
8 1000 SYSJEM SOFTWARE RELEASE MARK 10.0

DOCUMENT/MCPMAHUAL

B 1000 MCPll

REFERENCE DOCUMENT

* TITLE: 81000 SYSTEM SOFTWARE RELEASE MA~K 10.0 CSUPPORf)

• FILE ID: DOCUHENT/MCPMANUAL TAPE ID: SUPPORT •
*

• ***
a •••

k ***
* ~·
~ ***
• *~*
* •••
It

* ••• . ·~·
* •••

PROPRIETARY PROGRAM MATERIAL

THIS MATERIAL IS PROPRIETARY JO BURROUGHS CORPORATION
AND IS NOT TO BE REPRODUCEDP USED OR DISCLOSED EXCEPT
IN ACCORDANCE WITH PROGRAM LICENSE OR UPON WRITTEN
AUTMORIZATION Of THE PATENT DIVISION Of BURROUGHS
CORPORATION• DETROIT, MICHIGAN 48fl2~ USA.

COPYRIGHT CC> 1981
BURROUGHS CORPORATION

••••
*** * ••t •
~·· .
••t *
• • --· ~ • ... *
• •• *
*** *
**- *
••••

81000 HCP MANUAL
HARK 10.0

INTRODUCTION •••••••••••••••••••••••• 1•1
RELATED DOCUMENTATION 1-1
S-MACHINE ••••••••••••••••••••••• 1-2
SOFTWARE 1-3
FIRMWARE •••••••••••••••••••••••• 1-3

TERMINOLOGY AND DEFINITIONS 2-1
MEMORY MANAGEMENT AND MEMORY LINKS • • • • • • • • • • 2-1
SEGMENT DICTIONARIES AND SYSTEM DESCRIPTORS 2-3
INTERPRETER MANAGEMENT~ PARAMETER BLOCKS AND DICTIONARIES z-5
CODE FILES, PROGRAM PARAMETER BLOCKS ANO fILE PARAMETER BL2-6
FILE INFORMATION BLOCKS •• ~ • • • • • • • • • • • • • 2-9
RUN STRUCTURE 2-10
RUN STRUCTURE NUCLEUS • • • • • • • • • • • • • • • • 2-11
DATA ANO FILE DICTIONARIES 2-12
RE-ENTRANT PROCESSING AND CODE SEGMENT DICTIONARIES •• 2-12

THE I/O SUBSYSTEM 3-1
I/O DESCRIPTORS • • • • • • • • • • • • •••••••• 3-2
GISMO - THE I/O DRIVER l-4
CHANNEL TABLE • ~ • • • • • • • • • • • • • • • • • • • 3-6
GISMO/HAROWARE INTERFACE 3-7
CA/RC CYCLES • ~ • • • • • • • • • • • • • • • • • • • 3-8
PROCESSOR I/O INSTRUCTIONS 3-8
SERVICE REQUEST • 3-9
STATUS COUNTS J-10
DATA TRANSFERS •••••••••••••••••••• 3-12
l/O CHAINING 3-ll
DISK 1/0 CHAINING ••••••••••••••••••• 3-14
DISK I/O OVERLAPPED SEEKS 3-15
TAPE I/O CHAINING • • • • • • • • • • • • • • • • • • J•l&
MONITORING Of PERIPHERAL STATUS 3-18
I/O ASSIGNMENT TABLE • • • • • • • • • • • • • • • • • 3-18
UNIT HNEHONICS 3-22
IEST.AND.WAIJ I/O OPERATORS • • • • • • • • • • • • • J-23
STATUS PROCEDURE 3-23

DISK IDENTIFICATION - PACK LABELS ••••••••• 3-24
PACK INFORMATION TABLE 3-25
TAPE LABELLING, INITIALIZATION AND PURGING •••••• 3-26

PE/NRZ EXCHANGES 3-31
FILE SJRUClURES •••••••••••••••••• 3-33

CONVENTIONAL FILES 3-33
FILE NAMING CONVENTIONS • • • • • • • • • • • • • • • -3-35
LOGICAL DISK FILES 3-36
PHYSICAL DISK FILES •••••••••••••••••• 3-36

DISK SPACE ALLOCATION 3-36
FILE ACCESS AND IDENTIFICATION •••••••••• 3-37
DISK FILE IDENTIFICATION 3-38
MULTI-PACK FILES • • • • • • • • • • • • • • • • • 3-39

BASE PACKS 3-40

TC-1

81000 HCP MANUAL
HARK 10.0

CON'TINUATION PACKS ., •• , •••• • • • • • • •
MULTI-PACK FILE INFORMATION TABLE
MULTI-PACK FILE GENERAL RESTRICTIONS •••••

PRINTER FILES
LINAGE Clause ••••••• • ••• • •• • • • • • •
PRINTER AND PUNCH BACKUP CAPABILITIES
BACKUP FILE BLOCKING FACTORS •••••• • • • • • • •
BACKUP FILE CONTROL INFORMATION
BACKUP FILE LOGICAL RECORD FORMAT
Relative Files

• • • . ·• • • • • •

Direct Files •••••••• • • • • • • • • • • • • •
Relative file Data Structure
Relative File Disk Initialization ••••••••••
Relative file Parameter Blocks CfPD•>
Relative Disk file Headers CDFHsl •••••••••••
Relative file Information Blocks CFIBs>
Relative file Communicate Operators •••••••••
Indexed Sequential files
Direct files •••••••••••• • • • • • • • • •
Index Files
Cluster files ••••••••••••••••• • • •
Indexed Sequential Data Fite Structure
Indexed Sequential Index File Structure ••••••••
Indexed Sequential Me•ory Structures
FIB Dictionaries •••••••••••• • •• • • • •
Indexed Sequential User Specific Information CUSil
Indexed Sequential file Global Information CGLOBALSJ •
bisk file Header Extensions
Indexed Sequential Disk File Header Extension
Indexed Sequential Available Space Allocation

• • • •

Index file Table Splitting ••••••••••••••
Current Record Pointer <CURRENT)
CURRENT Maintenance •••••••••••• • • • • •
Indexed Sequential Buffer Management
Indexed Sequential Buffer Descriptor CBD> •••••••
Concurrent Update Operations
Disk I/O Error Procedures • • •••• • ••
The Offset Procedure
The Strobe Procedure •••••••••••••• • • •
The Error Correction Procedure

3-40
3-41
3-42
3-43
3-45
3-48
3-49
J-51
3-52
3-54
3-54
3-54
1-55
3-55
3-55
3-56
3-56
3-58
3-56
3-58
3-59
3-61
3-62
3-66
3-67
3-68
3-69
3-72
J-72
3-72
3-75
3-75
3-76
3-11
3-78
1-19
3-79
3-80
3-81
l-82

Data and Address Error Recovery - 215 And 225 Drives
Data and Address Error Recovery - 205 And 2C6 Drives
Data and Address Error Recovery - 207 Drives •••••
Data and Address Error Recovery - Disk Cartridges
Remainder of the Disk I/O Error Procedure ••••••

Tape 1/0 Error Procedures

• 3-52
3-83
3-83
3-84
3-84
3-85

S•HEHORY MANAGEMENT ANO MEMORY REQUIREMENTS • • • • • • • •
GENERAL MEMORY MANAGEMENT CONCEPTS
LINKED MEMORY •
TYPES OF MEMORY fiEQUESJS

THE FENCE • • • • • • • • • • • • • • •••••••
MINIMIZATION Of "CHECKERBOARDING•
VICTIM SELECTION ••••••• • • • • • • • • • • • •

ROUND-ROBIN VICTIM SELECTION

rc-2

4-1
4-1
4-1
4-2
4-3
4-4
4-4
4-5

81000 HCP MANUAL
HARK 10.0

WORKING SET DETERMINATION • ~ •••••••••••••
SECOND CHANCE VICTIM SELECTION
PRIORITY VICTIM SELECTION •••••••••••••

PROGRAMMATIC DETECTION OF MEMORY THRASHING

4-6
4-6
4-7
4-9

MEMORY INITIALIZATION ••• ~ ••••••••••••
MEMORY REQUIREMENTS

• 4-10
4-15

OPERATING SYSTEM STATIC REQUIREMENTS
OPERATING SYSTEM DYNAMIC REQUIREMENTS

• • • • • • • • • 4-15

PROGRAM-DEPENDENT STATIC REQUIREMENTS •••••••••
4-21
4-26
4-28 PROGRAM-DEPENDENT DYNAMIC REQUIREMENTS

H-MEHORY MANAGEMENT ••• • ••• • •• • • • • •• • • • • 5-1
5-1

•• 5-1
DISTRIBUTION
CONTENTION •••••••••••• • • • • • •• • •

PROCESS <PROGRAM) MANAGEMENT 6-1
DEMAND MANAGEMENT •• • • • • • • • • • • • • • • • • • •• 1-1

MCP OUTER LOOP
TIMER INTERRUPT • • • • • • • • • • • • • • •• • • • •

1-1
1-1
1-1 I/O INTERRUPTS

JOB SCHEDULING AND INlJIALIZATlON
COHHUNICAJES

• • • • • • • • • • • 1-2
7-3

PROGRAM REINSTATE • • • • • • • • • • • • • • • • • • • 7-4
7-4 PROGRAM COHMUNICAJES

COMMUNICATE FORMAT
READ <MICRO HCP)

• • • • • • • • • • • • • • • • 1-5
7-6

WRITE CHICRO MCP> ••••••• • • • • • • • •
SEEK CMICRO HCP>

1-9
1-12
7-13
1-15
7-16
1-11

SORTER CONTROL • • • • • • • • • • • • • • • •
SORTER READ CMICRO HCP)
OPEN COM> •••••• • • • • •• • • • • • • •
CLOSE CDM>
OPEN • 1-11
Disk Fite OPEN 1-28
CLOSE •
POSITION CNICRO MCP CBACKUP FILES ONLY>>
ACCESS FILE PARAMETER BLOCK CfPBl ••••••
ACCESS FILE INFORMATION BLOCK CFIBJ
DATA OVERLAY • • • ••••• • •• • •• • ••
ACCESS DISK FILE HEADER COFHl

• 7-32
1-38
7-41
7-42
7-42
7-43
7-45
7-45

FIND/MODIFY COHJ •••• • •••••• • •••
STORE COM>
DELETE CDM> • • • • • • • • • • • • • • • • • • 7-46

7-46 CREATE/RECREATE COM)
SWITCH.TAPE.DIRECTION
TERMINATE <STOP RUN)

• • • • • • • • • • • • 7-47
7-47

FREE COM) ••••••• • • • • • • • • • • • • 7-50
1-50 TI HE/DATE/DAY

INITIALIZER I/O
WAIT CSNOfiZEJ

• • • • • • • • • • • • • • • 7-51

ZIP • • • • • • • • • • • •••••••••••
ACCEPT

7-52
7-52
7-53

DISPLAY
USE/RETURN

• • • • • • • • • • • • • • • • • • • 7-53

SORT HANDLER • • • • • • • • • • • • • • • • •
SOL TRACE

TC-3

7-54
7-54
7-55

81000 HCP MANUAL
MARK 1o.0

EMULATOR JAPE CHICRO HCP)
COBOL PROGRAM ABNORMAL END

• • • • • • • • • • 7-55

SORT EOJ • • • • • • • • • • • • • • • • • • •
7-57
7-58
T-58 FREEZE/THAW RUN STRUCTURE

COMPILE CARD INFORMATION
DYNAMIC MEMORY BASE

• • • • • • • • • • • T-58
,7-59

MEMORY DUMP TO DISK • • • • • • • • • • • • •
GET SESSION NUMBER
DC.INITIATE.IO ••••••••••••••••

• 7-59
7-61
7-61
7-62
1-&z
7-62

NOL/MACRO COHHUNICATES
BCWRITE •
QUICK QUEUE WRITE CREMOTE FILES>
QUICK QUEUE WRITE CSTATION NUMBER>
ACCESS USERCODE FILE

• • • • • • 7-62

PROGRAM CALLER • • • • • • • • • • • • • • • •
7-62
1-63
7-64 LOAD.DUMP MESSAGE

COMPLEX kAIT CMICRO KCPl
MESSAGE COUNT

• • • • • • • • • • • 7-64

RECOVERY COMPLETE • • • • • • • • • • • • • • •
7-65
7-65
7-65 GEJ.ATIRIBUIES

CHANGE.ATTRIBUTES
ACCESS. GLCiDAl S

• • • • • • • • • • • • • .. 7-66

INDEXED SEQUENTIAL POSITION • • • •• • • • • •
7-66
7-67
7-68 INDEXED SEQUENTIAL READ

INDEXED SEQUENTIAL WRITE
INDEXED SEQUENlIAL REWRITE

• • • • • • • • ••• 7-69
7-69

INDEXED SEQUENTIAL DELETE • • •• • •• • • •
RELATIVE I/O COMMUNICATE -
RELATIVE l/O COMMUNICATE -
RELATIVE I/O COMMUNICATE -
RELATIVE I'O COMMUNICATE -
RELATIVE I/O COMMUNICATE -
SEQUENTIAL REWRITE CHMCP>
INDEXED/SEQUENTIAL OPEN

START
WRITE
REWRIJE
DELETE
READ

• 7-69
1-10

• • .. • • • • 1-10
1-11

••••••• 1-11
1-12

• • • • • • • • • • 1-12

INTER-PROCESS COMMUNICATION • • • • • • • • • • • • • • • •
7-73
8-1
8-1 QUEUE SYSTEM AND INTERFACES

DESIGN PHILOSOPHY
QUEUE FILE FAMILIES

• • • • • • • • • • • • • • • a-1

QUEUE DESCRIPTORS • • • ••••• • • • • • • •
QUEUE DISK

8-1
8-2
8-2

MESSAGE DESCRIPTORS
HESSAGE BUFFERS

• • • .. • • • ••••••• 8-3

QUEUE ATTRIBUTES • • • • • • • • • • • • • • • • • •
8-3
8-4
8-5 QUEUE FILE LOGICAL 1/0 OPERATIONS

WRITING TO THE TOP Of A QUEUE FILE
HESSAGE.COUNI COMMUNICATE

• • • • • • 8-1
.s-1

INTER-PROGRAM COMMUNICATION •••••••• • ••••••
RUN UNIT DEFINITION

• e-10
6-10

IPC IMPLEMENTATION Of SHARED DATA
IPC RUN STRUCTURE NUCLEUS CHANGES

• • • • • • • • • • e-11

RS.RUN.UNIT BITC16l ••••••••••••••••
RS.RUN.UNIT.LINK 81Tt16>
RS.IPC.DICT BITC241 •••••• • ••••• • • •
RS.IPC.PARAHETER.LIST BITC24J

TC-4

8-12
8·-12
e•12
a-12
8-13

BlOOO MCP MANUAL
HARK !O.O

••••••••••••• 8-13 RS.IPC.DICJ.SIZE 8ITC16)
RS.EXECUTE.TYPE BITC4l
RS.NAME CHARACTERClOl
RS.CALLERS.LR BITC24)
RS.IPC.EVENT BIT C11 •••
RS.CANCELED 8ITC1J

8-13
• • • • • • • • • • • • • • 8-13

e-14
• • • • • • • • • • • 8-14

8-14
IPC Program Parameter Block Changes

PROG.IPC.SIZE BITt16J
PROG.IPC.PTR BITC24l •• ~ ••
PROG.IPC.HAX.SEND.PARAHS 8ITC16l

• • • • • • • • • 8-14
a-14

• • • • • • • • • • a-ts
8-15

!PC.DICTIONARY • • • •••••••••
IPC COMMUNICATE OPERATOR

• • • • • • • • a-is

IPC Verb Operation ••••••••••••••••••
IPC CALL OPERATIOH
IPC CANCEL OPERATION •••••••••••••••• •
IPC EXIT PROGRAM OPERATION

8-16
8-16
s-11
8-19
8-19

!PC TERMINATION CONSIDERATIONS •••
IPC MICRO HCP/S.HCP COMMUNICATION

• • • • • • • • • 6-19
8-20

IPC PROGRAM DUMPS • • • • • • •• • • • • • • • • • • e-21
IPC CANDIDATES FOR ROLL-OU~
IPC TASK CONSIDERATIONS •••••
IPC PROGRAM NAME SPECIFICATIONS

8-21
• • • • • • • • • • • s-21

8-21

81000 HCP MANUAL
HARK 10.0

lttllUl.1211.tlUUt

The purpose of this document is to define and discuss the Master
Control Program II CHCP> for the 91000 machines. The concept and
design of the HCP wilt be discussed and the functional
specifications of the HCP's operation's will be catalogued.

The sort• data coamunication, and data management systems wilt
not be discussed in any depth in this document. Detailed
descriptions of these features appear in other Burroughs
publications CSee Related Documentation below>.

B.E.LAIEl2 D.1lk1HtE.lilA1lDti

Name

81000 HCP Utilities
81000 Network Definition Language
81000 Data Management Systems II
Bl800/Bl100 Sort
91000 Software Operatjonat Guide

Number

p. s. z 212 5519
P.S. 2212 5223
p.5 .• Z212 5470

P. s. 2201 675Z
1068731

These specifications are written for those people with
programming experience and a knowledge of basic software
concepts. Those unfamiliar with operating system design will
gain insight into the Burroughs philosophy of system management.
Those individuals familiar with operati~g systems of nther
manufacturers or of other Burroughs machines will gain an
understanding of the Master Control Program implemented
specif icalty for the Burroughs Blooo.

Also included in this specification are brief descriptions of
various functions pe1rformed by the micro-coded I/O driver
routines. These same routines are often referred to as "'GISMO•
and "l/O interpreter•.. The discussions are necessary for
completeness and for a thorough understanding of the 01000
operating system of which the I/O driver is an integral part.

HCP II is a modular• supervisory program that assumes common~
logically complex functions to simplify and expedite the tasks of
programmiAg and system operation. Its most important duties
include such functians as:

Scheduling, initiation• running• and termination of jobs

1-l

81000 MCP MANUAL
HARK 10.0

Providing a symbolic means of communicatin~ with the system
white shielding the user froa the detail of the hardware

Providing a family of common facilities such as management
of input/output operations and file maintenance

* Managing the system•s resources for optimum utilization in a
multf-progra~ming environment

The 81000 is a small-to-medium scale, general purpose computer
s~stem. Its distinguishing feature is its flexibility• made
possible through interpretive processing. In any computer system
a representation of any process has two components: Cll a family
of structures representing the state of that process, and C2> a
series of operators able to manipulate those structures. Until
the advent of fourth generation computers, both components were
represented in the machfne hardware itself. A compiler or
language translator transformed the source code <e.g.. COBOL•
FORTRAN) into a •machine language• {object code) which was
defined in terms of the hardware architecture.

for the set of processes able to be generated by any particular
programming language, there exists a machine architecture which
best represents those processes~ For instance• COBOL is a
character-oriented language and performs decimal arithmetic
exclusively. Because of its data manipulation features. it might
best utilize a machine architecture with multi-address operators#
capable of performing efficient •m,oves1• "compares," and simple
expression evaluation. On the other hand• FORTRAN was designed
to comp~te complex mathematical functions. It favors a stack
structure for parameter passing and complex expression
evaluation. It perfo1rms binary arithmetic and wou'ld pre,f,er Jo-
to SO-bit word sizes.

The d if f i cut t y o f d 1e s i g n i n g a hard w are s tr u c 'tu r e c a p ab l e o f
handling two such divergent languages in the most efficient
manner becomes apparent. It would be possible• in principle at
least, to design the hardware in such a way as to adequately
represent both sets of structures. However, this would prove to
be prohibitively expensive. The typical approach, therefore• has
been to either design the hardware to favor one language at the
expense of others or to design a comproaise structure capable of
handling several languages• but none in the most efficient
manner. The wide variety of programmfng languages in current use
has placed a great strain on the capacity of the hardware to
efficieBtlv execute code compiled from very different languages.

BlOOO HCP MANUAL
MARK 10.0

It is to this problem that designers of fourth generation
software• and the 81000 in particular .. have addressed the•selves.
Rather than build a particular structure into the hardware, the
concept of the •soft machine• has been developed whereby the
ideal environment of structures and operators is programmatically
simulated.

The 81000 hardware was designed with as tittle explicit structure
as possible. Because memory may be addressed to the bit• no one
structure is inherently favored over any other. The only
required structure is that which will allQw the simulation of any
•soft machine•. Thus the range of structures able to be
represented on the 81000 is unlimited.

As stated previously, for every compiler language there exists a
machine architecture within which the algorithms generated by
that compiler will best run. On the 81000 this hypothetical
environment is called the •s-machine". An S-machine has been
defined for each language such that any process may be
represented in its most efficient or most natural form~
unrestraiRed by any arbitrary hardware configuration.

Compilers on the 81000 generate code files which contain ClJ the
information necessary to injtialize the appropriate s-machfne at
run time, and C2J the "S-code• to be executed on this s-machine.
s-code js written in s-tanguage• the machine language for an
S-machine. Execution is achieved by the _S-code being
i~terpreted• an s-operator at a time, by a micro-program called
ar1 interpreter.

~!lE!k!ARf.

The term •software•, as used in this document1 refers to all
programming supplied by the Santa Barbara Plant. When the term
is used. it most likely is r~ferring to programs that are written
i~ a higher-level language. This may n~t always be the case, but
typically, the ter• will refer t3 the compilers and utility
programs created by the Programming Activity.

ElB.HH!RE

The firmware consist~ of a set of interpreters~ those portions of
the HCP which are micro-coded and reside in an entity known as
the MICRO/MCP1 and a program called •GISMO". For each s-tanguage
a m(cro-coded progra• called an interpreter acts upon the
hardware and executes the compiled s-code as defined by the
s-machine. The ~1000 software has been implemented in such a way

81000 HCP MANUAL
MARK 10.0

that any number of interpretive structures may be active in the
system at any given time. This is achieved by dynamicatly
establishing• upon demand' the S-machine structure for any
pr.oces,s.

for instance• the HCP• which is itself a program, is written in a
high-level language, SDL• that is designed specifically for
writing S()ftware.. It has its own optimum environment <the SOL
s-machine> consisting of1 the structures and ope.rat-ors required
for software applications. It has its own S-language and its own
i~terpreter (the SDL interpreter>. Running simultaneously in the
system may be another program written in a different language
Ce.g., COBOL>· This program also has it~ own structure Cthe
COBOL S-machine), S-language1 and interpreter. The system, when
executing the MCP~s supervisory functions~ assumes the
architect~re of the SDL s-machine and, when executing the COBOL
instructions, takes on the COBOL S-machine structure. This
switching of interpreters and process. environments is managed
co~pletaly by the software and is invisible to the user of the
mach:ine.

The 81000 HCP has actually evolved to its present state.
Originally, alt functions of the HCP were coded in SOL.
Beginning with the 4.0 release of the softvare1 the most commonly
used ro~tines of the HCP were written in •icro-code and placed in
GISMO. This resulted in substantial performance improvements.
BeginniAg with the 5.1 release of the software, these commonly
used routines were removed from GISHO and placed jn the entity
mentioned previously1 the MICRO/HCP.

These specifications have al~o evolved along with the HCP. Many
of the functions described herein are now performed by the
MICRO-HCP, though the function itself ·,remains· exactly the same as
it was when it was perfor•ed by SDL code. Since this document is
intended to be a functional specification of the 81000 operating
system• alt HCP functions are described herein. Whether the
function is performed by SOL code or by micro code should be
completely transpar•nt to the user. Actually• the fuActional
result is the same for both1 but the time and resource
requirements are not identical. The. difference is therefore not
always transparent.

Throughout this document• the acronym "HCP" may be referring to
the MICRO/HCP or to the SOL HCP. In cases where the di st in ct ion
is important• "HCP" wilt not be used but the two terms mentioned
above will be. This document, then~ wilt actually be a
functional specification of the operating system, as it was
originally intended to be1 though it wilt actuallr be describing
two separate and distinct programs. Since GISMO is also a
critical part of the operating system~ the document may also

BIOOO HCP MANUAL
MARK to.o

touch upon portions of GISHO.

GISMO is a micro-coded family of critical routines common to all
processes. GISMO aay also be referred to in this document as
"CSH•• an acronym for Central Service Module. It is a central
module of service routines used by all programs in the system and
performs thrae basic functions:

1. Switching of control between all contending ~ocesses in the
system,

2. Recognition and queueing of interrupts received' from the I/O
controls or from other processes in the system~

3. Initiation and management of the I/O controls connected to
the machines, usually at the request of another process.

Processor allocation• the switching of control between two or
more processes, is handled by the •Micro Scheduler" module in
GISMO. This module may be thought of as an wouter Loop•. It has
absolute control over the process which witl be performed next on
the system.

I~terrupt resolution consists of· routines which perform certain
functions. depending on the type of interrupt and certain other
critical conditions. The interpreter in control senses the
interrupt and calls upon GISMO to take the required action.

GISHO•s service request module (soft 1/0l performs the function
of a hardware device capable of performing a memory access at the
request of an 1/0 controt. An I/O control on the BlOOO is a
hardware device which acts as an interface between soft I/O and a
peripheral device. It requests access to memory on behalf of the
device and manages the device itself. Th• collection of I/O
controls is called the I/O sub~system.

Typical data transfer operations involve frequent but brief calls
upon soft I/D by the 1/0 sub-system. The firmware was designed
in such a way that between the execution of any two s-operators~
the interpreter in control will check a flag in the processor
!called the Service Request Bitl to see if the I/O sub-system is
demandiBg attention. If it is• the interpreter passes control to
GISHO which performs the necessary memory access and returns
control to the interpreter.

1-5

81000 HCP MANUAL
MARK 10.0

liBHIJHlJ.11.§l AtH2 lltflfilll!lti.S

Before proceeding with a detailed description of what the MCP
does and how it goe.s about it• it will be necessary to define a
number of terms and data structures whose names are used
familiarly throughout the document. The reader should know the
meanings of the ter•s• but a thorough understanding of the many
diverse programming structures presented herein is not required.
The structures are presented only in the interests of
comple~eness~ and as a possible aid in understanding the
narrative descriptions of the MCP•s functions~ presented in the
later sections of the specification.

!t~tU2B.I tlAti!ifHEtil A.Hll .ttE.tUlBI Lltilii

The MCP organizes and allocates space in memory through the use
of fields known as memory links. Each link immediately precedes
the block of memory it describes and includes such information
as: The size of that block of memory; the type of use Cif anyl
to which it is put; and pointers to the immediately preceding
and succeeding links. If the block of memory is classified as
available Ci.e.. not currently in use by any process)~ an
additional set of descriptors point to the links of the prior
available and next available blocks of mem~ry. Thus it is
possible to search all links or .only those links describing
available memory. A programmatic description is given below:

DEFINE MEMORY.LINK.SIZE AS tl87J;
DECLARE MEMORY.LINK TEMPLATE BITCMENURY.LINK.SIZE>J
DEFINE HEMORY.LINK.OECLA~AJION AS I
DECLARE 01 DUMMY REMAPS HEMORY.LINK-

2 ML.DISK
2 Ml.GROUP,

3 ML.POINTER
3 ML.JOB.NUMBER
3 ML. JYPE
3 ML.SAVE

2 Ml.SIZE
2 HL.PRIDRITY.FIELD

3 ·Ml. Dlt. I NT£RVAL
3 ML.CURRENT.DK.INT
3 ML.INCOMING.PRIORITY
3 ML.RESIDENCE.PRIORITY

4 ML.RP .• WHOL£
4 ~L.RP.FRACTION

2 Ml.FRONT
2 ML.BACK
Z ML.USAGE. BITS

l ML.PREVIOUS.SCAN.TOUCH
3 Ml~CURRENJ.SCAN.JOUCH

2-1

OSK.ADR •

ADDRESS•
BITCl6l1
BIT<G),
Bl TCl l•
BITC24> •
81TC30l,
BITCIO),.
BITCtO>•
BITC5),
BITC5h
BIT<4),
BITC1l•
BITC24),
BITC24),.
BI TCZ h
BITCll•
BIICt>;u

81000 HCP MANUAL
HARK 10-. 0 ·

USEC ML.DISK
1ML.POINTER
1HL.JOB .. NUHBER
• HL. TYPE
.11ML.SAVE
1ML.SIZE
.,. ML.FRONT
"Ml.BACK
> Of MEHORY.LINK.DECLARATIONJ

DEFINE Q.ML.DECLARATION AS#OECLARE
01 Q.HEHORY.LINK TEMPLATE

02 FILLER
OZ Q.HL.F.AVL , 02 Q.ML.B.AVL

DEFINE
TAKE.LO

• TAKE.RIGHTMOST
;

BITCHEMORY.LINK.SIZEJ
ADDRESS
ADORE.SS

AS#OJ
AS Ill

DEFINE
CODE AS

% TYPES FOR •ML.TYPE"
101%

, AVAILABLE AS 112.1% , RN.S AS #3#% , HCP.TEMP AS ,,.,~,

• USER.FILE AS #5#%

"" SEG.OICTV AS #61% .. HICRO'CODE #71% , DI CT. MASTE:R AS 181

" QUEUE.DIRECTORY.TYPE
AS ,.,,

, HSG.BUfFERV
AS 1101 , MESSAGE.LIST.TYPE

AS .1111

• TO.SE.FORGOTTEN AS #12# , OAJA.SEG AS ll:U , DBM.BUFFER AS 1141
TERMINATING LINK AS #15#%

, HCP.PERM AS 1161% , PSR.HEM AS #171%
• M·CP.IOAT AS 1181%
, IHSK .HEADER AS 119.1% , PACK.HEM AS 1201%

• SD.CNTNR AS 121.1%

• SCHED.MEH AS 122.1%
~ SORT.MEM AS #231%
~ OCH. MEH AS #24,t%

• HICROCOOE.NON.OYERLAYABLE AS IZ51%
I QUEUE.AVL.BUF.V AS #Z61 , OMS.DISK.HOR ASl27f.%

• .,,
,
• ,
,
;

81000 HCP MANUAL
MARK 10.0

OMS.STRUCTURE AS#281%
OHS.TEMP AS #29J%
OMS.GLOBALS AS #30#%
DMS.JEMP.LOCK.OESCR AS #311
XM.MEMORY AS tl2#
PERM.SPO.BUFF AS •331

"TEMPLATE• in the above description is defined as "REMAPS BASE".
This is not important to an understanding of memory link
operation. "ADDRESS" is defined in the HCP symbolic as
"BIT<2,)•. The word ~ADDRESS• here is used as a denotation of
memory address. Hence• •ML.BACK• in the description above is a
pointer to the previous memory link and •ML.FRONT• is a pointer
to the succeeding link. Ml.SIZE will contain the size of the
area, in bits, and Hl~GROUP is valid onlr if the area is in use.
ML.POINTER witt contain the aemory address of the segment
dictionary entry associated with thfs memory area. Segment
dictionaries are described in the next section. HL.JOS.NUHBER
will contain the job number of the program using the area.

·Ht.SAVE, the descriptfon of which is defined as nBOOLEAN," is set
on if the memory area must be saved on disk before it is
overt.aid.

As can· be determined by adding the si~es of the various
co•pone~ts• a memory tink requires 167 bits of storage space.
Since memory is allocated dynamicallr• it is often djfffcutt to
predict with any degree of accuracy exactly how much memory will
be required by any task. The sizes of alt memory links involved
mast be included in the calculations. This is discussed further
ill a .later paragraph.

Virtuat memory is supported by allowing process segmentation. By
segmenting code• data• and interpreters and dynamicalty moving a
segment into or out of memory as required• the system is able to
fanction as if it had "virtuallr infinite" memory capacity. The
HCP manages this facility thr~ugh three str~ctures: Code Segment
Dictionaries, Data Seg•ent Dictionaries, and Interpreter Segment
Dictionaries~ Each dictionary consists of a string of system
descriptors each of which describes one segment including its
length• location and status. As a $egment is moved in or out of
•emory its dictionary entry is updated accordintty.

At run time the MCP creates the code and data segment
dictionaries from information in the program•s code file. The
iaterpreter segment dictionary is created from the interpreter
code file in the same manner and is referenced by an entry in the

2-3

81000 HCP MANUAL
MAR·K lO.O

iAterpreter dictionarv• a structure fixed in memory at
Clear/Start time. The run structure of the program contains
painters to the code and data segment dictionaries and an index
into the interpreter dictionary~ A programmatic description is
given below:

DECLARE
01 SYSIEH.DESCRIPIOR TEMPLATE BITCSY.SIZElJ

%
DEFINE
DEFINE

01

#1
%
%

SY.DECLARATION AS JSY.DECL{SYSTEH.DESCRIPTORlfJI
sr.DECL(X) AS #DECLARE%

DUMMY REMAPS X1%
02 SY. IN.USE
02 SY.MEDIA
02 SY.LOCK
02 SY.IN.PROCESS

02 SY.INITIAL

02 s·Y.FILE

02 SY.DK.FACTOR
02 SY.SEG.PG
02 SY.TYPE

02 SY.ADDRESS
03 FILLER
03 SY.CORE

02 SY.LENGTH

BITCI>•
8,lf(t),
BITC1J ..
BIT< l >.

BITC 1 h

BITClJ ...

BI.If 3 l
BIH7J,.
BITC 4), ·

81TC36>•
BIT<l;z),
BITC24l1
BITC2iftH

% TO HELP MEMORY MANAGEMENT
% O=DISK, l=S-MEHORY
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

·%
%
%
%

TRUE If THERE IS AN I/O IN
PROCESS FOR THE INFORMATION
REPRESENTED BY THIS DESCRIPTOR.
If TRUE, "SY.COREw CONTAINS A
POINTER TO THE I/O DESCRIPTOR.
"ADDRESS" IS READ-ONLY MOTHER
COPY• HENCE If "WRIT£• THEN GET
NEW DISK AND REPLACE ADDRESS.
THE OBJECT Of THIS DESCRIPTOR
IS A FILE WHOSE USERCOUNT HUST
BE DECREMENTED WHEN THIS
DESCRIPJOR IS RETIRED.
MEMORY DECAY FACTOR
HEHORY.ACTiflJY AUD1TING
UNITS FOR ST.LENGTH.
0 = BITS
l = DIGITS (4 BIT>
2 = CHARACTERS C8 BIT>
3 = NORMAL DESCRIPTORS
4 = DISK SEGMENTS
5 : SYSTEM DESCRIPTORS
6 = SYSTEM INTRINSIC
1 = INDIRECT REFERENCE

ADURESS GIVES RELATIVE
DISPLACEMENT IN BITS
{SIGNED HUMBER).

8= MICROS

PORT,CHANNEL AND UNIT.
CORE1 OR ADDRESS WITHIN UNIT.
NUMBER Of UNITS• AS DETERMINED
BY SY.TYPE.

%

81000 HCP MANUAL
MARK 10.0

DEFINE ND.DECLARATION AS#
DECLARE
01 DUMMY REMAPS NORMAL.DESCRIPTOR BITCNO.SIZE1•

02 NO.OK.FACTOR BITC3l~
OZ f ILLE~ BITC6),
02 ND.CORE 8ITC241•
OZ ND.TYPE BITCJ),
02 ND.LENGTH BITC24J;JJ

SY.SIZE is defined in the MCP code as eighty. Hence eighty bits
are required to contain one seg•ent dictionary entry- or system
descriptor. The use of the term "DESCRIPTOR" in 81000
documentation is often misleading and ambiguous. There are many
different types of descriptors- all of which have different
memory requfrements and formats. Consequently• system
descriptors ~itt always be referred to as such or as segment
dictionary entries.

The comments on the various fields compr1s1ng the system
descriptor are largely self-explanatory. Perhaps some
e.xplanation of selected fields would be benef'i.cial• however.
SY.LOCK is set true if the system descriptor describes a data
field and if the interpreter is cur.rently accessing the field.
This is to avoid the situation which arises in a simple
replacement stateaent where the sending and receiving field are
both in overlayable segments. In order to do the reptacement1
both data segments must be in memory simultaneously.

SY.INITIAL is true for initialized data oAty. The most common
case of this occurs when executing a ·COBOL program and the
programmer has used the value clause to initialize·data fields
and the data field ttsetf is in an overlayable segment.
SY.ADDRESS may be either a disk or a memory address# depending on
the settjng of SY.MEDIA. If it is a memory address, the most
significant twelve bits are ignored. If it is a dfsk address1
the most significant twelve bits contain the port• channel and
u~it associated with the disk address~

lHI~fifBEIER 1!6.HAiiftl:UI-" t!JBAJ!El.E& 11L1lGIS.~ Al:IJl Jllill!lltAB.lEi

The 81000 HCP maintains a list or directory of alt files on disk.
file stored on disk has a unique name• which may consist of up to
three fields1 each of which may consist of up to ten characters.
Associated with each file on disk is an jtem called a •Disk Fite
Header•. The disk file header serves essentially to describe the
file. All of this is described in detail in later sections.
This brief discussion is being included at this point to·
facilitate the following dtscussions on interpreters.

2-s

81000 HCP MANUAL
MARK 10. 0

Included in the disk file header is a field which denotes the
trpe of fHe. There are separate type numbers for data fHes•
code files• interpreters, and so forth. Code files (programs)
and interpreters are further descri~ed by the first disk segment
contained in the file. This segment is called the "Program
Parameter Block• or the •Interpreter Parameter Block"•
respectively. A detailed description of the program paramter
block is presented in a later section. A programmatic
description of the interpreter paraaeter block is presented
below.

tJ.;

DEFINE !PB.DECLARATION AS#
DECLARE 01 DUMHY REMAPS IPB BIJC1440l•

02 FILLER BITC1192),
02 IPB.HARDWARE CHAR<ll•
02 !PB.ARCHITECTURE.NAME CHARt10)1
02 IPB.COHPILER.LEYEL 81TC8),
02 !PB.HCP.LEVEL DIJC8l•
OZ IPB.GISMO.LEVEL B1T(8),
02 IPB.ARCHIJECTURE.ATTRIBUTES BITC80),
02 FILLER B1TC56);

IPB.HARDWARE will contain either an •sn or an •M"• depending upon
whether the i~terpreter was generated for an S-memory or an
H-me.morr processor. A'll B1800 1 s are considered to be H-me11ory
pracessors. IPR.ARCHITECTURE.NAME will coBtain the generic name
of the compiler1 such as COBOL or FORTRAN. IPB.COHPILER.LEVEL
will be a numb~r which wilt correspond to the release level of
the software, as described below. IPB.MCP.LEVEL1 IPB.GISMO.LEVEL
aA~ IPB.ARCHITECIURE.AJTRIBUTES are parts of the interpreter
verification feature.of the MCP.

The 81000 MCP includes facilities to recognize the hardware
configuation it is executing upon and select the corresponding
i3terpreter from the disk directory. All programs which are
compiled for e~ecution on a 81000 witi have an interpreter •TYPE"
requested the program parameter block of the code file <described
iA a later section), or the specific name of the interpreter to
be used. As explained in a later section, the program parameter
block contains space for three names to be associated with an
iBterpreter. for discussion purposes herep the three na•es will
be ref erred to as the •PACK• name• the •fAHILY• naae and the
"OFFSPRING" na•e.

The 81000 co11piler~s generate the last two names of the
interpreter only. The faaily name generated always corresponds
to the language the program is written in, such as •coeoL• or

81000 HCP MANUAL
MARK 1O.0

"FORTRAN•. The offspring name is always one of the reserved
words •INTERP•, •DEBUG• or "TRACE•. At BOJ, the MCP modifies the
offspring name by· concatenating one numeric character denoting
the compiler level and either the character "M" or •s• depending
upan whether the machine is equipped with an S-memory or an
H-memory processor.

The level number concatenated is contained in the program
paraMeter block as "PROG.COMPILER.LEVEL•. Every time the
compilers are changed in such a manner that the interpreter must
also be changed~ the level number g~nerated by the co•piler is
incremented. The interpreters are then •odif ied accordingly and
released to the field under a new naae. The new name will be the
same as the old one• except for the .. level number contained in the
name. for a COBOL program whjch is being executed on a
81120-series machine and had been compiled by the 4.1 COBOL
compiler, the MCP witl generate •coBoL•/•INTERPtH• as the
interpreter name to be used for the execution. It should be
noted that this feature was first included in the 4.1 software
release. Level numbers were not. included in the program
paraaeter block prior t~ the 4.t release.

Once the interpreter name is generated, the disk directory is
searched for the interpreter. Upon finding the interpreter, the
HCP will bring it into s-memory~ if it is not already there• and
construct an entry in the •INTERPREJER.OICTIONAftY•. All
interpreters are re-entra,nt on the 81000. AU of this is
described in greater detail in the paragraph which follow. Each
eAtry iR the interpreter dictionary has the following format.

DEFINE ID.DECLARATION ASJOECLARE
01 DUMMY REHAPS·INTERPRtJER.DICTIONARY•

02 IO.SEG.DIC
OZ 10.ENTRY~IN.USE
02 10.RSONJ.USERCOUNT
02 ID.TDTAL.USERCOUNT
OZ IO.HIN.M.SIZE
OZ IO.HAX.H.SIZE
02 ID.PARTIAL.BIT
OZ ID.BLOCK.COUNT
OZ FILLER
OZ ID.H.PRESENCE.BIT
02 10.M.ADOR
02 10.TOPM
02 IO.MEDIA
02 IO.LOCK
02 FILLER
02 ID.TYP£
OZ ID.ADDRESS

03 FILLER
03 ID.CORE

SY.DSCR1
BOOLEAN,
BIT<7J:11
BITC7),.
BlTC4 >-
BI TClt J,
800LEAN1
9ITC4 >•
BIT(l 91,.
BOOLE AN1
BITCl2l•
BITC4.h
BITC2l•
BOOLEAN•
BIT C13l1
BITCft),
BITC36),
BITC12J •
BITCZ4l,

02 IO.LENGTH

81000 HCP MANUAL
HARK 10.0

There is ~ne entry in the interpreter dictionary for each
interpreter presently in use. The I/O driver is always the first
htentreter entered in the dictionary• the Micro MCP is the
second entry and SOL is always the third entry in the dictionary.
On the 81000~ it is possible to segment interpreters.
Consequently, a code segment dictionary is constructed for each
interpreter as it is brought into memory. The system descriptor,
the first item in the interpreter dictionar,. is a pointer to the
interpreter•s code segment dictionary. Interpreters may be
segmented• exactly as pro9ra•s are. _The same routine~ in the HCP
are used f~r handling progra• segments and interpreter segments.

A certain amount of information about each program c~rrently
being executed is •aintained in memory by the HCP. The field in
whicb this information is majntained is known as the Run
Structure Nucleus of the program. It is abbreviated as
RS.NUCLEUS. In the RS.NUCLEUS• there is an index into the
interpreter dictionary. All programs being executed. at any given
time which are using the same interpreter will have the same
index in the field in their respective nucleus. In this manner1
iRterpreter re-entrancy is accomplished.

fhe remaining field in the interpreter dictionary entry will not
be described in detail at this point. For a more detailed
description of interpreter management•. the reader is referred to
the section of this document which deals with M-memory
management. It should be sufficient at this p9int to say that
all interpreter segments except the firs~ are treated as ordinary
code and are considered overlayable. The first segment of each
i~terpreter is not treated as code and is not overlayabte,
however.

The I/O driver• which is considered an interpreter,
exception to t~e above statements.

is an

The code f ite of every program must contaiB two types of records
to allow the HCP to manage the execution of that programi the
•f jle Parameter Block" CFPB), and the •Prooram Parameter Block•
<PPBJ. There is one FPB for each file declared in a pr~gram plus
one entry for a trace file.

The first 2880 bits <two disk segments> of every code file is the
"Program Parameter Block• CPPBl whose format is rigidty defined

2-8

BlOOO HCP MANUAL
MA·RK 10. 0

by the HCP. Every comp.iler ·generates a PPB of the sane format.
It provides, for the HCP, all the vital statistics of the program
iBcluding: The program's nameJ the name of the interpreter to
be used during execution; the relative addresses of the FPB•s,
IPB1 code segment dictionary and data segment dictionary, memory
requirements fo~ the prograa•s execution; and tracing
i fl for m at i on •

At run time a working copy ~f the PPB is written into a temporary
or permanent log <as dictated by the system options). The first
two segments of this four segment entry are an exact copy of the
PPB fro• the code file. Another segment is generated by the HCP
and documents certain features of that particular execution. A
final segment is reserved for an abnormal termination message.

If the code file fs an interpreter code ·file, it contains an
additional segment called the •Interpreter Parameter Block•. It
contains information concerning the software compatibility of the
interpreter. A field in a program•s PPB specifies under which
iRterpreter tt will run. When the program is scheduled for
eKecution- the IPB of the interpreter named in the PPB is checked
ta insure that the interpreter is compatible with both the code
file and the system software. The HCP informs the system
operator via a SPO •essage if the interpreter cannot run. Refer
to the appropriate HCP ljsting for a programmatic description.

The ~rile Parameter Block• CFPBl is a 1440-bit record created by
the com~iler from the user•s f ite attribute declarations. Its
foraat is.rigidly defined by the HCP, and it contains the vital
statistics which allow the HCP to manage the f ile•s usage. When
a job is acheduled for execution, a working copy of the FPB is
written into a permanent or temporary log Cdepending on system
options>. In addition to recording the fite•s attributes1 the
HCP doc~ments the use of the file during that joh's execution.
It records such informati~n as the number of times the tile was
opened and closedJ the total amount of time the file was open;
the number of records read; the number of 1/0 errorsJ and the
file type. Refer to the appropriate HCP listing for a
programmatic description.

ElJ.E ltiE11RttAllD.H BL.ll&~~

As each file is opened by the user program, a structure known as
a Fite Information Block CFIB> is created in aeaory by the HCP.
The FIB contains all information necessary for the HCP to perform
normal, requested, I/O operations on the tile. Huch of the
iAformation in the FIB is taken directly from the FPB. Other
in·formation in the structure is inserted by t_he HCP.. based upon
the characteristics of the peripheral device assigned to the

81000 HCP MANUAL,
HARK H>.O

file. Device assign••nt is discussed in the section of this
specification which describes the Open Co•municate.

FIB•s vary in size• depending upon the type of device assigned to
the file. Due to the amount of information which must be
maintained, a disk file FIB is much larger than that of a card
punch file• for exaapte.

I/O descriptors and buffer aemory areas are allocated and
initialized br the MCP at the saae time. There will therefore be
one memDry link only1 for each file that is active in a program.
Buffer areas and descriptors are not normally shared between
files• though the Data Management subsystem' the Data
Communications subsystea1 the R~lative file iaplementation and
the Indexed file implemenation offer some exceptions to this
rule ..

A complete structural description of the FIB will not be
presented herein, due primarily to the length of the structure.
Also1 the FIB is of interest to the various portions of the
Operating System only. The programmatic description of the
structure is readily available in the HCP listing. Sizes of
FIB•s for the different peripheral devices are presented in the
following table ..

RU.ti ;iitlU.&.lU.RE

file Assigned to:

Reader-Sorter
Printer
Remote Device
Tape
Disk
Queue
All Other Devices

Size in Bits

142
724
557
724
976
385
612

The structure in me•ory that represents the state of any process
is the run structure. Each process has a unique run structure.
When a job is initialized before execution, the MCP creates the
r~n structure from an analysis of the program•s code file, and
adds certain information it will need for management of the
execution. All run structures are linked together by priority~

A run structure consists o·f a prog1ra11°s data or address space.111
the KCP 1 s managerial space called the run structure nucleas• and

z-10

81000 HCP MANUAL
MARK 10. 0

the file and data segment dictionaries. The program•s address
space• residing between its base and limit registers* js that
ar~a of memory that may be accessed and manipulated by the
program itself. A program•s base register is a memory address
that marks the lower bound of its addressable space. The limit
register specifies the upperbound. A 'rogram may not access
memory that is outside its own base to limit area* though this
tenet is enforced by the interpreters and not the HCP.

A program's address space may contai~ both resident and
overlayable data. The resident data.area contains those fields
which will be present in me•ory throughout the duration of the
execution. The overlayable data space contains segmented data
which mar be brought into or out of aemory as needed.

The Run Structure Nucleus is an area structured .and maintained by
the HCP aAd contains the essential information about the program.
It resides in memory directly above the progra••s limit register
a~d is accessible by the HCP and the program•s interpreter. It
contains such information as:

Pointers to

BASE AND LIMIT
SEGMENT DICTIONARIES CCODE AND DATA)
FILE DICTIONARY
INTERPRETER DICTIONARY ENTRY
NEXT RUN STfiUCTURE <BY PRIORITY>
COD£ FILE ON DISK
DISK LOCATION Of RUN STRUCTURE IF •ROLLED OUT•
PROGRAM's LOG ENTRY
VIRTUAL DATA SPACE ON DISK
NEXT INSTRUCTION 10 BE EXECUTED
llMS POINTE~S

Str~ctures necessary for coaaunication between the program and
the HCP

· a- fi.elds to 'reflect the state of the s-aachi ne

• fields for program switches

A ?rogrammatic description may be obtained fro• the HCP listing.

2-11

81000 MCP MANUAL
HARK 10.0

The data segment dictionary resides at the end of the Run
Structure Nucleus and is pointed to by a field in the nucleus.
If there is no segmented data and the user has not requested that
his resident data area be initialized, then the pointer wilt be
null, and there will be no dictionary.

Each entry in the dictionary is an 80-btt system descriptor
pointing to one data segment.

The last element of a run structure is the file dictionary.
There is one 80-bit descriptor for each declared file plus one
additional descrtptor for a trace file Cused tor tracing). While
a fite is open• its dictionary entry points to the fite•s FIB in
memory. If a file has never been opened• its entry is null. If
a file has been te•porarily closed Ci.e., •CLOSE RDLLOUT">- its
dictionary entry points to its FIB which has been written to
disk. After a per•anent close, th~ file's diitionary entry will
again be null.

The 81000 HCP allows re-entrant processing, the ability of two or
more processes to use the same code segment dictionary and,
thereby• the same code. The code segmentCsl and code segment
dictionary reside outside a program•s run structure, and a field
in the run structure nucleus points to its code segment
dictionary. A structure catted the segment.dictionary container
contains the inforaation necessary to govern the use of a
particular code segment dictionary. When a job is being
initiated for execution, the HCP deteraines whether or no~ the
code segment dictionary desired by the job is already in use. If
it js• that dictionary witl be used. The segment dictionary
container reflects, among other things, the number of processes
using the dictionary it describes. If there is more than one
user, the segment dictionary container wilt remain in memory
until all users have completed execution.

2-12

81000 MCP HANUAL
MARK 10.0

This section of the specifications is a description of:

t. I/O Descriptors
2. GISHO Operation

1. Channel Table
z. GISHO/Hardware Interface

1. CA/RC Cycles
2. Processor I/O Instructions
3. Service Request
4. Status Counts
5. Data Transfers

J. 1/0 Chajning
4. Disk l/O Chaining
5. Disk I/O Overlapped Seek
6. Tape 1/0 Chaining

3. Monitoring of Peripheral Status
1. I/O Assignment Table
2. Unit Mneaonics
J. Test and Wait 1/0 Operators
4. STATUS Procedure
5. Disk Identification - P~ck labels
6. Pack Information Table
1. Tape Labelling, Initialization and Purging
B. Tape PE/NRZ Exchanges

4. file Structures
1. Conventional files

t. File Attributes
z. file Naaing Conventions
3. Logical Disk Files
4. Physical Disk Files

1. Disk Space Allocation
2. File Access and Identification
3. Disk File Identification
4. Disk Fite Header

5. Multi-Pack Files
l. Base Packs
2. Continuation Packs
3. Multi-Pack Fite Information Table
4. Multi-Pack file General Restrictions

6. Printer files
1. Logical/Physic~l 1/0 Relationship
2. logical Page Implementation

1. Printer and Punch Backup Capabilities
1. Backup file Blocking factors
2. Backup file CGntrol Information 1

3. Backup file Record Format
2. Relative Files

t. Direct files
z. Data Structure
3. Disk Initialization

81000 HCP MANUAL
;HARK 10.0

4. File Parameter Blocks
5. Disk Header
6. file Information Blocks
1. Communicate Operators

J. Indexed Sequential files
t. D i r ,ec t f i t e s
Z. . In de x f i l es
l. Cluster Files
4. Data File Structure
5. Index file Structure
6. Me•ory Structures

1. FIB Dictionaries
2. User Specific Information <USI>
3 .. File Globa,l ·Information < Gl08ALS1
4. Structure O:es.cr iptor
5. Disk File Header Extension

1. Available Space Allocation
8. Index file Table Splitting
9. Current Record Pointer
10. Current Maintenan~e
11. Buffer Hanagement
12. Buffer Descriptor
13. Concurrent Update Operations

5. The I/O Error Procedures

There is some overlap between the information contained in this
section of the specification and that contained in the Demand
Manageaent section of the document. The Demand Management
section was originally intended to cover the management of the
peripheral after it had been assigned to a user as a f ite; the
I/O Subsytem section was •ntended to cover the manageaent of the
device up to that time. This division is Dot ·always possible•
particularly in the case of disk devices. The reader may have to
refer to both sections of the document to find the answer to a
specific question.

1£0. llE.ikB.lf!ID.B~

Normal state programs request I/O functions in a symbolic fashion
Ce.g.~ Write a Record>. The MCP must transfor• these expressions
iBto explicit l/O operators called I/O descriptors. An I/O
descriptor allows the MCP to communicate directly with a
peripheral device via the soft I/O routines of GISNO. GISHO
maRages the execution of these operators by the I/O subsystem.
Each 1/0 descriptor provides such information as the type of I/O
operation requested..- source or destination 111e11ory ad.dresses, the
device which is to execute the operators• and space for result
information used when control is passed back to the HCP. Certain
other fields vary with the type of descriptor and contain
information peculiar to its specific function.

3-2

81000 MCP MANUAL
HARK 10.0

Any number of 110 descriptors may be linked together to form a
single •chain" and •dispatched• in one HCP operation to lessen
the MCP•s interaction with the l/O subsystem.

Ihe transformation of logical 110 req~ests to phystcal 1/0
descriptor manipulation is discussed in the Demand Management
section of this specification. The discussion below is intended
to describe the operations perforaed upon the descriptor after it
has been transformed. A programmatic description of an I/O
descriptor is given below. This particular descriptor is typical
of one which might be constructed for a disk file.

DEFINE IO.DESC.DECLARAllON AS 1%
DECLARE 01 DUMMY REMAPS IO.DESC

, 02 IO.RESULT WORD
• 03 IO.COMPLETE BIT (1)
• 03 IO.EXCEPTION BIT <ll
• 03 IO.PACK.NOT.READY BIT Cll
, 03 10.DATA.ECC.ERROR BIT Cl>
• 03 FILLER BIT Cll
• 03 IO.MEN.PARITY.ERROR BIT (lJ
, 03 IO.WRITE.LOCKOUT BIT (1)
• 03 FILLER BIT (2)
, 03 IO.ADDRESS.PARITY.ERROR BIT Cll
, 03 IO.SECTOR.ADDRESS.ERROR BIT <11
, 03 IO.SEEK.JIHEOUT BIT Cl>
, 03 FILLER 811 Cl>
• 03 IO.TRANSHIISION.PARITY.ERROR BIT (1)
, 03 IO.RESULJ.BIT.11 BIT Cl>
• 03 IO.PORT.RS BIT C3l
, 03 IO.CHANNEL.RS BIT (4)
, 02 IO.LINK ADDRESS
• 02 IO.OP WORD
• 03 IO.OP.OP BIT (3)
, 03 IO.OP.H BIT ClJ
• 03 10.oP.w BIT (1)
• 03 10.0P~V Bil Cl>
• 03 IO.OP.£ BIT ClJ
• 03 IO.OP.D BIT CIJ
• 03 IO.OP.NNN BIT (3)
, 03 FILLER BIT C5l
• 03 Io.op.p BIT Cl>
• 03 FilLER BIT (3)
, 03 IO.OP.UNIT BIT C41
• 02 lo.BEGIN ADDRESS
• 02 IO.END ADDRESS
• 02 ID.DISK.ADDRESS ADDRESS
• 02 IO.M.EVENTS 811 (8)
- 03 IO.M.EVENJS.IOC BIT Cl>
, 03 IO.M.EVENTS.SlOC BIT Cll
~ 03 FILLER BIT Cll
, 03 IO.M.EVEMTS.INJ.H BIT Cll

3-3

, 03 , 03

• 03 , 03

• 02
ii' 02 , 02

- 02 , oz
• 03 , 03 , 02

iliJill = Illt: llil JU!llIB

81000 HCP MANUAL
HARK 10.0

IO.M.EVENJS.S.INT.SENT BIT
IO.M.EVENJS.M.INT.SENT BIT
Fill ER BIT ClJ
IO.M.EVENTS.INJ.S BIT Cl)

IO.HCP.IO Bll (16)

IO.FIB ADDRESS
IO.FIB.LINK ADDRESS
IO.BACK.LINK ADDRESS
IO.PORT.CHAN Bil (7)

IO.PORT . BIT en
IO.CHANNEL BIT (4)

(l)
en

I0.8EEN.THRU.ERROR BIT Cl> 1;

With the exception of the Hulti-Ltne CGntrol used on Data
Communications configurations- on the BlOOC hardware the I/O
controls have no direct connection with main memory. All data
transfers between the controls and .memory aust go through the
prGcessor. GISMO is a set of micro-coded routjnes whose primary
f~nction is to interfaee between the MCPs and the actual
hardware. This allows the MCPs to view the I/O subsystem as an
I/O processor. The MCP can initiate I/O Descriptors and GISMO
will handle initiation of the control• data transfer and
termination. The MCPs can queue several descriptors for
execution by a control• by properly setting the link fields in
the descriptors• and GISHO will initiate each one in turn.

User programs make requests to the Micro MCP, and sometimes the
Micro HCP must ask that the request be handled by the s.HCP# but
in either case, the HCP witl·pass the request to GISMO who in
turn will pass it on to the I/O control.

The I/O subsystem allows fifteen controls or channels to be
con ne c t e d to an v mac h i n e. A ft er GI S MO i n 1 t i at es a cont rot , i t
does not wait for completion of the operation but returns control
to its caller. Consequently, one1 and possibly more operations
may be in process on the machine at any given time. At any given
moment, however, when GISHO is executing it may only address one
control.

The primary communi~ation between the HCPs and GISHO is through
the I/O descriptors. The S.MCP will initiate I/O operations
using the DISPATCH s-operator and the M.HCP contains •icro-code
t11 perform a similar function. This s-operator requires two
parameters, the port and channel of the device being addressed
a3d the me•ory address of the descriptor. The I/O decsriptor.
contains all of the information needed by GISMO for the
operation•

81000 HCP MANUAL
MARK 10.0

AB I/O descriptor is usuaily located by its •Reference Address•,
the memory address of the result descriptor field of the I/O
descriptor. The resutt descriptor field is often referred to as
the •Rs field•, or Result Status field. All of the descriptors
associated with a given control will be linked together in
memory• by setting IO.LINK to the aemory address of the RS field
of the next descriptor. The descriptors are .also linked in the
reverse direction• using the IO.BACK.LINK field• to facilitate
adding and deleting descriptors. A link field may not be zero,
bat a descriptor may be linked to itself.

