easily used by non-programmers.

REPORTER III generates a COBOL program tailored to your exact reporting
requirements. Note that whenever "COBOL" is referred to, it means the
appropriate ANSI-74 COBOL or ANSI-85 COBOL for A Series systems or the
appropriate ANSI-74 COBOL for any system other than A Series.

The generative approach

1177185-003 1-2

speeds recurrent reporting, and it also provides the flexibility needed
for cost-effective one-time reporting.

REPORT LANGUAGE AND SYSTEM OPERATION

The REPORTER III report language provides a method for quickly
specifying reports based on information contained in the data files or
data Dbases. With appropriate selection, grouping, ordering, and
summarizing, the information is furnished in a useful report form by the
system. Information can be furnished as a printed report, or it can
easily be extracted in machine-readable form to a separate file for
further processing.

The report language is free-form, “English-like," and concise. Little
writing is necessary to prepare the report-language specification, which
describes the contents of the report. Yet the report-language
statements are readable and self-documenting. The language includes
many default features and thus does not require that you specify each
option. Each data item of information is specified by name, and you are
not required to know its size or format characteristics. The format of
the report, whether simple or camplex, is determined by REPORTER II1I,
unless you choose to specify the format requirements.

The report-language specification which you have written (also referred
to as the ‘"report specification") is input to the Report Language
Analysis Program (RP3REP), which analyzes your request and prints a
listing of the specification as given. If the request is invalid, the
errors are indicated by means of appropriate messages, and you must
correct the mistakes and resubmit the specification. If the request is
valid, a parameter file is produced which represents your specific
request camplete with "“physical" information obtained fram the
referenced vocabulary. The report-program generator (RP3GEN) then is
run autamatically to generate a OOBOL source program based on the input
parameter file. The generated COBOL source program is then campiled and
executed autamatically, and the desired report is produced.

The generated report program can be treated either as a one-time-only
report program or as a recurring report program which is run as often as
required without regeneration.

A more detailed explanation of system operation, together with a diagram
representing the report-preparation process, is contained in Appendix A.

EXAMPLE REPORT-LANGUAGE SPECIFICATION

The following is an example of a report-language specification, shown
together with the job control language statements needed to produce the
report. The control statements are preceded by a question ark (?).
This example assumes input of the specification as a card deck.

?EXECUTE RP3REP

?DATA RP3CRD
VOCABULARY IS "CLIENT".
INPUT ACCTS—-RECV.
SELECT BALANCE-DUE GREATER THAN CREDIT-LIMIT.
TITLE “ACCOUNTS OVERDRAWN".
REPORT CUST-NO, BRANCH, CREDIT-LIMIT, BALANCE-DUE.
SUMMARIZE FOOTING BALANCE-DUE. :

ZEND

The six report language statements in this specification are explained
below. The specification is designed to provide a report containing
information reflecting all accounts which are overdrawn.

The VOCABULARY statement identifies the vocabulary of names used in this
report language specification to describe the information in the data
base. The vocabulary is created by the program RP3VOC. (Figure 2-7
lists the vocabulary identified here.)

The INPUT statement specifies that all accounts receivable information
be input. (ACCTS-RECV is a DMS II data set which can be thought of as a
file.)

The SELECT statement specifies that only those accounts in which the
balance due is greater than the custamer credit limit be reported.

The TITLE statement describes the title to be placed at the top of each
page of the report.

The REPORT statement specifies that the customer number, branch nurber,
credit limit, and balance due be reported for each selected custamer
account.

The SUMMARIZE statement specifies that the balance due colum be footed.
This gives the total balance due of all overdrawn accounts.

Figure 1-1 shows the report produced from this specification. The
requested information has been formatted autamatically into a readable
report.

PAGE 1
ACCOUNTS OVERDRAWN

ausT BRANCH CREDIT BALANCE
NO LIMIT DUE
001302 0013 1000 $ 1311.80
002117 0020 1000 $ 1560.00
051231 0013 500 $ 732.00
081380 0008 2000 § 2016.80
100500 0034 3000 $ 3810.21
101137 0130 500 $ 511.37
102800 0130 5000 $ 6387.50
120060 0038 500 $ 643.70

SMARIES FOR FINAL
TOTAL $16973.38

Figure 1-1. Sample Report

Other examples of report-language specifications are provided in
Sections 2 and 5.

SECTION 2

BASIC INFORMATION ABOUT
THE REPORT LANGUAGE

The REPORTER III report language is a high-level language based on
English and composed of characters, words, and statements. This section
documents basic elements of the report language and the method used to
define the language, and presents same basic terminology used for data
identification. It also describes the various types of vocabulary names
which can be specified in appropriate contexts in the report language.
Finally, sample vocabularies used in examples throughout this manual to
illustrate various language constructs and statements are presented.

For brief explanations of basic language constructs and functions used
in defining information in language statements, refer to Section 3.
Detailed explanations of the constructs and functions are provided in

Section 4.

CHARACTER SET

The report language character set consists of the digits O through 9,
the letters A through Z, the blank or space, and the following symbols:

Symbol Definition

asterisk or multiplication sign
at sign

bracket, left

bracket, right

colon

camma

dollar sign

equal sign

greater than symbol
less than symbol

minus sign or hyphen
number sign
parenthesis, left
parenthesis, right
percent sign

period or decimal point
plus sign

guotation mark
semicolon

slash or division sign

St e R~ | AV VS M »

.~

SPECIFICATION FORM

The report language can be written on any COBOL~campatible ooding . uciu
to facilitate keypunching or data entry of card images. You write the
free-form statements between columns 8 and 72, using one or more spaces
or appropriate punctuation to delimit elements of the language. Columns
1 through 6 can be used for sequence numbers. Columns 73 through 80 are
available for optional use, such as identification, remarks, etc. The
sequence number fields can be used later to indicate the sequence
numbers ocorresponding to source language stataments which are to be
updated. OColum 7 is not used.

QOMMENT INDICATOR

A percent sign (%) placed in columns 3 through 72 indicates that the
characters which follow the sign are a part of a user camment. These
camments are not part of the report language and, therefore, need not
follow the rules of the language. They are useful for documentation of
the language specifications.

Examples:

% AN EXAMPLE OF THE USE OF COMMENTS.
REPORT A,B, % OOMMENTS MAY EVEN

C,D AS "VALUE", % BE USED INSIDE

E as "$", F, G. ¥ A CONSTRUCT.

NOTE
A percent sign placed between quotes, as in the

string "%", is not interpreted as a comment.

DEFINITION OF WORDS

A word is a cambination of not more than 30 characters which can consist
of the alphabetic characters A through 2Z, the numeric characters O
through 9, and the hyphen (-). A word must contain at least one
alphabetic character. It cannot begin or end with a hyphen.

Report specifications are oconstructed with English-like statements
camposed of report language words, symbols, and punctuation.

RESERVED WORDS

Reserved words are English words and their abbreviations which are
system~defined as part of the report language. A list of the reserved
words 1in the report language is contained in Appendix D. Although
reserved words can be used in same statements in which they do not
function as reserved words, such usage is disocouraged and should be
avoided because it can cause subsequent errors. Reserved words can be
keywords or optional words.

Keywords

The reserved-word category of keywords includes the words or portions of
words required to camplete the meaning of statements and entries. The
category also includes words or portions of words that have a specific
functional meaning. In the statement A IS GREATER THAN B or A GREATER
B, the keyword is GREATER.

Optional Words

Optional words are reserved words included in the report language to
improve the readability of the statement formats. The optional words
may be included or amitted by the user. For example, A IS GREATER THAN
B is equivalent to A GREATER B; the inclusion or amission of the words
IS and THAN does not affect the logic of the statement.

NAMES

A <name> is a user-defined word. The <name> is defined as part of the
report language by its existence in a referenced wocabulary or its
definition in the report language specification. In general, <name>s
should not be chosen which are identical to reserved words in the report
language because, 1in certain contexts, such <name>s might be mistaken
for the reserved words.

METHOD OF LANGUAGE DEFINITION

The report language 1is defined by rules of syntax and semantics. The
syntactic rules determine the structure of valid report-language
statements. The semantic rules determine which report-language
statements have valid meanings and what those meanings are.

SYNTAX DIAGRAMS

The syntactic rules of the report language are described by syntax
diagrams constructed of words and arrows. A syntactically correct
statement is produced by tracing any path along the direction of the
arrows in a given syntax diagram. Words and symbols are written as they
are encountered along the line paths.

The syntax diagrams occasionally must be continued on new line(s). In
this case, the break in an arrow is shown by means of connectors using
the same number at each end of the break.

An example syntax diagram (with connectors) is shown below.

Example:

e > ROW~==~—=>THE >BOAT >DOWN--> (1)
I I | |
+->YOUR——>+ +—=>GENTLY——>+

(1) > - >STREAM.

| I |
| =>4 l
| I |
| | >+ |
| | | |
+—>THE >OLD- >, >MILL———> |

| I

+ >+

Valid productions fram this syntax diagram include:

ROW THE BOAT DOWN-STREAM.

ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE STREAM.
ROW, ROW, ROW, ROW THE BOAT DOWN THE OLD STREAM.
ROW YOUR BOAT DOWN THE MILL STREAM.

ROW THE BOAT DOWN THE OLD, MILL STREAM.

A bridge over a number indicates that the path can be traced a maximum
nunber of times specified by the number under the bridge.

Example:

> ACROSS~~>THE >MISSOURI

Valid productions fram this syntax diagram include:

ACROSS THE MISSOURI
ACROSS THE BIG MISSOURI
ACROSS THE MUDDY, WIDE MISSOURI
ACROSS THE BIG, WIDE, MUDDY MISSOURI

but do not include:

ACROSS THE BIG, BIG MISSOURI
ACROSS THE WIDE, BIG, WIDE MISSOURI

A bridge over a number with an asterisk must be traced at least once,
but not more than the maximum number of times specified by the number.

+< y =/ 1% [t
| |
| |
——>ACROSS—>THE-—=====/ 1 /=>BIG=~==—=——=eee>MISSOURL
| I
I |
{-—-/ 1 /->WIDE-—> |
i
| I
+——/"1 J->MUDDY~—>+

Valid productions from this syntax diagram include:

ACROSS THE BIG, WIDE MISSOURI
ACROSS THE WIDE, MUDDY MISSOURI

but do not include:

ACROSS THE BIG MISSOURI
ACROSS THE BIG, WIDE, MUDDY MISSOURI
ACROSS THE BIG, BIG MiISSOURI

Nuwber bridges usually are used with loops, ds ‘ in the preceding
exanmples. Once a loop is exited, all number bridges within that loop
are "reset" for the next entry into the loop.

Example:

——>DOWN >THE /T 7->MISSOURI =mmmmmmemmm >

A
-
A
|
:l
|
g
z
v

—/ 1 J—>BI1G—-->
|=—/1 /==>MISSISSIPP1——>

[
|
I
I
|
|
P

—/ 1 J—>WIDE—->| |
: |—/1 /—>0HI0===~=aeuu>
|
+—-/"1 J—>MIDDY-—>+ | |

4—/"1 [==>GULF==—mmmmme>+
Valid productions fram this syntax diagram include:

DOWN THE MISSOURI

DOWN THE BIG OHIO

DOWN THE BIG OH1O, INTO THE BIG, WIDE MISSISSIPPI,
INTO THE BIG, WIDE, MUDDY GULF

but do not include:

DOWN THE BIG OHIO, INTO THE MUDDY, MUDDY MISSISSIPPI
DOWN THE BIG OHIO, INTO THE MUDDY OHIO

RESERVED WORDS

Words in uppercase letters are the reserved words in the language; these
words must be written exactly as shown in the syntax diagrams.

Keywords are the reserved words required to complete the meaning of
language statements. Same keywords can be abbreviated by omitting
letters fram the end of the word. The minimum required abbreviation is
underlined in the syntax diagram. If a keyword must be used in its
entirety, the entire word is underlined in the diagram.

Optional words are reserved words having no semantic meaning. Optional
words are included in the language to improve the readability of the
statement formats. They are never underlined in the syntax diagrams
and, if used, cannot be abbreviated.

Example:

——>VOCABULARY ><external file name>—->.
I I |

+—=>NAME-->+ +—=>IS—->+

The reserved words are VOCABULARY, NAME, and IS. VOCABULARY is a
keyword and can be abbreviated as VOCAB, VOCABU, VOCABUL, VOCABULA, or
VOCABULAR. NAME and IS are optional words and must be spelled out if
they are used.

Special characters such as the parenthesis, o0lon, period, and comma
must be written as they appear in the syntax diagrams. Keywords,
optional words, names, numeric constants, and character-string constants
must be separated fram each other by a blank or a special character.
Wherever a blank is required, several blanks optionally can be used.
Blanks optionally <can be placed around special characters for
readability. A blank immediately before a period is not required except
when a period immediately follows a numeric literal.

SYNTACTIC VARIABLES

Phrases set off by angle brackets (<»>) are syntactic variables which
represent information to be supplied by you. A particular variable can
represent a simple language element, such as an integer, character,
string, or name; or it can represent a relatively camplicated language
construct, such as a Boolean expression. These variables are defined
either by verbal description or by syntax diagrams of their own. In
either case, any valid language element or construct derived fram the
syntactic variable can be inserted into any diagram in place of the
variable.

Example:

—>DOWN THE <river> INTO THE <ocean>-——->

<river>:

————->MISSISSIPPI
I |
: —>COLUMBIA———-> :
+—>HUDSON-——==~>+

<ocean>:

——-—->A'I'LAN1‘IC—-T- >
|

| ==>PACIFIC———em—m !

i

=3 GULF e e e

In the first diagram, "river" and "ocean" are syntactic variables. Both
are defined by the diagrams that follow. Syntactically valid
productions include:

DOWN THE MISSISSIPPI INTO THE GULF
DOWN THE QOLUMBIA INTO THE PACIFIC
DOWN THE COLUMBIA INTO THE GULF

DOWN THE MISSISSIPPI INTO THE PACIFIC

SEMANTIC RULES

Semantic rules are linked to the syntax diagrams by means of letters
which label the critical paths. The letters reference paragraphs which
explain the meaning associated with the corresponding syntax path, and
explain additional rules associated with a choice in paths. These rules
can make certain syntactically correct statements invalid.

Example:
—>DOWIN THE <river> INTO THE <ocean>——>
<river»>:

A
--T-mxssrssxpp;- I
| B |
| ==>COLUMBIA—~-> |
| I
| C |
+==>HIDSON===——=>+

>

<ocean>:
A
=>ATLANTIC————————=>
|
B |

>PACIFIC———==> |

|

C I
+medGULF~—mermm == >+

The semantic rules are written so that they prampt you to choose the
correct paths and supply the appropriate information. Thus, by tracing
the syntax diagram paths and reading the "path prampts," you supply the
information for the report specifications which describe the
application.

If the example above were actual syntax (such as the syntax described in
Section 4), the semantic rules for <river> would be explained in
acocampanying paragraphs labeled A, B, and C. The semantic rules for

<ocean> would be explained in accompanying paragraphs labeled A, B, and
C. These paragraphs would explain that the choice of river must
correctly match the choice of ocean so that the river flows into the
correct ocean. Semantically valid productions include:

DOWN THE MISSISSIPPI INTO THE GULF
DOWN THE HUDSON INTO THE ATLANTIC
DOWN THE QOLUMBIA INTO THE PACIFIC

but do not include:

DOWN THE MISSISSIPPI INTO THE PACIFIC
DOWN THE COLIMBIA INTO THE ATLANTIC

TERMINOLOGY FOR DATA IDENTIFICATION

In specifying the semantic rules of the report language, various terms
are used consistently to identify data or information. These terms are
defined in the following paragraphs.

DATA ITEM OR ITEM

A data item or item is an elementary item of information. In the report
language, data items are referenced by data names, numeric literals,
character strings, or expressions. Examples of data items are the
following: the number of parts on order, the name of the individual, the
total balance of aged accounts, and the percent utilization factor.

Data items are numeric, string, or Boolean. Numeric data items have
numeric values; string items have character values, and Boolean items
have values of TRUE or FALSE.

GROUP

A group is a collection of related data items which could be thought of
as a single data item. For example, a date can be a group consisting of
the data items month, day, and year. Or an address can be a group
consisting of the first, second, and third lines of the address. Groups
referenced in the report language are considered string-valued data
items. .

2 - 10

RECORD

A record is a collection of related data items and/or groups. The term
"record" is used to mean a record, list element, or member, dependirg on
the term which is appropriate for the type of data structure under
consideration. A record might include all information pertaining to a
client's account, such as custamer name, account number, and current
balance. A record might consist of information pertaining to an
employee, such as name, age, sex, salary, and job grade.

DATA STRUCTURE

A data structure 1is a collection of records. . Access to information
contained in data structures is indicated in a report specification by
the INPUT statement. A data structure might contain information on all
client accounts, or it might contain records for all June order
transactions. Valid data structures for the report language include
system files that can be described in OOBOL, and DMS II data sets.

DATA BASE

A data base is a collection of one or more data structures and the
relationships between them.

LOGICAL REQORD

A logical record is a record or a group of associated records which
contains all pertinent information about a single entity. Records -
comprising a logical record can come fram a single data structure,
multiple data structures, or a user input routine. Certain information
within a logical record can contain null values indicating the absence
of related information. The INPUT statement in a report specification
specifies what information each logical record contains and how this
information is accessed.

As an example, a logical record may consist of information about a
single transaction, including pertinent information about the account to
which the transaction applies. A< another example, each logical record
may consist of information gathered fraom various sources about a single
employee. In addition to containing such information as name and salary
fran the payroll master file, the logical record could contain employee
address information obtained from the address file. Information about
the employee's job grade and department might be obtained fraom records
in separate but related files. Of course, job grade and department

2 - 11

information within the logical record probably would be identical for
many employees (see Figure 2-1).

A logical record as defined by the INPUT statement is an underlying
concept behind the report language description. Specifications can be
given to extend, select, sample, group, order, summarize, extract, and
report the information contained in the logical records.

Logical records can be viewed also as rows within a large table (see
Figure 2-1). A colum in this table would represent a single item. The
table is first defined by the INPUT statement in the report
specification. Subsequent language statements 1in the report
specification can extend, select, sample, group, order, summarize,
extract, and report the information contained in the rows of the table.

A logical record can be accessed only once since only one pass is made
through the specified data per report specification when the report
program is run. In terms of preparing a report specification, this
means that once you have specified access to a logical recard, you
cannot specify access to that logical record again.

Thus, for example, the following combination of physical records within
a particular logical record cannot be reflected in a report
specification because such a cambination would involve more than one
pass through the specified data:

PHYSICAL RECORD 1 PHYSICAL REQORD 2
PHYSICAL RECORD 1 PHYSICAL RECORD 2
PHYSICAL RECORD 3 PHYSICAL REOORD 4
PHYSICAL RECORD 3 PHYSICAL RECORD 4

The term "row" is substituted for the term “logical record" in various
parts of this manual.

2 - 12

NAME SALARY | AGE ADDRESS Gggs DEPARTMENT | DEPT . NO.
DOE, JOIN 532.00 | 21 | 101 HIGH ST. 3 EDP 0611
SMITH, JOE |1,100.00 | 27 | 332 MADISON 7 EDP 0611
BAKER, BILL 632.05 | 27 | 1222 3RD ST. | 7 ACCT 0232
BAKER, SUE 711.00 | 23 | 27 RIVER RD. | 7 ACCT 0232
JAMES, HELEN | 883.00 | 37 | 1001 51 ST. 5 EDP 0611
JONES, BOB 930.00 | 41 | 531 PEACH ST.| 5 MKTG 0110
KELLY, MARY 650.30 | 33 | Ol1 3RDAVE. | 5 EDP 0611
NEWMAN, KEN (1,232.00 | 52 { 1311 CYPRESS | 7 MKTG 0110
SMITH, SUE 766.45 | 24 | 303 WEST 8TH | 7 MKTG 0110
HILL, DON 811.50 | 32 | 200 EAST 3RD | 7 STAFF 0777
JONES, KAREN { 950.61 | 30 | 17 VALLEY DR.| 5 STAFF 0777

Figure 2-1. Logical Records for Personnel

QONTROL~BREAK ITEM

A control-break item is a data item used to group the information to be
reported. All logical records which contain the same value of the
control-break item are grouped together for purposes of reporting the
information and calculating statistics regarding the information. For
example, all transactions can be grouped by account nurber. For
purposes of reporting, the information about a transaction can then be
listed under the appropriate account-number heading. In addition,
summaries such as the average transaction amount for each account can be

obtained.

A control-break item can be subordinate to another control-break item
which, in turn, can be subordinate to yet another control-break item.
{The limit on the number of levels of control-break items is nine.)
Information is then hierarchically grouped based on values of the
control-break items. For example, transactions can be grouped based on
account number, and accounts can be grouped based on account type. Thus
for each account type there are many account numbers and, for each

2 - 13

account number, there are many different transactions. In Figure 2-2,
the personnel data shown in Figure 2-1 is grouped by department and job
grade.

DEPARTMENT | DEPT . NO. | GRADE NAME SALARY | AGE ADDRESS
ACCT 0232 7 BAKER, BILL 632.05 { 27 | 1222 3RD ST.
ACCT 0232 7 BAKER, SUE 711.00 | 23 { 27 RIVER RD.
EDP 061l 3 DOE, JOHN 532.00 { 21 | 101 HIGH ST.
EDP O6ll 5 JAMES, HELEN 883.00 | 37 | 1001 51 ST.
EDP 061l 5 KELLY, MARY 650.30 | 33 | Ol1 3RD AV}:.
EDP 06ll 7 SMITH, JOE 1,100.00 | 27 | 332 MADISbN |
MKTG 0110 5 JONES, BOB 930.00 | 41 | 531 PEACH ST.
MKTG 0110 7 NEWMAN, KEN }11,232.00 | 52 | 1311 CYPRESS
MKTG 0110 7 SMITH, SUE 7066.45 | 24 | 303 WEST 8TH
STAFF 0777 5 JONES, KAREN 950.61 | 30 | 17 VALLEY DR.
STAFF 0777 7 HILL, DON 811.50 | 32 | 200 EAST 3RD

Figure 2-2. Logical Records for Personnel
Grouped by Control Breaks

RANGE-BREAK ITEM

A range-break item is a special ocontrol-break item which is based on
specified value ranges of a particular data item. This data item is
referred to as a ranged item. All logical records which contain values
of the ranged item within specified limits are grouped together for
purposes of reporting the information and calculating statistics on the
information. To accomplish this, the information is ordered in
ascending sequence based on the ranged item. For example, all
transactions can be grouped based on transaction amount such that all
transactions within the following ranges are grouped together: 0 to 1000
dollars, 1000 to 5000 dollars, 5000 to 10,000 dollars, and over 10,000

2 - 14

dollars. A count of all transactions for each defined amount range can
be obtained.

The range-break item itself is a string item whose values indicate a
lower- and upper-limit of the ranged item. A range-break item value can
be assigned to each logical record to indicate the range to which it
belongs. In Figure 2-3, the persomnel data shown in Figure 2-1 is
grouped based on age, such that all employees within the following age
groups are grouped together: 20 to 29, 30 to 39, 40 to 49, and 50 to 59.

DEPARTMENT | DEPT.NO. sz NAME SALARY AGE ADDRESS RANGE
EDP 0611 3 DOE, JOHN §32.00 | 21 | 101 HIGH ST. | 20-29
AccT 0232 7 BAKER, SUE 711.00 | 23 | 27 RIVER RD. | 20-29
MKTG 0110 7 SMITH, SUE 766.45 | 23 | 303 WEST 8TH | 20-29
EDP 0611 7 SMITH, JOE 1,100.00 | 27 | 322 MADISON 20-29
ACCT 0232 7 BAKER, BILL 632.05 | 27 | 1222 3RD ST. | 20-29
STAFP 0777 s JONES, KAREN 950.61 | 30 | 17 VALLEY DR.| 30-39
STAFP 0777 7 HILL, DON 811.50 | 32 | 200 EAST 3RD | 30-39
EDP 0611 5 KELLY, MARY 650.30 | 33 | 011 3RD AVE. | 30-39
EDP 0611 5 JAMES, HELEN 883.00 | 37 | 1001 S1 sT. 30-39
MKTG 0110 5 JONES, BOB 930.00 | 41 | 531 PEACH ST.| 40-49
MKTG ol1o0 7 NEWMAN, KEN 1,232.00 52 1311 CYPRESS 50-59

Figure 2-3. Logical Records for Personnel
Grouped by Range Break

2 - 15

INPUT DATA ITEM

An input data item is an item which is part of the information to be
input for the report. For a single-report specification or the <input
section> of a multiple-report specification, input data items are those
described in the specified vocabulary; these data items are defined by
reference to the appropriate data structures in the INPUT statement and
by extensions. For the <report section> of a mltiple-report
specification, input data items are defined in the <input section> by
the INPUT statement and in the <report section> by extensions.

ACCEPTED DATA ITEM

An accepted data item is a data item which is defined in the ACCEPT
statement. This data item serves as a run-time parameter for repn—
specification. The actual value of the data item is read in by the
generated report program before any processing begins.

DERIVED DATA ITEM

A derived data item is a data item which is described in terms of other
data items via an <item desc>. The value of this data item is "derived"
fram input items, accepted items, constants, or other derived data
items. Combinations of arithmetic operations, logical operations, and
REPORTER III intrinsic functions can be used to compute the derived data
item. A derived data item represents an extension of the logical
record.

STATISTICAL DATA ITEM

A statistical data item is a derived data item which is defined in terms
of ane or more statistical functions or other statistical data items.
For example, the campany payroll, when derived as the total salary of
all employees, is a statistical data item.

NONSTATISTICAL DATA ITEM

A nonstatistical data item is an input data item, an accepted data item,
or a derived data item which is not defined in terms of any statistical
function or statistical data item.

2 - 16

SUMMARY ITEM

A summary item is an item which summarizes a group of information. It
can be statistical or nonstatistical. A summary item for a particular
control break has only one value for each control-break wvalue. For
example, when reporting on company personnel records grouped by
department, the department location can be thought of as a summary item
related to the department control break. Also, the average salary for
each department can be derived as a statistical item and as a summary
item related to the department control break.

VOCABULARY NAMES

Information within the data base is referenced in the report language by
names which are defined within a given vocabulary. Vocabularies are
constructed from vocabulary language (RP3VOC) specifications. A
particular wvocabulary is supplied to the report language processor by
the VOCABULARY statement. Only names within the supplied vocabulary can
then be used in the report specification.

A listing of the vocabulary supplies the names and description of
entries in the vocabulary. Vocabulary entries describe data items,
groups, records, and data structures within the data base. 1In addition,
vocabulary entries can describe accessing techniques, specific data-item
values, macros, and input routines. (See Figures 2-4 through 2-9 for
examples of vocabulary listings.) Certain names within the vocabulary
may be duplicated, in which case they must be qualified by other names
to identify them uniquely. (This qualification is governed by the rules
of COBOL.) A proper qualification is given in the vocabulary listing for
duplicate names. Listed and described briefly below are the types of
names which can appear in a vocabulary listing and thus be specified in
appropriate contexts in the report language.

DATA-ITEM NAME

A data-item name refers to a data item described in the vocabulary
(vocabulary item). A data-item name can be qualified and subscripted.
(Refer to the explanation of <data name> in Section 4.)

2-17

GR NAME

A <group name> refers to a group of data items described in the
vocabulary. A <group name> can be qualified and subscripted. (Refer to
the explanation of <data name> in Section 4.)

When referenced in the report language, a group is treated as a
string-type item. When using a vocabulary created prior to the 2.50
software release, all group items are assigned a default character
length that can be changed by the Process-option statement SET
STRING-SIZE. (Refer to the explanation of the Process-option statement
in Section 4.)

For a vocabulary created using the 2.50 or later software release, the
size of the group item reflects the size of data items subordinate to
that particular group item. Both the size of the group item and the
release level used to create the vocabulary can be found in the
vocabulary report.

MACRO NAME

A <macro name> refers to a permanent macro included in the wvocabulary.
A permanent <macro name> can be referenced any number of times in the
report specification once the VOCABULARY statement is given. If formal
parameters were defined for the macro, the values of the actual
parameters must be specified whenever the macro is referenced. The
appropriate macro text replaces each reference to the permanent <macro
name>.

1177185-003 2-18

CONDITION NAME

A <condition name> refers to a COBOL 88-level <condition name>, which
represents one or more specific values of a data item. A <condition
name> can be qualified. In the report language (except when using the
PRESELECT clause), a <condition name> may be referred to only in the
following context:

<data name> = <condition name)>

or
<data name> NOT = <condition name>

For example, the <data name> THIS-MONTH identifies the 12 months of a
year with subordinate <condition name>s defined as JANUARY through
DECEMBER having assigned values of 01 to 12. The following statements
use the <condition name>s present in the vocabulary.

SELECT THIS-MONTH = FEBRUARY OR THIS-MONTH = MAY.
REPORT THIS-MONTH, AMOUNT.

2 - 18A 1177185-003

The preceding statements result in the month being made available for
reporting and the proper internal code being campared for selection. An
example of the output resulting from the statements follows.

Example:
THIS MONTH AMOUNT
FEBRUARY 10.50
. FEBRUARY 2.75
MAY 89.96
MAY 12.24
MAY 18.95
RD NAME

A record name refers to a QOBOL Ol level record which contains data
items at subordinate levels. A record name appears in the vocabulary
listing as a group name and can be used as such.

o

NAME

————

A <«file name> refers to a (OBOL~described standard card, tape, or disk

file. The <file name> represents the internal name rather than the
external name of the file.

LINK NAME

A <link name> refers to an A Series DMS II-defined link item. The <link
name> can be qualified.

DATA-BASE NAME

A <data-base name> is the name of a DMS II data base.

2 - 19

DATA-SET NAME

A <data-set name> refers to a DASDL-defined (Data And Structure
Definition Language-defined) DMS II data set. A <date-set name> can be
qualified.

SET NAME

A <set name> refers to a DASDL~defined DMS II set or subset which spans
a data set. A <set name> can be qualified.

INPUT-PROCEDURE NAME

An <input-procedure name> designates a user-supplied OOBOL input
procedure. An input procedure is defined to RP3VOC by the user in order
to access data structures not handled by standard REPORTER III-supplied
input routines. One call on the input procedure returns one record.
That record contains data fram one or more records accessed fram one or
more data structures by the procedure.

2 - 20

VOCABULARY EXAMPLES

Figures 2-4 through 2-9 show listings of six sample vocabularies used in
exanples throughout this manual to illustrate various language
constructs and statements. It is assumed that RP3VOC was used to create
these wocabularies. All examples in the manual that use one of these
six wvocabularies identify the name of the vocabulary. Section 5
describes REPORTER I1II applications that use the information described
by the vocabularies.

While most of the wvocabulary listing is self-explanatory, various
entries require same additicnal explanation. Explanations of these
entries follow.

LEVEL describes the hierarchical level of an element. That is, it
describes which elements are actually part of other elements. For
example, items in many instances are described as part of a group.

The level of an element in relation to other elements is indicated by a
mmber (level number). Elements assigned the same number are at the
same hierarchical level. Elements assigned larger numbers are at lower
levels and are actually part of the immediate preceding element assigned
a smaller nunber. For example, in Figure 2-6 PART-NO-SOLD and LAST-SALE
are at the same level; MONTH-SOLD is part of LAST-SALE, and LAST-SALE is
part of PART-SALES-REC.

