
AN INTRODUCTION TO

ALGOL 60

for the B 5000 Information Processing System

Equipment and Systems Marketing Division
Sales Technical Services

Burroughs Corporation
Detroit 32, Michigan

BULLETIN 5000-21001-D
Revised December, 1961

COPYRIGHT © 1961
BURROUGHS CORPORATION

TABLE OF CONTENTS

Section Page

PREFACE v
1 JUST WHAT IS ALGOL? .. 1-1

2 BASIC DEFINITIONS . 2-1
SYMBOLS . 2-1
NUMBERS . 2-1
IDENTIFIERS ... 2-1
REPLACEMENT OPERATOR 2-1
ARITHMETIC OPERATORS AND EXPRESSIONS 2-2
TYPE OF ARITHMETIC EXPRESSION . 2-2
EXAMPLES OF ARITHMETIC EXPRESSIONS . 2-3

3 BOOLEAN EXPRESSIONS . 3-1

4 STANDARD FUNCTIONS . 4-1

5 OPERATIONAL STATEMENTS 5-1
ASSIGNMENT STATEMENTS: SUMMARY 5-1
CONTROL STATEMENTS .. 5-1
Unconditional Control Statements 5-1
Conditional Control Statements : . 5-1
Iterative Control Statements . 5-2

6 DECLARATIONS AND BLOCKS 6-1
TYPE DECLARATIONS .. 6-1
BLOCKS .. 6-1
SWITCH DECLARATIONS .. 6-2
ARRAY DECLARATIONS .. 6-2
VARIABLES WITH SUBSCRIPTS . 6-2
TYPES OF ARRAYS . 6-2

7 PROCEDURES ... 7-1
GENERAL NATURE OF PROCEDURES 7-1
PROCEDURES AS FUNCTIONS 7-3

8 SAMPLE PROBLEMS . 8-1

Ill

APPENDIXES

Appendix Page

A BURROUGHS B 5000 ALGOL 60 SYMBOLS . A-1

B DEFINITIONS OF EXPONENTIATION OPERATIONS B-1

C GLOSSARY . C-1

D RESERVED WORD LIST . D-1

IV

PREFACE

One of the languages which can be used to program the BURROUGHS B 5000 Information Proc­
essing System is ALGOL 60 (the abbreviation for ALGOrithmic Language, 1960 revision). This
manual will introduce the reader to the use of ALGOL 60 for the statement of problems to be
processed by the BURROUGHS B 5000. The material presented here is introductory; it does not
describe all the rules of ALGOL 60 nor itemize all the details of the rules it does cover. 1 Its pur­
pose is to present enough information in such a way that the reader will be able to write elemen­
tary ALGOL programs for the B 5000. It is assumed that the reader has some knowledge of
mathematics, though it might not be more than the high school algebra he once studied.

The manual introduces the basic elements of ALGOL 60 and specifies the fundamental rules for
combining these elements into statements and the statements into complete ALGOL programs.
Learning to write programs in ALGOL is similar to learning to write compositions in English. In
both cases, one must know what the given basic elements are and learn the rules for using the
basic elements to construct more complicated forms.

1Those interested in pursuing the details of ALGOL 60 will find its syntax completely described in Communica­
tions of the ACM, May, 1960, pp. 299 - 314.

v

Someone has said, "Mathematics is the science of
computing, but of computing as little as possible."
Undoubtedly he was thinking of the enormous re­
duction of labor that is realized, for instance, in
solving a simple expression for the area under a
parabola, instead of tediously counting little squares.
The same thought applies to the use of a digital
computer. We often use a computer to perform
highly repetitious calculations which could not be
done in any other practical way.

For a long time, however, the use of these accurate,
high-speed electronic devices has been bogged down
in the difficult job of instructing them-the process
known as programing. Since computers had to be
instructed step by step on the most basic level, each
programer found himself repeating in a general
way many things that another programer using the
same machine had to do for himself: getting infor­
mation into the machine, operating on it in some
way, and printing out the results. In spite of many
similarities in their programs, there was virtually
no possibility of one programer making use of
another's work.

ALGOL changes this situation. It provides a per­
son who needs to use a computer with a means of
expressing himself in easy-to-understand, common­
sense terms and relieves him of the need to under­
stand the details of the computer's operation. The
programing methods used previously, all of which
were different from machine to machine, now be­
come the concern only of the automatic system
which turns the programer's directions into a set
of instructions which the machine can "under­
stand." Although ALGOL is not the first of such
languages, the earlier ones were so closely associ­
ated with particular machines that they were not
applicable to other computers, even those of the
same manufacturer. ALGOL, on the other hand, is
intended to be completely general and thus inde­
pendent of any particular computer.

SECTION 1
JUST WHAT IS ALGOL?

In preparing any program, there are stages of plan­
ning. The first is adapting the problem to the de­
mands of a digital computer. This problem is much
the same whether a program is written for a par­
ticular machine or in more general terms.

The second part of preparing a program is much
more dependent on the nature of the machine. For
any computer, however, if the programer must use
the machine instructions directly to prepare his
program, he must exercise the most scrupulous care
to insure that he has not committed any of many
possible errors: computing with values obtained
from a wrong location in memory, setting up the
wrong qualifications to enter or leave a portion of
the program which is used repeatedly, ad infinitum.
This part of the programer's job is called "house­
keeping," an apt name because of its connotations
of repetition and drudgery.

When the special program called a compiler (built
into the B 5000) transforms an ALGOL program
into one which the computer can employ, it assumes
these responsibilities ; housekeeping conventions
have been previously established - prepackaged, if
you will - and the compiler performs virtually all
of these duties, relying on the dependable perform­
ance of the computer to maintain accuracy.

With this indication of some of the advantages of
using ALGOL to program a digital computer, let us
examine the role of the language itself in the pro­
gram.

Dr. Herriot of Stanford University has made an in­
teresting distinction between a mathematical state­
ment of a problem and its ALGOL counterpart. The
mathematical statement is static; the ALGOL state­
ment, on the other hand, is dynamic. The ALGOL

statement, however complex it may be, describes an
actual step-by-step procedure for obtaining a solu:­
tion to a problem, using actual numbers and achiev­
ing a number as a result. For example, when we

1-1

write the equation ·which gives the hypotenuse of a
right triangle

C = "\/A2 + B2

we do not qualify in any way the order in which we
will arrive at the sum of the squares, the units we
will use in performing the calculation, or the means
of determining the square root of the sum A 2 + B2

•

The ALGOL equivalent for this would be written as

C +-- SQRT (A *2 + B*2)

Now there are many questions which may occur to
you ; after all, what we have written here in
ALGOL resembles the algebraic equation which we
wrote, but it is certainly not altogether like it.

We can easily recognize the C, A, and B from the
algebraic equation ; in ALGOL they belong to a
class of symbols called identifiers. Identifiers are
used in ALGOL much as in algebra, where a symbol
is used to denote a value which has yet to be calcu­
lated, so that it can be distinguished from others
with which we are working. A large number of such
identifiers can be written in this symbolic way,
drawing on letters of the alphabet, and numerals if
desired; it is necessary that the first character of an
identifier always be a letter, and that there be no
spaces to break up the identifier.

Examples of identifiers:

A
BlO
PRESSURE
A1B2C3D4E5

To go back to our example

C +-- SQRT (A *2 + B*2)

the symbol + is used in ALGOL in an easily under­
standable way; it has the same significance as the
plus sign in the algebraic statement

c = VA2 + B2

that is, addition. The class to which the plus sign
belongs is that of arithmetic operators. There are,
of course, other operators in ALGOL, the arithmetic
operators being :

subtraction
multiplication
division
exponentiation
division

x
I
*
DIV

(minus sign)
(cross-product sign)
(solidus)
(asterisk)

(The last division operator is a special one which

1-2

\Vill be described after the discussion of the number
systems employed in the B 5000.)

From our list, we now can see the significance of
the asterisk in our ALGOL equivalent. Where in
mathematical notation we wrote A 2 , in the B 5000
version of ALGOL we write A *2. The 2 here is
called the exponent of A; if we were using an ex­
pression such as XY, we would write its ALGOL

equivalent as X*Y, and so forth. More complex ex­
pressions are possible and will be discussed later.

SQRT in our ALGOL equivalent

C +-- SQRT (A *2 + B*2)

means "square root," and is equivalent to y or to
the power of 1/2 in mathematical notation. When
we use the symbol v in mathematics, we indicate
its extent by adding a vinculum (overbar) V-;
when we use 112

, we indicate the extent by paren­
theses. The parentheses in our ALGOL statement
thus perform the same task as when they enclose
any mathematical expression.

We are left with one symbol to be explained, the
left-pointing arrow:

C +-- SQRT (A *2 + B*2)

This arrow is called the replacement operator. It
replaces the current value of the identifier C with
the value of the expression to its right, allowing
the programer to use C whenever he has need to
refer to the value of yA2 + B2

• Although the left­
pointing arrow is often placed where we would
find an equal sign (=) in algebra, it is important
to emphasize (for reasons which will become ap­
parent later) that the replacement operator is not
entirely equivalent to the equal sign in mathemati­
cal notation.