The Reference Address points to the RS field. Each RS field is
twenty-four bits in length• The bits in the RS field have
differeAt meanings at different tiaei. GISMO is •ost c~ncerned
with the setting of the bits when the I/O is initiated. The MCPs
are more concerned with the setting of the bits when the 1/0 is
complete. When the descriptor is ready for initiation, the RS

·field is formatted as shown in the following diagraa. This field
is usually referred to as the result status field when the
descriptor is ready for execution or is in process and as a
result descriptor field when the I/O operation is complete.

Bits 0-1 RS Status Bits

00 - Ready to be Executed
01 - I/O Currently in Process
10 - I/O Complete with no Exception
11 - I/D Complete with Exception

Bits 2-11 - Gismo Toggles

MCPs mav not alter any bits in this field if
RS Status = 01.

Bits 12-1' - Port to which this l/O is directed. CNot usedl

Bit 15

Bit 16

- Interrupt requested on IIO Co•pletion.

- High-Priority interrupt requested on 1/0
Completion.

Bits 17-19 - Port to which interrupts are to be sent upon
1/0 Completion (Always Processor ZeroJ.

Bits Z0-23 - Channel on which 1/0 is to be performed.

The leftmost bit of an RS field is always set when the operation
is complete. Con5equentl1• storing a result descriptor locks the
descriptor to GISMO. Tbe MCP may lock a descriptor as welt, if

81000 HCP MANUAL
HARK 10.0

the status field is not 01. Gismo will only initiate •ready•
descriptors1 those whose status bits are equal to oo. When the
operation is initiated• GISHO sets the status tits to 01. The
GISMO toggles area is used by GISHO when an 110 is in process to
store infor•ation which ·it needs concerning the operation.

Another structure associated with peripheral manage•ent is the
channel table. There is one channel table for each port and each
element Bf the tabte describes one channel of that port. White
GISHO ases the I/O descriptor to comaunicate directly with the
I/O subsystem, the channel table is a structure for passing
information between the MCP and GISHO. The channel table
reflects the status of a particular channel •. Certain information
is passed to GISMO during a •dispatch" operation and is used by
soft l/O in managing the execution of that op~ation. Certain
fields are updated before GISHO passes control back to the HCP
which direct the course of action the HCP will take. A
programmatic description is given below:

DEFINE CHANMEL.TABLE.OECLARATION AS I %
DECLARE 01 DUMMY REMAPS CHANNEL.JABLE %
•
• ,
• ,

• ,
•
•

,
,
-• ,
;

%
%
%
z

'

OZ CHANNEL.BUSY
02. CRANNEl.PENDING
02 CHANNEL.EXCEPTION
02 CHANNEL.PAUSE
02 CHANNEL.OVERRIDE
02 CHANNEL.EXCHANGE
02. CHANNEL.OLD.MODE
OZ CHANNEL.INTEGRITY
02 CHANNEL.NO.HALT
02 FILLER
02 CHANNEL.TYPE

02 CHANNEL.LAST
02 CHANNEL.EXCHANGE.PC

OJ CKANNEL.EXCHANGE.P
03 CHANNEL.EXCHANGE.C

02 CHANNEL.REf .ADDR
; %

BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLEAN %
BOOLEAN %
BIT (3) %
BIT C4J %
TYPE = 0 =
TYPE = l =
TYPE ~ Z =
TYPE = 3 =
BOOLEAN %
BIT C7l %
BIT CJ> %
BIT (4) %
ADDRESS %

0 = TAPE• DISK• CAS

DEVICE TYPE FOR DUMP
SERIAL CEVICE
DISK
TAPE
CASS ET IE

DELIMITS CHAN TABLE

In the CHANNEL.TA8LE1 BUSY is set and reset by GISMO only. It is
set when the control is busy. PENDING is also set and reset by
Gl~MO. It is used on tape and dist devices only and it tells
GISMll to continue linking through the head of the queue.
EXCEPTION is used on alt devices except tape and disk. It causes

81000 MCP MANUAL
HARK 10.0

GISHO to inhibit dispatch operations on the channel until a prior
exception condition has been handled by the HCP.

PAUSE is also known as the TIMER bit. It is set by the HCP and
it.never changes. It causes GISHO to issue a dispatch to the
channel at each 100 millisecond timer imtervat and is used to
implement TEST.AND.WAIT operations on tape and disk controls.
This is discussed in more detail later.

The OVERRIDE bit is used on all devices and causes GISHO to reset
BUSY. PENDING and EXCEPTION when a new operation is dispatched.
It is set by t~e MCPs and reset by·GISMO. Essentially• it causes
GISMO to override an existing operation with a new operation.

The EXCHANGE ~it is set by the HCP and it never changes. It is
used on tape and dist controls only and it means that the
iBformation in EXCHANGE.PC is vatid~ that there is another
co~trol connected to this control by a hardware exchange. The
OLD.MODE bit, also known as the PAUSE bit• is also set by the HCP
and never changes. It is set for Single-Line Controls and for
Di5k Cartridge Control One. It causes GISMO to pause for 100
mill isecortds when a locked descriptor or a Pause I /O des er iptor
is encountered. If this bit is not set• GISMO will stop in this
circumstance on these controls.

The INTEGRITY bit is set by the MCP when the channel table entry
is initialized. It is also used by the MCP to stop GISHO from
linkimg on the channel.

The TYPE field is used only by the Dump Anal,v.zer program. It is
necessary because the analyzer may have no other means of
determining this information. The REF.ADDR field contains the
address of the descriptor that is in process an thi~ channel. It
is considered the head of the queue by GISHO.

The I/O descrfptor contains most of the inforaation GISMO needs
to accomplish an l/O operation. In the actual hardware
interface• the OP• BEGIN, END• DISK.ADDRESS and ACTUAL~END fields
are us ed. The ACTUAL.EMO field is twenty-four bi ts in. length and
immediatel7 preceeds the RS field in each descriptor. It is n~t
shown in the preceding l/O descriptor diagram. The field is used
by GISMO while the operation is in process to store the memory
address of the data that is to be transferred to or from the
meaory buffer. When the operation is coaplete• ACTUAL.END wilt
c~ntain the address of the next bit that data would have been

transferred to or from.

81000 MCP MANUAL
HARK to.o

Each control is able to buffer~ or store# a certain amoQnt of
data to be transferred. lhe aaount varies among the devices.
for some devices, such as the card re~der and line printer• it is
a full.record. for others• the size of the buffer mav vary and
each contol may contain a portion of the data. Disk controls#
for example• are equipped with a certain nuaber of l80-byte
hardware buffers. The amount of data that may be contained in
the controls and the procedures that GISMO must follow in the
eiecution of an operation are fixed when th~ control is designed
and do not change afterward.

The hardware in the processor that is used by GISMO ts the
Co•mand Register• the Data Register and the Service Request
level. Jhe Command Register is used to send information to a
control• the Data Register to receive from the control and the
Service Request level indicates that a control needs attention
from GISMO.

Nost trans~ctions with the control consist of a
Coamand-Actf vatelResponse-Complete (CA/RC> cycle. Data or
coamand information is sent out to a control with a CA. Control
information or data is returned with a RC.

The processor instructions whch GISMO uses to accomplish an
operation are:

JEST SJAJUS

GISHO requests and the control returns its current sta~us
coant and the device ID. GISMO uses this information to
decide what to do next.

TEST t CLEAR

This operation clears the control.

TEST SERVICE REQUEST

GISHO requests• and the proeessor returnsP a •ask of all
channels that are currently requesting service.

TERMINATE DATA

3-8

81000 HCP :MANUAL
MARK 10. 0

This operator 'is used to terminate data transfer when the
media, disk and tape for exampleg has no fixed record size,

TRANSFER OUT A

Moves one or two bytes of data from memory to the control
for output to the device. Data is sent at CA time; the
control returns its status at RC time.

TRANSFER OUT B

Moves three bytes of data from memory to the control for
output to the device.

TR A NSF ER IN

Moves one1 two or three bytes of data from the control to
main memory on input operations. The data is sent at RC
time. When one or two bytes is transferred, the control
also sends its status.

·rhe Servjce Request level is a toggle in the processor which is
settable by any controt. It is OR~ed into the •Any Interrupt•
toggle. Each Interpreter, prior to executing an s-oerator, will
test the Any Interrupt toggle and• if it is set• transfer control
to GISHO instead. GISHO will determine what caused the toggle to
be set. In this case, it will discover that Service Request is
raised.

It will then do a TEST SERVICE REQUEST CA/RC cycle. The RC will
return 1 mask of alt controls that are currently requesting
service. GISHO will select the highest channel from this mask
and begin handling that c~ntrol. Conrols are u~uatt~ in status
count 11 or 18. when they raise Service Request. This status
indicates that the control is ready to send a Reference Address
to GISMO. GISMO a£cepts the Reference Address and uses it to
locate I/O descriptor in memory.

GISHO will then do a TEST STATUS CA/R~ cycle to detemine what
service the control is requesting. Once the requested ser v f ce
has been perfor•ed• and the coRtrol no longer is requesting
service~ GISHO will again perform a TEST SERVICE REQUEST CA/RC
cycle. It will continue handling Service Requests from various
controls until the TEST SERVICE REQUEST returns all zeros. GISMO
then returns control to the Interpreter that was interrupted.

81000 HCP MANUAL
MARK 10.0

The Status Count returned by a control is the primary ~eans in
which GISHO determines what is to be done next in an 1/0
o~eration. Operations mar consist of sending the Op code and
file address, sending the Reference Address, receiving the
Reference Address• sending or receiving data and rece1v1ng the
result. Various controls perform these steps in different
orders.

All controls begin in Status Count 1 and return to Status Count 1
after Status Count 23. Each Status value has a p~rticutar
meaning. Soae counts always appear in series together. All
controls begin an operation by going through Status Counts 1
through 6. A simplified table of the allowable Status Count
transitions is shown in the table below.·

To send each of the twenty-four bit fields OP• DISK.ADDRESS and
Reference Address, three TRANSFER OUT operations are.used~ each
CA/RC sending one byte. ·for each TRANSFER OUT• the Status
Counter advances hr one. Siailarty, to receive either the Result
Descriptor or the Reterence Addr•ss~ three TRANSFER IN operations
are used• each CA/RC receiving o~e byte.

3-10

Status Count

0

1

1 .. z, 3

4, 5, &

,, a .. 9

10

11 .. iz, 13

14

15

16

11

1811 19· zo

21 .. 22, 23

Meaning

81000 HCP MANUAL
MARK 10.0

Control Not Present

Cleared <Initial) State

Ready to Receive OP• Bytes 1, 2 and 3

Ready to Receive DISK ADDRESS1 Bytes 1,. z, 3

Ready to Receive Reference Address, Bytes 1, 2. l

Busy <Operation in process>. fro• 10, Controls
usually go to Status 11 or 18 and 'raise
Service Request-

Ready to Send RtTference Address... Bytes 11 z,. 3.

Ready to Receive Data Coutput>

Ready to Send Data Cinputl

End of Hardware Buffer - Ready to Send or Receive
Last Byte. More Butters Remain.

End of Hardware Buffer and Last Buffer.

Ready to Send Reference Address, Bytes 1, Z• 3.
Implies that a Result Descriptor is to follow.

Ready to Send Result Descriptor, Bytes 1, z, 3.

Table x.x - Typical Control Status Counts and their Meaning

1-11

81000 HCP MANUAL
HARK 10.0

GISHO transfers data to and from the control in one or sore
iterations~ each iteration will involve only one control buffer.
for some devices, there is only one buffer and this buffer· will
always contain the full phvsical record. GISMO will only perform
data transfer once per I/O operation for these controls. Other
controls have physical reeords of undefined lengthJ for these
controls, there are usually multiple buffer5 of fixed length in
the control and each iteration of G1SMn will fill or eapty one of
these buffers.

Whenever Service Request is raised and GISMO is invoked, the
requesting control wilt first send the reference address. GISMO
will then test the controt•s status. If the control is in Status
14 or 151 GISMO will begin data transfer. for each operation,
data transfer will continue until either the control's buffer is
empty or the END address of the I/O descriptor is reached. In
the first case, the control will have gone to Status 1 after the
last data character(s). GISHO will test its status, see that it
is in Status 7 and send it the Reference Address• thus co•pleting
the iteration. In the latter case• on most controls, GISMO wilt
send it a TERMINAfE command. Some controls require data transfer
to continue until the end of the control's buffer. On input,
GISHO will accept the remaining data from these controls but will
not store it in memory. On output GISMO will send blanks to
these controls.

Data is always tran~ferred to a control in one• two or three byte
portions. Most •serial• devicesP such as· printers and card
devices- use one byte transfers. This data transfer is performed
from a loop within GISMO which ·consists of a CA/RC cycle,
transferring one data byte• until the control's buffer is futl or
the END address is reached. A buffer full condition is detected
by the control sending or receiving ~he last data byte in Status
Count 1& or 11.

Many disk and tape controls transfer data two bytes per CA/RC.
Disk input and output is always terminated by GISMO when the END
address is reached, possibly in ~the last of multiple disk
sectors. When the record length is an odd nu•ber, GISMO will
nDrmatize the last byte as required. On output operations- the
control will pad the.remainder of the tast buffer Cand hence
sector> with zeros.

Tape o~tput1 possibly in the last of multiple buffers' is also
terminated by GISHO when the END address is reached. When the

3-12

81000 HCP MANUAL
HARK 1Q~O

physical record size is an odd·number of characters, GISKO will
normalize the last byte for the last CA/RC ~ycte. It will send a
TERMINATE coa•and• folld~ed by a sp~cial command which wilt
indicate "odd character count: to tell thj control that the last
data transfer consisted of one byte only. Tape input o?erations
will terminate either when the END address is reached or when the
end of the physical record is·encountered. which may be in the
last of multiple buffers. If the end of the· physical record
occurs aRd tbe length of the record is an odd naaber of
characters• the control will set a flag in the RC portion of the
last CA/RC cycle. GISHO will then normal"ize the last byte of the
record.

All disk pack controls1 the 5N head-per-track control and all
phase-encoded tape controls use three byte data transfers. In
this case only• an exception is aade to the general rule that all
transactions involve one CA and one RC. On these controls, one
CA aay be followed by one or more RCs. This is accomplished as
f.oltows.

Prior to entering the transfer loop, on input, GISHO wilt use a
special CA/RC cycle to ask the control how many butes it has to
send. It will then initiate the transfer loop with a CA and
continue it with as many RCs as are required• rece1v1ng
twenty-fo~r bits of data on each RC. for output, GISHO will tell
the control how many bytes it has to send. It will then initiate
the transfer loop with a CA command of TRANSFER OUT o~ and
continue it with as many RCs as are required, sending the data
oYt with the RC.

Ila k.!:llAil:IIrHa

The I/O subsystem of the 81000 system does not use queues for I/O
o?erations. Using the facilities presented in the preceding, it
connects all I/O descriptors that are directed to the same
control~ or group of controls connected by an exchange, in a
circular chain. This etiminates the nec~ssity of an t/O complete
iBterrupt being directed to the HCP, provided the producer of I/O
requests, most often a user program• d.oes not produce the
requests faster than they can be satisfied. In other words• if
the I/O subsystem is completing operations before they are
actualtr required by the user• then the user will never need to
wait on the completion of an I/O request and the HCP witt never
have to s~spend the program waitin9 for such a completion.

Even if this isn•t the case• if the user program is forced to
wait upon the completion of his 1/0 requests- the amount of
processing that must be done to accomplish the suspension and to
reinstate the program upon completion is minimized using

3-13

81000 MCP MANUAL
HARK 10.0

chaining. The processing is limited to only that which is
concerned with program execution and no processing is required to
tall the I/O subsystem what it should do next. This information
is already contained in the I/O descriptor.

for atl devices except tape and disk, then• the HCP constr~cts a
circular chain of descriptors in memory. GISHO executes the
requested operations in turn. as each descriptor is uBlocked by
the MCP. Upon encountering a locked descriptor, GISMD si•plf
pauses or stops until the descriptor is unlock~4- This w~lt
occur when the user prograa next executes an I/U r~quest or when
the file is closed for any reason. If the program must wait upon
aB. operation~ an I/O complete interrupt is requested• using the
appropriate bit in the RS field, and the progra• is suspended
pending the occurrence of the interrupt.

The disk I/O subsyste• operates somewhat differently from the
o~eration just described. Since each disk I/O descriptor
contains a disk address field• it is n()t necesary for the
ope~ations to execute in any particular order. Various means are
provided in the software to prevent any contention problems that
might arise. It mar be noted that these same means are necessary
on I/O subsystems which utilize queueing instead of chaining.

All I/O descriptors for all disk controls that are connected to
the system are connected in the sa~e chain. If the system is
equipped with more than one control• then each Channel Table
entry will point to the head of the chain. If GISMO encounters a
descriptor which is not ready for execution or which is already
in process• specified by the first two bits of the RS field being
set to anything other than oo. it does not stop or pause but
continu~s to the next descriptor in the chain. Atso• if an
exception condition occurs• GISMO does not stop or pause as it
does on other controls. Both of these actions are specified by
the CHANNEL.NO.HALT bit in the Channel Table.

Since GISHO continues linking in both of the cases mentioned
above, it must know vhen it has examined alt of the de~criptors
in the chain. When it has examined all of the descriptors• it
mllst stop to free the processor for othef" execution. To
accomplish this• the REF.ADDR field in the Channel Tahte is used
to mark the beginning of the chain. When a disk operation is
dispatched by the HCP, the reference address passed by the
dispatch is discarded and the REF.ADDR field is used instead.

l-14

BlOOO HCP MANUAL
HARK 10.0

In order to operate properly with dispatch operations occurring
in an order different from the order o1 the descriptor link
fields1 GISMO must be able to override ~to~ping when it has been
throug~ the entire chain once. for example- if descriptors A• a,
and C are present in the chain and if B is dispatched, GISHO Mill
link to and initiate B. If~ during the time that 8 is in
process, A is dispatched, GISHO must link past C and the REF.AODR
field and find and initiate A.

To accomplish this• the PENDING bit in the Channel Table is used.
This bit is set by a dispatch operation and reset by GISMO. If
GISHO arrives at the descriptor addressed br the REF.ADDR field
an d i f t h e PENDING b i t i s set• i t doe s not stop but r es et s
PENDING and continues linking. If PENDING is already reset at
this point• then GISHO stops.

Since all descriptors for all disk cont~ols are maintained in the
same chain, GISHO •ust be able to recognize descriptors which are
addres~ed to controls different from the one it is handling.
This is accomplished using the IO.CHANNEL.RS field of the l/O
descriptor. Upon encountering aB unlocked 1/0 descriptor, GISHO
compares this field to the channel it is executing upon and if
the two are not equal• jt does not mark the descriptor in process
b~t continues linking.

When an I/O operation is initiated on a moveable ara disk device
and tba arm is presently positioBed to a cylinder different from
the one specified in the descriptor, it is necessary to
ieposition the ara to the proper cylinder. This operation is
known as a "seek". On the 81000 system• all seek operations are
implicit; there is no explicit Seek operation in the hardware.
The MCPs initiate disk 1/0 operations without regard for the
c~rrent arm position and• if arm move•ent is required• it is
accomplished by GISMO• the control and the device without the
MCP•s participation. The MCP does not know that a seek is being
performed or required.

OA this system, alt seek operations are •overlapped•. This means
that the arm of any given drive mav be in motion simultaneously
with the arm of an1 other driveCs>~ Also, the control may be
performing data transfer or any other opeTation while the arms
are in motion.

This is accomplished hr the control returning a result descriptor
with Bit 171 IO.RESULT.BI1.11, set to zero. Esssentialty. this
informs GISHO that some special action is necessary and that

3-15

81000 HCP MANUAL
MARK 10.0

GISMO should not store the result descriptor in memory. In this
particular case, the c·ontrol also informs GISHO that the selected
drive is ABW seeking. GISHO will initiate no further operations
u~on that drive until informed, by the hardware, that the seek
operation has completed.

\
DCC-2 (Cartridge) and alt dist pack controls notify GISHO that a
seek operation has completed by raising Service Request while in
Status Count l. GISMO will again send the· descriptor to the
control and this time• after any required latency period• data
transfer witl· occur. DCC-1 does not notify GtSMO wheA a seek
operation has completed but must be "polled" periodically by
GISHO. The pause tiae period for OCC-1• the time between the
poll operations• is two milliseconds.

The Disk Subsystem Controller <DSC> offerred on GEM processors
introduces some exceptions to the statements above. These
exceptions will be defined in a subsequent version of the
speci Heat ion.

llf!E. llQ k.tl.lltilttii

The chaining of 1/0 descriptors for magnetic tape controls is
perhaps the most complex of the three basic types. The
complexity is caused bv the fact that tape I/O descriptors
directed to each separate tape unit aust be executed in logical
sequence and there •av be several such units attacked to the same
control<s>. It doesn•t matter which unit GISMO addresses next
but the descriptor that is used to address the unit must be the
ne1t logical descriptor in the •subchain• for that unit. It is
therefore necessary to break the channel chain into subchains•
with one subchain for each physical unit• and to implement a
means of re•embering the next logical descriptor that mast be
used within each subchain.

Both of these requirements are satisfied by the Lock descriptor.
Lock is a pseudo l/O operation which is handled completely by
GISMO and actually causes no physical I/O operations. It also
serves as a means of resolving contention problems between the
HCPs and GISHO and between two or •ore tape ~ontrols which are
attached to the same units by ~n exchange. lock operates as
described below.

The HCP1 when the system is Clear/Started, constructs a tape
chain with one lock descriptor for each unit connected to· the
system. - The ACTUAL.END f ietd of a Lock des er iptor is not used
and the LINK field wilt contain the memory address of the next
lock descriptor. The BEGIN and END address fields of the Lock

3-16

81000 HCP MANUAL
MARK 10.0

descriptor ~ill contain the address of the TEST.AND.WAIT I/O
descriptor that the HCP use~ to monitor the status of each unit~
This is discussed in a tater paragraph.

When a file is opened on a tape unit• the HCP changes the BEGIN
and END address fields in the lock descriptor. The MCP n~w
canstructs a subchain for the unit which will consist of one I/O
descriptor for each buffer requested by the user. The BEGIN and
END addresses of the lock descriptor will be set to the memory
address of the first physical 110 descriptor in the subchain and
the JEST.AND.WAIT descriptor will be removed from the subchain.
The BEGIN address field will not be altered from this point until
the file is Closed. The END address will be modified by GISMO
each time it executes an operation in the s~bchain. In effectr
The END address field is used to reae•ber the next logical
o~eration that is to be performed on the unit.

The LINK fields in each I/O descriptor in the subchain will all
address the next physical descriptor in the subchain, as they do
for all other controls. An exception to this is the last
physical descriptor in the subchain. The LINK field of this
descriptor wilt contain the address of the lock descriptor for
that unit. This prevent one unit from monopolizing the entire
control; it insures that GISHO will periodically determine if
there is anything to be done on the other units.

The R£F.ADDR field of the ChanAel Table entry for a tape chain
will contain the address of the first Lock descriptor in the
chain. Gismo• upon receiving a Dispatch for a tape control• will
discard the Reference Address passsed and start at the address
provided by the REF.ADDR field. GISMO first att&apts to lock the
lock descriptor by swapping 01 into the first t~o bits of the RS
field. If successful, it fetches the address in the END field of
the lock descriptor and proceeds to that address. If this
descriptor is unlocked, it begiRs the operation specified. If
n~t• it returns to the Lock descriptor and stores the address,
which it previously f~tched fro• the ENO address field back into
the END address f ietd.

Assume now that the descriptor at the address fetched from the
END field of the Lock descriptor was· unlocked. GISMO begins this
o~eration and• assuming that the operation cannot be completed
without same intermedjate Service Requests- returns to the Lock
descriptor and continues linkirig through the chain. Eventually,
the control witl raise Service Request and refere~ce the
initiated descriptor. Upon completion of that descriptor• GISHO
will store a result and fetch the LINK field of the descriptor.
It will then proceed to the new descriptor and again check to see
if it is locked. If it is, GISHO returns to the Lo~k descriptor
for the unit and stores the ne~ address in the END address field.

3-17

BlOOO HCP MANUAL
HARK to.o

The new descriptor now beco•es the next logical descriptor to be
executed on that unit. In this manner~ GISHO effectively
maintains a logical sequence of operations that are to be
performed on any tape unit.

It may be noticed fro• the foregoing that there is no possibility
of conflict for a unit between two or more controls connected by
an exchange, since GISHO first attempts to lock the Lock
descriptor before proceeding down a subchain. Similarly, the HCP
must tock the subchain bafore altering any descriptor in the
subchain.

The HCP attempts to monitor the status of all peripheral devices
that are attached to the system. To do this, it must remeaber
the status of each device and aaintain a certain amount of
i~formation about each. The major portion of the information
about all of the devices connected is maintained in the I/O
Assignaent Table CIOAT>.

The I/O Assignaent Table <IOAT> allows the HCP to keep track of
all peripheral units except the system•s SPO and those devices
associated with data communication. Each unit is identified hv
port• channel• and unit numbers as well as by a srmbolic name.
Various fields reflect the status of the unf t <e.g.. AVAILABLE•
SAVED, REWINDING• LOCKED>. A programmatic description is given
below:

DEFINE IOAT.SilE AS 1512#;
DEFINE IOAT.DECLARATION AS
DECLARE 1 DUMMY REMAPS IOAT•

02 UNIT.INITIAL
03 UNIT.HDWR
Ol UNIT.PCD

04 UNIT.PORT.CHANNEL
05 U,NIT .PORT
05 UNIT.CHANNEL

04 FILLER
04 UNIT.UNIT

03 UNIT.NAME
02 UNIT.LABEL.ADDRESS

03 FILLER
03 UNIT.PACK.INFO

02 UNIT.RS
OZ UNIT.FLAGS

I ZG L 0 B A L

8.IT C66h %
BIT C6l•
BIT C12),. %
BIT Cl), %
BIT < 31, %
BIT C41• %
BOOLEA'N• %
BIT C 41, %
CHAR C6)·11

DSK.AOR,
BIT C l211
ADDRESS•

I 0 A T

ADDRESS,% USER LIMIT REGISTER
BITC36),

81000 HCP MANUAL
HARK 10.0

03 UNIT.AVAILABLE BOOLEAN,
03 UNIT.AVAJLABLE.INPUT BOOLEAN•
03 UHIT.AVAILABLE.-OUTPUT BOOLEAN,
Ol UNIT.WAIT.FOR.NOT.READY BOOLEAN,
03 UNIJ.T£SJ.AND.WAIT BOOLEAN•
03 UNIT.SAVED BOOLEAN•
OJ UNIT.REWINDING BOOLEAN,
03 UNIT.EOF.SENSED BOOLEAN•
03 UNIT.LOCKED BOOLEAN1
03 UNIT.LABEL.SENSED BGOLEAN1
03 UNIT.PRINT.8ACKUP BOOLEAN•
03 UNIT.PURGE BOOLEAN,
03 UNIT.LOCK.AT.TERM BOOLEAN,
03 UNIT.TO.BE.SAVED BOOLEAN•
Ol UNIT.FLUSH BOOLEAN•% FLUSH TO £Of
03 UNIT.TAPEF BOOlEAN1
03 UNIT.OISKf BOOLEAN•
Ol UNIT.STOPPED BOOLEAN,
03 UNIT.TRANSLATE BOOLEAN1
03 UNIT.ClRL.CARD.USING BOOLEAN1 %
03 UNIT.REMOTE.JOB BOOLEAN1
03 UNIT.CLOSED BOOLEAN• X
03 UNIT.CLEARED BOOLEAN,
03 UNIT.~UllI.fILE BOOLEAN1 %
03 UNIT.EDT BOOLEAN•
03 UNIT.TAPE.FILE.STATUS 811(3),z 0 = NOT RELEVANT<_ANSIJ

% 1 = BOVCBEG OF VOLUME
% 2 = BOF<BEG Of FILE)
% 3 = EOYCEND OF VOLUME>
% 4 = EOFCEND Of FILE>
% 5 = PfBCPROCESS f!LE BLK
% 1 = UNDEFINED

03 UNIT.TAPE.XCH BOOLEAN1% FOR MIS-MATCHED UNITS
03 UNIT.NO.TRANS.IBLE 800LEAN•%PC-5

03 UNIT.OFFLINE.YEJ.IN.USE BOOLEAN.%FOR ASSIGNED UNITS.
03 UNIT.AUDIT BOOLEAN• % DHS AUDIT TAPE
Ol UNIT.RESERVED.BY.AB BOOLEAN,% AUTO BACKUP 6.1
03 UNIT.LABEL.OP BITC3),% O=aOOEOOXa ODD TRANS

z l=aoocooxa ODD NO TRANS
% 2=a00600Xa EVEN TRANS
% 3=a00400X~ EfEN NO TRANS

02 UNIT.DRIVE.TYPE BIT(,),% DISK OMLY
I VALUE OCCl/2/3 DPCl/2 DFCl DFCl
Z 0 32XZOl N/A NIA N/A
% 1 32X406 215 SYS.HEM SN
% 2 &4X203 225 N/A N/A
% 3 64X406 NIA .lC-3 N/A
% 4 NIA 207 1C•4 NIA
% 5 N/A 205 lA-3 NIA
% 6 N/A 206 1A•4 N/A
% 1 NIA N/A NIA N/A

02 UNIT.STATUS BIT (1511
02 UNIT.JO.BE.POWERED.Off BOOLEAN~
OZ FILLER BITC7>•

1-19

02
02
02

02
02
02

%

81000 HCP MANUAL
MARK 10.0

UNIT.JOB.NUMBER
UNIT.FIB.ADDRESS
UNIT.LABEL.TYPE

% 0 =
% 1 =
% 2 =
% 3 =

UNIJ.TRANS.JBLE.ID
FILLER
UNIJ.JEST.DESC

D E l I M I J

BITC16>•
ADDRESS•
BIT CZ),

OMITTED
BURROUGHS
USASI
INSTALLATION

BITC8>• XPC-5 TRAIN IO
WOROr% PLEASE 00 NOJ DISTURB
BIT CDESCRIPTOR.SIZE>J

I D A T D E F I N E

The entire IOAT is constructed by the MCP when the system is
Clear/Started. During the ClearfStart operation~ the HCP directs
a Test descriptor to each of the controls that are connected to
the system. When it discovers a control that aar have-more than
one unit connected to it• it sends a Test descriptor to each
possible unit and sakes one entrr in the IOAT for each unit that
is connected.

The UNIJ.HDWR field in the IOAT Mill contain the hardware
identifier returned by the test descriptor. The following is a
list of hardware types and pseudo-types that are supported by the
MCP. Pseudo-types are used in the device assignment process to
indicate generic types, such as •any magnetic tape device• which
would include seven•track• nine-track• phas~ encoded- NRZ and so
fGrth.

1-20

81000 HCP MANUAL
MARK 10. 0

DEVICE

Reserved
80 col READER.PUNCH.PRINTER
80 col CARD PUNCH
Reserved
FDC.1
96 col READER PUNCH PRINTER
PAPER TAPE READER
PAPER TAPE READER-1
PRINTER
READER SORJER-2
READER SORTER
DISK FILE (Any head per track)
DFC-1
DCC-2
occ-1
DPC-1
DISK PACK cocc-t. occ-2. DPC-1)
DISK CAny disk)
DFC-3 (5-NJ
96 co I .. RE ADER
PAPER TAPE PUNCH
80 col CARD READER
SP0-1
SP0-2
TAPE 9 ·rRK NRZ
TAPE 7 JRK NRZ
TAPE PE C9 TRKJ
TAPE CA1'y tape)
JAPE.9 CAny 9 TRK tape)
Reserved
CASSETTE
LPC-5
QU£U£ FILE
REMOTE FILE

FILE STMT HDWR TYPE

---~----~ --------~ 00
DATA.RECORDER.80 01
CARD.PUNCH 02

03
04

READER.PUNCH.PRINTER 05
PAPER.TAPE.READER 06
PAPER.TAPE.READER 07
PRINTER 08
READER.SORTER.2 09
READER.SORTER 10
DISK.FILE 11
DISK.fILE.1 12
DISK.CARTRIDGE 13
DISK.CARTRIDGE 14
DISK.PACK.IO 15
DISK.PACK 16
DISK 11
DISK.tILE.3 18
READER.96 19
PAPER.JAPE.PUNCH 20
CARD.READER Zl

22
CRT SPO 23
TAPE.9 24
TAPE.7 25
TAPE.PE 26
TAPE 21
TAPE.9 28

29
CASSETTE 30
PC.5 31
QUEUE 62
REMOTE 63

Table 1.x - Hardware types supported bJ HCP

3-21

81000 MC? HANU;AL
HARK 10.0

IB the table above• the file Statement column CFilE STMT> is for
use in the HCP 1 s FILE Control Card and is explained in the
i2i:t.t1.~t.!_flJUU:.!.t!2.oil_.§Ji1iU!b. Generic hardware type numbers are
not stored in the IOAT. Rather, the actual identifiers returned
by the hardware are used.

Unit mnemonics are also assigned by the MCP during the
Clear/Start process. These mnemonics allow the operator and the
MCP to identify devices uniquelr• The table below lists the form
of the mnemonic that will be assigned to the various types of
devices.

Card Reader
Card Punch
Data Recorders
Print er s
Tape Units
Disk Chead-per-trackl
Disk Pack
Di s;k Cartridge
Paper Tape Read~rs
Paper Jape Punches
Reader- Sort er s
Cassettes
flexi-Disk

CRx
CPx
CDK
LPx
HTx
none
DPx
DCx
PRx
PPx
RSK
CSx
FDx

All units will be assigned a three-characte' mnemonic which
begins with the first two letters listed in the table above. The
thjrd character will be uni~ue to the unit. The first unit of
that type encountered by the MCP during the Clear/Start operation
is assigned the letter •A•, the second we• and so forth.
Assignment proceeds alphabetically and the mnemonic assigned does
not change unless the system configuration changes.

The assigned unit mnemonic is stored in the IOAT in the UNIT.NAME
field. The entire IOAT is maintained in aemory. To minimize
storage requirements, some information which relate~ to the unit
is not stored in the lOA"T but is maintained on disk. Fite
Identifiers and any other information which is se(dom used by the
MCP are stored .in an INtERNAL.LABEL field on disk. The disk
address of this field is maintained in the IOAT in the
UNIT.LABEL.ADDRESS field. Information in this field is typically
updated by the STATUS procedure in the HCP.

The STATUS procedure is executed whenever the Ready status of an
UAassigned device changes. The MCP is· •ade aware of a status
change by JEST.AND.WAIT I/O operators. These operators do not

J-22

81000 HCP MANUAL
HARK 10.0

truly wait on a unit status change but this function is emulated
by GISMO.

The HCP must know when a unit goes from a Not Ready condition to
a Ready condition so that it can read the label on the media and
update the INTERNAL.LABEL information on dist. It must know when
a unit changes from Ready to Not Ready so that ft can mark the
uBit unavailable and initiate a TEST~AND.WAJT.FOR.READY on the
unit. JEST.AND.WAIT operations al-tow the specification of
certain conditions for completion• such as Test and Wait for
Ready- Not Ready• Ready to Transmit~ Ready to Receive and so
forth. GISMO will not consider the operation complete unless the
specified conditions ·.a1re 11.et.

On disk and tape controls, which allow more than one unit per
control• we c~nnot tie u~ the entire control with a Test and Wait
operation to one unit. For DCC-21 atl disk pack and all tape
controls~ the PAUSE bit in the Channel Table is used to iaplement
a periodic test of atl such units. At each 100 millisecond timer
interval~ GISHO searches through the Channel Table looking for
e~tries with this bit set to zero. When s~ch an entrr is found,
GISMO initiates that chain at the address specified by REF.AOOR1
also in the Channel Table. During this executiQn• GISHO wilt
i~itiate all Test operations encountered in the chain. If the
conditions for completion specified in the operator have been
met• GISMO witl store the result descriptor returned by the
operation and queue an interrupt for the MCPJ the HCP always
requests an interrupt in Test and- Wait descriptors.

The HCP also sets the type field of this I/O descriptor,
IO.HCP.IO• to a value which indicates •status Change•. In the
MCP•s 1/0 Complete procedure, which is invoted only when an
interrupt i~ returned from an I/O operation, the value stored in
IO.MCP.IO will cause invocation of the HCP•s STATUS Procedure.

As mentioned previouslr• the STATUS Procedure is executed only
when the status of an una$signed peripheral changes. If a
peripheral is being used by a program and if it goes to a Not
Ready condition~ the situation is handled by the I/O Error
Procedure. When an assigned per i ph er al goes from Not Ready to
Ready- no action is required by the HCP since the Jest and Wait
des,criptor executed in this case will have a LINK field set to
the next logical operation to be performed on the device.

81000 HCP MANUAL
MARK H>.O

Peripheral devices which are capable of input operations usually
have labels written on the media. The HCP is equipped to
recognize several different la~el formats on disk and tape
devices and it expects to read control instructions fro• all card
devices which have input capabilities. Control instructions are
di s cussed in the ~21.til.iC.JI ll.1Utt.A1iSl.D.il iLlli .I and in Pro duet
Specification 2219 0144• .t!.&e !kSlll.ttJll ~i.n.11.l and witl not be
discussed here. Essentially• when a card device becomes Ready
for inp~t purposes1 the Status Procedure reads the first card and
control is passed to the Control Card Procedure.

On disk and tape devices, when a unit beco•es Ready~ the Status
Procedure attempts to read a label fro• the media. The following
is a description of the various label formats• on disk and tape
devices• the HCP is capable of recognizing.

Everr diik pack• disk cartridge. or head-per-track sub-system is
identified by a standard •ANSI• pack labet. This pack labet
written in EBCDIC C8 bit code>• is two pack sectors long C360
bytes>• and occupies the iirst two sectors on a pack- I.E.,
cylinder o. track o, sectors 0 and 1. Sector 0 contains pack
identification inforaation and sector l is reserved for future
i•plementation of pack security procedures. A programmatic
description is given below:

DEFINE PACK.LA8£L.D£CLARAJION AS 1%
DECLARE 01 DUMMY REMAPS PACK.LABEL%
, 02 PL.VOLi CHAR (4) %
, 02 PL.SERIAL.NO CHAR C61 %
• OZ PL.ACCESS.CODE CHAR Cll %
02 PL.ID CHAR (171 %
, 03 PL.MAHE CHAR (101 %
• 03 FILLER CHAR (1) %
, OZ PL.SYSTEM.INTERCHANGE CHAR (2) %

• 02 , oz , 02
• 02

, 02 , 02 , oz , oz

PL.COD£
FILLER
PL.OWNER.ID
PL.TYPE

PL.CONTINUE
FILLER
PL.INT
PL.VOLZ

CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR
CHAR

(1)

(6)
(1 It~)
(1)

ClJ
<2&:,
Cl>
(4)

%
%
%
%
%
%
%
%
%
%
%
%
%
%

"'VOLi•
SERIAL CCANl NUMBER
ACCESS CODE
PACK ID

SYSTEM INTERCHANGE/CODE
00 = INTERCHANGE
17 = BlOOO INTERNAL
35 : 81500 INTERNAL
EJC, EJC, ETC

PACK conE 00 = SCRATCH

"R• = RESTRICTED PACK
wu• = USER PACK
•s• = SYSTEM.PACK
CONTINUATION FLAG "Cn

•voLz•

81000 HCP HAN UAL
HARK 10.0

• 02 PL.DATE.INITIALIZED CHAR (5) % , 02 PL. IJHT .SYSTEM CHAR {6) % INITIALIZING SY ST EH
• 02 PL.DISK.DIRECTORY CHAR (8) % OIREC TORY ADDRESS , Ol PL. HAS'f ER. Af AIL CHAR (8) % MASJER AVAILABLE I ABLE
,, 02. PL.DISK.AVAILABLE CHAR (8)- % WORKING AVAILABLE TABLE
• 02 PL.INTEGRITY CHAR Cl> x 0 = NORMAL

% 1 = RECOVE'Rf RE QUIRED , 02 PL.ERROR.COUNT CHAR (6) % , 02 PL.SECTORS .• XO CHAR (6) l REMOVED SECTORS , OZ PL·· TEMP. TABLE CHAR (8) % TEMP TABLE LINK· ,, 02 PL.PCD CHAR (3) % LAST PORT,, CHAN1 DRIVE
• 02 PL.ASSIGNED.TO.BPS CHAR (6) % BASE PACK SERIAL NUMBER

In the case of disk devices, additional information, beyond that
which can be stored in the IOAT• is required by the HCP for
proper operation. The STATUS Procedure and others maintain this
information in a reserved area in meaory known as the Pack
Inforaation Table <PACK.INFO).

fA&.11 lNEfJJ! IAI111~ l!fil.E

The pack information table is an HCP maintained linked list of
all user disk packs and cartridges currently on line. It
contains such inforaation as the name• serial number, hardware
unit• naaber of users, and addresses of the disk directory~
available ta~le, and temporary table. This structure allows a
pack or cartridge to be externally referenced by naae. A
programmatic description is given below:

DEFINE PACK.INfO.DECLARAllON AS #%
DECLARE 01 DUMMY REMAPS PACK.INFO•

OZ P.NAME NAME•
02 P.S£RIAL.NO WORD,
02 P.DISK.OIRECTORl DSK.ADR•
02 P.DISK.AVAILABLE DSK~ADR,
02 P.TEMP.TABLE OSK.ADR•
OZ P.UNIT.NAME CHAR C6l~
02 P.PCD BIT C12>•

OJ P.PORT.CHAN BIT Cl),
Ol FILLER BIT Cl>•
03 P.DRIVE.NO BIT (4),

OZ P.NQ.USERS BIT C8J,
OZ P.NO.MPf.USERS BIT cs>-
oz P.TO.BE.POWERED.DOWN BOOLEAN,
02 P.RESJRICTED BIT C3),

02 ?.CONTINUE
02 P.SCRATCH

BOOLEAN~
800.LEAN.,,

l-25

%
%
%
%
%
%

0 = SYSTEM RESOURCE PACK
1 : RESTRICTED
2 = UNRESTRICIEO USER
3 :: INTERCHANGE
1 -= CONTINUATION PAC"
1 = SCRATCH PACK

IJ%

02 P.FULL
oz P.xc
OZ P.ASSIGNED.JO.BPS
02 P.BACK.LlNK
02 J>.LINK

81000 HCP MANUAL
HARK 10.0

BOOLEAN1 % 1 = NO HORE AVL DISK
BOOLEAN• %PACK HAS UNDERGONE XC.

WORD." % ASSIGNED TO BASE PACK #
ADDRESS,
ADDRESS;

IAI!E. 1..lll.EL.Lltt!i• l!tlIIALlitJIQ.ti !ttD. fJlRil1:Ui

MCP II includes the capabitity to create and recognize two
different forms of magnetic tape labels. The standard label
format for the 81000 system will confora to that specified in the
publication entitled •Jhe A•erican National Standard Magnetic
Tape Labels for Information Exchange• which is dated 1969 and
p~blished by the American National Standards Institute• Inc.
CANSIIJ. These labels are commonly known as "ANSII, Version t•
labels. It should be noted that •standard label format• for the
system means that any program which requests standard labels in
its tile declaration will cause ANSII labels to be written when
the file is assigned to magnetic tape- and the file is opened
output. Users are allowed to create the label in ASCII if they
so desire.

ANSII labels as i•plemented on the 81000 system contain several
deviations from the standard as presented by the ANSII docume~ts.
The deviations are necessary in order to insure that we are
compatible with the 86100 svstem. The most noteworthy deviation
is the recording mode of the label itself; it is written in
EBCDIC character code unless ASCII is specifically requested vta
the •sN• command.

ANSII label format, as implemented1 consists of three physical
blocks on the tape' followed by a tape mark. The first of the
three blocks is known as the Volume Header. A progra•matic
descript~on is presented belov.

01 VOLUME.HEADER
02 FILLER CHARACTERC4)

%This field will always contain •vot1•
02 VOLUME.ID CHARACTER(6)
02 ACCESSABILITT CHARACTERC11

%This field is not used by the 81000
02 RFS %This field is reserved in the ANSII Standard. It is

%being used as follows by the 81000 and the 86700.
OJ M~LTI.FILE.ID CHARACTERC17l

% •on if there is no HFID
% •xo• if Scratch
% "BACKUP" if Backup

Ol SYS.SYMBOL CHARACTERC2J

81000 HCP HANUAl
MARK 1O.0

% Witl contain
Ol JAPE.TYPE

% 0 = Scratch
% 1 =· User
% 2 = Backup
% 3 = library

Ol FILLER
OZ OWNER.ID

% This field is not
OZ FILLER
02 VERSION

•11" if created on BlOOO
CHARACTER< 1)

CHARACTER(6)
CHARACTERC14)

currently usable on the 81000 system
CHARACTERC28>
CHARACTERCl)

I Witl contain
% changed

•t• until such time as the label format is

The secand of the three physical blocks is known as •Header One•.
The format is also used for End-of-File and End-of-Volume. A
programmatic description is given below.

01 HEADERl.DECLARATION
·oz FILLER CHARACTERC4l

I Hay contain •HRDl"• •[Ofl"·• or "EOVt•
bz FILE.ID CHARACTER<ll>
OZ FILE.SET.ID CHARACTER<6J

% This field will contain the first six characters from
% the HFIO field in the VOLl block

02 FILE.SECTION.NO CHARACTERC4l
% Used for Reel number by 86700 and 81000

02 FILE.SEQ.NO CHARACTERC4l
% Ordinal number of the file within a Multi-Fite

OZ GENERATION.NO CHARACTERC4) % Unused
02 GENERATION.VERSION.NO CHARACTERCZ> % Unused
02 CREATION.DATE CHARACTERC6>· % bYYDOD
02 EXPIRATION.DATE CHARACTER(£) % bYYCDO
OZ ACCESSABILITY CHARACTERCll % Unused
02 BLOCK.COUNT CHARACTER<6l

% Zero if this is a Header.One block
02 SYSTEM.CODE CHARACTERCl31 % "Bl70·0•
02 FILLER CHARACTERC7>

The third physical block is known as •Header Two•. It is also
used at EBd-of-File and End-of-Volu•e• Its format is shown
below:

01 HEADER2.DECLARATION
OZ FILLER CHARACTERC4l

% May contain •HDR2"' "Eorz•, or •Eov2•
02 RECORO.FDRHAJ CHARACTERC11

% f = Fixed
% ~ = Var i ab t e
% S = Spanned {Not yet implemented by any Burroughs syste•>

1-21

' 02
02
02

Ol
02

% lJ = Undefined
BLOCK.LENGTH
RECORD,.LENGTH
RESV.SYSJEM.USE

03 DENSIT'Y
% 0 = > 500
% 1 = > 556
% 2 = > 200
% 3 = > 1600

Ol SENTINAL
03 PARITY

% 0 = Eveni
03 EXT .FORM

l

81000 HCP MANUAL
HARK 10.0

CHARACTERC5J
CHAR AC TERC5J
CHARACTER< 351
CHARACTERCll

CHARACTER< I>
CHARACT:ERCI)

= Odd
CHARACTERCl)

% 0 = Unspecified
% 1 - 8 inar y
% 2 = ASCII
% l = BC.L
% 4 = EBCDIC

03 FILLER CHARACTERC31l
BUff ER. Off SET CHARACTERC2J
FILL ER CHARACTERC28)

% Unused

% Unused

.As mentioned In a prior paragraph• the HCP writes ANSll Format
labels on tapes whenever a file is opened output and the
LABEL.TYPE field in the FPB is set to zero. If the user wi$hes
to contin~e writing the old Burroughs format labels• he must
modify this field in atl of the files in his programs. This may
be accomplished by recompilation• by the use of a file Attribute
communicate operation within the program, by the use of the
MODIFY control instruction or by the use of a FILE card when the
program is executed. Presently valid values for the LABEL.TYPE
ti eld are:

0 = ANSII
1 = UnlabeUed
Z = Burroughs

ANSII labels1 though they are written when the file is opened
output• are actually created on all magnetic tapes prior to that
time. A keyboard message has been imple•e~ted in the HCP for
parposes af creating the initial ANSII label on all tapes. The
anemonic of the message is •sN• which used to be an acronym. for
Serial Number. The syntax for SN is:

SN <unit mnemonic> <volume-identifier> ASCII ,I

<Volume identifier> may consist of one to six al~hanumeric
characters and is inserted in the VOLUME.ID field of the VOLl
block of the label which is created. This operation is• for
conversational purposes• known as •initializing• the tape. All
tapes and cassettes must be initialized on the 81000 before the

1-ze

81000 HCP MANUAL
HARK 10.0

MCP will consider them scratch. This applies to seven-track• as
welt as all versions of nine-track tapes.

The <volame identifier> keyed in will remain on the tape until
the tape is re-initialized. The tape may be purged at aBy time•
provided the ANSll label is still intact on the tape. Tapes
wh~ch have Burroughs labels on them must be re-initialized and
mar not be purged. Purging, here, i•plies the use of the •PG"
keyboard message. Similarly, unlabelled tapes say not be purged
but mav be re-initiatied. The <volume identifier> is nBw part of
the output of the •oL" message. The presence of the reserved
word ASCII in an SN statement causes the label to be written in
ASCII character codes.

The capabilitv of creating and recogn1z1ng ANSII labels was not
included in the MCP prior to the 5.0 release of the software.
Before the 5.0 release, all labels created by the 81000 systea
were the old Burroughs tabels first iaplemented on the 85500
sy.stem. A pri>g.rammatic, description o·f these labels, as they are
created on the 81000~ is •hown below. As can be seen from the
description~ certain fields have ~een added to the, labels to
i•prove their utility. These fields are aeaningful to the 81000
system only. A programmatic description is presented below.

DEFINE STANDARD.LABEL.DECLARATION AS I %
DECLARE Ol DUMMY REMAPS L.LABEL.RECORD %
, 02 L.LABEL CHAR (9J % • LABEL c•
, 02 L.MFID CHAR (7) %
• OZ Lall C~AR C1J %
, 02 L.ID CHAR C7l %
• 02 L.REEL CHAR ClJ %
• 02 L.DW CHAR C51 %
, 02 L.CYCLE CHAR C2l %
• 02 L.PID CHAR C51 %
, 02 L.S CHAR (lJ I
1 02 L.BC CHAR (5) %
, , 02 L.RC CHAR C7l %
• 02 L.PB CHAR ClJ %
• 02 L.SERIAL CHAR CS> %
• OZ L.SYSJEH CHAR C5J %
OZ L.BUFSIZE CHAR(8J %
, OJ L.BSIZE 8IJ(24) %
, 03 L.RSIZE BITC24l %
02 L.RECS1ZE CHARC81 %
, 02 L.HODE CHAR(ll %

l
;1

•

DATE WRITTEN
•o•
PURGE DATE
SENTIHNEL Cl = ENO-Of-REEL>
BLOCK COUNT
RECORD COUNT
PRINT BACKUP FLAG
SERIAL NUf'.BER
CREATING SYSTEM
NEW FORMAl DECIMAL BLOCK SIZE
OLD FORMAT BINARY
OLD FORHAl BINARY
NEW FORMAT DECIMAL RECORD SIZE
NEW FORMAT RECORDING HOOE FOR
TAPE FILE

All labels
Beginning

on the 81000 system are written in odd parity.
with the ~.2 release of the software, tape marks are

81000 HCP MANUAL
HARK 10.0

written in even parity~ except where prohibited by the control.
This was done as an accomodatioA to the 9300 system• which can
read only seven-track tape and cannot recognize tape earks which
are written in odd parity.

HCPII will write tapemark~ and ending labels on any output
labeled tape that is not at BOT when a Clear/Start is done. This
will allow the user to read that tape and recover the data.
There is one restriction. If the tape is to be read in reverse,
the user mast specify blocking information.

ANSII labels are also written as the standard label on
seven-track tape. When this is done- the tabels are written with
translation to BCL. Burroughs labels~ when written to
seven-track tape, are written in odd parity with the EBCDIC/BCL
translator enabled.

The STATUS Procedure •akes all possible attempts to recognize a
label when a tape unit becomes Ready. On seven-track tape,
particularly- there are several different variations of parity
and recording mode that may have been us~d to create the tape.
Seven-track tape can be written with or without character
translation fro• EBCDIC to BCL. The HCP will attempt to read
tape la~els with all pos$ible variations before giving up.

When the HCP cannot recognize a label1 the unit is considered
available for input purposes if the tape does not have a Write
Ring in it. In this case• it must be manually assigned to a
program by the operator.. either when the progf'am requests the
file or when the job is executed. If the tape does contain a
Write Ring• it must be initialized. using the SN instruction
decsribed a~ove. Only when the tape has a Write Ring and
contains a valid ANSI label indicating •scratch• is it considered
available for output purposes automatically by the HCP.

It is also the responsibility ,of th.e STATUS Procedure to record
the other information returned by the Test I/O operation. This
information is crucial to the proper operation of the tape
subsystem. In particular• if the system is equipped with a
PE/NRZ exchange* the operation of the STATUS Procedure when a
u~it becomes Ready is as described below.

3-30

81000 HCP MANUAL
HARK 10.0

With the inclusion of the M4/M5 MEC supplted by the Westlake
Plant and described by P.s. #Z047 4490- it is possible for a
tape unit to operate in either Phase Encoded CPE> or Non-Return
t~ Zero <NRZl recording mode. This can only be accomplished on
the 81000 hardware by connecting one NRZ control and one PE
control to the MEC. The NRZ control is designated MTC-2 and the
PE control is designated MIC-\. A tape subsystem so connected is
spoken of as an exchange subsystem by hardware personnel~
Accordi~g to the software definition of a subsystem• all controls
in the subsystem must be identical. The code in the I/O driver
which interfaces to MTC-Z is distinctly different from that which
iAterfaces with ~TC-4. A request for a unit which is operating
in the NRZ mode can only be handled by MTC-2.

T~ solve this problem, considerable coding has been incorporated
in the KCP. The problem has been rectified in the most efficient
manner possible• however. Two separate chains of descriptors,
one for each contro\1 are constructed by the MCP at ClearfStart
tiae. The two chains are maintained by the HCP dynamically, from
that point.

Recording mode information is supplied by the test operator and
actually is returned as the density field in the result
descriptor. A density sel9ction of · 1600 bpi1 for example,
indicates that the unit has been selected to be in the
phase-encoded recording mode and that the I/O descriptors for the
unit should be in the MTC-4 chain of descriptors. If the
sabchain for the unit is not in the proper chain• the HCP will
mDve the entire subchain to the proper chai~. The movement of
the subchain is only attempted when the unit is not in use, of
course. Selecting a different density while the unit is being
used constitutes an error on the part of the operator. The
operator is notified of the error and the program is allowed to
continue processing ontr when 'the proper density has been
selected on the unit.

This solution is only possible if both controls are capable of
reporting recording density properly. HTC-2 can report the fact
that a unit is selected to be in the 1600 bpi density.
Similarly, MTC-4 is able to report the fact that a unit is in the
800 bpi density. Density information is commonly used by the MCP
only when a unit goes froa a not-ready state to a ready state.
The movement of the subchain is therefore performed by the HCP
status ro~tine when the unit becomes ready.

Unit mnemonics are not affected
exchange. A unit selected as MTA~

3-31

by the presence of a PE/NRZ
for example• will always be

81000 HCP MANUAL
HARK 10.0

known as MJA, regardless of Mhich chain contains its subchain• or
which density is selected by the operator.

Due to differences in the unit numbering scheme between MTC-Z and
HTC-4• there can be no more than eight aagnetic tape units
connected to a PE/NRZ tape subsystea. This capabititr is not
available Bn any version of the software prior to the 5.1 release
version.

3-JZ

81000 HCP MANUAL
HARK 10,.0

A File is a group of related records. files are of central
importance in the I/O Subsystem since effectively all of the
communication between user progra•s and, the subsystem is
accomplished through files.

The 81000 Operating System supports three di ff•ent file types or
structures, exclusive of Data Hanageeent Systes structures, which
cGrrespond roughlr to those file types defined in the ANSI 1 74
COBOL Language. In that language, these types are called
Sequential, Relative and Indexed Sequential. Sequential and
Indexed Sequential files• in COBOL• can both be accessed' in a
random manner and the use of the word "Sequential" tends to add
confusion. In this document, the three types will be refferred
to as Conventional Files, Relative files and Indexed files.

The basic definition of Conventional file structures is found in
the COBOL •68 Language• though many functions have been added to
the basic definition. To a program# a file represents a large
collection of ordered data that exists apart from the program.
The program needs to interact with parts of that data from time
to time and the IIO Subsystem makes this inte~action possible.
The I/O Subsystem moves the data into and out of user working
areas in main memory. to which the program has access.

The unit of data moved into and out of the user's working area is
the record. The record is considered• by the l/O Subsystem, to
be a string of bits, 'Which the :us 1er program will probably group
into characters or words in some manner, but the I/O Subsystem
deals onlv with entire records and delivers and receives one
record at a time to and from the user program.

A tile has some structure as seen by the user program~ The
records may be all of the same len~th or they aay be of variable
length. length information must be declared by the program or
contained in the record itself or exist in an accessible form in
the physical file or exist in the information which the HCP
maintains about the file. If the record length is variable, then
the length of each record must exist in that record, in the first
four character positions.

3-33

81000 MCP MANUAL
HARK 10.0

The fijle, as it is stored on some recording medium. is of ten
refferred to as a physical file. A physical file may have some
additioRal elements of structure. It may contain blocks. A.
block is a group of physicalty contiguous records which are
transferred to and fro• the physical medium as a group. The
stCJrage device its·elf may iapose so•e structure upon the file.
As discussd previously~ data is transferred to disk in 1440-bit
increments. A block of records to be written to disk •ust
therefore total so•e integ~r aulttple of 1440 bits~ The disk
itself may be used to store many disjoint physical files. To
miniaize storage availability proble•s• the HCP atlows disk fites
to be broken into •areas•, each of which will contain room for a
specified number of blocks. This it described in more detail
later..,

Th.e physical f:ite inherits many ;of its properties from the
logical file declared by the user program which creates it. When
the user programmer dectares a logical file, the compiler
generates a File Parameter Block which contains the specified
values for the various attributes of the file. File Parameter
Blocks CFPBs> are defined in Section 2 of this specification.
The HCP• and more specificatt1 the OPEN pracedure• converts the
attributes specified by the user to an actual phys~cal file.
Hore attributes are added to the physical file when it i~
assigned to a device.

Any file may be described by its attributes. file attributes are
system control parameters which are used by the 110 Subsystem.
The attributes contain all of the information the subsystem needs
when it connects a physical file to a logical file declared in a
user program and when it controls the access to that physical
file.

Host of the attributes associated with any file are contained in
the file Parameter Block <FPB> for that file. Certainty# the FPB
is the storage medium for the attributes that are declared by the
user a.nd generated by the compiler. Additional att:ributes will
be obtained when the file is opened and assigned to a device.
When a file is open~ its attributes ,may be stored. iri the FPB• the
file Information Bloc~ <FIB>, the Disk File Header CDFH> and the
IIO Assignmment Table <IOAJJ. All of these structures have been
presented previously.

Beginning with the 8.0 version of the MCP1 a communicate
operation was added to allow user programs to dynamically modify
selected attributes of a fite. In subsequent versions of the
MCP, the list of modifiable attribtes has been expanded. The
File Attribute cosmunicate operation is de~cribed in the Demand
Management section of this document.