SUBSCRIPTS indicates the number of subscripts required for an element.
If an <item name> or <group name> requires no subscripts, the entry in
this colum is blank.

LENGTH describes the nunber of characters required on the listing to
print the item.

2 - 21

SAMPLE VOCABULARY 1: “VOCEMP"

Figure 2-4 lists the vocabulary for an employee file which is maintained
by the Personnel Department. There is one record in the file for each
employee. The entries in each record used are as follows:

Name Description
EMPYE~NO Employee number
EMPYE-NAME BEuployee name
JOB~GRADE Code for employee's job level
DEPT-NO Department number
QGHG~-C0DE Charge code
EMPLOYMENT-YR - Year of employment
EMPYE-AGE Age of employee
SEX Sex of employee
SALARY Salary of employee
FEDERAL~TAX Federal income tax withheld
STATE-TAX State incame tax withheld
SOC~-SEC-TAX Social Security tax withheld
EMPYE-NET-PAY Brployee's net pay

2 - 22

RP3 N.NN VOCABULARY
“VOCEMP"
SYSTEM FILES.
FILE EMPYE-FILE,
ORGANIZATION IS SBQUENTIAL,
TOTAL~POPULATION IS DEFAULTED TO 9999.
NAME WITH
LEVEL QUALIFIERS SUBSCRIPTS TYPE LENGTH
1 EMPYE~RECORD GROUP
2 EMPYE~NO ITEM NUMERIC 6
2 BEMPYE-NAME ITEM STRING 10
2 EDUCATION~-LEVEL ITEM NUMERIC 2
2 JOB-GRADE ITEM NUMERIC 2
2 DEPT-NO ITEM NUMERIC 4
2 CHG—-CQODE ITEM NUMERIC ©
2 EMPLOYMENT-YR ITEM NUMERIC 2
2 EMPYE-AGE ITEM NUMERIC 2
2 SEX ITEM NUMERIC 6
MALE QONDITION
FEMALE QONDITION
2 SALARY ITEM NUMERIC 10
2 FEDERAL~TAX ITEM NUMERIC 10
2 STATE-TAX ITEM NUMERIC 10
2 SOC-SEC-TAX ITEM NUMERIC 10
2 EMPYE-NET-PAY ITEM NUMERIC 10

DD MM YY
PAGE 1

EDITING
PICTURE

9(6)
X(30)

9(4)
9(e)

$2(6).99
$2(6).99
$2(6).99
$2(6) .99
$4(6) .99

Figure 2-4.

Vocabulary

Listing for "VOCEMP"

2 - 23

SAMPLE VOCABULARY 2: "VOCAST"

Figure 2-5 lists the vocabulary for a fixed-asset master file which
would be available at the end of each year and as of the current balance
sheet date. There is one record in the file for each fixed asset. The
entries in each record are as follows: _

Nane Description
ASSET-NO Asset number
ASSET-DESC Asset description
ASSET-TYPE Asset type code
DEPT-NO Associated department nurber
LOC~CODE Location code
ACQUISITION-YR Year of acquisition
ASSET-LIFE Asset useful life in years
DM Tax depreciation method
QOST Original asset cost
AOCCUM-DEPRE~BOOK Accumulated depreciation, beginning book
DEPRE~YTD-B00K Depreciation, year-to-date book
ACCUM-DEPRE~TAX Accumilated depreciation, beginning tax

2 - 24

RP3 N.NN VOCABULARY DD MMM YY
“VOCAST" PAGE 1
SYSTEM FILES.
FILE ASSET- .
ORGANIZATION 1S SEQUENTIAL,
TOTAL~POPULATION IS DEFAULTED TO 9999.
NAME WITH EDITING
LEVEL QUALIFIERS SUBSCRIPTS TYPE LENGTH PICIURE
1 ASSET-RBECORD GROUP
2 ASSET-NO ITEM NUMERIC 6 9(6)
2 ASSET-DESC ITEM STRING 30 X(30)
2 ASSET-TYPE ITEM NUMERIC 2 99
2 DEPT-NO ITEM NUMERIC 4 9(4)
2 LOC-OODE ITEM NUMERIC 6 9(6)
2 ACQUISITION-YR ITEM NUMERIC 2 99
2 ASSET-LIFE ITEM NUMERIC 2 99
2 DM ITEM NUMERIC 15 9
STRAIGHT-LINE QONDITION
DOUBLE~-DECL~BAL CONDITION
2 QoSsT ITEM NUMERIC 10 $z(6).99
2 ACCUM-DEPRE-BOOK ITEM NUMERIC 10 $z(6).99
2 DEPRE~YTD-BOOK ITEM NUMERIC 10 $z(6).99
2 ACCUM~DEPRE-TAX ITEM NUMERIC 10 $z(6).99
2 DEPRE~YTD-TAX ITEM NUMERIC 10 $z(6).99
Figure 2-5. Vocabulary Listing for “VOCAST"

2 - 25

SAMPLE VOCABULARY 3: "INVENT"

Figure 2-6 lists the vocabulary for a client's inventory file. Each
record in the inventory file corresponds to a part.

The entries for each record are as follows:

Name Description
PART-NO Part number
DEPARTMENT Manufacturing department mumber
PART-DESC ' Part description A
MATERIAL~SOURCE-CODE Material source ocode
QUANTITY Inventory quantity
UNIT-QOST Cost per part
BIN-NO Bin number

The file of part sales for the year is related to the inventory file,
and is also contained in the wocabulary. Each of these records contains
caunulative sales information on a particular part. The part nunber
relates the inventory record for a particular part to the sales record
for that part.

The entries in each sales record are as follows:

Name Description
PART-NO~-SOLD Part number
DEPARTMENT-NO Manufacturing department number
QUANTITY-SOLD Total quantity sold
LAST-SALE Date of last sale
MONTH-SOLD Month of last sale
DAY-SOLD Day of last sale
YR~SOLD Year of last sale

2 - 26

RP3 N.NN VOCABULARY DD MMM YY

* INVENT" PAGE 1

PERMANENT MACROS (REPLACE STATEMENTS).

MACRO PART-INVENT-SALES-INFO.

TEXT: PARTMF, YTDSMF AT PART-NO #

RP3 N.NN VOCABULARY DD MMM YY

*INVENT" PAGE 2

SYSTEM FILES.

FILE PARTMF,

ORGANIZATION IS INDEXED,
RECORD KEY IS PART-NO,
TOTAL-POPULATION IS 1000000.

SUB- EDITING
LEVEL NAME WITH QUALIFIERS SCRIPTS TYPE LENGTH PICTURE
1 PART GROUP
2 PART-NO ITEM STRING 6 X(6)
2 DEPARTMENT ITEM NUMERIC 4 9(4)
2 PART-DESC ITEM STRING 20 X(20)
2 MATERIAL-SOURCE~CODE ITEM STRING 1 x(1)
2 QUANTITY ITEM NUMERIC 5 9(5)
2 UNIT-COST ITEM NUMERIC 6 2(2)9.99
2 INVENT-DOLLAR-VALUE ITEM NUMERIC 11 2(7)9.99
2 BIN-NO ITEM NUMERIC 3 9(3)

FILE YTDSMF,

ORGANIZATION IS INDEXED,
RECORD KEY IS PART-NO-SOLD,
TOTAL-POPULATION IS 1000000.

SUB~ EDITING
LEVEL NAME WITH QUALIFIERS SCRIPTS TYPE LENGTH PICTURE

1 PART-SALES-REC GROUP

2 PART-NO-SOLD ITEM STRING 6 X(6)

2 DEPARTMENT -NO ITEM NUMERIC 4 9(4)

2 QUANTITY~-SOLD ITEM NUMERIC 5 9(5)

2 LAST-SALE GROUP

3 MONTH-SOLD ITEM -NUMFRIC 2 99

3 DAY-SOLD ITEM NUMERIC 2 99

3 YEAR-SOLD ITEM NUMERIC 2 99

Figure 2-6. Vocabulary Listing "INVENT"

SAMPLE VOCABULARY 4: “CLIENT"

Figure 2-7 lists the vocabulary for three DMS II data sets: an accounts
receivable data set, a name and address data set, and an invoice data
set. (A data set is a DMS II data structure which can be considered a
file.) Each record in the accounts receivable data set corresponds to a
single custamer account and contains the following entries:

Name Description
BRANCH Branch number
CUST-NO Custamer number
CREDIT-LIMIT Custamer credit limit in dollars
SALES~PERSON-CD Salesperson code
DISQOUNT-PERCENT Cash discount percentage

Terms of billing code
Date of last payment
Date of last purchase

BILLING-TERMS-QODE
DATE-LAST-PAYMT
DATE-LAST-PURCH

BALANCE-DUE
CURRENTLY-DUE
THIRTY-DAYS-DUE
SIXTY-DAYS-DUE
NINETY-DAYS~DUE

Total balance due
Amount currently due
Amount 30 days due
Amount 60 days due
Amount 90 days due

Each record in the name and address data set contains information on a
particular custamer inwvoice and contains the following entries:

Name Description
CUSTOMER-NUMBER Customer number
BRANCH-NUMBER Branch number
CQUSTOMER~-NAME Custamer's full name
STREET-ADDRESS Street address
CITY-STATE City and state
ZIP-CODE Zip code
RISK-RATING Risk rating code

Each record in the invoice data set deals with a particular custamer
invoice and contains the following entries:

2 - 28

Name Description

INVOICE~NO Invoice number
INV-CQUST-NO Custaner muber
DUE-DATE Due date
TERMS-BILLING~QODE Terms of billing code
TOTAL~AMOUNT Total amount of invoice
AMOUNT-PAID Total amount paid
CASH-DISOOUNT Cash discount taken
DATE~-LAST-PAYMI' Date of last payment
CHECK-NO Check number
INV-BRANCH-NO Branch number

Each accounts receivable record is associated with one or more invoices
via the DMS II-maintained set INVOICES. Related customer name and
address information can be obtained for each accounts receivable record
or invoice record via appropriate lookup in the DMS II-maintained set
NUMBER-SET .

2 - 29

RP3 N.NN VOCABULARY DD MM YY
llmmll PME 2
DMSII DATA BASE CUST-ACCT-INFO.
DATA SET ACCTS-RECV,
TOTAL~-POPULATION IS 200.
SET ACCTS-SET,
SPANS DATA SET AOCTS-RECV,
KEY IS CUST-NO.
SET 'INVOICES,
SPANS DATA SET INVOICE-INFO,
KEY IS INVOICE-NO.
SUB~ EDITING
LEVEL, NAME WITH QUALIFIERS SCRIPTS TYPE LENGTH PICIURE
2 BRANCH ITEM NUMERIC 4 9(4)
2 CUST-NO ITEM NUMERIC 6 9(6)
2 CREDIT-LIMIT ITEM NUMERIC 5 Z(4)9
2 SALES-PERSON-CD ITEM NUMERIC 5 9(5)
2 DISOOUNT-PERCENT ITEM NUMERIC 2 9
2 BILLING-TERMS—-CODE ITEM NUMERIC 1 9
2 DATE-LAST-PAYMNT ITEM NUMERIC 6 9(6)
2 DATE-LAST-PURCH ITEM NUMERIC 6 9(6)
2 BALANCE-DUE ITEM NUMERIC 9 $z(4)9.99
2 CURRENTLY-DUE ITEM NUMERIC 9 $z(4)9.99
2 THIRTY-DAYS—-DUE ITEM NUMERIC 9 $2(4)9.99
2 SIXTY-DAYS-DUE ITEM NUMERIC 9 $7(4)9.99
2 NINETY-DAYS-DUE ITEM NUMERIC 9 $72(4)9.99

Figure 2-7.

(Sheet 1 of 2)

2 - 30

Vocabulary Listing for “CLIENT"

RP3 N.NN VOCABULARY DD MMM YY
“CLIENT" PAGE 3
DMSII DATA BASE CUST-ACCT-INFO (CONTINUED)
DATA SET CUST-INFO,
TOTAL-POPULATION 1S 200.
SET NAME-SET,
SPANS DATA SET CUST-INFO,
KEY IS CUSTOMER-NUMBER.
SET NUMBER-SET,
SPANS DATA SET CUST-INFO,
KEY 1S CUSTOMER-NUMBER.
SUB- EDITING
LEVEL NAME WITH QUALIFIERS SCRIPTS TYPE LENGTH PICTURE
2 CUSTOMER-NUMBER ITEM NUMERIC 6 9(6)
2 BRANCH-NUMBER ITEM NUMERIC 4 9(4)
2 CUSTOMER~NAME ITEM STRING 20 X(20)
2 STREET-ADDRESS ITEM STRING 20 X(20)
2 CITY-STATE ITEM STRING 20 X(20)
2 ZIP-CODE ITEM NUMERIC 5 9(5)
2 RISK-RATING ITEM NUMERIC 1 9
DATA SET INVOICE-INFO,
TOTAL~-POPULATION 1S 5000.
SET INVOICE-NOS,
SPANS DATA SET INVOICE-INFO,
KEY IS INVOICE-NO.
SUB- EDITING
LEVEL NAME WITH QUALIFIERS SCRIPTS TYPE LENGTH PICTURE
2 INVOICE=-NO ITEM NUMERIC 6 9(6)
2 INV-CUST=-NO ITEM NUMERIC 6 9(6)
2 DUE-DATE ITEM NUMERIC 6 9(6)
2 TERMS~BILLING-CODE ITEM NUMERIC 1l 9
2 TOTAL-AMOUNT ITEM NUMERIC 8 $Z2(3)9.99
2 AMOUNT-PAID ITEM NUMERIC 8 §$72(3)9.99
2 CASH-DISCOUNT ITEM NUMERIC 8 $2(3)9.99
2 DATE-LAST~-PAYMT ITEM - 'NUMERIC 6 9(6)
2 CHECK-NO ITEM NUMERIC 8 9(8)
2 INV-BRANCH-NO ITEM NUMERIC 4 9(4)
Figure 2-7. Vocabulary Listing for "CLIENT"

(Sheet 2 of 2)

2 -

31

SAMPLE VOCABULARY 5: “QusTV"

Figure 2-8 lists the partial vocabulary for a magnetic tape file that
contains custamer remittances received during the months of January and
February. This file is maintained in sequence by account nunber. Each
record represents a single remittance and contains the following
entries: ‘

Name Description
REMIT-ACCT-NO Acocount number
CUST-NAME Custamer name
DATE~-RECD Date received
YR-MO-RECD Year and month received
DAY-RECD Day received
NET--PAYMT Net payment
DISONT-TAKEN Discount taken
CHK-NO Check number

The file of remittances is used to update an open accounts receivable
file which is also maintained in ascending account-nunber order. Each
record of the acocounts receivable file contains the following entries as
well as other account information:

Name Description
ACCT-NO Account number
BALANCE Account balance
OLD-BALANCE Previous balance at month end

2 - 32

2 - 33

RP3 N.NN VOCABULARY DD MM YY
"Cus™V* PAGE 1
SYSTEM FILES.
FILE REMIT-FILE,
ORGANIZATION IS SBQUENTIAL,
TOTAL~POPULATION 1S 1000.
NAME WITH EDITING
LEVEL QUALIFIERS SUBSCRIPTS TYPE LENGTH PICIURE
1 REMIT-RECORD GROUP
2 REMIT-ACCT-NO ITEM NUMERIC 3 9(3)
2 CUST-NAME ITEM STRING 20 Xx(20)
2 DATE-RECD GROUP
3 YR-MO-RECD ITEM NUMERIC 4 9(4)
3 DAY-RECD ITEM NUMERIC 2 9(2)
2 NET-PAYMNT ITEM NUMERIC 10 $2(5)9.99
2 DISCNT-TAKEN ITEM NUMERIC 8 $z(3)9.99
2 CHK~NO ITEM NUMERIC 8 9(8)
FILE ACCI-FILE,
ORGANIZATION IS SEQUENTIAL,
TOTAL-POPULATION 1S 200.
NAME WITH EDITING
LEVEL QUALIFIERS SUBSCRIPTS TYPE LENGTH PICIURE
1 AOCT-REOCORD GROUP
2 ACCT-NO ITEM NUMERIC 3 9(3)
2 BALANCE ITEM NUMERIC 12 $2(7)9.99
2 OLD-BALANCE ITEM NUMERIC 12 $2(7)9.99
Figure 2-8. Vocabulary Listing for “CUSTV"

SAMPLE VOCABULARY 6: “SHIPV"

Figure 2-9 1lists the wvocabulary for a detail transaction file of
accounts receivable and accounts payable for a shipping company. Each
record of the file represents a transaction and contains the following

entries:

Name

NOMBER

- DATE-OF~BILLING
MONTH-OF-BILLING
DAY-OF-BILLING
YEAR-OF-BILLING
POINTS—~OF-SHIPMENT
POINTS-OF-DESTINATION
RECEIPT-NO

ACQOUNT-NO
TRANSACTION-TYPE

TRANSACTION-CODE
AMOUNT-OWED

Descriptian

Freight bill nunber

Date of billing

Month of billing

Day of billing

Year of billing

Codes for shipment origination points
Codes for shipment destination points
Receipt number or disbursement check
number

Acoount nurber

Transaction " type (1=receivable;
O=payable)

Transaction code

Dollar amount owed

2 - 34

RP3 N.NN VOCABULARY D MM YY
"SHIPV" PAGE 1
SYSTEM FILES.
FI1LE ACCT-TRANS,
ORGANIZATION IS INDEXED,
RECORD KEY IS NUMBER,
TOTAL~POPULATION IS DEFAULTED TO 9999,
SuUB- EDITING
LEVEL NAME WITH QUALIFIERS SCRIPTS TYPE LENGTH PICTURE
1 BILL GROUP
2 NUMBER ITEM STRING 8 X(8)
OF BILL
2 DATE~OF-BILLING GROUP
3 MONTH-OF-BILLING ITEM NUMERIC 2 9
3 DAY-OF-BILLING ITEM NWMERIC 2 99
3 YEAR-OF-BILLING ITEM NUMERIC 2 99
2 POINTS OF SHIPMENT 1 ITEM NUMERIC 8 9(8)
SUB 1: MAX VALUE
Is 5
2 POINTS~OF-DESTINATION ITEM NUMERIC 8 9(8)
2 RECEIPT-NO ITEM NUMERIC 6 9(6)
2 ACOOUNT-NO ITEM NUMERIC 4 9(4)
OF BILL
2 TRANSACTION-TYPE ITEM NUMERIC 1 9
2 TRANSACTION-CODE ITEM NUMERIC 1l 9
2 AMOUNT-OWED ITEM NUMERIC 10 -$(5).99
Figure 2-9. Vocabulary Listing for “SKIPV"

2 - 35

SECTION 3

DESIGNING REPORTS

This section is intended to help you determine the REPORTER III report
language statements you need, as well as the logical order of the
statements, to design and specify report(s). Brief explanations of
"basic language constructs" and "functions" often used in constructing
report language statements are included in this section. Detailed
explanations of all report language statements, clauses, basic language
constructs, and functions are provided in Section 4.

REPORT SPECIFICATION

A REPORTER III report specification describes one or more reports. A
report is defined in general to mean one of the following:

l. An automatically formatted printed report.
2. A user-formatted printed report.
3. A machine-readable extract file.

The syntax diagram presented in Figure 3-1 shows the general processes
involved in use of REPORTER III report language statements to design and
specify either a single report or multiple reports.

In designing report(s), you use report language statements to define
what information is to be reported and what types of reports are to be
produced.

First you indicate the password, if any is needed to reference the
required vocabulary. Next you reference the vocabulary (created by the
RP3VOC program) which contains the description of the file(s) to be used
in specifying the desired report(s).

> <VOCABULARY >(1)
| | statement> |
+==><PASSWORD —>+ |
statement> |

I

|

(.
< { +—=>(2)

——><REPIACE statement>-> |

I
+——><process-option ———>+
statement>

Figure 3-1. General Syntax Diagram for
REPORTER III Report Specification
(Sheet 1 of 4)

For Single Report:

+< +

|
(1)====—==/"1 /——=><ACCEPT statement>

v

|
|=/"1 J=—=><BUILD statement>
|
| ~ ><data-processing-option statement>——>

——————— ><extension statement>

v

+————— 0 —_—,——_——_——_—eeee e ————_———_—— e —— — — —— —

v

1 /—-><EXTRACT statement>

/17T

-><GROUP statement>

v

+-><RANGE statement>->+

v

v

I
-/ 1 /——><INPUT statement>
-/ 1 /—-><ORDER statement>

/1 7—-—><PRINT statement>

v

-/ 1 /——-><REPORT statement>

v

v

——————— ><REPLACE statement>

———————><report-option statement>-———m————-—

v

-/ 1 J—=><SAMPLE statement>

v

-/ 2 /===><SELECT statement>

v

-/ 1 /-—-><SUMMARIZE statement>

v

B ><TABLE statement>

v

+—/1 7—--><TITLE statement>

v

Figure 3-1. General Syntax Diagram for
REPORTER III Report Specification
(Sheet 2 of 4)

For Multiple Reports:

Input Section:

(2)-—>FOR INPUT: > 1 —>(3)
IOt oL A->RERCRIS->
+< +

(3)-1-——/_1—7 ———><ABSTRACT statement> >(4)

|-/"T /——-><ACCEPT statement> >{

{ -/ 1 /---><BUILD statment> >=

: ————— ><data-processing-option statement>-->{

l——————-—> <extension statement> >1

i-/‘—7 —=><GROUP statement> >=

|| L><RANGE statement>-—>-!— %

{ -/"1 /-—=><INPUT statement >;

= -/ 1 /-———><ORDER statement> >{

|| —————— ><REPLACE statement> >}

} -/ 1 /——><SAMPLE statement> >{

: -/ 2 J——><SELECT statement> >I

-L- ———————— ><TABLE statement> >-!-

Figure 3-1. General Syntax Diagram for

REPORTER III Report Specification

(Sheet 3 of 4)

Report Section(s):

(4)-->FOR REPORT' > 3
=-><integer>—>=
I—><word>-——>l
l—><string>-->i
(4)<—+

______ /1 /-—=><BUILD statement>

>(5)

| ——————— ><data-processing-option statement>-> |

------ ><extension statement

\'4

-/ 1 7———><EXTRACT statement>

v

v
F—————————— ——— e e e e — —

|
|-/"1 /---><GROUP statement>
| |

|
| +—><RANGE statement>->+
|
|-

v

]

1l /-—=><ORDER statement>

\'4

|
|-/"1 /~——><PRINT statement>

v

|
|-/1 /———><REPORT statement>

v

} ———————=><REPLACE statement>

= ------- ><report-option statement>—————————-—>
} -/1 /-—><SAMPLE statement> >
: -/ 2]-——><SELECT statement> >
l -/ 1 J——><SUMMARIZE statement> >
{ —————— ><TABLE statement> >
l—/—T_7F——><TITLE statement> >

Figure 3-1. General Syntax Diagram for

REPORTER III Report Specification

(Sheet 4 of 4)

After you reference the vocabulary and before you enter your report
specification, you have the option to enter the following:

1. Process-option statement(s), which allow you to change system
default values and/or actions for the report(s).

2. REPLACE statement(s), which allow you to provide instructions
to RP3REP to replace specified names by corresponding
designated portions of text in all places where those names
mmrl

Then you enter the report specification, (using language statements such
as INPUT, EXTENSION, SELECT, SAMPLE, GROUP, ORDER, SUMMARIZE, PRINT,
EXTRACT) which allow you to manipulate the information and to generate

the desired report(s).

When you have finished specifying the report(s), you input your report
specification to the Report Language Analysis Program (RP3REP). (The
vocabulary which you have referenced mst be on disk or disk pack when
the RP3REP program is run.) If you have not made any syntax errors in
designing your report(s), a source program based on the parameters
produced by RP3REP is generated by the RP3GEN program, the source
program is caompiled, and then the object code is executed to produce the
desired report(s). Otherwise, the REPORTER I1II System displays messages
indicating the errors you must correct before processing can continue.

SINGLE-REPORT SPECIFICATION

when you specify a single report, one pass is made through the data, and
one report is produced.

In designing a single report, you use those language statements
necessary to produce the desired report (see portion of Figure 3~1 under
the heading "For Single Report"). A single-report specification cannot
consist oOf more than one sort; that is, logical records which are to be
reported are grouped (via control-break items) and/or ordered in only

one seguence.

MULTIPLE-REPORT SPECIFICATION

When you specify multiple reports, one pass is made through the data,
and one or a number of reports are produced.

First you select the logical record(s)(through the INPUT statement)
and/or design other processing (through other language statements) that
will be common to all the reports to be created; this constitutes the
Input Section specification (see Input Section portion of Figure 3-1).
This information 1is to be input to each of the Report Sections. The
Input Section specification cannot consist of more than one sort; that
is, logical records which are to be input are grouped (via control-break
items) and/or ordered in only one sequence.

Then you design each report individually, |using those language
statements necessary to produce the desired report (see Report Section
portion of Figure 3-1). As shown in the Report Section portion of the
figure, all language statements pertaining to a particular report must
be specified before the statements pertaining to another report are
specified. Language statements contained in a particular Report Section
have no relation to any other Report Sections. Each Report Section
describes one report to be produced fram the information [logical
record(s)] defined by the INPUT statement in the Input Section.

All names and identifiers defined in a Report Section [e.g., macro
names, derived data item names (known as "extensions"), and table
identifiers] can only be referenced in the statements within that
section. These names ard identifiers can be identical to those defined
in other Report Sections; no conflict arises since the names and
identifiers defined in a Report Section are local to that section.

The specification for each Report Section cannot consist of more than
one sort; that is, logical records which are to be reported in a
particular Report Section are grouped (via control-break items) and/or
ordered in only one sequence.

For the purpose of identification, each report designed can be
referenced by report number (integer, word, or string).

Example:

FOR REPORT "ON SALARY TOTALS":

It is noted that a single-report specification which oontains an
INPUT statement is identical to a multiple-report specification in which
the Input Section oontains only an INPUT statement and possibly an
ACCEPT statement, and the Report Section contains all the other
statements of that particular single-report specification.

SPECIFICATION QONSTRAINTS

A number of constraints with respect to report 1language statement
specification are noted below.

ORDER OF LANGUAGE STATEMENTS

In specifying the language statements needed either in a single-report
specification or in the Input Section of a mltiple-report
specification, you can give the statements in any order you desire,
provided you meet the following constraints:

l. You must define an input data structure in the INPUT statement
before you can reference data items in that structure.

2. You must define a name before you can reference it. This
applies to a <macro name>, a derived data item name, an
accepted data item name, a control-break name, and a <colum>
name.

3. You must define a table before you can reference it.
In specifying the language statements needed in the Report Section of a

multiple-report specification, you are constrained by items 2 and 3
above (item 1 does not apply).

QONTROL~BREAK ITEMS AND ORDERING KEYS

Control-break items and ordering keys specified in the Input Section are
applicable only to the specifications within the Input Section. If
these same control-break items and ordering keys are required within a
Report Section, they must be redefined as such within the particular
Report Section, and the SUPPRESS SORT feature may be used (refer to the
SUPPRESS—-SORT statement in Section 4).

Control-break items specified in a Report Section are applicable only to
the report described by that section. ,

ABSTRACT STATEMENT

An ABSTRACT statement can be used anly in the Input Section of a
multiple-report specification (even if only one report is to be
produced) .

LANGUAGE STATEMENTS

The language statements which appear in the general syntax diagram
(Figure 3-1) are listed alphabetically and explained briefly in the
following table. All these statements, as well as all clauses which can
be ocontained within them, are explained individually and in detail in
Section 4.

You can use the following table as a guideline in determining language
statements which you need to design your report(s). You then can
consult the detailed discussions of the language statements and their
camponents in Section 4 to determine the specific construction of each

statement.

Language Statement Explanation
ABSTRACT statement Specifies that only summary information for

a previously defined referenced data item
is to be input, as a single logical record,
to every report. The referenced item is
declared a control-break item if control
breaks have not been specified previously
in another statement.

ACCEPT statement

BUILD statement

Data-processing-cption

Extension statemenc

EXTRACT statement

Specifies data items which are to be

- parameters to the generated report program.

The specified values of the data items will
be entered at run time and will remain
constant throughout the production of one
report (or one set of reports, in the case
of a multiple-report specification). The
ACCEPT statement can be used to produce
different versions of a report fram one run

of a report program.

Provides the means to define new data items
by isolating portions of data names or
joining data names. These new data items
subsequently can Dbe referenced where
appropriate in the report specifications.

Provides the means to override default
values and actians with nondefault values
and actions related to the grouping and
arrangement of records in the generated
report program. There are three types of
data-processing-option statements, each of
which is explained in detail in Section 4:

1. SUPPRESS SORT statement.
2. SET SORT BLOCKING statement.
3. SET SORT S1ZE statement.

For a brief explanation of each type, refer
to the DATA-PROCESSING-OPTION statement in
Section 4.

Defines a new data item to be derived fram
already-existing data items. Once defined,
the new data item can be subseguently
referenced where appropriate in the report
specifications.

Extracts information to a new file in
machine-readable format. This extracted
information can then be printed or reported
through another report created by the
REPORTER III System, or it can be made
available for other processing as needed.

GROUP statement

INPUT statement

ORDER statement

PASSWORD statement

PRINT statement

Process-option statement

Specifies control-break items which are
used to group the information being
reported and provide a basis for
summarization. Control breaks for the
report, or section, must not have been
specified previously in another statement.

Describes what DMS 1II data base and/or
system files are to be used and the method
of access. Defines the oontent of a
logical record.

Specifies how information is to be arranged
(ordered). The ordering is subordinate to
any control-break grouping specified
elsewhere, and it must be consistent with
any ordering described elsewhere.

Supplies the password which enables the
specified wocabulary to be referenced.
This statement is required only if a
password was established for the vocabulary
in the RP3VOC specifications. If the
statement is reguired and the password is
not entered correctly, the Report Language
Analysis Program (RP3REP) will terminate
with an appropriate error message when it
is run.

Specifies the layout and content of a
user-formatted report. This statement is
useful for printing special forms, such as
confirmation letters and mailing labels,
and for printing other reports where you
need the data printed at an exact location
on the page.

Enables you to change the default operation
of the REPORTER III System, (to change a
default processing option). There are five
types of process-option statements, each of
which is explained in detail in Section 4:

1. OMBINE statement.

2. Process-option ASSIGN statement.

3 -10

RANGE statement

REPLACE statement

Report-option statement

REPORT statement

3. Process-option SAVE z::tement.
4. Process~option SET statement.

5. Process-option SUPPRESS
statement.

For a brief explanation of each type, refer
to PROCESS-OPTION STATEMENT in Section 4.

Defines a range-break item as the one ard
only ocontrol-break item. Specifies that
information be grouped according to given
value ranges of a given data item, to
provide a Dbasis for reporting and
summarization.

Enables a specified name to be replaced by
a portion of language text, consisting of
characters, wards, and/or phrases, in all
places where the name occurs. Provides a
oconvenient shorthand technique for
expanding a REPORTER III report language
statement.

Enables you to override a default value or
action with a specified value or action for
the particular report. There are four
types of report-option statements, each of
which is explained in detail in Section 4:

1. ASSIGN LISTING statement.

2. Report-option SET statement.

3. Report-option SUPPRESS statement.
4. SAVE LISTING statement.

For a brief explanation of each type, refer
to REPORT-OPTION STATEMENT in Section 4.

Specifies the layout of an autamatically
formatted report and the data items to be
included in the report. This statement
provides control-break headings and column
listings, if desired.