To extend the discussion of SQRT, it is necessary to
say that the method used to perform the calculation
is made available from a section of the compiler
called the library, and is thus termed a library func­
tion. The programer need only write the name of a
library function in order to make use of it. There
are several other such functions, some of which
compute trigonometric functions, others the loga­
rithms, and so forth. To avoid confusion, names of
these functions naturally cannot be used for any
other purpose, so care must be taken not to use
their names to designate anything else in the pro­
gram. The ALGOL class to which SQRT, the names
of the other library functions, and certain other

words belong is called reserved words, a list of
which appears in APPENDIX D. (Reserved words
appear in this text in boldface.)

Writing a program in ALGOL closely resembles the
detailed problem definition required if one were to
give a problem to a machine-language programer
for computer solution. The language and format of
the problem definition have been standardized. The
computer itself produces the machine-language pro­
gram, as well as doing the processing. Therefore, it
is particularly important to remember that the
machine-language programer (the compiler which is
in the computer) is not familiar with the problem
and knows about it only what is contained in the
problem (the ALGOL program). The problem must,
therefore, be complete, unambiguous, and expressed
in an acceptable form and terminology. The form
will approximate the well-known: "Given; To Find;

Calculations; Solution." The terminology will be
ALGOL.

It is hoped that this very short treatment will serve
to indicate some of the properties of ALGOL, but it
must be understood that the example we have dis­
cussed is quite rudimentary. As the reader con­
tinues in this manual and finds his proficiency in­
creasing, he will likely be struck again and again by
the similarity of ALGOL to a natural language such
as English. Just as English serves to write either

"See the cat. The cat is on the table."

or to discuss highly abstruse subjects, so ALGOL

lets us express problems ranging from the exam­
ple above to problems of great complexity. When
we begin learning to write in ALGOL, though, we
can just as well begin on the level of "See the cat."

1-3

SYMBOLS
The symbol set which is used in this manual con­
sists of:

the capital letters A through Z
the digits 0 through 9
punctuation symbols, : ; () []
operational symbols (to be listed as introduced)

The complete list of symbols used in BURROUGHS
ALGOL 60 appears in APPENDIX A.

NUMBERS
A number in BURROUGHS ALGOL 60 is written as
a string of from one to eleven decimal digits. 2

ALGOL allows the use of two types of numbers,
called type REAL and type INTEGER. Type REAL
numbers are those which include a decimal point.
Type INTEGER numbers are the whole numbers,
that is, those which do not include a decimal point.
Both types include positive numbers, negative num­
bers, and zero.

The numbers which result from calculations are of
one or the other type, depending upon the type of
the numbers which went into the calculation and
upon the nature of the calculation itself. The rules
which determine the type of these results appear in
the discussion of arithmetic expressions.

IDENTIFIERS
Identifiers are used in ALGOL programs as names,
for purposes of reference.

Identifiers consist of at least one letter, followed by
any letters, digits, or combination of letters and
digits. No spaces may appear as part of an identi­
fier. Some examples of identifiers are:

X Xl SUMX A T
Y Y2 AVERAGEX ALT Tl
M M53 LC ALTITUDE TIME
N N4AND5 LIFTCOEFF B3JFG29Z TIMEl

2For problems requiring greater precision, the number size
can be extended to 23 decimal digits.

SECTION 2

Identifiers are commonly used to name the vari­
ables and constants which appear in mathematical
formulas. Identifiers are also combined with num­
bers, punctuation, and operational symbols to form
the statements, expressions, declarations, etc., of a
complete ALGOL program.

REPLACEMENT OPERATOR
The replacement operator symbol is a left-pointing
arrow (~). It indicates that the value of whatever
stands to the right of the arrow is to replace the
value of the variable to the left of the arrow. Thus
the statement

x~Y

tells the computer to replace the value of X with
the value of Y. The complete construction-the re­
placement operator with its left- and right-hand
parts-is called an assignment statement; when
executed by the computer it assigns the value as
indicated above.

If a problem solution requires frequent reference
to a constant (such as 7!"), the programer may wish
to use an identifier (such as PI) in his calculations.
To do so, he might write the assignment statement

PI~ 3.14159

after which he may employ 7!" in his program by
simply using the identifier PI, which has been as­
signed the value 3.14159.

A common requirement in many problems is the
setting of initial values. For example, if sums (used
for tallies or totals) are calculated, it is necessary
to set the sums to zero before the first pass through
the calculation. The assignment statement

SUMX~O

replaces the value of the variable identified by
SUMX with zero. If several variables must be set
to a common value, they may be strung together;
for example, the assignment statement

2-1

SUMX +--- SUMY +-TALLYT +--- K +--- 0

sets the values of the variables whose identifiers
are SUMX, SUMY, TALLYT, and K to zero.

ARITHMETIC OPERATORS AND
EXPRESSIONS
The BURROUGHS ALGOL system for the B 5000
uses the following arithmetic operators and sym­
bols:

OPERATOR
Add
Subtract
Multiply
Divide

Exponentiate

SYMBOL
+

x
I or DIV

(two different results)

*
These operators are used with numbers or identi­
fiers to form arithmetic expressions, such as:

T + 9.4 N - M B/2 D*3
Z + Y 2 x A 180/PI 2*N
N - 1 BASE x HEIGHT VEL X TIME A *B

The sequence of performing a series of arithmetic
operations is normally from left to right. However,
this process is interrupted in accordance with the
following priorities:

First: operations enclosed by parentheses
Second : exponentiation
Third: multiplication and division
Fourth : addition and subtraction

Since ALGOL 60 defines division by a term as mul­
tiplication by the inverse of the term (that is:
A/B is the same as A X B-1

), equal priorities are
assigned to multiplication and division, with these
operations taking place from left to right as they
occur in the program.

The foregoing definition and rule give the single
exception from the priorities commonly used in
ordinary algebra. For instance, in ordinary algebra
the expression A/B X C is usually interpreted as
A/(B X C); but in ALGOL 60 it means (A/B) X C.
Parentheses must be used in ALGOL 60 to indicate
denominators with more than one factor, and may
be used as desired to indicate sequencing of opera­
tions.

Arithmetic expressions can constitute the right­
hand member of assignment statements. Thus we
can write

2-2

DIST ~ VEL X Tll\1E
AREA +--- (BASE x HEIGHT) /2

Y +--- A*2 + B*2
DELTA+--- PREVT - PREST

In each case, the number resulting from the evalu­
ation of the expression on the right of the replace­
ment operator is assigned as the value of the iden­
tifier on the left.

Remember that only identifiers may occupy the
left-hand position in an assignment statement. It
would be incorrect to write

C*2 +--- SQRT(A *2 + B*2)

since C*2 is an arithmetic expression. The pro­
gramer could write instead

CSQUARE +--- SQRT(A *2 + B*2)

and the identifier CSQUARE may then be used to
refer to

-)A2 + Bz.

TYPE OF ARITHMETIC EXPRESSION

The type (REAL or INTEGER) of an arithmetic
expression is automatically determined by the types
of its components. Adding, subtracting, or multiply­
ing two operands of type INTEGER gives a result
of type INTEGER. The result will be of type REAL
if either component is REAL or if both components
are REAL.

As indicated in the list above, ALGOL provides two
kinds of division. The operation indicated by the
solidus (/), more commonly called the "slash" or
"slant," gives a result of type REAL for any com­
bination of INTEGER or REAL components, or
both. This operation yields a conventional quotient
which may have a fractional part, with the sign of
the quotient plus or minus as in ordinary algebra.

The other division symbol, DIV, is used only where
both operands are of type INTEGER; the result is
always of type INTEGER. The sign of the result is
plus or minus as in algebra. The result is always
truncated (cut off) to be an INTEGER. No round­
ing is done in this cutting-off process; thus, if the
normal quotient would be + 12.83, it is cut off to
+ 12; similarly, - 12.83 is truncated to - 12. (DIV
is one of the reserved words. See APPENDIX D.)

For exponentiation, raising a number of type IN­
TEGER to a positive power which is also of type

INTEGER will give a result of type INTEGER. Any
other defined result will be of type REAL.

Because a negative number raised to a fractional
power may be undefined in mathematics, there are
certain invalid combinations for exponentiation. To
define all situations completely, a table of valid and
invalid combinations is given in APPENDIX B.

It is especially important to realize that although
the type (REAL or INTEGER) of an arithmetic
expression is determined by the foregoing rules, the
type of the result following insertion of the expres­
sion into a statement (after the replacement oper­
ator) can change.

Example:

Z ~(A+ B)/C

Because division with the slant sign is defined as
always giving a result of type REAL, the expres­
sion (A + B)/C is of type REAL. If the type of
Z were INTEGER, then this result would be auto­
matically converted to type INTEGER, and appro­
priately truncated. Conversely, an expression of
type INTEGER would be converted to type REAL
in such a statement if the variable to the left of the
replacement operator were of type REAL.