81000 HCP MANUAL
MARK 1o.0

All names associated with files on the 81000 HCP may be a maximum
of ten characters in length. Names in excess of ten characters
will be truncated to the first ten. Looking at the description
of the fPB presented in Section 2 of this specification• the
first field in the fPB# FPS.FILE.NAME is the internal name of the
fiie. •Internal•• in this case• means internal to the user
program. This is the name which appears in the File Declaration
of the 1.1ser program and the name which the programmer uses in all
references to the file within the program.

The next three name fields in the FPB provide the •file
Identifier• for HCP purposes. All physical files introduced to
the system may have one or two names. files assigned to dist
pack may have a third naae which will correspond to the pack
na•e• the name contained in the pack label.

If a-file has one name only. that name is stored in the field
FPS.MULTI.FILE.ID and the field FPB.fILE.ID should be filled with
blanks~ FPB.HULTI.FILE.ID is often referred to as the •family
ID• and is only iaportant if the file is assigned t3 disk or
tape. If a file has two names• the second name is stored in the
FPB.FILE.10 field.

The assignment of physical files to logical files is discussed in
the Demand Management Secti~n of this specification in the
description of the OPEN communicate operation. Stated in its
simplest form~ the HCP attempts to associate one or two names
with each device that is connected to the s~stem and that is
capable of input operations and to match this external name to
the file Identifier specified in an FPB when a user OPENs a fite.
On output files• the HCP simply attempts to assign an available
device of the requested hardware type.

There are two exceptions to the state~ents in the preceding
paragraph. When an output file is directed to Printer or Punch
devices, the output data may be actually stored on disk· for later
retrieval. Such files are known as Backup files and are
discussed later. Input card files may be loaded to disk files
prior to tbe time they are re~uired by a program~ WheA the
program then requests the card tile, HCP may automaticalty
substitute the previously loaded disk files. This is known as
the Psuedo-Re~der facility and is discussed in Product
Specification ~,2ZZ 2265. .ll~IE.tflLtlkfilHL·

3-35

81000 MCP MANUAL
MARK 10.0

It is the MCP's responsibiltiv to convert a logical disk file as
declared in a user program• to an actual physical djsk file.
Jhis can only occur by a program o~ening a new disk file, where
"new" in this context specifies that the progr·am intends to
create a file and the physical disk files that are c~rrentlr
known to the system are of no concern to the user~

Except in the case of Hutti-Pack files, tiles that extend over
More than one physical pack or cartridge, a new file can only
become a permanent file that exists Mhen the program is no longer
executing by the saae user doing a ctose operation on the file
aBd specifying in the CLOSE communicate operator that the file is
to become permanent. This implies that the file identifier is to
be entered in the disk directory and reaeabered by the HCP
forever. This also implies that the disk storage space occupied
by that file is to be used for no other ~urpose except the
various user manipulations that may occur within that file,
utilizing a logical fite with the same File Identifier. The
Cl o s e op er a t i o n i s al so de scr i bed in de ta il in the Dem and
Management section of this specification. Basicatlr, the Open
and Close operations both obey the rules presented in the
definition of the COBOL Language.

IA order to manage all of the available storage space on a disk
device, the HCP must maintain tables which tell it the storage
locations that are available for use, the names of the files that
are already stored on the disk and the physical characteristics
of those files.

There are three tables• each with the same format• that are used
b r the MC P to al l o cat e d i s k space • The •as t er .a v a i I ab t e t ab l e is
a non-expandable table of three contiguous segments beginning at
the second sector on disk. It contains a list of alt wnusable
segments which have been "XD-ed• by the operator. The working
available table i~ a 10-segment table beginning at the 41th disk
segment. It contains a list of all. available or unused spa~e on
disk and is expandable as needed. The temporary table is five
contiguous segments and contains a list of all segments in use
bat not reflected in the disk directory. This exp~ndable table
begins at the 57th iector. At Clear/Start tiae• all sectors in
the tem~orary table are returned to the available table. A
programmatic descripticin is given below:

81000 HCP MANUAL
MARK 1o.0 I

DEFINE
DISK.AVAILABLE.0£CLARA1ION AS#

DECLARE
01 DUMMY R£HAPS DISK.AVAILABLE BIT<SEG.SIZE>•

OZ AVL.FOR.LINK DSK.ADR,
OZ AVL.BACK.LINK DSK.ADff,
02 AVL.SELf DSK.ADR,
OZ FILLER BITC'>•
02 A¥L.8LOCKC22l•

03 AVL.ADDRESS DSK.ADR1
03 AVL.LENGTH WORD;1;

The disk directory is the structure which catalogues and points
to atl files on disk. Each entry contains the file's name• type,
and'Gisk file Header <DFHJ address. The directory is a two-level
structure containing a primary or "aaster" directory and a
secondary directory. The master directory is created at Cold
Start as 16 contiguous disk sectors beginning at sector 31. Each
sector contains entries for eleven files. A~ each sector is
filled, another disk segment is allocated and linked to the
filled sector. If a file has two naaes. the primary name
(Multi-File IDentificationl is placed in the master directory
with a pointer to a secondary directory• where all the files with
that MflD are listed. The secondary directory is structured and
linked in the same fashion as the master directory. A
programmatic description is given below:

DECLARE 01 DIRECTORY REMAPS BASE•
02 DISK.SUCCESSOR
02 DISK.PREDECESSOR
OZ DI SK. SEl.f
OZ FILLER
02 DISK.NAME
OZ DI S.K. ADDRESS
OZ DISK.FILE.TYPE
OZ FllLER

OSK.ADR,
DSK.ADR1
DSK.ADR"'
BIT C12>•
NAM£•
DSK.ADR•
BI l C 4 J,,
BIT Cl20C)J % 11 ENTRY PER SEG

The Disk File Header CDFHl is a variable-length header record1
the size of which is dependent upon the number of declared areas
in the file and is computed as follows:

540-BIJS • (36-BITS • NUMBER-Of-AREAS)

3-37

81000 MCP MANUAL
HARK 10.0

The DFH is never less than 1440 bits nor greater than 4320 bits
on disk. It lists the physical characteristics of the file
including its fite type and the disk address for each area. The
following f ite types are recognized by the HCP:

LOG
DIRECTORY
CONTROL DECK
BACKUP PRINT
BAC.KUP PUNCH
DUHPFILE
:I NT ER PRE TER
CODE FILE
DATA FILE
VARIABLE LENGTH RECORD DATA fllE
INTRINSIC FILE

As discussed previously, Disk file Headers CDFH> are the
structures used to identify a file on disk. It is a
variable-length record which describes the physical attributes of
the tile and contains pointers to each "area• of the f ite. When
a disk file is "opened•• a copy of the DFH is copied into memory.
The header in memory points to the header on dist and vice versa.
There will never be more than one copy of the header for a file
in memory at any time. Multiple users of the file will use the
saae copy of the header. Maintenance of dist file headers is
covered in another section. A programmatic description is given
below:

DEFINE FILE.HEADER.OECLARA11UN AS 1%
fH.HAPCFILE.HEADERll•

fH.MAP(FILE.HEADERl AS 1%
DECLARE 01 DUMMY REMAPS FILE.HEADER,%

02 FH.USERS.RANDOM BITC8l•% FORMERLY FH.CORE.AODR
02 FH.NEWFILE BITC1>•% CLEARED WHEN NEW FILE IS FILEO.
02 FILLER BITCT),
OZ FH.FILE.KIND BITC8l•
02 FH.SELF DSK.ADR•
02 FH.NO.USERS BIT ce1-
oz FH.USERS.OPEN.OUT BIT (4),
02 FH.OPEN.TYPE 811 (4),
02 fH.fILE.TYPE BIT <4>•
02 FH.PERHANENT BIT (4),
02 FH.JOB.WAITING.ON.CLOSE BOOLEAN•
02 FILLER BITCf), % DON•T USE UNTILL 1977

J-38

81000 MCP HANUAL
MARK 10.0

OZ FH.HDR.SIZE
02 FA.NO.USERS.LOCK

% NO.USERS WHO
02 FH.RECORO.SIZE
02 FILLER
OZ fH.RCOS.BlOCK
02 FH.BLOCKS.AREA
02 FH.SEGS.AREA
OZ FH.AREAS.RQST
02 FH.AREA.CTR
02 fH.EOf.POINTER
02 FILLER
02 FM.BPS.NO
OZ FH.BLOCK.COUNT
02 FH.FORHAT
OZ FH.MPF
OZ FILLER
OZ FH.CREATE.TIME
OZ FILLER
02 FH.USER.INFO
02 FH.SAVE.FACTOR
02 FR.CREATION.DATE
OZ fH.ACCESS.DATE
OZ FH.SER.NO
02 fH.MPf .ADDR
OZ FILLER
02 fH.UPDAJE.VERSION

BIT<l4),% LENGTH OF MYSELF IN BITS.
BITC4),

HAVE IT OPENED WITH LOCK
Blf(20),% LENGTH IN BITS.
BITC4l•% DON•T USE TILL 1971
BIT<20l•%

WORD,
WORD•
BIT Ct2>•
BIT C12J,
WORD•

8ITC4),%0DN•T USE TILL 1917
BITC20l1%
BIT<Z4),% DGN•T USE TILL 1977. IGNORED 5.1.
BITCll1% HITHERTO =O. FOR RELEASE~ =1.
BITCl),% HITHERTO 4 BITS.
BITC2411
BIJC16)~% HITHERTO O. HENIGE 1 S GENEROSITY.
BITC8>•

WORD,
BIT C12J,
BIT Cl6l•

BITC16J,%
BITC2411% DON•f flEUSE TILL 1977. 5.1 IGNORE
DSK.ADR• % DONT REUSE Till 1977

B1JC1>•
BOOLEAN•

02 FH.DMS.WRITE.CONTROL,
03 FH.OMS.TO.BE.WRITTEN
Ol FH.OHS.CONTROLPOINT

02 fH.VERSION
02 FH.PROTECJION
OZ FH.PROT£CT10N.IO
02 FILLER
OZ FH.AREA.AODfiESS C105J

03 FH.UNIT
04 fH.PORT
04 FM.CHAN
04 FH.SER.NO.FLAG
04 FH.EU
03 FH.ADDR

liU.Lil:tA&~ f lL~~

BOOLEAN•
BOOLEAN•

8ITCJ6J1 % YEAR,JOAY,fIKE
BIT C2J,% HOST RJE
BIT c21.z HOST RJE
BIT C16J,%-HOST RJE

DSK.ADR1
BIT Cl2l• X
BIT (3), %
BIT (4), %
BOOLEAN• %
BIT <4J, Z
BIT C24);

The 81000 HCP includes the capability to allow a file to extend
over more than one removable pack or c~tridge. Such a file is
known as a "Multi-Pack Fite• CMPfl. Quite obviously• there are
soae limitations on the use of such files. The individual packs
or cartridges which contain portions of the file may not be
reaoved indiscriminately. Various operational details are
contained in the "81700 Software Operational Guide".

81000 HCP MANUAL
HARK 1O.0

A multi-pack file •av have only one •ease Pack• <BP>. The n~me
of the base pack is the pack id as specified by the user in the
FPB of the multi-pact file. The base pack aust be on line for
all OPENs of the file. The MCP may also require that the base
pack be on-line for other operations1 such as the assignment of a
new area of disk to the file. An approprjate message will be
typed on the console printer by the HCP if the base pack is
required and it is not on-line. The operator may the~ mount the
base pack and the requesting program will continue. The base
pack must be on line when the file is closed if it was opened for
o~tput or input/output.

A base pack may contain single files. as well as multi-pack
files• in any combination. It may nat• be a •continuation pack•
for a aulti-pack file whose base pack is a different physical
pack or cartridge.

The file header for a multi-pack file is contained on the base
pack. It contains all inforaation concerning the file. including
the addresses of every area assigned on the base pack to that
file. For each area which resides on a continuation pack1 the
header will contain the serial nu•ber of the continuation pack.
This allows the HCP to control all processing of the tile and
thereby avoids the necessity of updating each continuation pack
as the file is processed.

A multi-pack file may1 by definition1 reside on two or more packs
or cartridges. When the file overflows or •continues" to
additional packs11 the ter• •c1ttnt1inuatie>n pac.k"' is used. A
m~lti-pack file may reside on up to sixteen packs or cartridges.
There may be up t~ fifteen continuation packs assigned to one
rnul ti-pack file.

A continuati~n pack may be associated with only one base pack. A
continuation pack may contain onl~ continuation files; it may
not be a hase pack for another file. A continuatioA pack may
contain information associated with more than one multi-pack
file, but all of the fites must be assigned to the same base
pack.

8100'0 HCP MANUAL
HARK .10. 0

The file header, which is contained on the base pack for a
multi-pack file~ contains djsk addresses for only those areas of
disk which are assigned to the base pack. The same statement can
be made of continutation packsl the fite header contained on a
continuation pack contains disk addresses that are assigned on
that pack only. The file header on the base pack contains the
serial number ~f the appropriate continuation pack in the disk
address fields of the headers.

When a file overflows from the base pack• the HCP will search for
another continuation pack that is already on-line and that is
associated with the same base pack. If such a continuation pack
is found• the file autoaatically overflows to that continuation
pack. If no such continuation pack is present on the system, the
HCP will then search for a scratch pack, one which has no files
on it• with the same type as the base pack. "Type• here means
•restricted" or unrestricted• and is determined when the pack is
irli t ial fzed.

If such a scratch
to that pact ..
halts the program
console printer.
continuation pack

pack is found, the fite automatically continues
If no such pack 1 s found• the HCP temp or ar i ly
and prints an appropriate message on the

The program may be continued when a suitable
is present on the system.

When a multi-pack file is opened input, the f i le•s header is read
into aemory from the base pack. When a multi-pack file is opened
output• and new• ~ header is constructed in memory from
information in the program•s FPB and information from the base
pack. During OPEN the HCP will find space on the system pack for
a multi-pack file information table. The table will contain
specific information about the base pack• along with an exact
copy of the dist file header from the base pack. This copr of
the header is treated as a working copy while the file is open.
The header on the base pack may therefore not always be correct.

The format of the MPf.INfO.TABLE
N?f.INFO.TABLE per file is required•
users.

3-41

is presented below. One
regardless of the number of

fIELD NAHE

01 HPf.INFO.JABLE
OZ MPF.FORWARD
oz MPF.BACKWARD
02 MPF .SELF
02 HPF.NAME
oz MPF .HEADER. SIZE

OZ MPf.HEADER.ADDRESS

oz HPF.BPS.NO
02 MPF.OPEN.TY'PE

02 HPf .NEW.fllE

oz HPF .NEW. ARE A

OZ MPf .CS

OZ FILLER
02 HPF.BASE.PACK.TYPE

OZ MPf .ARRAY

03 MPF.DNLINE
04 HPf.SERIAL.NO
04 MPF.HDR.DSK

Bl 000 MCP :MAH UAL
MARK 10.0

TYPE

1392 BI'JS
36 BITS
36 BITS
36 BIJS
30 CHAR
Z4 BIJS

24 BITS

24 BIIS
,4 BITS

I BIT

1 BIT

BIT

1 BIT
4 BITS

24 BIIS
36 BITS

DESCRIPTION

POINTER TO NEXT HPF TABLE.
POINTER TO PREVIOUS HPF TABLE.
POINTER TO THIS MPF TABLE.
FILE-IDENTIFIER.
SIZE OF COMPOSITE HEADER
MAINTAINED BY THE MCP.
POINTER TO THE COMPOSITE HEADER
IN MEMORY.
BASE PACK CBPJ SERIAL NUMBER.
TYPE Of FILE OPENED. SAME AS
DFH.OPEN. TYPE IN DISK FILE HEADER.
MCP FLAG USED If THIS IS A NEW
FILE.
MCP FLAG USED If NEW AREA WAS
ADDEO.
HCP FLAG TO MARK IF CLEAR/START
WAS PERFORMED SINCE THIS ENTRY
WAS CREATED.

TYPE Of PACK USED AS BP.
l=RESJRICJED, 2=UNRESTRICTED
USED IO RECORD All PACKS THAT
ARE ON-LI NE.
MAXIMUM Of 16 ITEMS IN ARRAY.
SERIAL NUMBER Df THE PACK.
DISK ADDRESS OF THE FILE HEADER
ON THE PACK.

In addition to any restriclions listed in the foregoing• the
items below are also applicable to multi-pack files.

1. SiAce a system cartridge may not be a base pack• multi-pack
files are only operational on systems with two or more
drives.

z. All packs containing any part of a multi-pack file must have
uniq~e serial numbers.

f BllilIB ElL~J

81000 HCP MANUAL
HARK 10.0

All Burroughs printers and controls have hardware capability of
spacing the ~aper after writing a line of output but no
capability of spacing the paper before writing the line. With
the advent of the ANSI 1 74 COBOL Language in the 9.0 version of
the software• the need for a more efficient means of performing
the COBOL WRITE AFTE~ ADVANCING statement became apparent. In
prior versions, this operation was implemented by the compilersP
generated two actual 1/0 communicate operators for each such
statement encountered. The first of the two was a Position
coamunicate or a WRITE of a line of blanks; the second ~as a
WRITE of the actual record with no paper motion specified. This1
of course1 resulted in two communicates as well as two physical
10s for every logical WRITE AFTER ADfANCING operation. The
change described below was first implemented in the 9.0 Operating
System and is included in all subsequent versions.

The ~oal of this modification was to reduce the n~mber of
communicate operations to one per logical WRITE and to reduce the
physical I/O operations to one per communicate operation using
the existing printer hardware. This was accomplished by delaying
the initiation of the physical I/O operation until the folllowing
logical WRITE is received. By knowing both the previous and
c~rrent logical I/O requests• a phvsical IJO can be initiated
which corresponds to the first request and takes advantage of the
B~rroughs hardware.

The diagram in Figure 1 shows the relationship between the last
logical request jssued by the user• the current logical request
and the actual physical IIO operation that will be performed.

\

81000 MCP MANUAL
HARK 10. 0

Current\ Pending
Logical \ Operation
Request \

I Null
I

Write, No S.pace Write Before
Single Space

+-----------------·-----------------+-----------------· Write... I
No Space I

,I

No-op1
Pending:=

Write/No

1 Write, No Space I Write# Space 1
I Pending:= I Pending:=
I Write/No I Write/No

Write/B
Space 1

Write/a
Space 2

Write/A
Space·1

Write/A
Space 2

WritelB
Channel

Write/A
Channel

·-----------------·-----------------·-----------------+ I No-op. I Write• No Space 1 Nr i te.18 Space 1 I
I Pending:= I Pending:= I Pending:= I
J Wr i te/B Space 1 I Wr i telB Space 1 I ltrite/B Space l ' +-----------------+-----------------+-----------------+ I Wr i te/O Spa·ce l I Write• No Space I Wr i te/B Space l I
ii Pending:=Null I WritelB Space 2 I WriteIB Space 2 I
I I Pending:=Null I Pending:=Nul l I

·-----------------+-----------------·-----------------+ I Space 1 I WritelB Space l I Write/B Space 2 I
I Pending:= I Pending:= I Pending:= 1
I Write, No Space I Write, No Space I Nr ·i te1 No Space I

·-----------------·-----------------+-----------------+
' Space 2 I WritelB Space z I Write.ID Space z I
I Pending:= I Pending:= I Space 1 I
) Wr ·i te .. No -S,pace I Write• No Space ' Pending.:= ' I J 1 Write .. No Space I

·-----------------·-----------------·-----------------+ I Write/B Channel .1 Write11 No Space I Write/8 Space 1 I
I Pending:=Null !J Write/B Channel 1 Wrfte/8 Channel I
I · 1 Pending:=Null I Pending1=Hull I

·----------------··-----------------+-----------------· ,f Space Channel WritelB Channel I Write/8 Space 1 1
I Pending:= Pending:-= I Space Channel J
I Write, No .sp·ace I Write, No Space I Pending:= I
I :1 I Wr i te.11 No Space I

·----------------~·-----------------+-----------------+ Space N I Space x !1 WritelB Space x I Write/8 Space 2 1
I Space <N-x> I Space CN-x> I Space CN-1> I
I Pending:=Null 1 Pending:=Null I Pending:=Null I

+-----------------·-----------------·-----------------+
Figure 1 - Logical/Physical 1/0 Relationship

I~ the preceeding diagram, the operations within the table
correspond to the actual physical I/O operations that will be
performed• which will depend upon the current logical request
supplied by the user and any operations that are stilt pending
from the previous request. Write/8 and Write/A mar ~e read
"Write Before• and "Write After•. The symbol C:=> may be read
wis replac~d by". It can be seen in the diagram that some
logical requests will# at times, result in two physical

3-44

81000 MCP MANUAL
MARK 10.0

operations being initiated. Under these.conditions~ it may be
beneficial to supply each printer file with at least two buffers#
if the execution time of the program is the only concern. Tota\
system throughput will not be impacted significantly regardless
of the number of printer buffers and.the types of operations
being performed. If the HCP •ust wait for the completion of any
printer physical I/O operation1 the time that is spen~ waiting
will be masked by the processing of other programs.

Al~ng these same lines1 it should be remembered that any time a
Write operation is left pending and control is returned to the
user. the HCP must have an available buffer to store the data
that is to be written. If no buffer is available, control may
not be returned to the requesting user until a buffer becomes
availa~le. Again, this time witl be overlapped with the
processing of otber programs and system throughput shBuld not be
significantly impacted.

The action presented in the preceeding chart for a Space
operatiom requires some explanation. A Space of more than two
lines must be handled by the S.HCP. The Micro MCP will attempt
to space the requested number of lines without calling the s.MCP1
b~t this is not always possible. In the diagram, when the
Pending operation is equal to Null• the Micro MCP will space the
paper one or two lines, indicated by •x• in the diagram• and if
N·x is greater than zero~ it will pass the reaainder to the
s.MCP. Siaitarly~ when the PendiAg operati~n is equal to a Write
with No Space, the Micro HCP will issue a Write/B Space 1 or 2
lines• also indicated by •x• in the diagra•• and if the reaaiAder
is greater than zero, pass it to the S.HCP. When the Pending
operation is a Write/B Space l• the Micro MCP will issue a
Write/B Space 2 and pass N7l to the S.MCP, if N-1 > o.

The LINAGE clause, in ANSI •74 COBOL is a mechanism which allows
the u5er to define a "logical Page" format and request that the
Operating System maintain printer pages which conform to the
defined formatP as well as a current line position on that
(Ggical page. In the language, the user may specify the Logical
Page size, an integer which represents the number of lines that
may be printed on any page. This attribute will be known as
PAGE.SIZE in the remainder of this discusion.

The user •ay also specify an Upper Margin, an area at the top of
each page ~here nothing wilt be printed• lower Margin• a similar
area at the bottoa of each page, and a footing area• a specified
nuaber of lines in the page body immediately above the Lower
Margin area. The user may also ask to know the number of the

81000 MCP MANUAL
MARK 10. 0

line in the page body where the last line of output was printed.
This requires that the Operating System maintain a tine counter•
which will be the number of lines written on the current page.

The implementation is called the "Logical Page" function in the
Operating System and ft includes the following:

1. Positioning to the beginning of the page body i.e. past the
to? margin at OPEN or at page overflow.

z. Reporting End-of-Page when the user writes or spaces within
the footing area and requests EOP reporting.

3. Detecting page overflow. Page overflow is defined as
occurring whenever the execution of a WRITE would leave the
line counter positioned past the page body.

4. Updating the logical page description when switching from
one logical page size to another.

Essentially, the iapleeentation obeys the·rules presented in the
ANSI '74 COBOL specifications. The operating system will
maintain a line counter, a current logical page description and a
new logicat page decription. The line counter represents the
positioB on the page body following the open or the last logical
write. The current logical page description is used to detect
eBd-of•page and page overflow. The new logical page description
i s us e d to i n i t i al i z 1e t h e current t o g i cal pa ge des c r i p t i on w hen
page overflow is detected and to calculate the number of lines to
the first liRe of the next page body.

If the user ha~ specified end-of-page reporting and the line
counter is greater than or equal to the tine nu•ber at which the
footing begins, then on completion of the WRITE, EOP is reported
to the user. If the line counter would be greater than the line
naaber at which the bottom margin begins at the end of the
logical WRITE• an .impl:icit position to the first line of the next
page body is generated according to the before/after variant of
th e w r it e s t at em en t. .At t h i s po i nt t he 1 i n e co un t e ,.- w i l l be s e t
to 1. The number of lines to skip is calculated according to the
f~llowing formula:

lines.to.skip := current.page.body.size - line.counter •
current.bottom .• margin.size • new.top .margin.size;

J-46

81000 MCP MANUAL
HARK 10.0

The Logical Page description is updated if necessary when a write
occurs that causes page overflow or whenever an advance to top of
page occurs.

To access the line counter requires a Fite Attribute Caa•unicate
from the user program. This will be of no concern to ANSI '74
COBOL usersJ they need only be concerned with the proper syntax
j~ that language for referencing the tine counter. The logical
Page definition is changed to the values included in the Write
Co••unicate format whenever page overflow is detected. To
accomodate the above reQuirements1 the format had to be expanded
as shown in figure Z in the WRITE AFTER ADVANCING section of this
document presented previously.

The Logical Page implementation, since it is implemented entirely
in software, is useable even when the file is directed to a
Backup medium. The logical Page implementation is also useable
by programs that are written in languages other than ANSI '74
COBOL. This js effected by the implementation of additional
syntax iB the FILE Control Card. Progarms •av be permanently
modified to incorporate the required new attributes. The Logical
Page fu~ction is activated by the PAGE.SIZE attribute in the File
Parameter Block. When a printer file is opened and PAGE.SIZE
contains a value other than zero• page format will.be controlled
by the Logical Page software impleaentation and the physical
carriage control tape on the device will be completely ignored
after the file is open.

It is important to note that the Channel One punch• as well as
the Channel Twelve punch in the carriage control tape is ignored
after the file is open. According to ANSI •74 COBOL
s~ecifications• this is as it should be but it dictates that the
attributes which govern logical page format must be specified
s~ch that the logical p~ge si~e plus the upper •~rgin plus the
lower margin must total the exact number of lines on the physical
page. If this is not done• then eventually at least, lines will
ba printed on the crease between the physical pages.

81000 HCP MANUAL
MARK 10.0

The relevant attributes may be referenced in the FILE Control
Card as shown below.

Attribute

PAGE.SIZE

UlWER. MARGIN

UPPER.MARGIN

FOOTING

Abbreviation function

p.s

FOOT

The number of lines between the
Upper Margin and the Lower Margin.
Hay be set to any value between l
and 255 inclusive.

The number of lines from the page
body to the bottom of the fora.
Hay be set to any value between
0 and 255 inclusive.

The number of lines from the bottom
Cor top> of the form to the page body.
May be set to any value between
0 and 255 inclusive.

The number of lines from the
beginning of the page body•
within Page.size, to the point
where the HCP will begin to
report end-of-page to the user.
Hay be set to any value between
1 and 255 inclusive.

l!BltilEB Jlifl f.llfi-'li l!A~JS!.U! ~-AfABlLII1E~

The HCP includes the capability of directing the output data for
printer and punch files to intermediate storage. The storage
medium_ may. at the user•s option.. be magnetic tape or disk.
Backup files may not be directed to cassette or flexidisk media.
A utility routine• named SYSTEM/8ACKUP1 is provided ta allow
users to retrieve the output data from the intermediate storage
medium. For details on this routine• refer to Product
Specification Z2Z2 2681• System Backup.

When the output is directed to aagnet~c tape1 multi•file tapes
are created unless the operator intervenes in soae manner. If
the operator does not intervene, the tape will be closed with no
rewind when the printer or punch file is closed in the program.
The next printer or punch fite which is opened by any executing
program and directed to backup tape storage will then be added to
the existing tape. This process will contiBue until the operator
intervenes or until th•e physical end o·f the tape reel is reached.
O~erator intervention procedures are described in the Software

3-48

Operational Guide
Specification.

81000 HCP lMANUAl
HARK 10. 0

and in the HCP Co11trol Syntax Product

When the output data is directed to jntermediate storage on disk,
it is entered in the Disk Directory when the printer or punch
file in the program is closed. At that time• it may be accessed
by any ~ro~ram, though the data contained therein may be
undecipherable unless the accessing program is written expressly
f~r this purpose. The file may not, under any circumstances, be
accessed prior to the time the file is ctosed.

The OPEN routine in the HCP attempts to optimize the size of the
physical blocks associated with a Backup file• according to the
declared size of the logical records in the file. The block witl
typically be set to a size equivalent to three or four disk
sectors• each of 180 bytes, bv the MCP. In order to predict the
block size that the HCP will select for any given logical record
size• it is necessary to consider the control information that
the MCP stores in the first physical block of the file as well as
the declared record size. The algorithm that is used by the HCP
to select a block size is not easily described. The black size
which is selected is stored in the file label, for tape files•
aBd in the Disk File Header for disk files. The logical record
size is atso stored in these fields.

Consequently. using the Default file Attribute, which is
described in the Software Operational Guide and in another part
of this specffication1 the user may access Backup files without
knawing the blocking factor and logical record size in advance.
Since the algorithm that is' used by the HCP to calculate block
size may change fro• version to version• this means of
determining the blocking factor used is preferred. The algorithm
that is , included in the 8.0 version of the HCP is described in
the paragraphs that follow.

Jhe logical recard size declared in a file in a user•s program
mar be any size. If the file is directed to Backup storage, it
is set to a maximu• of 132 bytes. The logical record size is
then incre•ented by two bytes. This additional sixteen bits of
information is necessary to contain the formatting iAfGrmation
which is passed with each Write and Position communicate
01>erator.

If the file is being directed to magnetjc tape, the record size
is then incremented, if necessary• to force it to a number which
is modulo forty•eight. This is necessary since seven-track tape

81000 MCP MANUAL
HARK 10.0

units require block sizes which are modulo six and phase-encoded
drives require block sizes which are eoduto sixteen. It would
not be sufficient to insure that only block sizes meet this
requirement, however, since the blocks on any tape file may be
partial blocks which contain one or aore records.

The buffer size will always ~e made large enough to contain 100
bits of control infor•ation plus 1668 bits to contain the
original file Parameter Block as it. appeared in the user's
program, ·plus, if the file is a printer file, 1072 bits to
cantain a file label plus its associated spacing information. If
the original file is a punch file, a space of 648 bits is
reserved for the label instead of 1072. Th~ one fact which
co•plicates this calculation is that all three of the items
listed above •ust begin on a logjcal record boundar, within the
physical block. Consequently, for a file with a declared record
sile of 1JZ bytes- which is converted to ll4 bytes or 1072 bits
by the OPEN routine• the fPB will begin on the 1073rd bit in the
first physical block of the file. The file label~ if there is
one, will begin on the 3Zl7th bit C3 x 1012>. The first output
data record will then begin on the 4Z8tth bit. The block will be
made large enougb to insure that the fjrst block contains at
least one logical record in addition to all of the iRformation
listed above.

for backup files which are directed to intermedjate storage on
disk1 the block size computed above is then incremented~ if
necessary. to make the size module 1440. The nusber of records
per block is then computed from record size and block size.
EAd-of-File is never reported to a user program when a Backup
file is being created. The HCP automatically closes the file
when it is full and also automatically opens a new Backup file.
The identifier assigned to the second file will revert to the
standard naming convention for Backup files. The MFID will be
set to BACKUP.PRT and the ID field will be set to the next
sequential number maintained by the system. All other Backup
file attributes, such as the number of copies requested, will be
retained in the second and subsequent files. Only the name
requested by tha user will be lost.

The MCP also allows users to specify the file attributes Blocks
per Area CBLOCKS.AREA or B.A>• Records per Block CRECOROS.BLOCK
or R.9),. and Nu11ber of Areas CAREAS or· ARE> for printer fHes and
these specified values will override the system•s default values
for t he s am e a t tr i but es • Us i n g t he pr op er set t i ng of th es e
values and the autoaatic closing and reopening described in the
preceeding paragraph• users mar begin printing a Backup file
w~ite the program which created it is still executing and
creating the second or subsequent portion of the saae file.

J-50

81000 HCP HANILIAL
HARK 10.0

Records in Printer files may not be blocked. Consequently• the
Records per Block attribute is not applicable when the file is
directed to the prjnter. Records per Block is utilized only when
the file is directed to a Backup medium. Also, the value
specified for Records per Block must be greater than a minimum
valuep which is a function of the record size associated with the
file and which is computed by the HCP when the file is opened.
It is reccomended that users not sat Records per Block for
Printer files in the use of this facility but establish the file
siEe via the Blocks per Area and Number of Areas attrjb~tes only.
for a file with tlZ-byte records• Records per Block will be set
to five by the HCP unless overridden by the user. The s1aplest
means of determining the value that wilt be computed for Records
per Block by the HCP for any other given record size is to direct
slJch a file to the backup medium .and in ter·,rogate Records p·er
Block.

The HCP insures that access to a backup file is in serial mode
only. If the user had requested more than two buffers on the
original file, the number is reduced to two on the backup file.
In a si•ilar manner, the HCP limits the number of disk areas
requested to 25. The file type in the original FPB is then
changed to indicate that the file was directed to disk or tape
intermediate storage.

The first block in any backup file is filled almost entirely with
c~ntrol information. This information is used by SYSTEM/BACKUP
when the file is printed or punched. The first twenty-four bits
of the block will contain the logical record size, in bits1 as
co•puted by the prior portion of the OPEN routine. The next six
bits of the btock wil contain the number of bits that the record
size was incremented to 111ake it modulo fo.rty-eigh,t• if the backup
mediu• was magnetic tape. If the backup aedium ~as disk1 these
six bits will be equal to zero. The next eighteen bits specify
the control information size~ in bits. This field will contain
the number of bits which are used in the first block of the file
to con~ain the control information• exclusjve of the File
Parameter Block and the label. In the 9.0 version of the MCP,
this number will be equal to too, although all of the 100 bits
may not be used.

The next twenty-four bits of the block will specify the FPB size,
ia bits. This nu•ber may vary from release to release. for the
9.0 versi~n of the software~ the FPB size is 1666 bits. The next
twenty-four bits will contain the size of the label• if any•
associated with the printer or punch f ite. This field wilt
always contain these values, regardless of whether the.file is

81000 HCP MANUAL
HARK 10.0

labeled or not. The next four bits
specifies the type of label that is
I~ all cases• at the present time•
zero, indicating a standard label,
file is unlabelled.

will contain a number which
contained in the label area.
this nu•ber will be either
or one• indicating that the

Unless the computed logical record size of the file is exactly
equal to the size of the control information listed above• 100
bits for tbe s.o version of the MCP, a filter will be added after
the control information. This filler will be of a size
s~fficient to make the next field in the first tlock# the fpB,
begin on a logical record boundary. For example, if the original
logical record size was 132 bytes and the backup medium was disk,
the filler would consist of 964 bits.

The neKt field in the first block of the file will be the
original file Parameter Block as it appeared in the user program
and before any changes were made by the OPEN routine. Only
pertinent information• deliaited by the size specified by
FPS.SIZE will be included. following the fpe, another titler
will prob~bly be required to •ake the next field in the first
block.. the original file lat.el• begiA on a logical record
boundary.

Actuallr• sixteen bjts of spacing information precedes the file
label; the spacing information thus begins on the logical record
boundary. For the label, all of the sixteen bits will be set to
zero. These sixteen bits will be followed by the label~ which is
constructed exactl~ as if the file had been directed to its
intended •edium originally. The label is always constructed and
stored in the Backup file1 regardless of whether the original
file was labelled or not. SYSTEH/BACKUP may or may not cause the
label to be printed or punched• depending upon whether the file
was or was not labelled. The label in the first block will be
fllllowed by a 'fi'lter• if necessar·y,. to allow the first logical
record of output data to begin on a logical record boundary
within the block. lhe first block wilt always contain at l~ast
oRe logical output record.

U.AJ;.JSU.e. E.11..E LiUil&AL .8£.,JlfUl [QlUtAI

Each logical record in the file will consist of sixteen bits of
formatting information followed by the user•s output data•
unaltered. If the logical record was generated by a Position
coamunicate operator, the coRtents of the data field are
undefined and are ignored by SYSTEM/BACKUP. The sixteen bits are
defined as follows.

81000 HCP MANUAL
MARK 10.0

Beginning with the 9.0 version of the ·software• the sixteen bits
of carriage control information are subdivided as:

01 CARRIAGE_CONTROL
02 FILLER
02 BEFURE_Af JER
02 CHANNEL_OR_SPACING
02 lrYPE

BIT Cl6>•
BIT c31,
BIT Cl),
BIT CB>•
BIT { 4)_;

IB the description above• the BEFORE_AFTER f~eld is applicable on
WRITE operati()ns which are directed to a printer file. A one in
this bit position indicates the operation was WRITE AFTER
ADVANCING. The CHANHEL_OR_SPACIHG field corresponds to the eight
bits of spacing information passed on a WRITE coamunicate in the
CT.ADVERB field in the communicate operator. These bits are
defined in the Demand Management section of this docuaent, but
the definition is repeated here for reference.

CHANNEL_OR~SPACING
= 0000 - No pap~r aotion
= 0001 - Skip to Channel One
= 0002 - Skip to Channel Two

=
=
=
=
=

•
•

1011
1100
1101

1110
1111

- Skip to Channel Eleven
- Skip to Channel Twelve
- Skip to first line of the form <1500 LPH

printer onlyl
- Single space
- Double space

The TYPE field in the description provides information on the
type of com•unicate issued by the user on this record. The
CARRIAGE_nR~SPACING value will have different meanings, depending
upon the value of the TYPE field. The correspondense between the
tw~ is shown below.

TYPE

0000
0001
0010
0011
0100

Opera ti on

WRITE
WRITE
SPACE
SPACE
WRITE

CARRIAGE_OR_SPACING Value

Printer Channel Number
Punch Stacker Number
Nu•ber of Records to Position
Printer Channel Number on Position
Printer Spacing Infor•ation

81000 HCP MANUAL
MARK 10.0

A Relative file consists of records which are identified by
relative record numbers. The file may be thought of as composed
of a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a r•lative record
number. for example, the tenth record is the one addressed by
the relative record number 10 and is in the tenth record area,
whether or not records ha~e been written in the first through the
ninth record area. Relative files are iaple•ented using direct
files.

llir.ttl Eil~.t

Direct is the primitive file organization. A direct file is
divided into a number of "record slots• of fixed length, each of·
which may contain one record. A record slot is •empty" if it
contains no valid record. full record slots may be made empty by
deleting the record they contain, making the contents
uBaccessahle through the normal mechanism. Since all bit
patterns are potentially meaningful as data• a separate area in
each block of the file is •aintained to indicate which record
slots withjn that block bave been used. There will be one such
"Presence Bit" for each record slot in that block and the bit
vector thus formed is known as the Block Control Information
CBCI>. The user is not allowed to have access to the Block
Control Infor•ation under normal circumstances.

The Relative file js a direct file. The blocks of the Relative
file contain Block Control Infor•ation <BCil as well as data
records. The number of data records in a bloc• is conatined in
the "Records per Block• field of· the disk file header in the case
of an existing file. Originally• of course, this number is
specified by the user programmer in his file Declaration. The
data recDrds ~ill be located on byte boundaries to conform with
the addressing capabilities of the 91000 Interpreters. The BCI ·
will therefore be padded with zeroes to insure this. When a
Relative file is originally created• all of the record slots are
empty. Consequently# the presence bits in the BCI must be
initialized when the area is allocated.

81000 HCP MANUAL
HARK 10.0

RALat.i~I EilA Ui~t 1ni.ti.aliz.a1i2D

The use of presence bits to indicate that a record has been
written into an available record s1ot means that disk areas that
are allocated to a Relative file must be initialized when they
are allocated. All presence bits in the Block Control
Information must be set to zero at this time.

When a disk area is required, the HCP will be responsible for
allocating the area• and will also be responsible for
initializing presence bits. If the access mode of the file is
sequential, the HCP just allocates the area and the logical I/O
routines will initialize each block before accessing it. If the
access mode is random or dynamic, the HCP will initialize the
entire area being allocated by automatically executing a special
initialization program which will run at the user•s priority.
The user will have the option of executing this program himself•
prior to executing the program which accesses the file, to
initialize the entire file or any areas he choses. In the
sequential mode# if the file is closed with the EDF pointer not
at the end of an area# the HCP will initialize the remainder of
that .a1rea.

The program which initializes newly allocated dis~ areas for
Relative files is called SYSTEM/REL.IN1T. If this program is
called automatically by the HCP as described above, the program
which requested the new disk area will not be allowed to execute
uAtil SYSTEH/REL.INIT has co•pleted the initialization of the new
area.

The FPB for a relative file js the same as for a Conventional
random file except that fPB.ACCESS is set to a value of 2,
i n d i cat i n g Rel at i v e or ga n 1 z at i on.

The DFH for a relative file is the same as for a Conventional
file except that the block size field will include the size of
the block control information.

3-55

81000 MCP MANUAL
MARK liD.O

The FIB for a relative file is the same as for a Conventional
random file, eKcept that a field which identifies the file as
being Relative has been added. The field is named the
FIB.ORGANIZATION field and can assume values of zero1 indicating
a Conventional or ANSI •14 Sequential fite1 one• indicating a
Relative file, and two• indicating an Indexed Sequential file.

Buffer$ for Relative files will be the same as for Conventional
files. They will .be allocated when the file is opened with one
I/O descriptor for each buffer and the buffer size equal to the
block size• which is equal to the record· size times the number of
records per block plus the size of the block control information
<1 bit/record •ade aoduto eight).

B~ffer management for Relative files will depend on the user's
access method - Sequential• Rando• or Dynamic. for Random access
t h e man age men t o f t he bu f fer s w i l t be t he same as t hat for
Conventional random files. READ operations will be initiated on
dem~nd and WRITE operations will be initiated iaeediately after
the logical I/O operation has occurred. If the access mode is
Sequential. the buffer management will be the same as that for
Conventional serial files. The Open procedure will fill all of
the buffers and the Operating System witl trv t~ star ahead of
the us er pr o gr am 11 i n i t i at in g phys i c a l Re ad op er at ·i on s w hen the
last logical record In a buffer has been delivered to a user and
initiating physical Write operations when the last logical record
of the buffer is received.

The OyBamic access mode in ANSI '14 COBOL allows the user to
s~itch between the Random and Sequential modes. In the Dynamic
access mode- when switching fro• Sequential to Rando•• the last
block is written to disk if it has been updated. When switching
from Random to Sequential, the SMCP is called on to fill the
b~ffers as if an OPEN or Position had occurred. In the Dynamic
access mode• the access mode desired, Random or Sequential• aust
be specified in the communicate operator generated by each
logical READ operation.

Three new communicate operations• corresponding to the verbs
DELETE• SJART and REWRITE have been added to the 9.0 Operating
System. To simplify the implementation and to avoid potential
file e~uivalence problems• new communicate operations for
relative files have been added to the software, rather than
modifying an existing operation. The READ• MRITE and REWRITE

81000 HCP MANUAL
HARK 10.0

co•municate operators have a format which is similar to the
format for the READ• WRITE and REWRITE co•municate formats for
conventional files. The format for the DELETE operation~ on
Relative files• is similar to the format far the sa•e operation
OB lndeKed Sequential files. The ANSI 9 7' COBOL START verb has
been imJlemented as a new communicate and is handled by the Micro
HCP.

3-57

81000 MCP MANUAL
MARK 10. 0

Indexed Sequential files consist of two new priajtive file types:
Direct files and Index files. for each Indexed Sequential file
there is one and onty one data file and this file is implemented
as a Direct fite. For each key of the Indexed Sequential file
there is a corresponding file of type •index•. In the HCP code,
these two types are listed as INDEX.SEQ.DATA.SET.FILE and
INDEX.SEQ.INDEX.FILE; ~hey will be refferred to as Direct files
amd Index tiles in this ~ocument.

Direct files were discussed in the docu•entation on Relative
files. A portion of that discussion is repeated here for
convenience. Hore details will be found in the preceeding
discussion. A Direct file is a primitive file type that is
dividad·into a number of •record slots" of fixed length• each of
which may contain one record. A record slot is •empty• if it
cBntains no valid record. Full record slots mar be made empty by
deleting the records they contain, mating the contents of that
slot inaccessable by the nor•al mechanism. Since all bit
patterns are pot~ntialty meaningful as a record• a bit flag is
maintained for each record slot to 'Show the validity of its
contents.

Since all record slots are the same size <MAXRECSIZEJ the
absolute disk address can be easily calculated from the record
slot n~mber. The file is divided into groups of record slots
called "blocks•, each consisting of "blocking factor• record
slots plus the •Block Control Information•• a bit mask which
indicates the presence of a valid record plus enough tiller bits
to make the container modulo eight. There is a significant
differeBce between the Block Control Information for a Direct
file and an Index file, however.

lculu. E.ilta.

An Index fite is the second new file type. Index files contain
fixed length records organized in tables with Block Control
Information to describe the table. Each block of an Index file
will cor1stitue a separate table. The i11p·orta.nce of this fact
will be explained later.

3-58

81000 HCP MANUAL
HARK to.o

The records in the Index file consist of Key/Address pairs. The
addresses point to other tables in the Index file or to records
of the Index Sequential file's data file• the Direct file. The
tables in the Index file form a tree structure and the records in
the table are ordered by Key value to allow fast random access.
fbe tables w~ose entries point to data records are linked
together to allow fast sequential access.

In addition to these two new file types• there must reside,
somewhere on disk, information relating all of the various files
which compose an Indexed Sequential file. This information is
maintained• br the HCP• in a third new strtJcture which w 'ill be a
separate conventional file on disk and which will be known as a
"Cluster• file. The name of the Cluster file will correspond to
the user•s declared name for his Indexed Sequential file. In the
HCP code. this file type is referred to as an
INDEX.SEQ.GLOBAL.FILE• though it wilt be called aerely a Cluster
file in this document.

·The Cluster file provide.s the ability to reference the entire
IBdexed Sequential file structure by simply referencing the
Cluster file. When the Compilers generate code which applies to
Irtdexed Sequential files1 they actually reference the Cluster
file. The Cluster file witl contain the names of the other files
associated with the Indexed Sequential file. As mentioned
previously, there will be one Index file for each key listed in
the Indexed Sequential file.

The statement above does not aean that all of the Index files
will be opened when a Cluster file is opened. The Index files
are only opened when they are first referenced in the progra• and
this actually happens ·automatically. The compilers do not
generate code to open the Index files. The MCP siaply detects
that the referenced Index file has not yet been opened, obtains
the necessary information from the Cluster tile• and opens the
file.

The Cluster file does require an additional Dis~ File Header in
memory, but only while an Indexed Sequential file is being
opened. It is not necessary tor it to be in memory after the
file has been opened. The Cluster file also adds an entry to the
user•s disk directory. The diagram below shows a Cluster file
schematically. This particular file has one primary• or "Prime•
Kev and oAe Alternate Key.

81000 HCP MANUAL
HARK 10.0

+--------------------+
I
I

Cluster
File

1
I

·--------------------+ I

•---------------·--+ I +-------------·----+ J I I
\I/ \I/ \I/

·---------+ ·-----------· +----------+
I Priaary ' I Alternate I I Data 1
I Index I I Index 1 I file I
I file I 1 File I I I

·---------· +-----------· ·----------·

This organization for Indexed Sequen 1Ual files offers several
advantages over any other. Each file, the file which contains
the actual data and all of the Index files, wilt have fixed
record and btock sizes. This will simplify the problem of
managing the buffers that are assigned to the files. Both of
those file types are nothing more than Conventional files with
some order imposed upon the contents of the file. Consequently,
the Disk File Headers, or •file Descriptors• required for each
file are the same as those for Conventionat files. This is
discussed in more detail later in the document.

Concept~allY• this mechanism is easier to visuatize and implement
than wo~ld be aultiple structures residing in one physical file.
Also, any of the files may be located on different spindles,
which will clearly improve performance• sjnce arm •ovement time
may be overlapped# and access to all of the files may occur
asynchronously. The Direct file and the Index file may be
accessed independently of each other.

The design does impose certain restrictions• which fall in the
category of •operatfonat• restrictions and which do not impact
performance. A checking mechanism is required to insure the
integrity of files which are accessed independently. The HCP
•~st insure that the correct 'version of the Index file is used
with its corresponding Direct file. Also1 some extra memory for
Disk Fite Headers will be required• since more actual Headers
will be required. A naming convention for all of the files must
be impGsed, thus re•oving some small aaount of generality from
the user•s capabilities. This may actually be an advantage.
however. The naming convention is iaplemented in the Coapiler,
not in the MCP, though this •ay not be a~parent tri, and should
not be important to the user.

l-60

BlOOO MCP MANUAL
HARK 10 .. 0

The Cluster file is a Conventional data file which contains the
information relating all the component files of the Indexed
Sequential tile. The structure of the Cluster file is similar to
the Data Base Dictionary format in the Data Management System.

·------------------------------·
J ·--------· I Index Sequential I 1
I file Globals 1----•. I
I I I

+--->+----·----------------------·--+ 1 I
j I DfH.fXIENSION- Structure 1 I I I

I +-----------------·------------+ I I I DFH.EXTENSION~ Structure 2 t I I
J +------------------------------+ 1 I
I I I I I
I I I I I

I +------------------------------+ t I I 1 DfH.EXTENSIBN1 Structure n I I

I +-----------------·-·-------·--+<---+ I I I File Table - Contains all of I 1
•~---1 the names of the subfiles I I

+------------------------------+<-------+ I Structure Desc. Structure 1 I
+~~-----~-------~~~-------~--~-+
I Structure Desc. Structure 2 I
+~~-~~~~--~----~------~--~----~·
/
I

I
I

·------------------------------· I Structure Desc. Structure n

·------------------------------·
The DFH.EXTENSION and Structure Descriptor fields shown above are
both discussed in the paragraphs that follow~ The pointer shown
above from the Fi le Table is one of m.any. There is an entry for
each file in the file fable and each entry has a pointer to its
associated OfK.EXTENSION.

The data file of an Indexed Sequential file is a Direct file.
The blocks of the data file contain Block Control Information
CBCIJ aAd data records• similar to the blocks of a Relative file
as presented previously. The number of data records in a block
is specified by the Records per Block field of th~ disk file
header. A siailar structure is used on Indexed Sequential files
in the Data Management System. Block Control Information for the
Index files associated with all Indexed Sequential files is
significantly different from that for R~lative files.

81000 HCP MANUAL
HARK 10.0

IAdex files contain records consisting of Key/Address pairs
within a block. The file itself is a tree structure whose nBdes
are blocks. Each btock of the file is a node or table. The
first node is the root table. The root table and tables on all
levels except the last are catted coarse tables. The tables in
the last level of the tree are called fine tables. Entries in
coarse tables point to the next level table whose highest entry
matches the tey of the coarse table entry. fine table entries
point t~ a record in the Direct file whose key aatches the fine
table entry CSee figure 3). Fine tables are linked together in
logical order to provide fast sequential access and easier
Current Record Pointer <CURRENT> maintenance.

The addresses in these tables are not absolute disk addresses.
Instead- they are thirty-two bit combinations of an area number~
a segment number within the area and a displace•ent into the
segment. This djsplacement is merely the record number within
the block. Atl addressing of Index tabtes as welt as of records
in the data file is accomplished on a relative basis as opposed
to an a~solute one.

The blocks in Index files contain Block Control Information of a
different content and format. The format and content of the
8loct Control Information maintained in an Index file is shown
below. A similar structure exists for 011·s Index files.

01 INDEX.FILE BCI

02 BC.TYPE
02 BC.PRESENT.RECORD.COUNT
OZ BC.NEXT.LOGICAL.BLOCK

BIT C 381•

BIT <ZJ,% O=COARSE1 l=FINE
BIT <12>•
BIT C24l~% VALID FOR FINE TABLES

The individual records in the Index files have a fixed format;
since the Key specified by the user must be contained in these
records• the size of the records may vary with the keys but the
format will always be as shown below. The same format is used by
the Data Management System for records in Index tables.

3-62

81000 HCP MANUAL
HARK 10.0

01 INDEX.RECORD DECLARATION•% FOR OMS ANO ANSI •74 INDEX FILES

02 IR.POINTER•

BITC8h
BITClol•

OJ IR.AREA.DISP1
04 IR.AREA.NHBR
04 IH.SEG.NMBR

03 IR.OFFSET
02 IR.KEY

BITC81P % VALID FOR FINE TABLES
HIICKEY. SIZE).;

The organization of an Index file is shown in the diagram below.

1
\I/

+-·--------+ '
I root 1
I table I

·---------+ I I I
I I I

---------~---~-- I -~--~-~~-----~-
I I I

\I/ \I/ \I/

+---------+
I coarse I
1 table I ··---------+

I
I

I
\ll

+---------+ 1 coarse t
I table J ··---------+

1
I

I
'\I/

+·~ .- - .__ 91----+
I ·coarse I
I t abt e I +-·--------..

I
I

I
\II

·~-------· +·---------+ +---·------+ +---------+ I fine I fine I ·I fine I I fine .I
I table 1<------1 table l<---1 table l<--·1 table J

--+
I
I
I
I
I i.
I n
·1 d
.I e
I x
I
I f
I i
I l
I e
I
I
I
I
J
I

·---------+ ·---------· ·---------· ·+--------·-· --·
J
I
j

\I/

I I

-------------·---------- 1 -.. --,1-----
\I/ \J/ \I/

I
1
I

\I/

I
I ... ----------1------

\I/ \I/

·---+ I
I
I

data file
I
I
I

+---+ figure 2 - Index File Organization

This structure for the Index files allows the implementation of
the most efficient search and addition algorithms. linking the
last level of the fine tables together allows efficient
sequential access of the records in the data file. Using this
li~k,. the CURRENT need only point to the last entry accessed in
the tine tables and not to the path through the coarse tables to
the fine tables. This eliminates the need for restrictions on
the nu•ber of levels allowed in order to maintain the CURRENT.

81000 HCP MANUAL
HARK 10.0

It also makes checking for changes in the CURRENT,
other users accessing the file~ easier.

caused by

The File Paraaeter Block <FPB> of the Cluster file of an Indexed
Sequential file will be positioned in the code file among the
other FPBs according to the order of it•s declarati~n in the
user•s so~rce code. In addition to the infor•ation normally
cantained in an FP8 for a Conventional file~ a Cluster file FPB
~ill contain a type field which identifies it as a Cluster file
FPB, a pointer to the data file FPB and an integer which
indicates the number of keys associated with the Index Sequential
file. There will be one FPB for each Key declared and these fPBs
will immediately follow the fPB for the data file jn the code
file of the program. This is shown in the diagram in Figure 3.

Default values are used for the file attributes of a Cluster
file. The user eay not change these values. The number of disk
areas will be set to one• records per block Mill be set to one,
block size will be set to 180 bytes and blocks per area will be
set to 50. Jhe ALL.AT.OPEN boolean will be set• causing the disk
area to he allocated when 'the file is op,ened for the first time.

81000 HCP MANUAL
HARK to. 0

I I
I PROGRAM PARAMETER I
I BLOCK I

•~--1 PROG.FPB.ADDRESS I

,I '---------------------I J // II
I \\ SCRATCHPAD AREA \\
J // CODE /I

I \ '-----------·-------\ \ +-->I f PB C'f ile Ol I

'~~-----~~~---~-~-~~~~I I l FPB <File 1J I I

02 PROG.NUMBER.Of.FPBS BITClZlP*
l nbr of file FPBs and nbr
% of sub FPBs for I/S files.

02 fPB.FILE.TYPE . . BIT .(8),•

02 fPB.IS.SUB.FPB.PTR BITC12>~•
I ._. __ . ____ .-i-._._..._. ___ . ______ ..._ ____ , ,

I FPB CCLUSJER FILE> I
% number of fPBs displaced from
X the first fPB Cf ile OJ.

I
I
I

II II \
02 FPB.IS.NUM.SUB.FPBS BIT CS>••
Ol fPB.IS.NUM.IO.DESC BIT C6>••

\\ REMAINING rra•s \\
11 ----~-~.---..__._ _ __.._..._._,_.._//

•-->I fPB CDATA FILE> I

I FPB CKEY I 11 ''

·--------------------· \ J FPB CKEY # 21 I\ \

'--------------------' \ II : II
\\ : \\ I

\

01 KEY.PARAHETERS1
02 KEY.FLAGS•

*
Ir 11 ___________________ 11 I

1 f PB CKEY ' NJ •
03 KEY. PRI HE
03 KET.DUP.ALLOWED

02 KEY .D ESCRIP TlON •
03 KEY.tlffSET

BIT ClJ, ..
BIT ClJ1•

I _ _..._ __________________ ._~-------'

03 KEY. SIZE
BITC16);p•
BITC12l•*

~ New field in 9.0 Software

Figure 3 - Code File on Disk

Some changes were also necessary in the Program Parameter Block
in the 9.0 software. The changes are required to prevent
programs wkich contain Relative and Indeaed Sequential files from
being executed on versions of the MCPs released prior to the 9.0
version. Further, progra• code files which are executed under
control of the 9.0 MCP may no longer be executed under control of
any prior HCPs. for this reason• users who anticipate returning
to prior versions of the HCP are advised to retain copies of
their code files and to not execute these copies under control of
the 9.0 software.

fr

BtOOO HCP MANUAL
MARK 10.0

Generally• the wemory structures used in the Indexed Sequential
implementation are •uch li~e the current Dat~ Management Systea
memory structures, with but a few exceptions which take advantage
of the more specific requirements of the ANSI 1 74 COBOL

I

definitian. Unlike OHS• which does not use File IBformation
Blocks in aemory, Indexed Sequential files will have an FIB
dictionary entry which will point to an Indexed Sequential FIB.
Since the files may be shared among the programs that are
executing• this FIB will contaiA only the information pertinent
to a specific user and will be referred to as the User Specf fic
IRformation CUSI> field.

The USI will contain a pointer to the file specific information,
the information that relates only to the file itself regardless
of who is using it. The central element in this structure is the
information necessary to relate the various component tiles of
the Indexed Sequential file. This is actually global
information# globat to alt of ·the users• and will contain a table
whose entries point to information specifically concerning the
coaponent file. The structure which contains this information is
referred to as the Index file Structure Descriptor CSTRJ. There
will be one Structure Descriptor for the data file and one for
each Index file associated with the Indexed Sequential file.

Structure Descriptors contain pointers to the DfH• Buffers and
CURRENT information associated with the various Index files. The
relationship of the various •emory structures used is shown
diagramatically in figure 4.