3 -11

SAMPLE statement

SELECT statement

SUMMARIZE statement

TABLE statement

TITLE statement

VOCABULARY statement

Causes only certain selected logical
records ("samples") to be made available
for reporting. The statement can be
designed to make the selection either
systematic or random, depending upon the
needs for the report. Also, the sampling
can be stratified by using a strata-defined
Boolean expression in the sample
description.

Causes input logical records either to be
made available for reporting or to be
suppressed. If no SELECT statement and no
SAMPLE statement are used, all logical
records that were input are available for
reporting (no information is suppressed).

Specifies what statistical summaries and
colum footings are to be included at the
end of control-break groupings and/or at
the end of the report.

Defines a conversion table which relates
data values to equivalent or corresponding
values. Once the table is defined, you can
use an ENTRY function to obtain the
corresponding table-defined wvalues for
particular values of a data item.

Specifies page title information for the
report. Titles can consist of character
strings, time of report, date of report,
and/or data items.

Identifies the vocabulary files to be used
for the desired report. This statement is
always required in a REPORTER I1I report
specification. The vocabulary files must
be created by the RP3VOC Program.

3 - 12

BASIC LANGUAGE QONSTRUCTS

In most REPORTER III report language statements, you use basic language
constructs in defining information within the statements. The
constructs are listed alphabetically and explained briefly in the
following table. All these constructs are explained individually and in
detail in Section 4.

Lanquage Construct Explanation
<QOBOL picture> Optionally used to describe how an item is
to be printed.
<data name> References an item or group. It is a

<name> or a <name> qualified by other
<name>s. It possibly can be subscripted by
<integer>s and/or other <data name>s. It
possibly can be associated with a
designated control-break item.

<expression> Describes one of the following in terms of
: operands and operators:

1. An arithmetic expression, which
specifies a numeric value.

2. A string expression, which
specifies a string value.

3. A Boolean expression, which
specifies a Boolean value (TRUE
or FALSE) or a numeric value (1
for TRUE and O for FALSE).

Can be statistical or nonstatistical.

<external file name> Identifies a file to the MCP (Master
Control Program). Contains <identifier>s,
each being a <string> enclosed in quotation
marks.

<literal> Represents a data item which .has a value
identical to the value being described.
There are two classes of literals:

3 ~-13

1. Numeric literals, or <number’s.

2. Nonnumeric literals, or
<string>s.

<relational operator> Specifies the criteria for camparison (for
example, IS NOT BEQUAL T OR GREATER THAN).

FUNCTIONS

In many REPORTER III report language statements, you use a function(s)
to define the value of a data item which is based on the value(s) of
other data item(s). The functions (and the ocamponent clauses
<date format> and <stat parameters>) are listed alphabetically and
explained briefly in the following table. All these functions (and the

component clauses) are explained individually and in detail in Section
4.

Function Explanation
<AGE function»> A nonstatistical function used to calculate

the time interval (the number of bourdaries
crossed) between two dates, in terms of
DAYS, WEEKS, MONTHS, QUARTERS, or YEARS.

<date-convert function> A nonstatistical function used to convert a
data item stored within a particular <date
format> to a data item representing the
same date, but in a different format.

<date format> A clause which specifies how a particular
date is coded so that it can be accessed
properly by the REPORTER III System.

<ENTRY function> A nonstatistical furition used to convert
values of a data item to alternate item
values according to a table previously
defined by a TABLE statement.

3 - 14

<statistical function> Describes a statistical item which
summarizes a group of logical records which
were input and possibly extended, selected
fran input, sampled, and/or selected from
the sample. A statistic can be spec1f1ed
as a count, running count, total, running
total, average, maximum, minimm, sum of
squares, mean square, variance, or standard
deviation.

<stat parameters> Specifies the parameters of the statistical
function.

EXAMPLE REPORT SPECIFICATIONS

An example of a single-report specification and an example of a
miltiple-report specification are presented below. Each example is
acaampanied by an explanation of the specification and an illustration
of the report produced. The vocabulary used in each example is
described in Section 2. Other exanples of report specifications are
presented in Section 5.

EXAMPLE SINGLE-REPORT SPECIFICATION

A printed report listing all assets acquired during the year 1985 with a
cost in excess of $5,000 is required for vouching and inspection. The
following REPORTER III report specification, using the wocabulary
“VOCAST", is constructed to reflect this information:

VOCABULARY IS “VOCAST".

INPUT ASSET-FILE.

SELECT ACQUISITION-YR = 85 AND QOST > 5000.00.

REPORT ASSET-NO, ASSET-DESC, ASSET-TYPE, DEPT-NO,
ASSET-LIFE, QOST.

In this specification, first the vocabulary "VOCAST" is referenced.
Then the following is done:s

l. The logical records in the data base corresponding to
ASSET-FILE are specified as input regquired for the report
specification.

3 - 15

Then all logical records correspornding to both ACQUISITION-YR
= 85 (acquisition year is 1985) and QOST > 5000.00 (cost is
greater than $5,000) from the input physical record ASSET-FILE
are specified to be made available for reporting (selected).

Finally, the data items ASSET-NO (asset number), ASSET-DESC
(asset description), ASSET-TYPE (asset type code), DEPT-NO
(associated department nmumber), ASSET-LIFE (asset useful life
in years), and QOST (original asset cost) from the logical
records which meet the select criteria are specified to be
reported (printed) in an autamatically formatted report.

Processing the above specification produces the required report, which
is shown in Figure 3-2. Note that the colum headings are the data

names .
PAGE 1
ASSET ASSET DESC ASSET DEPT ASSET QosT
NO TYPE NO LIFE
007130 V2000 TERMINAL 03 1122 05 § 5205.00
009200 1982 FORD VAN 01 1501 10 § 5102.80
009801 TEMPORARY STORAGE BUILDING 03 1203 20 § 6179.25

Figure 3-2. Example Single Report

3 - 16

EXAMPLE MULTIPLE-REPORT SPECIFICATION

Two printed reports are required, each giving the total of the
remittances received each day during January 1985 and the grand.total
for the month. One of the reports lists detailed information about each
remittance received, while the other report lists only the required
summary information. The following REPORTER III report specification,
using the wocabulary “QUSTV", is constructed to reflect this
infarmation:

VOCABULARY IS “CUSTV".
FOR INPUT TO ALL REPORTS:
INPUT REMIT-FILE.
' SELECT YR-MO-RECD = 8501
GROUP BY DAY-RECD. $ THIS STATEMENT SAVES AN
$ ADDITIONAL SORT
FOR REPORT 1:
TITLE "JANUARY REMITTANCES".
REPORT BY DAY-RECD LISTING REMIT-ACCT-NO, CUST-NAME,
NET-PAYMNT, DISONT-TAKEN, CHK-NO.
SUMMARIZE FOOTING NET-PAYMNT.
SUPPRESS SORT. % INPUT INFO ALREADY IN
$ CORRECT SBQUENCE
FOR REPORT 2:

TITLE "SUMMARY OF" / “JANUARY REMITTANCES®.
REPORT FOR EACH DAY-RECD: TOTAL~-REMITTANCES WHICH
IS TOTAL(NET-PAYMNT) .
SUMMARIZE FOOTING TOTAL~REMITTANCES.
SUPPRESS SORT. $ INFUT INFO ALREADY IN
$ CORRECT SBEQUENCE

In this specification, first the vocabulary “CUSTV" is referenced. Next
information is specified as input to each report as follows:

1. The physical records corresponding to REMIT-FILE is specified
as input.

2. Next all logical records corresponding to YR-MO-RECD = 8501
(year and month received is 1985 Jamuary) fram the input
physical records REMIT-FILE are made available for reporting
(selected).

3. Then the control-break heading DAY-RECD (day received) is
specified to group the data items to be reported.

Then the first report (REPORT 1) is designed as follows:

3 -17

4.

It is titled "JANUARY REMITTANCES".

All data items corresponding to the control-break heading
DAY-RECD and the following colums are specified for inclusion
in the report: REMIT-ACCT-NO (account number), CUST-NAME
(custamer name), NET-PAYMNT (net payment), DISONT-TAKEN
(discount taken), and CHK-NO (check muvber).

Total net payment for each day reported and for all days
reported, respectively, are included in the report through the
SUMMARIZE statement.

The SUPPRESS SORT statement is used because the information is
already in the correct sequence.

Finally, the second report (REPORT 2) is designed as follows:

1.

2.

The report is titled "SUMMARY OF JANUARY REMITTANCES."

The total amount for each data item corresponding to the
control-break heading NET-PYMNT within each control-break
heading DAY-RECD is specified for inclusion in the report.
These total amounts correspond to the control-break heading
TOTAL~REMITTANCES .

The sum of the total amounts corresponding the
TOTAL~REMITTANCES are included in the report through the
SUMMARIZE statement.

The SUPPRESS SORT statement is used because the information is
already in the correct sequence.

Processing the above specification produces the required report, which
is shown in Figure 3-3.

3 -18

JANUARY REMITTANCES PAGE 1
DAY KECD: Ol
REMIT CUST NAME NET PAYMENT DISCNT CHK NO
ACCT TAKEN
NO
112 JOE BROWN $ 211.00 § 20.50 31811510
123 SUSAN KELLY § 501.00 § 50.10 33355560
111 JOHN D. DOZ $ 123.10 § 0.00 11166000
SUMMARLIES FOR DAY RECD: Ol
TOTAL $ 8113.03
DAY RECD: 02
REMIT CUST NAME MET PAYMENT DISCNT CHK NO
ACCT TAKEN
NO
203 BILL M. SMITH $ 50.00 § 0.00 11351000
501 FRED ADAMS $ 13.13 § 1.00 55661111
100 MARY P. JONES $ 506.00 § 56.83 10123450
SUMMARIES FOR DAY RECD: 02
TOTAL $ 1776.53
SUMMARIES FOR FINAL
TOTAL $ 66010.80
SUMMARY OF
JANUARY REMITTANCES PAGE 1
DAY REMITTANCES
RECD
01 $ 8113.03
02 $ 1776.53-
SUMMARIES FOR FINAL § 66010.80
TOTAL
Figure 3-3. Example Multiple Report

- 19

SECTION 4

REPORT LANGUAGE STATEMENTS

The language statements used to design and prepare reports through the
REPORTER III System are each explained in detail in this section. The
clauses, basic language constructs, and functions which can be contained
as syntactic variables within report language statements are presented
in alphabetical order.

Each statement and clause and most of the constructs and functions are
depicted by syntax diagrams. If a syntax diagram contains more than one
path, each path in the diagram is identified by an alphabetic character
and is discussed in the text 1labeled by that alphabetic character.
Examples are presented for various paths. If an example is complex, the
part of the example which illustrates the particular path may be
underlined.

For definitions of various terms used consistently in the semantic rules
of the report language to identify data or information, refer to Section
2, under "Terminology for Data Identification." For brief descriptions
of the various types of vocabulary names which can be specified in
appropriate oontexts in the report language, refer to Section 2 under
"Vocabulary Names."

4 -1 PCN 1177185-002

ABBREVIATED MONTH OPTION

The process option, SET ABBREVIATED MONTH, allows changing the
3-character month strings to an alternate 1language. The default
language is English. The table shown below shows the 3-character
abbreviations for months in other languages.

English
Month (default) French German Italian Spanish
1 JAN JAN JAN GEN ENE
2 FEB FEV FEB FEB FEB
3 MAR MAR MAR MAR MAR
4 APR AVR APR APR ABR
5 MAY MAT MAT MAG MAY
6 JUN JUN JUN GIU JUN
7 JUL JUL JUL UG JUL
8 AUG AQU AUG AGO AGO
° SEP SEP SEP SET SEP
10 ocCT oCT OKT orT oCT
11 NOV NOV NOV NOV NOV
12 DEC DEC DEZ DIC DIC

The 3-character month string is used for the MMM part of the
DDMMMYY-DATE and DDMMMYYYY-DATE clauses in the TITLE statement and PRINT
insert clause. . The 3-character month string is also used in the
DDMMMYY-DATE and DDMMMYYYY-DATE output of the Date Convert function.

To avoid entering the ABBREVIATED MONTH OPTION for every report
specification in which a different, nondefault language is desired, it
is recammended that this option be stored in the vocabuary with the
REPLACE statement, and then the name given in the REPLACE statement be
used when the option is desired.

PCN 1177185-002 4 - 2

The syntax for the ABBREVIATED MONTH option is as follows:

ABBREVIATED - MONTH I t— 1
|
4+ LIST —+
+ / —+
| i
| Bl
la/12/ I ¢
1 = —

<string> ——t——>
The paths of this syntax diagram are explained below:

Path Explanation

A This path must be taken 12 times. The string given can not
exceed 3 characters in length.

B Take this path until all 12 abbreviated month strings have been
entered.

Cc Take this path after all 12 abbreviated month strings have been
given.

Example:

SET ABBR MONTH LIST ¥ TO ITALIAN
qun /»mu /nmn /"APR“ /
"MAG”/"GIU“/"U.B"/"AGO"/
nSErn/umu/uwt/uDIcn .

ABSTRACT STATEMENT

The ABSTRACT statement suppresses detailed information and specifies
that only summary information for a designated data item or a designated
previously defined control-break item be input to all reports. The
ABSTRACT statement can only be used in the INPUT section in a multiple
report specification.

The ABSTRACT statement essentially specifies that information within
multiple logical records associated with a particular control-break item
value be abstracted into a single logical record. This logical record
contains summary information only, but is treated as a detailed record
for report specification purposes within each Report Section. Summary
information for a control-break item consists of items related to the
control-break item which have a constant value for each value of the
control-break item. These items usually are derived statistical data
items, but they also can be nonstatistical data items. If you use the
ABSTRACT statement, you can reference only summary items which are
related to the specified control-break item in the subsequent Report
Sections.

The syntax for the ABSTRACT statement is as follows:

A
——>ABSTRACT >FOR EACH—--><data name>———-——>,
I | | |
+=> INFORMATION->+ | B |
| --><extension>~-> |

I |
e |
|—><item desc>->|
i |
| D !
+-—><c-b name>-->+
The paths of this syntax diagram are explained below:

Path Expianation

A-C Take one of these path, whichever applies, to define a data item
as a control-break item. The item must be nonstatistical, and
control break must not have been specified previously in another
statement.

Example: ("CLIENT")

VOCABULARY IS “CLIENT".
FOR INPUT TO ALL REPORTS:
INPUT ACCT-INVOICE-INFO.
SUPPRESS SORT.
ABSTRACT FOR EACH CUST-NO.
TOTAL~INV-AMT IS TOTAL(TOTAL~-AMOUNT FOR
EACH CUST-NO) NUM(6,2).
TOTAL~INV-AMT-PAID IS TOTAL(AMOUNT-PAID
FOR EACH CUST-NO) NUM(6,2).

FOR REPORT 1:

Input information for each report in the example oconsists of
summary information related to CUST-NO (that is, information
related to a custamer account). Detailed invoice information is
suppressed and does not appear in any of the specified reports.
The summary information for each QUST-NO consists of the
following summary items: all items within the accounts
receivable record (such as BRANCH, CUST-NO, CREDIT-LIMIT); the
derived items (extensions) TOTAL~-INV-AMT', TOTAL~INV-AMT-PAID;
and INV-CUST-NO and INV-BRANCH-NO (if these items have constant
values for each CUST-NO value).

Take this path to reference a previously defined control-break
item.

Example: ("INVENT")

VOCABULZRY IS “INVENT".
FOR INPUT:
INPUT PARTMF.
GROUP BY DEPARTMENT.
DEPT-INVENT-VALUE IS TOTAL(INVENT-DOLLAR-
VALUE FOR EACH DEPARTMENT) NUM(9,2).
ABSTRACT INFORMATION FOR EACH DEPARTMENT.
FOR REPORT:
SELECT DEPT-INVENT-VALUE > 50000.00.
REPORT DEPARTMENT. DEPT-INVENT-V. .

The information described in the <input section> as input to the
report consists of a logical record for each department. The
logical record contains the sumary items DEPARIMENT and
DEPT-INVENT-VALUE. The following report is produced:

PAGE 1
DEPARTMENT DEPT INVENT
VALUE
1031 55010.03
1120 73176.20
1300 120177.88

ACCEPT STATEMENT

The ACCEPT statement specifies data items which are parameters to the
generated report program. These data items are given values once at the
start of the generated report program run, and the values remain
constant throughout the run. These data items can be referenced by
<name> in other report language statements to control selection, titles,
sampling limits, or extension calculations.

Accepted data values can come fram the operator display terminal (known
as ODT or SPO), card reader, or tape or disk file. The origin of the
accepted data is determined by the Processing-option ASSIGN statement.
The accepted data values are supplied in free-form format, with each
value separated by one or more spaces. If the ACCEPT statement is
present, the generated report program asks the user for values of the
data items specified by the Process-option ASSIGN statement. After a
report is produced, based on the accepted values, the generated report
program asks for a new set of accepted data item values and produces
another report. This continues until an END is recognized in the input
stream or an EOF (End-of-File) occurs.

When the processing mode is set to ON-LINE and the ASSIGN LISTING
statement has not been specified or has been set specifically to
TERMINAL BACKUP, only one set of accepted data item values is processed
and only cne report (or one set of reports, in the case of a
multiple-report specification) is produced.

Example:

ACCEPT USER-NAME STRING(15)

TITLE "REPORT FOR" USER-NAME.

The report program reads a l5-character string value for USER-NAME and
produces a report. This ocontinues until an END is detected. This
USER-NAME might then be used in a TITLE statement to identify the person
who is to receive the report.

The following input data items would produce two identical reports,
except for the values for USER-NAME.

Example:

* JOHN DOE "
" FRANK ADAMS "
END

You can, optionally, carbine input data items. You are limited to 80
characters per entry, and you cannot split a data item between two
entries. The following would also produce two identical reports, except
for the values for USER-NAME.

Example:
* JOHN DOE " " FRANK ADAMS " END

USE OF ACCEPT STATEMENT ON

B 2000/B 3000/B 4000 SERIES

On B 2000/B 3000/B 4000 Series of systems, the following are conditions
that affect the use of the ACCEPT statement when you specify data
associated with the ACCEPT statement fram the ODT (SPO).

. If you enter a string with embedded blanks (spaces), you must
include an at sign (@) immediately before and after the

string.

. If you are specifying data items for the ACCEPT statement in
canbinations, you are limited to 60 characters per entry.

The following example shows how to enter such an ACCEPT statement in a
report specification.

Example:
Suppose that a report specification includes the following statements:

ASSIGN ACCEPTED-DATA TO SFO.
ACCEPT NUMBERL, STRINGl STRING, SUB NUM(2).

Supposing that the data items tO be input are 12 for NUMBER', REPORTER
III for STRINGl, and 7 for SUB, the following are three valid methods of

entering the data:

1. 12
“@REPORTER IIIQ"
7
END
2. 12 “@REPORTER II1I@" 7 END

3. "12 @REPORTER III@ 7 END"

If choice 1 above is used, the values will be transmitted one at a time.

The syntax for the ACCEPT statement is as follows:

+< , < -t
| F|
| A B D |
==> ACCEPT——-> <name> | | >(1)
i |
cl | El |
+-><internal ->+ +=><editing =>4
attributes> attributes>
H
(1) >.

| |
l 6 |
+—>DISPLAYING <string>->+

The paths of this syntax diagram are explained below:

Path

Explanation

The <name> which you give here defines an accepted data name.
The <name> must be unique; that is, it cannot be a name defined
as a vocabulary name or a derived data name. Once defined, the
<name> can be used as a <data name> where appropriate in the
report specifications.

A value is assigned to this <name> fram same external device at
the beginning of the generated report program run. The value of
the data item remains constant throughout the run. The value is
read off the external device by a free-form scanner ard
correctly aligned to the internal size of the data item. The
value must correspond to the type oOf the accepted data item.
String values having no embedded blanks are accepted with or
without surrounding quotes. Numeric item values are specified
as <nuber>s and may contain decimal points. Boolean item
values are accepted as a 0 or 1 digit. ‘

Example:
ACCEPT QODE-ID.

QODE-ID references an accepted data item. In this case, no
<internal attributes> were given; thus CODE-ID references a
signed-numeric item with size equal to the INTEGER-SIZE and
FRACTION-SIZE.

Take this path to specify default internal attributes. The
default internal attributes are the following:

l. The type is signed numeric.

2. INTBGER-SIZE and FRACTION-SIZE are used for the size
of the numeric item. The default for INTBEGER-SIZE is
12 digits. The default for FRACTION-SIZE is 5 places
after the decimal point. Refer to Process-option SET
statement or Internal Attributes if values other than
the default values are desired.

4 - 10

Take this path to specify internal attributes. The internal
attributes can specify type as well as size.

Example:
ACCEPT CODE-ID NUM(7).

Internal attributes are used to specify that QODE-ID is an
unsigned numeric with seven integer digits.

Take this path to specify default editing. You must take this
path if the accepted data item is not to be printed. A default
editing picture is derived from the intermal attribute of the
item. Specification of default editing is illustrated by the
example for path C.

Take this path to specify an editing picture, other than the
default, to be used when the data item is to be printed.

Example:
ACCEPT QODE-ID NUM(5) WITH PIC "99=999".

QODE-ID is printed under the COBOL editing picture "99=999".

Take this path as many times as necessary to specify all
accepted data items. The items specified are accepted as a set
at the start of the generated report program run. The order and
number of data values read in must correspond to the order and
nunber of items specified in the ACCEPT statement. A free-form
scanner 1is used to scan out the values and place the values
correctly aligned into the data item based on its internal
attributes. After the specified report (or reports) is
produced, another set of data values is read in and assigned to
the accepted data items, and another report is produced. This
continues until End-of-File or "“END" is recognized on the
external device. An error exists if End-of-File or "END" is
recognized in the middle of a group of accepted data values.

Example:

ACCEPT LAST-NAME STRING(20),SOC-SEC-NR NUM(9)
WITH PIC "999=99=9999".

4 - 11

Two values are accepted before each report is produced.
LAST-NAME is a 20-character-long string, while SOC-SEC-NR is a
9-digit number. A <string> and a <number> are read off the
external device for each report until an END or EOF halts the
report process. The following is accepted data for this

example:
1. For one set of data:
BETHLEHEM 3420091099
2. Using quotes:
"LINN-HIPSHER" 953992101

3. For multiple data sets across nult:.ple records with
use of the END option:

BETHLEHEM 342009199 1st set
"LINN-HIPSHER" 953992101 2rd set
NEWMANS—CARDIGAN 3rd set

210007615
END

This path allows up to 55 characters of information to be
displayed on the operator display terminal (ODT or SPO). The
string must be entirely contained on one line.

Exanple:

ACCEPT OODE-ID NUM(5) DISPLAYING
"ENTER 5 DIGIT CODE. WHEN FINISHED, ENTER END".

If this path is not taken, the default of "ENTER DATA" will be
displayed. The DISPLAYING option is ignored if
ASSIGN ACCEPTED-DATA is set to anything other than ODT or SPO.

Take this path after you have specified all accepted data items.

4 - 12

ACCESS CLAUSE

The Access Clause specifies randam access to a system file via a key, or
sequential access to a system file beginning at the key value which
satisfies a given criterion.

The syntax for the Access Clause is as follows:

A C
>AT >(1)
| | | I
| B | ID | +>KEY->+ +=>IS->+
+—>VIA <record-key -=>+ +—>STARTING->+
name>
E L

(1) ><SLTingd —mmmeem>

| I |

| P I 1M |

:-—>EmNr| l I >= II—><J'.m'.eger>——->|

|

| 6 | +=>TO->+ | IN i

:—> = >4 = +—><data name>->+

| H |

:—m T ' >+

I I | +=>THAN->+

| J——

| |

| g |

|—>NOT LESS->|

| |

| K |

> < —>4

Path Explanation

A This path must be taken for ORGANIZATION RELATIVE and
ORGANIZATION SEQUENTIAL system files. For ORGANIZATION INDEXED
system files, taking this path implicitly declares access via
the prime record key.

4 - 13

Example:
INPUT IDXPERSONNEL AT KEY "17881120".

IDXPERSONNEL, is a file that has ORGANIZATION INDEXED. ‘The
single personnel record with prime RECORD KEY value equal to
17881120 is returned.

Example:
INPUT ACCT-FILE AT KEY EQUAL TRANS-ACCT-NO.

The record in the sequential file ACCT-FILE with actual key
equal to the value of an accepted TRANS-ACCT-NO is accessed.

This path is taken only for ORGANIZATION INDEXED system files to
specify access via an ALTERNATE RBCORD KEY, or to declare
explicitly access via the prime RECORD KEY. Any qualifiers
given to the <record-key name> are ignored. The data item
referenced by <record-key name> must be declared as a primary
REOCORD KEY, or as an ALTERNATE RECORD KEY.

Example:

INPUT IDXPERSONNEL VIA JOB-TITLE AT
KEY = "ENGINEER".

The first record in the ORGANIZATION INDEXED file IDXPERSONNEL
with ALTERNATE RECORD KEY JOB-TITLE equal to ENGINEER is
accessed.

NOTE
To access all records with the same key, use
path D and a SELECT statement.
Take this path to access randomly a specific record.
No duplicates are returned when you access an ORGANIZATION

INDEXED file via an ALTERNATE REQORD KEY with duplicates. Only
the first record satisfying the key value is accessed.

Example:
INPUT ACCT-TRANS AT "“50000000".

The first record with account number equal to 50,000,000 is
accessed.

4 - 14

D

E-G

H-1

Take this path if records are to be accessed sequentially
starting at a key value which satisfies a certain condition.
For ORGANIZATION SEQUENTIAL system files, unused record
positions are accessed until an END OF FILE or INVALID KEY
condition occurs.

Example:

INPUT ACCT-FILE STARTING AT KEY GREATER
TRANS-ACCT-NO.

All records including unused ones in the system file ACCT-FILE
with keys greater than the value of TRANS-ACCT-NO are accessed.

Example: ("SHIPV")

INPUT ACCT-TRANS STARTING AT KEY
NOT < "50000000".

The above statement results in the input of all account
transaction records with a key greater than or equal to
500 Om,OOO-

Example:

INPUT IDXPERSONNEL VIA JOB-TITLE STARTING AT
KEY = “ENGINEER".
SELECT JOB-TITLE = “ENGINEER".

In this example, all records from the ORGANIZATION file
IDXPERSONNEL starting with JOB-TITLE egual to ENGINEER are
input. Fram the records input, the SELECT statement selects
only those records with JOB-TITLE equal to ENGINEER. This
method allows all the records having ALTERNATE KEY JOB-TITLE
WITH DUPLICATES to be made available for reporting.

Taking any of these paths specifies an "equal to" condition.

These paths can be taken only if STARTING has been specified
previously. Taking either of these paths specifies that all
records with a key value greater than the specified key value
are to be input sequentially.

4 - 15

J-K These paths can be taken only if STARTING has been specified
previously. Taking either of these paths specifies that all
records with a Key value greater than or equal to the specified
key value are to be input sequentially.

L This path is taken only for ORGANIZATION INDEXED system files to
specify a string key value.

Example:
INPUT PERS-FILE AT KEY "SMITH, JOHN".

M This path is taken only for ORGANIZATION RELATIVE files to
specify an unsigned integer key value.

N Take this path to reference a data item which is to supply the
key value. The data item must be an accepted data item or an
input item contained within a previously input data structure at
the same input level. For an ORGANIZATION INDEXED file, the
data item must be a string-type item. For an ORGANIZATION
RELATIVE or ORGANIZATION SEQUENTIAL file, it must be a
numeric-type item.

Example:
ACCEPT EMPLOYEE-NUM NUM(7).
INPUT PERS~-FILE AT KEY = EMPLOYEE-NUM.

This INPUT statement specifies that the employee record with key
equal to accepted EMPLOYEE-NUM is to be input.

Example:

INPUT PERS-FILE, ADDR-INFO AT KEY
BQUAL TO NAME.

NAME references an item of PERS-FILE. ADDR-INFO is an
ORGANIZATION INDEXED file with the prime RECORD KEY equal to
ADDR-NAME. The file ADDR~INFO contains information for campany
employees as well as custamers. The above statement specifies
the following: for each PERS-FILE record, the data found in NAME
will be used to access ADDR-INFO, and a record oontaining
mailing address information for the employee is input.

4 - 16

AGE FUNCTION

The AGE Function is a nonstatistical function used to calculate the time
interval (age) between two dates. The AGE Function enables aging to be
done (enables the time interval to be determined) in terms of DAYS,
WEEKS, MONTHS, QUARTERS, and YEARS. The time interval is defined as the
nunber of boundaries crossed between the two dates. The age is returned
as an 8-digit, signed integer item (S9(8)).

Example:

AGE(FROM DATE-LAST-PAYMT TO DUE-DATE)

DATE-LAST-PAYMI and DUE-DATE are two data items in the nondelimited
MMDDYY format. If the year format is not specified, a 2-digit year is
assumed. The AGE Function returns the number of days between the two
dates.

The syntax for the AGE Function is as follows:

A G I
->AGE (>FROM ><data =>(1)
| | | | name>
| B | | H |
+->IN-—->DAYS—=~~~> | +--><date ->+
| | format>
| I
| ==>WEEKS====> |
| |
| D |
| ==>MONTHS =—=> |
| |
| E |
|
| F |
+==>YEARS——=>+
J L N
(1)—>T0 ><data name> >) >
(I I I
I M | 1o [
|I +—><date format->+ +—><string>-—>+ !
| K |
+ >DATE————mmm=>+

4 - 17 PCN 1177185-002

The paths of this syntax diagram are explained below:

Path

Explanation

Take this path to specify implicitly that aging be done in terms
of days. The example presented above illustrates default aging
in terms of days.

Take this path to specify explicitly that aging be done in terms
of days. The results obtained are identical to those cbtained
in path A above.
Example: ("CLIENT")

AGE (IN DAYS FROM DATE-LAST-PAYMT TO DUE-DATE)

To obtain the decimal part of the year which the time interval
represents, the AGE function in the above example can be used in
the following Extension statement:

YR IS AGE (IN DAYS FROM DATE-LAST-PAYMT
TO DUE-DATE)/365.

Take this path to specify that aging be done in terms of weeks.
The difference between dates is calculated in terms of 7-day
intervals.

Example: ("CLIENT")

AGE(IN WEEKS FROM DATE-LAST-PAYMT TO DUE-DATE)
Take this path to specify that aging be done in terms of months.
The value returned indicates the difference in month boundaries

between dates (for example, 12/28/82 to 1/02/83 has one month
boundary crossed).

Example:

AGE(IN MONTHS FROM DATE-LAST-PAYMT TO DUE-DATE)

PCN 1177185-002 4 - 18

Take this path to specify that aging be done in terms of
quarters. The value returned indicates the number of quarter
boundaries between dates.

Example: ("CLIENT")

AGE (IN QUARTERS FROM DATE-LAST-PAYMT TO DUE-DATE)
Take this path to specify that aging be done in terms of years.
The value returned indicates the difference in year boundaries
between dates. For example, 12/28/82 to 1/02/83 has one year
boundary crossed.
Example ("CLIENT")

AGE IN YEARS FROM DATE-LAST-PAYMT TO DUE-DATE)
For a sample of how the decimal part of a year which a time

interval represents can be determined, refer to the information
following the example for path B.