EXAMPLES OF ARITHMETIC EXPRESSIONS
In the following examples, the left column gives an
ALGOL assignment statement which contains an
arithmetic expression. The right column gives the
algebraic interpretation of that statement. Extra
parentheses have been used in some of the inter­
pretations to indicate the complete meanings.

ADDITION

z~A+B

z~E+ F + G
Z=A+B
Z = (E + F) + G

SUBTRACTION

z~w-R

z~w-R-s

MULTIPLICATION

Z =W-R
Z = (W - R) - S

z~AxB Z=AXB
Z ~Ax Bx C x D Z = {(Ax B) x C} x D

DIVISION

z~AJB

Z ~ AJBJC

EXPONENTIATION

z~A*B

Z ~A*(- B)

A
Z=­

B
Z = (A/B)/C

z =AB
z = A<-B)

COMBINATIONS OF OPERATIONS

Z ~A+B-C+D
R~ZxY+AxB

s ~A+BxCxD

T ~AxB/CXD

M~A/BXC-D+E/F

Z ={(A+B)-C}+D
R = (ZXY) + (AXB)
S =A+{ (BXC) XD}

AXB
T=--XD c

M={(~)xC}-D+:
Z ~A*BXC Z =(AB) XC
P ~AXB*C P =A(Bc)
V ~A*B+C V =(AB) +C
w~A*(B+C) W=A<B+C> (!)
Z ~A*(BXC)-D*(E/F) Z =A<Bxc>-(D)

2·3

Boolean expressions are rules for computing the
logical values TRUE and FALSE. If the condition
stated is satisfied, the result is TRUE, otherwise
the result is FALSE. Just as the value of an arith­
metic expression is of type REAL or INTEGER,
the value of a Boolean expression is of type
BOOLEAN.

Boolean expressions employ two kinds of operators:
relational and logical.

The relational operators are:

< less than > greater than
~ less than or equal to ~ greater than or equal to
= equal to * not equal to

Relational operators specify a comparison between
two terms which may have any arithmetic value.

Examples:

R > 0 R < + .46
R + 3 x Y ~ 2 x Z Y ~ 12.34
R=Y 100-=FZ

In each example, the entire expression has either
the value TRUE or the value FALSE, depending on
whether or not the specified relation holds.

The logical operators used in ALGOL 60 for the
B 5000 are:

/\ and
v or
I not

EQV equivalent to
IMP implies

Evaluating a Boolean expression containing a logi­
cal operator involves application of the rule stated
for that operator to the operands, which are re­
stricted to the values TRUE and FALSE. (EQV
and IMP are, of course, reserved words.)

Logical operands must be:

(a) the result of a relational operation, or
(b) the result of a logical operation, or

SECTION 3
BOOLEAN EXPRESSIONS

(c) a declared BOOLEAN variable. (Declara-
tions of type are described in SECTION 6.)

The logical operators have the following meanings.
(Where the conditions stated are not met, the re­
sult is FALSE.)
/\ (and) If both operands connected

by this operator have the
value TRUE, the result is
TRUE.

V (or)

I (not)

EQV (equivalent to)

IMP (implies)

If either operand connected
by this operator is TRUE,
the result is TRUE.
If the operand following this
operator is FALSE, the re­
sult is TRUE.
If the operands connected
by this operator have the
same logical value, the re­
sult is TRUE.
If the operands connected
by this operator have the
same logical value, or if the
first (left-hand) operand is
FALSE, then the result is
TRUE.

A tabular form of the above definitions follows.

Let A and B be logical operands, then:

A TRUE TRUE FALSE FALSE
B TRUE FALSE TRUE FALSE

A /\ B TRUE FALSE FALSE FALSE
AVB TRUE TRUE TRUE FALSE
IB FALSE TRUE FALSE TRUE

A EQV B TRUE FALSE FALSE TRUE
A IMP B TRUE FALSE TRUE TRUE

Examples using the logical operators are given

3-1

EXAMPLE

I (B < 100)

QUESTION POSED

Is it FALSE that B is less
than 100?

(A = 10) /\ (B < 100) Is it TRUE that A is equal
to 10 and that B is less
than 100?

(X > Y) V (Z > W) Is it TRUE either that X
is greater than Y or that
Z is greater than W?

(A = B) EQV (C 7'= 0) Is it TRUE that both re­
lational tests give the
same result; i.e., are both
TRUE or both FALSE?

(M 7'= N) IMP (R < S) Is it TRUE that the first
(left-hand) relational
value is equivalent to the
second, or that the first is
FALSE?

The interpretations of the examples are stated in
the form of questions because that is the way the
programer is likely to use these expressions in his
programs. (See Control Statements, SECTION 5.)

In the following examples, A, B, C, and D repre­
sent logical values or complete logical operations
(such as the results of the preceding examples).

EXAMPLE

AVB

3-2

QUESTION POSED

Is it TRUE that either A
or Bis TRUE?

I (AV B)

(A /\ B) V (C /\ D)

(AV B) V (IC)

Is it FALSE that either
A or Bis TRUE?
Is it TRUE either that
both A and B are TRUE,
or that both C and D are
TRUE?
Is it TRUE either that A
or B is TRUE, or that C
is FALSE?

There are standard rules for the priority of per­
forming relational and logical operations. While
the general rule for performing these operations is
to proceed from left to right, this rule is subordi­
nated to the following priority list.

First priority: Parenthesized operations
Second priority: Evaluation of arithmetic ex-

Third priority:

Fourth priority:
Fifth priority:

pressions
Relational operations as met
from left to right
I (not)
/\ (and)

Sixth priority: V (or)
Seventh priority: IMP (implies)
Eighth priority: EQV (equivalent to)

This priority list indicates that in many cases pa­
rentheses may be omitted. However, to avoid errors
in interpretation and for easier reading, it is rec­
ommended that parentheses be used in compound
expressions.

A function designator defines a single value which
is the result of a specific set of operations on given
parameters. Certain frequently used functions
have been designated standard functions and incor­
porated in ALGOL so that the programer need not
write the detailed steps to compute these values.

The arguments upon which these standard func­
tions are to operate must be enclosed with paren­
theses. A list of the standard function designators,
all of which are reserved words, follows :

STANDARD FUNCTION
DESIGNATOR

FUNCTION
DESIGNATED

SIN Sine
cos Cosine
ARCTAN Arctangent
SQRT Square root
LN Natural logarithm
LOG Logarithm, base ten
EXP Exponential function
ABS Absolute value

SECTION 4
STANDARD FUNCTIONS

SIGN

ENTIER

Examples:

Sign. According to whether
the value of E is greater
than zero, equal to zero, or
less than zero, SIGN (E) is
+ 1, 0, or - 1.
Transfers from type REAL
to type INTEGER by assign­
ing the largest integer not
greater than the value.

(1) R~ (- B +SQRT (B*2 - 4 x Ax C)) I (2 x A)
(2) TANY ~ SIN (Y) /COS (Y)
(3) R ~ ENTIER (Z)

In example (2), SIN and COS are standard func­
tion designators, but TANY is an identifier; the
angle Y must be expressed in radians, and TANY
will, of course, be a type REAL number such as
2.3456789. In example (3), the value of R is re­
placed by the largest integer which is not greater
than the value of the type REAL number Z; the
sign of R will be the same as the sign of Z.

4-1

SECTION 5

Statements are the sentences of this algebraic lan­
guage; as in ordinary written English, the order in
which they appear is very important. Statements
are separated by semicolons. A group of state­
ments may be combined to form a compound state­
ment by preceding the first statement of the group
with the word BEGIN and following the last state­
ment with the word END. It is sometimes neces­
sary to identify a particular statement so that it
may be referenced in other statements. To do this,
a statement is given a label, which is an identifier
followed by a colon. Operational statements fall into
one of two general categories: assignment state­
ments and control statements.

ASSIGNMENT STATEMENTS: SUMMARY
Assignment statements have been mentioned in
preceding sections. Here these references are sum­
marized for easier comparison with control state­
ments.

Assignment statements contain the replacement
operator .,___ denoting the substitution of

a number, or
the value of an identifier, or
the value of an expression

on the right for the identifier on the left.

Examples:

SUMB .,___ 0; [Zero replaces SUMB.]

M .,___ N; [The value of N replaces
the value of M.]

A .,___ B!C - V - Q x S;
B

[Thequantityc - V - QSreplacesA.]

HYPTNS: C .,___SQRT (A *2 + B*2);
[HYPTNS is a statement label. The quantity
VA2 + B2 replaces C.]

ROOT: Y .,___ (- B + SQRT
(B*2 - 4 x Ax C))/(2 x A);
[ROOT is the statement label. The quantity
- B + VB2

- 4AC
2A replaces Y.]

CONTROL STATEMENTS
In the normal sequence of operations, the successive
statements are executed as they are encountered. It
is sometimes desirable to interrupt this normal se­
quence, as when one or more statements are to be
repeated several times, or are to be executed only
under specific conditions. The interruption of the
normal sequence is called transfer of control since,
once the transfer has taken place, successive state­
ment sequencing continues from the new point of
reference.