·---------·

81000 HCP MANUAL
MARK 10.0

·---------+ I FIB DIC J. CUser #1) <Cser 121 I FIB DIC I

+---------· ·---------· I
\I/

1
\I/

·-------+ ·-------+ 1 USI 1--------------------+ +---------------------1 USI
·-------· I I

\I/ \I/
·---~--~+

+-------+ ·-----+ +-----•.
+------------------------·--IGlobalsl----->I IOD t··->I IOD J--+

+---------------------+-------+ /I\
I

+-----+ +-----+ I
I

I
J
I
I

I
I

\I/ +-----------------------·
J +------+
I I STRO 1----> tit>
I +------+
I I I

I I +-----•
I +~---->t OFH I
I
f

+-----+
J
I
I
I
I I +-----+ +-----+ +-----+
' I
I
I

+------->I BUf l<-->I BUf l<-->I BUf 1--tll>
+-----+ ·-----+ ·-----·

I +------• +----------------+ +----------------+ +->I STRl 1---->ICURRENT, User #IJ--->ICURRENJ, User #21--111> ·------· ·~---------------+ +----------------· I I
I I +-----+
I •----->J DFH t
I +-----+
I
I •-----+
+----·-•>t BUF 1--111>

+-----·
figure 4 - I-S File Memory Structures

From the aser•s view point, Indexed Sequential files are more
like a Conventional Random file, except for the fact that
symbolic key values are used, than they are like DMS structures.
Though the Data Management System is a superset of the Indexed
Sequential implementation• the user is more likely to have
several small and transient Indexed Sequential files than one
large file which he would treat as a data base.

l-&7

81000 HCP MANUAL
MARK 10.0

A secondary, but important, goal of the design of the ANSI •74
COBOL implementation was to allow a smooth integration of
Relative and Indexed Sequential files with the Conventional file
mechanism. for this Feason and for other reasons• access to an
Iadexed Sequential FIB is via the FIB DictiDnary• ·which is also
used to access Conventional file FIBs. The FIB for an Indexed
Sequential file is itself quite different fro• the FIB for a
Conventional file. The IndeKed Sequential file is associated
with several physical files. whereas the Conventional file is
associated with ontv ane. Also, more ·than one user may share the
informatiBn, including the data buffers, of an Indexed Sequential
FIB; a Conventional file FIB is used by only one user. If two
users are accessing the same physical Conventional tile, each
user will have his o~n FIB.

for these reasons, an Indexed Sequential FIB contains three major
parts:

1. User Specific Information
2. File Global Information
3. Co•~onent File Specific Information

The entry in the FIB dictionary corresponding to the Indexed
Sequential file points to the User Specific Information tUSil of
this Indexed Sequential FIB.

The USI contains information associated with one user only. The
HCP must know how the user has opened the file1 for example as
INPUT, and how the user is accessing the file• such as
sequentially. This information is kept in the USI. User
statistics, status and HCP workspace are also kept in this
structure. finally~ there is a pointer to the next part of the
Indexed Sequential FIB• the glo~al jnformation associated with
the physical file.

BIOOO HCP MANUAL
HARK 1o.0

01 USER.SPECIFIC.INFORMATION1

02 f IB.COMHON.POfiTION
03 FIB.BOOLEANS

04 FIB.OPEN
04 FIB.CLOSING
04 FIB.OUTPUT
04 FIB.INPlH

03 FIB.ORGANIZATION
% 1 = RELATIVE
% 2 = INDEXED/SEQUE~TIAL

oz us1.r1a,
03 FIB.USI.NOJ.FIRST.TIHE.JHRU
03 FIB.USI.LAST.OP.READ
OJ FIB.USI.OUPLICAIE
03 FIB.USI.MATCH.fOUND
03 FIB.USI.UPDATE.fLAG
03 FIB.USI.FIRSJ.PASS
03 FILLER
Ol FIB.USl.ACCESS.MODE
03 FIB.USI.JOB.NUHBER
03 FIB.USI.RECORD.AODRESS
03 FIB.USI.KEY.POINTER
03 FIB.USI.COMMUNICATE.VORKSPACE•

BI TC2 20 >• %
BITC58) .. %
BITCll• %
BIJ(l)• %
BIT<l), %
8ITC1>• %
BITC4), %

The first
2ZO bits of
USI are the
same as
Conventional·
fIBs

BITC n,
BITClJ,
BIT< n,
BITC 1>•
BIT<lh
BIT<l>,
Bll<2>•
8IT(4),.

04 r1a.us1.BINARY.SEARCH.ARGUEHENTS
O~ f 18.USI.INTERFACE.PADS

BITC24J,
BITC24J,
BIT< 241,
BITC 616>•
811(2081•
811(96) JI

04 FIB.OSI.SAVE.STATE.AREA
03 fIB.USI.GlOBAL.POINTER
03 FIB.USI.CURRENT.STRUCTURE
03 FIB.OSI.HEADER

B ITC 31211
8ITC24l11
BITC8),.
BIT<24Ji

As shown in the above diagram, the first 220 bits of the User
Specific Information are the same as the first 220 bits of an FIB
for a Conventional file. The rest of the informatiGn can be seen
to be items that are peculiar to a specific user of the
structure. It is information that is necessary for Operating
Srstem storage of the "state• variables that nay be required to
perform a single operation for this user.

Included in this information is a pointer to the-next portion of
an Indexed Sequential FIB~ the file Global information. This
information, known as the GLOBALS field• contains information
about the various physical files whic~ comprise an Indexed
Saquential file. Its main function is to provide a path to the
required files necessary to complete an 1/0 operation. A
secondary function is to store information global to the Indexed
Sequential file.

3-69

81000 HCP MANUAL
MARK 10.0

The path to a particular component file is provided hr a system
descriptor contained in a table of system descriptors. The first
entry of the table points to the data file. The rema1n1ng
entries point to Index files, one for each key declaredJ they
a~pear in the order of the declaration of their corresponding
kevs. For any operation which specifies a key, the compiler wilt
specify the key number, which will be used as an index into this
table.

The global information consists of poin~ers to the chain of 1/0
descriptors to be used for operations on the Indexed Sequenti~l
data file• a count of users who are updating the file• and Lock
bits to support ANSI •74 COBOL•s file level lockout. Also
contained in GLOBALS are the count and flag fields necessary to
enforce the prohibition on concurrent updatas. A programmatic
description is shown below.

01 GLOBALS

OZ GLOB.VERSION.NUMBER
02 GLOB.NUMBER.Of .USERS
OZ GLOB.NUMBER.Of .UPDATERS
02 GLOB.DISK.COPY.ADDRESS
02 GLOB~SIZE.IN.BITS
02 GLOB.MEMORY.ADDRESS
02 GLOB.LOCK.BITS
OZ GLOB.IO.DESC.CHAIH.ADDRESS
02 GLOB.MAX.STRUCTURE.NUHBER
02 GLOB.FLAGS

03 GLOB.OHS.FILE
OJ FILLER
03 GLOB.WRITE.ERROR

02 GLOB.CONCURRENT.INFO,
03 GLOO.INUSE.COUNJ
03 GLOB.CONCURRENT.FLAGS•

BIT<8>•
Blf (6)•
BITC6),
DSK.ADR•
BIT(16),
BIT<24),
BITC21•
8IT<24),
BITC8),
8IT<6>•
BIT<l>•
BIT<4>•
BITCl>•

04 GLOB.FILE.AVAIL BITCl>•

Z AT THIS OMS INFO ANO
I IS INFO ARE DIFFERENT
% TIL STR DIRECTORY

04 GLOB.UPDATE.REQUIRED.OR.INPROC BIJ(l)1
02 GLOB.STRUCTURE.DIRECTORY,

OJ GLOB.STRUCTURE.DESCRIPTOR SY.DEsc,

All of the pointers to subsequent portions of the Indexed
Sequential structure• all of which are known as Structure
Descriptors• are contained in the GLOBALS fietd. This simplifies
the task of maintaining the structures and It allows the buffers
to be shared among the various users. It adds one level of
indirectioo to alt acce~ses to the data of course, but this
expense is small for the benefits it yields.

3-10

81000 HCP MANUAL
HARK 10.0

The Structure Descriptor is similar to an FIB for a Co~ventionat
file except that alt of the User Specific IAformation is removed
and maintained in the USI field. For the Index files of an
I~dexed Sequential structure~ necessary key information is also
kept tn the Structure Descriptor. for example, the position of
the ker within the data records, it•s size~ whether or not
duplicates are allowed, and whether or not it is the prime key
are all stored in the STR. A program•atic description is shown
bal OW••

01 STRUCT~RE_DESCRIPJOR•

02 STR. NmtBER
OZ STR.JYPE
02 SIR.USER.COUNT
OZ STR.BUFFER.LOCK
02 SJR.BUffER.LISJ.POINTER
02 SIR.RECORDS.PER.BLOCK
02 STR.SEGHENTS.PfR.BLOCK
02 SIR.RECORD.SIZE
02 STR.BLOCK.SIZE
OZ SIR.BLOCKS.PER.AREA
OZ SJR.SEGS.PER.AREA
02 STR.DfH.ADDRESS
02 STR.DFH.Off SET.TO.EXTENSION
02 STR.CURRENJ.POINTER
OZ SIR.FLAGS

03 SIR.PRIME.KEY
03 STR.DUPLICATES.ALLOWED
03 STR.SIMPLE.KEY

OZ SJR.SPLITFACTOR
02 SJR.KEY.INfO•

03 SIR.NUMBER.Of .KEYS
Ol SJR.SUB.KEY1

04 SfR.ITEH.OffSET
04 STR.I TE:M.SIZE

BIT<&J,
BITC4l•
BITC6J•
BITC2>:11
BITC24),
BI T-(8 >.
8IT<8J,.
Bl TCl 6),.
BITC16l•
BIJC16J,
BI TCl 61 •
BITC21t),,
BITC16),
BI TC2 41,.

BITC1),
BITCl),.
BIT<l h
BITC12J,

BITC8.J11

BITCl 6) ,,·
BIJC12li

As shown in figure 4• the Structure Descriptor contaiRs a pointer
to the Disk file Header• the HCP-defined structure which is at
the la~t level. This structure• as it always has• contains
iBfor•atian relating almost exclusively to the physical
characteristics of the file. Any logical information in the
header, such as record size and records per block• was obtained
from the program whith ori~inally created the file.

The f~rmat of the disk file header had to be expanded in the 9.0
version of the software to accomodate the ANSI 1 74 COBOL
i•plementation. Prior to the creation of the 9.0 version,
several pieces of information associated with DHS Data Bases,
which should have been part of the DfH, were maintained

BIOOO HCP MANUAL
HAllK 10. 0

separately due to a lack of available space in the then curent
definition of the disk file header. These fields have also been
i~cor?orated in the new disk file header. The new foraat has
been designed to prevent the occur·r·ence of such proble•s in the
future, whenever the need for new fields in the DFH arises.

Some efficient means of available disk space maintenance had to
be devised for Indexed Sequential files. TD accomplish this1 the
necessary information regarding the available space is maintained
in the Cluster file as a data record. When an Indexed Sequential
file is oiaened11 this informa'tion is brought into m.emory and
stored in a memory area which will immediately follow the Disk
File Header for the data file. This area is known as the Disk
file Header Extension.

When the Indexed Sequential file is opened• the information on
the availaBle space within the Direct file, all of which space is
nBt available as far as the system is concerne~, is brought into
•e•prv and stored in the DFH E1tension. The format of this
inform~tion in aemory is as shown below.

01 DFH.IS.EXT£NSION•

OZ FILLER
02 DFH.IS.EXTENSION.SIZE
OZ DFH.IS.EXTENSION.VERSION
02 DFH.JS.NEXT.FREE.RECORD
OZ DfH.IS.NEXT.FREE.BLOCK
02 OFH.IS.ROOJ.JABLE
02 DFH.IS.UPDATE.FLAG

BITC16J.,
BITC16l•
BITC36),
BITC32J1
BITC32l•
BITCZ4l~
BIT C 11;

The Indexed Sequential file system maintains two fields in the
DFH.EXJENSION of each file which keep track of available space
within the Direct file. This avaitable s~ace should not be
confused with the available disk space that is aaintained by the
system. Available space in an Indexed Sequential file or in a
Relative file •eans that a record has never been written into an
available record slot o~ that a record was written at some time
bat was subsequently and is now deleted. To the system- all of
the ·space allocated to the file is in use and none of it is
available.

1-12

81000 HCP MANUAL
MARK 10.0

Both of the available space pointers shown above,
DFH.lS.NEXT.fREE.RECORD and OFH.IS.NEXT.FREE.BLOCK, will contain
addre•ses of blocks which have available space. The
NEXT.FREE.RECORD pointer does not actually point to a record but
points to the block which contains the available record slot.
Record slot allocation within a block is accomplished using the
presence bits in the Block Control Information for that block.

The OFH.IS.HEXT.FREE.BLOCK field will contain the area and block
n~mber of the next totally available block at the logical end of
the file. The first disk area of the data file is allocated when
the file is fjrst opened and the NEXT.FREE.BLOCK field is set to
zero•. a valid address, at that time. Also• when the file is
first opened1 the NEXT.FREE.RECORD field is set to arFFfFFFFa.
When the Micro HCP needs to add a record tG the file and the
NEXT.FREE.RECORD field contains aFFffffffa, it means that no
records are available in a block that has already been
initialized. The allocation must be accomplished using the
NEXT.FREE.BLOCK field.

The Micro HCP will then initialize the Presence Bits in the Block
Control Information of the block addressed by the NEXT.FREE.BLOCK
field, aove the address which is in the NEXT.FREE.RECORD f ietd,
in this case 3fffffFff~ to the first thirty-two bits of the last
record slot in the block• move the address of this block to the
NEXT.FREE.RECORD field and increment the NEXJ.fREE.OLOCK field.
If the incremented value of the NEXT.FREE.BLOCK field causes this
disk area to exceed the specified size of a disk area. arrrrrrrra
will be stored in the NEXT.FREE.BLOCK field instead. The use of
this value is discused in a subsequent paragraph.

The record which is being added is then moved to the first record
slot in the newly allocated ~lock• the presence bit for this stot
is set and the block is written. The presence bits for the
secend and all subsequent record slots within that block wilt be
set to zer~- due to the initialization process. arFFFFFFra~ the
value that was previously in the NEXT.FREE.RECORD field• will be
stored in the first thirty-two bits of the last record slot in
the block.

When the next record is added to the file• the Micro HCP will
again examine the NEXT.FREE.RECORD field and it will now contain
the address of the block that was just allocated. The Micro HCP
will read the block into memory, if necessary• and exaatne the
Presence Bits in the Block Control Informatjon. The first
avaitable record slot will be the second slot within the block.
The Presence Bit for this slot will be set and1 if this is the
last record slot in the block• the ~FFfffFFf~ stored in the first

3-73

81000 HCP MANUAL
HARK 10.0

thirty-two bits of the record slot will be moved back to the
NEXT.FREE.RECORD f ield1 and the record will then be stored in the
slot. If the second record slot is not the last in the block•
aFFFFFFFFa wilt remain in the actual last slot and the
NEXT.FREE.RECORD field will not be changed.

Atlocatio~ in the Direct file will proceed in this manner•
asuming that no DELETE operations are performed, until the disk
area becames tilted and• as mentioned previously• ~ffffffff3 is
stored in the NEXT.FREE.BLOCK field. This value serves.as an
iBdicator to the Micro HCP. that the next disk area has not yet
been allocated by the s.MCP. When the Micro MCP encounters this
value. it merely passes control to the S.MCP which will allocate
the area and store its address in the disk file header and in the
NEXT.FREE.BLOCK field. The Micro MCP will then initialize the
Block Control Information and proceed as was described
previouslr·

The process just described may be interrupted by the oecurrence
of a DELETE request from a user. Mhen this occurs, ·the address
in the NEXJ.fREE.RECORD slot fs stored in the first thirty-two
bits of the record being deleted• the Presence Bit associated
with the deleted record is reset and the block is written to
disk. The address of the block which contains the deleted record
is then stored in the NEXT.FREE.RECORD field. The next time a
record is added to the file, it will consequently be stored in
the area occupied by the record that was just deleted and the
NEXT.FREE.RECORD field will be restored to its prior value. This
operation should eli•inate the need to periodically rewrite the
entire file to eliminate large nuabers of empty record slots• a
process commonly known as •garhage collection•.

ShGuld more than one record in a block be deleted, the Micro HCP
o~ly needs to insure that the first thirty-two bits of the last
available record slot in that block contains the address of the
next block in which a record slot is avaflabte or ~fffFffFF~ if
there is no s~ch next block. This is true even if all of the
records in a block are deleted. No pointers need be changed• in
this latter case, until the next DELETE operation occurs.
Assuming that no new records have been added in the interim• the
Micro MCP then needs only to insure that the address of the block
which is totally e•pty is stored in the slot previously occupied
by the deleted record.

Allocation of space for an Index file associated with an Indexed
Sequential file is somewhat simpler than for a Oata f ite~ since
record availability does not have to be maintained. Whenever a
record is deleted• the pointer to that record i·n the IndeK file
is destro,ed and the table contained in the block is compacted.
The count of the actual number of entries in that block1 which is

81000 HCP MANUAL
HARK 10.0

maintained fn the Block Control Information of an Index file• is
decremented. No other actjon is required for the Index f ite.

Maintenance of the NEXT.FREE.BLOCK field of an Index file is
exactly like that for the data file. This field will alwars
contain the address of the next availabte block at the logical
e~d of the file. The Micro HCP will set the field to ~fffffFFfa
when the next disk area must be allocated. exactly as is done for
the data file.

The NEXT.FREE.RECORD field is used to address a linked list of
.bl~cks wjthin the file that are completely empty. This can only

occur when all of the records that were addressed through this
block have been deleted~ a situation which should seldom occur in
actual use.

la.d..11. E.il1. lab.la ~11lit.1iD9

fhe •splitting• of fine tables in the Index file is an operation
that is always performed by the s.MCP. Any tiae the additio~ of
a record to the file caus~s a need for a fine table to be divided
in .two• the Micro HCP passes control to the SOL portion.
CDnsequently, the S.MCP perfor•s most of the available space
maintenance for the Index files, while the Micro HCP performs the
aajority of this w~rk for the data file.

The CURRENT is a structure that• for ANSI 1 74 COBOL, logically
beloBgs in the User Specific Information f jeld• since there is
only one CURRENT per user. There are two reasons for associating
the CURRENT with the Structure Descrjptor. however. first~ OHS
has a CURRENT for each structure and a pointer exists in each SIR
to the appropriate CURRENT. Jo be compatible with DNS• each STR
of an Indexed Sequential file points to the CURRENT for that
structure. A current structure number is maintained in the USI
to satisfy ANSI •74 requireaents. Second• since the file can be
shared• an operation by one user can affect the CURRENT of
another user. To guard against this, each CURRENT is checked
when an operation which can affect it is performed. To aid the
search of CURRENTS• they are linke~ together, the first one being
pointed to by the STR. A programmatic description of the CURRENT
field is presented below.

3-15

01 CURRENT_DECLARAllON,
02 CUR.LINK
02 CUR.JOB.INVOKE,

03 CUR.CUR.JOB
03 CUR.CUR.INVOKE

02 CUR.STATUS
02 CUR.FINE.TABLE1

03 CUR.AREA
03 CUR.BLOCK
03 CUR.RECORD

81000 HCP MANUAL
MARK .to.o

BITC24111

BIT C16J,
BITC6l•
BITC2), % O-DEL1 1-VAL

BITCBJ,
BITClfi),
BITC12J,

The current is maintained for Indexed Sequential files which use
either Sequential access or Dynamic access. When the us~r is
accessing the file sequentially• the current is maintained for
the key of reference <USI.CURRENT.STRUCTUREJ. for output files,
the key of reference must be the prime ter and CURRENT always
points to the last entry written. for a new file1 CURRENT is
initialized to point to the first entry but CUR.STATUS is set to
indiiate the entry has not yet been written. for an old file
opened OUTPUT EXTEND, the current is initialized to the last
entry written. The Micro MCP us~s the current on output files to
insure that records are written in sequence• a requirement of
ANSI 14 COBOL.

Sequential INPUT or INPUT-OUTPUT files require that the current
points to the last record read. On the next READ operation• the
current is incremented to point to the next available record. If
the current record fs deleted or the CURRENT was positioned by an
OPEN or START• then CUR.STATUS ts set to indicate· that a record
has not vet been read. The next READ will deliver the record and
reset CUR.STATUS.

For files in Dynamic access mode• the meaning of CURRENT is more
complicated. The CURRENT will be handled exactly as in the case
of Sequential INPUT or INPUT-OUTPUT. This means that some
sequences of operations may not produce the desired intuitive
result~ The example below illustrates the problem.

l-76

81000 HCP MANUAL
HARK 10.0'

Consider the Index table at the right.
What should the result of a READ NEXT
be. in the fotlowing sequence of operations?

+---------+
I ABLE I
J DOG I
J GOLF I

a. READCABLE), ADD<BAKER), READ NEXT; +·--------+
b. READCDOG>• DELETECDOG>• ADD<ECHO>• READ NEXTJ
c. READCDOGJ, DELETECDOG>• ADD<CHARLIE>• READ NEXTJ

for our implementation
resLtlts:
a. BAKER
b. GOLF
C• GOLF

the REAO NEXT produces the following

lD.dllfUl ~JUlU.llD.11.ai · 11.ui!ac. BADiUUll.llnt.

The method of allocating bOffers in prio; versions of the HCP and
in the 9.0 version for Conventional files is known as Static
allocation. This method of allocating buffers is simple, once
the nuaber of buffers has been chosen by the user. The buffers
are merely allocated when the file is opened and they remain
assigned to the file until it is closed. If the number of
buffers allocated is too s•all• however• then operations upon the
file ma, be inefficient. If the number of buffers allocated is
too large. then nothing is gained in efficenc1 and me•ory space
is wasted.

On an Indexed Sequential tile particularly, the number of buffers
actually needed varies with the tvpe of operation and the state
of the Indexed Sequential ffle. The optimu• number of buffers is
best chosen dynaaically to avoid the disadvantages mentioned
above.

Allocating buffers on deaand and deallocating them when the
meaory they occupy is required for other purposes is known as
Drnamic allocation. Dynamic allocation has always been used for
buffers associated with a DHS data base. It is accomplished by
calling the MCP•s •e•ory allocation procedure, GETSPACE# whenever
a buffer is required. Deallocation is accomplished by allowing
GEJSPACE to overlay DMS buffers when Becessary. Drnaaic
allocation has also been implemented for Indexed Sequential
files.

The management of buffers associated with an Indexed Sequential
file presents a special problem for the HCP• since there can be a
variable number .of the•, depending upon the operation, and they
can be different sizes• depending upon which component file is
being accessed. To sotva the probleas associated with a variable
n~aber of buffers, the Prioritized Memory Management algorithm,

1-11

81000 HCP MANUAL
MARK 1o.0

developed for the 1.0 release should be used. This memory
manager overlays buffers whenever space is needed and the
priority of a buffer makes it a candidate to be overlaid. The
FIFO Memory Manage~ent algorith• can be used but performance •ay
be impacted on a •ulti-programming srstem.

TB solve the problems associated with variable size buffers
addressing the same Indexed Sequential file• all of the buffers
used for one structure are ljnked together and pointed to by the
structure• so that alt buffers in a chain are of the same size • .

The Buffer Descriptor is the structure used to maintain the
buffers associated with the Indexed Sequential file. It contains
the Recessary link fields, identification fields, aRd state
information. Since the memor~ manager aay overlay tbe tirst
buffer in a chain• the memory link field• ML.POINTER• will
contain the structure address so that SJR.BUffER.LIST.POINTER may
be updated. A progra•matic description of the Buffer Descriptor
is presented belov.

01 BUFFER-DESCRIPTOR,
02 OD.AREA.DISPLACEMENT•

03 BO.AREA
03 BO.OFFSET

02 BD. lJSER. COUNT
02 DD.IN.MEMORY
OZ SD.IO.ERROR
02 DD.WRITER.CONTROL•

03 BO.REQUIRES.A.WRITE
03 BO.CONTROL.POINT

02 OD.NEXJ.DUFFER.DESCRIPTOR
02 BO.PRIOR.BUFFER.DESCRIPTOR

BITC8 >•
BITC16),
BITC4>•
BIT<l>•
BITC1),

Bl Ht>•
BIT<l),
BITCZ4l•
BITC24);

I/O descriptors are shared among all the buffers. The BEGIN and
END addresses in the descriptors mar be modified when a
descriptor is used by the Operating System. The number of
buffers allocated depends on the number of active structures
associated with the Indexed Sequential file. . This technique
serves to mint•ize the nuMber of descriptor• in the disk chain•
thus reducing the amount of processing required by GISH01 and it
minjmizes the •e•ory require•ents for descriptors. It does
require an allocation mechanism for descriptors• in addition to
one for buffers, but this expense has been found to be worth the
benefits.

l-78

BlOOO HCP MANUAL
HARK 10.0

Concurrent READ operations on the saae record of an Indexed
Sequential file are always allowed. For the 9.0 version of the
software~ all logical update operatioRs• WRITE and REWRITE, will
be started only after all accesses to the file have been
s~spended. These update operations witl inhibit. further accesses
to the file uBtil they complete. To users• it will appear that
concurrent updates to the file are allowed. though this will not
actually be the case.

fhjs restriction simplifjes the code necessary to insure that the
appropriate buffers remain in memory. SiAce only one update
operatio~ can be in process at any given time1 the update
operatian will begin with a BO.USER.COUNT of zero. Once the
update operation uses a buffer, that buffer•s user count will be
set to one~ thus preventing the Memory Management algorithmffrom
overlaying it.

UpGn completion of the update operation all user counts will be
sat to zero. for READ operations• the user count field is not
used because each buffer need be used only once during the
process of the comaunicate. The buffer is automatically
protected froa being overlaid while the 1/0 operation is in
process.

The code necessary to insure the integrity of the file is also
simplified. The Record Contention problems• the complex problems
involving changes to the tile while another user is accessing it•
are avoided. for the simple case of one user at a time updating
the file• The simplified code provides better performance.

The disk I/O error procedures in the HCP perform a certain numbar
of retry operations each time a disk I/O operation coapletes with
th~ Exception Bit, Bit l starting from zero. set to one.
Different procedures may be invoked• depending upon the type of
I/O operation that has completed and the type of control and
drive that encountered the error. MCP 1/0 operations are handled
by a different procedure which is not as extensive as the one
described below. The following description applies to I/O errors
o~ user I/G operations only.

The I/O error procedure first checks the Memory Parity Error bit,
Bit 5 in the Result Descriptor, received fro• the control. If
the bit is on, it performs a ma~imum of three retry operations•

91000 HCP MANUAL
HARK 10.0

togs the result and exits the procedure. without investigating
any other bits in the result descriptor.

The procedure next checks the Transmission Parity Error bi·t, Bit
15 in the result descriptor. If this bit is on arid if the ~nit
being used is not a B9482 disk cartridge~ the procedure performs
a maximu• of three retry operations• logs the result and exits
the procedure without checking any further. If the unit is a
89482, no retrv operations are performed for this case but and
the investigation con~inues.

The procedure next checks the Not Ready bit~ Bit 2 in the result
descriptor. If this bit is on• the procedure performs a maximum
of three retry operations• logs the result and exits the
procedure without checking any further.

The procedure next checks the Write Lockout bit, Bit & in the
result descriptor. If this bit is on~ The procedure looks at the
I/O descriptor itself. If the first three bits of the operation
code are 010, 011 or 101~ which would denote Write, Initialize
a~d Relocate- the procedure performs a •axiau• of three retry
o~erations, logs the result and exits the procedure without
checking further. If the first three bits denote something other
than the three operations listed, Bit 6 is ignored an~ the
iftve~tigation continues.

The procedure next performs a logical OR operation on:

1. The Sector Address Error bit, Bit 10.
z. The Seek Timeout bit• Bit 11-
1. CThe Address Parity bit• Bit 9. AND not 894821• and
4. The Data Error bit• Bit 3.

If the result of the logical OR operation is true• the procedure
becomes coaplex and varies with the type of disk connected.
Before describjng the procedure for each type of disk, so•e basic
procedures should be described.

Jhe Offset Procedure is a subroutine of the disk I/O Error
procedure. Basically, it performs six retry operations. If any
one of the six effect recovery of the error• the procedure is
exited imaediately regardless of how many operations have been
performed. The term "off set" as used here denotes positioning
t he di i s k heads s l i g ht l y o f f o f t he cent er o f 't he c y l i n d er
specified in the disk address. In alt disk pack drives which mar
be connected to the 81000 syste•• offset may be specified in the

3-80

81000 HCP MANUAL
MARK 10. 0

inward (positive> or outward (negative> direction.

The first two operations r~quested by the Offset Procedure are
performed with the original l/O descriptor unmodified. The next
twG operations are performed with negative offset and the last
two are performed with positive offset. If recovery is not
effected by any of the six• all bits which may have been set in
the original I/O descriptor to cause the offset operations are
reset and the procedure is exited.

The term •strobe• as.used here denotes beginning the actual read
operation sligtty before or after the point in the rotation of
the disk where it would normally begin. The Strobe Procedure
calls the Offset Procedure a maximun of three times. Thi~ may
cause a maximum of eighteen retry operations to be perfor•ed. If
a11v one Gf the eighteen effect recovery" the procedure is e.xited
regardless of how many operations have been perfor•ed.

The first call on the Offset Procedure is accomplished with the
original I/O descriptor in its unmodified form. This will cause
six retry_ operations to occur, exactly as described for the
Offset Procedure• provided recovery is not effected by any of the
six. The next call is accomplished with a bit set in the
descriptor which will cause early strobe to o~cur. Hence,
another sia retry operations may be perfor•ed~ two with early
strobe and no offset- t~o with early strobe and positive offset
and two with early strobe and negative offset.

Twelve retry operation$ have been performed to this point. If
the error has not yet been corrected# the Offset Procedure is
again called with bits set in the l/O descriptor to cause late
strobe to eccur. This may result in another six retry operations
being perforaed1 as described for the Offset Procedure, all with
bits set in the I/O descriptor to cause late strobing to occur.

If none
which may
procedure
Procedure ..
des er i pt or
Procedure.

of these eighteen operations effect recovery, all bits
have been set in the "I/O descriptttr are reset and the

is exited. In the Strobe Pracedure and in the Offset
if any retry operation does effect recovery,. the I/O
resposible is entered in the log prior to exiting the

3-81

81000 MCP MANUAL
HARK 10.0

All varieties of disk pack that may be con~ected to the 01000
system and some varieties of disk cartridge Include error
correcting capabilites in the form of a fire Code remainder
stored immediately after the 14~0-bit data seg•ent. The
reaainder is fifty-six bits in length on the 207 disk pack and
thirty-two bits in length on all other~. It is computed and
stared by the disk hardware when the data segment is written. If
an error sbould occur when the data segment is read. the data as
it should have been written may be reconstructed, provided all of
the bits in the data that are incorrect reside in the same
"~urst• of bits and provided the length of this burst does not
exceed a specified limiting number of bits.

The Error Correction Procedure obtaiBs a 2•080-bit buffer froa
available •emory. If such memory is not available• the routine
exits without attempting to correct the error. In all cases.
when error correction is perforaed, all of the segments described
by the original descriptor are read and corrected one sector at a
ti•e· For all disk devices which store the 12-bit remaiBder but
which do not have the ability t• correct burst errors in input
data, the procedure aust operate in thi·s manner. Devices which
are capable Gf perforaing error correction, such as the l01 disk
drive, are capable of doing so on •ultiple-sector read
o~erations• but this feature is not utilized by the software.
Rather• all of the sectors are read one sector per operation and
the exact addres~es of all failed sectors are logged. This
information would be lost on a multiple-sector read operation.

Error correction is perforaed by the software for all varieties
of disk pack except the 207. The Z01 hardware includes error
cor,ecting capabilities. Error correction is also perfor•ed by
the software for the 89482 Disk Cartridge. The software is
capable of correcting a six-bit error burst. The 201 hardware is
capable of correcting an eleven-bit burst.

Two different varieties of Z15 and 225 disk pact drives have been
delivered during the life of the 81000 hardware. These varieties
are known as Design level One CDL-11 and Design level Two CDL-2>.
for both varieties1 the Strobe Procedure is invoked bat there are
soae operational differences in the hardware itself. On DL-1
drives, the bits which cause plus and minus offset and early and
late strobing are ignored by the hardware, since it does not
include these capabilities. Consequently, on DL-1 drives, a
total of up to eighte~n retry operations will be performed by the
Strobe Procedure- but they witl actually be nothing more than

3-82

81000 HCP MANUAL
MARK 10.0

ejghteeB repetitions of the original 1/0 descriptor. DL-Z drives
include a full complement of offset and strobe capabilities. The
software cannot distinguish between the two types of drf ve.

If none of the eighteen retry operations caused by the Strobe
Procedure effect recovery• the I/O descriptor is restored to its
original state, and the Error Correction Procedure is invoked.
Each segment described by the I/O descriptor is read individually
and error correction is performed- if possible• by the software.
In all cases• the results of the recovery attempt are entered in
the Engineering log.

For 205 and Z06.disk drives• the Strobe Procedure is performed
exactly as it is described. Eighteen retry operations are
perfor•ed• two operations with each possible combinatioB of the
strobe and offset variants. If any of these operations effect
recovery• the I/O descriptor is restored to its original
conditi~n and the procedure is exited. If not, the Error
Correction Procedure is invoked with the l/O descriptor in its
origiAal condjtion. Error correction is perforaed by the
software for 205 and 206 drives.

IB any case• the results of the recovery attempt will be entered
in the Engineering Log prior to exiting the procedure. The I/O
descriptor is at.ways restored to its original c,ondition prior to
exiting the procedure.

201 disk drives include neither offset capabilities nor strobe
capabilities. The hardware does include a capabflty to vary the
threshold of a read operation but its use is not recommended for
recoverr purpo~es by the manufacturing plant. Consequently, the
Strobe Procedure is not invoked for 207 drives. Two retry
operations onlr are performed• both using the original version o
the I/O descriptor. If either operation effects recovery• the
results are logged and the procedure is exited. If not• the
Error Correction Procedure is invoked.

Z07 drives include error correcting capabilities in the hardware.
Additionally• the hardware is capable of correcting all errors
that are correctable in all sectors described in one multiple
sector operation. This multiple sector capabilf tv is not
utilized by the software• however~ and each sector is read and
cGrrected indivjdually. This is done for diagnostic purposes

3-81

81000 MCP MANUAL
MARK 10.0

only1 to isolate the address of the failed sector<s> and insure
their entry in the Engineering Log. The results of the recovery
attempt will be logged and the pracedure wilt be exited with the
1/0 descriptor restored to its original condition.

for all versions of disk cartridge except the 89482. the 4400
BPI, 203 or 406 track• 64 sector per track variety of cartridge,
the error recovery procedures are very simple. The procedure
merely repeats the original operatjon a maxi•u• of three times.
The results of this attempt are logged and the procedure is
exited with no further checking. There are no other options
available in the hardware which eight help in the recovery
attempt.

For the 89482 cartridge, the recovery atte•pt is slightly more
extensive. This drive has error correcting capabilities similar
to tho$e of the 206 drive. Error correction on a Read a~eration
is performed by the software in the Error Correction Procedure
exactly as it is described. On a Write operation• the recovery
attempt is actually more complex than for a disk pack.

WheB · a Write error occurs on the 89482 cartridge• the I/O Error
procedure wilt atteapt to correct the error• if the three retrv
operations mentioned above fail# by writing the data one sector
per operation. In the case of an Address Parity error• the
procedure will atso attempt to write that sector plus the
preceeding sector in an effort to correct the address parity.
The results of the attempt will be logged and the procedure will
be exited when recovery is effected or when all retry attempts
have been coapteted.

This concludes the discussion of Data and Address Error Recovery
for the various drives that may be connect. The remainder of
this section describes the remaining tests in the 1/0 Error
procedure.

If the results of the logical OR operation mentioned previously
were false, the I/O Error procedure examines Bits 22 and 23 of
the result descriptor. If both bits are set to one* they
iAdicate th~t an Extended Result Descriptor was returned with the
operation• though the ERD may not be stored in memory. The
procedure stores the Extended Result Descriptor• jf it is
available• in the Engineering log and performs a maximum of three

81000 HCP MANUAL
MARK 10.0

ratrv o~erations using the original I/O descriptor. The results
of ,the attempt are logged and the procedure is exited with no
furtber checking.

finally• if all of the tests mentioned to this point were false•
the procedure performs a maximum of three retry operations and
logs tha results. Since an exception did occur• indicated by the
setting of Bit 1, the data is assumed to be corrupt and an
attempt is made to correct it.

There is one I/O Error procedure that is invoked for all tape I/O
operations that complete with the Exception bit in the result
descriptor set. The procedure is invoked regardless of whether
the operation was a user I/O or an MCP I/O. It is also invoked
on the completion of Test operations• where the setting of the
Excepton bit is a noraal occurrence. It is also invoked for
Emulator Tape operations, though in this case~ it may do nothing
more than pass the result descriptor on to the user for
re!iolution.

Essentially• the procedure will retry the operation a fi~ed
nu•ber of tl•es and return control to the procedure which called
it. If recovery was effected, this will be so indicated in the
previously failed result descriptor upon return. If the
prQcedure was not able to effect recovery, the re•ult descriptor
will contain an indication of the failure upon return. In most
instances, the procedure will retry the operation ten tiaes~ but
this number will vary with the type of fail~re and the o~eration
attempted.

The Tape I/O Error procedures will be described fully in a
subsequent version of this specification.

3-85

81000 HCP MANUAL
MARK 10.0 .

This section of the specification has two principle parts.
s-aemory management is described at the functional level.
S-memcry requirements for a given system configuration are then
presented. Using the second part of this section, it should be
possible to estimate the amount of s-memory that wilt be required
oA a syste• to support a given program.

s-memorr management techniques were changed drastjcally in the
1.0 versi~n ~f the software and were changed again in the 9.1
version. fhe discussion contained in the first part of this
section may not be applicable• in all cases• to versions of the
software released prior to the 9.1 version.

The BlOOO software utilizes a •segmentation• form of memory
management. In such a svstea, meaorv is requested and allocated
only when it is required and only in the amount that will exactly
satisfy the request. In other words~ aemory is divided into a
variable number of segments• each of which is of any size~ with
so•e obvious restrictions. A basic element in this form of
memory management is the •memory link"·

The format of the memory link was presented in a prior section.
Basically, it contains a size field which may ~ontain any value
from zero to 1617171215 bits. It contains the addresses of the
meaorv links that precede and succeed it and the address of an
associated segment dictionary entry. It contains a number of
other fields, which ~ill be discussed in turn. It is created and
maintained by the HCP and the executing interpreters store
selected information in it. In all cases1 it immediately
precedes the segment of memory that it describes.

Contiguous blocks of memory are reserved for system use at the
extreme ends of the memory on any system. This is described in
more detail in the second part of this section• Between the two
comtiguGus blocks ties the area known as •linked memory•. At the
end of the reserved area at the low end of memory• there is a
da••v me•ory ljnk known as the LBwer Terminating Memory· link
CLIHLl. At the beginning of the reserved area at the u~per end
of memory is the Upper Terminating Menory Link CUTNL).

81000 HCP MANUAL
MARK 10. 0

The terminating memory links are created during the Clear/Start
procedure. Each has a size field of zero• a type field which
specifies the area as TERMINATING.LINK, but the •save" bit will
be set to one in both links. This allows the me•ory management
procedures to recognize the terminating memory tints. The
backward pointer in the LTHL will contain aFfFfffa; bat the
forward ~ointer witt contain the address of the next memory link•
i~ address order. Similarly, the backward pointer in the UJML
will contain the address of the previous •emory link in address
order; the forward pointer will contain 3fffFFF~.

Hence• all memory links form a chain in memory. The memory link
which ••mediately precedes each atlocated •e•orv area will
contain the address of the succeeding and preceding memory links
in the forward and backward pointer field respectivety. The
chain will be terminated in the forward direction by the upper
terminating memorv lint and in the backward direction by the
lower terminating meaory link.

The area known as linked memory is an example of a "memory
subspace•, as this term is used herein. There may be other
me•ory subspaces within linked ae•ory. The Run Structure
cease/limit area> of certain programs •av also be divided and
allocated upon request by the software. The sa•e procedures in
the software are used to manage these smaller memory subspaces as
are used ta manage linked memory.

Hamorr requests may originate in a number of diverse manners.
This is evidenced by the large nu•her of different values the
type field of a memory link may contain. The eost common
occurrence of a memory request is for a code segment to be
brought into memory. Other requests originate when a file is
opened, wben the HCP needs additional te•porary storage for the
performance of one of its tasks, when additional space is
required to hold a queue messa9e1 and so forth.

There is probably no need to discuss each different type of
ae•ory request. Many of the numbers assigned to each different
type of memory request are for the benefit of the Du•p/Analrzer
prograa ontr and have only pathological use. The different types
of requests have common characteristics and may hence be grouped
into •classes•. The coamon characteristics will be described and
explained.

Parameters that are passed with a memory request are the size of
the required Memory area in bits- the address of the dictionary

81000 HCP MANUAL
HARK 10.0

entry which will be associated with the me•ory area. if any• the
address of the Run Structure Nucleus of the program which caused
the request, if any# the type field to be stored in the memory
liak• the priority of the request# a boolean variable which
specjf ies that the memory should be allocated at the highest
possible physical address and a boolean which specifies that the
memory must ~e allocated above the •fence•.

The HCP has one set of stacks• only• to store the variables that
it must aaniputate in the performance of any function. This set
of stacks cannot be stored anywhere else; they must be
aaintained in aeaory until the function has been performed.
Consequently, once the HCP begins performing any function• it can
perform no other function until the original task is complete.

Almost all HCP functions require more than one HCP code segment
to complete. A tile Open may require more than thirty code
segments to be brought into •emory. The number of code segments
required could obviously be reduced by mating each code segment
lar9er but this would also reduce the possibility of finding
s~fficient memory on small systems. It would also possibly cause
sore user code segments to be removed from memory to make room
for the larger HCP segment.

Should the HCP begin performing a certain request and not be able
to find sufficient •emery to contain a necessary code segment•
the svstem would have to halt. A Clear/Start would then be
required• with its resulting ,loss of all programs that were
running at the time. In order to insure that there will always
be sufficient memory to bring in the largest HCP code segaent, a
feBce is estabtished in aeaory, below which only code segments
are allowed to reside. The location of the fence aay be
calculated br adding the size of the largest HCP code seg•ent and
its associated segment dictionary to the address of the lower
terminating •emory link.

Certain exceptions to the statements in the paragraph above
exist. Code segment~ mav not be overlayabte at all times. To
bring a code segment into ae11ory11 the memory .area is allocated
and an I/O operation initiated. The memory area may not be
deallocated until the I/O operation is complete. Should the MCP
encounter such a situation and not be able to find a required
memory area anywhere else in meaory, it wtll wait for the
completion of the operation.

4-3

BlOOO HCP MANUAL
HARK 10. 0

Certain code segments associated with HICR applications programs
are also not overlayable. This is also true of segments of the
iBterpreter used by such programs. Consequently, the fact that a
memory request is for a code segment is not sufficient to
determine whether the aemorv should be allocated below the fence
and the boolean variable is required.

Checkerboarding• also known as External Fragmentation• is the
condition which exists when memory contajns a large number of
permanently-allocated areas• or "save• areas• aost of which are
separated by small overlayable areas. In such a situation• the
total memory available may well be large enough to satisfy a
given request but no single contiguous ~verlayable area is
safficiently large. This situation can have a serious impact
upon performance.

To minimize the possibility of the occurrence of checkerhoarding,
the MCP attempts to allocate all •e•ory denoted as
non-overlayable or •save• at the highest possible physical
address. Examples of iteas which are so allocated are program
r~n str~ctures, files and l/O buffer areas.

jl.,11.tl iEJ...EC.llwt

When a request for memory allocation is received, the management
algorithm must select a •victi••• a portion of me•ory which is
already allocated which mav he dealtocated ~nd assigned to
satisfy the n~w request. The area to be allocated aay also be
•arked Available• of course, though this is seldom the case.
"Victim Selection• is the process of determining which allocated
me•ory segment or segments will be dealtocated. This is the most
intricate ta$k of the management algorithm, the task which
requires the most attention ta strategy a~d the task which is
most influential upon the performance of the systea. Two victim
selectiBn algorithms are provided in the software. Users may
choose either the priority Victim Selector or the Second Chance
Victim Selector via a system option. The change is only
ef teccted during a Clear/Strat operation.

81000 MCP MANUAL
MARK 10.0

Prior to the r.o release• victim selection was essentially a
round-robin among requests. The HCP kept a pointer which served
as the starting poi~t of each search and was updated after each
allocation to point to the end of the newly allocated area. This
pointer is typically referred to as the •tef t-off pojnter•. The
round-robin algorfth• had the advantages of being computationally
simple and it served to minimize external fragmentation• but
there are some serious di$advantages associated with this victim
selectiGn algorithm. Specifically•

I. It has no knowledge of which segments are actually in use•
etements of the •working set•, and

2. The memory resources of each job have equal importance.
Unlike processor scheduling, the memory is not allocated on a
priority basis.

These flaws lead to some bad performance degradations in certain
situations. One such problem is the •cascading" phenomenon.

Using Denning•s definition• a progra••s working set W(f, t> is
the set of all segments accessed by the program in the interval
cr-t- 11. Denote the size of this set Cin KCPII context, size is
in bits>• as W(f, t>. This definition affords us useful
information with which to manage real store whenever the change
(•drift•) from the set WO<Jo, tl to the set Wl<Jl~ tl is small
for the interval [JO, Tl]. The assumption behind working set
management is that for many programs• the drift is indeed small
daring most of their execution lifetiaes.

Postulate a situation where the code and dictionary seg•ents of a
single job co•pletely fill overlayable memory. The round-robin
algorithm, having no fnforaation concerning WCT• t> made a choice
of victims aaong the resident segments which was essentially
rando~ with respect to this information. Call the ratio
WCT• tl/Csize of overlayable •e•ory> the saturation ratio s.
Then the probability is approximately S that the incoming segment
~ill overlay one or more elements of WCT7 t>. The overlayed
segment• of course• will immediately be needed again and has a
probability of about S of overlaying another eleaent of wcr, tJ.
This sets up an undesirable oscillation which should eventually
damp back to stabilitv, assuming no further external
perturbances. The probable number of extra overlays required to
reach stabilitr increases with s, and becomes quite large ~hen S
exceeds• say, 0.9. We call this oscillatton -cascading" of
overlays. for larg~ values of S• alaost alt time is c~nsamed in
waiting for 1/0 on the backing store, so very little work gets
done. This is the situation commonly known as "thrashing•.

4-5

91000 HCP MANUAL
MARK 10.0

Now, suppose the memory manager has some knowledge of the
elements of wcr, tl. If the saturation ratio is not too clos~ to
one• it will usually be possible to select a window containing no
element of W{J, tl. The chance of cascading segments is thereby
decreased jn configuration5 running with S in the range of 0.5 to
0.15. The difficulty is that eleaents of wc1, tl now clutter
aemory and increase external fragmentation. As S approaches Cor
exceeds> one• this becomes an important loss and makes selection
difficult for the •emory manager. At this point• the advantages
of the ro~nd-robin strategy begin to outweigh the advantages of
utilizing working set information.

KIJ&lltt-6 i,EI 1lEllR.tlllAllllli

In order to deter•ine whether or not a code segment in memory is
carrently being used, usage bits were added to the memory link in
the 1.0 ver,sion of the software. These appear in the
prograamatic descrfption of the me~ory link as
ML.PREVIOUS.SCAN.TOUCH and ML.CURRENT.SCAN.TOUCH. Whenever an
i~terpreter accesses a code segment dictionary entry and finds
the associated code segment present in aeaory, it sets the
current scan touch bit to a value of one. Interpreters make such
an access whenever they are reinstated and whenever a code
segment transition occurs. It is not necessary for interpreters
to set the bit in memory lints which are associated with segment
dictionaries• These are usually marked as save space if any of
their code segments are present in memory. Also, data segaents
are always overlaid in a round-robin fashion, regardless of the
victim selector that is currently being used on a system.

The Second Chance victim selectioB algortiha, first introduced in
the 9.1 version of the MCP1 addresses the first failing of the
round-robin algorithm• the lack of knowledge of the working set
of the code being used. Also, the Second Chance algorithm
completely supplants'the old round-robin strategy. The latter is
no tonier available for use. The change is completely
transparent to users and the only noticeable effect should be an
iaprovement in performance in installations where the round-robin
algorithm was used prior to release of the 9.1 sottware.

The Second Chance algorithm utilizes the left-off pointer
described for the round-robin algorith•· It begins searching for
a memory space large enough to satisfy the request at the
left-off pointer but it will not select any space whose touch
bit• HL.CURRENT.SCAN.JOUCH, is set. Upon encountering a memory

81000 MCP HANUAL
.HARK 1o.0

segment whose touch bit is set, it resets the bit and continues
to the next memory link. It vill allocate the first segment it
encounters that is sufficiently large and whose touch bit is
reset.,

This algorithm thus has the major advantage of the round-robin
algorithm; it is co•putationally siaple and the procesing
required is mini•ized. Unlike the·Prioritized victim selection
algorithm described below• it reQuires no knowledge or action on
the part of the user.

l!BlllfilII !lilll .IELE.kIJDli

The second failing in the round-robin strategy is its inability
to insure rapid turnaround to jobs which are designated as.· high
priority. In HCPII• prior to the 1.0 release. only the processor
was all~cated on the ~asis of priority. A high priority
ai-pli.cat ion was contending for the memory resource on exactly the
same footing as a low priority "background• job. This led to
severe performance degradation for users which required many
overlayabte aemory resources but frequently ~elinquished
processor control to make operating systea requests. In
particular• datacoas applications running in sultiple job shops
were swfferi~g badly. Background jobs tended to usurp critical
resources forcing the datacomm application to loose control stilt
•ore frequently• allowing background jobs t.o run• grab m·ore
mamory resources, and so forth.

The Prioritiled memory management algorithm• first introduced in
the 1.0 version of the HCP- addresses both of these problems.
The priarity victim selector makes its choices on the basis of a
priority field in each aemtiry link. Jhis field is maintained by
runtime use of working set information. The priority field will
be maintained at its original value as lo~g as the ~code segment
is not used. This field is known as the Residence Priority field
aftd is shown on the progra•matic memory link description as
ML.RESIDENCE.PRIORITY.

Associated with each program running on the syste• is a Heaory
Priority field. The memory priority 1walue determin.es the ability
of the ~rogram•s code segments to overlay the code segments of
other programs running on the system. HemDry Priority is st~red
in each memory lint associated with each of the program•s code
segments. It is shown programaatically as ML.INCOMING.PRIORITY.
Heeory priority is also stored initially in the R$sidence
Priority field. Whenever a request for a ~ew code segment to be
brought into memory is received• the memory priority of the
associated program is compared to the residence priority of every
meaorv link currently present in the system memory. The current

81000 MCP MANUAL
HARK 10. 0

implemeAtation of the victim selector always chooses a victim
having the lowest residence priority.

An excepti~n must be made for HCP code segments. As presented in
a prior paragraph• the HCP cannot be denied a requested code
overlay without halting the system. Consequentlr• KCP code
segm.ents ·have an i•perative incoming prioritr• but their
residen~e priority value will decay at a rate equal to or greater
than the programs running on the system.

At a ~ser•specified interval- a routine in GlSHO known as the
sweeper is eKecuted. This routine moves the setting of. the
current touch bit to the previous touch bit, destroying the prior
setting of the previous bit and setting the value of the current
touch bit to zero. This routine is discardable and is eli•inated
by the initializer if the system is running with the Second
Chance victim selector.

The default time period between executions of the sweeper is 800
milliseconds. Users may vary this ti•e period via a keyboard
instruction within certain ranges. Since the sweeper routine may
be executed between any two s-operations, all code in the
software which manipulates aesory links must always insure that
the chain foraed by the address pointer fields is intact.

After the sweeper bas moved the current touch bit to the previous
touch bjt, it then examines the previous touch bit. If the value
is. zero, it incre•ents the current decay interval field,
ML.CURRENT.DK.INT• by the value of the sweep interval. If the
vatue of the current decay interval·js equal to or greater than
the sp~cified decay inteval, NL.DK.INTERVAL, the residence
priority field is decremented.

The default value of the specified decay interval is zero. Users
aar specify different decar interval values vta a keyboard
instruction. Users may also specify that certain code segments
within a program are important and that their ~esidence priority
should not decay untU the specified decay interval has elapsed.
This is accomplished via a supplied normal-state program which
manipulates code files resident on disk. The residence priority
of code segments which are not marked as important will decay
after the default decay interval• zero seconds• has elapsed.
Notic~• however, that this cannot occur for at least one sweep
interval.

When executing with the priority victim selector... the HCP still
maintains a left-off pointer. When the syste• is thrashing• ~hen
the residence priority fields of all memory links have equal

81000 HCP MANUAL
MARK 10. 0

values• the victim selected will continue to be the next memorr
area below the left-off pointer.

ffUl~flAHl:l.611~ .l!.El~kll.IUl M: !tf!UIBI lURUltlli

One of the serious problems confronting virtual storage systems
is memary thrashing. On the 81000 system• memory thrashing
occurs when the working set of procedures for a progra• or set of
programs witl not fit within the portion of main memory available
for overlays. When this state occurs, the systee's performance
begins to degrade. The amount of degradation de~ends on the
·overlay space available, the size and number of seg•ents
competing for •emory• and the frequency of seg•ent transitions.

As the amount of main memory is reduced for a constant
~rogramming task• the amount of degradation due to memory
overlays normally appears very gradual at first. As the
available •emorv is further reduced, a point will be reached
where the degradation due to overlays increases rapidly. This is
the point where the main working set of procedures no longer fit
in main memory and are competing for space. This point is
defined as the thrashing point and is shown in figure 4.1.

I

' 45 +
)

I
I
I

30 , ..

• I
I
J

.,
..
Ir ..

REGION
A

15 + CSLOW

..
Ir

Ir
Ir

x

I EXECUTION
I TIMES>
I
1

Ir

•

J

•
+-- THRASHING POINT
I
I

X<--+.
••••X

I ••• • ,...,,..X

·~-----------·---·---+-------·-------·---------------------24 3& 48 &O 12

MEMORY SIZE <K BYTESJ

FIGURE 4.t: MEMORY VS EXECUTION TINE

EXAMPLE PROGRAM ARM020

81000 HCP MANUAL
. HARK JlO.O

As seen in figure ~.1~ execution of the
less memory than indicated by the
inefficient execution times in region A.

programming task with
thrashing point yields

Beginning vith the 1.0 version of the software, the HCP includes
a program•atic facility for detecting a thrashjng conditio~ in
the system. The fac~lity is included in GISHO as a dfscardable
segment; it is retained or discarded during the Clear/Start
operation based upon the setting of a system option. It may be
u~ed with either victim selection algorithm. It aust be used if
the priGrity victim selection algorithm is used.

The facility is actuated by a clock maintained in the software.
It ut~lizes a count of the number of overlay operations performed
by the software. The count is also aaintained in the software,
of course. The sweeper routine discussed previously is actuated
by the same clock that actuates the thrashing detection routine.

At a user-selected interval• the thrashing detector compares the
nu•ber of overta,s which occurred during the interval to a
user-specified target number of overlays. If the overlay target
is exceeded• the thrashing detector suspends temporarily the
execution of the sweeper routine and begins a count of the number
of consecutive intervals during which the number of overlays
exc~eds the target number. The allowable nu•ber of intervals
d1.aring which thrashing• as defined by the user• is detected is
three.

If the thrashing condition persists for three intervals, the
software informs the operator via a SPO message. The message
will be repeated at N.SECOND intervals until the condition abates
or until the operator requests• via another SPO aessage- that it
nGt be displayed continually. The software also disables the
schedule when thrashing is detected so that no new jobs are
i4itiated. The schedule will be autonaticaltr enabled again when
a program currently being executed teraf nates.

ll'-lHlB.I .llilllAL1ZA11llfi

Hemory is initially allocated by the software during the
Clear/Start operation. This single operation is composed of
several coaponents. For discussion purposes, it •ar be thought
of as two separate operations. The first of the two is the
execution of a stand-alone routine• c~mmonty known as the
Initializer and stored in the disk directory as SYSTEH/INIT. The
initiallzer is brought into memory by the Clear/Start code
contained on the cassette. The second operation is the execution
of some code in the HCP. contained in PBge Zero, Seg•ent One of

4-10

the MCP•s code tile.

81000 HCP MANUAL
MARK 10.0

At the completion of the initializer, memory will be formatted as
shown in figure t.2. Permanently allocated areas will be located
at each end Bf memory. Linked memory will consist of four links
only. The processor f s then passed to the MCP•s code segment for
completion of the Clear/Start operation. Upon completion of the
HCP code• linked •e~orr wilt be formatted as shown in fig~re ~.3.

81000 HCP MANUAL
HARK 10.0

---------------------------------GISMO DATA SPACE I

·---------·--~------------------· INTERRUPT QUEUE

·-------------------------------· I
I

See Note 2 I
I

·-------------------------------· I FIRMWARE TRACE SPACE I

1~----~----~~---------------~-~-1
I GISHO CODE 1

·-------------------------------· MICRO HCP DATA SPACE

·-------------------------------· MCP RUN STRUCTURE NUCLEUS

------>•-------------------------------· I
I
I
I

• Linked
Me•ory

1
I
I
I
I
f

IUJHLI
1----1 SDL INTERPRETER 1----1
t ML J I

·-------------------------------· I I
I I
I I
1----1 I
I ML I

1--~--~-~-~--~-~------------~~~-1
HCP SEGMENT O•l

1------------1 I llffl I Hl I

I
I
I

1----->1-------------------------------1 HCP SEGMENT O•O 1

1-------------------------------1 CHIP ERROR TABLE

·-------------------------------· COLD/START VARIABLES

·-------------------------------· I INTERPRETER DICTIONARY

·----------------~--------------· MCP SEGMENT & PAGE DICTIONARY

·-~-----------------------------· J HCP STACKS I

---------------------------------ADDRESS ZERO

MAXIMUM ADDRESS

See Note 1

figure 4.2 Memory format After Initialization

81000 HCP MANUAL
ffARK 10.0

1. "UTHL" and "LTML" are acronyms for upper and lower
terminating memory lints. These two links have a size field
of zero and a type field which denotes a terainating memory
link. Tbe upper link has a forward pointer of aFFffFFaJ the
lower link has a backward pointer of 3FffFFFa. The links are
used to mark the boundaries of linked meaory for the me•ory
allocatiBn routines. Hemory altoc~ted by these routines wilt
always lie between these two lints.

2. It is possible• during the initialization procedure• for the
operatGr to specify a maxfmu• S•memorv address that fs less
than the actual maximum address of memory on the srste•·
WheA this is done• a proportionate amount of memory is
reserved at t~e location $hown. This memory is• in effect•
deleted from the system. Memory •~Y also be deleted via
certain kevboard instructions available to the operator. In
the latter case1 the deleted memory may lie at almost any
address in the system.

81000 MCP MANUAL
MARK 10.0

----------------------------------I UTHL I
1----1 SOL INTE~PR£TER t------1
I ML I

·--------------------------------· I PORTICHAltNEl TABLE'
1----1 SPO VARIABLES AND BUFFER

·1 Hl I
, _______________________________ _

I IOAT• TAPE PAUSE AND
1----1 TAPE LOCK DESCRIPTORS
I Ml I

1--------------------------------t ADDITIONAL PORTiCHANNEl
1----1 TABLE
t Ml I I

·--------------------------------· J QUEUE DISK TEMPLATE I
J-·--1 I
I Ml I I

·--------------------------------· I
1----1

MICRO MCP SEGMENT
DICTIONARY

I
I
I I Ml I

·--------------------------------· I SOL INTERPRETER SEGMENT I
1----1 DICTIONARY I
I Ml I I
1--------------------------------1
1----1
I ML I

ERD AREA I
I
I

·----·---------------------------· I
I
I
I

FENCE LOCATION I - - - - -
I
1------1
J lTML I

I
See Note 1 I

I
I

- - - - - - - - -· I
I
I

figure 4.l linked Memory format After Clear/Start

81000 HCP MANUAL
MARK tu.o

1. Tho~gh nothing is shown as present in figure 4.3 between the
SDL Interpreter Segment Dictionary and the Lower Terminating
Memory Link~ thfs area will typically be filled with HCP code
segments at the completion of the Clear/Start operation.