Take this path to specify implicitly that the FROM date (the |
earlier date) is coded in the default nondelimited MMDDYY |
format. All the examples above illustrate this default option. |

Take this path to specify explicitly the format of the earlier
date. The format types available are MMDDYY, MMDDYYYY, YYDDD, |
YYYYDDD, YYMMDD, YYYYMMDD, DDMMYY, DDMMYYYY, and DDDDD. I

Example:

AGE (FROM YYDDD INVOICE-DATE TO CURRENT-DATE)

In this case, INVOICE-DATE is stored in the YYDDD format, while
CURRENT-DATE is stored in the MMDDYY format. The function
calculates the age in terms of days.

Take this path to specify the earlier of the two dates. If this
date is not the earlier, the result of the AGE Function is
negative. The <data name> must reference an item or group which
represents a date in a valid format. (Refer to DATE FORMAT in
this section for a full explanation of valid fommats.) In the
example for path H, INVOICE-DATE is the name of the earlier of
the two dates.

4 - 19 PCN 1177185-002

J Take this path to specify a <date name> or <string> as the later
date.

Example:
AGE(FROM OLD-DATE TO NEW-DATE)

Both OLD-DATE and NEW-DATE are data items coded in nondelimited
DDMMYY format. The age is calculated in terms of days.

K Take this path to specify that the earlier date be aged to the
‘ current date as maintained by the system.

Example:

AGE(FROM INVOICE-DATE TO DATE)

L Take this path if the later date is coded in the default format

of nondelimited DDMMYY. The example for path J illustrates this
option.

M Take this path to specify a particular format for the later
date. The formats available are DDMMYY, DDMMYYYY, YYDDD,
YYYYDDD, YYMMDD, YYYYMMDD, DDMMYY, DDMMYYYY, and DDDDD.

Example:
AGE(FROM OLD-DATE TO YYYYDDD NEW-DATE)

In this case, OLD-DATE is coded in the DDMMYY format, while
NEW-DATE is coded in the YYYYDDD format. Note that NEW-DATE has

a 4-digit year. The function calculates the age in terms of
days.

N Take this path to specify a <data name> which represents the
later date. This <data name> must reference an item or group
which represents a date in valid format. (Refer to DATE FORMAT
in this section for a full explanation of valid date formats.)

In the example for path M, NEW-DATE is the name of the later of
the two dates.

(o) Take this path to specify the later date as a string constant.
The <string> is interpreted as a date according to the format
specified by paths L or M.

PCN 1177185-002 4 - 20

ASSIGN LISTING STATEMENT

The ASSIGN LISTING statement forces the autamatically formatted or
user-formatted report listing produced by the generated report program
to a particular hardware device.

Example:
ASSIGN REPORT LISTING TO PRINTER BACKUP.

The syntax for the ASSIGN LISTING statement is as follows:

A
—=>ASSIGN I l >LISTING I ' >(1)
| B | |=> TO =>|
| =>REPORT—> | i |
| | > = —dd
| ¢ |
+—>FORMS——=>+
D
(1)-——-' > BACKUP: | >,
| E F |
| =—>PRINTER: >|
i | |
| | G |
] +—>BACKUP->+ |
| |
| H I |
+—>TERMINAL~ >+
| |
I g |
| —>BACKUP-> |
| |
| K |
+—>CNLY—>+

4 - 21

The paths of this syntax diagram are explained below:

Explanation

Take this path to force the automatically formatted report to a
particular hardware device.

This path is identical in meaning to path A.

Take this path to force the user-formatted report to a
particular hardware device. This path applies only to reports
specified with the PRINT statement.

Example:
ASSIGN FORM LISTING TO BACKU?P.

Take this path to force the specified listing to a backup
device. This device is dependent on the processing mode of the
generated report program. (Refer to the Process-option SET
statement in this section.) If the mode is BATCH, BACKUP means
PRINTER BACKUP and the hardware device is disk or tape (a
function of the system software). If the mode is ON-LINE,
BACKUP means TERMINAL BACKUP, and the listing is created as a
disk file which is accessible through On-Line REPORTER III.

Take this path to assign the listing to printer or printer
backup.

Take this path to specify that the listing be sent to the
printer. This is the default assignment for the BATCH
processing mode. This option only allows the listing to be sent
to the printer. Whether the listing actually goes to the
printer or printer backup is a function of the system software.

Example:
ASSIGN REPORT LISTING TO PRINTER.

4 - 22

Take this path to specify that the listing be sent to printer
backup.

Example:
ASSTGN REPORT LISTING = PRINTER BACKUP.

Take this path to assign the report 1listing to a terminal
device.

Take this path to specify that the listing be sent to the
terminal. This path should only be taken if the processing mode

is ON-LINE.
Example:
ASSIGN LISTING TO TERM.

The report listing is sent to the terminal via On-Line REPORTER
III.

Take this path to assign the listing to terminal backup. For
the ON-LINE mode, this is the default destination of listing.

If accepted data is used in the report-generation process, only
one set of accepted data values is processed and only one report
(or one set of reports, in the case of a multiple-report
specification) is produced.

Exanple:
ASSIGN FORMS LISTING = TERM BACKUP.

Take this path when the processing mode is ON-LINE to assign the
listing to terminal only. Consequently, it is not possible to
get a printer listing of the report. It is suggested that
TERMINAL ONLY be used for small reports only. This path is
illegal if processing mode is BATCH.

Example:

ASSIGN REPORT LISTING TO TERMINAL ONLY.

This report listing is sent to the terminal via On-Line REPORTER
I1I.

4 - 23 PCN 1177185-002

BASE-DATE OPTION

The SET BASE-DATE process option allows you to set the base date to a
Julian date other than the default. The default BASE-DATE is January 1,
1900.

In same companies, most notably financial institutions, dates used for
opening accounts, closing accounts, and other account transactions are
in the format DDDDD. The value DDDDD represents the number of days fram
a fixed date in the century, called the BASE-DATE.

For example, suppose a savings account was opened on January 1, 1900,
and closed on January 2, 1900. The DDDDD open date would be 0, the
DDDDD close date would be 1. To campute the interest, the open date is
subtracted fram the close date and multiplied times the daily interest.

If a savings account was openhed September 14, 1983, then the DDDDD would
be 30571. This number is 365 times 83 (the number of years fram the
BASE-DATE) plus 20 (the number of days added for leap years) plus 257
(nutber of the day) minus 1 (the offset for the BASE-DATE being January
1).

If your oompany uses a BASE-DATE other than January 1, 1900 in its
calculation of dates, then this option allows you to set a BASE-DATE
other than the default. Other popular BASE-DATEs are January 1, 1957
(specified as 1957001), and January 1, 1930 (specified as 1930001).

The BASE-DATE is used in conjunction with the DATE-CONVERT FUNCTION
using DDDDD-DATE as an output and/or DDDDD as the date format of the
input. The BASE-DATE is also used in the AGE function when DDDDD is
specified as the FROM data-name and/or the TO data-name.

To avoid entering the BASE~-DATE option for every report specification
which uses the DDDDD format, it is recommended that this option be
stored in the vocabuary with the REPLACE statement and the name given in
the REPLACE statement be used when the option is desired.

PCN 1177185-002 4 - 24

—— —— ——— —

The syntax for the BASE-DATE option is as follows:

~—— BASE-DATE -+

A

~+—-<integer>————————>
I
T —+
| I

|
- = —t

The paths of this syntax diagram are explained below:

Path

Explanation

Take this path to specify that date which is to be used as the
BASE-DATE. The date format is YYYYDDD or YYDDD, where YYYY
represents a 4-digit year, YY represents a 2-digit year, and DDD
represents a 3-digit day of the year.

REPORTER III will accept either year format (YYYY or YY) and
autamatically detects the format being used. The actual format
used by REPORTER III is YYYYDDD. If the format used for the

BASE-DATE is YYDDD, REPORTER III will autamatically add the
current century to the date.

A valid DDD field must be fraom 1 to 365 for non-leap years and 1
to 366 for leap years.

Examples:
SET BASE-DATE TO 52001.

The BASE-DATE has been changed to January 1, 1952.
SET BASE-DATE TO 1880001

The BASE-DATE has been changed to January 1, 1880.

4 - 25 PCN 1177185-002

BUILD INTERNAL ATTRIBUTES CLAUSE

The BUILD Internal Attributes clause declares the type and size of the
data name that is output fram the BUILD statement.

The syntax for the BUILD Internal Attributes clause is as follows:

4=—— NUMERIC ——+ >
| T |
| | F G
| +—— (——— <integer> —+ —t—) =>
| | |
| | 1 |
% +—- , <integer> —>+
J

v

+—-— BOOLEAN
The paths of this syntax diagram are explained below:
Path lanation

A This path is taken to specify a string-type output for the BUILD
name.

B Take this path if the default string length is going to be used
for the BUILD output name being specified. The default length
is STRING-SIZE. STRING-SIZE can be set by the Process-option
SET statement. If the STRING-SIZE is not set, the system

default is used. Refer to Appendix B for more information about
system defaults.

PCN 1177185-002 4 - 26

This path is taken to specify a non-default length for the
string-type output for the BUILD name. The integer specifies
the length of the BUILD name in number of characters.

If the integer value is larger than the value of STRING-SIZE,
truncation will result.

Example: ("SHIPV")

BUILD
BILL~-NUMBER-PREFIX STRING (2),
BILL-NUMBER-ONLY NUM (6)

FROM
NUMBER-OF-BILL.

In this example, the BUILD name of BILL~-NUMBER-PREFIX is a
two-character string which represents the first two character
positions of NUMBER-OF-BILL.

This path is taken to specify a BUILD name of unsigned mmeric
type.

Take this path if the default size for a numeric BUILD name is
used. The path specifies an unsigned mumeric BUILD name. The
default size is determined by INTEGER-SIZE and FRACTION-SIZE,
which can both be set by the Process-cption SET statement.
Refer to Appendix B for information about the system defaults.

This path is taken to specify the size of the mummeric BUILD
name.

The integer specified by taking this path indicates the number
of digits in the integer part of the numeric BUILD name.

Example: (“SHIPV")

BUILD
SKIP 2,
BILL~NUMBER-ONLY NUM (6)
FROM
NUMBER-OF-BILL.

In this example, the BUILD name of BILL-NUMBER-ONLY 1is a
six-character integer. After skipping two character positions
of NUMBER-OF-BILL, BILL-NUMBER-CNLY refers to the next six
character positions.

4 - 27

This path is taken to specify an integer-cnly numeric BUILD
name. Path G provides an example.

This path specifies a fractional part for the BUILD name being
defined. The integer specifies the size of the fraction in
number of digits. The decimal point is implied and occupies no
character positions.

Example:
INCHES IS CENTIMETERS * 0.3937 NUM (6,4).

BUILD
INCHES-WITH-LESS~-PRECISION NUM (6,2),
SKIP 2

FROM
INCHES .

In this example, the BUILD name INCHES-WITH-LESS~-PRECISION is a
real number with six positions before the decimal and two
positions after. The decimal point is implied and occupies no
position.

This path is taken to specify a Boolean-type BUILD name.
Boolean items are represented internally as numeric 1 or 0 and
printed as TRUE or FALSE, respectively. A Boolean item occupies
one character position.

The following 1list shows the results that correspond to the
character position referenced by a BUILD name Boolean item.

TYPE VALUE RESULT
BOOLEAN 0] FALSE
1 TRUE
NUMERIC 0 FALSE
1 TRUE
2 through 9 FALSE

Caution should be exercised when using the Boolean-type BUILD
name to reference a string character position, because hardware
and software changes could cause unpredictable results.

4 - 28

The following hexadecimal values for string character positions
should cause a result of TRE; all others should cause a result
of FALSE.

HEXADECIMAL GRAPHIC EQUIVILENT

VALUE (U.S. CHARACTER SET)
oL ScH (1)
1 Dl (1)
21
3l
4
51
61 /
n
81 a
9] j
Al cent sign (only in character sets)
Bl
ca A
Dl J
El
n 1l

(1) refers to a data~commmication character in EBCDIC
form.

4 - 29

BUILD STATEMENT

The BUILD statement is used to create new items or redefine existing
items in the following ways:

1. Concatenating data names.
2. Isolating portions of data names.
3. Converting the types of data names.

For a single report, only one BUILD statement is allowed. For multiple
reports, one BUILD statement per section is allowed.

The data name used as input to a BUILD statement may be a vocabulary
item, a derived item, or an accepted item. In the case of multiple
reports, the input data name may be a name from a BUILD statement in the
Input Section. Refer to the explanation of Path I (in the syntax
diagram that follows) for more information about the allowable input
data names.

Camputational, Boolean, or A Series binary data names are converted to
character form when new names are created with the BUILD statement.

CAUTION

For A Series users, the value of the output data
name is unpredictable if the character position or
positions of an input data name are referred to as
numeric and oontain the hexadecimal wvalue of A
through F.

The following examples show how the BUILD statement and the SKIP clause
are used to create new items. The syntax diagram and path prampts for
the BUILD statement follow the examples.

The first example shows how three existing items can be joined to create
one new item.

Example: ("SHIPV")

BUILD
CAL~DATE-OF-BILLING NUM (6)
FROM

4 - 30

MONTH-OF-BILLING,
DAY-OF-BILLING,
YEAR-OF-BILLING.

In this example, the new item CAL~-DATE-OF-BILLING was created by joining
the vocabulary items MONTH-OF-BILLING, DAY-OF-BILLING, and
YEAR-OF-BILLING. The criginal data names used to build the new item
cannot be used with the Date-Convert function or the AGE function unless
a oomplicated extension is created. However, the new item can now be
used in these functions.

The next example shows how to use the SKIP clause to skip a specified
number of characters in an item being built.

Example: ("SHIPV")

BUILD
SKIP 2,
BILL-NUMBER-ONLY NUM (6)

FRM
NUMBER-OF~BILL.

In this example, BILL~-NUMBER-QNMLY uses anly the last six positions of
NUMBER-OF-BILL. The first 2 positions of NMUMBER-OF-BILL have been

skipped.
The third example carbines the first and second examples.

Example: ("SHIPV")

BUILD
CAL~DATE-OF-BILLING NUM (6),
SKIP 2,

BILL~NUMBER-ONLY NUM (6)

FROM
MONTH-OF~-BILLING,
DAY-OF-BILLING,
YEAR-OF-BILLING,
NUMBER-OF-BILL.

4 - 31

The following diagram represents the character layout of the items
combined in the third exanple:

CAL~DATE-OF-BILLING
? POSITIONS SKIPPED

| BILL~-NUMBER-ONLY

!
I
|
I
l I

OUTPUT — | | |

D B R B RS B R R A R e ST)
l1 2 3 4 56 7 8 91011 12 13 14|— CHARACTER

i

Pttt —pm—fpp et FOSITION
INPUT — | [| I | |
I | l l
: } } NUMBER-OF-BILL
: : YEAR-OF-BILLING
} DAY-OF-BILLING

MONTH-OF-BILLING

The following example shows how truncating is done to represent a number
as an integer only.

le:

INCHES IS CENTIMETERS * 0.3937 NUM (6,4).

BUILD
INCHES-ONLY NUM(6)
FROM
INCHES.

In this example, INCHES occupies six positions before the decimal point
and four positions after. Decimal points are implied and occupy no
character positions. INCHES-ONLY only refers to the first six
positions, so RP3REP autamatically fills the urmsed space with an
implied skip of 4.

4 - 32

The following represents the character layout for the preceding example:

Tnams-(mx SIKIP4(J'nplied)

| I |

S Seeaa B L L e e et e £

l1 2 3 4 5 6 7 8 9 10/-- CHARACTER
T——h—t—-——.—-—-’-—b—#——-&-—i——-h——i- POSITION

b e b
v L

I
INCHES

INCHES has an implied decimal point between character positions 6 and 7.

The syntax fortlxéBUII.Dstatenent is as follows:

2 S ’ (l)
|
| A C
——>BUILD ==t <name> i T (2)
|
| I D |
| +— <BUILD internal attributes> —+
|
| B
+— SKIP — <integer> T *l (3)
+—— POSITIONS —+
(1)< -t +=< ’ +
Gl | Ji
E | H ([| | K
(2)=—+ + FROM —4+——— <data name> —>.

| I
| P !
+-— <editing attributes> —+ {

i

(3)

The paths of this syntax diagram follow.

4 - 33

Path

Explanati.

The name assigned here defines a BUILD output data name. The
name must be unique; that is, it cannot be a name defined as a
vocabulary name or a derived data name. Once defined, a BUILD
output data name can be used in the report specifications in the
same manner as any other data item.

This path is taken in order to skip a specified number of
character positions.

Example: ("SHIPV")

BUILD
SKIP 2 POSITIONS,
BILI~NUMBER-ONLY NUM (6)

FROM
NUMBER-OF-BILL.

In this example, the first two positions of NUMBER-OF-BILL are
bypassed.

Take this path to specify the following default internal
attributes:

. A default type of unsigned numeric.

. A default item size of INTEGER-SIZE or FRACTION-SIZE.
Alternatively, the item size can be set with the
Process—option SET statement.

This path is taken to specify the BUILD Internal Attributes for
the type and size of items. Refer to the explanation of the
BUILD Internal Attributes clause in this section for more
information.

Example: ("“SHIPV")

BUILD
SKIP 2,
BILL~NUMBER-ONLY NUM (6)
FROM
NUMBER-OF-BILL.

In this example, BUILD Internal Attributes are used to specify

that BILL-NUMBER-ONLY 1is a numeric item containing six integer
positions.

4 - 34

Take this path to specify default editing. A default editing
picture is derived from the <BUILD internal attributes>
specified for the item. The example for path D illustrates the
specification of default editing. For that example, the
default editing picture is z(5)9.

This path is taken to specify an editing picture other than the
default, which is used when the data item is printed.

Example: ("SHIPV")

BUILD

SKIP 2,

BILL-NUMBER-ONLY NUM (6) WITH PIC "9(6)"
FROM

NUMBER-OF-BILL.

BILL-NUMBER-ONLY will be printed with the COBOL editing picture
u9(6)" .

Take this path as many times as necessary to specify all of the
BUILD output names and skips.

This path should be taken after you have specified all of the
BUILD output names and skips.

This path is taken to specify the data name that will be input
to the BUILD statement. The data name must be known to RP3REP
prior to being used in the BUILD statement.

Depending on what kind of item you are specifying, the item
must have already been included in the report specifications
according to the following guidelines:

. A vocabulary item must have been specified through an
INPUT statement.

. An accepted item must have been specified in the
ACCEPT statement.

. For a derived item, the extension which derives the
name must be specified prior to the BUILD statement
which uses it.

If the data name is a vocabulary item, it cannot be a group
item. The number of character positions used by a vocabulary
item is given in the Vocabulary Dictionary 1listing under the
column heading STORAGE LENGTH.

4 - 35

Each data name for an accepted data item or derived data item
(extension) must be unique and can be used only once as input
in each BUILD statement. If it is necessary to use the same
data name more than once, an extension can be used to duplicate
the data name. The name of the extension can then be used in
the BUILD statement. The extension must be defined prior to
the BUILD statement.

The number of character positions used by an accepted or
derived item is the value given in the <internal attributes>
clause for that item. If an <internal attribute> was not
specified, then the number of character positions is determined
as follows:

For a string item, the current setting of STRING-SIZE
is used.

For a numeric item, the sum of the current settings
of INTEGER-SIZE and FRACTION-SIZE is used.

. Boolean items have a fixed size of one character.

If a vocabulary, accepted, or derived item is a signed numeric
item, only the absolute value will be used. For example,
-52.34 is treated as 52.34.

Certain restrictions in using the BUILD statement apply to
derived data names which are statistical functions. For a
single report, this type of data name cannot be used in the
BUILD statement. For multiple reports, this type of data name
cannot be used in the BUILD statement in the following
situations:

In the same Input Section in which the data name was
created.

In the same Report Section in which the data name was
created.

However, derived data names which are statistical functions
created in the Input Section can be used in the BUILD statement
of a Report Section if the derived data name has been
reassigned to a new data name in the Report Section. Consider
the following example:

Example: ("SHIPV")

FOR INPUT:
INPUT ACCT-TRANS.

AVG-AMOUNT-OWED IS % A STATISTICAL FUNCTION
AVG(AMOUNT-OWED) NUM (6,2). % IN THE INPUT SECTION

1177185-003 4 - 36

FOR REPORT 1:

REP-1-AVG-AMOUNT-OWED IS $ THE INPUT SECTION STATISTICAL
AVG-AMOUNT-OWED . % DATA NAME IS REASSIGNED TO A
% NEW NAME IN THE REPORT SECTION
BUILD
THOUSANDS-AVG-OWED NUM (3),
HUNDREDS-AVG-OWED NUM (3),

CENTS-AVG-OWED NOM (2)
FROM
REP~1~AVG-AMOUNT-OWED . $ THE NEW NAME IS USED AS
$ A BUILD INPUT DATA NAME

Take this path as many times as necessary to specify all of the
BUILD input names. The total size of all the data names must be
equal to or larger than the total size of all the BUILD output
names and skips.

This path should be taken after all of the BUILD input data
names have been specified.

4 - 37

C-B-HEADING DESC

C-b-heading Desc describes a control-break heading which is printed for
each value of the referenced item.

The syntax for C-b-heading Desc is as follows:

A E
—t——=><data name> >
| I L
| B I K |
~—><extension>->		«
	Fi	
€		G
=—> RANGE —==—>	II—-/ 1 /—><report-item mod>->	

| I |
| D | H 1 |
+~—-><c~b name>—>+ +—=/1 /————->ASCENDING———>+
1 |
| g |
+-->DESCENDING->+

The paths of this syntax diagram are explained below:

Path Explanation

A Take this path to specify that a control-break heading be
printed for each value of <data name>. The appearance of <data
name> in this clause identifies it as a control-break name, and
information is grouped based on this item. The <data name> must
reference a nonstatistical data item. Control breaks for the
report must not have been defined previously in another
statement.

Example: ("“INVENT")
REPORT BY DEPARTMENT LISTING PART-NO, QUANTITY.
DEPARTMENT 1is a data item defined to be a control-break item.

The value is printed in a control-break heading each time the
value changes.

B Take this path to define an <extension> and specify that a
control-break heading be printed for each value of the derived
data item. The <data name> defined within the <extension>

4 - 38

becames a control-break name, and information is grouped based
on this item. The derived data item must be nonstatistical.
Control breaks for the report must not have been defined
previously in another statement.

Example: ("INVENT")

REPORT BY QUANTITY-HUNDREDS WHICH IS
QJANI'I'IY / 100 LISTING PART-NO, TUNIT-COST.

QUANTITY-HUNDREDS is defined to be a control-break item. The
value (equal to QUANTITY/100) is printed in a control-break
heading each time it changes.

Take this path to specify that summary information be printed
for each value of a range-break item def:l.ned previously by a
RANGE ' statement.

Example: ("CLIENT")
RANGE BY BALANCE~-DUE FROM O BY 1000.00 TO 5000.00

REPORT BY RANGE AS “BALANCE DUE" LISTING CUST-NO,
CREDIT LIMIT, BALANCE-DUE.

The RANGE statement defines a single control-break item which is
referenced by RANGE. The following report would be produced:

BALANCE DUE: $ 0.00 -~ $ 1000.00
QusT CREDIT BALANCE
NO LIMIT DUE

001231 1000 $
034100 500 $
510666 500 §

4 - 39

BALANCE DUE: §$ 1000.00 - $ 2000.00

CuUsT CREDIT BALANCE
NO LIMIT DUE
107731 5000 $ 1103.00
133320 3000 $ 1257.23
554140 1000 $ 1802.70

Take this path to specify that a control-break heading be
printed for each value of a previously defined control-break
item; <c-b name> must reference this item.

When control-break headings are used in conjunction with the
GROUP statement, the following restrictions are imposed on the
specification of control-break headings:

l. The first control-break heading must be for the first
(highest-level) control break declared in the GROUP
statement.

2. The last oontrol-break heading need not be for the
last (lowest-level) coontrol break in the GROUP
statement. However, all intermediate oontrol breaks
rust be used as control-break headings in the same
sequence as they appeared in the GROUP statement.

The following is an example of a valid application using the
GROUP statement and REPORT statement:

GROUP BY BRANCH, BY CREDIT-LIMIT, BY CUST-NO.
REPORT BY BRANCH; BY CREDIT-LIMIT
LISTING QUSTOMER-NAME.

The following is an example of an invalid application using the
GROUP statement and REPORT statement.

GROUP BY BRANCH, BY CREDIT-LIMIT, BY QUST-NO.

REPORT BY BRANCH; BY CUST-NO LISTING
CQUSTOMER-NAME .

4 - 40

Take this path if default oontrol-break ordering and default
printing of the control-break headings is desired.
Control-break values are sorted and printed in ascending order
by default. The control-break value is also printed by default
in each heading, and a default identifier is supplied which is
used on the control-break name. (Refer to discussion of DEFAULT
IDENTIFIERS under COLUMN DESC in Section 4.)

Take this path to specify explicitly control-break ordering
and/or to specify nondefault printing of control-break headings.
The nondefault printing options are as follows:

1. Change the default control-break heading identifier.

2. Specify literal string prefixes and/or suffixes for
the control-break item value.

3. Specify conditional control-break value suppression.
Take this path to specify nondefault printing of the
control-break heading. The nondefault options available are
listed in the explanation of path F.
Example: (“CLIENT")

REPORT BY INV-CUST-NO

AS “INVOICE CUSTOMER NUMBER"
LISTING INVOICE-NUMBER, TOTAL~AMOUNT .

Within the control-break heading, the value of INV-CUST-NO is
identified as

INVOICE CUSTOMER NUMBER: 001179
ard not as

INV QUST NO: 001179
Take this path to specify explicitly the order in which
control-break values are to appear in the report. This path
cannot be taken if path C was taken, and a range-break item was

referenced. The default is to sort and print control-break
values in ascending order.

4 - 41

Taking this path explicitly specifies ascending order for
printing control-break values.

Example: ("CLIENT")

REPORT BY INV-CUST-NO ASCENDING LISTING
INVOICE-NO, TOTAL~AMOUNT.

Invoices are grouped by custamer number. Customer numbers
appear in ascending arder in the report.

Taking this path specifies descending order for printing
control-break values.

Example: (“CLIENT")

REPORT BY INV-CUST-NO DESCENDING LISTING
INVOICE-NO, TOTAL~AMOUNT.

Invoices are grouped by custamer number. Custamer numbers
appear in descending order in the report.

Take this path to specify both explicit ordering and nondefault
printing of control-break values.

Take this path after all nondefault specifications are made.

4 - 42

C-B-SUBHEADING DESC

C-b-subheading Desc describes an item to be included in the
control-break heading which is related to the control-break item.

The syntax for C-b-subheading Desc is as follows:

A E
-—-=><data name> >

l I I

| B I | F l

| —><extension>->| +——><report-item mod>=>+

| |

e |

| —><string>——->|

|

| D |

+—-—><item descr>=>+

The paths of this syntax diagram are explained below:

Path lanatian

A Take this path to specify that the value of a <data name>
associated with the ocontrol-break item be included in a
control-break heading. The value of the <data name> is printed
on its own separate line within the control-break heading and is
indented five spaces.

Example:

REPORT BY CUST-NO INCLUDING CUSTOMER-NAME
LISTING INVOICE-NO, TOTAL~AMOUNT.

The oontrol-break heading for CUST-NO includes the value of
CUSTOMER-NAME. This value is written on a separate line in the
heading and is identified by "“CUSTOMER-NAME:".

B Take this path to define an <extension> associated with the
control-break item and to specify that the value of the
<extension> be included in a control-break heading. The value
of the derived item is printed on its own separate line within
the control-break heading and is indented five spaces.

4 - 43

Example: ("CLIENT")

REPORT 3Y CUST-NO INCLUDING UNUSED-CREDIT IS
CREDIT-LIMIT - BALANCE-DUE LISTING
INVOICE-NO, TOTAL~AMOUNT.

The following shows the control-break heading as it appears in a
portion of the report:

CUST NO: 001172
UNUSED CREDIT: 83.27

INVOICE - TOTAL
NO AMOUNT
071310 $ 131.20

Take this path to specify a <string> to be printed in the
control-break heading. The <string> must be 30 characters or
less and is printed on its own 1line, indented five spaces,
within the heading.

Example: ("CLIENT")
REPORT BY CUST-NO INCLUDING

"INVOICES ON ABOVE ACCCUNT ARE" LISTING
INVOICE~NO, TOTAL~AMOUNT.

The control-break heading appears as follows in a portion of the
report:

4 - 44

CUST NO: 001172
INVOICES ON ABOVE ACCOUNT ARE

INVOICE TOTAL
NO AMOUNT
051732 $ 230.00

Take this path to specify that the value of an <item desc> be
included in a control-break heading. The value of the <item
desc> is printed on its own separate line within the
control-break heading and is indented five spaces.

Example: ("CLIENT")
REPORT BY QUST-NO INCLUDING

CREDIT-LIMIT - BALANCE-DUE NUM(5,2)
LISTING INVOICE-NO, TOTAL~AMOUNT.

The control-break heading appears as follows in a portion of the
report:

QUST NO: 001172

CREDIT LIMIT - BALANCE DUE: 83.27
INVOICE TOTAL
NO AMOUNT
071310 $ 131.20

4 - 45

Take this path if default printing is desired for the data item.
The data item then is always printed by default and is
identified in the control-break heading by a default identifier.
(Refer to DEFAULT IDENTIFIERS under COLUMN DESC in Section 4.)

Take this path to specify nondefault printing of the data item
value. The nondefault printing options are the following:

1. Change the data item identifier.

2. Specify character string prefixes and/or suffixes.

3. Specify conditional data item value suppression.
Exanple: ("CLIENT")

REPORT -BY QUST-NO INCLUDING DISOOUNT-PERCENT

AS "DISCOUNT" SUFFIXED BY "$" LISTING
INVOICE-NO, TOTAL-AMOUNT .

The control-break heading appears as follows in a portion of the
report:

CUST NO: 001172
DISCOUNT: O05%

INVOICE TOTAL
NO AMOUNT
071310 $ 130.50

4 - 46

OOBOL PICTURE

A COBOL Picture optionally is used to describe how an item is to be
printed. When specified as a string in REPORTER III, a COBOL Picture
must have no blanks after the first quote and no blanks before the
ending quote. It must be a valid COBOL editing picture. The
specification is taken as provided and used in the generated program;
that is, no syntax checking is performed by the Report Language Analysis
Program.

The following characters are used in forming COBOL editing pictures:

Character Definition

Dollar sign
Asterisk (check protect)
, Comma

Actual decimal point
Space

Zero

Plus

Minus

Credit

Debit

Zero suppress

Slash

*)

\N%% I +ow:

An ANSI-74 or ANSI-85 COBOL reference manual should be consulted for the |
exact rules for forming COBOL editing pictures.

Examples:

"S$(5)z.99"
“7ZZ,27Z.99"
"X(].O) "
"B(S) "
"99/99,/99"

4 - 47 1177185-003

COLUMN DESC

The Column Desc clause specifies the content of a column to be listed in
the report.

Example: ("INVENT")

REPORT PART-NO, QUANTTITY.

This produces the following type of report:

PART QUANTITY
NO

164310 00023

164320 00018

164322 00130

.

.