Transfer of control in ALGOL is accomplished
through use of the control statement, which may
be unconditional, conditional, or iterative.

Unconditional Control Statements
Unconditional transfer of control statements are
formed by following the words GO TO with a label
which specifies the point in the program where con­
trol is to be resumed; some examples are shown
below. More general GO TO statements are pos­
sible, but are not considered in this section.

GO TO BILL;
GO TO COEFLIFT;
GO TO SECONDSTOP;
GO TO START;
GO TO M3L75;

Conditional Control Statements
Conditional control statements cause other state­
ments to be executed or skipped depending on the
current values of specified Boolean expressions.
Conditional control statements provide the ability

5-1

to make decisions necessary for the completely au-
tomatic solution of a problem.

The conditional control statement may have either
of the following formats:

IF Boolean expression THEN statement;
next statement
IF Boolean expression THEN statement
ELSE statement; next statement

NOTE: The statement following THEN may not
begin with the word IF.

In either case, when the relational or logical expres­
sion following IF (the IF clause) is TRUE, the
statement following THEN is executed and control
is transferred to the beginning of the next state­
ment, unless the THEN statement contains a change
of control operation (as shown in examples 2 and 4
which follow). When the IF clause is FALSE, the
THEN statement is skipped. In the first case above
(IF ... THEN), control is transferred to the be­
ginning of the next statement. In the second case
above (IF ... THEN ... ELSE), control is trans­
ferred to the statement following ELSE; after
that statement has been executed, control is trans­
ferred to the beginning of the next statement.

Examples:

(1) IFP _:s; OTHENP~ .5; Y ~ 2 x P + 3;

(2) IF Y < .0001 THEN
GOTOOUT;N ~N/2;

(3) IF A = B THEN C ~ 1ELSEC~1 - A!B;
n~cxM; ...

(4) IF (Y ~ 0) /\ (Y < .0001) THEN
GO TO OUT ELSE GO TO CONT;

The conditional control statement may contain
more than one IF clause. In this case, the IF clauses
are evaluated one after the other in sequence from
left to right until one yielding the value TRUE is
found. Only with a TRUE condition is the associ­
ated THEN clause executed, after which control is
transferred to the beginning of the next statement.

Example:

5-2

KEN: IF A= BTHENC~ 1
ELSE IF A < B THEN
C ~ 1 - A!B ELSE GO TO REVERSE;

Iterative Control Statements

The purpose of the FOR statement in ALGOL 60 is
to facilitate writing an iterative operation. An oper­
ation is said to be iterative when the same, state­
ment is to be executed repeatedly a specified num­
ber of times or is to be executed for each one of a
designated set of values assigned to a variable. The
FOR statement contains a FOR clause and a DO
statement. The FOR clause gives the conditions
under which the DO statement is to be executed re­
peatedly zero or more times. (The DO statement
would be executed zero times-i.e., would not be
executed-if the conditions of the FOR clause were
not satisfied.) The FOR statement has the follow­
ing format:

FOR (variable) ~ (FOR list) DO (statement)

The FOR list is composed of one or more elements
separated by commas, and gives a rule for obtain­
ing the values which are consecutively assigned to
the variable. This sequence of values is obtained
from the FOR list elements by taking these one by
one in the order in which they are written, left to
right. There are three kinds of FOR list elements:
arithmetic expression element, STEP-UNTIL ele­
ment, and WHILE element. In defining these, only
one-element FOR lists will be considered.

ARITHMETIC EXPRESSION ELEMENT

An arithmetic expression alone may be a FOR list
element and as such indicates that the variable will
take on the value of the expression prior to the exe­
cution of the DO statement.

. arithmetic next
FOR variable~ . DO statement; t t t expression s a emen

When the DO statement has been executed, control
is transferred to the beginning of the next state­
ment.

FOR J ~ 3 DO Z ~ 2 x J + J*3;
next statement

FORS ~c + DDOBEGINM~ S*2;
N ~ M + 5;
V ~ R/S + L + M X N END; next statement

STEP-UNTIL ELEMENT

The effect of evaluating the FOR list element
STEP-UNTIL is similar to the result obtained from
counting when given a starting point, a limit, and

the increment by which to count. (For example :
Count by 2's from 10 through 90.) This element has
the form:

starting
point

STEP increment UNTIL limit

The starting point, increment, and limit are arith­
metic expressions. The statement following the
word DO in the example shown below is executed
once for each value computed by stepping from
the starting point through the limit.

FOR variable~ s~rtting STEP increment
porn

UNTIL limit
DO statement; next statement;

In the above form, the following sequence takes
place:

(1) The variable is replaced with the value of the
starting point.

(2) The variable is compared with the limit. If
the variable has passed the limit, control is
transferred to the beginning of the next
statement. If the variable has not passed the
limit, the statement following DO is exe­
cuted, then the variable is altered by the
amount of the increment, and the sequence
continues at (2) above.

Note that since the increment may be either posi­
tive or negative the limit may be approached from
either direction.

Example:

FOR A~ 1STEP1UNTIL10
DO statement; next statement

In this example, the DO statement will be executed
ten times, after which control will be transferred to
the beginning of the next statement.

FOR Z ~ 3 x Y + 2 STEP 2 x B UNTIL
B*2 + 1 DO statement; next statement

In this example, the DO statement will be executed
repeatedly until the value Z, which is increased by
2B after each execution, exceeds the value B2 + 1.
At that time, control is transferred to the begin­
ning of the next statement. Unlike the previous
example, in which the DO statement is always exe­
cuted exactly ten times, the number of times the
DO statement in this example is executed is not

fixed since it is dependent on the current values of
Band Y.

Example:

APPROX~ 0; FORM~ Zl STEP 0.005
UNTIL Z2 DO APPROX~ APPROX +
0.005 x (C x M*2 + D x M + E).

'

WHILE ELEMENT

The FOR list element WHILE implies duration and
may be thought of as representing "as long as."
This element has the form:

arithmetic
expression

WHILE Boolean
expression

A FOR statement containing the WHILE element
has the following form:

FOR . bl arithmetic varia e ~ .
expression

WHILE Boolean
expression

DO statement; next statement

The statement following DO will be executed re­
peatedly as long as the Boolean expression following
WHILE is true.

The following events take place:

(1) The variable is replaced with the value of the
arithmetic expression.

(2) The Boolean expression is evaluated. If the
result is not TRUE, control is transferred to
the beginning of the next statement. If the
result is TRUE, execute the DO statement,
then continue from (1).

Example:

FORQ~2xVWHILEV<10

DO statement; next statement

In this example the value computed from the ex­
pression 2 X V replaces Q and the DO statement is
executed as long as the value of V is less than 10.
Note that an exit-i.e., change of control to another
statement-from this FOR statement is dependent
upon either a change in the value of V as a result of
the DO statement (see the third example at the end
of SECTION 6) or the presence of a change-of-con­
trol operation within the DO statement.

5-3

Example:

FOR Q ~ 2 x V WHILE V < 10
DOBEGINM~ (Q + 5 x R) x Q;
GO TO APRIL END; next statement

NOTE: In this example, Q is first set equal
to 2V. Then, if V is less than 10, the statement fol­
lowing BEGIN is executed, and control is then
transferred to APRIL. If V becomes equal to or
greater than 10, control skips to the next statement
instead of being transferred to APRIL.

This series of statements is completely equivalent
to:

FORQ ~ 2 x VDOIFV < 10
THENBEGINM~ (Q + 5 x R) x Q;
GO TO APRIL END; next statement

THE FOR LIST

As stated previously, the FOR list may contain sev­
eral elements separated by commas. The elements
within a single FOR list may be all of the same kind
or of different kinds. They are completely evalu-

5-4

ated, individually, as they are met from left to
right, and the statement following DO is executed
repeatedly until the FOR list is exhausted or until
control is transferred to another point in the pro­
gram as a result of the execution of the DO state­
ment. (See the last example in SECTION 6.)

Example:

FOR L ~ 1, 3, 7, 11 DO statement;
next statement

To exit from any FOR statement, either of two
methods is used, depending on the operation in­
volved. When the final (rightmost) FOR list ele­
ment has been completely evaluated, control is
transferred automatically to the beginning of the
next statement in sequence. The alternate method
is an exit resulting from the execution of a GO TO
control statement from within the DO statement.
(In this case, the DO statement is probably a com­
pound statement.) If the exit is caused by a GO TO
statement, the variable retains the value which it
had immediately before the exit took place. Other­
wise the value of the variable after exit is consid-
ered to be "unknown," according to the rules of
ALGOL 60, and should not be used.

SECTION 6
DECLARATIONS AND BLOCKS

The main body of an ALGOL program is an ordered
list of statements which, when executed, produces
the specified solution. As was stated at the begin­
ning of SECTION 5, successive statements may be
combined to form a compound statement by preced­
ing the first statement with the word BEGIN and
following the last statement with the word END.
The statements between BEGIN and END are
treated as a whole rather than as separate units.