2. The purpose of the fence shown in figure 4.l was discussed
previously. The location of the fence is retained in the HCP
stacks. It is not necessary to reserve any memory at all at
the fence location •

.tl~IHlRI BEiLllBtJJEtU.~

The memory that will be required to execute a given program or
set of programs is composed of four coaponents. There are the
static requirements of the operating system, the dyna•ic
requirements of the operating system• the static requireaents of
the program and the dynamic requirements of the progra••

Static require•ents are composed of the data spaces necessary to
operate the system and the program~ Once the static requirements
are established• they typically do not change. For example• once
a program has all of its files open• the me•ory required for the
file Information Blocks and the buffers remain fixed until ~he
files are clo~ed. In the case of the HCP• once the system is
Clear/Started, the static require•ents remain fixed until the
system is Clear/Started again.

DyAaaic requirements are exclusivelr code segments. Assuming
that a working set af the code segments of a program is
established• the dynamic requirements for that prograa will then
be the total amount of •amory that is required to contain the
cade segments that are a part of the working set. The ~perating
svstem•s working set de~ends1 of course• upon the communicate
o~erators that are issued by the program in its own working set.

T~ose items shown in figures 4.Z and 4.3 comprise the static
memory require•ents of the operating system. Each item will now
be discussed and a means of deter•ining the amount of memory
required by the item will be presented. The nu•erical values
presented herein apply to the 9.0 version of the MCP only.

4-15

HCP Stacks

The stacks used
zero in s-memory.
stacks will be
configuration.
4302 bytes.

81000 HCP MANUAL
MARK 10.0

by the MCP will always reside at location
for each released version of the HCP• the

of a fixed size, regardless of the machine
The stacks r&quire roughly 34~416 bits or

MCP Page Dictionary and Seg•ent Zero Dictionary

These two items may never be overlaid and are maintained in
memory i••edfately above the MCP stacks. They will also be
of a fixed size for each released version of the MCP. The
10.0 version of the HCP code is divided into thirtv-tour
segment pages and Page Zero CBntains thirteen segments. Each
entry consists of a system descriptor• which requires 80 bits
or 10 bytes. for the 10.0 version of the MCP, this item
requires 3160 bits or 470 bytes of aemory.

Interpreter Dictionary

An Interpreter Dictionary entry requires 224 bits or 28
bytes. The number of interpreters that may be used on a
system at any given ti•e• and hence the nu•ber of entries
atlo~ed in the Interpreter Dictionary# may be specified by
the user to be any value between l and 31. If the user does
not specify this number. the Cold/Start routine will set this
value to six. The •e•ory required for the Interpreter
Dictionary mar be ealculated by multipt1ing the n~•ber of
interpreters allowed by the size of one entry.

Cold/Start Variables

The variables contained in this area are originally set by
the Cold/Start routine. Many of them may be changed by the
operator. The memory allocated for their storage may not be
changed. It will also be a constant value for each version
of the operating systea. For the to.o version• the memory
required is 2256 bits or Z82 bytes~

Chip Error Table

This area is allocated on 81800 and 81900 series machines
only. On all other machines• no meaory ts required fer this
item. On the B1800 and 81900• the area is used to store the
addresses of memory locatjons which are experiencing
correctable memory parity errors. The size of the area in
bits may be calculated by 40 plus (32 ti•es the Rumber of
entries allowed in the table>. The operator may specify the
number of entries the table should contain. The default

4-16

91000 MCP MANUAL
HARK 10.0

value for the number of entries will be one entry per 16K
bytes of S-memory on the system.

HCP Code in Page Zero- Segment Zero

This code segment is normally referred ttr as •segment Zero•
and the size of the segment is a constant for each released
version of the MCP. This is the only HCP code segment which
does not require a memory link, since it is outside of linked
memory. The code segment requires roughly 5l••to bits or
66a6 bytes of memory.

U~per and Lower Terminating He•ory Links

In the 10.0 verson of the software, a memory link requires
181 bits of •emory. These two then require 374 bits or. 41
bytes.

SOL Interpreter

The sizes of the SDL Interpreters presented here are for
reference only. Accurate size figures and figures for the
various segments of the interpreters are provided in the
appropriate product specification. Segment Zero of the
S-Processor version of the SOL Interpreter requires 8166
bytes. The same segment of the M-Processor version reQuires
8024 bytes.

HCP Run Structure Nucleus

The HCP requires a Run Structure Nucleus field as does every
other program which eKecutes on the system. For the 9.0
version of the software• 2386 bits or 298 bytes are allocated
for this field.

Micro MCP Data Space

Currently• 1249 bits or 156 bytes are allocated for this
space. This requirement is a constant and is not dependent
upon machine configuration nor system options selected• but a
dual processor configuration will require two sach spaces.

GISMO Code

GISMO is not segmented. Selected portions of the GISHO code
are "discarded" by the Initialization routine if ther are not
required on a given s1stem configuration with a given set of
syste• options selected. The amount of memory that will be

81000 MCP MANUAL
HARK 10. 0

req1.1ired to contain GI SHU must therefore always be
calculated.

The Main 8toct of GISMO requires 5500 bytes of me•ory. No
memarr link is required. The amounts of memory shown in the
following table should be added if the condition specified is
tr· ue.

Srste• equipped with Mewory Base 5
Processor is a 81830
Processor is 81720 series
Processor is 81860 series
Pro~essor is Dual 818XX
Referen~e address check option set
Thrashing detection option set
Pri~ritized memory management option set
TOUT option set

104 bytes
436 bytes
540 bvtes
642 bytes

1070 bytes
138 bytes
llt2 bytes
364 bytes
100 bytes

In the list above• the cassette device on the processor
console is not considered a peripheral. Neither the cassette
peripheral segment nor the magnetic tape or cassette segment
shoald be added due to the console cassette.

The control exchanges segaent should be added when the system
is equipped kith two or more disk or tape controls and the
controls address the same peripheral units. High-speed
controls are all disk pack controls and any controls which
address phase-encoded tape drives. Under' no conditions is it
necessary to add any GISHO code segment more than once. The
Dual Processor seg•ent and the 81860 segment must both be
added if the system is a dual processor version.

Firmware Trace Space

This area is allocated only when running with trace versions
of the SOL Interpreter. It should never be allocated in a
customer•s machine. It requires 11440 bits.

Interrupt Queue

Since interrupts occur asynchronously on the 81000 system1
they must be queued until they can be handled by the
appropriate operating srstem routines. One entry in the
interrupt queue requires thirty•six bits. forty-two bits are
req~ired for pointers and counters. The number of entries
which •ar be queued on a given s1stem depends upon the amount
of aemory on the system. The number of entries that will be
allocated may be deter•ined from the following table.

S-Hemory on System Entries

4-18

81000 HCP MANUAL
MARK to.o

---~-----~--~-~--~

Less than 64K bytes
At least 64K bytes but less than 96K bytes
At least 96K bvtes but less than 1Z8K bytes
128K bytes or more

16
20
25
30

The smallest amount of memory that will be altacated for the
interrupt queue is then C42 • C16 X 36) er 618 bits. The
largest amount is 1122 bits.

GISMO Data Space

The GISHO data space is a work area required by GISHO. It is
a fixed size and aaounts to 376 bits.

DCPU DATA SPACE

This is also a York area. It is required on all dual
processor machines and requires 350 bits.

Looking now at figure 4.3# the MCP• prior to completing the
Clear/Start operation, will allocate space for those additional
items shown ~n the figure. The location of the •fence• is not
important to the discussion of the memory requirements of the
HCP. The fence is merely a means of guaranteeing that the HCP
will· atwars find space for its own purposes when such space is
needed. The syste• would be forced to halt if the HCP could not
find the space required.

All of tke items shown in figure 4.3 reside in linked memory.
One •e•~ry liRk (187 bits) is required to describe each of the
iteas in fjgure 4~3

Extended Result Descriptor Area

One extended result descriptor, I/O descriptor and baffer is
required for each SN head-per-track disk control and for each
disk pack spindle on the svstem. Each descriptor and its
associated buffer requires 256 bits. This requirement
applies to all disk pack drives iBterfaced to the 81000
system but not to cartridge drives. The memory re~uired1 in
bits• may be calculated by 256 X C5N controls + disk pack
spindles> • memory link.

B.1000 HCP MANUAL
HARK 10.0

SOL Interpreter Segment Dictionary

The segment dictionary of the SOL Interpreter is considered
non-overlayable, siRce it contains a descriptor for segment
zero of the i.nter·preter which must be non-overlayable to
execute segment zero of the HCP. The size of this area, in
bits• may be calculated by 64 plus C80 times the nuaber of
segments which comprise the interpreter> plus the space
required for one memory lint<.. Th·e SOL Interpreter contains 6
segments1 plus Segment Zero.

Micro HCP Segment Dictionary

This seg•ent dictionary is also considered non-overtavable.
Its size may be calculated in the same manner as the size of
the SDL Interpreter segment dictionary, 64 plus C80 ti•es the
number of segments> plus spac~ for one me&ory link. The
Micro HCP contains 16 segments• plus Seg•ent Zero. The
segment dictionary therefore requires 190 bytes.

Queue Disk Template

The HCP reserves 500 segments of system disk for its own
tem~orary use. The address of this reserved area of disk,
kno1i1n as. Queue Disk1 is stored in the memory area known as
the· Queue Disk Template. This memory area will also contain
one bit to denote the availability of each of the 500
segments, a 2~-bit field which wilt be used to store the
memory address of the next Queue Disk Template if an
additiGnat 500 segments must be allocated and a 128-bit field
known as the Communicate Splitter H~sk. This latter field is
used to determine which communicate operations aay be handled
by the Micro HCP. The size of the initial Que~e Disk
Template field is therefore• 500+3&•2~+128 or 688 bits.
Additional Queue Disk Template fields, if required, Milt
occ~py 560-bit areas. One memo~y link is required on each
Queue Disk Teaplate allocated.

Additional PortlChannel Tables

The HCP and GISMO comaunicate in a number of ways. One such
way is the Port/Channel table. One Port/Channel table is
allocated with the SPO varia~les and buffer at the high end
of li~ked ae~ory. If the system is equipped with multi-line
controls• an additional Port/Channel table will be required
for each one. A Port/Channel table requires 768 bits of
memory plus the space required for one memory link.

4-20

BlOOO HCP MANUAL
HARK 10. 0

IDAT CI/O Assignment Table>

Several items are grouped together in the space reserved for
the IOAT. The IOAT itself requires one entry of 512 bits for
each peripheral unit connected to the srstem with the
exception of the SPO. Each disk pact spindle is considered a
peripheral unit. Head-per-track disk is not. Data
comaunications devices are not considered peripheral units
for the purpose of calculating lOAT size, but each
single-line control connected to the syste• requires one IOAT
entry. One •Pause" descriptor, requiring 96 bits of memory,
is required for each tape control• cassette control and
MTC-2/MTC-4 exchange on the system. One •Lock• des er i pt or,
req~iring 168 bits of aemory1 is required for each tape and
cassette unit connected to the system. One I/O descriptor of
Z48 bits is required if any nu•ber of flexidisk units are
connected to the systea. One meaory link is required to
describe the area containing these items.

Port/Channel Table• SPO Variables and Buffer

Inforaation which the HCP needs to perform its function which
is prim~rily concerned with the s,stem SPO but also includes
infor•ation on other aspects of the system is maintained in
the area known as SPO Variables. This inforeation requires
1351 bits of aemory. The Port/Channel table requires 168
bits and the SPO buffer requires 5&0 bits• for a total of
2679 bits. One memory link is·required to describe the area.

The operating syst~m•s dynamic memory requireaents are deterained
solely by the size of the code segment which performs the
fuacti~ns requested by the user in the working set of his
program. In determining this requirement, it is necessary to
knGw what the program in question is doing. While programs could
be and are Mritten which have file open and close operations as a
part of their working set• this is not normally the case. The
vast majority of programs request only those functions which are
•icro-coded and included in the Micro HCP in their working set
code. This statement is not true.for programs. which use DMS.

This document will niot present the memory r equ ir em en ts for
programs which use OMS. This information will probably be added
at sGse point in the future• but for the present• only the code
segment sizes for operations believed to be coamon and exclusive
of OHS operations will be presented.

4-z1

Btooo MCP HANUAL
MARK 10.0

The list below presents a brief description of the function and
the memory requirement for each of the Micro HCP segments.

SEGMENT.ZERO - 2306 Bytes

Segment Zero of the Micro MCP is always required in memory
when programs are executing.

·SERIAL - 1960 Bytes

This code segment handles reads and writes on serial files
that are opaned input or output but not in any co•bination
form, such as input-output. Also• some files assigned to
data recorders may not require this segment.

SEQUENTIAL - 762 Bytes

Jhjs code segment handles reads and writes on sequential disk
f ites that a~e opened input-output.

RANDOM - 9•4 Bytes

This code segment handles reads• writes and seeks on code
segaents whose access aode is random. This code segment is
req~ired for all rando• disk files• even if the access mode
is delayed random.

COMP.WAIT - 1136 Bytes

This code segment is required to handle co•plex wait
communicate operations. All data communications handlers
genarated by the NOL compiler require the complex wait code
to be present.

DATA.RECOR - 344 Bytes

This code segment is required to handle reads and writes on
files which are assigned to data recorders aRd which are
opeAed input-output or input with stacker selection
capabilities requested.

Hl.PRI.AND - 1292 Bytes

This code segment is required to handle all comaunicate
operations on files which are assigned to reader-sorters.

QUEUE.READ - 856 Bytes

81000 HCP MANUAL
HARK 10.0

This code segment handles read and write operations on
queues. Please refer to the paragraph at the end of this
list.

PQH.GQM - Z674 Bytes

CPut Queue Message.Get Queue Message). This code segment
handles reads and writes on files assigned to queues and to
remote files. Please refer· to the paragraph at the end of
this list.

REMOTE.MRI - 2300 Bytes

This code segment is required to handle writes on files
assigned to remote files. Please refer to the paragraph at
the end of this list.

REMOTE.REA - 2890 Bytes

This code segment handles raads on files assigned to remote
files. It is also required to handle many NOL/MACRO
communicates. Please refer to the paragraph at the end of
ibis list.

DC.INITIAT - 410 Bytes

This code segment handles the DC.INITIATE.IO com•unicate
operation. This communicate is issued by all data
commu~ications handlers generated by the NDL compiler.

MESSAGE.CO - 208 Brtes

This code segment is required to handle ·the •es sage count
communicate operator~ also issued by all data coaaunications
handlers generated by the NOL compiler.

YAaIABLE.L - 412 Drtes

This code segment handles read and write operations on tape
and disk files which use variable-length records. It is
required in addition to the SERIAL code segment.

EMULATOR.T - 508 Bytes

81000 HCP MANUAL
MARK 10.0

This· code segment is required to handle communicate
operations requested by any eaulator interpreter on files
assigned to tape.

DELAYED.RA - 592 Bytes

This code segment• in addition to the random code seg•ent• is
req~ifed to handle reads' writes and seeks on files whose
access type is delayed random. Emulator disk files are in
this category.

INDEXED.SE - 30ZO Bytes

This seqment is used for I/O operations on Indexed Sequential
files• first introduced fn the 9.0 version· of the software
and described in the section of the document on the I/O
Subsystem.

RELATIVE - 3638 Bytes

This segment is used for 1/0 operations perfor•ed on Relative
files• also described in the I/O Subsystem section.

!PC.CODE - 568 8ytes

This. segment is used to perfor• Inter-Process co••unication•
a part of the ANSI '74 COBOL i•plementation first included in
the 9.0 software.

All code necessary to handle queues• reaote files• the
DC.INiflATE.IO communicate and tha MESSAGE.COUNT com•unicate are
included in the Micro-HCP. Hl~rocodfng these functions resulted
in some substantial perfor•anea improvements for most data
coa•unications applications. There are several reasons for the
i•provement• the most obvious being the greater e•ficieBcy of the
code. Another factor is that a •inimal amount of state
information must be saved when comaunicating with the Hicro-KCP.

A third factor is the elimination oi the •bottleneck• problem, as
it has come to be called, for data co•munf cations applications.
Jhis problem arises from the fact that HCPII is a flat structure
and is capable of performing one thing at a time only. In other
words• once the HCf begins performing an open request for
example# it can do nothing else until it completes the open. An

81000 MCP MANUAL
MARK 10.0

open• of course, requires many accesses to the disk subsystem and
the NCP must wait on the completion of each one. Noraal-state
programs are free to execute while the HCP is wajting on each
access1 provided they do not request an HCP service which must be
handled by KCPII.

Consequently, user programs may now use the queue subsystea and
the other items mentioned above while MCPII is serviciRg another
request for other users. In previous releases, these same user
programs had to wait until the HCP completed servicing the
request it was working on at the time. Unfortunately• however,
all.req~ests for functions in the queue subsrstea are not handled
hr the Hicro-MCP. Many of the•, and ~ossibly alt of the•• •ay
still be handled by MCPII.

All memory management functions are still handled by SDL code in
MCPII. Any queue request which involves •emorv management will
therefore have to be handled by HCPII. This will most often
occur in situations where the availabte •emory on a system is
limited. Queue buffers may be written to disk by HCPll, and
hence removed from memory, whenever the HCP needs space for
something else. This will cause MCPII to be invoked when a
progra• attempts to read a queue entry from that buffer.

farther• if a producer of queue entries fills an entire buffer
before tbe consumer can empty it• a new me•ory buffer will be
required. MCPII will be invoked to accomplish the allocation.
U~fortunately• in both of these instances~ the entire working set
of Micro-HCP queue handling segments will be brought intG memory.
oAly to determine that SOL MCP segments are ready required. This
can resalt in substantial performance degradation• particularly
oA systems where availabte memory is limited.

The situation described can be avoided, of course, by insuring
that the consumer of queue entries removes them from the queue at
the same rate that the producer enters them. Since it is only
rarely possible for the programmer to insure that synchronization
exists• a system option has also been provided in the 6.1 release
which will insure that all queue requests are handled exclusively
b~ the SDL HCP. By setting the option• the user may jnswre that
performance does not degrade when going to the 6.1 release, as a
result of the microcoded queue implementation• though he Yill
receive no benefit from it at atl.

Six new segments were added to the Micro-HCP to accomodate the
data communications facilities in the &.1 release. The new
segments are QUEUE.READ through MESSAGE.COUNT inclusively.
Typically, data communication applications which use a handler
program generated bv the NOL compiler should consider all six

81000 HCP MANUAL
HARK 10.0

segments to be a part of their working set, though only the first
four of the six are concerned with the queue i•plementation. The
MESSAGE.COUNT segment is invoked by the co•municate operator of
the same name and is used to deteraine whether or not a message
exists in the queues. The DC.INITIATE.IO segaent is also invoked
by the communicate operator of the same na•e and should always be
considered a part of the working set for any data coamunications
applications.

The static memory r~quirements of a program, that memory which is
required for everything except the program•s code, may be divided
into two classes. Three items which are required are fixed in
size and the user has no control over them. The user actually
has little control over •any of the static requirements• though
there are some items which he may cause tG vary. Items in the
latter category are referred to as conditional requirements.

The fixed requirements of the Program Static Memory are composed
of three components. These are listed below.

Run Structure Nucleus

This is a table of inforaation constructed by the MCP when
the prograa reaches BOJ. It is a fixed size of 2386 bits.

Interpreter Segaent Zero

The size of Segment Zero, the non-overlayable segment, of the
Interpreter being used must be deterained and added. Space
for one memory link must be included.

IBterpreter Segment Dictonary

The nuaber of segments in the Interpreter •ust be deter•ined.
Jhe space required for its segment dictionary is then ten
bytes times the number of seg•ents plus space for one memory
link. Clo X number of seg•ents> ~ memory link.

The following are the conditional items which must be included in
the calculation of Prograa Dependent Static Requirements~

Program Code Segment Dictionary

The number of code segments which comprise the program maJ be

81000 HCP MANUAL
MARK 10.0

determined fro~ the compiler listing of the program. Code
segment dictionary space in bytes is then determined by C 10 X
number of segments) • memory link.

Da:ta Dictionary

The nu·mber of data segments used by the program is 'known to
the programmer and is available from the compiler listing.
The space for the data dicti~nary in bytes is calculated by
ClO X nuaber of data seg•entsl. No •emory link is required.

Base-L hit Area Cal so known as Program Run Str ucturel

This number is.readily available fro• the compiler listing.
It js the totat data space required by the progra11 (between
Base and limit Registers). Space for one •emory link must be
added.

file Dictionary

There is one entry in the file dictionary for each file
declared in the program• regardless of whether it is ever
used or not. fjle Dictionary space is given by ClO X nuaber
of files declared). No memory link is required.

File Information Block <FIB) Space

This •ar be calculated in bits by:

1048 K Number of MICR Files open plus
196 x Number of Printer Files open plus
605 x Number of Re11ot e files open plus
19& x Number of Tape files open plus

1048 x Number of Disk Files open plus
433)(Number of Queue files open plus

1048 x Number of all other files open at the time.

FIB Hemorr Lin.ks

One me•ory link is required for each file that is open.

Total D~ffer Space

The nu•ber of and the size of the buffer areas associated
with each file that is open may be determined from a coapiler
listing. Jhis size should be totaled and added. If the code
file on disk has been modified, ~owever, the size given on
tbe listing may be incorrect. True buffer size may be

BlOOO HCP HAN'UAL
MARK 10.0

determined through an HCP keyboard instruction.
81000 Software Operational Guide.>

I/O Descriptors

<Refer to

There is one 1/0 descriptor• which requires 272 bits of
space- for each buffer in each file that is open.

Disk File Headers

Disk file headers are maintained, either in memory or on
disk• for all disk files that are open. If the tile is
proces s.ed in a random access mode.. the header is ma int ai ned
in memory. Otherwise• the header is stored on disk and
br·o\Jght into meaory when ·new disk areas are allocated. Each
header wilt require 530 bits plus 36 bits for each area
requested by the file declaration. regardless of whether of
not the area is allocated, plus space for one memory link.
This area is required only when the header is in memory.

Header Dictionaries

Dfsk file headers are addressed by the HCP through
dictionaries. These dictionaries are segmented. One segaent
contains space for ten dictionary entries. Each dictionary
entry is a system descriptor and requires 8C bits of memory.
The space required for header dictfonaries may be calculated
by (800 •memory link> X CCdisk files open MOD 101 + lJ bits.

To determine the working set of segments for any prograa one Must
know where a progra• spends its ti•e or its "main line" of
prBcedure calls. The corresponding segment sizes must then be
added ~P for this main sequence. Segment sizes can be obtained
from com?iler listings. For RPG programs• all code seg•ents •ust
be included in the working set. for alt other programs the
compilers produce a list of code segments ·and sizes. Then the
working set segments should be listed and totalled. All seg•ent
sizes should have 20 bytes added to account for the size of an
associated memory link.

As previoust~ discussed, if any interpreter segments are used by
the prBgram# these must also be included in the total.

81000 HCP MANUAL
HARK 10.0

The function of M-me•ory management is to best Manage the
available control memory <H-me1111>ry} in a dyna11icatt1 changing
environment. Tbere are four events which are able to affect the
system•s deaand for H-aemory by the introduction or removal of
i11terpreters:

BOJ
EOJ
ROLLIN
ROLLOUJ

U~BB the occurrence of any of
changes• the new demands
reallocated.

these• 1f the interpreter set
wilt be evaluated and H-memory

0Ae of two allocation schemes will be employed:

JllilB.llUlll.Qfi

This method distributes the available M-memory statically among
the active interpreters. The size of each portion depends on the
interpreter's needs• and the available a•ount of H-me•ory. Jhe
portion of the interpreter which is not able to be placed in
H-aeaory remains in S-me•ory. As the number of active
i~terpreters increases. this allocation scheme remains in effect
UAtil f~rther dispersion of H-memory would result in a severe
performance degradation. Hhen this threshold is reached~ the
second allocation sche•e is put into effect.

This method dynamically shares M-memory, in the form of n fixed
size pages. among greater than n interpreters contenrling for
these pages. When an interpreter succeeds in capturing a page of
H·aemor,, the low-order portion of the interpreter will be copied
into the page from S-me•ory. Hovever• when the page is
re-captured by another interpreter, since there is no mechanism
for transferring infor~ation from H-memory to S-meaorr• the
i11formation in that page will. be lost. Hence~ all active
iAterpreters must be entirely in s-aeaory.

DETAILED DESCRIPTION

l. When a new interpreter is to be brought into memory• the

5-1

81000 HCP MANUAL
HAR.K 10. 0

procedure •M.IN.H.our• is called. This may be called either
from BOJ# EOJ, ROLL.IN• or ROLL.OUT. The last entrr ~n the
interpreter dictionary is first stored in •DIC.LAST.LDC•.
Then the interpreter dictionary is searched for entries
whose usercount is equal to zero <thus no longer in use>.
These entries are deleted by calling •M.CLEAROUT".

The previous allocation method is then stored. If there is
no M.HEMORY on the system CB1710 series>~ then the procedure
"NO.K• is called. NO.M examines in turn, each entry in the
interpreter dictionary to ascertain if it is in s.HEHORY or
not, and if not• the procedure "D.ro.s• ts called to bring
in the interpreter fro• disk. The presence bit is then set
Calthough the system has no M.HEMORf>• and a pseudo H.MEMORY
address is calculated and stored in "ID.H.ADDR". NO.M then
exits to H.IH.M.OUT and thence to the procedure which called
M.IN.M.OUT.

Assuming that M.HEHORY does exist, the total minimum number
of H.MEHORY pages required for alt interpreters is added to
that required for CSH• t~en this total number of pages is
compared to the total number of pages of M.HEHORY available
on the system.

If tke total number of pages requ~red is greater than those
available• then the contention •ethod is invoked• otherwise
the distribution method is invoked. The contention method
will be discussed first. for the distribution method•
proceed to step 6.

z. The contention method calls the procedure •CNTN.SETUP".
CNJN.SETUP fir~t chects to see if the pages remaining after
CSM is allocated is less than 2., and if so• then all the
interpreters Mill be contending for the remaintng page,
including SOL, and the procedure contention is called
Cproceed to step 31. If the number of reaaining pages after
allocating CSM is not tess than Z• then this nu•ber of pages
is stored in •M.NUHBER.PAGES•. The SDt interpreter is
assigned a page. plus any fraction of a page which may be
left over. lhis •ay occur if CSM does not occupy exactly a
full page, normally 1024 words. Next~ the number of active
interpreters is counted and this nu•ber compared against
M.NUMBER.P~GES. If H.NUMBER.PAGES is greater than or equal
to the number of active interpreters• then the distribution
method ts called (proceed to step 61. <This could be caused
by an interpreter with a very.large •inimum requirement.>

3. Jhe procedure contention first ascertains if the SDL
interpreter is partially resident in 'S.MEHORY• and either
M.NUMBER.PAGES is equal to 111 or the portion of' the SOL
interpreter in M.HEHORY is greater than the size allocated
for SOL. If so• then the procedure "HIL.JO.S" is called,

5-2

81000 MCP MANUAL
HARK 10.0

else proceed to step 4. HIL.TO.S saves the current s.MEMORY
address of the SOL interpreter• and stores the disk address
of the SDL inte:rpreter in the interpreter dictionarr entry
for SOL. The procedure •o.ra.s• is then called to bring in
the tnterpreter from disk. 0.10.s looks.for memory for the
interpreter, mates the found address •od. 16~ read$ the
interpreter into memory and •arks the interpreter dictionary
entrr present. If sufficient •eaory space was not f~und,
then the previous (partiall SOL interpreter i~ restored in
.S.HEMORY• and atl procedures e«ited .. returning all zeros to
the procedure which called M.[N.H.OUT. Otherwise~ the new
coDy Ccompletel is marked not present in M.HEMORY and the
memor~ space of the ·Old partial copy marked available.
HIL.JO.S now exits• returning to the contention procedure
<proceed to step 51.

4. If neither •K.NUMBER.PAGES" is equal to 1 nor the portion of
the SOL interpreter in H.HEHORY is greater than that
allocated for SOL, and if the portion of the SDL interpreter
in H.MEHORY is less than that allo~ed. then the procedure
"LK.OUT.MOR• is called to move more of the SOL interpreter
from S.HEMORY to M.HEHORY.

5. The procedure "H.CLEAROUT• is then catted to clear out of
the interpreter dictionary all partially resident
interpreters• ·with the exception of SOL. Each entry in the
interpreter dictionary is then in turn examined, and passed
through the procedure "CNTN.LDADR" until all entries are
examined• at which time contention is exited to M.IN.M.UUT
(proceed to step 101.

The function of the procedure "CNJN.LOADR• is to load
interpreters either from disk to s.MEMORY• and/or from
S.MEKORY to H.MEMORY. It first examines the interpreter
dictionary entry to deteraine whether the interpreter is on
disk or in S.MEHORY. If it is not in S.HEMORY• then the
procedure •n.TO.S" is called to bring the interpreter in
from disk. If sufficient meeory,space is not found• then
o.ro.s exits ·through all procedures• returning all zeros to
the procedure which called M.IN.M.OUT. "Ia.M.ADDR• and
•10.TOPH" are calculated. Each interpreter is set up for
one page of memory. If there is available N.MEMDRY left•
then the page is overlayed from S.MEMORY to H.HEMORY
(proceed to step 101.

6. If the total nuaber of pages required is not greater than
those available# then the distribution method is invoked•
and the procedure •REDISTRIBUTION" called. The procedure
redistribution calculates whether the amount of available
H.MEMORY is exactly of a size required to house the minimum
requirements of all interpreters and CSH. If so' then the

81000 HCP MANUAL
HARK 10.0

procedure •H.GRINDER" is called passing a value of 1.
CProceed to step 71.

Otherwise, the total amount of memory required to house the
maximum requirements of alt interpreters and CSH is
calculated and compared against the total amount of M.MEHORY
available, and if less than or equal to the amount of
M.MEMORY available- then the procedure H.GRINOER is catted•
passing a value <field WHICH > of zero <proceed to step 71.

If neither of the above conditiBns js met Cthat is, neither
the minimum nor the maxiaum of alt interpreters will ·fit in
M.HEHORYJ then the procedure "DISTRIBUTE• is called. passing
a value Cf ield HUH> of zero. The procedure distr~bute
stores the m~ximua available M.HEHORf, aaount required for
CSM• then if HUH= O• it initially assigns each interpreter
its minimum required space, increments each one in turn by
one page. until alt available M.MEHORY is allocated. If HUH
= 1, each interpreter•s minimum is assumed ·to be zero~ then
inereaented by one page until all available M.HEKORY is
allocated. The procedure M.GRINDER is then called• passing
a value Cf ield WHICHl of z.

1. The •ain function of H.GRINDER is to reallocate H.HEMORY one
of three different ways, depending on the values of "WHICH".
M.GRINDER exaaines each interpreter dictionary entry in
turn. After having examined alt fnterpreters• if there is
still some H.MEMORY re•aining1 then proceed to step 9•
othervise proceed to step 10.

If the entry being examined is not in M.HEMORY1 or the page
being examined is not the current M.MEMORY page• then
p~oceed to step 9. Otherwise# if the siz~ of this page in
H.HEMORY is not the size it should be• proc•ed to step 8.

If this M.HEMORY page is the correct size; and if the
interpreter is either partially resident in S.MEMORr or if
the total length of the interpreter is less than or equal to
the aaount of this interpreter currently in M.MEMORJ Ci.e.,
the interpreter is entirely in M.HEMORY>; and this
interpreter is not in S.MEHORY1 then proceed to step 9.

Otherwise !that is- the interpreter is entirely resident in
s.HEMORY, so the portion of s.KEHORY which was copied to
M.MEMORY •ust be returned>• the interp~eter is •arked as
partially resident in s.MEHORY. If the total length of the
interpreter is less than or. equal to the amount of the
interpreter currently in M.HEHORY• then the procedure
•ALL.IN.Mn is called to return the entire !.MEMORY space for
this interpreter. Otherwise• the procedure •LK.OUT.HEM• is
called to return the s.MEHORY space corresponding to that
portion of the interpreter which has been copied into
H.MEHORY.

6.

81000 HCP MANUAL
HARK 10.0

If the amount of the interpreter in H.MEMORY is less
the amount allocated in M.HEMORY for this interpreter.
the procedure "LK.OUT.MOR• is called to copy more of
interpreter from S.HEHORY to N.MEHORY.

than
then
the

9. If this point is reached• then the appropriate interpreter
must be brought in from disk.

The procedure •K.CLEAROUJ• is called to clear out all
partial interpreters from the interpreter ·dictionary <vith
the exception of the SOL interpreter and already fitted
interpreters).

If the current entry in the interpreter dictionary is SDL,
then the procedure HIL.JO.S is called <refer to step 3 for
the functions of HIL.TO.SJ. If sufficient me•ory space is
not found in HIL.JO.S• then exit through all procedures
passing a value of alt zeros to the procedure which called
M.IN.M.OUT. Next, each entry in the interpreter dictionary
is examined in turn, and if present in s.MEMORY but not in
ff.MEMORY• then the procedure "S.JO.M" is catted to overlay
the appropriate page from S.MEHORY to M.MEHORY• and to
return either the entire s.HEMORY space occupied by the
interpreter or else to return only the portion overlaid.
Eac~ entrr in the interpreter dictionary is once again
examined in turn• and if the presence bit is set• proceed to
step 10.

If the presence bit is not set, then the procedure O.Jo.s is
called to bring in the interpreter fro• disk to memory
!refer to step 3 for a description of O.JO.SJ. If
sufficient memory is not found in D.ro.s, then all
procedures are exited, passing a value of all zeros to the
procedure which called M.IN.M.OUT.

The procedure s.ro.H is then called Csee description above>.

10. At this point1 the allocation method <either distribution or
contention) has been decided and executed, and control
passed back to M.IN.H.OUT.

If the new allocation method cho~en was successful, and if
the new allocation method is the saae as the old one,
proceed to step 11. If the new method is distribution
Ctherefore• the old was contention)• then the procedure
RELEASE.A.SEG is called to mark the HCP segment REIN.STATE
available <reset save bit in the meaory lint). If the new
method is contention• then the procedure SAVE.A.SEG is
called to mark the HCP segment REIN.STATE saved Cset save
bit in the aeaory link>·

5-5

81000 HCP MANUAL
HARK to.o

11. If the value passes to M.GRINOER CWHlCHl was O or 1. Then
return from M.GRIHDER through redistribution• to M.IN.H.OUT.
If the value passed to M.GRINDER <WHICH> was z, then return
from M•GRINDER through DISTRIBUTE to REDISTRIBUTION• to
H.IN.H.OUT and thence to the procedure which called
K.IN.M.OUJ.

81000 MCP MANUAL
HARK 10.0

Viewing the MCP as a manager of processes emphasizes its role in
the management of job execution. That part of the MCP concerned
with such management aay be ter•ed the "process co~troller".
While the pracess controller is not a distinct •odule· in the HCP1
it is a convenient term to describe all those distinct functions
which• taken together• form a conceptual package. Certain of
these fanctions1 namely "ROLLIN•, •ROLLOUJ", "CAUSE•, •HANG
PROGRAM•• are best understood within this context and will be
discussed in depth in this section.

The actual execution of programs, the allocation of processor
ti•e to processes which are ready to execute and are• therefore,
in the Ready Queue, is accomplished by •icro code contained in
GISHO knDwn as the •Micro Scheduler~. The Micro Scheduler is a
part of the process controller. The Micro Scheduler is
responsible for the allocation of atl processor ·ti•e on all
processors which may be attached to the·system.

The process controller is driven by the occurrence of certain
software events• called •soft events•, which can be identified
and anticipated bv the MCP. When a pr~cess subaf ts a request to
the HCP, the process· may or may not be required to wait. If a
wait is necessary- the HCP is able to anticipate the event upon
which that process must wait. Thus the HCP can l~bel the job as
waiting for some "soft event•, suspend the job by placing it in
the •wait queue•, and continue to execute its other dgties. When
the soft event "happens•, the Micro MCP can search the wait queue
to discover the process marked waiting for the happening of that
event.

The •HANG PROGRAM"' function.. which places programs in the wait
q~eue• and the "CAUSE" function• which takes progra•s from the
wait queue~ are crucial. Both functions must be cognizant of the
saae soft events. "HANG PHOGRAH 8 is responsible for creating a
unique bit string which will represent the soft event for a
process. On the other end "'CAUSE" •ust have the proper soft
event generated for it• so that the waiting process can be
located.

The main asset of this method of process manipulation is to free
the HCP from waiting for the completion of 1/0 operations. It is
able to iRitiate a requested operation and to independently match
a soft event with its corresponding process at a future time when
the operation has been completed.

6-1

81000 HCP MANUAL
HARK 10.0

The process controller receives inputs from two sources: an •110
DEVICE• or a •CONTROL DEVICE•. Both may af feci processe$ in the
svstam. User demands upon the system are submitted through a
coRtrol device which may accept only control language statements.
On the e1000, the supervisory print~r CSPO> mav only be used as a
control device. The card reader mar be dynamically assigned as a
control device or an I/O device. All other peripheral devices
mar be ~sed as 1/0 devices only. In addjtion• a program may act
as a control device by sending a communicate to the HCP which
contains a control language statement. See •PROGRAM
COMMUNICATES".

Control language statements• of direct interes~ to the process
controller, may be divided into three categories:

Cl> State•ents which generate a soft
suspended process become active•
peripheral device>

event <e.g.. allow a
direct a process to a

CZJ Stateaents which cause job suspension

Cl> Statements which request job execution and provide all the
appropriate paraaeters

If the control language statement requested that a job be
executed• the "Control Language Processor• directs that the job
be scheduled. Briefly, the scheduling function involves placing
it in the "schedule queue" but allocating no machine resources.
I~ the MCP outer loop, the schedule queue is periodicattv
checked• and the first job in the queue is initialized.

•Program Initialization• involves atlocating the •achine
resources and setting up the structures necessary for program
ea< e cut i o n. 0 nc e the j ob ha s been i n ~i ti al i z ed • i t i s pt a c-e d i n
the •READY QUEUE• to await act~al execution.

Once a prograa has been initialized, it will nove in and out of
six possible states during the course of its life in the system:

READY .QUEUE
COMMUNICATE QUEUE
WAIT QUEUE
NOT QUEUED• EXECUTING
NOT QU~UED• COMMUNICATE BEING ANALYZED
H COMHUNlCAlE QUEUE

6-2

81000 HCP MANUAL
HARK 110.0

The ready queue contains jobs which are ready to run. The
communicate queue contains jobs which have requested some HCP
function. The wait queue contains jobs which are waiting for the
happeniAg of a "soft event•.

The que~ing mechanis• is managed as follows. All run structures
are linked in memory by priority. A field in the run structure
nucleus~ •RS.Q.IDENT•• specifies the current state of the
pracess. The first •ember of a queue can thus be found by
searching the linked list of run structures until the proper
value iA RS.Q.IOENT is found.

A job ~aiting in the ready queue represents a demand for
processor tiae upon the s~stem~ This queue is interrogated by
the Micro Scheduter. If a job is found~ the reinstate fanction1
which is performed by the Micro Scheduler in GISMO• is called in
preparation for turning the processor over to that job. Briefly•
the reinstate function performs certain housekeeping duties and
causes a processor to begin execution of that job.

The program ~4ll execute until one of three things happen:

Cll The ~rogram•s interpreter discovers an interrupt which
requires the HCP•s attention.

C2J The program needs some MCP service performed before it can
cuntinue

Cll The master processor instructs the slave to idle.

In any case a communicate message is built in a field called
RS.COHHUNICATE.HSG.PTR in the program's Run Structure Nucleus and
control is passed hack to the Micro Scheduler.

The contents of RS.COMMUNICAJE.HSG.PTR? analyzed by
•coamunicate handler• ~n the Micro Scheduler, specifies
action is to be taken upon the program. In the case of
a~ove~ the aessage ~ill simply c~ntain a request to be put
in the ready queue. <The Micro Scheduler then returns to
outer loop where it independently discovers the INTERRUPT.>

the
what

(1)

back
its

A request for service <2> may or may not require that the progra•
wait for t~e happening'of some soft ~jent. If the request can
i•mediately be serviced, the Micro Scheduler does so and places
the job back in the ready queue. If the program must wait,

BlOOO MCP MANUAL
HARK 10. 0

however~ the •HANG PROGRAM• function is called.

•HANG PROGRAM• puts the job in the wait queue and labels it as
waiting on tke appropriate soft event. Depending on the reason
for the wait.. the program may or may 'Bot be •roiled out•.· The
"ROLLOUT• function will copy all but a central core of the
program•s Run Structure Nucleus to disk. for a detailed
discussion of these functfonsP see their respective sections
below.~

The program will remain in the wait queue until the event upon
whicb it was waiting has been •caused•. The soft event upon
which a job must wait may come from thre·e basic sources:

Cll I/O interrupts

CZ> Control language stateaents

C31 MCP

I/O interr~pts are •hard events• which must be transformed into
soft events before they may be associated with a process. A hard
event is any asynchronous occurrence in the hardware of which the
software must be cognizant. The occurence of such a hard event
is usually manifested by a flag in the processor. The function
of "l/O COMPLETE• is to transform those hard events of interest
to a process into its corresponding soft event.

Some control language statements will cause the control language
processor to generate soft events. Such statements signify the
happening of some event a process might be waiting for Ce.g.,
·Axw, "IL•, •uL•, •Go•. and "OK•).

Other soft events are generated internally by the HCP. For
exaaple• processes waiting on a no-me•ory condition or a parent
program waiting for the termination of a nested program must be
notified when they are able to resume processing. The HCP
generates such soft events.

At the 1>0 int when tb 1e soft eve int . has been generated C from
whatever source>• one can say that the •event has happened•.
This soft event is used by the Micro Scheduler function to locate
the corrasponding process in the wait queue.

81000 HCP MANUAL
HARK 10.0

If the process is in Memory <had not been rotted outJ• the Micro
Scheduler analfzes the reason that the process had been waiting
to determine whether or not the last comm~nicate was completed.
If it was, the job is put in the ready queue to await
reinstateaent. If the communicate was not completed• the job is
p~t in the com•unicate queue to wait for the reinitiation of the
communicate by the comaunicate handler.

If the process was n,ot fn •e11ory and memor·r is availa'ble .. then
the •ROLLIN" functton is catted. Its duty ls to re-est~bli$h the
r~n structure that had been •rotted out• to 'disk. The ~eason for
waiting is then analyzed in the saae manner described above. If
there ~as· no me•ory available for roll-in• then the job is put
back in the wait queue to wait for ae•ory. The wait reason will
be updated to reflect this status change and to specify into
which q~e~e the job would have gone had •emory been available.
When meaorv becomes available, the job will be put directly into
the specified queue.

The process will continue to be manip~lated in this fashion until
it has completed execution. At that time it will request the
end-of-job function fro• the HCP and terminate.

tt&e UYIEB. WUJ.e

81000 HCP MANUAL
HARK 10. 0

The HCP can be viewed as a program whose sole dutr is .to respond
to demands made upon it by the system. This see•ingly innocuous
statement is valid even though the HCP is a vastly complex
program. The complexity arises, however1 by virtue of the
diversity of demands to which the HCP is able to respond.

J h ere ar e f i v e bas i c cat ego r i es o f de m ands to w h i c b t he .HCP
initially responds. These categories are recognized at the
o~termost ar most global level of the HCP, which iteratively
searches for each. Once a demand is found1 it is analyzed at
i~creasing levels of detail and resolved according to its
specific request. Control is then returned to the outer loop
which continues to search for demands.

The five tvpes of demands recognized by the HCP•s outer loop are
described below.

11.t!~B lHIIRBU.f!l

The first type of demand recognized by the MCP is called a timer
interrupt. There are two fields in the MCP•s global data space:
A software maintained system clock and a clock mas~. Everv tenth
of a second an interrupt is caused by the hardware. GISMO
dete~ts this interrupt and bumps the system clock. Every time
the HCP begins its loop searching for demand~· it checks to see
if the value of the system clock has exceeded the value of the
clock •ask. If it has, the HCP calls the •ff.SECOND• routine to
perform its housekeeping duties and resets the clock •ask to some
value greater than the syste~ clock~ See "N.SECOND routine•.

llJl l.tUEB.BU.f!l~

AB 1/0 interrupt is a soft mechanfs• by which GISHO nBtifies the
MCP that an I/O operation is coaptete. GISMO will only do so
when the HCP requests that it be notified or when an exception
condition has occurred on the I/O operation. This should not be
confused with a "service request• type of interrupt. This
service request is a hard level in the processor and is used to
notify the software that a hardware I/O control is in need of
service.

81000 .HCP MANUAL
HARK 10.0

The HCP will request notification of the
completion onlr when there is a need for it to
does not request the return of I/O coaptete
l/O operations unless the program which caused
be initiated is waiting on the I/D operatio~.
f~rther in the sections of the specification
WRITE.

occurrence of I/O
know. The HCP

interrupts on aser
the operation to

This is discussed
covering READ and

When an I/O operation is completed, GISHO stores the result
de~criptor associated with the operation in its proper location
in memory. Jhe field is known as the •result descript~r f ietd•
and is a part of the actual I/O descriptor. There is an area
allocated in •emory knoMn as the interrupt stack# which is
actualty a queue of 1/0 complete interrupts. GISMO, after
storing the result descriptor, if the interrupt request bit in
the descriptor. was on• stores the address of the result
descriptor in the interrupt stack and •causes• the HCP, if it is
waiting. In its outer loop~ the HCP requests that GtSMO deliver
the address on the top of the interrupt stack. It analyzes the

- descriptor at that address and takes the appropriate action. The
MCP coatinues to request addresses from GISMO in this fashion
until the stack has been exhausted.

Upon receiving a descriptor's address from GISHO# the HCP invokes
a routiBe called •10.COHPLETE" to begin the analysis. Depending
oA the value found in a field of the result descriptor•
IO • COM PL ET E in v ok es one of t he fol l ow i n g HCP f ac it i t i e s, each o f
which is disc~ssed in depth• on the following pages.

CAUSE HE:CHANISM
CONTROL LANGUAGE
IOAT MAINTENANCE
1/0 ERflOR HANDLER
SPO MAINTENANCE

CSEE •PROCESS MANAGEMENT•>
PROCESSOR

JQB i~l!E.DJU .. lli§ A!Jl lJUilJLIZAll.QH

After exhausting the interrupt stack, and if an MCP global,
•cHANGE.BIJ•, is true, the MCP checks the •schedule que~e" to
determine if any jobs have been scheduled for execution.
CKANGE.BIT will be false whenever a previous ~ttempt at program
initialization failed because of insufficient memory, and nothing
has intervened to create a possibility of success at this·
attempt. The progra• initialization routiAe sets CHANGE.BIT to
zero (false) whenever an initialization fails. It is set to one
(true> whenever a block of •emory is freed ~Y job termination or
"rolloutn• whenever a new job is placed at the top of the active
schedule, or whenever explicitly .set by the •ps• control language
statement. The HCP is thus able to maximize its own resources by

1-2

81000 MCP MANUAL
HARK 10.0

by-passing a futile attempt at job initialization.

The sched~le queue contains an active and a waiting schedule.
Bath are linked lists on disk which contain those jobs awaiting
execution but for which no memory resources have yet been
allocated. The control language processor identifies a request
hr a job to be executed. It builds a tog entry Csee •LOGGING
INFORHAfIONftJ for that job and links it by priority and time of
request to other jobs waiting to be initialized. See •CONTROL
LANGUAGE PROCESSORw for exact specifications. The active
schedule lists those jobs that are ready to run. The waiting
schedule contains those jobs whose initialization must await the
occurrence of some event Ci.a., the termination of another job or
o~erator control message>. WheA the event happens, the job is
transferred from the waiting schedule to the active schedule,
where the HCP will find it.

The HCP selects the first job in the active schedule for
initialization. once the job has been de-queued, control is
passed to the •prograa initializer• which attocates the machine
resources and sets up the structures necessary for the program's
execution.

A program may request certain services from the MCP. These
requests represent another class of demands to which the HCP must
respond. The "communicate queue" contains jobs which have
submitted such a request.

The que~ing mechanism is managed as follows. Each run structure
nacleus contains two fields: •Rs.COHHUNICATE.HSG.PTR• which is a
~tandard message area and •RS.Q.IDENT• which specifies in which
queue• if any~ the program is. The value of RS.Q.IDENT may be:

0 = READY QUEUE
1 = COHHUNICATE QUEUE

11 = WAIT QU£UE
-2 = NOT QUEUED Ci.e •• running>
10 = HMCP COMMUNICATE QUEUE

3 = EXTERMINAIE QUEUE

All run structures are linked together by priority. Thus the
members of a given queue mar be discovered by searching the
linked list of run structures and checking RS.Q.IDENT.

7-3

81000 HCP MANUAL
HARK io.o

The first job in the coamunicate queue is serviced according to
the conteRts of RS.COMMUNICAJE.HSG.PTR. The message is initially
analyzed by the coemunicate message handling routine which calls
the proper subroutine to further analyze the message and take the
appropriate act ion. The proper subroutine is dete1·mined by the
first two bits of this •essage area catled •ffS.ITfPE•. The
values and corresponding meanings of this field are as follows:

00 = INTERPRETER GENERATED COMMUNICATES
01 = PROGRAM GENERATED COMMUNICATES
10 = UNDEFINED
11 = FILE CLEANUP COHHUNICATE

Interpreter generated communicates contain requests from the
program•s interpreter for services which are unrelated to the
program's code. Ihese include requests for missing segments,
trace and run time error messages, etc.

Program generated communicates are
services such as t/O operations.
•PROGRAM COMMUNICATES•.

requests for code related
These are specified under

The file cleanup communicate is an HCP generated communicate used
in conjunction with prograa end-of-job.

Jo. be spec if i ed.

All object programs coaaunicate with the ~CP by means of a
Co•municate s-operator. The operator serves to transfer control
from the user•s interpreter to the HCP•s. Though many
communicates are now handled br micro-code in the Micro•HCP• the
means of communication has not changed. The co•piter generates
code which establishes an area in the program•s run structure.
This area generallr conforms to a sta~dard for•at which is
recognizable by the HCP. The fields in this area are defined
arbitrarily. however. Onlr the first twelve bits of the field
must coBform to the format presented below.

Note:

81000 HCP MANUAL
MARK to.o

---------------------------------------VERB
OBJECT
ADVERB
cr.1
cr.2
CT.3
CT.4
CT.5
CJ.6
cr.1
CT.8
CT.9
CJ.10
cr.11
CJ.lZ
CJ.13
CT.14
er.ts

0 - 11
lZ - 35
l& - 41
46 - 71
72 - 95
96 - 119

120 - 143
144 - 167
168 - 191
192 - 215
Zl6 - 239
240 - 263
264 - 291
298 - 321
122 - 345
34& - 369
370 - 393
394 - 411

All com•unicates return a value of ;000000000000~ or
aoooo1eoooooo~ in the RS.REINSTATE~KSG.PTR unless
otherwise specified.

Alt interpr~ters1 when executing the Communicate S•operator•
store a pointer to the reserved• formatted meaory area in the
field called RS.COHMUNICATE.HSG.PJR -0f the RS.NUCLEUS of the
program being executed. This forty-eight bit field specifies not
oBly the relative address of the communicate area, but also the
size of the area in bits. for further information on this aspect
of the operation• refer to the programmatic ~escription of the
Run Structure Nucleus.

If the HCP needs to convey information back to the object program
after executing the requested communicate• it does so by setting
the field called RS.REINST.TE.HSG.PTR to a selected value. If no
information is to be conveyed• this field is set to either
~ooooooooooa or ~00001aoooooo~ before reinstating the program.
Other val~es• and their associated meanings depend upon the type
of communicate being executed1 and are described for each
co•municate in the sections which fotlow.

1-5

CT.VERB

CT.VERB
CT .oB.JECT
CT.ADVERB

00

8100-0 MCP MANUAL
MARK 10.0

ILLEGAL COMMUNICATE

01
FILE.NUMBER
BIT
0
1

REPORT .1 RETURN JO USER ON EOF
REPORT & RETURN TO USER ON PARITY

2 REPORT & RETURN JO USER ON INCOMPLETE 1/0
3
4-6
1
a-11

LENGTH ADDRESS PAIR IS PRESENT FOR RESULT MASK FIELD

CT.I
CJ.2
CT.l

STACKERS--SJACKER I IS IN CT.3

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS
RANDOH FILE ACTUAL BINARY DISK KEY
<RECORD NUMBER INSERTED BY MCP FOR SERIAL
OR
LENGTH Of KEY FOR REMOTE FILES

CT.4 ADDRESS Of KEY FOR REMOTE FILES ONLY
CT.5 LENGTH IN 0115 OF RESULT MASK
CT.6 BASE RELATIVE ADDRESS Of RESULT MASK FIELD
REINSTATE.MSG.PTR VALUES

0 GOOD READ
1 END OF FILE
2 1/0 ERROR
3 INCOMPLETE I/O
4 IMPOSSIBLE SEARCH (RPG SEARCH OP>

FILES>

A READ communicate on the 81000 System serves to deliver a
logical record to the user prograa. It does this by moving the
record from the I/O buffer area in memory, where it was
previously stored by the CSM• to the user•s Run Structure
<Base/Limit> area. In almost all cases• the READ1 WRITE and SEEK
co•municates are performed by the Micro-HCP. This has been true
since the 5.1 release of the software.

The information passed in the communicate area must include a
uAique file number. fhjs nu•bar is assigned by the compilers and
is passed to the NCP in CT.OBJECT. The same st~tement is true
for alt communicates which deal with an 1/0 operation• such as
WRITE, SEEK• OPEN, CLOSE• POSITION and so forth.

The communicate information must also contain the base-relative
address of the memory area where the record is to be stored and
the length" in bits .. of this area. These i teas are passed in
CT.2 and Cf.I• respectively.

7-6

810.00 MCP MANUAL
HARK 10.0

Lagical record size is contained in the FPB• which is constructed
by the compilers from information contained in the user's file
declaration. In the case of variable-length records, logical
record size may be contained in the record itself. The length of
the user's "work area•• contained in cr.1, does not hav• to be
eq~al to the logical record size. If CT.1 is larger than logical
record• size. the movement to the work area will occur
left-justified with blank fill on the right. If cr.t is smaller
than logical record size, truncation from the right will occur.
i B th e l at t er ca s e • i n format i on w il l be lo s t fro• t he low -or de r
postions of the record.

for a sequential file• the record delivered will be the next
record in sequence in the file. for a rando• disk file, the
record to be •oved is specified by the binary number in cr.1.
Record nuabering in a random file on the 81000 system begins Mith
one• by definition, regardless of the source language which the
user program is written in. A zero passed in CT.3 will be
considered invalid by the HCP and the appropriate action will b~
taken.

If the user program included code to be perf oraed when the end of
the file is reached or, in the case of random fHes- when CT.3
specifies a nuaber which is beyond the end of the file or
describes a record which has not yet been written or is otherwise
jAvalid• the specified bit in CT.ADVERB should te turned on.

If the ~ser program included code to be perforaed when an I/O
error occurs and cannot be corrected by the HCP, the proper bit
iA CJ.ADVERB should be turned on. If control is returned to the
user in this case1 if the bit in CJ.ADVERB is on, the user's work
area will contain the record which was read errone~usly. In this
case• nothing in the work area should be assumed to be valid.

Ordinarilr• when a user requests a logical record and the
associated physical I/O operation is not yet complete, the
program is not allowed to execute until· such time as the
requested record can be ,delivered to hi·s work area. for
sequential files, I/O operations to filt all of tbe l/O buffer
areas assigned to the file are initiated when the file is opened.
The HCP attempts to stav ahead of the user progra• from that
point, injtiating a new 1/0 operation to pre-fitt each buffer as
soBn as it is eaptied by the user progra•·

for some Data Communications applications, it is not feasible for
the user progra• to wait until a requested l/O completes. If,
for example• the program is reading cards and the card reader is
O()'t ready, it may be a tong time until the operation completes.
for such programs~ the third bit in CJ.ADVERB is used.. Setting

1-1

81000 HCP MANUAL
HARK 10.0

this bit causes the HCP to return control to the user program,
regardless of whether a record was delivered or not. If no
record was delivered, the program is informed of the situation by
setting proper values in RS.REINSTAJE.HSG.PJR. This is discussed
im more detail later in this section.

Remote files may consist of more
terminal. In such a case, it is
to specify the identification of
fram. This fs acco•plished
proper values.

than one data communications
necessary for the object program
the terminal it wishes to read
by setting CJ.3 and CT.4 to the

In all three of the cases described previously• where bits one,
two or three are set in CT.ADVERBP it is necessary for the HCP to
inform the user progra• of the existing condition. This is
accomplished by setting a field in the RS.NUCLEUS to a specific
value prior to reinstating the program. The field is defined as
RE.REINSTATE.MSG.PTR and is accessed by the us~•s inte~preter as
soon as ft is reinstated• after doing a communicate. If a valid
record was delivered to the user• the aessage field is set to a
value of zero. It will be set to one• two or three if the
respective bits are on in CT.ADVERB and the condition assigned to
these bits exists.

If a user program READ communicate encounters an end-of-file
condition and bit one in CJ.ADVERB is not set• the program will
be discontinued by the MCP. If a user l/O operation res~lts in
an irrecoverable error and bit two is not set in the READ
communicate which requests the record• the program will be
discontinued by the HCP. If a user program requests the data
from an 1/0 operation which is not yet complete and bit three of
the adverb is not set, the program is merely forced to ~ait for
the I/O completion.

For files which are assigned to Data Recorders and other selected
card Input/Output devices, the user may specify that the card
which was read is to be routed to a certain physical stacker on
the device. This is acc~mplished by setting the specified bit in
CT.ADVERB to one and bv setting CT.3 to the binary number which
designates the physical stacker. In this case, there is never a
need for more than one buffer area to be assigned to the file•
aRd the HCP OPEN routine will prevent this from happening. Card
I/D operations in this case are not "buffered• and card
throughput will decrease accordingly.

For random disk files, a READ co•municate may not result in an
I/O operation being initiated. If the user who does the READ is
the sole user of the file and if the block which contains the
requested record is already in •emory in one of the user's buffer

7-8

81000 HCP MANUAL
HARK 10. 0

areas• the requested record will be simply aoved to his work
area. This action is not performed if there is more than one
user of the file.

CT.VERB
CT.OBJECT
CT.ADVERB

CT.1
cr .. 2
CJ.3

CT .-4
CT.5
CT.6

oz
FILE.NUMBER
BIT
0
1
2
l
4-5
6

REPORT & RETURN TO USER ON EOF
REPORT ' RETURN ro USER ON PARITY
REPORT & RETURN TO USER ON INCOMPLETE 1/0
LENGTH ADDRESS PAIR IS PRESENT FOR RESULT MASK FIELD

QUEUE FILES: WRITE TO FRONT OF
QUEUE <•STACK•>.