The syntax for Column Desc is as follows:

A E L
----- ><{data name >
B K
——><string>-—--> <
F
C G
-=><{item desc>-> -/ 1 /——><report-item mod>->
D H I
+--><extension>->+ +-—/ 1/ >ASCENDING——-———-= >+
| |
| 3 |

+—->DESCENDING->+

4 - 48

The paths of this syntax diagram are explained below:

Path

A

§_1_;planaticn

Take this path to specify that a colum consisting of the values
of a <data name> be printed. The appearance of the <data name>
in this clause identifies it as a colum name for purposes of
footing. The <data name> provides a default heading for the
ocolum.

Example: ("INVENT")

REPORT PART-NO.
This specifies that one column of information be listed. Each
entry in the colum represents a part and is given the part
nunber of that part.

Each oolum name must be unique; that is, a <data name> can be
used only once as a colum name. If it is desired to report the
same data item in more than one colum, this can be done by
reporting an extension consisting of the data item.

Example:
REPORT NAME, SALARY, NEW-NAME IS NAME AS “"NAME".

In this example, the first and third colums contain identical
values and have identical headings.

Take this path to specify a constant string of characters to be
printed in a colum. The string must be 30 characters or less.
The ocolum is unnamed and has no identifying heading. This
allows the introduction of constant values into each line of the
listing or the shifting of columns right or left by including an
appropriate number of spaces in the string.

Example:
REPORT QUST-NO, "ACQOUNT OF", CUSTOMER-NAME.

4 - 49

This produces the following type of report:

ausT CUSTOMER
NO NAME
117680 ACCOUNT OF JOHN Q. DOE
128200 ACCOUNT OF HELEN SMITH
171111 ACCOUNT OF JACK ADAMS

Take this path to specify that a colum consisting of the item
values described by <item desc> be listed. There is no colum
name associated with the colum. The <item desc> itself, if
less than 30 characters, provides a default heading for the
colum.

Example: ("“INVENT")

REPORT PART-NO, UNIT-COST * QUANTITY NUM(8,2).

The underlined portion of the REPORT statement specifies a
colum of data to be printed consisting of the unit cost values
times the quantity for each part. The following type of report
is produced:

PART UNIT QOST
NO * QUANTITY
119017 1671.03
121130 1833.01
132261 926.63

Take this path to define an extension and to specify that a
colum consisting of the values of this extension be listed.
The <data name> defined within the extension becanes a colum
name and provides a default heading for the column.

Example: ("INVENT")

REPORT PART-NO, VALUE-ON-HAND IS
UNIT-COST * QUANTITY.

4 - 50

The underlined portion specifies a column of data to be printed
consisting of the value of all units of a particular part number
in stock. The column is named VALUE-ON~HAND. The following
type of report is produced:

PART VALUE ON

NO HAND
164380 2131.00
170111 1100.15
215010 250.80

. 3
L] L]

Take this path if the information to be reported (the
information in this ocolum) is not to be ordered based on this
data item, and if default colum printing is acceptable. Each
value of the data item appears in the colum. A colum heading
is formed fram the default identifier. (Refer to DEFAULT
IDENTIFIERS, which follows the path explanations for COLIMN
DESC.) If the default identifier is oversized with respect to
the width of the data item in the colum, an attempt is made to
reduce the size of the heading by separating the default
identifier on space boundaries and by generating up to a 3-line
heading.

Take this path to specify ordering of information based on this
item and/or nondefault colum printing. The nondefault printing
options are as follows:

1. Change the colum heading.
2. Specify item value prefixes and/or suffixes.
3. Specify suppression of certain values in the colum.

Take this path to specify nondefault oolum printing. The
nondefault options available are listed under the explanation of
path F above.

4 - 51

Example: ("“VOCAST")

REPORT ASSET-NO AS "“ASSET NUMBER", QOST.

This illustrates a nondefault column heading. The first column
is headed ASSET NUMBER instead of the default heading ASSET NO.

Take this path to specify that information to be reported be
ordered based on this data item. This path cannot be taken if a
<row desc> clause was previously specified in the REPORT
statement. The ordering specified here is subordinate to any
ordering of oontrol-break groups. Also, if ordering is
specified for other colums, the ordering specified first is
considered the highest level for colums. Since only one sort
is done for grouping and ordering, the ordering specified here
must be consistent with the ordering specified elsewhere.

Example:

REPORT LAST-NAME ASC, FIRST-NAME ASC, SALARY.
Information is ordered based on FIRST-NAME for those individuals
with identical last names.
Take this path to specify that information be ordered in
ascending sequence based on this colum of information.
Example: ("CUSTV")

REPORT CUST-NAME ASCENDING, NET-PAYMT.
In this case, information reported on custamer remittances
appears in alphabetic order based on the customer's name.
DESCENDING specifies that information be ordered based on this
item in descending sequence.
Exanple: ("VOCEMP")

REPORT EMPYE-NAME, SALARY DESC.

In this case, information on employees is reported in descending
order based on SALARY.

4 - 52

K Take this path to specify both ordering of information based on
the column and nondefault printing of the colum.

L Take this path after all specifications for the column are made.

DEFAULT IDENTIFIERS

A default identifier is used to identify an item in a report when no "AS
clause” is specified to identify the item (refer to Report-item Mod in
this section for an explanation of "AS clause"). When the values of the
item are printed in a colum, the default identifier serves as the
colum heading. The description of the item in a REPORT statement or
SUMMARIZE statement determines the default identifier.

If the item is referenced by a <data name>, the default identifier is
formed from that <data name> as follows:

1. One space is placed between all elements of the <data name>,
except after a "(" or "[" and before a ")" or "]".

2. Every hyphen within a <name> which is not adjoined to other
hyphens is replaced by a blank (for example, A-B~-C-D becames A
B CD). If more than one hyphen is contained contiguously in
a <name>, the first hyphen and every alternate adjoining
hyphen is replaced by a blank (for example, A-——B becomes
A - - B).

If the preceding would result in an identifier longer than 30
characters, only the first 27 characters are used and an ellipsis (...)
forms the last three characters of the identifier.

Exanmples:
Data Name Default Identifier
QosT QOST
ACOOUNT-NO OF BILL ACOOUNT NO OF BILL
PART-DESCRIPTION OF PART DESCRIPTION OF UNIT OF...
UNIT OF CABINET
POINTS-OF-SHIPMENT(1] POINTS OF SHIPMENT [1]

4 - 53

If the item is specified as an <extension>, the default identifier is
formed fram the derived data item name by replacing any hyphens with
blanks.

If the item is a <string>, no default identifier is created.

If the item is described via an <item desc> that contains an
<expression> which is a <number> or <string>, no default identifier is
created. Otherwise, the default identifier is formed fram the <item
desc> as follows:

1. Any <internal attributes> and/or <editing attributes>
specifications are deleted.

2. One space is placed between all elements of the <item desc>,
except after a "(" or "[" or before a ")" or "]".

3. Every hyphen within a <name> which is not adjoined to other
hyphens is replaced by a blank (for example, A-B-C-D becames A
B CD). If more than one hyphen is contained contiguously in
a <name>, the first hyphen and every alternate adjoining
hyphen is replaced by a blank (for example, A-----B becomes
A - - B) .

If the preceding would result in an identifier longer than 3%
characters, only the first 27 characters are used and an ellipsis (...)
forms the last three characters of the identifier.

Exanples:
Item Desc Default Identifier
UNIT-COST * QUANTITY UNIT COST * QUANTITY
NUM(6,2)
AVG (COST WHERE MONTH = 03) AVG (QOST WHERE MONTH = 03)
TOTAL (BRALANCE-DUE WHERE TOTAL (BALANCE DUE WHERE TH...

THIRTY-DAYS-DUE > 0)

4 - 54

QoL

The Colums clause specifies the content of the colums to be listed
the report. Each line of information in the colums (a detail line)
represent a logical record or summary information related to each val
of a control-break item.

£88

Example: (“INVENT")

~ REPORT PART-NO, QUANTTTY.

This produces the following type of report:

PART QUANTITY
NO
164310 00023
164320 00018
164322 00130

Each line represents ane logical reocord.

The syntax for the Colums clause is as follows:

A | | ¢ | E

| |
| B i
+—>FOR EACH <row desc>: =>+

4 - 55

The paths of this syntax diagram are explained below:

Explanation

Take this path if information fram each logical record is to be
listed.

Take this path to specify that the colums are to consist of

" summary information for each value of a control-break item.

Summary information for control-break items consists of items
which are related to the control-break item and have a constant
value for each value of the ocontrol-break item. In many
instances, summary items are derived statistical items; but they
also can be nonstatistical items. If path B is used, all items
reported as columns must be summary items related to the
specific control break. Nonstatistical items which are reported
as oolums are implicitly declared summary items for the
specified control break.

The first colum printed is specified by <row desc> and contains
the values of the control-break item.

<Row desc> defines the default scope for any statistical
functions which are specified in subsequent <colum desc>s.

Example: ("“VOCEMP")
RANGE BY EMPYE-AGE FROM 20 BY 5.

REPORT FOR EACH RANGE: OOUNT, AVG(FEDERAL-TAX).

The underlined portion specifies that each line or row in the
colum listing consists of summary information for a particular
age range. The following type of report is produced:

4 - 56

RANGE - QOUNT AVG

(FEDERAL

TAX)
20 - 25 5 $ 751.20
25 - 30 11 $ 843.72
30 - 35 3 $ 1022.80

This path describes a colum of data to be printed in the
report. Each oolum is headed at the top of each page by an
appropriate identifier.

Take this path as many times as necessary to describe all
colums which are to be reported.

Colums are printed left to right in the same order as they are
specified in the REPORT statement. If more ocolums are
specified than can fit on a page, a line overflow results,
unless PAGE-OVERFLOW was set. (Refer to the Report-option SET
statement in this section.)

(For discussions of line overflow and page overflow in
oconnection with ocolums, refer to LINE OVERFLOW and PAGE
OVERFLOW, respectively, which follow the path explanations for
COLUMNS.)

The following is an example of a multiple-colum specification
using many nondefault optimns.

Example:

REPORT NAME ASCENDING WHERE CHANGES, AMOUNT, QTY
WHERE QTY > O AS "QUANTITY", "CASES AT"
WHERE QTY > O, QOST IS AMOUNT * QTY
AS "ORDER QOST", ITEM-NR AS "ITEM"
PREFIXED BY “#".

4 - 57

The preceding statement produces the following report:

NAME AMOUNT QUANTITY ORDER ITEM
QOST
ADAMS, JOHN $10.50 5 CASES AT 52.50 #17

$12.22 16 CASES AT 73.32 . #62
$13.05 1 CASES AT 13.05 #45
AMON, CHARLES $ 5.00 4 CASES AT 20.00 #11
$ 2.00 0.00 #41
BAKER, FRED $21.10 2 CASES AT 42.50 #26

E Take this path after all colums are specified.

LINE OVERFLOW

If the PAGE-WIDTH is insufficient to print all colums specified in the
REPORT statement, by default each line of the listing is continued onto
the necessary number of lines. In the same way, corresponding detail
headings are continued onto multiple lines. However, the individual
headings are not split onto multiple lines in the usual fashion.

The following is an example of line overflow. It shows the result of
the report option SET PAGE-OVERFLOW = FALSE (the default). It is useful
to campare this exanple with the exanmple showing the use of page
overflow in connection with the same REPORT statement (refer to PAGE
OVERFLOW, which follows).

Example

REPORT A,B,C,D,E,F,G,H,I,J,K,L.

The preceding statement produces the following page layout, which
reflects line overflow. In this illustration, the capital letters (A
through L) represent headings, and the lowercase letters (a through 1)
represent data.

4 - 58

bl X =
QU0 ~AaQoD QW
>0 0
= -0 g
(WY) (SN]
[

bl)
o0
e Q,
. 0

PAGE 2

)
om0
= Q =D
Gm

(W]

QU tOQw
o0

Ao

etc.

The following is an example of line overflow with a control break. It
is useful to camwpare this example with the example showing the use of
page overflow in connection with the same REPORT statement (refer to
PAGE OVERFLOW, which follows).

Example:

REPORT BY STATE LISTING A,B,C,D,E,F,G,H,I,J,K,L,M.

The preceding statement produces the following page layout, which
reflects line overflow with a control break. In this illustration, the
capital letters (A through M) represent headings, and the lowercase
letters (a through m) represent data.

4 - 59

R g
Qo Cfeaw E
HU) g
(SN
% -

goa

TIXIN

A N
~a o
g 50
Ll o1} e
. O w.

PAGE 2

N A Q

= U o w

350 lc i<l @] E
FoQ Ho
w0 Gt g

etc.

NOTE

By default, VERTICAL~-SPACING 1is set to 2 when line
overflow occurs. Setting VERTICAL-SPACING to 1 when
line overflow is expected results in paper saving at
the expense of same report readability.

PAGE OVERFLOW

If more oolums are specified than can fit on a page and if the

PAGE-OVERFLOW option is set to TRUE (refer to Report-Option SET
statement in this section), page overflow occurs. In this case, one
logical page of information is printed on several physical pages.

4 - 60

The following is an example of page overflow with the report option SET
PAGE-OVERFLOW = TRUE. -

Example:

REPORT A,B,C,D,E,F,G,H,I1,J,K,L.

The preceding statement produces the following page layout, which
reflects page overflow. In this illustration, the capital letters (A
through L) represent headings, and the lowercase letters (a through 1)
represent data.

PAGE 1.1 . PAGE 1.2
ABCDE FGHI1IJ
abcde fghij
abcde fghij
abcde fghij
PAGE 1.3 PAGE 2.1
KL ABCDE
k1l abcde
k1 abcde
k1l abcde
etc.
The followi is an example of page overflow with a control break and
the report option SET PAGE-OVERFLOW = TRUE.

Example:

REPORT BY STATE LISTING A,B,C,D,E,F,G,H,I1,J,K,L,M.

The preceding statement produces the following page layout, which
reflects page overflow with a control break. In this illustration, the
capital letters (A through M) represent headings, and the lowercase
letters (a through m) represent data.

4 - 61

PAGE 1.1
STATE: ALABAMA

ABCDE
abcde
abcde
abcde
PAGE 1.3

STATE: ALABAMA
KLM

Klm

klm

klm

PAGE 1.2

thHthh '

wwg
PPNV
u-u-u'c.qg

Foosm

PAGE 2.1

STATE: ALASKA
ABCDE
abcde
abcde
abcde

4 - 62

OQOMBINE STATEMENT

The OOMBINE statement enables the language statements in the report
specification which follow this statement to be merged with a file
designated by <external file name>. This file must be a disk file of
report language statements.

The COMBINE statement is useful for merging frequently used macros into
the report specification. These macros are defined by <REPLACE
statement>s in the designated disk file.

Sequence numbers in the first six positions of each record determine the
location of each statement in the conbined file. 1If the first six
positions .of a record are blank, the sequence number for that record is
0. If the sequence nunber of a record which you entered following the
COMBINE statement is the same as a sequence number in the designated
file, the record which you entered is used in place of the corresponding
record in the designated file.

If a SAVE SPECIFICATIONS statement follows the COMBINE statement, the
saved file is the file resulting fram the merge with the specified disk
file.

Examples:

COMBINE “"MACROS".
COMBINE WITH FILE "AUDSPC".

The syntax for the COMBINE statement is as follows:

——>COMBINE ><external file name>.

l I I
+->WITH->+ +->FILE->+

4 - 63

QOMPOUND-DATA-STRUCTURE CLAUSE

The Campound-data-structure clause can be used to do the following:

1. To specify access to a single data structure only.

2. To specify one-to-many access to a list of associated data
structures.

3. To preselect (using the PRESELECT clause) physical records to
be input to the logical record. Preselecting can be done for
a single data structure or for a list of associated data
structures.

The syntax for the Campound-data-structure clause is as follows:

A
—><data-structure clause>-+ > (1)
| |
| B |
+—=—> <PRESELECT clause> =—====>+4

C

(1)—+ +
I |
I D I
+——— (<compound-data-structure-clause list>) —+

The paths of this syntax diagram are explained below:

Path B_xglanaticn

A Take this path if all physical records read fram the
data-structure specified in the <data-structure clause> are to
be input to the logical record.

B Take this path to pass into the logical record only those
physical records which result in a true condition when checked
against the PRESELECT Boolean expression. Refer to “PRESELECT
clause" later in this section for further information.

4 - 64

Take this path when no data structure is to be multi-accessed
(when it is not necessary to access multiple records of any data
structure for each record accessed fram the data structure
specified).

Example:
INPUT PARTS, SUPPLIER.

In this example, one record from PARTS is read, and then one
record fram SUPPLIER is read. The one~-to—one access order
continues until both files are exhausted. No one-to-many access
fram either of these files is specified.

Take this path to access data structures in a one-to—many
manner. For each recard of the data structure specified,
multiple records of one or more data structures specified in
path B are accessed. Appropriate <clauses for the data
structures specified in path B can be used to define how the
one-to-many access should be done. The parentheses of path B
indicate a nesting of input levels; thus there is a hierarchical
order in accessing the data structures. All
Campound-data-structure clauses that are separated by commas are
considered to be at the same input level, while those enclosed
in a set of parentheses are considered to be at an inner input
level. A nesting of parentheses in an INPUT statement can
define several input levels. INPUT statements coontaining no
parentheses have one level of input. In many applications,
INPUT statements consist of one or two input levels.

In general, data structures occurring at the same input level
are accessed in arder from left to right. In the case of a data
structure having an associated <campound-data-structure-clause
list>, for each single record of the outer-level structure
accessed, the data structures at the next inner-level are
accessed until exhausted. A logical record in this case
consists oOf one record fram each data structure at each level.
When an inner-level structure is multi-accessed for one record
at an outer level, each of the logical records reflects the
following: the record for the outer-level stays the same, while
the record for the inner-level structure varies.

4 - 65

Exanple:
INPUT DEPT-FILE (EMP-NAME).

For each department name in DEPT-FILE, all employee names are to
be reported. In this example, each logical record contains a
department name and one employee name. The department name
remains static, while the employee name varies with each logical
record, until all employee names are used.

Example: ("“CUSTV")

INPUT ACCT-FILE(REMIT-FILE MATCHING
REMIT-ACCT-NO WITH ACCT-NO).

For each record of ACCT-FILE, all records of REMIT-FILE whose
REMIT-ACCT-NO matches ACCT-NO are input.

Example:

INPUT PARTS (SUPPLIERS VIA SUP-CH(LOCATION
VIA ADDR), QTY-ON-HAND VIA QTY-LK).

In this example, for each PARTS record, all associated SUPPLIERS
records and QTY-ON-HAND records are input; for each SUPPLIERS
record, all associated LOCATION records are accessed. Each
logical record consists of one record each fram PARTS,
SUPPLIERS, LOCATIONS, and QTY-ON-HAND.

4 - 66

QOMPOUND-DATA-STRUCTURE~CLAUSE LIST

The Compound-data-structure-clause List specifies which data structures
fran the vocabulary are to be accessed, and the order in which they are

to be accessed;

all the data structures must be fram the same

vocabulary.

Example: ("INVENT")

A single data structure is accessed,
this data structure can be reported.

INPUT PARIMF.

PARTMF. All information within

The syntax for the Campound-data-structure-clause List is as follows:

+<

. < +
Al
B

———=><campound-data-structure clause>———-—>

The paths of this syntax diagram are explained below:

Path

A

Explanation

You can specify nmore than one <campound-data-structure clause>
in the INPUT statement by taking this path. The data structures
identified by the <campound-data-structure clause>s are accessed
in a one-to-one corresponding fashion in the order in which they
are named, provided the <campound-data-structure clause>s are
separated by camnas. Access to a data structure in a one-to-one
fashion can be dependent or independent. Dependent one-to-cne
accessing is accawplished by appropriate clauses which specify
how the data structure is to be accessed fram a
previously-specified data structure.. Independent accessing
involves accessing records from independent data structures, in
turn, fram left to right.

4 - 67

Example:
INPUT PARI‘S,MASTER—UNIT; SUPPLIER.

In this example, one record fram PARTS is read, then one fram
MASTER-UNIT, and then cne fram SUPPLIER. These three records
are now viewed as camposing one logical record. The process is
repeated until all three data structures are exhausted.

Whenever an attempt is made to access a data structure which is
already exhausted, and other specified data structures at the
same input level are not yet exhausted, REPORTER III-defined
nmull values are returned for the record entries of the exhausted
data structure. The null values to be used in such cases can be
specified by a Process-option SET statement.

Example:
INPUT SYS-FILE, DMS2DS.

This example illustrates that different types of data structures
can be specified in the INPUT statement. In this example, a
system file (SYS-FILE) and DMS II data set (DMS2DS) are accessed
in a one-to-one independent manner and in the order in which
they are specified. A logical record is now camposed of ane
physical record fram SYS-FILE and one physical record £ram
DMS2DS (in other words, the first logical record consists of the
first physical record encountered in SYS-FILE and the first
physical record of DMS2DS; the second logical record consists of
the second physical record of SYS-FILE and the second physical
record of DMS2DS). This matching continues until both files are
exhausted. If one file is exhausted before the other, the
matching continues with nulls being added in place of the
exhausted file.

Example:

INPUT MASTER, SYS-FILE AT DIRECT-KEY,
DS1(DS2 VIA SUBSET1),
DMS-DS1 FROM SYS-FILE VIA SET1 AT
KEY = X (DMS-DS2(DMS-DS3)).

This example is designed to illustrate how differeht, types of
data structures can be accessed together in a camplex fashion.

4 - 68

SYS-FILE is a system file associated with another system file,
MASTER, through use of a direct key called DIRECT-KEY. This is
an example of one-to-one accessing (notice the use of the camma
in this relationship). DS2 is a DMS II disjoint data set which
is accessed in a one-to-many relationship with DS1 (another
disjoint data set) via a subset SUBSET1. This relationship is
established by the use of the parentheses. DMS-DS1 is a
disjoint data set, and DMS-DS2 and DMS-DS3 are unardered
embedded data sets within DMS-DS1 (if they had been embedded
standard data sets, they would have required access via a set).
X is a data item in SYS-FILE, and KEY is a data item in DMS-DSl.
The data item KEY also is used as the key for the set SET1 which
spans DMS-DS1.

For each record of MASTER accessed, a record of SYS-FILE is
accessed using DIRECT-KEY, a record of DSl is accessed, and a
record of DMS-DS1 is accessed using the data item X and the set
SETl. For each DSl recard, all DS2 recards associated by
SUBSET1 are retrieved. For each DMS-DS1 record, all related
records of DMS-DS2 are accessed; and for each record of DMS-DS2,
all related records of DMS-DS3 are accessed.

Take this path after you have specified all
compound-data-structure clauses.

4 - 69

CONDITIONAL PRINT SPECIFICATION

The Conditional Print Specification establishes the conditions and
layout for the printing of a report segment

The syntax for the Conditional Print Specification is as follows:

A
—->IF <Bool expr> I I >(<print specifications>)—>(1)
+->THEN->+
B
(1) >
| I
| I

+—~>ELSE (<print specifications>)->+

The paths of this syntax diagram are explained below:

Path Egglanation

A Take path A to specify a Boolean expression and the <print
specifications> to be met if the value of the Boolean expression
is TRUE.

B Take path B if you do not desire to specify print specifications
to be met if the value of the Boolean expression is FALSE.

For path B, if the value of the given <Bool expr> is TRUE, the
<print specifications> given in parenthesis are used to describe
the layout of a segment of the report. The print specifications
determine the next available print position.

For path B, if the value of the given <Bool expr> is FALSE, the

<print specifications> given in parentheses are not used, and
the next available print position remains unchanged.

4 - 70

Example: ("“SHIPV")

IF POINTS-OF-SHIPMENT[2]
NEQ O (NL, [POINTS-OF-SHIPMENT[2]] AT 15)

If a second point of shipment exists, it is printed as
indicated. 1If not, no printing is specified.

Take path C if you desire to specify print specifications to be
met if the value of the Boolean expression is FALSE.

For path C, if the value of the <Bool expr> is FALSE, the <print
specifications> given in the ELSE clause are used to describe
the layout of the report segment. These <print specifications>
determine the next available print position.

Exanple: ("VOCEMP")

IF SALARY < 12000 THEN ([SALARY] IN 10)
ELSE (10 SPACES)

If the employee salary is greater than or equal to 12000
dollars, 10 spaces are printed.

4 - 71

QONTROL~BREAK HEADINGS

Each occurrence of a control break is defined by a Control-break
Heading. Control breaks organize information in hierarchical order
based on control-break heading definitions.

The syntax for Control-break Headings is as follows:

+< : < -t
| Gl
| A B | H
——=>BY <c-b-heading >
desc> | |
| +< -, < + |
| | ' El |
| c | D F
+—>INCLUDING~—--> <Cc-~b-subheading ———->+
desc>

The paths of this syntax diagram are explained below:
Path lanation

A This clause specifies that a heading be printed for each value
of the control-break item described by <c-b-heading desc>.
<C-b-heading desc> defines a referenced item as a control-break
item if the control-breaks for the report have not been defined
in a previous statement. As a minimum, the oontrol-break
heading contains the value of the control-break item described
in <c-b-heading desc>. It can also contain summary information.

Example: ("CLIENT")

REPORT BY INV-CUST-NO LISTING DUE-DATE,
TOTAL~AMOUNT .

INV=-CUST-NO is defined as a control-break item. A header is
printed for each value of INV=CUST-NO. The listing produced by
this specification follows.

4 - 72

INV QUST NO: 001718

DUE DATE TOTAL

AMOUNT
031776 $§ 12.83
031776 $ 16.74
040176 $ 101.18

INV QUST NO: 001720

DUE DATE TOTAL

AMOUNT
031976 $§ 23.70
041076 $ 103.99
050376 $§ 27.04

Take this path if no information other than the value of the
control-break item is desired in the control-break heading.

Take this path to include summary information in the
control-break heading. All items printed in the control-break
heading must be summary items related to the control break.
Nonstatistical items reported in the control break are implicit
summary items.

Example: ("CLIENT")

REPORT BY QUST-NO INCLUDING CUSTOMER-NAME
LISTING INVOICE-NO, TOTAL~AMOUNT.

The custamer name is a summary item related to the customer
nmber, and is printed with the custamer mumber in each
control-break heading.

<C-b-subheading desc> specifies a line to be printed in the
control-hreak heading which oontains the value of the item
described in <c-b-subheading desc>. The line is printed beneath
the control-break value and indented five spaces.

Example: (“CLIENT")

REPORT BY QUST-NO INCLUDING CUSTOMER-NAME
LISTING INVOICE-NO, TOTAL~AMOUNT.

4 - 73

The following are examples of Control-break Headings produced in
the body of the report fram these instructions:

QUST NO.: 073121
CUSTOMER NAME: JOHN Q. DOE

INVOICE TOTAL

NO AMOUNT
003111 $ 73.20
003202 $ 15.70

CUST NO.: 073200
CUSTOMER NAME: JACK ADAMS

INVOICE TOTAL

NO AMOUNT
004300 $ 80.00
005112 $ 27.10

Take this path as many times as necessary to specify all
additional information desired in the control-break heading.
Data items are printed vertically in the heading in the order
specified by the <c-b-subheading desc> clauses.

Example:

REPORT BY ACCT-NO INCLUDING NAME, ADDRESS, PHONE
LISTING TRANSACTION-AMT', TRANSACTION-DATE.

The following is an example of a Control-break Heading produced
for a report by the statement above:

ACCT-NO: 01127
NAME: JOHN Q. DOE
ADDRESS: 507 E. PINE ST., BAY CITY, MICH.
'PHONE: 555-1212

Take this path after all information for a control-break heading
is specified.

4 - 74

Take this path as many times as necessary to specify all
control-break headings.

Each occurrence of <c-b-heading desc> can define a control

break.

Control breaks organize information hierarchically based

on the order in which they are defined in Control-break
Headings, as follows:

1.

The information to be reported is first organized
based on the values of the control break specified
first (outer-level control breaks).

Then, for each value of an ocuter-level oontrol break,
the information is organized based on the values of
the control break specified next (imner-level control
breaks).

Colums of detail information are listed within only the
innermost-level control break.

Example: ("VOCAST")

REPORT BY DEPT-NO; BY ACQUISITION-YR;

BY ASSET-TYPE LISTING ASSET-NO, QOST.

This statement produces the following report segment:

DEPT NO: 1311
ACQUISITION YR: 65
ASSET TYPE: 07

ASSET QoSsT
NO
511330° $ 510.23
512000 $ 120.80

. .

ASSET TYPE: 11

ASSET Q0sT
NO
411630 $ 83.70

4 - 75

AOQUISITION YR: 66
ASSET TYPE: 07

ASSET QosT
NO
333120 $§ 71.10

DEPT NO: 1312
AQQUISITION YR: 65
ASSET TYPE: 08

ASSET QOST
NO
610000 $ 606.01
ASSET TYPE: 11
ASSET QosT
NO
311010 $ 20.00

Take this path after all Control-break Headings are specified.

4 - 76

DATA-BASE CLAUSE

The Data-base Clause is used to input global data fram an
A Series DMS II data base or logical data base. It can be used only
with data bases that have global data, and it can be specified at any

input level.

The syntax for the Data-base Clause is as follows:

A
-——e=><data-base name> >
I | |
| B I |
+—-—><logical~-data-base name>->+ +->GLOBAL~DATA->+

The paths of this syntax diagram are explained below:

Path Explanation

A Take this path to specify the name of the data base from which
global data is to be accessed.

Example:

INPUT UNIVERSITY GLOBAL~DATA.
Global data fraom the UNIVERSITY data base is read (see Figure
41).

B Take this path to specify the name of a logical data base fram
which global data is to be accessed.
Example:
INPUT UNIV.
Global data fram the logical data base UNIV is read.

4 - 77

NOSOFSTUDENTS NUMBER (10):;
NOSOFCOURSES NUMBER (5):
UNIV-COURSES DATA SET “MAIN FILE" (

CRS-NAME GROUP (

DEPARTMENT ALPHA (2)

LEVEL NUMBER (3) :

CRS~NO NUMBER (4)) REQUIRED ;
NOPROF NUMBER (2) ;
CNTOFCRS COUNT (300) :
DAYS~-OF-WEEK FIELD (

MON BOOLEAN

TUES BOOLEAN ;

WEDS BOOLEAN

THURS BOOLEAN ;

FRI BOOLEAN ;

SAT BOOLEAN) :
BUILDING NUMBER (3) ;
ROOM ALPHA (2) NULL IS “NO* ;
COURSENAME ALPHA (24) :
FLAG-BITS FIELD (12) :
HOURSCRDT NUMBER (4) :
CLASS-SIZE NUMBER (2) :
PROFESSOR 1S IN UNIV-PERSONNEL COUNTED
OCCURS 3 TIMES:
BOOKS UNORDERED DATA SET (

LC NUMBER (9) ;
TITLE ALPHA (60) NULL 1S BLANKS :
AUTHR ALPHA (30)
)
BUFFERS = 1 + 1 PER USER,
AREAS = 10
AREASIZE = 500,
POPULATION = 5 ,
BLOCKSIZE = 5

BOK SUBSET OF BOOKS UNORDERED LIST DATA LC:
STUDENTS DATA-SET (

LAST-NAME ALPHA (15) REQUIRED ;
FIRST-NAME ALPHA (10) REQUIRED :
)

POPULATION = 300

STUDSET SET OF STUDENTS
KEY 1S (LAST-NAME ASCENDING, PIRST-NAME) 1-S8 DUPLICATES
LOADFACTOR = 75 TABLESIZE = 12 AREAS = 100
) $ END RECORD DESCRIPTION OF UNIV~-COURSES DATA SET
POPULATION = 1000
VERIFY (HOURSCRDT GTR O AND CLASS-SIZE LEQ 60) AND NOPROF NEQ O;

UNIV-C-SET SET OF UNIV~COURSES

KEY IS CRS-NAME DESCENDING I~S NO DUPLICATES:
UNIV-PERSONNEL DATA SET
POPULATION = 997

(
USC-COUNT COUNT (100)
NAME GROUP (
LASTNAME ALPHA (15) :
FIRSTNAME ALPHA (10)) REQUIRED ;
SEX BOOLEAN ;
AGE NUMBER (2) NULL IS HIGH-VALUE ;
SSNUM NUMBER (9) REQUIRED UNIQUE ;
DPT ALPHA (4) ;
RANK ALPHA (1) ;
SALARY NUMBER (S7,2) INITIALVALUE 1S LOW~-VALUE;
COURSES IS IN UNIV-COURSES COUNTED OCCURS 8 TIMES;
SUPR 1D IN UNIV-PERSONNEL WITH NO PROTECTION

8S-U-P SET OF UNIV-PERSONNEL

KEY IS SSNUM I-S NO DUPLICATES :
U-P-SET SET OF UNIV-PERSONNEL

KEY IS NAME INDEX SEQUENTIAL DUPLICATES:

Figure 4-1. A Series Data Structure
Definition Language (DASDL)

4 - 78

DATA NAME

A Data Name references an item or group. It is a <name>, or a <name>
qualified by other <name>s, and possibly subscripted by <integer>s and
other <data name>s. A <name> possibly can be associated with a
particular control-break item.