Statements are composed of identifiers, operators,
numbers, punctuation marks, and reserved words
(e.g., IF, GO TO) combined according to the rules
of ALGOL. With the exception of identifiers, the
individual items represented by each of these terms
have specific meanings. Identifiers, because they
are arbitrarily selected for and used in one program,
have meaning only within that program. Therefore,
all identifiers used in a program, except those em­
ployed as labels or as the formal parameters of a
procedure declaration (see SECTION 7), must be in­
troduced prior to their use; this is done with a dec­
laration which defines certain properties of the
identifiers.

TYPE DECLARATIONS
The type declaration defines the type of the vari­
able named by an identifier. The type may be
REAL, INTEGER, or BOOLEAN. The type declara­
tion specifies that all values which the identifier
takes on must be of the designated type.

The type declaration has the following form:

type identifier, identifier, ... , identifier;

Examples:

REALM, Y,Z;
INTEGERC;
BOOLEAN A, B;

BLOCKS
A logical segment of a program is a section of cod-

ing which is considered by the programer to be a
complete and primarily independent unit. Its inde­
pendence derives from the fact that a section's ele­
ments may have meaning only within that particu­
lar section. An entire program is a logical segment
and it may contain subprograms which are also
logical segments. In ALGOL the logical segment is
called a block. A block is defined as a program sec­
tion which is preceded by the word BEGIN, includes
at least one declaration and one statement, and is
followed by the word END. A block has the follow­
ing form:

BEGIN declaration; statement; ... ;
statement END

A declaration is valid only for the block in which it
appears, and has effect throughout that block. All
declarations for a block must immediately follow
the word BEGIN, and any entry to that block must
be made at the word BEGIN.

Exit from the block, as a result of encountering the
word END or a transfer-of-control statement (GO
TO), cancels the declarations made within the block.
The identifiers declared in the block, then, have no
significance outside the block and may be used for
other purposes. If an identifier is further declared
with the word OWN, upon re-entry to the block it
will assume the value it had at the last exit. Except
for the values of these OWN-declared identifiers
upon re-entry to a block, the value of each variable
declared within a block is unknown until the vari­
able has appeared to the left of the replacement
operator in an assignment statement.

Blocks may be labeled by preceding the word
BEGIN with an identifier followed by a colon.

Blocks written within blocks are allowed as long as
all the preceding rules are strictly followed. For
example:

6-1

Label: BEGIN declaration; statement;
statement; ... BEGIN declaration;
statement END; statement END

In this example, the inner BEGIN-END pair estab­
lishes a block within a larger block.

SWITCH DECLARATIONS
A SWITCH declaration names a group of alterna­
tive points in a program to which control may be
transferred as the result of a single GO TO state­
ment. The selection of the actual point to which
control is transferred depends on conditions exist­
ing at the time of the transfer. The declaration con­
tains a list of the labels of the statements to which
control may be transferred, a replacement operator,
and a separate label by which the SWITCH declara­
tion may be referenced. The SWITCH declaration
has the following form :

SWITCH name ~ Labell, Label2, ... , Labeln;

Example:

SWITCH BENNY~ ERRORLOOP,
GOODRESULT,ALLTHRU;

In order to transfer control to one of these three
points by means of the switch, the program must
encounter a change-of-control statement such as:

GO TO BENNY [Y - 2] ; next statement

The expression in brackets is evaluated. If the value
is 1, control is transferred to ERRORLOOP; if the
value is 2, control is transferred to GOODRESULT;
and if 3, to ALLTHRU.

If the value of the expression is not a whole num­
ber, it will be rounded and then truncated to a whole
number for purposes of selecting the transfer. If
the value is either zero or outside the range of the
number of labels given in the list, no transfer of
control results and the program continues with the
statement following the GO TO statement (indi­
cated above by "next statement").

ARRAY DECLARATIONS
An array is a group or set of items arranged in such
a manner that each item may be identified by its
position within the group. A familiar array is a
standard classroom seating plan with desks ar­
ranged in uniform rows and columns. Each desk in

6-2

the room may be uniquely named in terms of its
row and column. Thus, classroom A, row 5, column
3 would locate one particular desk in the designated
room. Also, just as different students could occupy
one particular desk from time to time, different
values can be assigned to one position in an array.

In ALGOL an array declaration is used to define a
fixed arrangement of items; it names the array,
specifies its dimensions, and states the range within
each dimension. The form of the array declaration
follows.

ARRAY name [dimensionl,
dimension2, ... , dimensionn]

Each dimension has the form :

lower limit: upper limit

Classroom A, with five rows and six columns,
would be defined in ALGOL as follows :

ARRAY A [1 :5, 1 :6]

VARIABLES WITH SUBSCRIPTS
To name a single item within an array, the pro­
gramer uses the identifier of the array, followed by
the appropriate list of subscripts. The subscripts in
a list are separated by commas, and the entire list
is enclosed in brackets. Thus, to refer to the value
of the variable in the fifth row and third column of
array A, the programer would write:

A [5, 3]

The subscript list may contain arithmetic expres­
sions, variables, and variables with subscripts. Some
exam pl es are :

V [J, K]
RATE [2 + X]
V [J, K [3, NJ]

TYPES OF ARRAYS
In mathematical problems the items in an array
normally are numerical values. Therefore, iq
ALGOL it is necessary to precede the ARRAY dec­
laration with a type declaration-REAL, INTE­
GER, or BOOLEAN. If the type declaration is ab­
sent, type REAL is understood.

More than one array may be defined within one
ARRAY declaration, and, if several have the same
number of dimensions and the same ranges within
each dimension, these need only be given once.

Every array defined within a single declaration
must be of the same type. Example:

REAL ARRAY M, N, Q [1:10,3 :7],
S [1:5,1:30,2 :19], T [1 :4]

Five arrays of type REAL are defined by the above
ARRAY declaration. Three of the arrays-M, N,
and Q-have the same dimensions and ranges. The
terms of the array dimension (lower limit: upper
limit) may be arithmetic expressions involving
identifiers if those identifiers have been declared
and given a value in a block that contains the block
in which the ARRAY declaration appears.

INTEGER ARRAY MAC [1 :P + 2, K :L]

The identifiers P, K, and L must have values at the
time the ARRAY declaration is encountered, since
otherwise the declaration is meaningless.

The subscripts used with the ARRAY name, to in­
dicate a single item within the set, follow the
ALGOL conventions for subscripts and may be de­
fined within the block in which they appear.

Examples:

MAC [2,R]

COM3 [I,J]

FORQ~2 X VWHILEV < lODOBEGIN
M [V] ~ (Q + 5 X R) X Q;
V ~ V + 1 END; next statement

FORM~ 1STEP3UNTIL19, 20, 3 x N x A
WHILE A > 1 DO BEGIN
F [M] ~ Z [M] + 5 x G; A ~ A - 5 ;

R ~A X F [M] END; next statement

6-3

GENERAL NATURE OF PROCEDURES
A procedure is a section of coding which is to be
executed at several points throughout the same pro­
gram, or used without alteration in more than one
program. It is because of this multiple usage that a
section of coding is made into a procedure; as such,
it can be incorporated into any program exactly as
it was first written. Also, for multiple use in one
program, it need be written only once, with each
execution being called for by a simple notation. It is
characteristic of a procedure that the operations to
be executed are fixed, while the values of the vari­
ables, or the variables themselves, may be different
when each point is reached from which the proce­
dure is entered.

The section of coding to be used as a procedure is
written once in a procedure declaration which has
the format shown below. The parts of the procedure
declaration must appear in the order indicated here.

NOTE: Words and symbols enclosed by
parentheses in the examples of this section
represent quantities within actual paren­
theses, and are not merely remarks to
the reader.

PROCEDURE name (list of formal param­
eters);

VALUE list of formal parameters to be re­
placed by the values of the actual pa­
rameters;

Specifications giving information about the
formal parameters;

BEGIN declarations for identifiers which have
meaning only within this procedure;

statement ; . . . ; last statement END

SECTION 7

The procedure heading begins with the reserved
word PROCEDURE which indicates that what fol­
lows is a procedure declaration. Each procedure is
given an identifier (name) by which it may be ref­
erenced. Formal parameters are names (identifiers)
given to the variables of the procedure which ob­
tain actual values when the procedure is used in a
program. They represent quantities obtained from
the main program which may be used in calcula­
tions of the procedure or which may be assigned
new values through the execution of the procedure.
These names are chosen when the procedure is first
written and have no connection with a particular
program. They take on actual meaning only when
the procedure is called upon for execution by a
program.

When a program makes use of a procedure (i.e.,
calls for its execution) the formal parameters are
replaced by actual values or names actually being
used in the main program.

The VALUE part is used if one or more formal
parameters are to be replaced by an actual value
before a procedure is executed. Since formal param­
eters which are to be replaced by different names
are not contained in the VALUE list, a procedure
declaration need not have a VALUE part.