7 STACKERS--STACKER I IS IN CT.3
8•11 PRINTER SPACING C4 BIT VALUE)

0 NO PAPER ADVANCE
1 SKIP TO CHANNEL 1 AFTER PRINTING
Z SKIP TO CHANNEL 2 AFTER PRINTING
3 SKIP TO CHANNEL 3 AFTER PRINTING
4 SKIP TO CHANNEL 4 AFTER PRINTING
5 SKIP TO CHANNEL 5 AFTER PRINTING
6 SKIP TO CHANNEL 6 AFTER PRINTING
1 SKIP TO CHANNEL 7 AFTER PRINTING
8 SKIP TO CHANNEL 8 AFTER PRINTING
9 SKIP TO CHANNEL 9 AFTER PRINTING
A SKIP TO CHANNEL 10 AFTER PRINTING
B SKIP TO CHANNEL 11 AFTER PRINTING
C SKIP TO CHANNEL 12 AFTER PRINTING
0 SKIP TO TOP Of FORM C150C LPM PRINTER ONLTl
E SINGLE SPACE AFTER PRINTING
f DOUBLE SPACE AFTER PRINTING

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADD"ESS
RANDOM FILE ACTUAL BINARY DISK KEY
CRECORD NUMBER INSERJED BY MCP FOR SERIAL FILES)
OR
LENGTH Of KEY FOR REMOTE FILES
ADDRESS Of KEY FOR REMOTE FILES ONLY
LENGTH IN BITS Of RESULT MASK
BASE RELATIVE ADDRESS Of RESULT MASK FIELD

REINSTATE.MSG.PlR VALUES
0 GOO.D WRITE
1 END OF FILE
2 1/0 ERROR
3 INCOMPLETE l/O

A WRITE communicate on the 81000 syste• operates in a manner
similar to READ. The user program constru~ts a logical record

81000 HCP MANUAL
HARK 10.0

somewhere within it~ Run Structure and communicates with the HCP.
The HC.P will then move the data fr,oa the work area.. the address
and length of which are described by CT.2 and CJ.1 respectively#
to the next available I/O buffer area. The program will be
allowed to continue as soon as the movement of the data occursJ
it is not forced to wait for completion of the actual I/O
operation.

As in the case of the READ communicate, either blank-fill or
truncation of the record will occwr• depending upon the sizes of
the w·ork area and the file• s logf cal record. The buffer' will be
released• which aeans that the corresponding l/O operation wilt
be initiated, as soon as the buffer area has been filled to
capacity. A prograa is forced to wait for l/O completion if the
HCP cannot find an available buffer ta which it can •ove the
record. A buffer is unavailable if the previous 1/0 operation,
which may have been initiated some time ago• is not yet complete.

£Bd-of-file is not reported to a user on an output file except in
the cases of disk files and some printer files. End-of-file for
a disk file is defined to be an atteapt by the user to write past
the declared size of the tile. The de~tared size of all disk
files is maintained in the file Header, a permanent entity
created when the file is opened output for the first time.

fDr files assigned to printers• end-of-file may be defined to be
the sensing by the hardware of the physical end of the page. In
all cases, this is not actuallt the end of the page~ but rather
the seBsing of a channel twelve punch ia the Carriage Control
Jape. This sensing will be reported to user prograas1 if
requested by setting bit one in CT.ADVERB aBd by setting a bit in
the FPB for the f ite. Notice that• because of the fact that the
HCP is examining the result of I/O operations which may have been
initiated so•e time ago• end-of-page is not reported when it
occurs, but •n• write operations later• where •n• is the number
of buffers assigned to the file.

1/0 errors are also reported to user programs on the WRITE
communicate, if requested. This inforaation is necessarilr of
little practical use. on any Burroughs operating system.
Ostensibly• the I/O error routines of the MCP(s) should be of
s~ch a nature that.the need to report this occurrence never
arises.

The same Data Communications applications which use bit three of
the adverb on READ~ use it in a similar manner on WRIJE. When
using this bit in the adverb, control is returned to the user
when a WRITE is requested but the buffer that should be used is
nBt yet available to the MCP. Again• this can be caused by the

1-10

91000 HCP MANUAL
HARK 10.0

device itself going not ready.

Printer spacing information must be passed to the HCP on each
WRITE com•unicate for a file which is assigned to a printer.
This is accomplished by setting the proper bits in the adverb, as
pictured in the preceding.

Serial disk files may be opened by the user p.rogram for both
iBput aftd output operations. In other words• the file may be
o~ened in such a manner that both a READ and a WRITE communicate
are acceptable, with no intervening Close and Open. When this
ty,pe of OPEN co1111unfcate occurs• the MCP will pre-fill all of the
b~ffers• as if the file had been opened INPUT only• but the
b~f*ers are released at different points in the READ and WRITE
co•municate processing.

The HCP will not move buffer pointers at the conclusion of a READ
communicate* as it normally does. Instead~ it must wait until
the next coamunicate operator associated with that file is
received. If the succeeding communicate is a WRITE~ it wfll move
the data from the work area to the butter and change the
operation code in the 1/0 descriptor to a Write. It will mark
the progra• •ready to be reinstated•• and then rotate the baff ers
in anticipation of the next communicate operator. In this
specification• the term •rotate the buffers• •eans that the HCP
moves the necessary buffer pointers and initiates the 1/0 if
necessary.

If the next communicate received at this point is a WRITE• the
MCP1 after insuring that the next buffer ts availab(e for use,
will move the data again, from the work area to the buffer and
rotate the buffer pointers. If the communicate had been a READ1
the HCP would have eoved the data in the opposite direction and
it would not have rotated the buffer pointers.

In summary• for this type of file. two successive READ operations
witl move two successive records from the file to the user's work
area. Two successive WRITE operations will cause two successive
records to be written into the file• A sequence of operations
sach as READ-WRIJE-READ-WR1TE will cause two successive records
to be delivered to the user and the same records• but not
necessarily the same data, to be written in the file. The
E~d-of-File pointer for a sequential file may be extended when
the file is opened in this manner.

Disk files which contain variable-length records may not be
~?ened for both input and output operations• or for randoa access
processing.

1-11

81000 MCP MANUAL
HARK 10. 0

for Sequential 1/0 files. a physical I/O
necessarily initiated each time the user program
for blocked files1 if the user has done a WRITE
the block• the operation witl be initiated only
pointers are moved past the end of the block.

operation is not
does a WRITE.

on any record in
when the buff er

for data communications files• the f i et ds described as CT .3 and
CT.4 are used on WRITE communicates exactly as they are on READ
cammunicates.

for random disk files a WRITE communicate aav result in more than
oBe physical I/O operation. If the file is blocked• the block
which c~ntaiBs the requested record must be in a buffer in memory
before the record is inserted in the block and actually written
to disk. fhis is due to the fact that the hardware can only
irtitiate· I/O operations and ter•inate ·them on segment bou.ndari es.

If the block which contains the requested record is not in memory
when 'the WRITE is issued• the HCP will initiate a Read operation1
force the requesting user to wait for its completion• move the
record into its respective position in the block after the l/O
completes, allow the user to be reinstated at this point and
initiate the requested Write operation• if the file is being
accessed in the RANDOM mode.

In the &.1 release of the software, a file access method known as
DELAYED RANDOM was implemented. When DELAYED RANDOM is used, the
first req~est for a logical record of a given block of a DELAYED
RANDOM file will result in a phrsicat I/O which reads the
necessary block into •eeory. Subsequent accesses to the block
will not generate any physical l/O•s as long as the block remains
in me•ory. A block is overlayed if a request is made for a block
not currently in memory, at this time the least recently accessed
block is chosen as the one to overlay. If the chosen block has
been apdated in memory it is written to disk before the new block
is read. Periodically• all blocks that have been updated in
memory are written to disk by the SMCP.

CT.VERB
CT.OBJECT
CT.ADVERB
CT.I
CT.2
CT.3

03
FILE.NUMBER

RANDOM FILE ACTUAL BINARY DISK KEY

1-12

81000 HCP MANUAL
HARK 10.0

The SEEK communicate is an instruction to the HCP to position the
arms property~ on movable-arm devices• and to fill one of the
b~ffers assigned to the file with the block of data which
contains the requested logical record. This communicate is
applicable to rando• dist files only. The user is not forced to
wait for the co•pletion of an I/O operation initiated by a SEEK
co••unicata. He aay be forced to wait if there is no buffer
available to use for the operation.

The SEEK communicate may be used by the user programaer to mask
some or all of the time required by a READ communicate vith
computation. It may also be used• prior to a WRITE communicate~
to eliminate the necessity of waiting for a buffer to be
pre-filled when using blocked fites.

No data is moved to or from the user•s work area by the lGgic of
a SEEK communicate.

CT.VERB
CT.OBJECT
CT.ADVERB

CT.1
cr.2
CT.3

04
FILE.NUMBER
BIT
0-4
5
6
1
8
9
10

TRANSFER
POCKET SELECf
STOP-FLOW
BATCH-COUNT
POCKET LIGHT

11 ENDORSE
POCKET NUMBER
BASE RELATIVE
BIT LENGTH OF

TRANSFER ~DDRESS
TRANSFERRED DATA

The SORTER CONTROL communjcate is used in conjunction with files
assigned to Reader-Sorters only. Such files· aay be utilized
properly in COBOL progra•s only. Other languages may include
portions of the syntax necessary for proper use of a
Reader-Sorter, though only COBOL contains everything that is
necessary.

When the MCP receives an I/O Complete interrupt from the
Reader-Sorter• . it i••ediately· references the program which is
using that sorter# determines th& memory address of the "USE
ROUTINE work areaft, and places a formatted ~opy of the result
descriptor from the I/O operation followed by an image of the
item itself in the work area. It then reinstates the user at the
code address of his USE ROUTINE. (for additional information on

1-13

81000 HCP MANUAL
HARK 10.0

ltea Processing• refer to the 81000 COBOL Reference Manual1 Form
Nu•ber 1051197.J

The HCP takes the action described above regardless of other
processing that is occurring. The action described is commonly

· knawn as "High-Priority Interrupt Handling•.

Only three of the five possible adverb bits mar be set in a
communicate addressed to the MCP while the user prGgram is
executing the USE ROUTINE. These three bits are 'TRANSFERP
STOP-FLOW and POCKET SELECT. The TRANSFER bit fs discussed in a
subsequent paragraph. If the POCKET SELECT bit is set• the HCP
will use tbe value in CT.1 as the pocket number on the sorter for
that item. If the STOP-FLOW bit is set in the adverb• the HCP
will also issue the appropriate I/D Descriptor to the sorter.
After receiving the communicate, regardless of the adverb bits•
the HCP will continue doing whatever it was doing at the time the
interrupt was recejved; the user must give up control at this
point.

Pocket selection on the sorter thus happens asynchronously with
everything that is occurring on the syste•• except the sorter.
This is currently the only device connected to the 81000 which
operate~ in such a aanner. The necessity for this action is
dictated by the fact that the sorter is actually a •real-time•
device and must be serviced in a speciftc ti•e period after a
check has been read by the hardware.

The TRANSFER bjt and its function was added to the 8.0 version of
the HCP. When the TRANSFER bit is not setP which w~ll be the
case for all prograas compiled prior to the e.o release of the
software, the HCP• upon receiving the POCKET SELECT commanicate1
will dispatch the pocket number supplied to the sorter control
and ptace an image of the item in a "tank• area in •emory. The
namber of ite•s that may be contained in the tank area is
specified by the user and corresponds to the number of buffers
requested for the sorter f ite. In actuality• there will be only
one buffer and I/O descriptor, regardless of the numb~r

requested• but the buffers requested will·be used to determine
the size of the tank area.

Item images will be removed from the tank when the user program
does a SORTER READ operation on the sorter tile. The images will
be delivered in se~uence to the program. Obviously1 the tank
area will become full if items are introduced to the system more
rapidly than the user program does SORTER READ operations. If
this occurs• the HCP will dispatch a STOP-FLOW I/O descriptor to
the sorter control, thus stopping the introduction of items.
flow will be automatically started by the HCP when the tank area

1-14

81000 MCP MANUAL
MARK to. 0

is again empty. In this manner• the system prevents
TDO_LATE_TO_POCKET_SELECI and
occurr· ing.

TOO_lATE_to_READ conditions from

If the TRANSFER bit is set in the SORTER CONTROL communicate• the
HCP will not tank the actual i•age of the ite• tut will store the
data at the locatfon specified by cr.z and CT.3 from the
program's run structure. In this manner• the user may cause the
HCP to tank whatever he chooses• thus eliminating the need for
several programming steps from the user program. A maximum of
ome hundred characters may be passed and tanked per item.

The BATCH-COUNT bit in the adverb is used to advance the batch
counter on the sorter by one• each tiae it is received by the
HCP. This adverb bit will only be accepted by the HCP when the
user program is not in the POCKET SELECT USE ROUTINE• and a High
Priority Interrupt condition does not eiist.

Each pocket on a Reader-Sorter has a red indicator la•P• visible
to the operator• above it. The lights may be turned on
prograaatically by the object program issuing a SORTER CONTROL
communicate with the POCKET LIGHT bit in the adverb set. Upon
receiving such a coa•unicate~ the HCP will issue an I/O
descriptor to the sorter which will instruct jt it turn on the
light above the pocket specified bv CT~t. The hardware wilt only
take s1.1ch action when the flow of itf111s th·rough the sorter has
been stopped. The saae is true of the BATCR COUNT operation.

CT.VERB
CT.OBJECT
CT.ADVERB
cr.1
cr.2

05
FILE.NUMBER

READ AREA BIT LENGTH
READ AREA BASE RELATIVE BIT ADDRESS

Check Citem> iaages are passed to the user program
asynchronously. As described above, an item image is passed to
the program whenever one is available to the system. The user
progra• is expecting t,o READ these images synctironous·lv• ·however"
by issuing SORTER READ co••unicates.

The MCP therefore te•porarily stores these images in memory,
passing them to the user progra• in succes$ion, upon receiving
thjs coea~nicate. (Notice that the user prograa has already seen
the images in his POCKET SELECT USE ROUTINE.) This operation is
commonly known as •tanking•.

7-15

81000 HCP MANUAL
HARK 10.aO

The operation of the. SORTEfi READ communicate is similar to that
of READ. Item images are passed to the user•s work area by the
HCPJ the leRgth and location of the work area is specified by
CT.1 and cr.2 respectively.

There is actually a secondary purpose to the SORTER READ
communicate; it informs the HCP fo the user program•s processing
rate. As described above• i•ages are passed im•ediately to the
user for pocket selection but any other coamunicate· from within a
POCKET SELECT USE ~OUTINE is prohibited. The images aay not be
written to disk or saved by the user in any manner, except when
they are received via a SORTER READ coamunicate.

Therefore• if the soft •tanks" of ite• iaages maintained by the
HCP begin to fill up, which indicates that the sorter is
delivering Images faster than the user can process the•- the HCP
will .automatically stop ftow on the so1·ter until the user pro.gram
catches ~P· The sorter aay therefore operate sporadically, in
burs~s. but all ite•s will at least be pocket selected.

The image of the item in the tank is preceded tr a twenty-four
digit Cnfnety-six bit> expansion of the actual result descriptor
received froa the hardware in connection with that item. This is
passed to the user prograa on the SORTER READ communicate• just
as it is placed in his USE ROUTINE work area prior to reinstating
his USE ROUTINE.

Though Qnly two communicate formats are iaplemented for use with
Reader-Sorters1 the HCP must do a lot more to make this operation
possible. A program which opens a sorter causes many different
itess to be marked non-overlayable in ae•ory. This is described
•ore fully under the OPEN communicate. for a aore comprehensive
explanation of Reader-Sorter operation, refer to the 81000 COBOL
Reference Manual, form Number 1057197.

CT.VERB
CT.OBJECT
CT.ADVERB

06
INVOKE
BIT
0
1
2

3
4
5
6-11

NUMBER & PATH NUMBER

INCLUDES PACK ID Of DICTION ARY

O".STAJUS FORMAT
O=:BINARY
1=4-BIT DECINAIL
ON EXCEPTION
UPDA'IE
REORGANIZATION C REORG ONLY>

7-16

cr.1
cr.2
CJ.3
CT.4
CT.5

CT.6

CT.VERB
CT.OBJECT
CT.ADVERB

CT.1
CT.2

CT.VERB
CT.OBJECT
CT.ADVERB

81000 HCP MANUAL
HARK 10.0

OM.STATUS REGISTER BIT LENGTH
DM.SIAJUS REGISTER BASE RELATIVE BIT ADDRESS
DATA BASE NAME BASE RELATIVE BIT ADDRESS
DATA BASE NAME BIT LENGTH
PACKIO BASE RELATIVE BIT ADDRESS CBIT 0 Of

CT.ADVERB = 11
PACKIO BIT LENGTH CBIT 0 Of CT.ADVERB = 11

07

BIT
0-1
2

3
4-11

OH.STATUS FORMAT
O=BINARY
1=4-BIT DECIMAL
ON EXCEPTION

ON.STATUS REGISTER BIT LENGTH
OM.STATUS REGISTER BASE RELATIVE BIT ADDRESS

08
FILE.NUMBER
BIT
0 INPUT
1 OUTPUT
2 NEW FILE
3 PUNCH
4 PRINT
5 NO REWIND/INTERPRET <DATA RECORDERS>
6 REVERSE/POCKET CCARD PUNCH>
1 LOCK
8 LOCKOUT
9 REPORT FILE MISSING

10 REPORT FILE LOCKED
11 OVERRIDE NAMING CONVENTION AND SECURITY

REINSTATE.HSG.PTR VALUES
0 GOOD OPEN
1 FILE NOT PRESENT CINPUT DISK)

PACK NOT PRESENT (OUTPUT DISK)

2
NO HORE FILES ON MULTI-FILE REEL CTAPEJ

FILE LOCKED <DISK FILES ONLY>

The OPEN communicate serves primarily to associate a phrsica1
file with the logical file declared in the user's program. The
coamunicate has other functions and is also used when such an
association has already been made. Basically, the processing
invoked by an OPEN communicate obeys the rules set forth in the

1-11

81000 HCP MANUAL
MARK 10. 0

definition of the COBOL language.

The object program must pass the unique file number assigned to
the file by the compiler in Ct.OBJECT. The MCP will use this
nuaber to obtain the disk address of the fPB constructed by the
compiler for that file. It will read the FPB into memory,
allocate 11e11ory to contain the FIB· the proper n.u•ber of 1/0
descriptors and the buffer areas for the f ite. It will then
cmnstruct the r1e, based upon the inforaation in the fPB, the
physical characteristics of the de~ice assigned to the file and•
in some cases, the logical characteristics of an existing file.

The memorv area allocated for a file fs, except in the case· of a
Data Ma~agement file• a contiguous area. OAe meaorv link onlr is
necessary to describe a ti le area. The file area will contaf n
all of the items mentioned in the preceding paragraph. FIBs vary
in size, depeRding on the type of device assigned. No memory is
allocated for this purpose until a device assignment has been
made.

One of the first tests made in the OPEN routine is, "Is the file
already Open?". This is a violation of the rules of all
languages and the H£f has no choice, if the test is true, but to
discontin~e the program. There cannot be two consecutive OPEN
ca•municates on the same file without an intervening CLOSE
communicate.

An~ther preliminary test is , •Has a device assignaent already
been made?•. If true, the OPEN processing follows a different
course. Device assignment is of prime iaportance to the OPEN
routine.

A third preliminary test is whether or not the file is to be
assigned to disk. If the file is a disk file, the course of
action followed is described under the heading •oisk file
Assignaent•. The re•ainder of the discussion under Device
Assignment applies to non-disk files, that are being Opened for
the first ti11e.

The next major test made by the OPEN routiA~ is whether the file
is being o.pened for input• output or both. Only certain card
devices, such as Data Recorders, may be opened for both input and
output, excl~sive of disk files. Certain other combiBations of
the various bits in the adverb are also ftlegat. These will be
discussed in turn. For the case mentioned above, atteapting to

1-18

81000 MCP MANUAL
HARK 10.0

open a card reader, for example, for output purposes will result
in the program being DS-ed by the HCP.

If the file is being opened input• the HCP will attempt to match
the external names-in the FPO of the file• FPB.HULTI.FILE.ID and
FPO.FILE.ID. wfth the labels read previouslr by the STATUS
routine on each peripheral device. If no match is found1 the
operator is notified and the program is forced to wait until a
file with the requested label is introduced to the system, or
until the operator resolves the •No file• condition is some other
manner. System SPO and Control Card syntax is available to allow
the operator this alternative. The program ~ill re•oved from
memory if possible.

If a match is found on two or more units,
notified of this also and again• the program' is
The MCP cannot recover auto•aticalty from this
operator must inform it that he has resolved the
situation. Again, srste• SPO and CoAtrot
available to do this.

the operator is
forced to wait.
condition; the
•Duplicate Fite•
Card syntax is

The MCP's Control Card routine is invoked whenever a card input
device goes froa a ~ot Ready condition to a fieady condition. The
routine then reads ~he first card fros the device. If this card,
or in some cases, a subsequent card causes a job to be sched~ted
far execution• the Control Card routine retains control of the
HCP, reads tke next card• and processes it. It will continue to
retain control until the card reader goes not readv• or until a
DATA card is encountered. If the Control Card routine terminates
processing due to the encountering of a DATA card• the physical
input file described by the DATA card is associated with the last
job whicb it placed in the schedule. This is onlr true if the
Control Card routine did not lose control between the time it
e~countered the card which caused a job to be scheduled and the
time it encountered the DATA card.

The HCP will not report a Duplicate file situation• if one
exists• if the input file being opened is a card file or a
pseudo-reader file and if the job has a physical file associated
with it in the manner described above. Rather, the MCP merely
allows the associated physical file to be opened by the Jobi
provided the external identi tiers in the physical. label and in
the f PB are equal.

Control Card syntax is provided to allow the operator to specify
the physical unit which contains a specific logical file. This
specification may be made when the job 4s scheduled for execution
or it aay be made permanently by mGdif1ing the FPO in the
progra••s code file on disk. If such a specification has been

7-19

81000 HCP MANUAL
HARK 10.0

made, the HCP•s OPEN routine will not attempt to match external
identifiers• but will simply assign the physical file on the
requested unit to the logical file being opened, provided, of
course. that the unit is available for such an assignment. It
should be noted that making such a specification in an FPB also
changes the hardware type in the FPB to match the hardware type
of the ~nit specified. Units are specified by anemonic name.

If the unit being opened is a tape unit, additional tests are
necessary before the device may be assigned. The Reel Number
field in the ~nit•s label must match the correspondin~- field in
the logical file•s fPB. for tape units• Multi-File Identifiers•
file Identifiers and Reel Numbers •ust alt be equal. Also- in
the case of a tape file, Control Card syntax is provided to allow
the operator to specify the Serial Number of a particular reel of
tape. If this is done1 all four conditions must be met. As in
the case of unit mnemonic specification• Serial Number·
specification •ay be made when the job is scheduled for execution
or it may be made permanently.

The HCP will allow tape files to be opened when the user
prograamer does not know the logical.record and physical block
sizes actuallr written on the tape. These fields are left
unspecified in the FPB by the compiler but the default bit in the
f PB• f PB.OEFAULT• is turned on. The recording aode of a tape
file may also be left unspecified ff the bit is set. The HCP
will insert the proper values into these fields when the tape is
opened• provided the inforaation is present in the tape~s label.
If the information is not present, the program will be
discoBtinued when the OPEN is attempted.

The HCP will also insert values for record and block sizes when
all card input files are npened and FPS.DEFAULT is set.

The HCP witl discontinue any program which attempts to open a
file contained on seven-track tape if the logical record size
contained in the fPB for the file is not •oduto six and if the
programmer has specified the tape to be read without hardware
translation to EBCDIC. This is true regardless of which bit,
lBput or Output, is set in the Adverb.

When the HCP receives a request to OPEN a file for output
p~rposes, one of the first iteas that must be checked is whether
or not the file should be assigned to a Backup devfce• which aay
be tape or disk. If the user has requested that the tile be
directed to backup, this will occur before the search for a
saitable output unit is made. Backup capabilities are discussed
in a separate part of this document.

1-20

81000 HCP MANUAL
MARK 10.0

Assuming that the file is not to be sent to Backup. the HCP next
checks to see if the user programmer has requested that the file
have sp&ciat forms for o~tput. This test is wade for atl output
files9 regardless of device type. If FPO.FORMS is set to one•
which indicates that special forms are required, the HCP will
print aA appropriate eessage and force the program to wait until
the operator repties in the proper mann~r. Syntax is provided to
allow this. When the operator replies. the OPEN routine is again
invoked and the file will be assigned to the device specified by
the operator, is any, provided the unit available.

In the absence of a Forms specifjcation by the user, the HCP will
search the IOAJ for an avaitable unit of the type specified by
FPB.HOWR. As described in a prtor section• certain values which
this field aay contain are not actually hardware types but
specify a gro~p of types• such as •any tape"' "any head-per-track
disk" and so forth. In order to be available for output
p~rposes, the unit •ust be ready, must not be currently in use by
another prog·ra·• and must be write enabled.

If the NCP cannot find an available unit of the type requested,
it will check to see if it is permissible to direct the ou~put to
a Backup device. If so, it witl attempt to do so. This is also
discussed in the section of this specification describing the
Backup operation.

If there is no available unit of the type specified by the user
and if it is not permissible to direct the file to a Backup
device• the MCP will print a Message on the SPO to inform the
operator that such a unit is re~uired before the program1 which
will be identified• can proceed. The progra• will be forced to
wait at this point, and will be removed from meaorr• if possible.

The HCP •ar recover the program fro• this condition
aytomatically~ with no operator intervention. If a suitable unit
becomes avaflable for output purposes. the OPEN communicate
processing for the program will be repeated. Control Card and
Keyboard syntax is provided to allow the operator to override the
hardware type specified in the user•s FPB. Syntax is also
provided to allow the operator to force the OPEN processing to be
repeated. In this case• the HCP merely tries again.

The HCP will automaticaltr discontinue any program which attempts
to OPEN# for output purposes• a file whose hardware type
specifies a paper tape reader, a r~ader-sorter, a card reader, a
Syste• SPO or an unknown device.

1-21

81000 MCP MANUAL
HARK 10.0

Certain devices on the Blooo may be opened for both input and
o~tput operations. These devices are all card devices; no tape
unit may be opened for both types of operations- except via the
Emulator Tape constructs. At the present ti•e• there are only
three s~ch devices, and they have come to be commonly known as
"Data RecGrders•. Actually• according to the 81000 Srstems
Index• P.s. 1904 5681, they are the:

1. 89418-2 80-Column Keypunch-Printer
2. 89419-2 96-Column Keypunch-Printer
3. 89419-6 96-Colu•n Keypunch-Printer-Sorter

All of the devices in the above list have one •wait Station•. A
Wait Station is used for holding the physical card after it has
been read• or at least fed froa the input hopper• and before it
is printed or punched or botb. All of the devices listed have at
least one hardware buffer• capable of holding the information
contained on one card. This buffer is used on input operations
only. "Input" as used here will mean input to the computer.

The table below present the nu•ber of input hoppers and output
stackers on each physical device.

Device Hoppers
CinputJ

Stackers
<Outpu~>

---89418-2
89419-2
89419-6

2
2
2

2
2
6

Three different I/O Controls are used to interface the devices to
the 81000 system. They are:

1. MFC-1 (P.S. 2208 3034)
2. HFC-Z CP.S. 2208 30341
]. CRPC CP.S. 2211 1371)

The following I/O operations are defined in the appropriate
product specification for all of the controls.

READ - <From the buffer in the peripheral). This operation is
known• f~r conversational purposes- as the REPEAT.READ. Valid
variants are:

Stacker Select
Inhibit feed
Hopper Select

81000 HCP MANUAL
MARK 10.0

SJACKER.SELECT.ANO.READ CRead the information from the next
card in the hopper>. Valid variants are:

Stacker Select
Inhibit Feed
Hopper Select

PUNCH. Valid variants are:
Stacker Select
Inhibit feed
Hopper Select

PRINT. ~alid variants are:
Stacker Select
Inhibit feed
Hopper Select

PUNCH-PRINT. Valid variants are:
Stacker Select
Unequal Data
Inhibit feed
Hopper Select

PUNCH-PRINT.AND.READ Valid variants are:
Stacker Select
Unequal Data
Hopper Select

The Stacker Select variant is actually a three-bit field in the
I/O De5criptor. When the three bits are set to ~umeric values
other than zero and seven1 the device routes the card to the
stacker selected by the descriptor. Valid numeric values to~ the
devices range from one to six. The MCP does not• and cannot,
edit the numeric value passed by the object prograa to ascertain
that it is valid for the connected device.

The Unequal Data variant is valid only in l/O descriptors which
cause a Punch-Print operation to be perfor•ed. If the variant is
not set• the device will print the saae information that is
p~nched on the card. In other words- the beginning memory
address for the inforsation to be printed is the same as the
beginni~g aemory address for the informatio~ to be punched. If
the variant is set, the information to be printed will be taken
from a aemory location which immediately follow9 the infor•ation
that is punched.

The Inhibit feed variant causes the Wait Station in the device to
be empty at the completion of the operation. No cards will be

1-21

81000 HCP MANUAL
MARK 10.0

fed from the input hoppers if this variant is set in the
descriptor.

The Hopper Select variant causes the feed card to be taken from
the secondary input hopper, if there is one. It· the Inhibit feed
variant is set• the Hopper Select variant is ignored.

There is a limitation, which was mentioned briefty in a prior
paragraph. The HCP cannot distinguish betKeen the 89419-Z• which
has two oatput stackers1 and the 89419-61 which has six. The HCP
dDes not edit stacker numbers before it sends them to the
cantrot. Therefore• progra•s which utilize all six stackers Bn
the 89419-6 may not be transported to systems which do not have
s~ch a device. Even if the HCP could disti~guish between the two
devices• the editing would have to be micro-coded and would
seriously degrade performance.

The capabilities available to the object· programmer are
program•aticalty selected by variants on the OPEN communicate and
br variants Bn the READ and WRITE coamunicates. The discussion
is categorized according to the different types of OPEN
available.

When the MCP receives an OPEN request with none of the bits in
the ADVERB area set# it witl assume that the progra• only wants
the infor•atlon contained on the cards and does not intend to do
stacker selection, Read-Punch operations• or any other variation
available in the hardware. The I/O descriptors constructed as a
result of this tvpe of OPEN will all be of the Repeat.Read type.
There may be any number of buffers associated with the file. All
of the buffers will be filled wheR the file is opened. Stacker
Selection is not allowed when the file is opened in this manner.

When the MCP receives an OPEN request with the Pocket bit set• it
will construct one descriptor, the operator field of which will
contain a STACKER.SELECT.AND.READ instruction. The buffer will
not be filled Khen the file is opened. The first READ on the
file will cause the first card in the data dect to be moved past
the read head and stopped in the Wait Station. The data from the
card will be transferred to the object program•s work area before
control is returned to the progra•· Stacker Select information
passed on the first read may or •av not be passed on to the
device and wilt have no effect at alt.

The second and all subsequent reads should have Stacker Selection
information associated with them. The HCP will not, however,
include code to insure thf s. The NCP wilt not allow more than
one buffer to be associated with this t1Pe Gf file.

81000 MCP MANUAL
MARK lo.o

This action is distinctly different from the most commoa type of
READ request handled by the MCP. The actual operation is always
issued after the co•municate is received~ and never before• as it
is with al11ost all types of input files. The I/O operation can
never be comleted ahead of the demand for ·it. This operation is~
bQwever. ~imitar to the current HCP action for Sequential I/O
files on Disk. The file can actually be thought of as an
IAput/O~tput file• for all practical purposes. It must be
cons.idered such a file by the HCP, in order for the I/O to be
initiated at the proper time in a card read cycle. The OUTPUT
bit in the OPEN adverb should never be set when the OPEN is
requested# however. This wilt cau~e the com•unicate to have an
entirely different Meaning.

Q~ite obviously, due to the differences fn timing, it is
aandatory that the object progra• close aAd re-open the file in
order to change from pure INPUT to INPUT WITH STACKERS1 and
conversely.

A number of variations are possible when the device is opened as
a~ output file. There variations are:

1. PUNCH
2. PRINT
3. INTERPRET
4. POCKET

The Pocket variant nay be applied to any of the first four
variations, or it may be the only adverb associated wf th the OPEN
statement. Th9 HCP, upon receiving an OPEN communicate without
PUNCH• PRINT or INTERPRET requested• will assume that Punch is
desired. Therefore• OPEN OUTPUT is equivalent to OPEN OUTPUT
WITH PUNCH and OPEN OUTPUT WITH SJACKERS is equivalent to OPEN
OUTPUT WIJH PUNCHP STACKERS.

OPEN OUTPUT WITH PRINT means that the program does not
p~nch anything into the cards. It ~nty wants
information.

want to
to print

OPEN O~TPUT WITH PUNCH• PRINT means that the program wants to
punch Information into the cards and wants to print different
information on them. The HCP witl allocate the number of buffers
requested b~ the program; each buffer will be 192 bytes long.
The HCP will expect to receive 192 bytes of infor•ation on each
WRITE communicate• 96 of which will be punched in the card and 96
of which will be printed. As always, it is not mandatory that

81000 MCP MANUAL
MARK 10.0

the program deliver the full 192 bytes. The move fro• the work
area to the buffer is left-justified with blank fill.

OPEN OUTPUT WITH INTEffPRET means that the prograe wants to punch
96 bytes of information into the cards and print the same data.
The HCP will allocate the number of buffers requestedJ which
must be at least two• each will be 96 bytes in length. The I/O
descriptor constructed will specify a PUNCH~PRINT operation• and
the UNEQUAL DATA bit will be set to zero. The INTERPRET request
will have precedence over PUNCH• PRINT and a combination of the
two. OPEN OUTPUT WITH PUNCH• PRINT, INTERPRET should probably be
rejected as a syntax error by the compilers. The KCP will accept
the communicate, however, and assume that the prograamer meant
only INTERPRET. The saae applies to OPEN OUTPUT WITH PUNCH,
INTERPRET and OPEN OUTPUT WITH PRINT1 INTERPRET.

The POCKET variant may be specified an any valid request for an
OPEN OUTPUT. The variant is ignored by the MCP on the OPEN
request. This is not true for OPEN INPUT WITH STACKERS. It must
be true for OPEN OUTPUT- however• to avoid problems which may
arise when the device assigned to the file is changed by a FILE
card or an "OU• message. The WRITE communicate contains a bit
which requests stacter selection. The HCP examines this bit and
takes appropriate action on each WRITE co•municate.

Ali of the variations possibte when a file is opened OUTPUT are
also possible when the file is opened INPUT.OUTPUT When the HCP
receives an OPEH INPUT.OUTPUT request with none of the variants
set, it assumes that the user wants to read the inforaation from
the cards• and punch additional information into the•~ and print
the same information on the•· Therefore, OPEN INPUT.OUTPUT is
equivalent to OPEN INPUT.OUTPUT WITH INTERPRET.

The adverbs PUNCH and PRINT are relatively useless when the f ite
is opeRed INPUJ.OUTPUT. Both punching and ~inttng occur when
the PUNCH-PRINT.AND.READ I/O operator ,is dispatched to the
controt. There is no way the device·c~n be made to print and
read or punch and read only. The~e opeations can be simulated~
of course• br setting the UNEQUAL.DATA bit in the des~riptor and
loading the proper portion of the buffer with blanks. This
requires some action on the part of the program•er.

fbe UNEQUAL.DATA bit is set in the I/O descriptor when the HCP
receives an OPEN communicate with both the PUNCH and PRINT bits
set in the adverb. As in the case of OPEN OUTPUT, the INTERPRET
bit has precedence over both PUNCH and PRINT. OPEN INPUT.OUTPUT
WITH P~NCH• PRINT• INTERPRET should be considered a syntax error

by the compilers. When the HCP receives such a request•
hBwever• it generates a PUNCH-PRINT.AND.READ l/O descriptor with

7-26

81000 MCP MANUAL
MARK 10.0

the UNEQUAL.DATA variant reset.

files opened with various attributes require or can only use
various number of buffers.

Attributes

IBput only, not Stackers
I~put only with Stackers
Output Gntv
O~tput and Input

Requires

1
1
2
3

Can Use

infinite
1

infinite
3

If the nuaber of buffers specified for a file is less than the
n~&ber required, it will be allocated the nuaber required. If
the number specified is aore than the nu•ber that can be
effectively used~ it will be allocated only the number it can
use.

As in the case of OPEN INPUT WITH STACKERS• the HCP will not fill
the buffers when the file is opened. The first READ issued for
the file will cause a card to be fed• read and stopped in the
wait station. The inforaation from the card will be passed to
the objact program at that point. It may be necessary for the
MCP to treat the first READ on such a file differently from all
other reads. This should be of no concern to either the compiler
or the object programaer.

After the first READ on the filer the HCP will normally expect to
.receive two communicates for each card passed through the device.
There sbold be ' one WRITE request and one READ request for each
physical card. lhe program should pass 96 bytes• or 192 bytes,
of information to the HCP on each WRITE reqaest. The information
will be moved from the program 1 s work area to the buffer an the
WRITE communicate. The actual 1/0 operation will be initiated at
this time and the program will be allowed to continue• without
waiting for the completion of the operation.

The HCP will normally expect to receive a READ coamunicate at
this point, and the program may be forced to wait for the
completion of the 110 operation issued previously. After
completion• the information read from the card will be passed ~n
the READ communicate, as always.

It is not mandatory that the progra• always follow the READ/WRITE
sequence described in the foregoing. If the program issues two
successive WRITE requests1 the input information on one of the

1-21

81000 MCP MANUAL
HARK 10.0

cards iBvolved wilt be lost to the program. The cGnsequences if
a program issues two successive READ requests are somewhat more
dire. The information punched and printed on the first card will
also be punched and printed on the second. Though this sounds
rather ~ad. this could possibly b~ of so•e use to someone.

Since the actual I/O operation for this type of OPEN is initiated
on the WRITE communfcate1 any stacker selection inforaation must
be passed along with the WRITE co•aunicate. Stacker i~formation
passed on the READ wilt be ignored.

The HCP will automatically discontinue programs that attempt to
OPEN a file on any of these devices if:

1. Neither
Adverb,

the Input bit nor the Output bit is on irt the

2. Both the Print and the Interp.ret bits are on in the adverb ..
or•

3. The program is attempting to use a 96-column device in the
binary recording aode.

When a ~ser prograa attempts to OPEN a file which is assigned to
disk, the first test made in the Open Routine is whether the file
is a new file which the program is creating for the first time or
an old file which already exists.in the disk directory. In the
first cas~, a disk file header will eventually be constructed in
memory by the OPEN routine. In the second case• the disk file
header already exists and is stored in the directory and will.
have to be brought into memory by the Routine. The Open
procedure for a new fite will be discussed first.

Programs which attempt to open new files for input and output in
the serial access aode will be automatically discontinued at this
paiAt. Also, progra•s which attempt to open a new Multi-Pack
File aAd have blanks i~ the PACK.ID field or the fPB will be
automatically discontinued.

If the Open coaaunicate specifies that the f ite is a code fite,
the pro?er names for the file wilt be stored in the FPB at this
point. Also• the number of disk areas requested in the FPB will
be automatically set to one. The fact that this is a code file
will be recorded by the HCP in the FPB for the file. This
information is required when the file is closed.

7-28

81000 HCP MANUAL
HARK 10. 0

If the PACK.ID field of the FPB contains something other than
EBCDIC blanks, the program is requesting that the file be
directed to a user pack with that ID. lhe MCP wilt• at this
point~ examine the Pack Inforaation Table maintained in memory
for a pack with the corresponding identifier. If such a pack is
present on the syste•, the routine continues. Otherwise, if the
user has requested that he be notified when the pack is not
present by setting the REPORT FILE HISSING bit in the adv~rb, he
will be so notified at this point and control will be returned to
the user through the noraat processor queue mechanisms·.

If the REPORT FILE MISSING bit is not set, a message to the
operator wilt be displayed and the program will be suspended
UBtil the requested pack is introduced to the system or the
operaor overrides the PACK.ID specified. Control syntax is
prBvided to allow the operator several means of accomplishing
this.

If the file being opened is a multipack ftle and if the serial
nuaber of the physical pack is zero or if the pack is already a

. continuation pack for another •ultipack file• the program wilt be
a11tomatically discontinued. If the number G·f areas requested fo.r
the file by the programaer is greater than 105~ it will be
automatically set to 105 by the NCP. In the latter case• no
warning is sent to the operator.

Memory for the file header is allocated at this point. If the
user had requested that the disk areas to be assigned to the file
be allocated when the file is opened# the allocation is done at
this point• provided sufficient disk Is available. If sufficient
disk is· not available, the program is suspended and an
appropriate message is displayed on the SPO.

The File Header is now constructed in memory~ based upon
information contained in the FPB. The ultimate dispensation of
the header is dependent upon the type of CLOSE communicate
perfor•ed on the file.

At this point in the OPEN processing• the logic becomes the same
for new and old files. Before proceeding with a description of
the logic at this point• it will be advantag~ous to describe the
processing ~hich occurs when the user opens an existing file.

When the u~er requests an Open of an existing file• the first
occurrence is a determination of whether or not the file is
present on the system. All three names in the fPB must match an

'\

91000 MCP MANUAL
HARK 10.0

existing file if the name fields contain something other than
EBCDIC blanks.

If the PACK.ID field is blanks the ~ile is assumed to reside on
system disk. The directory on the system disk will be searched.
If the PACK.IO field is not blanks• it specifies that the file
eKists on a reaovable user pack of that name. If there is no
such pack on the system at that time, the progra• is suspended•
with an appropriate operator •essage, until the pack is
introduced to the system or the operator overrides the PACK.ID in
the fPB. There are several means provided for the operator to
accomplish this. If the REPORT.FILE.MISSING bit is set in the
communicate adverb, the program is not suspended, but control is
returned to it through the normal processor queues and the fact
that the pack is not present is reported to it. In either case1
the OPEN cannot proceed past this point.

After the decision above~ the MCP next searches the directory on
srstem disk or on a user pack for a file identified by the na•es
in FP8.Mfl0 and FPO.ID. If the file is not found~ the action is
identical to that described above. If the file is found• further
decisions are necessary.

If the LOCK bit js set in the OPEN adverb• there may be no other
users who are writing to the file. There may be other users of
the ti le .. but none of them may be using ·the file for output. If
the LOCKOUT bit is set 1 n the OPEN ad verb• there may be no other
users of the file; the user.who is presently opening the file
m~st be the sole user. If these conditions are not met~ an
operator •essage is displayed and, dependi~g upon the setting of
the REPORT FILE LOCKED bit in the adverb, the user is either
s~5pending or notified of the condition.

Assuming that all of the conditions specified are met
satisfactorily- the file Header is brought into memorr by the
HCP• if it is not there already, and the user count field in the
header is incremented. If the OUTPUT bit in the adverb js set1
the output user count field is also increaented.

At this point in the OPEN processing, alt of the paths converge.
If the file is not a disk file# a device has been assigned to it.
Jf the file is a disk file, the file Header is in memory and its
a~sociated disk areas1 if any, are essentially •assigned" to the
file. The file Information Block <FIB> must now be construct~d.

Construction of the FIB is a rather mechanicat process. After
i~itializing certain fields in the 1/0 Assignment Table CIOAJ),
memory to contain the FIB is allocated, if this has not already

1-10

81000 HCP MANUAL
HARK 10.0

occurred. As mentioned in a prior section• the a•ount of memory
allocated for an FIB is dependent upon the type of device
assigned.

The FIB itself is constructed from information contained in the
FPB• fro• information in the Disk File Header1 and from the
parameters passed in the OPEN communicate. After this occurs•
the I/O descriptors are constructed. Memory space which contains
the 110 descriptors and their associated buffers is allocated
with the FIB• such that the FIB contains not only the file
information but also the descriptors and buffer areas. The
meaory necessary is then a contiguous block. This statement does
not apply to Data Management System buffers, whjch are allocated
separately.

for serial• input only fites- each I/O descriptor js initiated as
it is constructed. Jhe buffers are hence •pre-tilled" by the
O?&rating system when the file is opened. This is true of all
files except those assigned to a reader-sorter and those assigned
to a data recorder where the user has specified that stacker
selectiBn is to be performed on the cards.

For output files which are not assigned to disk, labels are
constructed and written according to the user•s specifications.
Tape labels are discussed in the portion of this document which
describes Magnetic Tape Manage•ent. for input files• the device
assigned vill be positioned such that the first READ issued by
the ?rograa yeilds the first physical record from the device.
This is often acco•ptished by the Open routine.

If the user has requested that translation be perfor•ed by the
software, memory to contain the Translation T~te specified by
the user f s allocated by the Open routine. The Translation Table
is also brought into memory bv the Open routine aAd pointers to
it are constructed in the FIB. If the specified Jranslation
Table is not present on disk at the time of the Open, the program
is suspended and an appropriate operator message is displayed.

If the LOG System Option is set• entries are made in the log when
the file is opened. The FPB for the file is also the log entry
aAd certain fields therin are updated and aodified. At the
conclusion of the Open processing, c~ntrol is returned to the
user if OPEN was invoked by a co•municate. In alt languages
except COBOL• OPEN aar be invoked by a READ• WRITE or SEEK
co•municate. If this was the case• control is returned to the
appropriate communicate handler via the systems processor queues.

1-11

r

CJ.VERB
CT.OBJECT
er.ADVERB

81000 HCP MANUAL
HARK 10. 0

09
FILE,.NUHBER
BIT
0 REEL
l RELEASE
2 PURGE
l REMOVE
4 CRUNCH
5 NO REWIND
& OVERRIDE NAME CONVENTION AND SECURITY
7 LOCK
8 IF NOT CLOSED
9 ROLLO UT
10 AUDlf SWITCH
11 TERMINATE

The CLOSE communicate allows the user to specify the dispensation
of files that he has created. Should a program terminate without
perfor•ing a Close on any file that he has opened, the HCP will
assume that the device assigned to the file is to be returned to
the syste••s resources and that the data ·contained in the file
should ~ot be retained.

A saco~d purpose of the Close routine is to bring the I/O
activity on a device• which happens somewhat asynchronously with
a progra••s processing, to an orderly halt. It also returns any
memory assigned to the file to the system. Clearly• an 1/0
descriptor and buffer area cannot be returned to available memory
until the I/O operation it describes is co•plete. In order to
acco•plish this• it is often necessary for the Close rGutine to
give up control of the processor and regain it when certain l/O
operations go to co•ptetion.

The first test performed by the Close routine is whether or not
the file has ever been opened. A CLOSE coemunicate issued for
such a file is considered a programming error and the program
will be discontinued at this point. This is done primarily to
inform the object programmer af the fact that there is something
is wrong.

The second test performed by the Clase routine is whether or not
the file is open now. It is considered a programming error i·f a
user requ~sts a Close on a ft le that js already closed• as
opposed to never having been opened, if the IF NOT CLOSED bit is
not ~et in the CLOSE communicate adverb. The progra• wtll be
a~tomatically discontinued if this error is detected. If the If
NOT CLOSED bit i~ set in the adverb and the file is already
ct osed• control is ·returned to the user progra.11 through the

81000 HCP MANUAL
HARK 10.0

normal processor queue mechanism. All other bits in the adverb
will have no effect and the file is not closed a second ti•e•

Before proc~eding with a description of the aechanics of the
CLOSE communicate, it will be beneficial to explain the function
of the various bits in the adverb. The REEL bit is used on files
which are assigned to aagnetic tape only. It is ignored by the
code if the file is assigned to anr other device. It causes the
HCP to close the reet of magnetic tape that is currently being
processed. The file will be closed and the reel wilt be locked
by the MCP. If the use~ prograa issues another OPEN-communicate
for the file• the next reel of the file• in nu•erical sequence,
will be sought by the Open routine.

It is not necessary for the user program to issue CLOSE REEL
coa•unjcates when the physical end of the reel is encountered.
This is done automatically by the MCP. Reel-to-reel transition
is acco•plished without the involveaent of the user program.

The RELEASE bit in the adverb •eans that the resources assigned
to the file are to be returned to the syste•~ New disk files
which are closed with RELEASE will have their assigned disk
areas• if any. returned to the list of available disk. Permanent
disk files which are clos~d with RELEASE will have their user
count fields decremented but will remain in the disk directory.
Devices other than disk will ba marked available for use by Dther
jobs, provided their physical status permits.

The PURGE function is applicable t~ files assigned to disk or
tape only. It is ignored if the file is assigned to other
devices. If a CLOSE PURGE is performed on a file which is
assigned to a tape unit• the tape reel will be rewound and
parged# provided it is write-enabled. If jt is nBt
write-enabled• CLDSE PURGE wilt be equivalent to CLOSE RELEASE.
For a permanent disk file which is closed with PURGE, the file is
removed from the directory, provided the user who is doing th~
CLOSE is the sole user of the file~ and the disk space assigned
to the file will be returned to the available table. A new disk
file, often known as a •teaporary• flte, witl not yet be entered
i~ the disk directory. but the disk space assigned to it wilt be
returned to the available table also. In the case of a temporary
file, there can be only one user and it is not necessary to check
user co~nts before purging.

The LOCK bit in the adverb is intended to be used on files which
are assigned to disk and tape only. It is ignored ff the file is
assigned to other devices. When a file assigned to tape is
clGsed with LOCK• the tape reel is rewound and the unit•s status
is marked as "Locked" in the IOAT. The unit will not be

81000 HCP MANUAL
MARK 10.0

available for use by other jobs until the operator intervenes
ei ther by aaking the unit not ready and theB making it ready or
by entering a •Ready" message on the SPO. The intended burpose
of this function is to prevent the MCP froa assigning the unit to
other jobs before the operator has had a chance to remove any
tape tiles which may have been created on the unit.

The LOCK bit• when set on a CLOSE directed to a file which is
assigned to disk• causes the file to be entered in the disk
directory if it is a temporary file• subject to the restrictions
below. If the file is a permanent file which is already in the
directory, the LOCK function is equivalent to the RELEASE
function.

A file may not have its name entered in the· disk directory if
there is already a file by that nase in the directory. A user
who attempts to CLOSE LOCK a file, the naae of which is already
i~ the directory causes what is known as a •Duplicate Library•
condition. The program will be suspended at this point and an
o~erator •essage describing the conflict wilt be displayed. The
o~erator aust intervene at tbis point and cause the existing fite
to be reaoved1 or instruct the HCP to change the CLOSE LOCK
coamunicate to a CLOSE PURGE i»r CLOSE REtEASE. Syntax is
provided to allow this.

The REMOVE bit in the adverb is intended to be used ori disk files
oBlY• Its function is to altow temporary disk files to be Closed
with LUCK vithout operator intervention. It operates in a manner
siailar tQ CLOSE LOCK except that if a Duplicate library
condition arises, the existing file js removed from the directory
a~d the disk space assigned to it is returned to the available
table aatomaticalty. The function is perfor•ed by the HCP with
no Gperator intervention required. The new disk tile is then
entered into the directory and control is returned to the user.

The CR~NCH bit in the adverb was originally intended for use by
the compilers. This restriction is not enforced, however• and it
may be used by any program whose source language includes the
CGnstruct necessary to set the bit in the Communicate format.
Its purpose is to return any disk that was requested but not used
by the file to the available dist table. The unused disk must
lie beyond the End-of-File pointer for the file and the file may
have nG aore than one djsk area assigned to it. When a Close
with CRUNCH operation is perfor•ed on a file, always in
conjunction with the LOCK bit• the nuaber of segments per area in
the file header is modified by the Close routine such that it is
exactly equal to the amount of disk used. The header is then
written to disk• per the LOCK bit, and the unused space is
returned to the system.

BlOOO HCP MANUAL
HARK 10.0

The NO REWIND bit when set is applicable to magnetic tape files
oAly. It causes the •agnetic tape to be positioned immediately
beyond the last label reco~d written. The unit remains assigned
to the ?rogram and is not available for use by anyone else. The
user then bas the option of opening another file in the forward
directiBn, thus creating or continuing a multi-tile tapep or of
opening the file just written as input in the reverse direction.

The IF NOT CLOSED bit allows a user to close a file that is
already closed. Ordinarily• this is a prograaaing error and Milt
resutt in the user•s being terminated by the MCP1 as described in
a prior paragraph. This bit is •erely a •eans of avoiding
termination.

file Inforaation Blocks' I/O descriptors and buffer areas require
s~~stantial amounts of •emory. The ROLLOUT bit in a CLOSE
Co•municate was provided to allow a user to temporarily close a
file- leav~ng the associated device assigned to the program, and
bave. the FIB stored on disk so that it does not waste memory
space. When the file is reopened, it is merely a matter of
reading the FIB in from disk1 updating certain fields therin, and
proceeding. This is often quicker than recreating the entire FIB
and it eliaf ates the possibility of another program gaining
control of the peripheral device in the interim.

The TERMINATE bit in the CLOSE adverb is set when the MCP's
termination routines call the Close routiBe. This occurs only
when a program terminates, normally or abnormally, and the
peripheral devices are still assigned to the progra•·

Jhe HCP insures that the external names associated with a file
assigned to disk are proper names when the f ita is closed. When
a compiler closes the code file it has generated• the e~ternal
names of the fil~are.inserted by the Close routine based upon
information supplied by the user in the Compile Control Card.
Also, the HCP will not allow a disk file to be closed with LOCK
with a blank multi-file ID. The internal name of the file will
be inserted in fPB.MfID and an opera~or message will be printed
when this is attempted.

The FPS.LOCK boolean, if set, will cause the LOCK bit in the
CLOSE adverb to be turned on when the file is closed• provided
the TERMINATE bit is also set. This causes the file to be
eBtered in the disk directory and was added as an aid to
debuggiAg. Occasionally• when a progra• has a fatal error• disk
files that the program was using at the time are helpful to the
abject programmer in determining what caused the error. Lo~king
the file iri the directory enables the programmer to look at the
data he was processing when the error occurred.

81000 HCP MANUAL
HARK 10.0

The CRUNCH bit in the adverb will be turned on automatically by
the HCP if the tile being closed ts a backup f ile1 a pseudo-deck
or a code file. The LOCK bit will be turned on if the file is a
backup file or a code file and if it should be entered in the
directory. This tatter case can only be determined from
i~formation contained on the Compile card which ts not readily
available to the compiler.

Any tile which was opened with the output bit set in the OPEN
adverb, any file to which the user may have been issuing WRITE
coaaunicates, requires some special attention by the HCP during
the Close procedure. Since physjcal 1/0 operations happen
asrnchronously with the user program, output I/O operations may
have been initiated or · aarked ready- for initiation and be
i~complete or not even in process at the time the MCP receives
the CLOSE communicate. The actual Close operation must therefore
wait for the coaplet ion of all output I/O op er at ions associated
with the file that is being closed.

Input files present so•e si•ilar problems. Since all of the
user•s buffers are filled when the fite is opened, provided the
file is accessed serially, and since the HCP atte•pts to star
ahead of the user prograa in initiating I/O operations• as soon
as the ~ser bas read all of the records from a buffer- physical
I/O op~rations may be in process or marked readr for initiation
when the file is closed. In the case of an input file, it is not
necessary for the MCP to wait for l/D coapletion. Any operations
which have not been physically initiated •ay be cancelled by
removing the• from the channel chain. The MCP must wait tor the
completion -0f an, I/O operations that are already physicallr in
process~ but this is a relatively short time period.

In the case of Sequential 1/0 and Delayed Rando• disk files• the
data in the buffer may have been altered by a Write o?eration
frG• the user but the I/O descriptor· aay not yet have been marked
ready for initiation. The Close routjne will insure that all
sach buffers are actually written to disk prtor to the completion
of the Close operation. Similarly• for serial~ blocked output
files, the user may have done several write operations but not
yet filled an entire buffer. The 1/0 descriptor in this case
also Nill not yet be marked ready for initiation but the buffer
will contain data which must be written to the physical aedia.
The Close routine will initiate atl such operations and insure
that they are completed satisfactorily before atlowf ng the fite
to be closed.

I~ order for the events described in the preceding paragraph to
occur• the physical media must remain accessible. In other

81000 HCP MANUAL
HARK 10.0

words• if the unit goes not ready and there are I/O operations
which m~st be completed before a Close can occur, the program
will remain in a waiting condition until the unit goes back to a
read~ condition and the necessary operations are complete.
Keyboard syntax is provided, however- to allow the operator to
override this-restriction. The syntax should be used only when
the user program is being aborted. The output data in the
b~ffers will be lost if the syntax is invoked and the data in the
file Kill he suspect. Further, if the device is a magnetic tape1
the HCP will not be able to write closing tape aarks and tab$ls
OB the media and an I/O error will result when the tape is read.
Possibly~ no I/O error witt·res~lt• which may be worse.

The Close routine next begins operations which are dependent upon
the type of device assigned. In the case of a card reader which
is closed by a user• the device may contain cards which have not
yet been read by the progra•• The MCP will cause the cards to be
passed thro1tgh the reader• stopping when the device goes not
ready or wben the next control card is encountered.

In the case of a reader-sorter• code segments would have been
marked non-overlayable in memory when the file was opened. These
code segments wilt be marked overlarable by the Close routine~
provided the user who jssued the CLOSE is the sole user of a
sorter. Reader-sorter files may only be closed when the flow of
documents is stopped. Also, they may ont~ be Closed with
Release. The HCP will interpret all Close operations on sorter
files to be Close with Release- regardless of the setting of the
RELEASE bit in the adverb.

By far• the most co•plicated processing occurs when the file is
assigned to disk. If the file is a muttipack file, the Base Pack
must be on-line at the tiae of the Close. The Close procedure
will not proceed past this point if it is not.

The HCP next atte•pts to do
previously. New disk files
di·rectorv• provided there is no
already in the directory~

the
will
file

LOCK function described
be antered in the disk

wf th an identi cat name

Existin~ files in the disk directory cannot be reaoved under any
circumstaAces if they are in use. Sinilarl~1 files classified as
•systea• files cannot be reaoved, even though their user-count
field in the disk header is zero. The NCP code file being used
is aB exaaple of such a file. EKisting files will be removed by
the Close routine if the REMOVE bit i~ set in the CLOSE adverb or
the RMOV system ~ption is set1 if the Close routine enco~nters a
duplicate file in its processing. If neither of the above
coBditions are true, the program will be suspended at this point

1-31

81000 MCP MANUAL
MARK 10.0

an~ the operator must intervene to resolve the conflict.

If the file is a peraanent file aRd if the user has added records
to the file while it was open, the end-of-file pointer in the
file header will be adjusted by the Close routine.

If the PURGE bit is set in the adverb and the file is a permanent
file or if the file was teaporarr and is being Closed with
Release• the disk space used by the file is returned to the
available table.

If the file befng closed is assigned to tape•
writes tape marks and labels on the tape.
routine sends a rewind descriptor to the unit•
by the type of Close being performed.

the Close routine
Also• the Close
if not prohibited

The infor•atiBn in the IOAT is updated hr the Close routine.
Jest and Wait for Ready I/O descriptors are re•initiated1 if
appropriate. All of the user's I/O descriptors are removed fros
the I/O chain.