Examples:

ASSET-NO

INVENT-DOLLAR-VALUE OF CUST-ACCOUNT
LAST-SALE [25]

BALANCE-DUE [BRANCH]

BRANCH REL FINAL

The syntax for Data Name is as follows:

A E
—><name >(1)

| |
I C |
< l
i |
| B |

| H |
+--><data name>—>+

+->TO->+ | N |
+——><c~b name>->+

The paths of this syntax diagram are explained below.

4 -79

Path

Explanation

If the <name> which references the data item or group is
unique, no qualification is necessary and this path is taken.
The <name>s of data items and groups appearing in the
vocabulary which do not require qualification are not qualified
when they appear in the vocabulary listing. The <name>s of
accepted data items and derived data items must never be
qualified.

Take this path to qualify a <name> by another <name> in order
to identify it uniquely. Any <named>s requiring qualification
because of duplication within the vocabulary are properly
qualified on the vocabulary listing.

The qualification of <name>s is governed by the rules of COBOL.
The qualification of <named>s appearing in the vocabulary is
always acceptable, but may not always be necessary. As a
minimum, a data item or group used in the vocabulary need only
be qualified to make it unique with the data structure
specified in the INPUT statement.

For example, if the data name TEST-QUAL-NAME is defined under
the files DATA-FILE-A and DATA-FILE-B in the vocabulary and
only DATA-FILE-B is used in the report specification, then
TEST-QUAL-NAME need not be qualified in the report
specification. As long as the data name is unique to the data
structures specified in the INPUT statement, the qualification
shown in the vocabulary listing need not be used.

There is one major exception to the preceding rule: Data names
used in the INPUT statement (Matching, Preselect, and so on)
must be qualified as shown in the vocabulary report.

Take this path to specify additional qualifiers.
Example:
PART-NO OF UNIT OF CABINET

Take this path when all appropriate name qualifiers are
supplied.

If the <name> given refers to a single item or group as opposed
to an array of elements, no subscripting is specified, and this
path is taken. The vocabulary listing identifies data items
and group items requiring subscripts by noting the number
required. The <name>s of accepted data items and derived data
items are never subscripted.

1177185-003 4 - 80

Take this path to specify a single element fram an array of
elements. The <name>s of data items and groups requiring
subscripts are noted in the wocabulary, and the number of
subscripts required is provided. Subscripts are specified
within the left and right brackets, [], and not within
parentheses as in COBOL. OOBOL index variables cannot be used
as subscripts. A <data name> for which subscripts are provided
is referred to as a subscripted <data name>.

It is the user's responsibility to ensure that a subscript is
within the bounds of the array if the subscripted <data name> is
either a DMS II item specified in the INPUT statement or a
non-DMS II item specified in any REPORTER III statement.

If a subscript value is not within the bounds of the array, a
run-time error (INVALID INDEX or INVALID SUBSCRIPT) could occur
during execution of the generated report program.

For the remaining cases, REPORTER III will check subscript
values autamatically. If an invalid subscript is detected at
run-time, the array element is handled as a null item.

Example: ("SHIPV")

POINTS-OF-SHIPMENT[1]

Take this path to specify an <integer> as a subscript. The
integer must be within the bounds of the array.

Examples:

ADDRESS-LINE[1]
STATUS-FLAG[5]

Take this path to specify a <data name> as a subscript. This
<data name> must not itself be subscripted, and it must not
contain a RELATED TO clause. If the <data name> references a
derived data item, it must be a nonstatistical data item defined
in the <input section> of a multiple-report specification. The
value of the data item referenced by the <data name> must be
within the bounds of the array.

4 - 81

Examples:

ADDRESS-LINE[I]
POINTS-OF-SHIPMENT{ORIGIN]

Take this path to specify additional subscripts. To reference
the desired array element properly, you must take this path the
nuwber of times required to specify the nuwber of subscripts
identified in the vocabulary listing for the item or group.

Take this path after you have specified all subscripts.

Example:
TABLE([2,1, 3]

This path is taken for most <data name>s. Taking this path
specifies that the data item is not to be declared explicitly as
a sumary item. Declaring a data item explicitly as a summary
item 1is only necessary when you define certain statistical data
items based on the data item. In many cases, a <data name> is
declared implicitly as a summary item by the context in which it
is used.

Example:
REPORT FOR EACH DEPARTMENT: PAYROLL, ...

Used in this context, PAYROLL is implicitly associated with
DEPARTMENT. It is assumed that only one value of PAYROLL exists
for each value of DEPARTMENT.

Take this path to specify explicitly that a data item be
associated with FINAL or a control-break item. The RELATED
clause explicitly declares a nonstatistical item as a summary
item and thus specifies that one and only one value of the data
item is associated with all information reported aon each value
of a previously-defined control-break item. The RELATED clause
is implied for control~break items and thus need never be
specified for control-break items.

4 - 82

Examples: ("CLIENT")

CREDIT-LIMIT RELATED TO CUST-NO
BALANCE-DUE REL TO CUST-NO

Specifying the RELATED clause is important only when you use a
summary item in a statistical expression in two distinct
contexts.

If a statistical function is taken on a summary item, either
statistical or nonstatistical, the RELATED clause is used to
indicate that the item in this ocontext is to be treated
specifically as a summary item. That is, the statistic is
accumulated only once for each unique value of the summary item
rather than accumlated for each reported logical record.
(Refer to STAT PARAMETERS in this section.) When the RELATED
clause is used in this context for a nonstatistical data item,
it also explicitly declares the item as a summary item.

Example:
TOTAL (BUDGET REL TC DEPARTMENT)

BUDGET is used as a summary item for the purpose of camputing
the requested total. The REL clause also explicitly declares
BUDGET as a summary item if BUDGET is a nonstatistical data
item.

If a statistical expression defines an item which is to be used
as a summary item, all nonstatistical summary items within the
expression must be declared as such. The RELATED clause is used
to declare explicitly a nonstatistical data item as a summary
item if the item was not declared previously either implicitly
or explicitly as a summary item.

Example:

SUMMARIZE FOR EACH DEPARTMENT:
TOTAL(SALARY) /BUDGET REL TO DEPARTMENT.

TOTAL(SALARY)/BUDGET REL TO DEPARIMENT is a statistical
expression which defines an item used as a summary item.:
Therefore, BUDGET, which is a nonstatistical summary item, must
be declared as a summary item.

Take this path to specify that the data item has a constant
value and thus to sumnarize all reported information.

Example:
QOMPANY-ASSETS REL TO FINAL

Take this path to specify that the data item has a constant
value for each value of the referenced control-break item.

4 - 84

DATA-PROCESSING-OPTION STATEMENT

A Data-processing-option statement can be used to control the processing
of information. Appropriate defaults are taken if you do not specify a

data-processing option.
The syntax for the Data-processing-option statement is as follows:
A

———><SUPPRESS SORT statement)———ww—)>
| |
| B : |
{—><ssr SORT BLOCKING statement>-> |

l ¢ |
+—=><SET SORT SIZE statement> >+

The paths of this syntax diagram are explained below:

Path Explanation

A Take this path to suppress the sort required to group and order
information in the manner described. This is done if you know
that the information is already in the required sequence.

B Take this path to set the blocking factor of the internal sort
file. This provides control of the core usage and efficiency of
the sort.

Cc Take this path to set the size of the internal sort file. This
provides control of disk allocation for this file.

4 - 85

DATA-SET CLAUSE

The Data-set Clause is used to specify input of a A Series DMS II data
set or selected menbers of data sets based on keys of retrieval. You
can input embedded data sets, provided the data set in which they are
embedded has been specified previously. However, specification of a
data set does not cause autamatic access to its embedded data sets; to
access an embedded data set, you must name it explicitly.

Example:

INPUT UNIV-QOURSES.

All members of the data set UNIV-COURSES are input (see Figure 4-1).
Example: ("CLIENT")

INPUT ACCTS~RECV.
All members (accounts) of the data set ACCTS-RECV are input.

The syntax for the Data-set Clause is as follows:

A C
-—=><data-set >(1)
name> | ||
| B | ID |
+—>FROM <data-structure =->+ |-—>VIA <link ->+
name> | name>
| E
+—>VIA <set ———-=>(2)
name>

4 - 86

(2)

F

>(3)
G H |

+—>AT <key condition> >+

| |
| 1 |

+—=>WITHOUT DUPLICATES->+

(1)

(3)

J |

K |

+—>KEY-DATA >+

l I
+>ONLY->+

The paths of this syntax diagram are explained below:

Path

A

Explanation

Take this path if it is not necessary to clarify the ane-to-one
dependence of the data set on another input data structure.

The FROM clause must be used whenever the following two
conditions exist:
1. The data set is to be accessed in a cne-to-one manner
fram another data structure.

2. The specified access to that data set depends on the
value of a data item in the other data structure.

The name of the data structure containing the data item must be
specified. This type of dependence is used when a key in a set
spanning the data set is compared against the value of a data
item in another data structure.

Example:

INPUT UNIV-QOURSES, UNIV-PERSONNEL FROM
UNIV-COURSES VIA SP-SET AT SP-KEY = PROF.

In this example, UNIV-COURSES and UNIV-PERSONNEL are two
disjoint data sets. SP-SET spans UNIV-PERSONNEL with symbolic

4 - 87

key SP-KEY. If PROF is a data item of UNIV-OOURSES, the FROM
clause is needed to indicate the dependence of UNIV-PERSONNEL on
the wvalue of PROF in UNIV-OOURSES. All members of UNIV-COURSES
are accessed sequentially; for each UNIV-COURSES record, the
corresponding UNIV-PERSOMNEL record is accessed (see Figure
4-2).

Exanmple:

INPUT FILEl, DATASET2 FROM FILEl VIA SET2
AT KEY2 = FLD-IN-FILEl.

In this example, a system file, FILEl, and a DMS II data set,
DATASET2, are accessed in a one-to-one manner. The access to
DATASET2 depends on the results of the access to FILEl, as the
key KEY2 of set SET2 is campared against the value of a data
‘item in FILEl. .

Take this path if the specified data set is not to be accessed
via a set or a link. An embedded, standard data set must be

accessed via a set or link.

Example:
INPUT UNIV-COURSES.

All members of the data set UNIV-OOURSES are accessed.

Example:
INPUT UNIV-COURSES VIA UNIV-C-SET (BOCKS) .

For each menber of the data set UNIV-OOURSES, all members of the
embedded data set BOOKS are accessed.

Take this path if the specified data set is to be accessed via a
link. The specified <link name> must name a link embedded in a
data set which has been specified previously in the INPUT
statement.

Exanple:

INPUT UNIV-COURSES, UNIV~PERSONNEL
VIA PROFESSOR[1].

In this example, all members of the data set UNIV-COURSES are
accessed. For each member of UNIV-COURSES, the 1link
PROFESSOR[1] is used to access a mamber of the data set

UNIV-PERSONNEL .

4 - 88

E

Take this path if the specified data set is to be accessed
through a spanning set.

Example:
INPUT UNIV-COURSES VIA UNIV-C-SET.

In this example, all members of the data set INIV-COURSES are
accessed using the spanning set UNIV-C-SET.

Example: ("CLIENT")

INPUT CUST-ACCT-INFO (INVOICE-INFO
VIA INVOICES).

All INVOICE-INFO records of the embedded, spanning subset
INVOICES are accessed for each CUST-ACCT-INFO record accessed.

Take this path if retrieval keys are not to be used to access
specific members of the data set. In this case, all the data
set members within the given set are accessed.

The AT clause allows selective retrieval of members of the
specified data set using the keys associated with the spanning
sete A <key oondition> must be a valid A Series DMS Il
selection expression for the specified set.

Example:

INPUT UNIV-PERSOMNEL VIA UNIV-C-SET
AT CRS-NAME = "PY0030510".

All records for the graduate-level oourse Psychology 510 are
accessed.

Example:

INPUT UNIV-PERSONNEL VIA SS-V-P
AT SSNUM = 499502642, UNIV-COURSES
VIA OOURSES[{1] (STUDENTS VIA STUDSET).

In this example, the member of UNIV-PERSONNEL whose social
security number is 499-50-2642 is accessed using the set SS=V=P.
The 1link, QOURSES[1], 1is used to ocbtain a member of
UNIV-COURSES. Finally, all the students for the accessed member
of UNIV-COURSES are obtained using the set STUDSET.

4 - 89

Take this path if all records which satisfy the key condition
are to be input. ,

Example:
INPUT STUDENT VIA STUDSET AT LAST-NAME = "“JONES".
All students whose last name is JONES are accessed.
The WITHOUT DUPLICATES clause suppresses the input of duplicate
records which satisfy the key condition.

Exanple:

INPUT STUDENT VIA STUDSET AT LAST-NAME = "JONES"
AND FIRST-NAME = "JOHN" WITHOUT DUPLICATES.

The STUDENT record for the first student whose name is JOHN
JONES is retrieved using the set STUDSET.

Take this path if the data set itself is to be accessed.

The KEY-DATA ONLY clause is valid for data sets that have key
data; it provides a means of accessing only the key data in the
set tables. The data set must be given because the information
fran the set tables is transferred fram the user work area for
the data set. However, the data set itself is not accessed.
Therefore, items of the data set which are not key data must not
be referenced in the report language statement.

Example:
INPUT BOOKS VIA BOX KEY-DATA ONLY.

In this example, all key data associated with the set BOX is

4 - 90

DATA~-STRUCTURE CLAUSE

The Data-structure Clause is used to specify the name of a data

structure whose records are to be accessed, as well as the method to be
used in accessing it.

The syntax for the Data-structure Clause is as follows:

A
><system-file-data~-structure clause> >

I
| B
| —><DMS II data-structure clause> >

The paths of this syntax diagram are explained below:

Path Explanation
A Take this path to access a system file.

B Take this path if a DMS II data structure clause is to be input.

4 - 91 PCN 1177185-002

DATE-CONVERT FUNCTION

A Date-convert Function is a nonstatistical function used to convert a
data item or group stored with a particular <date format> to a numeric
type data item that represents the same date, but a different format.
(The DDMMMYY-DATE format is an exception; it is changed to a string type
data item.) All date conversion is done using a 4~digit year. If the
date format specified is for two digits, the current century is added to
the 2-digit year. When converting to a format with a 2-digit year, the
century is stripped from the year.

Example:
YYDDD-DATE (MMDDYY INVOICE-DATE)

INVOICE-DATE is a data item or group which is coded in the MMDDYY format
with a 2-digit year. The function converts this to a YYDDD
representation.

When processing date conversions, all dates are converted to 4-digit
years if necessary. When a date contains a 2-digit year, the date is
converted to a 4-digit year by adding the current century to the year
specified in the date.

When mixing dates containing 2- and 4-digit years, care must be taken
that the size of the result data name is large enough to hold a date
with a 4-digit year. For example, the following syntax will not work as
intended because the size of NEW-DATE is not large enough to hold the
converted date with a 4~digit year:

NEW-DATE IS DDMMYYYY (YYDDD OLD-DATE) NUM (6).

The above syntax will work correctly if the new date format is DDMMYY.
The correct syntax for a 4-digit year is the following:

NEW-DATE IS DDMMYYYY (YYDDD OLD-DATE) NUM (8).

PCN 1177185-002 4 - 92

—————— ————— — — — — T— — i T St SA e S i S S— vt St e W — — —— — —— — ——— — —

REPORTER III may not detect all problems of this type, especially if the
result is used later in another calculation. The most common errors are
the following:

1. For a 2-digit year, when the year is always the current
century.

2. For a 4-digit year, when the current century is repeated twice
within the year.

These erroneous dates may not be detected unless a date such as a leap
year causes an invalid date exception for that year.

NOTE

In the present description of the Date-convert
Function, words signifying the type of date format
(for example, JULIAN) are no longer indicated. Only
letters signifying the actual date format (for
example, YYDDD) are indicated. However,
REPORTER III will still recognize the words
signifying the type of date format (for example,
JULIAN) if used in a report specification.

4 - 92A PCN 1177185-002

— —— — —— — — —— s — S—— —— — — — — — — ————— — — — —

The syntax for the Date-convert Function is as follows

@ . ——— — — S i — o —— — — —— —— — — — — —— " —— — —— — c— o o

L
~><date ->+
format>

> MMDDYY-DATE

— ——— — T — —— — it s S s S S T — — —— — — —— —— — —— — — —

4 - 92B

PCN 1177185-002

The paths of this syntax diagram are explained below. In the following
path descriptions, DD or DDD refers to days, MM or MM refers to months,
and YY or YYYY refers to years.

Path

Explanation
Take this path to specify that the data item or group be
converted to a 6-digit integer in the date format MMDDYY.
Example:
MMDDYY-DATE (YYDDD INVOICE-DATE)
INVOICE-DATE is coded in the format YYDDD. This function

converts INVOICE-DATE to the format MMDDYY.

Take this path to specify that the data item or group be
converted to an 8-digit integer in the date format MMDDYYYY.
This format uses a 4-digit year.

Example:

MMDDYYYY-DATE (YYDDD INVOICE~DATE)

INVOICE-DATE is coded in the format YYDDD. This function
converts INVOICE-DATE to the format MMDDYYYY. Since the date
format for INVOICE-DATE contains a 2-digit year, the current
century is added to the year before the conversion takes place.

Take this path to specify that the data item or group be
converted to a 5-digit integer in the date format YYDDD.
Example:

YYDDD-DATE (MMDDYY INVOICE-DATE)
INVOICE-DATE is coded in the format MMDDYY. This function
converts the INVOICE-DATE to the format YYDDD.

Take this path to specify that the data item or group be
converted to a 7-digit integer in the date format YYYYDDD. This
format uses a 4-digit year.

Example:

YYYYDDD-DATE (MMDDYY INVOICE-DATE)

— — — — ———— — ——— — — p——— S—— — —d—— —— — — — — ———— —— o— — — — — ——t—— —— ——— —— — —r— t— t— — —So— o—

4 - 93 PCN 1177185-002

INVOICE-DATE is coded in the format MMDDYY. This function
converts INVOICE-DATE to the format YYYYDDD. Since the date
format for INVOICE-DATE contains a 2-digit year, the current
century is added to the year before the conversion takes place.

Take this path to specify that the data item or group be
converted to a 6-digit integer in the date format YYMMDD.
Example:

YYMMDD-DATE (YYDDD INVOICE-DATE)
INVOICE-DATE is coded in the format YYDDD. This function

converts INVOICE-DATE to the format YYMMDD.

Take this path to specify that the data item or group be
converted to an 8-digit integer in the date format YYYYMMDD.
This format uses a 4-digit year.

Example:

YYYYMMDD-DATE (YYDDD INVOICE-DATE)

INVOICE-DATE is coded in the format YYDDD. This function
converts INVOICE-DATE to the format YYYYMMDD. Since the date
format for INVOICE-DATE contains a 2-digit year, the current
century is added to the year before the conversion takes place.

Take this path to specify that the data item or group be
converted to a 6-digit integer in the date format DDMMYY.
Example:

DDMMYY-DATE (YYPDD INVOICE-DATE)
INVOICE-DATE is coded in the format YYDDD. 'This function

converts INVOICE-DATE to the format DDMMYY.

Take this path to specify that the data item or group be
converted to an 8-digit integer in the date format DDMMYYYY.
This format uses a 4-digit year.

PCN 1177185-002 4 - 94

— — —— — — — e S S—— —r —— —— Wo—— e P S (— —— G—— ———_ — — ————— — ——— —— ——— — — — — — —— — — —— —

Example:

DDMMYYYY-DATE (YYDDD INVOICE-DATE)

INVOICE-DATE is coded in the format YYDDD. This function
converts INVOICE-DATE to the format DDMMYYYY. Since the date
format for INVOICE-DATE contains a 2-digit year, the current
century is added to the year before the conversion takes place.

Take this path to specify that the data item or group be
converted to a 5-digit integer in the date format DDDDD. The
DDDDD format consists of the number of days from the BASE-DATE
not including the BASE-DATE.

The default BASE-DATE is January 1, 1900 (YYYYDDD format of
1900001).

Example:
DDDDD-DATE (MMDDYY INVOICE-DATE)

If INVOICE-DATE, ooded in the date format MMDDYY, was 091483,
then the result returned would be 30571. This is camputed as
follows:

365 * 83 = 30295 The nunber of days in the year times the
number of years. The default BASE-DATE
year field is 1900. The year field of
INVOICE-DATE is 83 giving 83 years.
Since the date format for INVOICE-DATE
contains a 2-digit year, the current
century is added before any calculations
take place.

30295 + 20 = 30315 Days added for the number of leap years
which have occurred from the BASE-DATE.

30315 + 257 = 30572 The day of the year which represents
Septenber 14, 1983 (09/14/83).

30572 - 1 = 30571 Subtract the number of days represented
by the DDD field of the BASE-DATE. The
default BASE-DATE is YYYYDDD format of
1900001 (January 1, 1900).

——— — —— — —— St — — — ———p— S e o St S e - (e e — — — i —— O (o— — . — St W S St

—— —

— — — i, S

4 - 94A PCN 1177185-002

Take this path to specify that the data item is to be converted
to a 7-character string in the date format DDMMMYY, where DD is
a 2-digit field representing the day of the month fram 1 to 31,
MM is a 3-character string representing the month, and YY is a
2-digit field representing the year from 00 to 99.

Example:

DDMMMYY-DATE (YYDDD INVOICE-DATE)

If INVOICE-DATE, coded in the format YYDDD, was 83257, then the
result would be 14SEPS83.

Refer to the Abbreviated Month List option if the 3-character
month field is desired in a language other than English.

Take this path to specify that the data item be converted to a
9-character string in the date format DDMVMMYYYY, where DD is a
2-digit field representing the day of the month fram 1 to 31,
MMM is a 3-character string representing the month, and YYYY is
a 4-digit field representing the year fram 0000 to 9999.

Example:

DDMMMYYYY-DATE (YYDDD INVOICE-DATE)

If INVOICE-DATE, coded in the format YYDDD, was 83257, then the
result would be 14SEP1983. Since the date fomat for
INVOICE-DATE contained a 2-digit year, the current century is
added to the year before the conversion takes place.

Refer to the Abbreviated Month List option if the 3-character
month field is desired in a language other than English.

Take this path if the date to be converted is coded in the
default format of MMDDYY without delimiters. The default
assumes a 2-digit year.

Example:

YYDDD-DATE (INVOICE-DATE)

PCN 1177185-002 4 - 94B

e e e o — ——— T S — —— — ——— — — —— — — —— — — T ot o T e

M Take this path to specify explicitly the format under which the
date to be converted is currently coded. (Refer to DATE FORMAT
in this section for a full explanation of date formats.) Use
this path to convert dates with 4-digit years.

Example:
YYDDD-DATE (DDMMYYYY INVOICE-DATE)
In this example, the date to be converted (INVOICE-DATE) is
coded in the format DDMMYYYY and contains a 4-digit year.
N Take this path if the date to be converted is the system date,
which is coded in the format YYMMDD.
Example:
DATE-TODAY IS DDMMYY (DATE)
0] Take this path to specify the name of the date to be converted.
The <data name> must represent either a date item or group coded

in the specified <date format>. (Refer to DATE FORMAT in this
section for a full explanation of acceptable formats.)

In the examples presented above, INVOICE~DATE is the name of the date to
be converted.

4 - 95 PCN 1177185-002

alphanumeric;

DATE FORMAT

and numeric

NOTE

Dates to be converted or aged consist of digits and optional delimiters.
The digits and delimiters can be stored in the following ways: string or
numeric display;
Date Format clause specifies how a particular date is coded so that it
can be accessed properly by the REPORTER III System.

canputational.

In the present description of the Date Format
clause, words signifying the type of date format
(for example, JULIAN) are no longer indicated. Only
letters signifying the actual date format (for

example, YYDDD)
REPORTER III will

are
still

indicated.
recognize the

However,
words

signifying the type of date format (for example,
JULIAN) in a report specification.

A c
>
| | |
| B | | D
+=~—em—DELIMITED~—=~~——+ | >
|
| E
| — >
I
| F
[—— >
|
| 6
[— >
]
| H
| ———————>
|
| 1
| ——mm—>
I
| g
| e >
|
| K
S S
4 - 9%

PCN 1177185-002

The syntax for the Date Format clause is as follows:

MMDDYY
I
I
MMDDYYYY —————m————m >
|
|
YYDDD >
I
|
YYYYDDD >=
|
YYMMDD >
|
|
YYYYMMDD -—---—--———>:
|
DDMMYY >||
|
DDMMYYYY —————mee—mm> |
I
DDDDD >+

— e —— —— —— —— —— — {—— — — —— —— ——— — ——— — ——

The paths of this syntax diagram are explained below.

Path

Explanation

Take this path if the date does not have delimiters to separate
the fields. In this case, the date consists solely of digits.

Take this path if the date is coded with delimiters to separate
the fields camprising the date. The delimiter used can be any
character (usually a slash or a hyphen) and is ignored by the
REPORTER III System. DELIMITED is used so that the system can
properly locate the date fields. The date can be a string item
or a group of display data items. It is assumed that each
delimiter is only one character in length.

WARNING

This path cannot be used in conjunction with path K.
See path K for additional explanation.

Take this path if the date is coded in the format MMDDYY. The
nondelimited case consists of six digits in the format MMDDYY.
The delimited case consists of eight characters in the format
MM/DD/YY. MM must be Ol through 12; DD must be Ol through 31;
YY must be 00 through 99, standing for the years 00 through 99
in the current century.

Example:
The date February 20, 1988 is expressed as follows:

Nondelimited: 022088
Delimited: 02/20/88

Take this path if the date is coded in the format MMDDYYYY. The
nondelimited case consists of eight digits in the format
MMDDYYYY. The delimited case consists of ten characters in the
format MM/DD/YYYY. MM must be 01 through 12; DD must be Ol
through 31; YY must be 0000 through 9999. This date format uses
a 4-digit year.

4 - 97 PCN 1177185-002

Exanmple:
The date February 20, 1988 is expressed as follows:

Nondelimited: 022088
Delimited: 02/20/1988

E Take this path if the date is coded in the format YYDDD. The
nondelimited case consists of five digits in the format YYDDD.
The delimited case oonsists of six characters in the format
YY/DDD. YY must be 00 through 99, standing for the years 00
through 99 in the current century; DDD must be 001 through 366,
standing for the number of days since the beginning of the year.

Example:
The date February 20, 1988 is expressed as follows:

Nondelimited: 88051
Delimited: 88/051

F Take this path if the date is coded in the format YYYYDDD. The
nondelimited case consists of seven digits in the format
YYYYDDD. The delimited case consists of eight characters in the
format YYYY/DDD. YYYY must be 0000 through 9999; DDD must be
001 through 366, standing for the nunber of days since the
beginning of the year. This date format expects a 4-digit year.

Example:
The date February 20, 1988 is expressed as follows:

Nondelimited: 1988051
Delimited: 1988/051

G Take this path if the date is coded in the format YYMMDD. The
nondelimited case consists of six digits in the format YYMMDD.
The delimited case consists of eight characters in the format
YY/MM/DD. YY must be 00 through 99, standing for the years 00
through 99 in the current century; MM must be Ol throucgh 12; DD
must be 01 through 31.

Example:
The date February 20, 1988 is expressed as follows:

Nondelimited: 880220
Delimited: 88/02/20

PCN 1177185-002 4 - 98

Take this path if the date is coded in the format YYYYMMDD. The
nondelimited case consists of eight digits in the format
YYYYMMDD. The delimited case consists of ten characters in the
format YYYY/MM/DD. YYYY must be 0000 through 9999; MM must be
01 through 12; DD must be Ol through 31. This date format
expects a 4-digit year.

Example:
The date February 20, 1988 is expressed as follows:

Nondelimited: 19880220
Delimited: 1988/02/20

Take this path if the date is coded in the format DDMMYY. The
nondelimited case consists of six digits in the format DDMMYY.
The delimited case consists of eight characters in the format
DD/MM/YY. DD must be Ol through 31; MM must be Ol through 12;
YY must be 00 through 99, standing for the years 00 through 99
in the current century.

Example:

The date February 20, 1988 is expressed
as follows:

Nondelimited: 200288
Delimited: 20/02/88

Take this path if the date is coded in the format DDMMYYYY. The
nondelimited case consists of eight digits in the format
DDMMYYYY. The delimited case oonsists of ten characters in the
format DD/MM/YYYY. DD must be Ol through 31; MM must be Ol
through 12; YYYY must be 0000 through 9999. This date format

expects a 4-digit year.
Example:
The date February 20, 1988 is expressed as follows:

Nondelimited: 20021988
Delimited: 20/02/1988

4 - 98A PCN 1177185-002

Take this path if the date is coded in the format DDDDD. This
date is nondelimited and consists of five digits in the format
DDDDD, standing for the number of days from the BASE-DATE.
Either the word CENTURY or DDDDD may be used. For example, if
the date of September 14, 1983 is wused with the default
BASE-DATE of January 1, 1900, the DDDDD date format would be:

30571

Refer to the BASE-DATE option and the Date-Convert function for
additional information.

PCN 1177185-002 4 - 98B

— —— — p— — —— ——— {— —

DMS II DATA-STRUCTURE CLAUSE

DMS II Data-structure Clauses allow access to various systems' data
sets. For the A Series of systems, the Data-structure Clause also
enables input of A Series DMS II data base global data.

You should be familiar with the structure of a data base before using
DMS II Data-structure clauses. Constructs defined in the Data and
Structure Definition Language (DASDL) can affect retrieval of data fram
the data base. These constructs are not accessible to REPORTER III. For
example, when an automatic subset defined in the DASDL uses a WHERE
clause to specify the conditions by which data is to be retrieved fram
the data base, REPORTER III cannot access the WHERE clause. However,
the report generated by REPORTER III is affected by the conditions of
the WHERE clause and may not contain all the information you need.