Specifications for formal parameters are optional
and their inclusion is suggested as an aid to persons
using the procedure.

The procedure body may be a compound statement,
a block, or even a single statement. All the rules
pertaining to those segments of an ALGOL pro­
gram apply. The following example will help clarify
the concept of a procedure.

Assume that a procedure is required which will cal­
culate the factorial of any whole number. The prob­
lem to be solved is: For any whole number N, com­
pute N ! = 1 X 2 x 3 x . . . X N. For example, if
N = 6, the problem becomes 6! = 1 x 2 x 3 x
4 x 5 x 6.

7-1

7-2

The following procedure accomplishes this:

PROCEDURE FACTORIAL (N, F);
VALUE N; INTEGER N;
BEGIN INTEGER I; F ~ 1 ;
FOR I ~ 2 STEP 1 UNTIL N DO
F ~Ix FEND

The effect of this procedure is that F is replaced by
N ! ; it can be seen then that when this procedure is
actually used, N represents some number which has
been previously determined by some other portion
of the program. The factorial of N is to be calcu­
lated in the procedure; therefore, N is listed after
VALUE. On the other hand, F represents a vari­
able which is, as a result of the procedure, to be
assigned a new value ; therefore, F is not listed after
VALUE. It can be seen that the procedure body is
a block, hence the variable I has meaning only
within the procedure.

At this point it is well to remember that a PRO­
CEDURE declaration is merely another declaration
like type or ARRAY and, when incorporated in a
program, appears in the head of a block.

When a program requires the fixed set of steps out­
lined in some PROCEDURE declaration, a procedure
statement is written which supplies the values of
the variable in the procedure, or assigns new vari­
ables to replace those named in the PROCEDURE
declaration, and causes the procedure to be executed.

A procedure statement has the following format:

Procedure identifier (list of actual parameters)

The procedure identifier is the name assigned to the
procedure in the PROCEDURE declaration. The list
of actual parameters must contain all the identifiers,
expressions, and constants which are to be substi­
tuted for the corresponding items in the list of for­
mal parameters found in the PROCEDURE declara­
tion. The number of actual parameters must thus
agree 1uith the number of formal parameters.
A procedure statement which would call for the
execution of the above example (PROCEDURE
FACTORIAL) is:

FACTORIAL (BOB, JOE)

When a procedure is called upon for execution, three
operations take place, in effect:

(1) All formal parameters of the procedure
which are listed after VALUE are replaced
by the values of the corresponding actual

parameters when the procedure statement is
encounte1·ed in the program.

(2) The other formal parameters are replaced by
the names of the corresponding actual pa­
rameters.

(3) The procedure body is then inserted into the
program, taking the place of the procedure
statement.

The example discussed above will be used to illus­
trate the process.

Given: A program which includes the PRO­
CEDURE declaration FACTORIAL and
the associated procedure statement, as
well as other declarations and state­
ments.

BEGIN DECLARATION;

END

DECLARATION;
PROCEDURE FACTORIAL (F, N);

VALUE N; INTEGER N;

BEGIN INTEGER I; F ~ 1;

FOR I ~ 2 STEP 1 UNTIL
NDOF~I x FEND;
DECLARATION;
STATEMENT;
STATEMENT;

STATEMENT;
FACTORIAL (BOB, JOE);
STATEMENT;

STATEMENT

Assume: JOE = 5 when the procedure statement
is encountered.

Operations preparatory to execution: The first op­
eration inserts the value of JOE, 5, in place of N in
the procedure body. The latter then looks like this,
in effect:

BEGIN INTEGER I; F ~ 1;
FOR I ~- 2 STEP 1 UNTIL 5 DO
F~I x FEND

The next operation inserts the identifier BOB in
place of F throughout the procedure body:

BEGIN INTEGER I; BOB ~ 1;
FOR I ~ 2 STEP 1 UNTIL 5 DO
BOB ~ I x BOB END

Finally the altered procedure body replaces the pro­
cedure statement and is executed as if the follow­
ing were the program :

BEGIN DECLARATION;

END

DECLARATION;
PROCEDURE FACTORIAL (F, N);
VALUE N; INTEGER N;
BEGIN INTEGER I; F ~ 1;
FOR I ~ 2 STEP 1 UNTIL N
DOF~I x FEND;
DECLARATION;
STATEMENT;

STATEMENT;
BEGIN INTEGER I; BOB ~ 1;
FOR I ~ 2 STEP 1 \JNTIL 5
DO BOB ~ I x BOB END;
STATEMENT;

STATEMENT

Another example of a PROCEDURE declaration and
possible procedure statements making use of it is
given below.

PROCEDURE declaration example:

PROCEDURE FALLINGBODY (T, V, S);
VALUE T; REAL T, V, S;
BEGIN REAL G; G ~ 32.172;
S ~ G x T*2/2; V ~ G x T END

The name of this procedure is FALLINGBODY.
The variables T, V, and Sare the formal parameters
which correspond to identifiers appearing outside
the procedure. The procedure body is a block. The
variable G is declared within the body of the PRO­
CEDURE declaration and therefore has meaning
only within the procedure.

Procedure statement examples:

(1) FALLINGBODY (FINALTIME,
SPEED, DISTANCE)

(2) FALLING BODY (5.88, VEL2, DJST2)

Either of these two example procedure statements
could be used to call out the procedure named

FALLINGBODY. The first example causes the
value of the variable FINALTIME to be used in
place of T, and the results to be SPEED and DIS­
TANCE instead of the variables (formal param­
eters) V and S. The second example causes the nu­
merical value 5.88 to be used for T; in this case the
actual parameter is the number itself since it is not
an identifier. The results are to be VEL2 and
DIST2 in place of the parameters V and S.

PROCEDURES AS FUNCTIONS
In SECTION 4 function designators were discussed,
and a list was given of those which are considered
standard in ALGOL It is possible for the ALGOL

programer to create more functions. Two additional
things are required of a PROCEDURE declaration
in order for it to define the value of a function
designator:

(1) An assignment statement must appear, in
the procedure body, which has the procedure
identifier to the left of the replacement op­
erator.

(2) Since the PROCEDURE declaration is defin­
ing a single value, its type must be declared
by preceding the word PROCEDURE by one
of the three reserved words (REAL, INTE­
GER, or BOOLEAN) which indicate type.

Earlier in this section an example of a PROCEDURE
declaration was shown which used the identifier
FACTORIAL. It was constructed in the normal
way. The following shows how this same PROCE­
DURE declaration might look if it were made into a
function which (provided it has first been declared)
can be used just as the standard functions can be
used.

INTEGER PROCEDURE FACTORIAL (N);
VALUE N; INTEGER N;
BEGIN INTEGER I, F; F ~ 1;
FOR I ~ 2 STEP 1 UNTIL N DO
F ~ I x F; FACTORIAL~ F END

In order to make use of this procedure in a pro­
gram, a notation called "function designator" is
used. The function designator and the procedure
statement have the same format:

Procedure identifier (list of actual parameters)

They differ in use only. The procedure statement
stands alone, whereas the function designator is
used as part of either an arithmetic or a logical ex-

7-3

pression. For instance, the following statements in­
clude function designators which refer to the above
procedure.

Assignment statement:

BOB ~ FACTORIAL (JOE)

7-4

Conditional statement:

IF P >FACTORIAL (Q) THEN
GO TO TOWN; next statement

SECTION 8
SAMPLE PROBLEMS

For computer solution of a problem, it is necessary to have data (parameters of the problem) entered into
the computer by some data input process, and to have results given back by means of a data output proc­
ess. Because the formal ALGOL 60 language does not deal with input or output, no formal input or output
symbolism will be given here. Sentences in the example programs which follow indicate which items are to
be read into the computer or written out by the computer, to illustrate the sequence of such processes in a
complete computer program.

The formal definitions for data input and data output may be found in the manual describing the extensions
to ALGOL which form a part of the programing language for the B 5000.

EXAMPLE 1

Given:

Find:

A curved line described by the equation :

xa
(1) y = X5 - 4 - 4X2 + 21x - 5.238

The equation for the slope (Y') of the same curve :

(2) Y' = 5X 4
- % X2

- 8X + 21

(a) The height of the curve above the X axis (value of Y)
from equation (1) for values of X equal to 0, 1/2, 1, 11/2,

2, 21/2, ... ' 111/2, 12.

(b) The values of Y' for those same values of X.

ALGOL PROGRAM EXPLANATORY REMARKS

BEGIN

REAL X, Y, YPRIME;

FOR X ~ 0 STEP 1/2 UNTIL 12

The entire program is a block, made up of a
type declaration and a FOR statement. The
FOR statement includes an output statement.

This type declaration indicates that the vari­
ables X, Y, and YPRIME may be assigned any
value within the set of real numbers.

The rest of the program (except for the final
END) is a FOR statement. This is the STEP­
UNTIL element with:

0 as the starting point,
1/2 as the increment, and
12 as the limit.

8-1

8-2

DO BEGIN

Y ~ X*5 - (X*3)/4 - 4 x X*2 + 21 x X - 5.238;

YPRIME ~ 5 x X*4 - (3 x X*2)/4 - 8 x X + 21;

This begins the DO statement portion of the
FOR statement. It is in itself a compound
statement, made up of two assignment state­
ments and an output statement.

This is the first assignment statement, which
assigns to Y the value of the arithmetic ex­
pression on the right.

This is the second assignment statement,
which assigns to YPRIME the value of the
arithmetic expression on the right.

{Print out the values of X, Y, and YPRIME} This is where the output statement would be
placed. It would result in printing three values
each time the DO statement portion of the
FOR statement is executed, or 25 times alto­
gether.

END

END

EXAMPLE 2

Given:

Find:

End of the DO statement.

End of the block.

(a) The series of numbers 17, 24, 31, 38, 45, 52, ... , where each successive term is found
by adding 7 to the previous term, and where 17 is defined as the first term;

(b) Equations

(1) L = A + (N - 1) D,

N
(2) S = 2 (A + L)

The following are the symbols and meanings:

A is the first term of such an arithmetic series.
D is the difference between two successive terms.
N is the number of terms in the series up to the point in question.
L is the Nth term of the series.
S is the sum of the first N terms of the series.

the value of the 50th term of the series by equation (1), and the sum of the first 50 terms
by equation (2). Similarly, find the values of the 75th, lOOth, 125th, 150th, etc., to the
300th term, and the sums of the terms to each of these points.

ALGOL PROGRAM EXPLANATORY REMARKS

BEGIN

REALL, S;

The entire program is a block made up of two
type declarations, an output statement, and a
FOR statement which includes another output
statement.

This type declaration indicates that the vari­
ables L and S may be assigned any value with­
in the set of real numbers.

INTEGERN;

{Print column headings "N," "L," and "S"}

FOR N ~ 50 STEP 25 UNTIL 300

DO BEGIN

This type declaration indicates that values as­
signed to the variable N must always be re­
stricted to those numbers in the set of integers.

This represents an output statement which
would result in printing the letters N, L, and S
at the top of a page.

The rest of the program (except for the final
END) is a FOR statement. This is the STEP­
UNTIL element, with:

50 as the starting point,
25 as the increment, and

300 as the limit.

The DO statement portion of the FOR state­
ment starts here. It is in itself a compound
statement, made up of two assignment state­
ments and an output statement.

L ~ 17 + (N - 1) x 7;

S ~ N/2 x (17 + L) ;

The first assignment statement.

The second assignment statement.

{Print out the values of N, L, and S} This represents an output statement which
would print the values of N, L, and S under
the appropriate column headings. Eleven such
printouts would result.

END

END

EXAMPLE 3

Given:

Find:

End of DO statement.

End of block.

(1) A = 2 x W X L + 2 x W x H + 2 x L x H

(2) R = fA
V'~

A
(3) r = 4R7T2

(a) The total outside surface area of a rectangular box, where the width (W), length (L),
and height (H) are 12 inches, 27 inches, and 14 inches, respectively. Use equation (1).

(b) The radius of a sphere which has the same surface area as the box. Use equation (2).

(c) The radius (r) of the cross section of a torus (doughnut) such that the torus will have
the same surface area as the box and sphere, using the radius of the sphere (R) as the
major radius (R) of the torus. Use equation (3).

ALGOL PROGRAM EXPLANATORY REMARKS

HEGIN The entire program is a block made up of two
type declarations, six assignment statements,
and an output statement.

8-3

8-4

REAL A, RS, RT;
INTEGER W, L, H;

w~12;

L~27;

H~14;

A~ 2 X W x L + 2 x W x H + 2 x L x H;
RS~ SQRT (A/ (4 x 3.14159)) ;
RT~ A/(4 x RS x 3.14159 * 2);

{Print out values of A, RS, and RT} This represents the output statement. This
program would result in one printout.

END

EXAMPLE 4

Given:

Find:

Method:

End of block.

(1) Mean value= A= (X1 + X2 + X~ + ... + Xn)/n

(2) Standard Deviation (!) = Jx21 + X22 + ... + X
2
n - A2

n

where X1, X2, ... , Xn is a set of values, and n is the number of values.

(a) The solution of equation (1) for the mean value of the set.

(b) The solution of equation (2) for the standard deviation.

(c) The identification and value of the term which differs most from the mean value.
(Identify by subscript number.)

(d) Which (if any) of the terms (values) are exactly equal to the mean value. (Identify
by subscript numbers.)

1. Solve the first equation for the value of A.

2. Solve the second equation for the value of the standard deviation.

3. Find the maximum of the absolute values of the following expressions, and record the
subscript number.

(X1 - A), (X2 - A), (X3 - A), ... , (Xn - A).

4. Compare Xi, X 2 , ••• , X 11 successively with A, and record the subscript numbers of the
terms which are equal to A.

The ALGOL statements shown below result.

(This section of coding computes the mean value.)

SUM~O

FOR I ~ 1 STEP 1 UNTIL N DO SUM ~ SUM + X [I] ;
A~ SUM/N;

(This section computes the standard deviation.)

SUMSQ~O;

FOR I ~ 1 STEP 1 UNTIL N DO SUMSQ ~ SUMSQ + X [I] * 2;
STANDEV ~SQRT (SUMSQ/N - A* 2) ;

(This section computes the maximum deviation.)

MAXDEV ~ABS (X [1] - A); INDEX~ 1;
FOR I ~ 2 STEP 1 UNTIL N DO BEGIN
Z ~ ABS (X [I] - A) ; IF Z > MAXDEV THEN BEGIN MAXDEV ~ Z; INDEX ~ I END END

(This section finds the subscript numbers of the terms equal to A.)

J~ 1;
FOR I ~ 1 STEP 1 UNTIL N DO
IF X [I] = A THEN BEGIN Y [J] ~ I; J ~ J + 1 END

This program in ALGOL as presented is almost complete, but a few additional constructions are required.

A. Because every ALGOL program is considered a block in itself, it is necessary to place BEGIN and
END around the program.

B. Because all identifiers of a program must be declared, the following declarations must be included,
and placed at the beginning of the block :

INTEGER N, I, J, INDEX;
INTEGER ARRAY Y [1:1000];
REAL A, SUM, SUMSQ, STANDEV, MAXDEV, Z;
REAL ARRAY X [1:1000];

Note that these declarations of arrays with a subscript range of 1 to 1000 allow up to 1000 values of X to be
used, and similarly up to 1000 values of Y (in case all values of X were equal and therefore all equal to A).

C. As pointed out earlier, data input and data output statements are also required to perform the
following:

(1) Read data input values of X11 X2 , ••• , Xn, and n.

(2) Print an output page heading which reads: COMPUTATION OF MEAN VALUE, STAND­

ARD DEVIATION,AND GREATEST DEVIATION.

(3) Print the values found for A, STANDEV, MAXDEV, and INDEX.

(4) Print a heading which reads:

SEQUENCE NUMBERS OF THE TERMS EQUAL TO THE MEAN VALUE.

(5) Print out the (J - 1) values in the set Y [J] (these being the sequence numbers of (4) above).

(6) If there are no terms equal to the mean value, then, instead of (4) and (5) above, print out a
line which reads :

NO VALUES OF X [I] ARE EQUAL TO A.

ALGOL PROGRAM EXPLANATORY REMARKS

BEGIN

REAL A, SUM, SUMSQ, STANDEV, MAXDEV, Z;
INTEGER N, I, J, INDEX;
INTEGER ARRAY Y [1 :1000) ;
REALARRAYX [1:1000];

The entire program is a block made up of two
type declarations, two array declarations, an
input statement, seven assignment statements,
four FOR statements, an IF statement, and
two output statements.

8-5

{Read data input values of X1 , X2 , X,H ... , Xn, and n}; This represents the input statement which
would cause n + 1 values to be read.

SUM~ O;

FOR I ~ 1 STEP 1 UNTIL N DO SUM ~ SUM + X [I] ; The first FOR statement.

A~ SUM/N;
SUMSQ ~ O;
FOR I ~ 1 STEP 1 UNTIL N DO The second FOR statement.

SUMSQ ~ SUMSQ + X [I] *2;

STANDEV ~SQRT (SUMSQ/N - A*2);

MAXDEV ~ ABS (X [ll - A) ;

INDEX~ 1;

FOR I ~ 2 STEP 1 UNTIL N

DO BEGIN Z ~ ABS (X [I] - A) ;

IF Z > MAXDEV THEN

END;

BEGIN ivIAXDEV ~ Z;
INDEX~ I END

{

Print heading which reads: COMPUTATION OF}
MEAN VALUE, STANDARD DEVIATION, AND
GREATEST DEVIATION

{Print values of A, STANDEV, MAXDEV, and INDEX}

J~l;

FOR I ~ 1 STEP 1 UNTIL N

DO IF X [I] = A THEN

BEGIN Y [J] ~ I ; J ~ J + 1 END;

IF J = 1 THEN {Print out a line which reads: NO}
VALUES OF X [I] ARE EQUAL
TO A

ELSE BEGIN

JPrint a heading line which reads: SEQUENCE NUM-}
l BERS OF TERMS EQUAL TO THE MEAN VALUE

{
Print out the sequence numbers, which are}
the (J - 1) terms of the Y array.

END

The third FOR statement starts here.

This is the DO statement portion, which is
itself a compound statement made up of an
assignment statement and a conditional state­
ment.

This is the conditional statement, of which
another compound statement is a part.

This terminates the third FOR statement.

The first output statement, which results in
printing a heading.

The second output statement, which results in
printing four values.

The fourth FOR statement.

The DO statement portion.

This is the conditional statement, and the out­
put statement which will be executed if J = 1.

Compound statement (made up of two output
statements), which will be executed if J =F 1.

END

End of conditional statement.

End of block.

8-6

Relational
Operators

Logical
Operators

Arithmetic
Operators

Alphabetic
Characters

Numeric
Characters

{

APPENDIX A

BURROUGHS B 5000 ALGOL 60 SYMBOLS

BURROUGHS B 5000

ALGOL 60

HARDWARE REPRESENTATION

Blank
Decimal Point
Comma
Colon
Semicolon
Left Parentheses (
Right Parentheses)
Left Bracket [
Right Bracket]
Replacement Operator ~

Less <
Less or Equal ~
Equal =
Greater or Equal ~
Greater >
Not Equal =I=
And AND
Or OR
Not NOT
Equivalent EQV
Implies IMP

Add +
Subtract
Multiply x
Divide I
Integer Divide DIV
Exponentiate *

A through Z

0 through 9

FORMAL ALGOL 60

REFERENCE LANGUAGE SYMBOLS

(
)
[
]

<
<

=

+

x
I

t

A, a through Z, z

0 through 9

A-1

APPENDIX B

DEFINITIONS OF EXPONENTIATION OPERATIONS

These definitions of results are for the operation An, where A is to be raised to the nth power. A represents
a number of either type REAL or type INTEGER.

(I) Where n is a number of type INTEGER:

(1) If n is greater than zero, and A is not equal to zero, then An = A X A X A X ... X A (n
times). The result is of type REAL if A is type REAL, or type INTEGER if A is type
INTEGER.

(2) If n is greater than zero, and A equals zero, the result is zero.

(3) If n equals zero, and A is not equal to zero, then An equals 1, and the type of the answer is
the same as the type of A.

(4) If n equals zero, and A also equals zero, then the result is undefined.

(5) If n is less than zero, and A equals zero, then the result is undefined.

(6) If n is less than zero, and A is not equal to zero, then An = 1/(A X A X A X ••• X A)
where the denominator has n factors, and the result is always of type REAL.

(II) Where n is a number of type REAL:

(1) If A is greater than zero, then An = (e) n x 1 n <A>, and the result is always of type REAL.

(2) If A equals zero and n is greater than zero, the result is zero.

(3) If A equals zero, and n is equal to zero or less than zero, the result is undefined.

(4) If A is less than zero, the result is undefined.

8-1

Algorithm:

Argument:

ARRAY:

Function:

Instruction:

INTEGER:

Integer:

Integral:

Inverse:

Machine Language:

Operand:

Operator:

Power:

Problem language :

Program:

APPENDIX C

GLOSSARY

A statement of the steps to be followed in the solution of a problem.

One of the independent variables upon whose value that of the function depends.

An ordered arrangement of items, such as a determinant, matrix, or vector.

(1) An element whose value is so related to some other element (or elements) that
it is dependent upon those secondary elements (arguments).

(2) The relationship which defines the value of a dependent variable based on the
value (s) of the independent variable (s) (arguments).

In conventional computer usage, an instruction is a symbol (or group of sym­
bols) recognized by the computer as an order to perform an operation. Typical
instructions include: add, multiply, read a punched card, write on magnetic tape,
store in memory, and change control to another part of the program if a certain
condition (such as a minus sign) exists. Under older methods, a programer had
to learn from 30 to 150 different instruction symbols, and all their individual
variants and peculiarities.

An ALGOL reserved word indicating that the numbers or variables so desig­
nated may have only numerical values which are whole numbers or zero.

A whole number, either positive or negative, containing no fractional or deci­
mal part. Zero may be an integer.

An adjective indicating the integer or whole-number portion of the modified
term.

The inverse of N is 1/N; the inverse of Bl A is A/B. "Reciprocal" is used with
the same meaning.

The system of codes by which instructions and data are represented internally
within a particular data processing system.

Any of the quantities entering into an operation.

A symbol which specifies that a defined action is to take place.

Raising a number to the power of n means multiplying the number by itself n
times; thus, in ALGOL notation, 10*3 means 10 X 10 X 10, or 1000. This proc­
ess is also called exponentiation; in the above example, 3 is the exponent of 10.

The words and symbols used in the original formal statement of a problem, as
for hand computation.

An ordered list of instructions which directs the computer to perform certain
operations in a specified sequence to solve a problem.

C-1

Programer:

Pseudo-Language:

REAL:

Real Numbers:

Reciprocal :

Scale Factor :

Subscript:

C-2

One who designs a set of computer operations to solve a problem (see Program).

An arbitrary system of codes, independent of the hardware of a computer, which
is used to express the steps in a computer program. It usually will be converted
(translated) into an equivalent set of machine language codes which are actu­
ally used to perform the program on a computer.

An ALGOL reserved word indicating that the numbers or variables so desig­
nated may take on any real-number value.

The set of all positive and negative numbers, including integers and zero, but
excluding any imaginary or complex numbers.

See Inverse.

A factor by which a quantity in a problem is multiplied or divided to determine
the location of the decimal point.

In algebra, a subscript is a number or letter, appearing below the center of a line
of other symbols, which represents the position of an element in an array. For
example: A5 is the fifth element in an array called A. In ALGOL, subscripts are
enclosed in brackets; the above example would be written A [5] in ALGOL. In a
two-dimensional array (i.e., one with rows and columns), two subscripts are used
to select the row and column. For example: B5, 3 names the element in the fifth
row, third column, of array B; in ALGOL we would write B [5, 3].

APPENDIX D

RESERVED WORD LIST

The following reserved words, which form a major portion of the B 5000 ALGOL vocabulary, may be
used only as shown in this manual.

ABS IMP

ARCTAN INTEGER

ARRAY LN

BEGIN LOG

BOOLEAN OWN

cos PROCEDURE

DIV REAL

DO SIGN

ELSE SIN

END SQRT

ENTIER STEP

EQV SWITCH

EXP THEN

FALSE TRUE

FOR UNTIL

GO TO VALUE

IF WHILE

D-1

.. _ -·~·---..----~---- -··" ·~·-~-.. ·-· ·-· ,. _______ ,.. - -v -. - '

·•"'""'"'~fi ~'''~·~t~'°li!M"'"""' J.,,.., -..M1'i.,if-~,oi;~<.•W•"•·H~,ll..,"' ·.,..., d ~ ~... "1:1t~~•ii""'""'""" ~ 1'~4-.....,.'f~""~'rfS>~'fi"'~~,f;i, ".'f'll- •.., ~·~ "~ ~~~~>·~~"' :ill<~Y~"' ~:f"i

··-- '1""":~""""":' ,.._ ~~. t. :,,.._'i<:-;-.~ .. ~ _.,_,_4_,__.,,.__.,_ "'~""'..~ • ., -· ~ ?~"""' ~ ' ... ~
W•;-~ ., -~-'l"i'' "'ii<-~ ..,. .,... ~-- " .,.._~ ,,.,_....._~~• .,. •"- - _, *•• --~....M"" • • "' -~ ,_~ - -+ "~' ,.~~ '~• ..; _..,_ _,,. ..,, "lfo"v....-J.. .. ._"'

... ,. • ,.,,.__., ,. • ,.. • "'"'•"·.,,,_~,.,...., ~ -. ~ .., ... ""'1 -!!'-...,.-~ ,,.,_ ,.,,. .., >- 'l!V< 'f" _, ,,_.._ .. _ ... ~ ~ """"" ~~-!!lo : "". ~ ' - • ,._ " ""'"'~ ~ . -~-<' .__ ., ~ .. ~

"l\ i.~'i\lt'.m'1il~ij,!1'.il~~it;i?~ "'M~"~it<~ ''~l;w, 1'1~ ""~~ti-'*~~ ':S"<W~:ll!1t~ .,.,,~~ -.,;~.,./I >,i.I:~......_~ "* .!\il.Jl;,...~~ "li"' <'-'II ~ #ii•""-"''*'"""'~ JiA1..:t•t.,. ~ ~-.-$"' ~~ l" t ,ft ~:litl~~ •ij,' ~ "1J '~~ 11~

~~ ~Y~ a. .

.... :,R~:Ll', ..

Bulletin 0000~21001-D 2-H Printed in U .S~A.

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	A-01
	B-01
	C-01
	C-02
	D-01
	xBack