Information in the FPB ts updated and stored on disk in the
working copy of the FPO. finally• the me•ory assigned to the
file is returned to the system•s available memory. Control is
returned to the user through the normal processor queue
mechanisms.

CT.VERB
CT.OBJECT
Ct.ADVERB

10
FILE.NUMBER
BIT
0
l
2
1-1

REPORT & RETURN TO USER ON EOf
REPORT & RETURN JO USER ON PARITY
REPORT & RETURN TO USER ON INCOMPLETE 1/0

8 POSITION TO END Of FILE
9 CT.1 CONTAINS PRINTER CHANNEL NUMBER
10 CT.I CONTAINS RECORD COUNT ~S A FIXED NUMBER
11 CT.1 CONTAINS RECORD NUMBER DESIRED

cr.1 DEFINED BY BITS IN CT.ADVERB
REINSTATE.HSG.PTR VALUES

0 GDOD POSITION
1 END OF FILE COR END Of PAGE ON PRINTER>
2 I/O ERROR
l INCOMPLETE I/O

7-38

01000 HCP MANUAL
HARK 10.0

The PGSITION communicate allows the user to change the physical
and logical prisition on a file. It is used with serial files
only, ~t cour~e. The file may be assigned to disk, tape or to a
printer. The co•municate is ignored if the file is assigned to
any other device.

Positioning a printer file will be discussed ffrst. If the
POSITION coamunicate is directed to a printer file, CT.1 will
contain either a channel number which will correspond to a punch
i~ a carriage control tape, or a nusber which will specifr the
number of lines the printer should b~ spaced. If bit 10 in
CJ.ADVERB is on- CT.1 will be assumed to contain the channel
na•ber. If the bit is oft~ CT.I wilt be assuaed to contain the
number of lines.

The Position routine will always space the printer the number of
lines requested. Due to the design of the 81000 Priater
Controls• it spaces the printer two tin~s per descriptor and, if
the number of lines requested was an odd number. issues a space
o,erator for one line to co•plete the operation. If a channel
tvelve punch in the carriage control tape is reported anytime
during the spacing• End-of-page is reported to the progra• when
the operation is complete. It is therefore possible• though
highly ineff icient1 to cause several pages of paper to be passed
through the printer with one POSITION communicate. End-of-page
is always reported to the user, if it was reported to tbe HCP,
regardless of whether of not he has included code to ha~dle the
situation. Programs are not automatically discontinued if tbere
is no s~ch code.

If CT.I contains a channel number• and if the channel number is
less than twelve, the routine constructs and sends an 1/0
descriptor to cause the printer to space to the requested
chann~t. If the channel number if CT.1 is twelve or greater1 a
•essage is printed on the SPO and the communicate is ignored.

With same restrictions, disk files may be positioned forward or
backward a specific nu•bar of records or they •av be positioned
to a specific record number within the fite or they may be
positioned to the end of the file. The file •ar be opened for
input or for output but it mar not be opened for both.

R~ndom disk files and files with variable l~ngth records may not
be positioned at att. Attempting to do ~o vilt result in the HCP
a~tomatically discontinuing the program.

I~put disk flles aay be positioned to the end of the file• but
mav not be positioned beyond. Attempting to do so will result in

7-39

81000 MCP MANUAL
HARK 10.0

the file being positioned to the end of the file. Output disk
files may be positioned beyond the end-of-file pointer but mar
not be positioned beyond the declared ~hrsical bounds of the
file. The ·d~ctared physical bounds• of a tile are the number of
records per area declared times the number of areas in the file
declaration.

Files may not be positioned to a negative record namber.
Attempting to do so will result in the file being positioned to
the first record in the file automaticatty.

IA atl cases mentioned above, the first bit in the adverb must be
set. Atte•pting to position a disk file to or beyond the
end-of-file pointer or to the first record in the file or a prior
record witl resutt in the HCP au~o•atically dlscoRtinuing the
program if the Report and Return EOf bit is not set. This is
applicable regardless of whether the file is opened for input or
output purposes.

files assigned to tape may also be positioned forward and
backward, provided the file does not contain variable-length
records. Attempting to ~osition such a file will result in the
progra• being discontinued by the MCP. Also1 tape files wfll be
positioned to the first record in a tile or to the
end-of-the•file, provided the first bit in the adverb is set• in
the sa•e manner as disk files.

Ia order to function property, the HCP maintains a record count
for all tap~ files on a •per reel" basis. When the Position
routine receives the coamunicate~ it first computes the record
number desired by the program. If the record count desired
exceeds the current record count• the tape is positioned in the
forward direction to the desired record.

The record count for any reel of tape is set to zero when the
file is opened. this is applicable regardless of the type of
Close previously performed on the file• if there was a prior
Close. Hence• when a tape reel is opened in the reverse
directi~n· Record One is actually the last physical record on the
tape. The "forward" direction is therefore defined to be the
directi~n that the tape is currently being passed. When a file
is opened reverse, a •Backspace• operation will cause it to move
toward the physical end of the reel.

Tape files ma1 not be positioned to the end of the file if the
file is opened output or if it fs opened reverse or if it is not
aA ANSII-tabeted tape. When a Position to end-of-file occurs1
the recard count field maintained by the HCP will be lost• since

7-40

81000 HCP MANUAL
MARK 1o.0

the I/O operator addressed to the unit ·wilt be a "Space to Tape
Mark•. The record count field must therefore be recovered from
the ending label and ANSII labels are the only labels which
guarantee that a record count field is pre$ent.

The 81000 tape subsystem is capable of spacing tape one physical
record per I/O operation or to a tape mark. It is not capable of
spacing for a specified number of ~hysical blocks with one 1/0
descriptor. Hence, spacing to a specific record occurs one bloc~
at a tiae. Irrecoverable I/O errors encountered on any of the
blocks will result f n the program•s being automatically
discontinued by the MCPrif the second bit in the adverb is not
set. If the second bit is set~ the I/O error will be reported to
the prograa and the position comaunicate will be terminated. At
this point• the record count field aaintained by the MCP Mill not
be reliable.

If a ta~e mark is encountered while the MCP is spacing the tape
to a specific record, End-of-File will be reported to the program
if the first bit in the adverb is set. The program will be
automaticattr discontinued if it is not.

CT .VERB
CT.OBJECT
CT,.ADVERB

CT.t
CT.2

11
FILE.NUMBER
BIT
0-10
11 O=READ

I= WRITE
RECEIVING FIELD BIT LENGTH
RECEIVING FIELD BASE RELATIVE Bii ADDRESS

The ACCESS.FPO Communicate allows the user .access to any of his
Fite Parameter Blocks. The working copy only of the FPB may be
accessed bv this co•municate. The FPB is read directly from disk
into the user•s run structure. The address and size pass~d in
the comm~nicate •ust lie wholly within the run structure. The
program will be automatically discontinued by the MCP if this
rate is violated.

IAformation is not formatted by the HCP. If the FPB definition
in the HCP is.changed for any release of the software, it is the
user's responsibility to ·make corresponding changes in his
pro gr a11.

The commu,nicate operat'ion is ignored if CT.OBJECT specifies a
file wbich is non-existent or if the user atteapts to read less

81,QOO HCP MANUAL
HARK 10.0

than 56 bits of an FPB.

Changes made to the FPB while the file is open wilt not be
effective until the file is opened again. Due to the fact that
the Close procedures use fields in the FPB• changing a file
Parameter Block while a file is open may result in unpredictable
errors and even syste• halts.

CT.VERD
CT.OBJECT
CT.ADVERB

CT.1
CT.2

12
FILE .NUMBER
BIT
0-10
11 FORMAT

O=CHARACTER
I= BINARY

RECEIVING FIELD BIT LENGTH
RECEIVING FIELD BASE RELATIVE BIT ADDRESS

The ACCESS.FIB communicate does not really access the entire FIB.
It ret~rns only the End-of-File pointer and the type of hardware
device assigned to the file. It returns these items in either
binary or decimal foraat. The End-of-Fite pointer is twenty-four
bits or eight bytes. The hardware type is six bits or two bytes
respectively.

Programs will be automatically discontinued if the rece1v1ng file
is not wholly contained within the program•s run structure. An
ACCESS.FIB co•municate for a file that is not open will be
ignored.

12!1! ll!EB.LAI
CT.VERB
CT. OBJECT

13
BASE RELATIVE BIT ADDRESS OF 76 BIT FIELD IN FORMAT OF :
4 BITS
2• BITS BEGINNING ADDRESS
24 BITS ENDING ADDRESS
24 BITS R£LAT1YE DISK ADDRESS

This comm~nicate is issued by programs which are written in SDL
and which include paged arrays only. The SDL Coapiler generates
code which manages the paged array space and this communicate is
the means whereby it transfers information in the paged arrays to
ara d fr om disk.

7-42

81000 HCP MANUAL
HARK 10.0

The area described by the fields listed above must lie wholly
within the progra~•s run structure. Violation of this rule will
result in the automatic discontinuation of the program.

The relative disk address passed must lie within the disk overlay
area allocated to the progra•• This has been discussed
previously under program BOJ facilities.

Due to hardware limitations• the overlay area can be no smaller
than 56 bits.

This communicate is not used by COBOL• RPG or! any other program
written in a source language other than SOL.

This communicate uses the prograa•s overlay descriptor in the Run
Structure Nucleus. The program is placed in the WAIT.Q until the
I/O operation initiated by the procedure goes to completion. At
that ti•e, control fs returned to the program through the normal
pracessar queues.

CT.VERB 14
CT.OBJECT BASE RELATIVE ADDRESS Of 30 CHARACTER FILE IDENTIFIER :

PACK.ID CAT HFID CAT FIO
CT.ADVERB BIT

o-s
6 OVERRIDE USERCODE NAMING CONVENTION AND SECURITY
1 REPORT SECURITY VIOLATION
8-9
10-11 O=WRITE

l=REAO
2=READ & FORMAT IN BINARY
l=READ & FORMAT IN CHARACTEFlS

CT.I RECEIVING FIELD BIT LENGTH
cr.2 RECEIVING FIELD BASE RELATIVE BIT ADDRESS
REINSTAJE.NSG.PTR VALUES

0 COMMUNICATE COMPLETE
1 FILE NOT PRESENT OR SECURITY VIOLATION AND

CT.ADVERB BIT 7=0
2 SECURITY VIOLATION ANO CT.ADVERB BIT 1=1

This com•~nicate allows the user access to disk file ·headers
cGntained in the system•s disk directory. The receiving or
sending file described by CT.1 and Ct.2 •ust lie within the
program•s run structure. If it does not• the program will be
automatically discontinued by the HCP. Th~ field in the run
structure which specifies the file identifier must be exactly

81009 HCP MANUAL
HARK 10.0

thirty characters in length and must conform to the fixed format
described in the Communicate layout above.

This co~municate has four variat~ons as defined by CJ.ADVERB. If
CT.ADVERB contains a zero or a one• the sending or receiving
field is assumed to correspond exactly to the curr~nt definition
of a disk file header. The •curren~· definition means the
definition used in the actual MCP that is handling the
communicate operator, and not the definition used in any
subsequent MCP.

If CT.ADVERB is set to zero, certain fields are •oved from the
program•s run structure to the actual disk file header and
written to the disk directory. Only selected fields may be
~rittenJ those not selected are ignored.

If CJ.ADVERB is a one, information is moved directly from the
file header to the rece1v1ng field specified. The move is
left-jus~ified with zero f itt. The entire file header aay be
read in this manner.

If CT.ADVERB is a two or a three, the fields listed in the table
below only are moved to the progra••s run structure. The
formatted mave also occurs left-justified with no titling. If
the receiving field is not sufficiently tong• the move is merety
truncated from the right.

FIELD NAH£

OPEN.TYPE
NO.USERS CNuaber of Users>
RECORD.SIZE
RECORDS.PER.BLOCK
£OF.POINTER
SEGMENTS.PER.AREA
USERS.OPEN.OUTPUT
FILE.TYPE
PERMANENT
BLOCKS.PER.AREA
AREAS.ROST CRequestedl
AREA.COUNf ER
SAVE.FACTOR
CREATION.DATE
ACCESS~OAJE (Last>
REC.SIZE
MPf <Multi-Pack Fite>
PROTECTION
PROTECTION.IO

LENGTH
CBITSJ

24
24
24
24
24
24
Z4
24
24
24
24
24
24
24
24

1
2
2

LENGTH
CCHARACIERS>

1
z
4
4
8
8
1
2
1
6
3
3
3
5
5
5
1
1
1

81000 HCP MANUAL
HARK J.O.O

If the file is not present in the disk directory~ the program is
notified by inserting a one in the RS.REINSTATE.HSG.PTR. In
either case, control is retu1·ned to the pl'ogram through the
nBrmal ·processor queue mechanism.

f.lti2l!Ul.Qlfl !IU!l

CT.VERB
CT.OBJECT
CT.ADVERB

CT~l
cr.z
CJ.3
CJ.4
CJ.5
CT.6

15
INVOKE NUMBER & PATH NUMBER Of THE PATH-NAME
BIT
0 RETURN LISI HEADS CREORG ONLY)
1 RETURN LOGICAL ADDRESS <REORG ONLYJ
2 OM.SJAlUS FORMAT

O=BINARY
1=4-BIT DECIMAL

3 ON EXCEPTION
4
5 MODIFY
6-10 SELECTION EXPRESSION

0 NEXT
1 PRIOR
2 FIRST
l LAST
It NEXT AT
5 CURRENT
6 AT

11 DATA SET SELECTION EXPRESSION
OM.STATUS REGISTER BIT LENGTH
DH.SIAJUS REGISTER BASE RELATIVE BIT ADDRESS
DATASET RECORD WORK AREA BIT LENGTH
DATASET RECORD WORK AREA BASE RELATIVE BIT ADDRESS
SEARCH KEY CCAT Of COMPONENT IAMESJ BASE RELATIVE BIT AOR.
INVOKE NUMBER & PATH NUMBER Of DATASET-NAME

Refer to p.s. 2212 5470.

CJ.VERB
CT.OBJECT

16
INVOKE NUMBER & PATH NUMBER

(SUBSET If INSERT)
CJ.ADVERB- BIT

0
1
2

3
4
5
6

INSERT

DM .. STATUS FORMAT
O=BINARY
1=4-BIT DECIMAL
ON EXCEPTION
BEGIN TRANSACTION (NOT INSERT)
INCLUDES.LIST.HEADS CREORG ONLY)
ENO TRAMSACTI6N (NOT INSERT)

81000 HCP MANUAL
HARK 10.0

1 HO AUDIT (BEGIN OR END TRANSACTION ONLY)
8 SYNC CEND TRANSACTION ONLY>
9
10 STORE INDEXES ONLY <REORG ONLY>
11 PSEUDO CREATE <REORG ONLY)

CT.I DH.STATUS REGISTER BIT LENGTH
cr.2 DH.STATUS REGISTER BASE RELATIVE e11 ADDRESS
cr.3 DATASET RECORD WORK AREA BIT LENGTH CNOT INSERT)

INVOKE NUMBER & PATH NUMBER OF DATASET CINSERTJ
CT.4 DATASET RECORD WORK AREA BASE RELATIVE BIT ADDRESS

CNOT INSERT>

Refer to P.s. 2212 5410.

J2£L~IE !IU!.l

er.VERB
CT .oBJEc·r

CT.ADVERB

er .1.
CT. 2.
CT.J

CT.4

17
INVOKE NUMBER & PAJH
<SUBSET IF REMOVE>

NUMBER

BIT
0
1
2

3
4-11

REMOVE

OM.STATUS FORMAT
O=B.INARY
1=4-BIT DECIMAL
ON EXCEPTION

OM.STATUS REGISTER BIT LENGTH
DH.STATUS REGISTER BASE RELATIVE £IT ADDRESS
DATASET RECORD WORK AREA BIT LENGTH (NOT REMOVE>
INVOKE NUMBER & PAJH HUMBER OF DATASET CREMOVE>
DATASET RECORD WORK AREA BASE RELATIVE BIT ADDRESS

CNOT INSERTl

Refer to P.s. 2z1z 54ro.

CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.2

18
INVOKE NUMBER &
err

PATH NUMBER

0
l
z

3
4-11

RECREATE
OM.SJ A TUS FORM,AT
O=BINARY
l= 1ft-BIT DECIHAl
ON EXCEPTION

DH.STATUS REGISTER BIT LENGTH
OM.STATUS REGISTER BASE RELATIVE BIT ADDRESS

7-46

CT.3
er. 4

BlOOO MCP MANUAL
MARK 10 .• 0

DATASEJ RECORD WORK AREA BIT LENGTH
DATASET RECORD WORK AREA 8,ASE R£LATIYE Bir ADDRESS

Refer to p.s. 2212 5410.

~H.1Ik!!.a.1Af £...J21BE&I1Dtt

CT.VERB 19
CJ.OBJECT FILE.NUMBER
CT. ADVERB err

0-1 NOT USED
8-11 0 = READ FORWARD

1 = READ REVERSE
4 = WRITE

REINSTATE.MSG.PTR VALUES
0 GOOD SWITCH
1 FILE NOi OPEN
2 WRONG DIRECTION OR NOT A TAPE.FILE
3 END Of FILE

This operator was added to facilitate the implementation of the
Tape Sort feature. It has found use in Dther applicati~~s since
that time. Essentially, it merely changes the direction of a
tape file wjthout time-consuming Close and Open invocation.

There is no way that this communicate can cause discontinuation
of a prngram. All errors are aerely reported to the program.
The file may be changed from input to output1 provided it is not
being read in the reverse direction. Direction aay be changed on
the same coamunicate which changes the I/O mode. In other words,
a file may be changed from input and reverse to output and
forward with one communicate.

B~ffers are filled by the MCP as a funetion of this communicate.
No fields in the FIB are changed, however. Consequently- use of
this coamunicate is not practical on blocked f ites.

Jhis communicate will not function if one of the file's buffers
has already encountered the physical end of the file.

ll.I!lilttAI~ 1~I!U! BJUU

CT.VERB 20

This Communicate calls the Terminate Procedure directly. The
Terminate Procedure is also catted when a program is being

81000 HCP MANUAL
MARK.10.0

discontinued. There is very little difference between a normal
termjnate procedure. where the routine is called via a
Co•municate and an abnormal one~ where th• procedure is called by
the HCP to discontinue a program.

Programs may not be terminated if they are using a reader-sorter
a~d the device is operating. In this case, the terainate
rountine wilt wait until the flow is stopped on the sorter and
then proceed with the termination. This is due to the fact that
High-Priorjty Interrupts from the sorter can only be handled in
code written exclusivetr for that purpo$e. At any rate, all of
this will be transparent to the user and the program will be
terminated, though not necessarily at the time the Terminate
Procedure is first invoked.

A similar situation exists if the program has Data Hanageaent
o~erations in process. I/O Co•plete on such an operation can
only be handled by Data Management code~ and the Terminate
Procedure will be forced to wait for coapletion of any such
oper~tions.

The Terminate Procedure may also have to wait for Roll-in and
Roll-Out operations to be completed. The program must be present
in me•ory before it can be terainated.

As mentioned previously, all of the conditions listed to this
pGint are transparent to the user. The Terminate Procedure has
its own mechanisms for waiting for such events to be complete.
No action is requjred on the part of the user.

The que~e of keyboard messages entered via the Accept response
will be purged of any messages intended for this program at this
point. Refer to the Software Operational Guide explanation of
the •AX" message for details on this queue.

At this point, the Terminate Procedure will wait for any code or
data overlays which mav be in process to go to completion. The
Terminate Procedure, if it must wait for such an event, rields
control to the outer loop of the HCP~ The Procedure will be
continued Hhen the I/O goes to completion.

I

Anr I/O operation ihich was initiated by the program and which
did not use the noraal Fite I/O aechanis• will be halted and
delinked from the channel chain at this point. Examples of such
o?erations are disk I/O initiated by the Disk Initialization
utilities and all Data Comaunications I/O operations. Temporary
disk storage obtained by the HCP to execute the program is

7-48

61000 MCP MANUAL
HARK 10.0

returned to the disk available table.

The Terminate Procedure next proceeds to close all the files
which are associated with the program and which are nat vet
closed. A file which is closed hr a user with no bits set in the
Close Adverb or with the NO REWIND bit set in the adverb is not
cDnsidered closed by the HCP. The unit• iA these cases• remains
assigned to the program• even though there can be na I/O in
process for the file. The unit must be returned to the list of
available resources when the program terminates. Files are
always Closed with Release by the Terminate Procedure, except
when ·the file is assigned to disk and FPO.LOCK is set.

The Terminate Procedure next performs those functions associated
with memory assigned to the prograa. The code segment dictionary
user co~nt is decre•ented. If it becomes zero, ae•ory occurpies
by the code segments and the segment dictionary is returned to
the available meaory list. Similarlr' the user count for the
Interpreter used by th~ program is decremented. If it becomes
zero, memory occupied by the interpreter and its segments is also
returned. If the interpreter was partially or totallr resident
in M-Heaorr1 it is removed. This aay result in a change in the
made of H-Hemory aanagement. If so• it is performed at this
point.

Similar functions are performed on any Intrinsic Code the program
may have been usjng. The user co~nt for the Intrinsic File and
for the Code file its~lf are decremented and stored in the disk
file header in the disk directory.

If the Log option is set1 the Log is updated at this point. In
addition to the type of termination, a count of code overlays. a
count of data overlays- the current time and date and the amount
of processor time used by the program are stored in the Log.

The prograa•s overlay descriptor is removed from the disk chain•
a SPO message is printed if the EOJ option is set, and if this
program was executed by another using the PROGRAM.CALL
co•municate~ the calling program is aarked ready to ruB. Memory
occupied by the program's run structure is returned to the
available pool. The number of jobs runni~g is decreaented. A
bit is set which will cause the next execution of the OUTER.LOOP
to check the active job schedule.

If any programs are in the Waiting schedule and are waiting for
the successful termination of this program• they are •oved to the
Active schedule• provided this is a normal teraination. If this
program was a "Compile and Gow or a •compile and Save•, the code

7-49

81000 HCP MANUAL
HARK 1o.0

file generated is placed in the active schedule.

CT. VERB
CT.OBJECT
CT.ADVERB

21
INVOKE NUMBER I PATH NUMBER
BIT
0-1
2

3
4-11

DH.SJATUS FORMAT
O=BINARY
.1=4-BIT DECIMAL
ON EXCEPTION

DM.SJAIUS REGISTER BIT LENGTH CT.I
CT.2 DH.STATUS REGISTER BASE RELATIVE BIT ADDRESS

Refer to P.s. 2Z12 5470.

Iltlt;LQAitlllAI

22 CT.VERB
CJ.OBJECT
CT.ADVERB

BASE RELATIVE BIT ADDRESS Of WHERE TD PUT THE RESULf
BIT
0
1-2

5
6-7

10
11

l=DATE REQUESTED
FORMAT
0 YY/000
l HH/DD/YY
Z YY/MM/DD
l DD/HM/YY

(JULIAN>

REPRESENTATION
0 BINARY
1 4-BIT DECIMAL
2 ,8-BI 1 DEC IM Al
l= TIME REQUESTED
FO!RHAT
0 COUNTER
1 HH:MH:ss.s (24-HOUR CLOCK)
2 HH:MM:ss.s TT (12-HOUR CLOCK,
REPRESENJATION
0 BINARY
l 1ft-8 I I DEC IM AlL
2 lfl-BIJ DECIMAl
!=TODAYS.NAME REQUESTED

TT=AH/PM>

NOTE : TODAYS.NAME RETURNS 9 CHARACTERS LEFT JUSTIFIED

FORMAT BINARY 4-BIT DECIMAL 8-BIT DECIMAL
••
YY/DDD (JULIAN} 7+9=16 8+12=20 16+24=40
HM/DD/YT 4•5•7=16 8•8•8=Z4 16+16•16=48

7-50

YY/MM/DO
DD/HM/YY
COUNTER
HH:HH:ss.s
HH:MM:ss.s TT
fODAYS.NAHE

81000 HCP MANUAL
HARK 10.0

7+4+5=16
5+4+7=16
20
5+6+6+ lt=Z 1
4+6H>+4+16=36

8•8•8=24
8+8+=24
Z4
8+8+8+4=28
8•8+8+4+16=44

lllIUJ.lilR llJl

CT.VERB
CJ.OBJECT

23
BASE RELATIVE ADDRESS Of

6 BYTE UNIT MNEMONIC
Off
I/O DESCRIPTOR

CT.ADVERB VALUE
0 ASSIGN UNIT TO THIS PROGRAM
1 RELEASE UNIT
2 INVALID

16•16+16=1t8
16+.16+16=48
48
16•16•16+8=56
16+16+16•8+16=72
72 C9 CHAR, LEFT JUST.>

3 LINK IN THE I/D DESCRIPTOR AND INITIATE
4 INVALID

REINSTATE.MSG.PTR VALUES
If CT.ADVERB=O THEN
PORT• CHANNEL AND UNIT Of DEVICE REQUESTED

PORT BIT (3)
CHANNEL BIT C4 >
FILLER BIT Cll
UNIT Bll (ft)

ALL OTHER CASES
0 GOOD COMMUNICATE
1 DISPATCH TO INVALID PORT OR CHANNEL

This communicate ts intended for in-plant use only. Anyone
o~tside of Santa Barbara Plant who attempts to use this
co•aunicate does so at his own risk. The communicate format and
f~nction mar be changed from time to ti•e· No natice of such
change will be supplied to any user prior to the change. Such
information will be available on request.

Released HCP•s will not allow a Write descriptor to be initiated
on systea dist. Atte•pting to do so will result in the program's
being DS-ed.

The HCP does not assure that the A and 8 addresses in the I/O
Descri~tor are bounded by the program•s Basa/Limit registers. It
is.the progra•mer•s responsibility to do this. failure to do so
wilt result in unidentifiable system halts.

To use this co•municate• the progra•mer should first issue it
with CJ.ADVERB set to zero and CT.OBJECT pointing to a

7-51

81000 HCP MANUAL
HARK 10.0

six-character unit mnemonic. If the requested u~it is not
available for any reason, the calling program will be DS-ed. If
the unit is available. it will be assigned to the calling
program. It is possible to read any unit without requesting that
the unit be assigned to you.

After the unit is assigned to the program, the co•aunicate mar be
issued with CT.ADVERB.set to two or three. The HCP coptes the
I/O Descriptor outside the base-limit before it links into the
chain. When the 1/0 completes, the IO.ACTUAL.END and IO.RESULT
are moved ~ack into the base-liait area. When the I/O operation
is completed, the 1/0 descriptor is re•oved from the associated
channel chain. In order t~ again execute the 1/0, the program
m~st issue another comaunicate with CT.ADVERB set to two or
three.

The program should issue the coamunicate with CT.ADVERB set to
one before it goes to end-of-job.

It sboutd be emphasized that this communicate was added to the
MCP for purposes of on-line pack initiatization only and is
intended for use only by that prograa, in the form suppljed by
Santa Barbara Plant. Requests for maintenance or support from
any other source will be ignored.

2,
LENGTH Of TIME IN lOTHS Of A SECOND

CT.VERB
CJ.OBJECT

FUNCTION PROGRAM IS PUT TO SLEEP FOR SPECIFIED LENGTH OF TIME

CT.VERB 25
CT.OBJECT
CT.ADVERB
cr.1 MESSAGE AREA BIT LENGTH
CT.2 MESSAGE AREA BASE RELATIVE BIT ADDRESS
REINSTATE.MSG.PTR VALUES

0 NO ERRORS IN ZIP f EXT
l ZIPPED INVALID CONTROL CARD

This coamunicate provides a means for progra•s to pass
cards and keyboard messages to the HCP. There
restrictions on the messages which may be passed. No
are returned to the program by this procedure;
information returned is an indication of whether or
syntax of the cont~ol instruction was valid.

1-sz

control
are no

m,ssages
the only
not the

81000 HCP MANUAL
HARK 10.0

ABy program placed in the schedule as a result of a control
message received from a ZIP Communicate wili execute
asynchronoustr with and independently of the prograa which
executed the ZIP~ unless programaatic mean~ for synchroniziRg the
two programs are provided in the programs.

If the control instructions passed via the ZIP communicate are
i~vatid• a message is printed on the SPO to inform the syste•
operator of the occurrence. Ibis is n~cessary- sf nee invalid
co•trol instructions can result in incorrect o~erational
behavior.

CT.VERB
CT.OBJECT
CT.ADVERB

26

BIT
0
1-11

RETURN IF NO MESSAGE

CJ.I MESSAGE AREA BIT LENGTH
CT.2 MESSAGE AREA BASE RELATIVE BIT ADDRESS
ffEINSTATE.MSG.PTR VALUES

0 MESSAGE Of LENGfH ZERO
arrrrrr~ NO MESSAGE PRESENT
ANY OTHER VALUE LENGTH or MESSAGE IN BITS

This communicate uas provided as a •eans of i•plementing the
COBOL ACCEPT verb. Its use is not restricte~ to programs written
i~ a partfcular language; it may be used by any program.

The receiving field oust tie within the bounds of the program's
r~n str~cture. The program will be forced to wait for an
operator response if bfit one in the adverb is a zero and if there
is no message in the Accept Queue for the program. Control is
returned to the program through the normal processor queues when
a response froa the operator js received.

Messages are moved to the receiving field left-justified with
blank fill.

Ul~f L!I
CT.VERB
CT.OBJECT
CT.ADVERB

27

BIT
0-10

7-53

81000 HCP MANUAL
HARK 10.0

11 O=CRUNCH BLANKS OUT Of MESSAGE
!=PRINT MESSAGE AS IS

MESSAGE AREA BIT LENGTH
MESSAGE AREA BASE RELATIVE BIT ADDRESS

This communicate was provided as a means of imple•enting the
COBOL DISPLAY verb. like ACCEPT, it •ay be used by any program.
It serves merely to print the message described by CJ.1 and CJ.2
on the SPO.

If bit eleven in the adverb is set• the MCP wilt reformat the
entire message such that non-blank fields in the message are
separated by no more than one blank. This is merely a
convenience for the user programaer which •ay be used when the
spacing of the words in the message upon the SPO is not
import ant.

CT .VERB Z8

This .communicate is not impleaented.
aftd control is returned to the user.

I f rec e i v e d • i t i s i g nor e d

ill!! HAlU2L£B

CT.VERB
CT.OBJECT
CT.ADVERB

CT.I
cr.2
CT.3
CT.4
CT.6
CT.7

cr.e

29
BASE RELATIVE ADDRESS OF SORT INFORMATION TABLE
BIT <121
1 - SORT.RESTART
2 - SORJ.DUPCHECK
,3 - SOR f. Wl .PIO
4 - SOR'f.W2.PID
5-12 FILLER
BASE RELATIVE BIT ADDRESS Of SORT KEY TABLE
INPUT FILE.N~HBER OR ADDR Of MERGE.INPUT.TABLE If MERGE
OUTPUT FILE.~UMBER
lRANSLATE FILE.NUMBER OR NOT 0
DATA.ADDRESS COELETE~KEY.TABLEJ
IF <SORT.Wl.PID := WI.PIO.FLAG) THEN

DATA.ADDRESS CWl.PIDl ELSE 0
IF (SORT.w2.PID == wz.PID.fLAG> THEN

DATA.ADDRESS CWZ.PIDJ ELSE 0

This comm~nicate provides a aeans for the user program to call
the Sort Intrinsic. For details on the iaplementatien# refer to
the proper Sort or Merge Product Specification.

1-54

CT.VERB
CT.OBJECT

30

81000 HCP MANUAL
HARK 10.0

TRACE FLAGS

This communicate is used by all interpreters which include Trace
ca~abilities. Its use is not restricted to SOL only. The
coamunicate is merely a means of turning the Trace on and off.
The print line is passed via a type 61 interrupt from the
interpreter. The code invoked by this interrupt is little more
than a call on the SDL Read/Write Procedure in the MCP.

cr~VERB
CT.OBJECT
CT.ADVERB

CT.1
cr.2
CT.3

31
FILE.NUMBER
BIT
0-2 OP.CODE

3-8
3

It

5
6

1-8
9-11

9
10
11

USER
USER
USER

BIT
0
l
2
3
4
5
6
1
6
9

0 ,- READ
1 - WRITE
2 = SPACE
l ::: REWIND
4 .: JEST

OP.CODE.VARIANT
= REVERSE <READ• SPACE), ERASE CWRITE>•

TEST.WAIT.READY.NOT.REWIND <JEST>
- ONE.RECORD CSPACE>1 TAPE.HARK CWRIJE>•

TESJ.WAIJ.Nor.READY CTESTl
= ODO.PARITY <READ, SPACE• WRITE>
- NOISE <READ, SPACEJ
- INOT USED

SCHEDULING.VARIANTS
= FETCH.RESULT
= DONT.WAIT
.:: REPORT AND RETURN ON 10 ERROR

TAPE BUFFER BIT LENGTH
TAPE BUFFER BASE RELATIVE ADDRESS
ERROR MASK <BIT SET IMPLIES USER WILL HANDLE THE

CORRESPONDING ERROR>

CMAY NUT USE)
(MAY NOT USE)
NOT READY
PARIIY CNOT ON TEST>
ACCESS CNOT ON TEST>
TRANSMISSION <ON TEXT ONLY)
END.OF.TAPE
BEGIHNING.Of.TAPE
WRIT£. LOCK.OUT
END.Of.FILE (NOT ON TESJ), UNIT.PRESENT CON

TEST>

7-55

10
11
12-16
17
18
19
zo
Zl
22
23

81000,MCP MANUAL
MARK 10.0

REWINDING
TIME.OUT CNOT ON TEST>
CHAY NOT USE>
SHORT.RECORD
'LONG.RECORD
DROPOUT
INITIATE.LATE
CHAY NOT USE>
TRANSHISSION.ERROR.HEC
TRANSMISSION.ERROR.MIC

CT.4 BASE RELATIVE ADDRESS Of USER•S 48 BIT RESULT
BIT 0-23 Of RESULT COHTAIN THE RESULT DESCRIPTOR
BIT 24-41 Of RESULT CONTAIN THE ACTUAL LENGTH

REINSTATE.MSG.PTR VALUES
0 = RESULT RETURNED
1 = Io. ER:ROR
2 = RESULT NOl AVAILABLE

This coamunicate was added so that the Emulators of
second-generation hardware produced by Santa Barbara Plant might
be operated under control of the MCP. It was necessary to add a
new co••unicate to do this1 since programs written fllr these
machines routinely aanfpulate •agnetic tape in manners which
violate the rules of tbe MCP•s logical I/O aechanisas. The
normal file •echanisms in the MCP• which were promulgated upon
the specifications of the COBOL language, are certainly
i~adequate to allow all of the •any tape operations which were
co••on to second generation machines.

Essentiallr• the procedure builds an I/O descriptor according to
the specifications passed by the communicate format and initiates
it. Tbe Eaulator program is not allowed to execute until the 1/0
operation goes to completion. The procedure is re-entered at
completion of the operation and the program is then allowed to
continue.

The procedure first tests to see if the file is Open. If it is
not, the Open procedure is called directly fron the communicate
aBd control is returned to it when the opeB coapletes. At this
point• the procedure continues provided the open was successful.
If it was not• the emulator prograa would have teen placed in one
of the processor queues and marked waiting. In the latter case,
the coamunicate procedure merely returns control to the outer
loop of the HCP.

The procedure next performs minor editing on the files pas$ed in
the communicate format. If the operator request involves a data
tr ans fer , the bu f fer ar ea des c r i bed mus t li e who ll y w i t h in the
bounds of the user~s run structure. Due to hardware

7-5&

81000 MCP MANUAL
HARK 10.0

restrictions• certain variants and combinations thereof are
invalid for certain operation codes. The variants here are those·
passed in bits three through seven of the communicate adverb.
Validity of the variants is checked by the procedure. If the
user has violated either the bounds check or the variant check•
the pro~ram is automatically discontinued by the HCP.

The procedure next constructs an I/O Descriptor which corresponds
tB that requested by the user. The l/D Descriptor is outside the
user•s run structure. A full tape file FIB is allocated, along
with space for one l/O descriptor• by the Open Procedure. This
is done even though 111.anr of the fields in it are not used by the
Emulator Tape Handler routines dir•ctly. Host of the fields are
required by the Close Procedure.

The requested I/O operation is then initiated and the program is
marked waiting for its completion. Control is returned to the
o~ter loop of the HCP at this point and the HCP is free to
ser.vice other users.

When the I/U operation completes• the procedure is again invoked.
It first moves the result descriptor received with the I/O
coRcatenated with a twenty-four bit field which will specify the
actual length of the operation just completed. The length of the
o~eration is specified in bits. Also# prior to doing the •ove of
the result descriptor, the procedure verifies that the receiving
field is within the run structure of the prograa. If it is not•
the prograa is autoaatically discontinued.

If the exception bit is set in the result descriptor, the
procedure deteraines if the exception condition is one that the
user has included code to handle hiaself. If it is1 control is
returned to the user through the normal processor queue
aechanisa. If the user does not have code to correct the error
himself• the procedure calls the HCP's 1/0 Error procedure
directly. I/O Error will then retry a nuaber of times and
eventually return control to the Emulator Tape Handler. If the
error was irrecoverable• the program is discontinued. Otherwise#
control is returned to the user.

~JliUlL fBU.6.BAl.I. JlUHl.IUIAL .E.112

CT.VERB 32

This co•aunicate was added so that job streaming may be
terminated at the discretion of the· user. It functions exactly
as the STOP co•municate does except that instead of a standard
E~d-of-Job message~ it causes •coBOl ABNORMAL ENO• to be printed

1-51

81DOO HCP MANUAL
HARK 10.0

on the SPO. Also# any programs that are in the Waiting Schedule
waiting for this job to finish will not be moved to the active
schedule by the abnormal termination.

~DI! EUJ

CJ.VERB
CT.OBJECT
CT.ADVERB
CT.1
CT.2

l3
f ILE.NUHBER
CLOSE TYPE
END-OF-FILE POINTER
RECORD SIZE

This co•m~nicate serves to terainate~ in a nor•al manner# the
Sort and Merge Intrinsics and to return con~ol to the calling
program. For details on its operation• refer to the appropriate
Sort or Merge product specification.

CT.VERB
CT.OBJECT

35
BIT 0 <HIGH ORDER BIT)
O=THAW
l=f REEZE

DependiRg upon the functions being performed by a user program•
it may not be permissable for the HCP to change the memory
location of the program's run structure or to roll it out to
djsk. The aost obvious example of this is the Disk
Initialization Utilities. which have actual I/O Descriptors
within their run structure. There are several other such cases.

The field in the Run Structure Nucleus, RS.TEHPORARY.FREEZE1
gives notice to the MCP•s Roll Out procedures that this run
structure may not bo moved. Tbis communicate provides a
programmatic means of bumping and decrementing that field.

CT.VERB
48 BITS

36
SDL DESCRIPTOR CWHERE TO PUT INFO) IN FORMAT :
16 BITS=LENGTH
24 BITS=~DDRESS
RETURNS COMPILE CARD INFO IN FOLLOWING fORHAT :
#CHARS INFO
•••••
lO
02
10

•••••••••••••••••••••••••••••••••••••••
OBJECT NAME
EXECUTE TYPE
PACK.NAME or THE RUNNING PROGRAM

1-58

30
10
02
06
06
zo
07
01
36 BITS
04 BITS
10
10
04
20
01
'04
01

91000 HCP MANUAL
MARK 10.0

INTERPRETER NAME Of T~E R~NNING PROGRAM
INTRINSIC NAME <PACK 1 FAMILY>
PRIORITY
SESSION
JOB NUMBER
lSJ I 2ND NAMES Of RUNNING PROGRAM
CHARGE NUMBER
FILL£R
DATE COMPILED
FILLER
US£RCODE
PASSWORD
PARENT JOB NUMBER
PARENT QUEUE IDENTIFIER
JLOG SPO
SECONDS BEFORE DECAY
PRlf,llEGED

This coa•unicate returns selected fields from the working copy of
the Program Parameter Block to the user•s run structure. The
receiving field described by the SDL Descriptor eust lie wholly
within the run structure. The progra• will be automatically
discontinued if it does not. The fields returned are presented
in the fixed format shown in the table above.

CT.VERB 37
VALUE IS RETURNED IN COMMUNICATE MESSAGE POl~TER AS
SELF RELATIVE DESCRIPTOR.

This communicate returns the relative address of the dynaaic, or
overlayabte~ area in the run structure. It is intended for use
br programs written in SOL only.

!t~ l!UB.I lUU!f .l!l ~lll~Ji

CT.VERB 38
USED BY All LANGUAGES• INCLUDING SDL.

This comm1tnicate causes the progra••s run structure and other
pertinent information to be dumped to disk and locked fn the
directorr with a unique name. The information •ay be processed•
formatted and printed tater by a nor•al state progra• written for
that purpose.

Programs wllich are already in the process of ter•inati ng mar not
be dumped. This is academic in this case. however, since a

81000 HCP MANUAL
NARK 10.0

progra• which was ter•inating could not issue the communicate.
Programs which are rolled out to disk will be rolled back in and
dumped, via an operator•s action• provided sufficient memory is
available. Again• if the program were rolled out to disk• it
could not possibly have issued the communicate.

The amount of disk which wjll be required to contain the dump
file usually exceeds by a considerable aargin that required to
contain j~st the Base/li•f t area of the progra•• In additiDn to
the run structure• the du•P file will also contain the Fite
Dictionary1 the FIB•s and buffers, the Data Dictionary and all
data segments, the code dictionary and the code segments which
are present in memory at the time, and other miscellaneous
information. If sufficient disk is not available• a message will
be printed on the SPO and a one will be returned to the prograa
in RS.REINSTAJE.HSG.PTR. The program will be allowed to continue
processing.

The format of a dump file is as follows:

1. A "Pointere record• which is described below.

2. The program•s run structure and Run Structure Nucleus.

l. The Data Dictionary.

4. Every data segeent in the dictionary. Segments which are
not in memory will be copied to the dump file fr~• their
location on disk.

5. The File Dictionary.

6. Each FIB and its associated I/O Descriptors and buffers.
This includes atl files that are open and those that are
closed Nith no fora of release.

1. The working copy of the Program Parameter Block.

8. The working copy of the initial scratchpad settings.

9. The working copies of all File Parameter Blocks.

10. If the program is written in SOL, the LAYOUT.TABLE.

Control is returned to the program through the nor•al processor
queue mechanism. Actually1 the program is ~arked ready to run
after the scratchpad is copied.

The format of the •Pointer• record is:

1-&o

DUHPFILE.NUHBER
TIME.OF.DUMP
HCP.DATE
RELEASE.HCP
LIMIT.REGISTER
DATA.DIC.PTR
DATA.SEGS.PTR
fIB.DIC.PTR
f IB.PTR
PPB.PTR
NET.CONTROL.MACRO
HCP.RELEASE.LEVEL
LA YOlJI. TAB.LE. P TR
LAYOUT.TABLE.SIZE
DUHP.SYSJEH.ID

39

81000 HCP MANUAL
MARK lO.O

BI H24 >
BIJC36)
BITC16)
BIT<4>
BITC24)
Bll'C24l
811(24)
811(24)
SI 1CZ4>
BITC24J
BIIC 41
BilCl6>
BIIC24J
BITC24J
BIJC12>

% Julian Date plus Time
% MCP Version Date

% Relative Dis• Address
% Relative Disk Address
% Relative Disk Address
% Relative Disk Address
% Relative Disk Address
% 1 if Data Co••unications Handler

CT.VERB
CT.OBJECT SESSION IS PUT INTO RS.REINSTAJE."SG.PTR

12.C.<illl!l£a.l11

CT.VERB
24 BITS
24 BITS
24 BITS

40
PORT
CHANNEL
BASE RELATIVE ADDRESS or I/O DESCRIPTOR

This coamunicate provides the capability of initiating I/O
descriptors on the data communications equipment which may be
attached to a system. The 1/0 descriptor itself if constructed
by the ~rogram, which is usually the Data Co•aunications Handler
program generated by the NOL Compiler. This is not a
requiremeAt1 however• and no tes~ for this condition is aade by
the code in the MCP. The communicate op~rator •ay be used by any
program whose source language contains the proper syntax.

The program will be au~omatically discontinued by the HCP if the
requested 1/0 control is not a data co•munications ~ontrol or if
the control is already in use by another prngram. Also, if the
address of the I/O descriptor does not lie within the program's
run structure or if the program attempts to initiate an 1/0
descriptor with the "high priority interrupt request" bit set,
the ~rograa will.be automatically discontinaed.

After the editing described above has b~en performed1 the
requested operation is initiated. Control is returned to the
user through the normal processor queue mechanism. The program

7-61

81000 HCP MANUAL
HARK 10.0

is not forced to wait for the completion of the operation
initiated; cantrot is returned immediately after the initiation.

CT.VERB
CT.OBJECT
DESC1 .
DESC2
QUEUE.PTR

41
INDICATES FUNCTION
BIT 1-48 MESSAGE AREA 1
BIT 49-96 MESSAGE AREA 2
BIT 97-106 REMOTE FILE NUMBER OR STATION NUMBER

Il~JtRlI~

CT.OBJECT
DESC1
DESC2

NOTE:

11
RESULT A.RE A
DC.WRITE MESSAGE
NUMBER AT SU8STR<DESC2•6•2l IS MESSAGE TYPE
40=fINlSH OPEN
41=NDL/MACRO PRESENT
42=ATTACff STATIONS TO REMOTE FILE
43=0£TACH STATIONS FROM REMOTE FILE

iU.lkl ill£U.E llll.E .1f!~lUllf flL.t~l

CT.OOJECT
OESCl
DESC2
HHJ .FL

12
MESSAGE HEADER
MESSAGE
REMOTE FILE TO WHICH THE HESSAGE IS DESTINED

illl~li i.UEU£ Ji.Bl.II !iIAil!ltt tUl.J:lltEIU.

CT.OBJECT
DESCl
DESC2
ST.NR

CT.VERB
DESC

PARAMETER.
NODE

0

1

2.

11
MESSAGE HEADER
HE:SSAGE
STATION ~IUHBER

42
BIT 0-47 DESCRIPTOR TO PARAMETER LISJ.

l1ST LAYOUT
BIT C4l
SET All PARAMETERS IN LIST EXCEPT USERCODE ANO

PASSkORD. THESE MUST BE SUPPLIED TO FIND
CORRECT ENTRY.

SET All PARAMETERS IN LIST EXCEPT INDEX. INDEX
HUST BE SUPPLIED TO FIND ENTRY.

SET OVERRIDE. USERCOOE AND PASSWORD HUST BE

81000 HCP MANUAL
HARK 1 O.O

PRESENT TO FIND ENTRY.
l SET OVERRIDE. INDEX HUST BE SUPPLIED TO FIND ENTRY.
4 ADO ENTRY. All FIELDS HAVE TO BE SUPPLIED.
5 DELETE ENTRY. USERCOOE AND PASSMORD HUST BE

SUPPLIED TO FIND ENTRY.
6 INITIALIZE ALL OVERRIDE BIJS.
l CHANGE BY USERCODE. All ENTRIES FOR A GIVEN USER

CODE CAN BE CHANGED WITH ONE COMMUNICATE. USER
COOE MUST BE PRESENT. PACK FIELD MUST NOT BE
EQUAL TO ZERO TO CHANGE IT. CHARGE NUMBER HUST
NOT BE EQUAL TO ZERO TO CHANGE IT. PRIORITY HUST
N01 BE EQUAL TO ZERO TO CHANGE IT.

8 DELETE ALL RECORDS FOR A GIVEN USERCODE. USER-
CODE MUSI BE PRESENT.

9 SET ALL PARAMETERS IN LIST EXCEPT USERCODE AND
PASSWORD. ONLY USERCODE HAS TO BE SUPPLIED
BECAUSE SEARCH STOPS ON FIRST ENCOUNTER Of
GIVEN USERCODE.

10 CHANGE BY INDEX. INDEX MUST BE PRESENT.
PRIORITY CAN BE CKANGED BY SETTING FIELD TO NON
ZERO. CHARGE CAN BE CHANGED BY SETTING CHARGE
FIELD TO NON-ZERO. .PASSWORD CAN DE CHANGED BY
SETTING PASSWORD TO 1 NON-ZERD.

11 CLEAR PACK OVERRIDE r•ELD FOR All OCCURRENCES OF
THIS USERCODE. USE~CODE MUST BE SUPPLIED.

12 CLEAR PACK OVERRIDE eiT FOR All OCCURRENCES Of
THIS USERCODE. INB~X HUST BE SUPPLIED.

INDEX BIT ClOl
USERCOOE CHARACTER C10)

WHEN SET BY PROGRAN <MODE = o. z, 4, 5, 7, 81 9, 111~
fHE US£RCODE HAY OR \MAY NOT CONtAIN PARENTHESES.
IF PARENS ARE NOT FOUND# ONLY THE FIRST EIGHT
USED.

WHEN SET BY HCP CMODE ~ 11
USERCODE Will ALWAYS CONTAIN PARENTHESES.

PASSWORD CHARACTER ClOJ
PACK NAME CHARACTER ClOJ
CHARGE J BIT C24)
PRIORITY BIT (41
PRIVILGD BIT <I>
OVERRIDE BIT Cl>
REINSTATE.HSG.PTR VALUES

CT.VERB
48 BITS

0 NO ERRORS.
1 ERROR GN INPUT: EITHER INDEX IS NRONG OR

USERCODE/PASSWORO IS NOT PRESENT.
2 •(SYSJEH)/USERCODE": FILE NDT IN •us• SLOT.

lt4
SDL DESCIHPTOR
24 BIT LENGTH or TEXT

81000 HCP JtANUAL
HARK 10.0

24 BIT BASE RELATIVE ~ODRESS Of TEXT

This communicate functions in a manner similar to the ZIP
coamunicate described previously, with one notable exception.
The program which issues this ~ommunicate is suspended• and
reaoved from memory, until the program which is Initiated by the
co•municate goes to end-of-job. This coamuBicate, theni provides
a aeans for one program to call i another and wait for its
completion. The text which is addressed by the forty-eight bits
passed with the coJJ1municate should :be valid MCP Control Card
srntax which causes the execution of a program.

Unfortunately• no •eans are provided f~~ passing parameters
between the two progra•s involved. This can be done only vf a the
File mechanism of the HCP. The FILE Control Card, described in
the Software Operational Guide1 does provide some assistance in
this area.

The text passed by the co•municate must lie within the program's
r~n stracture. The program wilt be automatically discontin~ed if
it does not. No further editing is perfor•ed by the communicate.
The program which issued the comm~nicate is not informed of the
validity of the control syntax passed.

CT.VERB
CT .OBJECT
CT.ADVERB

46
BASE RELATIVE ADDRESS Of MESSAGE
BIT
0 l=LOADED O=DUHPED
1-11

This coma~nicate causes the thirtr bytes beginning at the address
specified by CT.OBJECT concatenated with either the word •LOADED•
or the word •DUMPED"• depending upon the s~tting of bit 1 of the
adverb• to be displayed upon the SPO if and only if the LIB
system optiGn is set. Refer to the Software Operational Guide
far details on the LIB option. All non-blank EBCDIC fjelds in
the message will be shjfted to the left before printing until
they are separated by no more than one EBCDIC blank.

G.!llf!L~l Jt.!11 !!il:G!UJ U&.el

CT.VERB
CT.OBJECT
CT.ADVERB

CT.I-ETC.

47
NUMBER OF EVENTS
FIRST EVENT TO CHECK CCHECKED IN CIRCULAR

FASHION FROM THIS POINT>.
BIT ENCODED EVENTS <NUMBER SPECIFIED BY CT.OBJECT

7-64

81000 HCP MANUAL
MARK 10.0

HAX=15).
O- 3 EVENT TYPE
4- 1 EVENT PARAHl
6-15 EVENT PARAH2

16-24 EVENT PARAM3
EVENT TYPES:

0 - NULL • PARAM1~2•3 : NOT USED
1 - SPO INPUT PRESENT ~ PARAHl1213 : NOT USED
2 - TIME - PARAHl-2•3 : CONC~TENATEO BIT ZO

FIELD CONTAINING THE LENGTH Of TIME TO
WAIT IN lOfHS Of A SECOND

3 - READ OK -PARAMI: NOT USED• PARAH2:
FILE NUMBER• PARAM3: HE~BER NUMBER IF FILE IS
Q-fILE-FAHILY

4 - WRITE OK - PARAM1•2•3: SAME AS READ OK
5 - QUEUE WRITE OCCURRED - PARAHt: NOT USED,

PARAH2: FILE NUMBER Of Q-FILE-FAHILY•
PARAHl: NOT U:SED

6 - DATA COHN IO COMPLETE - PARAMl•z,3: NOT USED
REINSJATE.HSG.PTR VALUES

ZERO RELATIVE INDEX ro THE COMMUNICATE EVENT LIST ELEMENT
WHICH IS COMPLETE

CT.VERB
CI.OBJECT
CT.ADVERB

cr.1
CT .• 2

FUNCTION

48
FILE.NUMBER
0 DECIMAL FORMAT RESULTS If TRUE

COBOL ("PIC 999•)
ElSE BINARY CBIT (24))

1-11
RESULT FIELD LENGTH
BASE RELATIVE RESULT FIELD ADDRESS
RETURN THE COUNT OF THE MESSAGES CONTAINED
IN THE QUEUE-FILE SPECIFIED. If 1HE OBJECT
JS A QUEUE-FILE-FAMILY• THE CBUNT WILL BE
RETURNED AS A LEFT-JUSTIFIED ARRAY OF
24-BIT COUNTS .. ONE FUR EACH HEH8£R OF
THE f AMilY.

c·r.VERB 50

Refer to p.s. 2212 5410.

CT.VERB
CT.OBJECT

51
FILE NUMBER

T-65

CT.ADVERB
cr.1
CT.2.

CT.VERB
CT.OBJEXT
CT.ADVERB
cr.1
cr.z

Bl·OOO HCP MANUAL
HARK 10.0

COMMUNICATE LEVEL CMK 7.0 LEVEL=ll
TOTAL ATTRIBUTES CHUST BE 1 IN 7.C)
BASE RELATIVE ADDRESS or ATTRIBU1£ LISJ

52
FILE NUMBER
COMMUNICATE LEVEL CMK 7.0 LEVEL=l>
TOTAL ATTRIBUTES CMUST BE l IN 7.Cl
BASE RELATIVE ADDRESS Of AiTRIBUJE LIST

CT.VERB 55
CT.OBJECT 0 - CT.3 CONTAINS AN ABSOLUTE MEMORY ADDRESS

1 - HINTS. cr.1 WILL BE USED AS AN OFFSET
INTO THE FIEJLO

2 - RS.NUCLEUS. USE Of CT.ADVERB AND CT.3 IS
DESCRIBED BELOW

3 • IOAT. USE Of CT.ADVERB AND CT.3 IS DES-
CRIBED BELOW

4 - OCH.SCRATCH.HEH
5 - PACK.INFO TABLE
6 - SPO.SQ

CT.ADVERB SEE BELOW
CT.t and CT.2 A BASE-RELATIVE SOL DESCRIPTOR WNICH SPECIFIES

THE RECEIVING FIELD IN THE PROGRAM. THE FIRST
EIGHT BITS OF cr.1 ARE IGNORED BY THE MCP

CT.3 SEE BELOW

Since HINTS actualtv begins at absolute tocation zero• there is
no functional difference between reading an absolute memory
location and reading HINTS with aA offset. Both settings of
CT.OBJECT are allowed to accoaodate possible future expansion to
the function of access~ng HINTS.

When reading Run Structure Nuclei• all nuclei are returned if
CT.ADVERB is set to zero. The number of nuclei that are
c~rrently present in memory is returned as a sett-relative value
in RS.REINSTATE.NSG.PTR. Alt of the nuclei will be copied to the
receiving field in the program in the order that they are liAked
in memory and up to the U 1mit contaiined in the size specification
iB CT.1. If the nuclei of all executing progra•s are transferred
to the receiving field before it is exhausted• the remaining
portion of the field will be set to blanks.

To access the Run Structure Nucleus of one particular executing
progra•• CJ.ADVERB should be set to one and the job nu•ber of the

1-66

81000 HCP MANUAL
MARK J. Q. 0

program should be contained as a twenty-four bit binary value in
CJ.3. If CJ.3 contains zero. the nucleus of the requesting
program will be returned. If the nucleus of the program
specif led by CT.l is not in memory for ~ny reason• the receiving
field witl be set to arFFFFF~ and tilted with blanks and a
self-relative value of one will be returned in
RS.REINSTAJE.MSG.PTR.

When reading the IOAT• if CT.ADVERB is set to zero• CT.3 will be
used as an offset into the IOAT and the re•aining portio~ of the
table will be transferred1 up to the liait specified fn cr.1.
The value of CT.3 may be zero- of course, and the entire table
•ay be transferred. If CJ.ADVERB is set to one, CT.3 will be
assumed to contain the twenty-four bit binary value of a file
nuaber associated with a file which the program currently has
open. All of the ltiAT entries which follow the associated entry
may be transferred• depending upon the value contained in cr.1.
If the file is not open or is not present in me•ory for any
reason• 3FFfFFfa witl be transferred• the remainder of the
rece1v1ng f ietd will be set to blanks and RS.REINSTATE.HSG.PTR
will be $8t to a self-relative value of one.

If CT.ADVERB i$ set to a value of two when reading the IOAJ, the
tow-order twetve bits of CJ.J witl be assu•ed to contain a
Port/Channel/Unit combfination in the following format:

Bits 12 - 14
Bits 15 • 18
Bits 19 - 23

Port
Channel
Unilt

The KCP will scan the IOAT for the entry associat~d with the
specified unit and will return that entry plus all subsequent
entries up to the limit of the IOAT or that specified in CT.I.
If the specified unit is not present in the IOAJ, the HCP will
s~t the receiving field to aFFFFFf~ followed by blanks and will
set RS.REINSTAJE.MSG.PTR to a setf•relative value of one.

ltUl.ElE.12 .i.EIJJUlliL f!Jl~lllllti

CT.VERB
CJ.OBJECT
CT.ADVERB

56
FILE
BIT
0
l
z
3
4-5
6-7

NUMBER

REPORT TO USER ON PARITY

RESULT MASK FIELDS PRESENT

RELATIONAL OPERATOR
0 EQUAL TO
I GREATER THAN

7-67

CT .'.I.
CT .• Z.
CT.3
CT.4
CT.5
CT.6
CT.7

91000 HCP MANUAL
MARK 10. 0

2 NOT LES THAN C> I ~>
8•10 SELECTION CONDITION

0 NEXT
1 PRIOR
2 FIRST
3 LASJ
4 NEXT AT
5 CURRENT
6 AT
1 RAND OH

11
LENGTH Of RESULT MASK
ADDRESS 0£ RESULT MASK ..
STRUCTURE NUMBER
KEY ADDRESS
KEY LENGTH

lttll.El.~11 lf.:i.L!.ftUIJL R.EJ.ll

CT.VERB
CT.OBJECT
CT.ADVERB

CT.I
cr.2
CT.3
CT.It
cr.s
CT.6
CT.7

51
FILE
BIT

·o
l
2
3
4-5
6-7

8-10

11

NUMBER

REPORT TO USER ON EOF
REPORT TO USER ON PARITY

RESULT MASK FIELDS PRESENT

RELATIONAL OPERATOR
0 EQUAL TO
1 GREATER THAN
2 NOT LESS THAN C> I =l
SELECTION CONDITION
0 NEXT
1 PRIOR.
2 FIRST
3 LAST
4 NEXT AT
5 CURRENT
6 AT
1 RANDOM

LENGTH OF RESULT MASK
ADDRESS Of RESULT MASK
LOGICAL RECORD LENGTH
LOGICAL RECORD ADDRESS
STRUCTURE NUMBER
KEY ADDRESS

1-68

81000 HCP MANUAL
HARK 10.0

UtllElEJl ~.EQJJ~ttlllL HB.111:

CJ.VERB
CJ.OBJECT
CT.ADVERB

CT.1
cr.2
CJ.3
CT.4
CT.5
CT.6
CT.7

58
FILE NUMBER
BIT
0 REPORT TO USER OH EOf
1 REPORJ JO USER ON PARITY
z
3 RESULT MASK FIELDS PRESENT
4-11
LENGTH OF RESULT MASK
ADDRESS OF RESULT MASK
LOGICAL RECORD LENGTH
LOGICAL RECORD ADDRESS
STRUCTURE NUMBER
KEY ADDRESS

l!llflEQ .S.EilftillAL. Jl£.HR11L

CJ.VERB
CJ.OBJECT
CJ.ADVERB

cr.1
cr.2
CT.l
CJ.It
cr.s
CT.6
cr.1

59
FILE NUMBER
BIT
0
1 REPORT TO USER ON PARITY
l
l RESULT MASK FIELDS PRESENT
4-11
LENGTH Of RESULT MASK
ADDRESS Of RESULT MASK
LOGICAL RECORD LENGTH
LOGICAL RECORD ADDRESS
STRUf:TURE NUMBER
KEY ADDRESS

ltUlflEl2 g.aJJ£1ll.AL 12fL£IE

CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.2
CT.3
CT.4
cr.s
CT.6

60
FILE NUMBER
BIT
0
1 REPORT TO USER ON PARITY
2
3 RESULT HASK FIELDS PRESENT
4-11
LENGTH Of RESULT MASK
ADD~ESS OF RESULT MASK

STRUCJURE NUMBER
KE'Y ADDRESS

7-69

CJ.,7

81000 HCP MANUAL
HARK 10.0

f!EL!Ilfi ll!J &!11!1!Ul.t1.l&AIE - iIABI

CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.z
CT.3

Cf .• 4

61
FILE
BIT
0
1
2
3
4-5
6-1

e-11

NUMBER

REPORT TO USER ON EOF
REPORT AND RETURN TO USER ON PARITY
REPORT AND RETURN TO US£R <INCOMPLETE .I/Ol
RESULT MASK FIELD PRESENT

RELATIONAL OPERATOR
0 EQUAL TO
l GREATER THAN
2 NOT LESS THAN

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS
ACTUAL BINARY DISK KEY <RELATIVE KEY>
SUPPLCE D BY USER

CJ.5 LENGTH IN BITS Of RESULT MASK FIELD
CT.6 BASE RELATIVE ADDRESS Of RESULT MASK FIELD
REINSTAJE.HSG.PTR

0 GOOD READ
1 END OF FILE
2 I/O ERRO·R
3 INCOMPLETE I/O

CADDITIONAL ITEHS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATION>

B.~L.AillE ll..D &DJUUltil&6IE - KB.ll~

CT.VERB
CT.OBJECT
CT.ADVERB

cr.1
CT.2
CT.3

CT.4
cr.s

62
FILE
BIT
0
1
2
3
4

s-11

NUMBER

REPORT TO USER ON EOF
REPURT ANO RETURN JO USER ON PARITY
REPORT AND RETURN TO USER CINCOHPLETE I/OJ
RESULT MASK FIELD PRESENT
ACCESS TYPE
0 SEQUENTIAL CNEXT>
1 RANDOM CAT KEYJ

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIV£ BIT ADDRESS
ACTUAL BINARY DISK KEY FOR RANDOM OR DYNAMIC
FILES [SUPPLIED BY USER; NOTHING If IN
SEQUENTI Al MODE>

LENGTH IN BITS OF RESULT MASK FIELD

1-10

81000 HCP MANUAL
HARK 10.0

CJ.6 BASE RELATIVE ADDRESS OF RESULT MASK FIELD
REINSTATE.MSG.PTR

0 GOOD READ
l ENO OF FILE
2 I/O ERROR
3 INCOMPLETE 1/0

<ADDITIONAL ITEMS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECifICATIONl

R~LJll!E 1£Jl kO!HUll&AlE - B~~Rll~

CJ.VERB
CT.OBJECT
CT.ADVERB

cr.1
cr.2
CT.3

CT.4

63
FILE
BIT
0
1
2
3

•
5•11

NUMBER

REPORT TO USER ON EOf
REPORT AND RETURN TO USER ON PARITY
REPORT AND RETURN ro USER <INCOMPLETE 110)
RESULT MASK FIELD PRESENT
ACCESS TYPE
0 SEQUENTIAL <NEXT>
1 RANDOM CAT KEY>

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATifE BIT ADDRESS
ACTUAL BINARY DISK KEY FOR RANDOM OR DYNAMIC
FILES <SUPPLIED BY USER; NOTHING IF IN
SEQUENTIAL HOOE>

CT.5 LENGTH IN BITS OF RESULT HASK FIELD
CT.6 BASE RELATIVE ADDRESS OF RESULT HASK FIELD
REINSTATE.MSG.PTR

0 GOOD READ
1 END OF FILE
2 I/O ERROR
3 INCOMPLETE l/O

CADDITIONAl ITEMS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATIONJ

THE REWRITE COMMUNICATE WILL BE ESSENTIALLY THE SAHE AS
THE NRIJ£, BUT WILL HAYE A DISTINCT MEANING IN LOGICAL I/O

CT.VERB
CJ.OBJECT
CJ.ADVERB

64
FILE
BIT
0
l
2
J
4

NUMBER

REPORT JO USER flN EOF
REPORT AND RETURN TO USER ON PARITT
REPORT·AND RETURN TO USER CINCOHPLETE 110)
RESULT MASK FIELD PRESENT
ACCESS TYPE
0 SEQUENTIAL CNEXTJ

1-11

CT.t
CT.2
CT.l

CT.4

5-11

81000 HCP MANUAL
MARK to.o

1 RANDOM CAT KEYl

ACTUAL BINARY DISK KEY FOR RANDOM OR DYNAHIC
FILES CSUPPLIED BY USERJ NOTHING If IN
S£'CWENTI Al MODE>

CT.5 LENGTH IN BITS Of RESULT MASK FIELD
CT.6 BASE RELATIVE ADDRESS or RESULT MASK FIELD
REINSTATE.HSG.PTR

0 1GOOD READ
1 END OF FILE
2 I/O ERROR
l INCOMPLETE l/O

(ADDITIONAL ITEMS FOR FILE SJATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATION>

B.ELAII!f Ill! &ll.!!1Hl.!I&Alf - .Rf .612

CT.VERO
CT.OBJECT
CT.ADVERB

CT.I
CT.2
CT .. l

CT.It

65
FILE
BIT
0
1
2
3
4

s-11

REPORT JO USER ON EDF
REPORT AND RETURN TO USER ON PARITY

.REPORT AND RETURN TO USER CINCOMPLETE 1/0)
RESULT MASK FIELD PRESENT
ACCESS TYPE
0 SEQUENTIAL CNEXTl
I RANDOM CAT KEY>

LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS
ACTUAL BINARY DISK KEY FOR RANDOM OR DYNAMIC
FILES !SUPPLIED BY USER; NOTHING If IN
SEQUENTIAL MODE>

CT.5 LENGTH IN BITS or RESULT MASK FIELD
CT.6 BASE RELATIVE ADDRESS OF RESULT MASK FIELD
REINSf ATE.HSG.PTR

0 GOOD READ
1 END OF FILE
2][/ 0 ERROR
3 INCOMPLETE l/O

CAODITIONAL ITEMS FOR FILE STATUS DEFINED IN THE SEQUENTIAL
FILES DESIGN SPECIFICATIDN>

CT.VERB
CT.OBJECT
CT.ADVERB

66
FILE NUMBER
BIT

1-12

CT.I
cr.2
CT.3
CT.4
CJ.5
CT.6

CT.VERB
CT .08,JECT
CT.ADVERB

cr.1

cr.2
CT.l

81000 MCP MANUAL
HARK 1O.0

0 REPORT AND RETURN TO USER ON EOF
1 REPORT AND RETURN TO USER ON PARITY
Z REPORT AND RETURN TO USER ON INCOMPLETE I/O
3 LENGTH ADDRESS PART IS PRESENT FOR THE RESULT

MASK
4-11
LOGICAL RECORD BIT LENGTH
LOGICAL RECORD BASE RELATIVE BIT ADDRESS
RANDOM FILE ACTUAL BINARY KEY

LENGTH IN BITS OF RESULT MASK
DASE RELAJIVE,ADDRESS OF RESULT MASK FIELD

67
FILE NUMBER
BIT
0
1
2
3-11

REPORT.FILE.HISSING
REPORT.FILE.LOCKED
REPORT.EXCEPTION <SECURITY ERRORS)

CIHE OPEN TYPE IS TAKEN FRO" JHE FPB.AOVERB AND
FPB.EXPANDED.ADVERB FIELDS)
LENGTH Of USERCODE/PASSWORD FIELD
CIF OPEN.ON.BEHALF.Of)

BASE RELATIVE ADDRESS Of USERCOOE/PASSWORD FIELD
OPEN STATUS - RESERVED FOR THE SNCP TO KEEP TRACK
Of WHERE TO RESUME IF THE ENTIRE OPEN CANNOT BE
COMPLETED.

1-13

81000 MCP MANUAL
HARK 10.0

A message queue system has existed in HCP II since 1973. This
section describes the current Queue implementation and the
iBterfaces between the Queue system and other system software.

The word •Queue• as used in this document, most often refers to
the actual data structure maintained by the operating system.
This data structure is used as a means of inter-proce~s
coamunication. Queues •ay have various attributes just as files
do. for example~ Queues may have two ten-character names' user
counts, message counts• and so forth. The data structure is used
to address a list of messages. This list aay be empty. A Queue
user may add to the back or remove fro• the front of this list.
The Que~e aay be shared -- one or more processes may put messages
in the list and one or aore processes may re•ove messages. Only
the HCP ear access the data structure directly. User prograMs
must use ather mechanisms, which are constructed from this data
structure, such as Queue files or Reaote files.

The design of the data structure (figure 8-11 was strongly
affected hr the need to reduce the S-•e•ory needs of queues.
Reusable structures like aessage buffers and message descriptors
are pooled for the use of the whole queue syste•· The memory
space ased by empty message buffers and descriptors is not
automatically returned to the systea. Jhe Queue implementation,
rather. retains them for later use. This results in quicker
allocation when this space is required again and in less
distur~ance of the ~orking set of the code in the syste•· Since
Q~eue files and Remote Files are unblocked# their FIB•s need not
have b~ffers. This miniaizes th~ amount of memory required to
contain the FIB.

A Queue File Faaily may consist of a maximum of 1023 Queues• each
having the same first name or HFID and the saae attributes. A
Queue file family is shown diagrammatically in figure e-z. A
user program may READ a message from one of the individual Queues
in the fanily or it may request a message from any queue in the
family. On a WRITE operation• however• the ind~vidual family
•e•ber must be specified.

8-1

81000 HCP MANUAL
HARK 10.0

If individual Queues of a Queue File family are to be addressed,
the individual member must be specified by an ordinal number, or
key• much like Switch fites in certain languages. A key of zero
specified on a Read of a Oueue file Family means that the user
will accept a message from any of the individual Queues ~hich
coaprise the famitv.

for a given Queue, the Queue name, maximum length• pointers to
first and last messages, etc, are stored in the Queue Descriptor.
The descriptor must be in memory during the existence of the
Queue. Users of the Queue are given •o-keys", which serve as
pointers to the Queue Descriptor• when the Queue File is opened
aBd the user has specified the desired attributes of the Queue.
for a Queue Fite, the Q-key is stored in the file's FIB. If the
Queue is empt,, the 360-bit descriptor is the anly memory
structure dedicated solely to the Queue.

Messages stored in a queue may reside on disk or in memory. At
Queue creation, an area of system disk is obtained for the Queue
large enough to hold O.MAX.HESSAGES of size Q.HAX.HESSAGE.SIZE.
These two attributes are normally specified by the user. A Queue
specified to contain a maximum o-f 255 11essages.r each of a maximum
size of ZOO bytes will req~ire 255 •CC200+179> DIV 1801 or 510
disk segments, where DIV denotes an Integer Divide ope~ation.
The reqaired disk space will be allocated when the Queue is
opened• prior to the time it is actually required. This is done
to minimize the processing required to store the •essage on disk.
Users who have minimal amounts of disk storage available may
control the amount that is required by Queues by manipulating
Q.MAX.HESSAGES. The disk space that is allocated to Queues is
not tocked in the directory. If the system fails while Queues
are active, the dis• is returned to the available list during the
ensuing Clear/Start operation. Disk is always allocated to
Queues, even if su·fficient me11ory is available to contain the
maximua nuaber of •essages.

O~eue messages are written to disk when a message being put into
a queue aakes the count of messages in memory equal to the
attribute Q.BUfffRS. When this situation occurs, a disk Write
oparation on the last message in memory in the Queue is
initiated. This will mate one of the buffers available for an
ensuing insertion in the Queue. There is one exception to this
statement~ The disk Write operation will not be initiated by the
Queue ro~tines if the attribute o.BUffERS is equal to or greater
than the attribute Q.HAX.MESSAGES. In this case• messages

a-2

91000 HCP HAHUAL
HARK 10.0

associated with the Queue may only be written to disk by the
Hemorr Management routines. The Memory Management routines may
write Queue messag~s to dist anytime me•ory is required in the
system. This ensures that Queue messages will not fill meaory to
the point where thrashing occurs.

When a ~sBr reaoves• or R£ADs• a message from a Queue the first
message in the Queue is transferred to his Run Structure and the
next message in the Queue is examined to determine if it is on
disk. If it is• a took-ahead disk Read operation is initiated to
minimize the time that the user will have to wait for delivery of
the next Queue message.

The I/O descriptors that are used for the disk Read and Write
operations just described reside in the Queue Fite•s FIB. For
each mode of use• input or output• a program opening a Queue File
is given one I/O descriptor. A file opened input and output is
given two 1/0 descriptors. 1/0 descriptors are shared among all
members of a Queue file Family• so that no Queue file FIB will
ever contain more than two I/O descriptors.

The method of storing aessages in the queue is by •eans of a
linked list of Message Descriptors. Each Message Descriptor <MD>
consists of an 80-bit svstem descriptor and two link fields• for
a total of 1Z8 bits each. The srstea descriptor actually
describes the message text• according to normal MCP conventions.

To reduce checikerb,oard·ing• HD•s are allocated in blocks 'Of t·en.
Assigni~g a Message Descriptor to a message is accoaplished by
searching the blockCs> of ten fo~ an available MD. If none are
avajlabl&• memory space for an additional block of ten is
obtained via a call on the Me11ror Management routines. The
blocks of Message Descriptors are surve1ed periodically to
coRsolidate and return unused blocks to the syste•• At least one
block is retained as long as any Queues exist.

If a queued message is in memory~ the memory area whjch contains
the message is known as a Message Buffer CHB>. The ~L.TYPE field
in the meaary link which describes the area wilt be set to a
unique value which denotes a Message Buffer. No Queue will ever
have more than Q.BUFFERS messages in memory at any ti•e,
including those messages which are in transit between memory and
disk. Actually• since the He•ory Hanageaent routines are capable

8-.3

81000 HCP MANUAL
HARK 10.0

of writing Queue messages to disk and removing thea from memory•
the Queue routines cannot quarantee that any messages will be in
memory at any given tiae.

iUEU~ .6IIBIBUI~

In addition to attributes common to all files, the user may
specify two attributes whose interpretation has meaning for Queue
files only:

1. Q.HAX.HESSAGES - the maximum number of messages a Queue can
store, at which point it is considered full C•axi•u• lOZJJ.

2. o.FAMILr.sIZE the number of sub-queues in a Queue Fite
family (maximum 10231.

In addition, a.BUFFERS as described· in the foregoing mar be
specified by the BUFFERS file attribute. Tkus• the user may have
soae control over the number of messages that aay be contained in
•emory at any given time. In the COBOL language• a Queue File
Declaration may appear as:

SELECT MY.Q ASSIGN 10 QUEUE •
•
•
•

FD MY.Q VALUE OF Q.MAX.MESSAGES IS 20
RESERVE l ALTERNATE AREAS.

01 MY.Q.8Uf PIC XC80l.

SELECT HY.Qff ASSIGN IO QUEUE~
•
•
•

FD MY.Qff FILE CONTAINS 3 QUEUES
VALUE OF Q.HAX.H£SSAGES IS 10
RESERVE 2 ALTERNATE AREAS.

01 MY.Qff.BUf PIC XC80).

If a Queue File faaity is opened• the same attributes apply to
every member .individually. In MY.QFf above, for example• all
three m~abers aay hold ten messages• each having a maximum of two
in meaory.

The name assigned to a Queue File is specifed by the user as the
MFID/FID combination. For a Queue file Family• the HFID is

81000 HCP HANUAL
MARK 10.0

specified by the user and is taken to be the first ten
characters, and an FID is synthesized from the me•ber number for
each queue in the family. The first member of HY.QFf would be
naaed •Mr.orr1•00000001•.

When a Queue File is opened, the HCP compares the ZO-character
na•e with the names of alt Queues currently in existence. If a
Queue of that name if found• the opener is linked to the existing
q~eue and the Queue's user count is jncremented. If the Queue
does not.exist, a n~w Queue is created with the attributes
provided by the FPB. Queue attribute binding occurs ~hen the
Q~eue is first created, by the first process to open the Queue
File. If two programs share a Queue <e.g.. both agree on the
na•e>• the first program to open the shared Queue file binds the
attributes.

Blocking of records is not allowed in Queue files. The Record
Size attribute determines the upper limit on the length of a
message which may be stored in a queue file.

Queue File logical I/O operations are rather simple and
straightforward. As uentioned previously, all Queue Files must
be unblocked. Truncation or blank fill may occur• depending upon
the size of the user•s wort area and the size of the message
being moved, exactly as is done on all other logical I/O
operations on 81000 systems. The user may request that three
different exception conditions be reported to him on all Queue
file logical I/O operations. These three conditions are• in
COBOL syntax:

la ON END-OF-FILE

2. ON EXCEPTION, and

3. ON INCOHPLEJE-IO.

On READ operations, ENO-OF-FILE is reported to the user when the
Queue File is empty and no program exists which has the Queue
o~ened for output. E~CEPlION is reported on Queue File families
only and on READ operations onty1 and actually denotes an invalid
key passed on the READ to specify the desired faaily member.
INCOMPLETE-IO is reported if the Queue is eapt~ but programs
still exist which have the Queue opened for output purposes. All
three conditions are reported only if requested, of course.
Failure to request that END-OF-FILE or EXCEPTION be reported will
be considered a program er,or if either condition occurs and the
program will be discontinued.

8-5

81000 HCP MANUAL
HARK 10.0

The precise •eaning of EOf on READ is that Ca> the last writer on
this Queue has closed his Queue File and Cbl the Queue is empty.
EOf is treated as a pseudo-message in the Queue. That is1 when
the last message has been read fro• the Queue file, the file
still exists and actually re•ains "not empty" for WAIT p~rposes.
A subsequent READ will result in the EOf branch being taken. The
Q~eue is then empty• but still in EOF status• so if yet another
READ ~s issued on the Queue File, the reader will again take the
EDF branch. EOF can be cleared by either the reader closing and
re~pening the file or by the opening of the Queue by a new
writer.

REAOs to specific members of a Queue File family are treated
exactly like READs on single Queue Fites. An unspecific READ on
a Queue file Family wilt return EOF only if all members of the
Fa•ily are at EBF <i.e •• e•ptr• no writers>. When the last
writer closes any •ember queue of a Qff, the event
Q.WRITE.OCCURRED witl be caused for the QfF; this will put a
r~ader in the READY.Q when it WAIIS on this event.

A MESSAGE COUNT com•unicate operator is i•plemented to enable
user programs to determine if any messages are present in the
Oueue Files tbey are using. This function is described in a
later paragraph. A MESSAGE COUNT com•unicate issued fDr a Queue
that is marked as being at END-OF-FILE will show the EOf status
as a pseudo-message - the count for that particular Queue File
will be one more than the count of real messages. When the
reader executes a specific READ on the member Queue which is at
EOf, the EOF branch wilt be taken. The next MESSAGE.COUNT will
show the member Queue as containing no messages. Another READ on
the member wilt result in the EOf branch being taken agaiA, as is
done.for a single Queue file.

J

OA Queue WRITE operations, END-Of-FILE is not defined and will
never occar. EXCEPTION has the same meaning as it does for READ
operations - it denotes an invalid key condition on Queue File
Fa•ilies onty. INCOMPLETE-IO will be reported• if requested,
when the Gueue is futl and there is no space avatlable to store
the message that is being written. If no INCOMPLETE-IO report is
rquested and the Queue is full when a WRITE occurs, the prograa
is suspended until space is available in the Queue.

As aenti~ned previouslr~ when a logical 1/0 request is directed
to a Queu~ File Family~ a key must be included to identify the
specific Queue in the family to which the operation is directed.
This is si•ilar to Switch files in the SOL language. family
•embers are numbered logically from one to n. Giving a key of
zero on a READ is defined as an unspecified read. The members

8-&

81000 HCP MANUAL
MARK 10.0

will be searched~ beginning with nuaber one, and the first queue
member found not ~mpty will be read. A kev of zero on a write is
iravalid.

iiRllltt§ lil Ili.E !JU! llf A i.U~ll~ ElL~

Writing to the top of a Queue File is allowed in the MCP though
it mar or aay not be allowed in a given language. A message
written to a queue file normally goes to the bottom of the Queue
though some rare occurrences in applications may require the
canverse. This capability is invoked in the communicate
operation by setting bit 7 of CT.ADVERB.

This c~mm~nicate operation returns the count of aessages in the
Queue File specified. If a Queue File faaily is specified, the
count of each member will be returned in an array <member one in
the first position• member two iR the second• etc.>• up to the
tiait of the result field. Counts will be returned either in
decimal <COBOL "PICTURE 999") or binary CSOL •eITC24)•J depending
on the value of the first bit of CJ.ADVERB. This operation may
nDt be isplemented in all languages.

format::

CT.VERB
Ct.OBJECT
CT.ADVERB BIT 1
cr.1
c1.2

8-7

48 CffEX a3oa>
file Nu•ber
Decimal format results if true
Result field length in bits
Result field address

Reader FIB

81000 HCP MANUAL
HARK 10.0

Writer FIB
..... ;fr ft* ... fr It
* Device=Queue • • Device=Queue *

.. Q KEY
Queue Descriptor

*
I:

Q KEY

.. ..
•

.... **Ir •• Ir* .. *. fr Ir • Q.LABEL="MY.Q• • •*••••••••******
• Read •
•IU Descriptor •
••1r•••*****•••••

* Q.HAX.MESSAGES=lO * • Write •
* Q.HSG.COUNT=3 * -->•IO Descriptor *
1r Q.BUFfERS=Z • 1 ••••••••••••••••
• Q. NOT .F Ull-= TRUE * I I J
• Q.NOT.EMPTY=TRUE • ----------- I J

---------------->• Q.FIRST * I I I
I ------->• Q.LASJ * I I I
I **********•~••••••••• 1 I I I ·I -- -tm~--··--- _.__ .. _____ _ .. ______ ._.._,,. •• ---- 1 ·I I

I MD I MD2 HD 3 V I I
************•••---->•••••••••••••&•---->****************** J I
• IN S•Hemorr • • On Disk • • In Process Out • I I
.rr•••••••*******<----•~•••••••••••••c----••tt•••••••••••**** I I

I I I I
1 I MB I I

MB V I •••••••••••••••••• I I
•••••••••••••••••• I * "THIRD MESSAGE •<--1 I
* "FIRST MESSAGE * I 1r IEXT" • I
• TEXT" • I ************"'**•** I
***********•****** I I

J t
I * System Disk 1r I
I *********************••• I
I • • I
1 t

·------>• ·SECOND MESSAGE TExr·· I
•*****************•••••• I
*•THIRD MES> ••••••••• •<---1

•

Figure 8-1: Two Programs Communicating in a Queue file Catted •Mf.Q•.
The Qtieue contains three messages.

8-8

FIB

81000 MCP MANUAL
MARK 10.0

t~•·~***********•*****"*****
• •MY.Qff" *
• FIB.MYUSE = INPUT/OUTPUT *
• flB.Q.f AHILY = TRUE *
1r fIB.Q.FAMILY.SIZE. = 3 •
••••&••*************••••••••

Q.KEY 1

*
*
•

•MY.Qff" fr

·•100000001 ..
Q • .BUFFERS = 2 *

G.MAX~MESSAGES=tO Ir

Q.HSG'.C"f = 0 •
•

• FIRST • LAST •
Q.KEY 3

•

.. "MY·•QFf"

* "1100000003
• Q.BUFFERS = 2

* Q.HAX:.HSG.COUNT .. Q.MSG.CT = 2

* FIRST

Figure a-z:

= 10

• •••••••••••••••••••••
* •NY.QFF• *
• w••oooooooz •
* Q.BUffERS = 2 •
• Q.MAX.HSG.COUNT=lO *
• O.MSG.CT = 1 1r

Ir

•
fr

•
•

FIRST • LAST

MD
•••••trtrlr
* ..
•••••A-••••••11'••

HD
fc'A'ftAlrfril'lr.frA-lr***

HD
** ,,

A Queue-ti te Fa• Hy with three members.

8-9

81000 HCP MANUAL
MARK 10.0

lj:jliB.:f.B!UiBAH ~!lHH.U.til&.411 Wi

Another means of accomplishing inter-process communication is the
IBter-Program Communication Module, first implemented in the 9~0
software to satisfy the requirements of the ANSI 1 74 COBOL
Language. According to the specifications of that language• the
facility provides synchronous CALL and EXIT verbs, as well as a
shared data implementation. The module provides a facility to
transfer control from one prograa to another and the ability for
both programs to have access to the same data items. The na•es
of the programs to which control is to be passsed may or may not
be known at compile time. Additionally, this module provides the
ability to deter•ine the availability of memory for the program
to which control is being passed.

BJLt:l U!JlI l!t;Ellilll1Ui

The definition of a •Run Unit" is critical to the implementation
of the CALL/CANCEL nechanism described in the ANSI •74 COBOL
specifications. The execution of any prograa via an EXECUTE
control instruction does not establish a Run Unit. A Run Unit is
established only when an executed program initiates another
program via the CALL communicate. That called program is now a
member of the Run Unit associated with the prograa that was
originally executed. Similarly, any program called by a program
within the Run Unit becoaes part of that Ru~ Unit and remains in
that R~n Unit until terminated or cancelled. A job cannot be a
member of •ore th~n one run unit. The following figure
represents seven programs <A - Gl which have been called within a
run unit.

Previous
Path

---->

•
f

D
•

,.
••

•

A CA was Executed>
I
I <---- Current Path
8 . \

\
c
I
I

G E

The connecting links are generated hr and represent the last used
path, and the link exists until a return CEXIT PROGRAM> is
accomplished. Once a called program has been exited co. f• G>•
it reaains suspended in its current state. The only path that is
of interest is the path last traversed.

8-10

BlOOO HCP MANUAL
MARK 10.0

The current path is important in order to check the validity of a
CALL or CANCEl statement; if a program tries to CALL or CANCEL
itself or any of its predecessors~ the entire run unit ~ill be
os•ed. The otker links are unimportant, as anr progra• in the
run unit can CALL or delete other existing pro9rams1 with the
previously mentioned exceptions• or can CALL new programs.

I f-" for ex a 11 pt. e.. pro gr am ·• E 1 cancel s pro gr am • D ' t hen t he Run
Unit would consist of all of the following programs and appears
as:

.A Unattached
I Progra•s
I F• G
8
I
I
c
I
I
£

A CALL to any of these progra•s will result in a transfer of
control to the existing state, whereas a CALL to anv other
program• including •o•, wj(l cause an initial state copy to be
iBvoked before control is transferred. The termination• via STOP
RUN or ABORT# of any program in a Run Unit will result in the
removal of all programs in that Run Unit from memory.

For those not familiar with the ANSI '74 COBOL definition of
Inter-Program Coamunication1 all prograas within a Run Unit
execute synchronously. No two programs in a Run Unit may be
executiRg simultaneously at any tiae and consequently, there are
no problems associated ~ith two or more programs contending for
the use of shared data. Control is passed to a program via the
CALL verb. The program which contains· the CALL will not be
allowed to execute again until the called program performs an
EXIT PROGRAM verb.

The calling program may specify one or more data ite•s to which
the called progra• has access. The shared data may be any 01 or
11 level item described in the calling program This includes
items whose addresses have been received through a CALL· The
data items may be named and defined differently in each program
as long as the length of the item remains the sa•e in each
program. This mechanism is stricly a •pass by name~ facility.
Parameters cannot be passed by value. Additionally~ storage for

8-11

81000 HCP MANUAL
HARK 10.0

the shared data is never allocated in the called program. In
other words- the address of the data# only, is always passed to
the called program.

Ira order to aaintain all of the necessary information regarding
the programs which comprise a Run Unit, several fields Yere added
tG the Run Structure Nucleus• RS.NUCLEUS• the field in memory
which contains information about each program that is exec~ting1
iB the 9.0 version of the MCP. This field, as it has always
been• is shared by the Operating System and the user program's
i~terpreter. The following is a list of the fields which were
added in the 9.0 version and a brief description of each.

B.i!!.IUl.t!s.lHUI !!11!1§.l

When a job initiates a CALL• he establishes a RUN UNIT. This Run
Unit is identified by his own Ctbe originator's> job number.
RS.RUN.UNIT• for any job in the Run Unit• will contain the job
nuaber of the program which initiated the Run Unit.

This field will contain zero for the job that jnitiated the run
uAit and for any job in the Run Unit that has done an EXIT
PRDGRAM. for anr job that is currently active in the Run Unit• a
job that has not done an EXIT• this field will contain the job
number of his caller.

This field will contain the absolute address of the
IPC.DICTIGNARY through which parameters will be accessed within
the calling job•s base-limit space. The field will be zero if
the dictionary does not exist. This is the ljst of parameters
that this job will pass. The IPC.DICTIONARY is adjacent to the
RS. NUCLEUS and found only in the call er s Run Structure Nucleus.

a-12

BlOOO HCP MANUAL
MARK 10.0

Jhis field will contain the absol~te address of the
IPC.PARAHEIER.LIST. This space will be adjacent to the Run
Structure Nucleus for any called job that can receive parameters.
The IPC.PARAHETER.LlST will be a series of 24 bit fields. The
first field will contain the number of parameters that this job
is capable of receiving. The remaining fields in the list will
contain the length in bits of each parameter. This list is built
only for the called program fro• the IPC.PARAMETER.LIST in the
called prograa 1 s code file that is generated by the coapiler. If
the job cannat receive parameters• this field will contain zero.

This field will contain the number of entries in this program's
IPC Dictionary ..

)

This field is used to store the type of execution that originated
the job. If the job is not an Execute type or a Call type, then
it cannot he called. The field can contain the following values:

1 ·= Execute
2 = Compile and Go
l = Co•pile tor Syntax
4 = Compile to Library
5 = Com·p it e and Save
6 = Go Part of Compile and Go , = Go Part of Co•pile and Save
8 = Call

tl~;:.tl.4t1£ ktlABl&.JIRil.21

This field will contain the name of this program. In the case of
ca•pilations, denoted by he value of the previous field, it will
contain the name of the compiler as well.

8-13

81000 HCP MANUAL
MARK 10. 0

Jhjs field wilt contain the Limit Register of this job•s caller.

This field is a dummy event for any IPC hang or suspension of
execution. If a progra• is waiting on RS.IPC.EYENT and is
currently passive, which will be indicated by a zero value in
RS.RU1t.UNIT.LINK1 the RS.STATUS will be set to a value to
indicate "Waiting to be Called•. If the program is currently
active, indicated by a non-zero value in RS.RUN.UNIT.LINK• the
RS.STATUS wilt be set to a value indicating "Waiting on called
pr ogr a11•.

If this boolean is true, then at least one CANCEL communicate has
been issued against this program. When this is true• this
particular job is effectively no tonger a member of the Run Unit
and is wafting to be terminated by the SMCP.

It was also necessary to make changes in the Pragraa
Block- the two-sector field that is generated by the
and stored in the code file, to accoaodate
jmptementation. A list of the fields that have been
presen;ted below.

Par am et er
compilers

the IPC
added is

This field indicates the nu•ber of entries in the
IPC.PARAHETER.LISJ. If this field is not equal to zero~ it
indicates to the MCP that this program can only be catted - it
can never be EXECUTEd.

8-14

f.R1lG.;:.le.C. l!IB lll11Z!tl

81000 HCP MANUAL
HARK 10.0

This field is used to store the relative disk address in the code
file of the !PC.PARAMETER.LIST~ The IPC.PARAMETER.LIST will be a
series of 24 bit fields that contain the length in bits of the
parameters ~hat may be passed to this program with a CALL.

This field indicates the maxi•u• nuaber of parameters to be
passed by this progra• through a CALL' which wilt also be the
nu•ber of entries in the IPC Dictionary.

It was also necessary to add a field to the format of the Program
Parameter Block that is used by the HCP after the job is
scheduled for execution. This field1 known as PPB.RUN.UNIT• is
sixteen bits in length and is used to contain the Job number of
the run unit that this program will become a part of.

lf!k.a.121,IlD.fi.68.I

The IPC.DICTIONARY is a list of System Descriptors built by the
program to describe the parameters to be passed on a CALL. This
dictionary will be within the space defined by RS.IPC.DICT in the
RS.NUCLEUS of the calling program. The length of this dictionary
is passed in the CALL communicate. The Micro HCP will verify
that the number and length of parameters passed match the
IPC.PARAMEIER.LIST of the called program.

8-15

81000 HCP HANUAL
HARK 10.0

OAe new co•municate operator was added to the Operating System to
accomodate the IPC implementation. This operator is generated by
the Compilers to implement the CALL• CANCEL and EXIT PROGRAM
verbs. It •ar be handled by the Micro MCP or the SOL HCP,
depending upon the circuastances. Its for•at is presented below
aBd in the Demand Hanage•ent section.

CT.VERB
CT. OBJECT

CJ.ADVERB

CJ.I

CT.z

43
0 .: CALL
I ::: CANCEL
2 = EXIT PROGRAM (No EOJ)
U.it

0 - if CALL• return on NO MEMORY
1-ll - Not used

Base relative address of a 30 character
field that contains the name of the job
to be called or cancelled.
Number of parameters to be passed

RS.REINSJATE.HSG.PTR values returned if requested:

O - Com•unlcate co•pleted as requested.
1 - For CALL• insufficient memory to complete the CALL.

- For EXIT PROGRAM, the progra• was initiated by an
EXECUTE instruction as opposed to a CALL.

- Not used for CANCEL.

ll!k I1.rJ2 CUl!C.iti2n

Oae of the primary objectives of the IPC impleaentation was
performance. Therefore• as much as possible of the IPC function
was implemented in the Hicro HCP. In the ANSI •74 COBOL
Language, the CALL and CANCEL ver~s require the specification of
program names within the source text. On the BlOOO system~ the
naae of a program may be unknown to the user when the program is
co•piled, since the Run Unit may be exec~ted under a Usercode.

To simplify the task of associating program names with those
specified by a prograa in a CALL or CANCEL communicate• a new
system structure was iaplemented. A programmatic descriptioA of
the str~cture, IPC.RUN.UNIT.Lisr, is presented below

8-16

81000 HCP MANUAL
MARK 10.0

01 IPC.RUN.UNIT.LIST

OZ IPC.RUN.UNIJ.NUHBER
02 IPC.PGM.NAME
02 IPC.PGH.JOB.NUMBER
OZ IPC .PGM.LR
OZ IPC.FORWARO.LINK

BITC320>•

err c 16>•
CHARC30),
BIT <16),,
BIT C24l11
BIT C24 H

IPC.RUN.UNIT.LIST is a linked serial list which incl~des all
members of all Run Units. The entries in this list aren•t in any
particular order and are not grouped by Run Unit. The SOL
portion of the HCP is responsibl~ for the management and
maintainence of all IPC.RUN.UNIJ.LISTs. The first
!PC.RUN.UNIT.LIST is addressed by a field in the HCP's stack.
Both the S.HCP and the Hicro HCP CM.MCP> access these structures
for in format ion.

The MICRO HCP receives all CALL communicates. Any named job is
~onsidered a candidate for a CALL by the Micro HCP. If the
requested job is not currently a member of the correct Run Unit'
then the CALL request will be transferred from the Micro HCP to
the SDL portion of the MCP• to make the called program present.

To deter•fne if the requested job is a •ember of the correct Run
UAit• the Micro HCP searches the list of Run Units• beginning
with the first, which is addressed by a field in the HCP stacks.
Each program that is a meaber of any Ruo Unit will be found in
the serially link list described by the !PC.RUN.UNIT.LIST
structure.

If the program is present• the Micro HCP will first examine the
program's RS.CANCELED boolean in its Run Structure Nucleus. If
this boolean is true• then this copy of the program has been
cancelled and a new copy must be initiated. CANCEL op~rations•
Like all progra• termination operations do not happen
iamediatety. If a new copy must be initiated, the Micro MCP will
call the S.MCP to initiate a new copy of the same program. s.HCP
operatians• upon receiving a CALL communicate, are described in
later paragraphs.

If the RS.CANCELLED boolean is false- then the Micro HCP chects
to determine whether the called job is active or passive• which
will be indicated by the RS.RUN.UNIT.LINK field of the Run
Structure Nucleus. If the job is already active, then some
theoretically impossible error has occurred and the Micro MCP
111tJst ·call the s,.HCP so that the Run Unit can be terminated. If

8-17

81000 HCP MANUAL
HARK 10.0

the called program is found to be passive• then the Micro HCP
will next check to insure that the nu•ber of parameters to be
passed• if any, agree. This will-be indicated by the calling
program's RS.IPC.OICT field being equal to th~ called program•s
!PC.PARAMETER.LIST.

If the number of parameters do not match, then the Micro HCP
calls the S.HCP for termination of the run unit. If the number
of parameters do agree. the Micro HCP ne•t checks to insure that
the length specified for each passed parameter is the same in the
calling program and the called program. If any of the length
descriptions are not equal• the Micro HCP will call the S.MCP for
termination of the entire Run Unit.

If parameters are being passed• if the number of parameters is
equal and if they all have equal length attributes, then in the
calling program's Run structure Nucleus. the Micro HCP increments
the RS.TEMPORARY.FREEZE fietd.r to fix the program in memory and
sets the RS.RUN.UNIT.LINK field to the caller's Job number. In
the Run Structure Nucleus of the called jot, it sets the
RS.CALLERS.LR field to the limit register of the calling program.
It then hangs the calling program on its RS.IPC.EVENJ field and
sets the caller•s RS.STATUS field to •waiting on the called
program" and marks the called job •ready to run". It should be
not~d that it is not necessary to freeze the calling program in
memory if para•eters are not passed. ·

Considering the case where the called program is not a member of
the Run Unit and the S.HCP is called upon to execute the
requested program. whenever the S.HCP receives a CALL communicate
aAd usercodes are involved• it will first search the list of Run
Units• using atl permutations of the usercoded name, to determine
if the job exists in· the Run Unit under a different name. if so•
the new name and corresponding information will be entered into
the Run Unit list and control will be returned to the Micro HCP.
If Usercodes are not involved and jf the name does not exist in
the Run Unit Listi then execution of the Job must be attempted.

The s.KCP must then determine that the requested program is
present on dist. If not present, the prograa which issued the
CALL witl be hung until the requested prograa is made present.
If the requested program is present on disk~ the s.MCP must then
determine that there is enough me•ory to execute the requested
prograa. If there is insuf~icient memory, The program which
performed the CALL may have asked to be notified of this fact.
If so• the called job will not be scheduled but the program which
performed the CALL will be notified of the insufficient memory
condition. If the program which performed the CALL did not
request to be nofitied, the called program will be sch~daled and
the calling prograa will not be allowed to execute until the

8-18

01000 HCP MANUAL
HARK 10.0

called program does an EXIT PROGRAM coamunicate.

Actualty1 after the called program reaches BoJ, the s.MCP will
hang the called program on his own RS.IPC.EVENT with RS.STATUS
set to •waiting to be called• and put the calling program back in
the Jit .• COHH.Q.. 'fhis allows the Hlcro HCP to complete the CALL
operation. ;

All aspects of the CANCEL and EXIT PROGRAM communicate opertors
are handled by the Micro HCP. Upon receiving a CANCEL operator•
the Micro HCP must first determine if the job exists in the Run
Unit and whether it is active or passive. If it is not present
or the program is p1resent but its· RS.CANC ELEO boolean is true•
the req~est is jgnored and the cancelling job is reinstated. If
it is present and passive• the Micro HCP will then place the
specified program in the EXTERHINAJ[.Q, set the RS~CANCELEO
boolean and return control to the job which issued the
coa•unicate. The EXTERHINATE.Q will cause termination of the
job.

A request to CANCEL a job that is both a member of the Run Unit
and activ~ is a violation of the COBOL specifications and will
result in termination of the entire Run Unit.

If a called job issues an EXIT PROGRAM communicate operation, the
Micro HCP will hang the issuing program on its RS.IPC.EVENT
field• setting RS.STATUS to "Waiting to be calted 9 ~ decrement
RS.TEMPORARY.FREEZE in the Run Structure Nucleus of the program
that called the issuing program and mark the calling program
ready to run. If a program that was not called issues the
co•municate# the communicate will be ignored and control will be
immediatelr returned to that program.

If any ~rogram in a Run Unit performs a STOP RUN com•unicate
operator~ the entire Run Unit will be cancelled and all programs
i~ the Run Unit will be discontinued. Similarly• if a~y program
iR the R~n Unit terminates abnormally, the entire Run Unit will
be discGntinued. Programs within a Run Unit •av only stop
execution via the EXIT PROGRAN verb. Normal termination will
occur when the program that initiated the Run Unit terminates.

a-19

;

81000 HCP MANUAL
HARK 10. 0

U~on termination, for any reasonP of any member of a particular
Run Unit• the S.MCP wilt ia•ediately delink all entries
pertaining to the specified Run Unit from the Run Unit List.
When the parent of a Run Unit goes to a normal EOJ, then all jobs
attached to that run unit will be cancelled. If any job in a run
u~it is abortedP then the entire run unit will be aborted. If
oae program in a Run Unit does a CANCEL on another program in the
same ran unit, then the cancelled job must be delinked fro• the
r~n unit and sent to EOJ.

The traBsfer of information between the Micro HCP and the S.HCP
is accomplished using an existing mechanism. This aechanism
utilizes ~be Run Structure Nucleus field, RS.M.PROBLEM. All
instances of such required communication are shown in the
followiBg ta~le. The table shows the valu• that wilt be stored
in the RS.MPROB.P2 field, a subfield of RS.K.PROBLEH, the
condition that caused the comaunication and the action that will
be taken by the s.HCP. Whenever such communication is necessary,
the RS.HPROB.Pl field, also a subfield• will be set to a value of
9· wkich will indicate the family of problems related t~ IPC.

RS.HPROB.P2 =

0

1

3

4

5

Error Description

Requested program not
not in mix.

Number of parameters
do not match.

Pa1ra11eter specs.
die> not agree.

Attempted recursive
CALL

Attempted CANCEL
of predecessor·.

Invalid Communicate
parameters.

found requested job
and RS.CANCELED true

8-20

Required Action

S.HCP should aake
program present.

S.HCP will DS entire
Run Unit.

S.MCP will DS entire
Run Unit.

s.KCP will DS entire
Run Unit.

s.~CP will DS entire
Run Unit.

S.MCP will DS entire
Run Unit.

Terminate specified
job and make new
copy present.

lf!k e..tUl!iB..&.H 1U!Jil!li

81000 HCP MANUAL
HARK 10.0

If any member of the Run Unit• regardless of whether the
specified progra• is active or passive is DS-ed• DP-ed, or DM-ed•
the entire Run Unit will be dumped. and, if DS-ed or DP-ed ..
terminated.

After the Micro MCP processes an IPC communicate• it will not
purposely mark the appropriate job TO.BE.ROLLED.OUT. If the
S.HC~ needs memory, it will follow the normal selection process
i~ determining a candidate<s> for Rott-out. There will be no
special consideration given to members of Run Units.

Each called program will actually become a TASK associated with
the originator of the Run Unit. By becoming a TASK as opposed to
a normal job, several advantages will be realized.

ll TASKS are not subject to HIX limits and other scheduling
constraints.

Zl There will be corresponding entries in the SYSTEH/LOG.

II!&. f!!UHiB..!t! !A.tit lf~~Ifl~All!llij

Inforaation passed for the programs name in the CALL/CANCEL
coamunicate will be subject to the same naming restrictions as a
file with respect to OS or DP conditions~ e.g •• CAlling a program
with a blank HFID will result in the termination of the entire
RI.An Unit.

/

8-21

ACCEPl' 7-Sl

BlOOO HCP MANUAL
MARK 10. 0

ACCESS DISK FILE HEADER CDfHl 1-43
ACCESS FILE INFORMATION BLOCK CfIB> 7-42
ACCESS FILE PARAMETER BLOCK (fPB> 7-41
ACCESS USERCODE FILE 7-62
ACCESS.GLOBALS 7-66
ACTIVE SCHEDULE 7-3
ANSII Jape Labels 3-26
Available Space Allocation~ Index files 3-74
Available Space Allocation• Indexed Sequential files 3-72

Backup File •Early Start• Capability 3-50
BACKUP FILE BLOCKING FACTORS 3-49
BACKUP FILE CONTROL INFORMATION 3-51
BACKUP FILE LOGICAL RECORD FORMAT 3-52
BASE PACKS 3-40
Block Control Information - Indexed Sequential Files 3-62
Block Control Information - Relative Files 3-54

CA/RC CYCLES 3-8
CHANGE.ATTRIBUIES 7-66
CHANNEL TABLE 3-6
CLOSE 7•32
CLOSE COH) 7-17
Cluster Files l-59
COBOL PROGRAM ABNORMAL ENO 7-57
CODE FILES~ PROGRAM PARAHETER BLOCKS ANO FILE PARAMETER BLOCKS 2-8
COMMUNICATE FORMAT 7-5
COMMUNICATES 7-3
COMPILE CARD INFORMATION 7-56
COMPILERS 1-3
COMPLEX WAIT <MICRO MCPJ 7-64
Concurrent Update Operations 3-19
CONTENTION 5-l
CONTINUATION PACKS 3-40
CONVENTIONAL FILES 3-33
CREATE/RECREATE <DHl 1-46
CURRENT Maintenance J-76
Carrent Record Pointer <CURRENT> 3-75

Data and Address Error Recovery - Disk Cartridges
Data and Address Error Recovery - 205 And 206 Drives
Data and Address Error Recovery - 207 Drives J-81
Data and Address Error Recovery - 215 And 225 Drives
DAJA AND FILE DICTIONARIES 2-12
DATA OVERLAY 7-42
oA·rA TRANSFERS 3-12

IX-I

3-Blt
3-8l

3-82

81000 HCP MANUAL
MARK 10.0

DC.INITIATE.IO 7-61
DC WRITE 7-&2
DELETE COM) 7-46
DEMAND MANAGEMENT 7-1
DESIGN PHILOSOPHY 8-1
Direct Files 3-54, 3-58
DISK DIRECTORY 3-37
DISK FILE HEADER Z-5• 3-37
Disk file Header Extensions 3-72
Disk File Header format changes 3-71
DISK FILE IDENT1FICA1ION 3-38
Disk file OPEN 7-28
DISK I/O CHAINING 3-14

·oisk I/O Error Procedures 3-79
DISK I/O OVERLAPPED SEEKS 3-15
DISK IOENTIFICATION - PACK LABELS 3-24
DISK SPACE ALLOCATION 3-36
DISPLAY 7-53
DISTRIBUTION 5-1
DYNAMIC MEMORY BASE 7-59

EMULATOR TAPE CHICRO HCP> 7-55

FIB Dictionaries 3-61
FILE ACCESS AND IDENTIFICAlION 3-37
file Identifiers 3-35
FILE INFORMATION BLOCKS 2-9
FILE NAMING CONVENTIONS 3-35
FILE STRUCTURES J-33
FIND/MODIFY (OM) 7-45
FIRMWARE 1-3
FREE COHl 7-50
FREEZE/THAW RUN STRUCTURE 1-58

GENERAL MEMORY MANAGEMENT CONCEPTS 4-1
GET SESSION NUMBER 7-&l
GEJ.ATJRIBUIES 7-65
GISMO 1-3
GISHO - THE l/O DRIVER 3-4
GISMO/HARDWARE INTERFACE 3-7

HARD EVENTS 6-4
HIGH-PRIORITY INTERRUPT HANDLING 7-14

I/O ASSIGNMENT TABLE 3-18
I/O CHAINING 3-13
1/0 CONTROL 1-5
I/O DESCRIPTORS 3-2
I/O INTERRUPTS 7-1
I/O SUB-SYSTEM 1-5
Index file Table Splitting J-75
Index Files 3-58
Indexed Sequential Available Space Allocation 1-12
Indexed Sequential Buffer Descriptor COD> J-78

IX-2

BlOOO HCP MANUAL
HARK 10.0

Indexed Sequential Buffer Management 3-77
Indexed Sequential Data File Available Space Allocation 3-72
lAdexed Sequential Data file Structure 3-61
INDEXED SEQUENTIAL DELETE 7-69
Indexed Sequential Disk file Header Extension 1-12
I~de~ed Sequential file Global Information CGLOBALS) 3-69
Indexed Sequential Files 3-56
ln~exed Sequential FPB 1•&4
Indexed Sequential GLOBALS field 3-69
Indexed Sequential I/O Descriptors 3-78
Indexed Sequential Index file Structure 3-62
Indexed Sequential Memory Structures 3-66
INDEXED SEQUENTIAL POSITION 7-67
INDEXED SEQUENTIAL READ l-68
INDEXED SEQUENTIAL REWRITE 7-69
I~dexed Sequential Structure Descriptor 3-71
IAdexed Sequential Structure Descriptor CSJR) 3-70
Indexed Sequential User Specific Infriraation <USI> 3-&8
INDEXED SEQUENTIAL WRITE 7-69
INDEXED/SEQUENTIAL OPEN 7-13
INITIALIZER I/O 7-51
INTER-PROCESS COHMUMICATION 8-1
INTER-PROGRAM COHHUNICATION 8-10
INTERPRETER t-J
INTERPRETER MANAGEMENT, PARAMETER BLOCKS AND DICTIONARIES 2-5
INTERPRETER PARAMETER BLOCK 2-5
INTERPRETIVE PROCESSING 1-2
INTERRUPT RESOLUTION 1-5
INTERRUPT STACK 7-2
INTRODUCTION · 1-1
IPC CALL OPERATION 8-17
IPC CANCEL OPERATION 8-19
IPC CANDIDATES FOR ROLL-OUT 8-Zl
IPC COMMUNICATE OPERATOR 8-16
IPC EXIT PROGRAM OPERATION 8-19
IPC IMPLEMENTATION Of SHARED DATA 8-11
IPC HICRO HCP/S.MCP COMMUNICATION 8-ZO
IPC PROGRAM DUMPS 8-21
!PC PROGRAM NAME SPECIFICATIONS ~-21
IPC Program Parameter Block Changes 8-14
IPC RUN STRUCTURE NUCLEUS CHANGES 8-12
IPC TASK CONSIDERATIONS 8-21
IPC TERMINATION CONSIDERATIONS 8-19
IPC Verb Operation 6-16
IPC.OICTIONARY 8•15

JOB SCHEDULING AND INITIALIZATION 1-2

LINAGE Clause 3•45
LINKED MEMORY 4-1
LOAD.DUMP MESSAGE 1-64
LOGICAL DISK FILES 3-36
Logical Page Function 3•45

IX-3

81000 HCP MANUAL
MARK 10.0

H•HEH3RY MANAGEMENT 5-1
MACHINE ARCHITECTURE 1-3
HCP OUTER LOOP 7-1
MEMORY DUMP TO DISK 1-59
MEMORY INITIALIZATION 4-10
MEMORY MANAGEMENT AND MEMORY LINKS Z-1
HEMORY REQUIREMENTS 4-15
MESSAGE BUFFERS 8-3
MESSAGE COUNT 7-65
MESSAGE DESCRIPTORS 8-l
MESSAGE.COUNT COMMUNlCATE 8-7
MICRO/MtP 1•3
MINIMIZATION OF "CHECKERBOARDING• 4-4
MONITORING OF PERIPHERAL SJATUS 3-18
MULTI-PACK FILE GENERAL RESTRICTIONS 3-42
MULTI-PACK FILE INFORMATION TABLE 3-41
MULTI-PACK FILES 3-39

N.SECOND 7-1
NDL/MACRO COMMUNICATES 7-62

OPEN 7-17
OPEN COM> 1-16
OPERATING SYSTEM DYNAMIC REQUIREMENTS 4-21
OPERATING SYSTEM STAlIC REQUIREMENTS 4-15

PACK INFORMATION TABLE l-25
PACK LABEL 3-24
PE/NRZ EXCHANGES 3-31
PHYSICAL DISK FILES 3-36
POSITION <MICRO HCP <BACKUP FILES ONLYJl 7-38
PRINTER AND PUNCH BACKUP CAPABILITIES 3-48
PRINTER FILES 3-43
PRIORITY VICTIM SELECTION 4-1
PROCESS CPROGRAH> MANAGEMENT 6-1
PROCESSOR ALLOCATION 1•5
PROCESSOR I/O INSTRUCTIONS 3•8
PROG.IPC.MAX.SEND.PARAMS 8ITC16l 8-15
PROG.IPC.PTR BITCZ4J 8-15
PROG.IPC.SIZE BITC16l 6-14
PROGRAM CALLER 7•63
PROGRAM COMMUNICATES 7-4
PROGRAM INITIALIZER 7-3
PROGRAM PARAMETER BLOCK 2-5
Program Parameter Block Changes 3-65
PROGRAM REINSTATE 1-4
PROGRAM-DEPENDENT DYNAMIC REQUIREMENTS 4-26
PROGRAM-OEPENDENJ STATIC REQUIREMENTS 4-2&
PROGRAMMATIC DETECTION Of MEMORY THRASHING 4-9

QUEUE ATTRIBUTES 8-4
QUEUE DESCRIPTORS 6-2
QUEUE DISK 8-2
QUEUE FILE FAMILIES 8-1

IX-4

81000 HCP MANUAL
MARK 10.0

QUEUE FILE LOGICAL I/O OPERATIONS 8-5
QUEUE SYSTEM AND INTERFACES 8-1
QUICK QUEUE WRITE <REMOTE FILESl 7•62
QUICK QUEUE WRIT£ <STATION NUHBERJ 7-62

RE-ENTRANT PROCESSING AND CODE SEGMENT DICTIONARIES 2-12
READ CHICRO HCP) 7-6
RECOVERY COMPLETE 7-65
Reference Address 3-4
RELATED DOCUMENTATION 1-1
Relative Disk file Headers CDFHsl 1-55
Relative File Buffer Management l-56
Relative File Communicate Operators 3-56
Relative Fite Data Structure 3-54
Ralative file Disk Initialization 3-55
Relative file Information Blocks CfIBsl 3•56
Relative File Parameter Blocks CFPBsJ 3-55
Relative files J-54
RELATIVE I/O COMMUNICATE - DELETE 7-71
RELATIVE 1/0 COMMUNICATE - READ 7-12
RELATifE 1/0 COMMUNICATE - REWRITE 7-71
RELATIVE I/O COMMUNICATE - START 1-10
RELATIVE I/O COMMUNICATE - WRITE 7-70
Remainder of the Disk l/O Error Procedure 3-84
ROUND-ROBIN VICTIM SELECTION 4-5
RS.CALLERS.LR BITC24l 8-14
RS.CANCELED BITCl) e-14
RS.EXECUTE.TYPE BITC4> 8-13
RS.IPC.DICT 8ITC24l 8-lZ
RS.IPC.OICJ.SIZE BIJC16) 8-13
RS.IPC.EVENT BIT Cl> 8-14
RS.IPC.PARAMETER.LISJ BIT<24> 8-13
RS.NAME CHARACTERClO) 8-13
RS.RUN.UNIT BITC16> 8-12
RS.RUN.UNIT.LINK BITC16J 8-12
RUN STRUCTURE Z-10
RUN STRUCT~RE NUCLEUS 2-11
RUN UNIT DEFINITION 0-10

S-HACHINE 1-2
S-MEHORY MANAGEMENT AND MEMORY REQUIREMENTS 4-1
SOL HCP 1-4
SOL TRACE 7-55
SECOND CHANCE VICTIM SELECTION 4-6
SEEK CKICRO HCP) 7-12
SEGMENT DICTIONARIES ANO SYSTEM DESCRIPTORS 2•3
SEQUENTIAL REWRITE CMMCP> 7-72
SERVICE REQUEST 3-9
SOFT EVENTS 6-1
SOFT I/O 1-5
SOFT MACHINE I-2
SOFTWARE 1-3
SORT EOJ 7-58
SORT HANDLER 7-54

IX-5

81000 HCP MANUAL
MARK 10.0

SORTER CONTROL T-13
SORTER READ CMICRO HCPJ 7-15
STATUS COUNTS 3-10
SfATUS PROCEDURE 3-Z3
STORE <DHl 7-45
SWITCH.TAPE.DIRECTION 7-47
SYSTEM/REL.INIT 3-55

JAPE I/O CHAINING 3-1&
Tape 110 Error Procedures 3-85
TAPE LABELLING, INITIALIZATION AND PURGING 3-26
TERMINATE CSTOP RUN) 7-47
TERMINOLOGY AND DEFINITIONS 2-1
JEST.AND.WAIT I/O OPERATORS 3-Zl
The Error Correction Procedure 3-82
THE FENCE 4-3
THE 1/0 SUBSYSTEM 3-1
The Offset Procedure 3-80
The Strobe Procedure 3-81
TIME/DATE/DAY 7-50
TIMER INTERRUPT 7-1
TYPES Of MEMORY REQUESTS 4-2

UNIT MNEMONICS 3-22
USE/RETURN 7-54
USI l-68

VICTI" SELECTION 4-4
VIRTUAL MEMORY 2-3

WAIT (SNOOZE> 7-52
WAITING SCHEDULE 7-3

. WORKING SET DETERMINATION 4-6
WRITE CKICRO MCPl 7-9
WRITING JO THE TOP OF A QUEUE FILE 8-7

ZIP 7•52

9.0 Disk File Headers 3-11

IX-6

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	7-70
	7-71
	7-72
	7-73
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06