A SERIES OF SYSTEMS

For the A Series of Systems, the A Series DMS II Data-structure Clause
enables input of A Series DMS II data base global data or records from
an A Series DMS IT data set. All DMS II data structures referenced in

the INPUT statement must belong to the same data base or logical data
base. '

The syntax for the A Series DMS II Data-structure Clause is as follows:

A
-———-><data-base clause>-———>

| |
| B |
+—><data-set clause>->+

The paths of this syntax diagram are explained below:
Path Explanation

A Take this path to specify input of global data from a
A Series DMS II data base or logical data base.

B Take this path to specify input of an A Series DMS II data set.

4 - 99 PCN 1177185-002

B 1000 SERIES OF SYSTEMS

For the B 1000 Series of Systems, the B 1000 DMS II Data-structure
Clause enables access to a B 1000 DMS II data set. All data sets
referenced in the INPUT statement must belong to the same data base.
You can input embedded data sets, provided the data set in which they
are embedded has been specified previously. However, specification of a
data set does not cause autcamatic access to its embedded data sets; to
access an embedded data set, you must name it explicitly.

Example: ("CLIENT")
INPUT ACCTS—-RECV.

All members (that is, all accounts) of the data set ACCTS-RECV are
input.

Example:

INPUT UNIV-COURSES.

All menbers of the data set UNIV-COURSES are accessed.

The syntax for the B 1000 DMS II Data-structure Clause is as follows:

A C
—><data—- >(1)
set name> | I
| B I ID
+—>FROM <data- ->+ +-->VIA <set name>-—>(2)
structure name>
(1) >
|
E I
(2) >+
| |
| F G I
+—>AT <key condition> >+

| |
| H |
+———>WITHOUT DUPLICATES->+

PCN 1177185-002 4 - 100

The paths of this syntax diagram are explained below:

Path

A

ylanation

Take this path if it is not necessary to clarify the one-to-one
dependence of the data set on another input data structure.

The FROM clause must be used whenever the following two
conditions exist:
1. The data set is to be accessed in a one-to-one manner
fram another data structure.

2. The specified access to that data set depends on the
value of a data item in the other data structure.

The name of the data structure containing the data item must be
specified. This type of dependence is used when a key in a set
spanning the data set is campared against the value of a data
item in another data structure.

Example:

INPUT UNIV-QOURSES, UNIV-PERSONNEL FROM
UNIV-OOURSES VIA SP-SET AT SP-KEY = PROF.

In this example, UNIV-COURSES and UNIV-PERSONNEL are two
disjoint data sets. SP-SET spans UNIV-PERSONNEL with symbolic
key SP-KEY. If PROF is a data item of UNIV-OOURSES, the FROM
clause is needed to indicate the dependence of UNIV-PERSONNEL on
the value of PROF in UNIV~COURSES. All members of UNIV-OOURSES
are accessed sequentially; for each UNIV-OOURSES record, the
corresponding UNIV-PERSONNEL record which satisfies the key
condition is accessed (see Figure 4-2).

4 - 101

00000100
00000150
00000200
00000300
00000400
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003700
00003800
00003850
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00004700
00004800
00004900
00005000
00005100
00005200
00005250
00005300
00005350
00005400
00005500
00005600
00005700
00005800
00005900

STHIS DASDL PROGRAM GIVES EXAMPLES
$OF THE VARIOUS CONSTRUCTS USED IN
SDASDL TO DESCRIBE A DATA BASE
PARAMETERS (
BUFFERS = 10);
UNIV-COURSES DATA SET “MAIN FILE" (
CRS~-NAME GROUP (
DEPARTMENT ALPHA (2);
LEVEL NUMBER(3):;
CRS-NO NUMBER(4):
NOPROF NUMBER (2):
DAYS-OF-WEEK GROUP (
MON NUMBER(1):
TUES NUMBER(1
WEDS NUMBER(1
THURS NUMBER(
FRI NUMBER(1l)
SAT NUMBER(1)
BUILDING NUMBER(3);:
ROOMNUMBER ALPHA(2):
COURSENAME ALPHA (24);
FLAG-BITS ALPHA(12):
HOURSCRDT NUMBER(4):
CLASS-SIZE NUMBER(2):
PROFESSOR SUBSET OF UNIV-PERSONNEL, POPULATION = 3;
BOOKS UNORDERED DATA SET(
LC NUMBER(9):
TITLES ALPHA(60):;
AUTHR ALPHA(30):;
STUDENTS SUBSET OF MSF KEY IS
(LNAME , PRAME) DUPLICATES,
POPULATION = 300)
POPULATION = 1000;
UNIV-C-SET ORDERED SET OF UNIV-~-COURSES KEY 18
(CRS-NAME) ;
UNIV-PERSONNEL DATA SET(
NAME GROUP (
LASTNAME ALPHA(1S5):;
PIRSTNAME ALPHA(10);
SEX NUMBER(1l):
AGE NUMBER(2):
SSNUM NUMBER(9):
DPT ALPHA(4):
RANK ALPHA(1l):
SALARY NUMBER(S7.2):
COURSES SUBSET OF UNIV-COURSES, POPULATION = 8;
ADDRES SUBSET OF ADR:
SUPR SUBSET OF UNIV-PERSONNEL):
SS~U~-P ORDERED SET OF UNIV-PERSONNEL KEY IS
(SSNUM) ;
U-P SET ORDERED SET OF UNIV-PERSONNEL KEY IS
(LASTNAME, FIRSTNAME) DUPLICATES:

)z
):
1l);
)

MSF DATA SET(

SSNO NUMBER(9):;
NONAM NUMBER(1)
LNAME ALPHA(30)
MNAME ALPHA(30)
FNAME ALPHA(30)

-
.
-
.
-
.
-
.

Figure 4~-2. B 1000 Series Data Structure

Definition Language (DASDL)
(Sheet 1 of 2)

4 - 102

00006000 CAMPUS-ADDRESS GROUP(

00006100 DORM ALPHA(6):
00006200 ROOM NUMBER(4):
00006300 POBOX NUMBER(4):
00006400 PHONE NUMBER(7):
00006500 ND NUMBER(2):;
00006600 DEGREE ALPHA(4) OCCURS 6 TIMES:
00006700 TOTHRS NUMBER(3);
00006800 TOTOP NUMBER(3):;
00006900 GRADE-POINT-AVG NUMBER(3.2);
00007000 MJR NUMBER(3):
00007100 AMJR ALPHA(18);
00007200 SSEX NUMBER(1);
00007300 SAGE NUMBER(2);
00007400 HOME-ADDRESS SUBSET OF ADR;
00007500 QUARTER ORDERED DATA SET(
00007600 QTR ALPHA(4):
00007700 QTTHRS NUMBER(2):
00007800 QTROP NUMBER(2):
00007900 CORSES ORDERED DATA SET(
00008000 TYPECOURSE NUMBER(1);
00008100 YR NUMBER(2):
00008200 Q NUMBER(2):
00008300 GCRS SUBSET OF UNIV-COURSES:;
00008400 GGD ALPHA(2):
00008500 TITLE-OF-PAPER ALPHA(30);
00008600 PPRGD ALPHA(2):
00008700 POPULATION = 4:;
00008800 CSET ACCESS TO CORSES KEY 18
00008850 (TYPECOURSE) DUPLICATES)
00009000 POPULATION = 5000;
00009100 QSET ACCESS TO QUARTER KEY 1§ (QTR));:
00009200 MSFSET ORDERED SET OF MSF KEY 1§ (8SNO):
00009300 ADR DATA SET(
00009400 FACULTY-STUDENT NUMBER(1):
00009500 SNO NUMBER(9):
00009600 ADLN ALPHA(54) OCCURS 9 TIMES
00009700 ZIPC NUMBER(5)
00009800 PHON NUMBER(10);
00009900 SSAD ORDERED SET OF ADR KEY IS (SNO):
00010500 BOOKS(
00010600 AREASIZE = 500,
00010650 TYPE = UNORDERED LIST
00010700 BLOCKSIZE = 5);
00010800 BOOKFILE STORAGE FOR BOOKS(
00010850 TITLE=UNIV/LIBRARY,
00010900 AREAS = 10):
00011000 UNIV-C-SET(
00011100 TABLESIZE = 12;
00011150 AREASIZE = 10,
00011200 TYPE = INDEX SEQUENTIAL,
. 00011300 LOADFACTOR = 9);
00011400 UNIV-PERSONNEL(
00011450 PRIME,
00011500 POPULATION = 997):;

00011600 INITIALIZE:
$FILE STRUCTURE

Figure 4-2. B 1000 Series Data Structure
Definition Language (DASDL)
(Sheet 2 of 2)

4 - 103

Take this path if the specified data set is not to be accessed
via a set. An embedded, standard data set must be accessed via
a set.

Example:
INPUT UNIV-PERSONNEL.
All merbers of the data set UNIV-PERSONNEL are cbtained.

Example:
INPUT UNIV-COURSES (BOOKS VIA BOOKSET) .

All members of the data set UNIV-OOURSES are accessed. For each
member of UNIV-COURSES, all related members of the embedded data
set BOOKS are accessed.

Take this path if the specified data set is to be accessed
through a spanning set.

Example:
INPUT UNIV-COURSES VIA UNIV-C-SET.

In this example, all members of the data set UNIV-OOURSES are
accessed through the spanning set UNIV-C-SET.

Example: ("CLIENT")

INPUT CUST-ACCT-INFO(INVOICE-INFO
VIA INVOICES).

All INVOICE-INFO records of the arbedded, spanning subset
INVOICES are accessed for each CUST-ACCI-INFO record accessed.

Take this path if retrieval keys are not to be used to access
specific members of the data set. In this case, all the data
set members within the given set are accessed.

The AT clause allows selective retrieval of members of the
specified data set using the keys associated with the spanning
set. A <key condition> must be a valid B 1000 DMS II selection
expression for the specified set, including the generalized
selection expression.

4 - 104

Example:

INPUT UNIV-COURSES VIA UNIV-C-SET AT
DEPARTMENT = "PY" AND LEVEL = 3 AND

CRS-NO = 510.
The record for the graduate level oourse Psychology 510 is
accessed.
Example:

INPUT STUDENTS VIA STUDSET AT
L-NAME = “JONES".

All students whose last name is JONES are accessed.

G Take this path if all records which satisfy the key condition
are to be input.

H The WITHOUT DUPLICATES clause suppresses the input of duplicate
records which satisfy the key condition.

Exanple:

INPUT STUDENTS VIA STUDSET AT L-NAME = “JONES"
WITHOUT DUPLICATES.

The first STUDENT record with L~-NAME equal to JONES is retrieved
through the set STUDSET.

B 2000/B 3000/B 4000 SERIES OF SYSTEMS

For the B 2000/B 3000/B 4000 Series of Systems, the B 2000/B 3000/B 4000
DMS 1I Data-structure Clause enables access to a B 2000/B 3000/B 4000
DMS 1I data set. All data sets referenced in the INPUT statement must
belong to the same DMS II data base. You can input embedded data sets,
provided the data set in which they are embedded has been specified
previously. However, specification of a data set does not cause
autamatic access to its embedded data sets; to access an embedded data
set, you must name it explicitly.

Exanple:

INPUT UNIV-QOURSES.

4 - 105

A listing of the Data Structure Definition Language (DASDL) used in the
exanmple data base is presented in Figure 4~3.

The syntax for the B 2000/B 3000/B 4000 DMS II Data-structure Clause is
as follows:

‘ A C
—><data-set >(1)
name> | ||
| B I ID
+—>FROM <data-structure ->+ +—>VIA <set ->(2)
name> name>
(1) . >
I
E |
(2) >+
| . |
| F G |
+—>AT <key condition> l ' >+
| H |

4 - 106

OPTIONS (STATISTICS SET) ;
UNIV-COURSES STANDARD DATA SET
(

COURSE-1D GROUP
(DEPARTMENT ALPHA(4):

LEVEL NUMBER(3);
)
DAYS-OFP-WEEK PIELD (

MON 3

TUES :

WED :

THURS :

FRI H

SAT :
):
ORIGINATOR ALPHA(30);
BUILDING ALPHA(3):
ROOM NUMBER(4);
COURSENAME ALPHA(24):
CREDIT~HOURS NUMBER(4):
CLASS-SIZE NUMBER(2):
INSTRUCTOR SUBSET OF UNIV-PERSONNEL KEY NAME

INDEX SEQUENTIAL;
BOOKS STANDARD DATA SET
(

BOOK~TITLE ALPHA(50):
) " BOOK-AUTHOR ALPHA(15):
BOOK~-SET SET OF BOOKS KEY BOOK-AUTHOR INDEX
) SEQUENTIAL DUPLICATES LAST:
?
UNIV-COURSES-SET SET OF UNIV-COURSES KEY IS COURSE-ID
INDEX SEQUENTIAL DUPLICATES LAST:
UNIV-COURSES-LOC SET OF muv;counszs KEY IS (BUILDING,
‘ ROOM
INDEX SEQUENTIAL DUPLICATES LAST:
UNIV~-PERSONNEL STANDARD DATA SET
(

NAME GROUP
(
LASTNAME ALPHA(20):

) FIRSTNAME ALPHA(10):

SEX ALPHA(1):

SSNUM NUMBER(9):

DEPT ALPHA(4);

COURSES SUBSET OF UNIV-COURSES KEY IS COURSE-ID

INDEX SEQUENTIAL DUPLICATES LAST:
):

UNIV-PERS-~-SSNUM SET OF UNIV-PERSONNEL KEY IS SSNUM
INDEX SEQUENTIAL DUPLICATES LAST:

UNIV-PERS-NAME SET OF UNIV-PERSONNEL KEY IS NAME
INDEX SEQUENTIAL DUPLICATES LAST:

UNIV-PERS-DEPT SET OF UNIV-PERSONNEL KEY IS DEPT

INDEX SEQUENTIAL DUPLICATES LAST:

Figure 4-3. B 2000/B 3000/B 4000 Series Data
Structure Definition Language (DASDL)

4 - 107

The paths of this syntax diagram are explained below:

Path

A

lanation

Take this path if it is not necessary to clarify the one-to-one
dependence of the data set on another input data structure.

The FROM clause must be used whenever the following two
conditions exist:

1. The data set is to be accessed in a one-to~-one manner
fram another data structure.

2. The specified access to the data set depends on the
value of a data item in the other data structure.

The name of the data structure containing the data item must be
specified. This type of dependence is used when a key in a set
spanning the data set is campared against the value of a data
item in another data structure.

Example:

INPUT UNIV-COURSES, UNIV-PERSONNEL
FROM UNIV-COURSES VIA UNIV-PERS-NAME
AT NAME = ORIGINATOR.

In this example, UNIV-COURSES and UNIV~-PERSONNEL are two
disjoint data sets. UNIV-PERS-NAME spans UNIV-PERSONNEL with
symbolic key NAME. If ORIGINATOR 1is a data item of
UNIV-COURSES, the FROM clause 1is needed to indicate the
dependence of UNIV-PERSONNEL on the value of ORIGINATOR in
UNIV-QOURSES. All members of UNIV-QCOURSES are accessed
sequentially; for each UNIV-OCOURSES record, the corresponding
UNIV-PERSONNEL, record which satisfies the key condition is
accessed.

N

Take this path if the specified data set is not to be accessed
via a set. An embedded standard data set must be accessed via a
set.
Example:

INPUT UNIV~-PERSONNEL.

All members of the data set UNIV-PERSONNEL are input.

4 - 108

Example:
INPUT UNIV-OOURSES (BOOKS VIA BOOK-SET).

‘All members of the data set UNIV-QOURSES are accessed. For each
merber of UNIV-COURSES, all related members of the embedded data
set BOOKS are accessed.

Take this path if the specified data set is to be accessed
through a spanning set.

Example:
INPUT UNIV-COURSES VIA UNIV-OOURSES-SET.

In this example, all members of the data set UNIV-OOURSES are
accessed using the spanning set UNIV-OOURSES-SET.

Example:

INPUT CUST-ACCT-INFO (INVOICE-INFO
VIA INVOICES).

All INVOICE-INFO records of the embedded, spanning subset
INVOICES are accessed for each CUST-ACCT-INFO record accessed.

Take this path if retrieval keys are not to be used to access
specific members of the data set. In this case, all the data
set members with the given set are accessed.

The AT clause allows selective retrieval of members of the
specified data set using keys associated with the spanning set.
A <key condition> must be a valid B 2000/B 3000/B 4000 DMS II

selection expression for the specified set.

Example:

INPUT UNIV-COURSES VIA UNIV-OOURSES-LOC AT
BUILDING = "PSY" AND ROOM = 214.

All courses held in PSY 214 are input.

Example:

INPUT STUDENTS VIA STUDENT-SET AT
L-NAME = “JONES".

All students whose last name is JONES are accessed.

4 - 109

Take this path if all records which satisfy the key condition
are to be input.

The WITHOUT DUPLICATES clause suppresses the input of duplicate
records which satisfy the key condition.
Exanple:

INPUT STUDENTS VIA STUDENT-SET AT
L-NAME = "JONES" WITHOUT DUPLICATES.

The first STUDENTS record with L~NAME equal to JONES is
retrieved using the set STUDENT-SET.

4 - 110

EDITING ATTRIBUTES

The Editing Attributes specify a COBOL editing picture which defines how
a data item is to appear when printed. This picture overrides the
default editing picture. The editing picture specified is used
throughout the report to print the data item value. The OOBOL picture
must be enclosed in quotes with no leading blanks. It is not
syntax-checked; therefore, you must ensure that no QOBOL syntax error is
generated by the supplied picture. If the editing picture is smaller
than the storage picture, truncation can result.

Example:
WITH PICITURE "$Z(4)9.99"

The associated data item is printed with a OOBOL editing picture of
$2(4)9.99.

The syntax for the Editing Attributes specification is as follows:

——>WITH PICTURE “<COBOL picture>" —>

Note that if the vocabulary being used has the option DECIMAL-POINT IS
COMMA set, then the picture must reflect this to ensure proper decimal

point aligmment and prevent possible syntax errors when camwpiling the
report program.

Example:
WITH PIC "Z.2Z9,99".

4 - 111

ENTRY FUNCTICN

The ENTRY Function is a nonstatistical function used to convert values
of a data item to alternate item values according to a table which was
previously defined via a TABILE statement. The value of the function is
determined by matching the value of a referenced data item with a table
entry and returning the corresponding conversion value defined by the
table.

Example:
ENTRY (IN TABLE 03 FOR LOC~QODE)

Table 03 was previcusly defined as follows: 1f LOC-QODE has the vaiue C,
the function has the value "CHICAGO".

The item attributes described by the ENTRY Function are determined by
the characteristics of the conversion values specified in the referenced
table. The conversion values in the example above are defined by the
table. They are <string>s having a maximum length of 1l characters.
For this reason, the item described by the ENTRY Function is a
string-type item with an item value 1l characters in length.

The syntax for the ENTRY Function is as follows:

A c
~—>ENTRY (IN ><number >———>FOR <data name>) —>
o I i
+->TABLE->+ | B |
> <NAMP > == Do

The paths of this syntax diagram are explained below.

A If a table identified by a <number> is to be used for
conversion, it is referenced by taking this path. The <number>
must be given exactly as it was in the reliated TABLE statement.

4 - 112

If a table identified by a <name> is to be used fo conversion,
it is referenced by taking this path.

Example:
ENTRY (IN CITIES FOR LOC-CODE)

In this exanmple, the table being referenced must have been named
previously as CITIES in a TABLE statement.

Exanple:
ENTRY (IN TABLE A FOR X)

Take this path to reference the data item whose value is to be
converted based an the referenced table.

Example:
ENTRY (IN TABLE 03 FOR LOC-OOCE)

4 - 113

EXPRESSIONS

An <expression> refers to an arithmetic expression, a string expressio. ,
or a Boolean expression. An arithmetic expression specifies a numeric
value, a string expression specifies a string value, and a Boolean
expression specifies a Boolean value (TRUE or FALSE). An expression can
be statistical or nonstatistical (refer to STATISTICAL EXPRESSION and
NONSTATISTICAL EXPRESSION in this section).

ARITHMETIC EXPRESSION

An arithmetic <expression> in its simplest form is ane of the following:

1. A <data name> which references a numeric-value data item.

2. A <number>.

3. An intrinsic function or <ENTRY function> which describes a
} numeric value.

Examples:

QoST

10

SALARY

AVERAGE (SALARY)

22.57

AGE(FROM INVOICE-DATA TO DATE)
DISC-TABLE OF PART-REC[1,2]
COUNT

A Dbasic arithmetic expression describes a numeric operation to be
performed on two numeric data items. The two numeric items are called
operands. The numeric operation is expressed by one of the following
symbolic operators.

4 - 114

ator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

*k Exponentiation

MOD Quotient remainder
DIV Quotient integer

The syntax for a basic arithmetic expression is as follows:

———-> <Operand>-—><operator>--—> <operand» ——————->
l |
+—> (<operand>—> <operator>--><operand>) ~>+

The arithmetic operators for addition (+) and subtraction (-~) must be
preceded and followed by at least one blank.

Examples:

SALARY/12

QUANTITY*UNIT-COST

THIRTY-DAYS-DUE + SIXTY-DAYS-DUE
(QUANTITY*UNIT-COST)

(X -Y)

A+B*1.33

AGE (IN WEEKS FROM ORDER-DATE TO DATE) DIV 4

The <operand> of an arithmetic expression can be a Boolean expression
{refer to the discussion under the heading BOOLEAN EXPRESSION). When
this is the case, the value of the Boolean expression is interpreted as
1 if it is TRUE, and O if it is FALSE. The Boolean expression must be
enclosed in parentheses.

Examples:

S*(DBEGREE = BS)
CREDIT IS AMOUNT * (AMOWNT > 0)

4 - 115

A camplex arithmetic expression results when the <operand> of a basic
arithmetic expression is itself a basic arithmetic expression. That is,
basic arithmetic operations can be cambined into a camplex arithmetic
expression.

Examples:

THIRTY-DAYS-DUE + SIXTY-DAYS-DUE + NINETY-DAYS-DUE
MONTHLY-SALARY * 12 + BENEFITS
(X - Y)*z
10 * YEARS-OF-EXPERIENCE + 5 * (DEGREE = BS) +

10 * (DEGREE = MS)
(TOTAL(SALARY) + TOTAL(BENEFITS)) / 12
TOTAL(SALARY FOR EACH DEPT)/BUDGET REL TO DEPT * 100

Parentheses can be used in a camplex arithmetic expression to ensure the
proper sequence of the operations. Operations within innermost
parentheses are performed first. If parentheses are not used, the
arithmetic operators have an assigned hierarchy which determines the
sequence in which the operations are performed. Operators of highest
hierarchy are performed first. Operators having the same hierarchy are
performed in-the order in which they are specified (left to right). The
hierarchy of arithmetic operators is as follows:

Hierarchy Symbol Definition
Highest 1 el Exponentiation
2 * Multiplication
/ Division
MOD Quotient remainder
DIV Quotient integer
Lowest 3 + Addition
- Subtraction

The following two examples are equivalent:

A+B-C* ((D-4) *E)/3 X

(A+B)-Cc* ((D-4) *E)) -X

3

4 - 116

STRING EXPRESSION

A string <expression> is cne of the following:

l. A <data name> which references a string-valued data item.

2. A <string>.
3. An intrinsic function which describes a string value.

Examples:

CUSTOMER-NAME
“LBS."
PART-DESC
JANUARY-DATE (ORDER-DATE)
MATERIAL~SOURCE-QODE

BOOLEAN EXPRESSION

A Boolean expression, <Bool expr>, describes a condition which can be
evaluated as TRUE (numeric value 1) or FALSE (numeric value 0).

Sinmple Boolean Expression

A Boolean expression in its simplest form is a <data name> which
references a Boolean item.

Example:
LARGE-AOCCOUNT

LARGE-ACCOUNT is a Boolean-type item. It can be an accepted or derived
item defined as BOOLEAN.or a DMS 1I Boolean vocabulary item.

4 - 117

Basic Boolean Expression

A basic Boolean expression compares two data items or specifies a
special test to be performed on the value of a data item. Only data
items of the same type (that is, numeric, string, or Boolean) may be
campared.

The syntax of a basic Boolean expression is as follows:

>

—~———><operand>--><relational operator>--><operand>———

| |
+—> (<operand>——><relational operator>--><operand>)->+

In most cases, the left <operand> is a <data name>, amnd the right
<operand> is a <data name> or <literal>.

Examples:

QOST > 1000.00

BRANCH-NUMBER = ACCEPTED-BR-NO
PART-NO = 103888

CREDIT-LIMIT GREATER THAN 5000
CUSTOMER-NAME = "JOHN Q. DOE"

In general, either <operand> can be an arithmetic <expression>.

Exan;;les :

BALANCE-DUE = (CURRENTLY-DUE + THIRTY-DAYS~DUE
+ SIXTY-DAYS-DUE + NINETY-DAYS-DUE)

(QUANTITY*UNIT-COST) EQUAL INVENT-DOLLAR-VALUE

(X/Y + 2) LEQ 10

AGE(FROM INVOICE~DATE TO DATE) > 90

AVERAGE (SALARY) < 10000

The values TRUE, FALSE, and NULL are figurative constants which can be
used in certain instances as the right <operand>. TRUE and FALSE can be
used to test Boolean items for value 1 and value O, respectively;
however, use of a simple Boolean expression is recammended. NULL is
used to check DMS II items for a NULL condition. When a figurative
constant 1is used, the <relational operator> must specify an equal or
not-equal relation.

4 - 118

Exanples:

FLAG-BIT = TRUE (equivalent to: FLAG-BIT)
STUD-NO NOT = NULL
EXCEPTION-FLAG IS BEQUAL FALSE

A <condition name> can be used as the right <operand> to perform
conveniently value tests on certain data items. The left <operand> must
be the <data name> for which the condition was defined. The <relational
operator> must specify an equal or not-equal relation.

Examples:

SEX = MALE
QOLOR = RED OF QOLOR

ALPHABETIC or NUMERIC can be specified as the right <operand> in order
to perform a class test on the data item specified by the left
<operand>. The NUMERIC class test determines if the item value consists
entirely of the characters 0, 1, 2, 3, 4, ..., 9, with or without an
operational sign. The ALPHABETIC class test determines if the item
value oonsists entirely of the characters A, B, C, ..., 2, and space.
The NUMERIC class test cannot be used on a string-type item. The
ALPHABETIC class test cannot be used on a numeric-type item. The
<relational operator> for a class test must specify an equal or
not-equal relation.

Examples:

PART-NO = NUMERIC
CUSTOMER-NAME NOT = ALPHABETIC

The right <operand> of a basic Boolean expression can be a pattern. A
discussion of pattern matching is contained under the heading “Pattern
Matching," which immediately follows the discussion under “Camplex
Boolean Expression" below.

4 - 119

Camplex Boolean Expression

A ocomplex Boolean expression describes 1logical operations to be
performed on simple or basic Boolean expressions. The logical
operations are NOT (negation), AND (conjunction), and OR (disjunction).

The syntax for a camplex Boolean expression is as follows:

- <Operand> >OR: > <operand>———=—m———>

| | |
4—=>AND->+ |

—> (<operand>-————>OR-—--> <operand>) —>
I l

|

|

I |
| |
| +—>AND->+ |
| |
| >NOT ><operand>——> |
i .

> (NOT ><operand>) —>+

An <operand> can be a basic Boolean expression, or it can itself be a
camplex Boolean expression.

Exanples:

SEX = MALE AND AGE > 18
STRATA-1 OR STRATA-2

(BALANCE-DUE > 5000.00) AND (BALANCE-DUE < 10000.00)
[(X>A+B) ANDY < 10] OR Z = 20

A ocamplex Boolean expression can involve logical, relational, and
arithmetic operators. Parentheses can be used to ensure the proper
sequence of operations. If parentheses are not used, the following
assigned hierarchy of operators determines the sequence in which the
operations are performed. Operators of highest hierarchy are performed
first. Operators having the same hierarchy are performed in the order
in which they are specified (that is, fram 1left to right). ‘The
hierarchy of arithmetic operators is as shown in the following list.

4 - 120

Hierarchy Symbol Definition

Highest 1 bl Exponentiation
2 * Maltiply
/ Divide
MOD Quotient remainder
DIV Quotient integer
3 + Add
- Subtract
4 All relational operators
5 - NOT Negation
6 AND Conjunction
Lowest 7 OR Disjunction
Exanple:

A>B+CANDD < 10

is equivalent to:

[A> (B+C)] AND (D < 10)

Pattern Matching

The right <operand> of a basic Boolean expression can be a patterm. A
pattern describes a pattern of characters to be matched against a string
value. Only string-type data items can be tested for pattern match, and
only tests for equal (=) or not equal (NOT =) are allowed. All patterns
are enclosed in brackets. A pattern can be a maximum of 55 characters
in length. The various forms of patterns are specified as follows:

l. A single specific string is specified in quotation marks
inside the brackets. This indicates that the significant
characters of the item value must match this string. Trailing
blanks in the item value are not considered as significant.

4 - 121

4.

Exanple:
WORD = [“SAMPLE"]

The pattern match in this example indicates that the
significant characters of WORD must be SAMPLE.

A hyphen (-) in a pattern indicates that any number of
characters may be present.

Example:
mRD = [lls" - NMII]
The pattern match in this example indicates that the first

character of WORD is an S, and the character M is the last
significant or nonblank character in the item value.

Example:

m = [llsll - IIM“ -J
The pattern match in this example indicates that the first
character of the item value is an S, and that this first

character is followed by an M samewhere within the string
value.

A single number in a pattern specifies the exact nmunber of
characters which are ignored in the item value after the first
string and before the next string.

Exanple:
m = [Ilsll 1 ”M" _]

The pattern match in this example indicates that the first
character of WORD is an S and the third character is M.

Two numbers separated by a camna represent the minimm and the
maximum nurber, respectively, of characters which are ignored
in the item value after the first string and before the next

string.

Example:
m = [nsn l' 3 "M"]

4 - 122

5.

The pattern match in this example indicates the following: the
first character of WORD is S, and at least one but not more
than three characters must exist before M. The following
values represent match and no-match conditions for the
example:

Match No-Match
SAM SHERMAN
SLIM HIM
STEAM STREAM

A number of specifications of the type described in items 2,
3, and 4 above may be given in one pattern.

Example:
VEHICLE-LICENSE = ["L" 1 "J" - “6" -]
The pattern match in this example indicates the following: the

first character is L, the third character is J, and a 6
appears elsewhere in the vehicle license number.

4 - 123

EXTENSION

An Extension (also known as a derived data item) is used to define a new
data item to be derived fram other data items. The derived data item is
calculated for each logical record and "extends" the logical record with
the new data value. Once a derived data item is defined, you can
reference it subsequently where appropriate in the report language
statements.

Example: (“INVENT")
PART-SALES-COST IS UNIT-COST * QUANTITY-SOLD

This dJdescribes a new data item PART-SALES-COST which is calculated for
each part.

The <name> in the Extension clause is defined by the user. It must be
unique for a specified report, that is, it must not duplicate any <name>
defined in the vocabulary, ar any other derived data item. You can use
this <name> as a <data name> in other statements to reference the
derived data item after the <name> has been defined in the Extension
clause.

The <item desc> clause describes various aspects of the derived data
item. It specifies what the value of the extension will be camwposed of,
what the physical attributes of the extension will be, and what format
will be used when the item is printed.

An Extension can be part of an Extension statemerit or it can be part of
another report language statement. The following illustrates an
Extension specified in a REPORT statement:

Exampl.: ("CLIENT")

REPORT CUST-NO, OVERDRAWN WHICH IS
BALANCE-DUE ~ CREDIT-LIMIT NUM(5,2)
WITH PICTURE "2(4)9.99".

4 - 124

The syntax for the Extension clause is as follows:

=) <NAMB> >IS <item desc>—>

4 - 125

EXTENSION STATEMENT

An Extension statement is used to define an <extension> (a derived data
item) independent of its use in other report language statements.

Example:
PART-SALES~COST 1S UNIT-COST * QUANTITY-SOLD.

The above Extension statement defines the derived data item,
PARTS-SALES-COST. ‘This item now can be referenced in other report
language statements.

The syntax for the Extension statement is as follows:

> <extension>.

4 - 126

EXTERNAL FILE NAME

An External File Name identifies a file to the MCP. It contains
<string>(s) used as <identifier>(s). Optionally, it also can contain a
disk pack (cartridge) <identifier> clause.

A SERIES OF SYSTEMS

For the A Series of Systems, an External File Name contains a series of
<identifier>s (file <identifier>, file directory <identifier»>s, and
volume <identifier>s). An optional disk pack name can be specified in
an External File Name in certain contexts. An <identifier> can be up to
17 characters long. A maximum of 30 characters (excluding the optional
ON clause) is permitted for an External File Name, including slashes.

The syntax of External File Name for the A Series of Systems is as
follows:

A C

- n ";

ez

T > <identifier»" > (1)
|
| ¢<— |
i
o+

B |
+—> <identifier> / ->

(1)

e
v

4 ——4

> ON “<identifier>" —>

The paths of this syntax diagram are explained below:

Path Explanation

A Take this path if no file directory <identifier>s and no volume
<identifier>s are required.

B Take this path to supply file directory <identifier s and
optional volume <identifier>s.

4 - 127

C Take this path to specify the <identifier> which represents the
file name.

D Take this path if no pack name is to be specified.

Examples:

“SAVINGS /NAMEANDADDRESS"
"A/B/C/D/E/F"

E Take this path to specify a pack name. The ON option can only
be used in the EXTRACT statement, VOCABULARY statement, and the
process option ASSIGN ACCEPTED-DATA TO DISK statement. Other
file assigmments to disk pack can be done via proper file
equation (refer to the A Series Work Flow Language (WFL)
Reference Manual).

Example:
“PERSONNEL/FILE" ON “EMPLOYEES"

B 1000 SERIES OF SYSTEMS

For the B 1000 Series of Systems, an External File Name contains up to
three <identifier>s. An <identifier> can be up to 10 characters long.
The use of special characters as part of the <identifier> is not
recammended. (Do not use periods in the <external file name> part of a
SAVE OBJECT AS clause.)

The syntax of External File Name for the B 1000 Series of Systems is as
follows:

A c
- " > <identifier> “ > (1)
I |
| B I
+- <identifier> / ->+
D
(1) >
| |
E | |
+ N “<identifier>"w——>+

4 - 128

The paths of this syntax diagram are explained below:
Path lanation
A Take this path if no family name is to be specified.

B Take this path to specify an <identifier> which represents the
family name.

C Take this path to specify the <identifier> which represents the
file name.
D Teke this path if no pack-ID is to be specified.
Exanple:
“VOCAB1"
“PAYROLL10/TSTVCB"

E Take this path to specify the <identifier> which represents the
pack-ID. The pack-ID cannot be used with any of the following
specifications: SAVE REPORT, SAVE FORMS, and SAVE EXCEPTIONS
LISTING.

Examples:
“WOCAB" ON “SYSTEMFILE"
“EMPLOYEES/REPORT" ON "PAYROLL~74"

B 2000/B 3000/B 4000 SERIES OF SYSTEMS

For the B 2000/B 3000/B 4000 Series of Systems, an External File Name
contains one or two <identifier>s. An <identifier> can be up to six
characters long and cannot contain any special characters (space, camma,
period, slash, hyphen, and semicolon). The <identifier> specified first
is the file name.

4 - 129

The syntax of External File Name for the B 2000/B 3000/B 4000 Series of
Systems is as follows:

A
~—>"<identifier>" >
| |
| B |
+ > N "<identifier>"—>+

The paths of this syntax diagram are explained below:

Path Explanation

A Take this path if no PACK-ID is to be specified.

Examples:
“VOCAB1"
"12JA74"

B Take this path to specify the <identifier> which represents the
PACK-ID. A PACK-ID can only be used in the EXTRACT statement,
VOCABULARY statement, and the process option ASSIGN
ACCEPTED-DATA TO DISK statement.

Example:
“STAFF" ON “SYSTEM"

4 - 130

The

EXTRACT-ITEM DESC

Extract-item Desc is used to specify a data item to be written to

the extract file and the mammer in which it is to be written.

Example: ("INVENT")

EXTRACT PART-NO, PART-DESC, QUANTITY TO EF-FILE.

In this exanple,

PART-NO,
item is to be extracted.

PART-DESC, and QUANTITY specify which data

The syntax for Extract-item Desc is as follows:

A
»><data name> >(1)
| |
| B |
| —><extension>—>|
| |
| ¢ |
+—><string> >+
D
(1) >
E | lQ
| P |
I< |
| |
| F G |
|—/1 7 > ASCENDING~=—t- >{
| | |
| | H | |
| +———>DESCENDING->+ |
| |
| 1 J L |
4——/1 /—>WHERE > INCREASES——=>+
| | |
K| | I M |
+-><expression>->+ |—>DECREASES-> |
| |
| N |
| —>CHANGES——> |
|
i o |

4 - 131

The paths of this syntax diagram are explained below:

lanation

Take this path to specify the name of the data item to be
extracted. Subscripting cannot be used if

EXTRACT WITH VOCABULARY has been specified previously. You can
use an extension to extract a subscripted data name (refer to
path B). The same <data name> cannot be extracted to the same
file more than once. An extension can be used for the second
and subsequent occurrences of the <data name>.

Take this path to define an <extension> and to spec:.fy that its
value is to be extracted.
Exanmple: ("CLIENT")

EXTRACT CUSTOMER-NAME, CREDIT-CODE IS
CREDIT-LIMIT/100 NUM(2) TO EF-CREDIT.

The derived data item, CREDIT-CODE, is extracted as the second
field of the extract record. The value of the <extension>,
CREDIT-LIMIT/100, is written to the file with a storage picture
of 9(2) OOMPUTATIONAL.

Example: ("SHIPV")

EXTRACT NUMBER OF BILL, FIRST-POINT IS
POINTS-OF-SHIPMENT [1] TO EF-NEW.

In this example, the first element of the subscripted data item,
POINTS~OF-SHIPMENT, is extracted as FIRST-POINT.

NOTE
Use of subscripting in this example is allowed

because the EXTRACT WITH VOCABULARY was not
used.

4 - 132

Take this path to specify a <string> to be extracted on every
record of the file. The <string> is given an arbitrary name and
an internal storage picture to match the length specified. The
maximm length allowed far an extracted <string> is 30
characters.

Example: ("CLIENT")

EXTRACT CUSTOMER-NAME, " ~DUE
TO EF-NEW.

The second field on each record is four blank characters. .

Take this path if all data item values are to be extracted and
the information to be extracted requires no ordering based on
this item. .

Take this path if not all values of the data item are to be
extracted or if the values of this data item are to be extracted
in a particular order.

Take this path to specify that the information to be extracted
is to be ordered based on this item. You cannot take this path
if the item is statistical or if the FOR EACH clause of the
EXTRACT statement has been taken previously. If ordering is
specified for more than one extract item, the extract item for
which ordering is specified first is considered the major
ordering key. The ordering specified here is subordinate to any -
grouping of information via control breaks. In addition, the
ordering must be oonsistent with the ordering specified
elsevhere.

Take this path to specify that the values of this data item be
extracted in ascending order.
Example: (“CLIENT")

EXTRACT CUSTOMER-NAME ASCENDING, CREDIT-LIMIT
TO EF-FILE.

In this example, records are extracted to the EF-FILE so that
the custamer names are in alphabetic order.

4 - 133

Take this path to specify that the values of this data item be
extracted in descending order.

Example: ("CLIENT")

EXTRACT CREDIT-LIMIT DESCENDING, CUSTOMER-NAME
TO EF-FILE.

In this example, records are extracted to the EF-FILE such that
the credit limits are in order, largest to smallest.

Take this path to specify a condition under which the values of
the data item are to be extracted. If the condition evaluates
FALSE, NULL~VALUES is extracted instead of the data item value.
If the condition evaluates TRUE, the data item value is
extracted. The expression is evaluated for each value of the
data item.

Example: ("CLIENT")

EXTRACT CUSTOMER-NAME, CREDIT-LIMIT
WHERE CREDIT-LIMIT < 10000 TO EF-FILE.

In this example, all the customer names will be extracted. The
underlined portion specifies that the CREDIT-LIMIT data item
value is to be placed into the extract record only if the value
is 1less than §$10,000. If it is greater than or equal to
$10,000, NULL~VALUES is extracted instead.

Take this path as a shorthand method to specify implicitly an
<expression> whose value is identical to the data item being
extracted. This path must not be used with path O. Path L, M,
or N must be used to qualify the data value to form a condition.

Example: ("INVENT")

EXTRACT PART-DESC WHERE CHANGES, QUANTITY-SOLD
TO EF-SALES.

In this example, only new values of PART-DESC are written to the
extract files. If the value of PART-DESC is identical to the
previous value, null-values are extracted.

4 - 134

Take this path to specify an <expression> used in defining the
conditions for extracting the data item. A Boolean <expression>
can be given to define the condition, or a string or numeric
<expression> can be used in conjunction with paths L through N
to define the condition.

Example: ("CLIENT")

EXTRACT CUSTOMER-NAME, CREDIT-LIMIT WHERE
CREDIT-LIMIT < 10000 TO EF-FILE.

In this example, a Boolean <expression> is given which
ocapletely defines the condition.

Take this path in conjunction with a non-Boolean <expression> to
specify that the data value be extracted only if the value of
the <expression> increases.

Take this path in conjunction with a non-Boolean <expression> to
specify that the data value be extracted only if the value of
the <expression> decreases.

Take this path in conjunction with a non-Boolean <expression> to
specify that the data value be extracted only if the value of
the <expression> has changed.

Take this path only if the <expression> given in path K is
Boolean. A Boolean <expression 1is sufficient to express the
condition. This path is illegal if an arithmetic aor string
<expression> is specified in path K. The example for path K
illustrates the use of this option with a Boolean <expression>.

Take this path to specify both ordering, based on the item, and
conditional extraction. Conditional extraction of an item
occurs based on the ordering of the data values as specified.

Example: ("CLIENT")

EXTRACT CUSTOMER-NAME ASCENDING WHERE CHANGES
TO EF-FILE.

4 - 135

In this example, duplicate custamer names are grouped together
via the ASCENDING specification. Then all duplicate names
except the first are nulled by the WHERE CHANGES clause.

Take this path after ordering and/or conditional extraction are
specified.

4 - 136

EXTRACT STATEMENT

The EXTRACT statement is wused to extract information to a
machine-readable file for subsequent processing. The file can be a
magnetic tape, disk, disk pack, or card file. Extracted information can
be used subsequently to generate confirmations, print mailing labels,
and so forth. 1In addition, the information extracted can be reported
using the REPORTER III System. To assist in this, a vocabulary
describing the extracted information optionally can be produced
automatically. Only reportable information is extracted.

Example: ("VOCAST")
EXTRACT ASSET-NO, ASSET-DESC, COST TO EF-FILE.

A disk file called FEF-FILE is created with each record containing the
asset number, asset description, and cost of a reported asset. The data
items are written to the file using their internal storage picture.

A detailed example of EXTRACT statements used in report specifications
for inventory purposes is presented later (after the explanations of the
paths in the syntax diagram).

The syntax for the EXTRACT statement is as follows:

A

——>EXTRACT' I >(1)
|
| B l
+——>WITH VOCABULARY->+

(1) I >(2)

| D E
+-—->FOR EACH-—-———- ><data name>-—-—->(3)

| |
| F . |
| ——><extension>-> |
I

|
| G |
+—=><c-b name>—->+

4 - 137

+< , < +
| L|
| K | M
(2) >extract-item desc>—————- >(4)
|
(3) > 1 >+
a s
| ~~>ASCENDING——> |
i 1
-+-—>DESCENDING->+
N
(4)-->T0 ><file name >.
| | l |
+—=>FILE-->+ | O

+-—><file mod>->+

The paths of this syntax diagram are explained below:

Path

A

Explanation

Take this path if the ability to report information from the
extract file using the REPORTER III System is not required or
if a vocabulary for this file is to be built independently.

Example: ("CLIENT")

EXTRACT CUSTOMER-NAME, STREET-ADDRESS,
CITY-STATE, ZIP-CODE TO MATLING-LABELS.

This information is extracted to a file which is input to a
program that creates mailing labels.

If you take this path, RP3VOC specifications are required for
the extract file. RP3VOC is executed, thus creating an extract
vocabulary which can be used to report the information in the
extracted file. The Process-option SAVE statement can be used
to assign names to the extract wvocabulary files. If the
original vocabulary requires a password, the same password is
required for the extract vocabulary. Only one extract
vocabulary 1is created for all files extracted in one report
specification.

If the original vocabulary has the statement "SET LANGUAGE TO
CQOBOL85", the same statement is added to the extract
vocabulary.

1177185-003 4 - 138

Example: ("VOCAST")

EXTRACT WITH VOCABULARY ASSET-NO, ASSET-DESC,
QOST TO EF-FILE.

This example is nearly identical to the initial example given
for the EXTRACT statement. The only difference is that the
extract wvocabulary statement in this example is built, which
includes a description of the file EF-FILE. The information
within the file then can be reported subsequently using the
REPORTER III System.

Take this path if one record is to be written to the extract
file for each logical record reported. The example for path B
illustrates this option.

Take this path to specify that a record of summary information
be written to the extract file for each value of a control-break
item. The specified oontrol-break item is the first item
written to each record of the extract file.

Sumary information for a control-break item consists of items
which are related it and have a constant value for each of its
values. In many instances, these items are derived statistical
items; but they also can be nonstatistical items. If path D is
taken, all items extracted must be summary items for the
specified control break. Nonstatistical items which are
extracted are implicitly declared as summary items for the
specified control break.

Path D defines the default scope for any statistical functions
which are specified in subsequent <extract-item desc>s (refer to
path K).

Example: ("VOCAST")

EXTRACT FOR EACH DEPT-NO: TOTAL~ASSET-VALUE IS
TOTAL(QOST) TO DEPT-FILE.

For each value of DEPI-NO, a summary record is written
containing the department number and the total cost of all
department assets. If control breaks have not been specified
previously, the above statement defines DEPT-NO as a
control-break name. Information is grouped accordingly.

Take this path to specify that summary information be written to
an extract record for each value of a data item referenced by
<data name>. The item must be nonstatistical and is defined to
be a control-break item by its reference here. Control breaks

4 - 139

for the report must not have been specified previously in
another statement. (Refer to the example for path D.)

Take this path to specify that summary information be written to
an extract record for each value of a data item defined by
<extension>. The derived item must be nonstatistical. The item
is defined to be a control-break item; control breaks for the
report must not have been specified previously in another
statement.

Take this path to specify that summary information be written to
an extract record for each value of a previcusly defined
control-break item; <c~b name> must reference this item.

Example: ("INVENT")
RANGE BY INVENT-DOLLAR-VALUE FROM O BY 1000.

EXTRACT FOR EACH RANGE: NO-OF-PARTS IS COUNT,
TOTAL~VALUE IS TOTAL (INVENT-DOLLAR-VALUE),
AVG-VALUE IS AVG(INVENT-DOLLAR-VALUE)
TO FILE INVENT-SUMMARIES.

RANGE references a previously-defined ocontrol-break item. A
sumary record is written to the extract file for each

range-break grouping.

Take this path when you desire no particular ordering based on
the control-break item, or if you have already specified this
ordering.

You must take this path if you have taken path G and
<c-b name> references a range-break item. Unless suppressed, a
sort 1is done to properly group the logical records based on the
control-break item. The default ordering of information is
ascending based on the control-break item.

Take this path to specify explicitly that the summary records be
written to the extract file in ascending sequence based on
control-break item values.

Example: ("VOCAST")
EXTRACT FOR EACH DEPT-NO ASC:

TOTAL~ASSET-VALUE IS TOTAL(QOST)
T0 DEPT-FILE.

4 - 140

Information is extracted in ascending sequence of department
nunbers.

'I‘akethlspathtospeCLfythatthea\mmaryreoordsbewrlttento
the extract file in descending sequence based on control-break
item values.

Example: ("VOCAST")

EXTRACT FOR EACH DEPT-NO DESC: TOTAL~ASSET-VALUE
IS TOTAL(COST) TO DEPT-FILE.

Information is extracted in descending department mmber
sequence.

An <extract-item desc> specifies a data item to be written into
one field of the extract file record. The data item is written
in its storage picture format. If you have taken path B, you
make an entry in the extract vocabulary for this item. The
entry includes the item name, if any, and its internal and
editing attributes.

Example: ("INVENT")
EXTRACT PART-DESC TO EF-SELECTED-PARTS.

This specifies a record ocontaining only the item PART-DESC.
Each value for PART-DESC is written on a separate record in the
disk file EF-SELECTED-PARTS.

Take this path as many times as necessary to specify all items
to be extracted to a particular file. Any mmber of items can
be extracted to a file. A record for the file contains all
items extracted in the same order in which they were specified
in the EXTRACT statement.

Example: ("INVENT")

EXTRACT PART-NO, PART-DESC, QUANTITY
TO EF-FILE.

Each record in EF-FILE contains a field for PART-NO, PART-DESC,
and QUANTITY, in that order.

Take this path after you have specified all data items to be
extracted. <File name> specifies the internal file name of the
file which contains the extracted data records. This file name

4 - 141

is entered into the extract vocabulary if you have taken path B,
and it is used to reference the file being extracted in other
report specifications and/or vocabulary specifications. It is
recamended that the intermal file name be prefixed "EF-" to
ensure that no OOBOL reserved words are used illegally. If this
prefix is not used, a warning message is issued.

Example: ("INVENT")

EXTRACT PART-NO, PART-DESC,
QUANTITY TO EF-FILE.

EF-FILE is the internal name for the extract file (the external
name is also EF-FILE by default).

If you take this path, default attributes are assigned to the
extract file. The default file attributes are the following:

l. The external file name is identical to the internal
file name specified in path M above.

2. The hardware device for the file is disk.

3. The blocking factor is 10 records per block for a
non-PUNCH file and one record per block for a PUNCH
file.

4. The assumed file total population is 9999.
Take this path to specify nondefault file attributes. The
nondefault attributes which can be specified are the following:
1. External file name.
2. Hardware device.
3. Blocking factor.
4. File total population.
Exanple: ("INVPNI‘")

EXTRACT PART-NO, QUANTITY TO EF-QONTROL;
HARDWARE IS PUNCH.

In this case, the records are extracted to a card punch instead
of disk.

4 - 142

EXAMPLE OF EXTRACT STATEMENTS

The following is an example of a REPORTER III report specification which
could be used for a year-end inventory check:

SAVE EXTRACT-VOCAB AS “INVTR1" AND "INVTR2".

INPUT INVENT.
EXTRACT WITH VOCAB PART-NO, " ", BIN-NO ASC, " “,
QUANTITY, " “, ACTUAL~-QUANTITY IS O NUM(5)

WITH PIC "“2ZZZZ" TO CARD-CONFIRM HARDWARE IS
PUNCH ID IS "CONINV".

The "SAVE EXTRACT-VOCAB AS" is used to assign names to the vocabulary
files created by the "EXTRACT WITH VOCAB". If the SAVE statement were
not used, the names "Vlinn" and "V2nn" would be used, where “m" is a
randam number generated by RP3REP at run time.

A string of 3 spaces is specified between PART-NO, BIN-NO ASC, QUANTITY,
and ACTUAL~QUANTITY. The extracted output will be in BIN-NO ascending
order. ACTUAL~QUANTITY is an <extension>, and is being used as a place
holder for the cards to be punched. ACTUAL~QUANTITY size “NUM(5)" will
be kept in the extracted wocabulary for later use. The <file name>
CARD-CONFIRM will became the <data-structure clause> in the INPUT
statement for the next specification.

The cards punched for the above specification will be in bin nmumber
order and could be used to verify the quantity and part. The space
available in the area of ACTUAL~QUANTITY could be used to punch in the
actual number of parts found. These cards then could be used for input
information to the following specification:

VOCAB IS "INVTR1".
INPUT CARD-CONFIRM.
REPORT PART-NO WHERE QUANTITY NEQ ACTUAL~QUANTITY,
BIN-NO, QUANTITY AS "QUANTITY ON FILE",
ACTUAL~QUANTITY.
EXTRACT PART-NO, BIN-NO, QUANTITY,
ACTUAL~QUANTITY TO INVENTORY-INFO HARDWARE IS
DISK ID IS "INVINF".

4 - 143

The above specification uses the vocabulary created by processing of the
previous specification. The <file name> of the previous specification's
EXTRACT statement is used as the <data-structure clause> of the INPUT
statement of the above specification. A report will be created listing
only those part nunbers whose actual quantity did not equal the gquantity
on file.

The EXTRACT statement in the above specification shows how the
information read fram the cards could be put into a disk file. This
information then ocould be used by another program to make any
corrections to the master files.

4 - 144

g

<

File Mod is used to specify nondefault attributes for the extract file.

The syntax for File Mod is as follows:

@ — — — —— A —— —— — — — —— — i S o— — — — i — — —— — —— — —— —— — — — — — — — — —— e S— e, —

A

><integer>=-

-
A]

/ 1 /->TOTAL-POPULATI

-> IS =>|

= >

>

><integer>->

protemtntieby
-
N

A A
b | o +
p R
: I TR T -
0 % = = m @
. 3 & & 8 5
—~ () fry m 0] _ m _ - _ =)
—_— m IIIIIIIIIIIIII 1
7
b —_—
<) 0 w
4] T, A
A A A A
i | LI
[$)]
q
A — 4

~>IDENTIFICATI
>HARDWARE

PCN 1177185-002

4 - 145

(1) (2)
|
K |
—-/"1 /->AREAS | | ><integer> >{
|=> 1S ->| |
| | |
> = —=>4]
|
L |
———/"1 /->AREASIZE I l ><integer> >-;~
|-> IS ->| |
| | |
> = =Dt |
|
M |
+—/ 1 7-—>USAGE | | >DISPLAY >+
|-> 1S —>|
| |
> = =>4

The paths of this syntax diagram are explained below:

Path

gglanation

This path is taken to specify a total population attribute for
the file and is relevant only if WITH VOCABULARY has been
specified previously. It does not limit the file in any way.
The total population attribute is used when reporting on the
extracted file to calculate the number of spaces to allow for
printing statistical summaries. If you do not specify an
integer, the total population of the extracted file defaults to
9999.

Example:

EXTRACT CUSTOMER-NAME TO EF-NEW;
TOTAL~POP = 1000.

The EF-NEW file is declared to contain 1000 records. If EF-NEW
is reported on, four spaces are allocated for COUNT.

Take this path to specify a blocking factor for the extract
file. This has meaning only for DISK, TAPE, or DISKPACK files.
The default blocking factor is 10 for these files.

PCN 1177185-002 4 - 146

———— ——— — —— — ———— ———— ——— — — —— S— —

F-H

Example:

EXTRACT CUSTOMER- » BALANCE-DUE TO
EF-CONFIRM; BLOCKING IS 5.

Take this path to specify a different external name for the
file. The default external name is the same as the internal
name given in the "TO" clause of the EXTRACT statement (refer to
the EXTRACT statement in this section). The name specified in
the example below is the one that identifies the file to the
MCP. If DISKPACK is chosen as the hardware device, you must
follow this path to give the pack identifier to the file.

Exanple:

EXTRACT CUSTOMER-NAME, BALANCE-DUE TO
EF-CONFIRM ID IS "“BALDUE".

File EF-CONFIRM is known externally as “BALDUE".
Take this path to specify the hardware device for the extracted

file. The default is DISK if no hardware specification is
given.

Take this path to document explicitly the default of DISK as the
hardware device.
Example:

EXTRACT CUSTOMER- » BALANCE-DUE TO
EF-CONFIRM; HARDWARE IS DISK.

The underlined portion serves as documentation of the default
hardware assignment of DISK.

These paths are taken to specify magnetic tape (TAPE, TAPE-7, or
TAPE-9) as the hardware device for the extracted file. If you
specify TAPE, TAPE-7, or TAPE-9, all items are extracted with
display usage. TAPE-7 and TAPE-9 are identical to TAPE.

Example:

EXTRACT CUSTOMER-] BALANCE-DUE TO
EF-CONFIRM EG-CONFIRM HARDWARE TAPE.

In this example, the file is extracted to tape instead of disk.

4 - 147 PCN 1177185-002

Take this path to specify card punch as the hardware device for
the extracted file. You must ensure that the total extract
record size is less than or equal to 80 characters. All numeric
items are extracted in display mode if PUNCH is specified.

Example:

EXTRACT CUSTOMER- « BALANCE-DUE TO
EF-NEW HARDWARE IS PUNCH.

In this example, the records are extracted to the card punch.

Take this path to specify DISKPACK as the hardware device for
the extracted file. If you use this path, a pack name must be
given via the ID clause (refer to path B).

Example:
EXTRACT CUSTOMER-NAME, BALANCE-DUE TO

EF-CONFIRM;ID = “BALDUE" PACK “ACCICL';
HARDWARE IS DISKPACK.

Take this path to specify the number of areas for the extracted
file. ‘This applies only to DISK and DISKPACK files. Refer to
Appendix B for default and limit values.

Take this path to specify the AREASIZE of the extracted file.
In this case, the total number of records in the file will be
the product of the number of areas and the AREASIZE. AREASIZE
must be a multiple of the BLOCKSIZE if path A has been taken.
Refer to Appendix B for default and limit values.

Example:

EXTRACT CUSTOMER- » BALANCE-DUE TO
EF-CONFIRM; AREA IS 25; AREASIZE IS 10000.

- Take this path to specify that all numeric items in the extract
file are to have a usage of DISPLAY rather than the default of
COMPUTATION. This path affects only extract files with a
hardware device of DISK or DISKPACK. Note that because the sign
of a signed field is encoded on the first digit as a high order
bit, the plus (+) or minus (-) symbol and the first digit might
not be displayed correctly.

Take this path until you have specified all desired attributes
for the file.

PCN 1177185-002 4 - 148

o Take this path when you have specified all desired attributes |
for the file. |

4 - 148A PCN 1177185-002

The Footings clause specifies which colums are to be footed (in other
words, totaled).

The syntax for the Footings clause is as follows:

<

B|
A | ¢
«=>FOOTING—————><data name> >

—_—

The paths of this syntax diagram are explained below:

Path Explanation

A Take this path to foot a previously specified oolum. <Data
name> must be specified as a colum name in the REPORT

statement. If print suppression is specified for this colum,
the footing of the colum reflects only those values actually

printed in the colum.
Example: (“INVENT")

REPORT PART-NO, INVENT-DOLLAR-VALUE

SUMMARIZE FOOTING INVENT-DOLLAR-VALUE.

The SUMMARIZE statement specifies that the oolum for
INVENTORY~-DOLLAR-VALUE is to be footed. The report appears as

follows:
PART INVENT
NO DOLLAR
VALLE

113110 131.00
203171 701.63

TOTAL 89131.50

4 - 149

B Take this path as many times as necessary to specify all columns
to be footed. The column names can be specified in any order.

Example: ("CLIENT")

REPORT BY BRANCH
LISTING CUST-NO, CREDIT-LIMIT, BALANCE-DUE.

SUMMARIZE FOOTING CREDIT-LIMIT, BALANCE-DUE.
This produces the following type of report.

CUST CREDIT BALANCE

NO LIMIT DUE
30334 5000 $ 1731.00
30714 1000 $ 763.00

L] L L]
[[.

‘TOTAL 113000 $ 93100.80

TOTAL 987700 $871310.93

C Take this path when all colums to be footed are specified.

4 - 150

FORM ATTRIBUTES

The Form Attributes specification is used to define any of the following
attributes: form width, form length, the first printable position of the
form, the number of 1lines between forms, and form type. These
attributes only apply to the PRINT statement.

The syntax for the Form Attributes specification is as follows:

+< , < +
| J|
| A | K
===/ 1 /->FORM- ><integer>———————m >
| WiDTH I | I
| |-> IS —>| |
| | I |
| 4=> = —=d>4 |
I I
| B |
| /"1 7->FORM~ ><integer>-> |
| LENGTH | I |
I |-> 1S —>| |
| | | |
| > = ==t |
I |
| C I
+=—=/"1 J/->START- <integer>->|
| POINT | | I
| |-> IS —>| I
I | I I
| > = >+ R ——
| |
| D E I
4+-—/"1 /=->VERTICAL~ ><integer>->|
| SPACING I . I |
| |-> 1s =>| | F | |
| | | 4+——>CHANNEL->+ |
| H=> = —>+ - |
| I
| G H |
4=—/"1 /=->FORM- >STANDARD >+
TYPE | ! I
|-> 1s ->| | 1I |
| | +==>SPECIAL~->+
+=> = =—=>+

4 - 151

If you do not specify a form attribute, the corresponding default form
attribute is assumed, as follows:

FORM-WIDTH 132
FORM-LENGTH 54
START-POINT 1
VERTICAL~-SPACING CHANNEL 1
FORM-TYPE STANDARD

The paths of this syntax diagram are explained below:

Path

A

Explanation

Take this path to specify the number of horizontal print
positions from the start point (refer to path C) to the right
edge. Subsequent <print specifications> given in the PRINT
statement describe the layout of information on the form in
relative fashion from the first printable position on a line
(one) to the last printable position on the line (FORM-WIDTH).

Take this path to specify the total number of lines which can be
printed on the form. Subsequent <print specifications> given in
the PRINT statement describe the layout of information on the
form in relative fashion from the first printable line (one) to
the last printable line (FORM~LENGTH).

Take this path to specify the number of print positions from the
left where the first printable position of the form begins
(position one). You can adjust START-POINT and FORM-WIDTH to
provide for a standard left margin.

VERTICAL~SPACING is the number of 1lines between the last
printable line on a form and the first printable 1line on the
next form. The attribute may be given optionally as a channel
nunber which corresponds to the first printable line on a form.

Take this path if the <integer> represents the number of lines
between forms.

Take this path if the <integer> represents a channel number.

4 - 152

Take this path if you desire to specify whether the form is an
installation standard or a special form which requires special
operator load instructions. If you do not take this path, the
default form type (installation standard: STANDARD) is assumed
by the system.

If you specify STANDARD, no load/unload messages are given by
the system.

If you specify SPECIAL, the forms output file, or listing, is
assigned the system forms attribute.

For the A Series and B 2000-B 4000 line of camputers, special
instructions to the operator are issued by the system when the
loading of forms on the printer is required. Provision is also
made to inform the operator to unload forms when output is
campleted.

For the B 1000 line of computers, special instructions to the
operator are issued by the program when the loading of forms on
the printer, and the unloading of forms fram the printer,
respectively, is required. The operator takes the appropriate
action and then issues a <mix #>AX message to continue program
execution.

NOTE
If the printer file is designated to go to
backup, no forms messages will be issued.

Take this path to specify additional form attributes.

Take this path after all nondefault attributes are given.
Example:
