

Printed in U.S. America

Burroughs

B 1700 Systems

System Software

OPERATIONAL GUIDE

Burroughs Corporation
Detroit, Michigan 48232

$5.00

3-75 1068731

COPYRIGHT© 1972: 1973: 1974: 1975 BURROUGHS CORPORATION

AA370509 AA401135 AA551824

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/ or additions.

Correspondence regarding this document should be forwarded using the Remarks Fann at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, TIC-Central, Burroughs Corporation, Burroughs Place, Detroit.
Mii:'hig:rn 48232

SECTION

2

TABLE OF CONTENTS

TITLE PAGE

INTRODUCTION . xi

INTRODUCTION TO SYSTEM . 1-1
System Initialization . 1-1
Unit Mnemonics . 1-1
System Description . 1-1
Hardware Requirements ·. 1-2
Central Service Module . 1-2
Interpreters . 1-3

MASTER CONTROL PROGRAM
Ge11eral .. .
MCP Disk Structures .. .
Disk Directory .

Disk-Pack-Identifier
Main Directory File Name
Sub-Directory File Name
Main Directory Contents
Sub-Directory Contents
Directory Reference .. .

Multiple Pack Files
Introduction .. .
Abbreviatio11s
Restrictions .
Base Packs .. .
Continuation Packs
General Information .. .

Halts .. .
MCP Options .. .

BOJ
CHRG
CLOS
DATE
DBM .. .
DUMP

EOJ ·
LAB .. .
LIB ····················
LOG .. .
MEM .. .
OPEN
PBD
PBT
PWS (MCPI only)
RMOV
SCHM
TERM
TIME .. .
ZIP

iii

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-8

TABLE OF CONTENTS (Cont)

SECTION TITLE

2 (Cont) MCP-Operator Interface
Gen era 1 , , , , , _ _ _ _ _ _ _ _ _ _ _ _ _ , . , , , , , , , , , , . , , . , , , , , , , , , , , , _ , , _ ,

MCP Communications
Punched Cards
Console Printer .. .
Zip .. .
General Terms

Library Maintenance Instructions
CHANGE

{~g~D
{~~bAD
REMOVE

Control Instructions
COMPILE .. .
DYNAMIC
EXECUTE
MODIFY

Control Instructions Attributes
AFTER .. .
AFTER.NUMBER .. .
THEN
CONDITIONAL .. .
UNCONDITIONAL
CHARGE
DYNAMIC.SPACES
FILE .. .

File Attributes
File Attribute Abbreviations

FREEZE
HOLD
INTERPRETER .. .
INTRINSIC.NAME
INTRINSIC.DI RECTO RY
MEMORY .. .
PRIORITY .. .
SCHEDULE.PRIORITY
SWITCH . , , . . . , , , __ . ________ , . , , ____ _

UNFREEZE
VIRTUAL.DISK

File Parameter Instructions
DATA
END

Keyboard Input Messages
General. .. .
Keyboard Entry Procedure
Keyboard Input Messages

AX Input Message (Response to ACCEPT)

PAGE

2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-12
2-12
2-13

2-14

2-15
2-16
2-16
2-17
2-18
2-19
2-20
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-27
2-31
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
241
2-42
2-43
2-44
2-44
2-45
2-46
2-46
2-46
2-47
2-49

BB Input Mess:J.ge (Backup Blocks per A.rea). 2-50

iv

SECTION

2 (Cont) BD
BF
CD
CE
CL
CM
CN
CP
CQ
cs
CT
DF
DM
DP

TABLE OF CONTENTS (Cont)

Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message

TITLE

(Backup Designate)
(Display Backup Files)
(List Card Decks in Pseudo Readers)
(Change to Entry System Software)
(Clear Unit)
(Change System Software)
(Change to Non-Trace System Software)
(Compute)
(Clear Queue)
(Change to Standard System Software)
(Change to Trace System Software)
(Date of File)
(Dump Memory and Continue)
(Dump Memory and Discontinue)

{
DR
DT Input Message (Change MCP Date)

DS Input Message (Discontinue Program)
ED Input Message (Execute Pseudo Deck)
EM Input Message (ELOG Message)
ET Input Message (ELOG Transfer)
FM Input Message (Response to Special Forms)
FN Input Message (Display Internal File Number)
FR Input Message (Final Reel of Unlabeled Tape File)
FS Input Message (Force from Schedule)
FT Input Message (Change File Type)
GO Input Message (Resume Stopped Program)
HS Input Message (Hold in Waiting Schedule)
HW Input Message (Hold in Waiting Schedule until Job EOJ)
IL Input Message (Ignore Label)
KA Input Message (Disk Analyzer)

{KKPC Input Message (Print Disk Segments)

PAGE

2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64

2-65

2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-74
2-75
2-76
2-77
2-78
2-79

2-80

LC Input Message (Load Cassette) . 2-81
LD Input Message (Pseudo Load) . 2-82

~~ Input Message (Transfer and Print Log) . 2-83

LT Input Message (List File Types) . 2-84
MP Input Message (List MPG Tables). 2-85
MR Input Message (Close Output File with Purge). 2-86
MX Input Message (Display MIX) . 2-87
OF Input Message (Optional File Response) . 2-88
OK Input Message (Continue Processing) . 2-89
OL Input Message (Display Peripheral Status) 2-90
OU Input Message (Specify Output Device) . 2-91
PB Input Message (Print/Punch Backup) . 2-92
PD Input Message (Print Directory) . 2-93
PG Input Message (Purge). 2-95
PM Input Message (Print Memory)............ 2-96
PO Input Message (Power Off) . 2-97
PR Input Message (Change Priority) . 2-98

v

SECTiON

2 (Cont)

3

TABLE OF CONTENTS (Cont)

TITLE

PS Input Message (PROD Schedule)
PW Input Message (Set Program Working Set - MCP I)
QC Input Message (Quit Controller)
QF Input Message (Query File)
QP Input Message (Query Program)

~~ Input Message (Remove Backup Files)

RD Input Message (Remove Pseudo Card Files)
RL Input Message (Relabel User Pack)
RM Input Message (Remove Duplicate Disk File)
RN Input Message (Assign Pseudo Readers)
RO Input Message (Reset Option)
RP Input Message (Ready and Purge)
RS Input Message (Remove Jobs from Schedule)
RT Input Message (Remove MPF Table)
RY Input Message (Ready Peripheral)
SD Input Message (Assign Additional System Drives)
SL Input Message (Set LOG)
SO Input Message (Set Option)
SP Input Message (Change Schedule Priority)
ST Input Message (Suspend Processing)
SV Input Message (Save Peripheral Units)
SW Input Message (Set Switch)
TD Input Message (Time and Date)
TI Input Message (Time Interrogation)
TL Input Message (Transfer LOG)
TO Input Message (Display Options) ,
TR Input Message (Time Change)
TS Input Message (Test Switches)
UL Input Message (Assign Unlabeled File)
WD Input Message (Display MCP Date)
WM Input Message (Display Current MCP and Interpreter)
WS Input Message (Display Schedule)
WT Input Message (Display MCP Time)
WW Input Message (List Contents of NAME TABLE)
WY Input Message (Program Status Interrogation)
XC Input Message (Remove Disk Segments-Temporarily)
XD Input Message (Remove Disk Segments-Permanently)

PAGE

2-99
2-100
2-101
2-102
2-103

2-104

2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125
2-126
2-127
2-128
2-129
2-130
2-131
2-132
2-133
2-134
2-135

MCP Output Messages . 2-136
General . 2-136
Syntax . 2-136
MCPMessages.. 2-136

SYSTEM SOFTWARE
Disk Cartridge Initializer

General .. .
1lization Instructions
ication

vi

3-1
3-1
3-1
3-1
3-2

SECTION

3 (Cont)

TABLE OF CONTENTS (Cont)

TITLE

COLDSTART
General .. .
Procedure

Clear/Start and Memory Dump Procedure
General .. .
Clear/Start Procedure
Name Table ,
Operating Environments
Selecting Environments .
Temporary Environment Changes
Memory Dump Procedure
Firmware Detected Errors

Disk File Copy
General
DISK/COPY Operating Instructions
Specification Cards

DMPALL
General .. .
Printing .. .
Reproducing .. .
Operating Instructions

Console Printer .. .
Cards .. .

Print Specifications
Reproducing Specifications

FILE/LOADER .. .
General .. .
Dollar Card

PAGE

3-3
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-7
3-7
3-8
3-8

3-10
3-10
3-10
3-10
3-12
3-12
3-12
3-12
3-12
3-12
3-13
3-13
3-14
3-18
3-18
3-18

Dollar Dollar Card . 3-18
Asterisk Card . 3-18
Error Messages . 3-19

FILE/PUNCHER . 3-21
General . 3-21
Error Messages . 3-21

SORT . 3-22
General . 3-22
SORT Execution Deck. 3-22
The FILE Statement . 3-23

FILE IN. 3-23
Dp-id . 3-23
File-Identifiers . 3-23
CARD . 3-23
TAPE . 3-23
DISK . 3-23
Records-per-Area . 3-24
Record-Size . 3-24
Blocking-Factor . 3-24
PURGE . 3-24
DEFAULT... 3-24
MULTI.. 3-24

vii

TABLE OF CONTENTS (Cont)

'SECTION TITLE

3 (Cont) OUT
The Key Statement

KEY
Key-Location .. .
Vou_T oruTth
.l.""-VJ'-.l...IV.11f;1,...lJ. • , • • • • •••

ASCENDING or A .. .
DESCENDING or D
ALPHA orUA
NUMERIC or UN
SA .. .
SN .. .

SORT Option Statements
NO PRINT .. .
MEMORY .. .
integer RECORDS .. .
TIMING .. .
BIAS : :
TAGSORT .. .
I1'4PLACE
SYNTAX
Comment

SO RT Reserved Words
COBOL Cross Reference Utility Program (COBOL/XREF)

General .. .
Operating Instructions
Option Cards .. .
Internal File Names

LOG/CONVERSION .. .
General .. .
Execution .. .
NE\V.LOG/#n

DISK/DUMP .. .
General .. .
Operating Instructions
Error Messages

Remote Job Entry System (RJE)
Introduction
Operating Instructions
Remote Deck Control Cards
RJE System Control Messages
Remote Control Message Entry
Valid Local Messages .. .

.RE or .READ

.CL or .CLOS .. .

.CLCP

.CLLP

.ST or .STOP .. .

.WT or.WAIT .. .

.EST

.LOG .. .
Error Conditions

viii

PAGE

3-24
., -"l"'
;)-L.,;)

3-25
3-25
3-26
3-26
3-26
3-26
3-26
3-26
3-26
3-27
3-27
3-28
3-28
3-28
3-28
3-28
3-29
3-29
3-29
3-30
3-31
3-31
3-31
3-31
3-32
3-34
3-34
3-34
3-34
3-35
3-35
3-35
3-35
3-37
3-37
3-38
3-38
3-38
3-39
3-39
3-39
3-39
3-39
3-40
3-40
3-40
3-40
3-41
3-41

TABLE OF CONTENTS (Cont)

SECTION TITLE

4 PROGRAM PRODUCTS
Compiler
Report Program Generator

General .. .
Compilation Card Deck
Dollar Card Specifications
RPG Extensions .. .
Compiler-Directing Options
RPG to COBOL Options
Internal File Names

RPG to COBOL Translator (COFIRS)
General
Execution of Translator

COBOL Compiler
General .. .
Compilation Card D~ck
Dollar Option Card

Options .. .
Source Data Cards .. .
Internal File Names

FORTRAN Compiler .. .
General .. .
Compilation Card Deck
Dollar Option Card

Options .. .
Internal File Names

BASIC Compiler
General .. .
Compilation Card Deck
Dollar Option Card .. .

Options .. .
Source Input Cards
Intrinsic Files .. .
Sample Compilation Deck
Internal File Names

UPL Compiler
General .. .
Compilation Card Deck
Compiler Options .. .
Internal File Names

ND L Compiler
Gerieral .. .
Compilation Card Deck
Compiler Options
Internal File Names

MIL Compiler
General .. .
Compilation Card Deck
Compiler Options

ix

PAGE

4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-4
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-8

4-10
4-11
4-12
4-12
4-12
4-12
4-13
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-19
4-20
4-20
4-20
4-21
4-23
4-24
4-24
4-24
4-25
4-27
4-28
4-28
4-28
4-28

SECTION

4 (Cont)

FIGURE

3-1
3-2
3-3
34
4-1
4-2
4-3
44
4-5
4-6
4-7
4-8
4-9

4-10

TABLE OF CONTENTS (Cont)

TITLE PAGE

Module Option Dollar Card 4-30
Internal File Names . 4-30
Object Code Deck Format..... 4-31
Compiler Restrictions . 4-31

SDL Compiler . 4-32
General . 4-32
Compilation Card Deck . 4-32
Compiler Options. 4-32
Internal File Names . 4-35
SDL Recompilation . 4-35

Creating Master Information Files . 4-35
Create Master Restrictions . 4-36
Recompiling........... 4-36
Recompilation Restrictions . 4-36
Create Master and Recompile Operation Performed Together 4-37
General Information. 4-37
SDL Compilation Deck Examples . 4-37

LIST OF ILLUSTRATIONS

TITLE

DISK/COPY Control Deck
SORT Execution Deck
COBOL/XREF Execution Deck
Remote Job Entry System .. .
RPG Compilation Deck .. .
COBOL Compilation Deck
FORTRAN Compilation Deck
BASIC Compilation Deck
UPL Compilation Process
UPL Compilation Card Deck
NDL Generation Process
NDL Compilation Card Deck
MIL Compilation Card Deck _ . _ _
SDL Compilation Card Deck

x

PAGE

3-10
3-22
3-31
3-37

4-1
4-7

4-12
4-16
4-20
4-20
4-24
4-24
4-28
4-32

INTRODUCTION

The productivity of a computer facility is largely dependent on an operator's experience and knowledge
of the system. When the programs produced for the installation have been refined and are ready for use,
the results obtained are largely due to the expertise of the operator. Therefore, some concept of the
MCP and a knowledge of the peripherals used with the B 1700 Systems are important in order to
utilize the equipment effectively.

This manual is divided into sections to ease the operating personnel's task in referencing material to effi
ciently operate the B 1700 system.

The purpose of the B 1 700 Systems System Software Operational Guide is to provide a general
description of all Burroughs B 1700 System Software without going into such detail as is required for
a programming language or a reference manual. Formal documents pertaining to the system software
described herein are referenced where applicable. Included in this manual are those operating instruc-
tions required to perform any major function of the described system software. ·

An explanation of the notational conventions used throughout this manual is as follows:

a. Key Words. All underlined upper case words are key words and are required when the functions
of which they are a part are utilized.

EXECUTE

b. Optional Words. All upper case words not underlined are optional words, included for readability
only, and may be included or excluded as desired.

FOR

c. Lower Case Words. All lower case words represent generic terms which must be supplied in the
position described.

[file-identifier

d. Braces. Words or phrases enclosed in braces ({})indicate a choice of entries of which one must
be made.

{~ECUTE}

e. Brackets. Words or phrases enclosed in brackets ([]) represent optional portions of a statement
which may be omitted.

[=]

xi

f. Consecutive Periods (Ellipsis). The presence of ellipsis(...) within any format indicates that the
control syntax immediately preceding the ellipsis notation may be successively repeated, depend
ing upon the requirements of the operation.

g.

r control-attributes 1 ...

Question Mark. The appearance of a question mark(?) indicates that any invalid EBCDIC
character orthe question mark itself is acceptable. This convention is used primarily by the
Master Control Program to indicate a control card instruction.

[?] LOAD

h. At Sign: Any data contained between "at signs"@ identifies that information to be hexadecimal
information.

i. Integer:

@OCF3@

The presence of the word integer within any format signifies that the data to be
expressed may be decimai, octal, hexadecimai, or binary.

decimal - any valid decimal character or characters.

452

hexadecimal - any valid hexadecimal character or characters enclosed within@
signs.

octal

binary

@A22F@

- any valid octal character or characters enclosed within @ signs and
preceded by the MODE indicator (3). The MODE indicator must
be enclosed by parentheses.

@(3)036@

- any valid binary character or characters enclosed within @signs
and preceded by the MODE indicator (1). The MODE indicator
must be enclosed by parentheses.

@ (1) 11 01 00 1@

j. Master Control Program: The Master Control Program is abbreviated throughout this manual as
MCP. Its functions are explained in a separate chapter of this manual.

xii

SYSTEM INITIALIZATION

SECTION 1
INTRODUCTION TO SYSTEM

The MCP was designed as an integral part of the system and is intended to serve a wide range of installations
and users. Therefore, provisions have been incorporated in the system to adapt the operation of the MCP
to the particular requirements of a variety of installations. This has been accomplished by incorporating
different environments within the MCP which may be specified at the time of system initialization. Some
of the environment options can be changed or set after the system has been initialized by using a console
printer input message.

In order to place the MCP in control of the system, the MCP must be loaded onto the system disk with the
system's environment defined and the disk directory established. Then the SDL interpreter must be loaded
to interpret the MCP S-language. When this procedure has been completed, the SDL interpreter starts
interpreting and executing the instructions of the MCP.

Three separate procedures are performed during initialization thereby making the system operable:
(1) Initializing Disks (System and Removable), (2) Performing a COLDSTART, and (3) Performing a
Clear/Start.

UNIT MNEMONICS

Mnemonic names are assigned to the peripherals attached to the system by the MCP. The mnemonics are:

CDx
CPx
CRx
CSx
DCx
DISK
DPx
LPx
MTx
SPO
SRx

- 96-Column Card Device
- 80-Column Card Punch
- 80-Column Card Reader
- Magnetic Tape Cassette
- Disk Cartridge
- Head-per-Track Disk
- Disk Pack
- Line Printer
- Magnetic Tape
- Console Printer
- Reader Sorter

NOTE

The "x" is replaced by a capital letter, A - Z, for multiple
units of a specified type.

SYSTEM DESCRIPTION

The following functions are controlled by the MCP:

a. Loading

b. Interrupt handling

c. I/O control

d. Selection and initiation of programs

e. I/O error handling

f. System log maintenance

1-1

g. Storage allocation -memory and disk

h. Overlay functions - data and code

i. Multiprogramming

Both the MCP I and MCP II will service the following standard peripheral equipment:

a. Console Printer

b. 96-column Card Devices

c. 80-column Card Devices

d. Line Printers

e. Magnetic Tape (MCP II)

f. Disk Cartridges

g. Head-per-Track Disk (MCP II)

h. Magnetic Tape Cassette (MCP II)

In addition, MCP II will accommodate the MICR Reader Sorter, Disk Pack, and Paper Tape Reader/Punch,
as well as various data communications devices through a single line or a multi-line control.

HARDWARE REQUIREMENTS

Tne following list of equipment must be present for MCP operations. However, the listed equipment is
not dedicated to the MCP and may be utilized by any user program.

Hardware Type Usage

Console Printer Operator communication

Disk AuxHia1y storage

Card Reader Control input

CENTRAL SERVICE MODULE

The Central Service Module (CSM) is a microcoded routine 'Nhich performs the following functions in an
equivalent hard-wired machine:

a. Tnterrupt Detection and Handling.

b. Passes control to/from the MCP, usually on an interrupt.

1-2

c. Controls all I/O activity, such as:

1. I/O Initialization

2. Data Transfers

3. I/O Termination

d. Manages Interpreter Activity.

INTERPRETERS

Interpreters are microcoded routines, or "firmware," that perform the operations specified by the
programmer. Each language has its own interpreter.

1-3

SECTION 2
MASTER CONTROL PROGRAM

GENERAL

The Master Control Programs (MCP's) are modular operating systems which assume complex and repetitive
functions to make programming and operations more efficient and productive. The MCP provides the
coordination and processing control that is so important to system throughput by allowing maximum use
of all system components. Operator intervention is greatly reduced through complete resource manage
ment by the MCP. Since all program functions are performed under this centralized control, changes in
scheduling, system configuration, and program size can be readily accommodated resulting in greater system
throughput.

The B 1700 System Software Operational Guide will make reference to both MCP I and MCP II, distin
guishing between the functions of each where applicable. The basic difference between MCP I and MCP II
is that MCP I is designed for m~nimum system configurations and does not have multiprogramming
capabilities whereas MCP II is designed for larger system configurations with multiprogramming capabilities.

A detailed description of the MCP is presented in the B 1700 Master Control Program Reference Manual.

MCP DISK STRUCTURES

A significant aspect of the MCP design is the disk handling technique. Because this handling is the responsi
bility of the MCP, the users' programs are less complicated and easier to write.

Areas handled by the MCP include:

a. Directory Maintenance

Users need only to specify LOAD, DUMP, ADD, UNLOAD, CHANGE, or REMOVE directives
by file-name. All other actions pertaining to disk table maintenance are automatic.

b. Disk Allocation

Programs need only specify the amount of disk they require. The MCP will handle the actual
allocation of a physical area containing only the amount requested.

c. File Assignment

As for all files within the system, disk file assignment is made according to the programmatically
specified file name and type.

d. Record Addressing

Programs need only specify the accessing method, and in the case of random files the specific
record desired. The actual disk location is the sole responsibility of the MCP. This means the
programmer need not be concerned with the physical locations of the files.

e. Paging

Paging is the technique by which the programmer may divide a disk data file into portions which
may occupy non-contiguous areas of disk, rather than one huge area. Areas need not even be
allocated until actually needed, thus decreasing the need for disk space until required by the size
of the file.

DISK DIRECTORY

The Disk Directory is a disk-resident table that contains the name and type of file, together with a pointer
to the disk file header or sub-directory for all files on which the MCP received a permanent disk directory
entry request.

2-1

D isk-Pack-1 dentifier

The disk-pack-id is the name that is assigned to a user disk pack or cartridge at initialization time.

Example:

AAA/program-name/

AAA is the disk-pack-id

Main Directory File Name

If there were a set of programs that were all common to solving one problem, they could all have the same
first "family" name. The disk pack-id is not used to access a system disk.

Example:

PA YROLL/program-name-1
PAYROLL/program-name-2
PA YROLL/program-name-3
PA YROLL/program-name-4

In this example, PAYROLL is the main directory file name or the family name, while program-name-I
through program-name-4 are the sub-directory file names.

Sub-Directory File Name

The main directory links to a sub-directory when the sub-directory file-id is used. This sub-directory will
contain an address on disk of a File Header for each of the sub-directory file entries. The sub-directory is
ai1 extension of the main directory.

Main Directory Contents

The main directory entry contains:

1. Family Name

2. Address of the disk file header or sub~directory.

3. Type of File:

1 =LOG
2 =Directory (entry points to sub-directory)
3 =Control Deck
4 =Backup Print
5 =Backup Punch
6 =Dump File
7 = Interpreter
8 =Code File
9 =Data File

Sub-Directory Contents

If the file has a family name and a secondary file name, the address in the main directory will not point to
the disk file header but to a sub-directory. This sub-directory has the same format as the main directory,
except that it uses only one segment of disk for each eleven file names. If there are more than eleven names
in the sub-directory the MCP will increase the size by one segment for each eleven additional names.

2-2

The sub-directory entry is identical to the main directory entry with the exception that the addresses will
always point to a Disk File Header.

Directory Reference

When a file is referenced on a removable disk, it must be preceded with the disk-pack-id. The removable
disk directories and system disk directories are the same format.

MULTIPLE PACK Fl LES

Introduction

A multiple pack file is a file that can be contained on one or more removable disk packs (cartridges). The
file attribute MULTI.PACK of the FILE statement may be used to declare a file to be a multiple pack file.

Abbreviations

MPF - Multiple Pack Files
BP - Base Pack
CP - Continuation Pack

Restrictions

There are some restrictions imposed on MPFs that may limit their selection for usage. They are as follows:

a. The maximum number of packs that may be assigned to a MPF is 16, consisting of one BP and
15 CPs.

b. There must be a minimum of two (2) disk drives present on the system (one system pack, one
removable pack).

c. Only removable disk packs may be used for a MPF. A system pack cannot be used for a MPF.

d. All packs containing a MPF must have unique serial numbers. The disk pack-id is not the primary
identifier for CPs.

NOTE:

It is suggested that all packs be initialized with unique serial numbers.

Base Packs

A MPF may have only one BP. The BP must be on-line for any OPEN or CLOSE performed on the file.
It may be required at other times depending on action requested by the program; if so, a message will be
printed on the console printer requesting the operator to mount the BP if it is not on-line. A BP may con
tain both single and multi-pack-files; however, it cannot contain any continuation files.

The header on the BP retains all information concerning the file including the addresses of every area
assigned to that file. For each area which is resident on a CP, the BP will contain the serial number of the
CP. This allows the MCP (via the BP) to control all processing, and thereby avoids updating each CP as the
file is processed.

Continuation Packs

An MPF may be contained on only one pack, the BP. When the data overflows or "continues" to additional
packs, the term Continuation Pack (CP) is used. There may be up to a maximum of 15 CPs for one MPF,
but a CP may be associated with only one BP. A CP may only contain continuation files, and all continua
tion files contained on a CP must be assigned to the same BP. It may contain no single pack files, and may
not itself be a BP.

2-3

When space is needed for a MPF, the MCP will search for another CP that is associated with the same BP.
If no CP is present on the system, the MCP will then search for a scratch pack (one that has just been
INITIALIZED or PURGED and is of the same type, RESTRICTED or UNRESTRICTED, as the BP). If
one is found the scratch pack is automatically assigned to the MPF.

Genera! ! nformation

DISK/COPY and DMPALL cannot be used to copy MPFs.

MPFs may be sorted (INPLACE sort only).

To obtain the maximum disk space available for a MPF, assign 105 as the number of areas required and
increase the BLOCKS.AREA.

Random files are allowed for MPFs.

A system pack cannot be used as a BP or CP.

The CHANGE (CH) message is not allowed on a MPF; however a REMOVE (RE) message is legitimate.

A check is done by the MCP prior to opening an MPF to predict whether a duplicate file situation might
exist. If so, the operator has the option of either removing the existing file at that time or waiting till
CLOSE time to remove the duplicate file, and OKing the program.

A DS message will perform a normal close on a MPF.

A BP does not necessarily have to have any of its MPF data residing on it. In other words, as soon as the
file is opened and the tables are built, the BP may be removed or be off-line.

A scratch pack is one that has either been just initialized or purged. A pack which has had all files removed
is not a scratch pack.

HALTS

When certain conditions of the MCP have been violated, all processing may stop and a HEX value will be
displayed in the "L" register. Recovering from a HALT state may usually be accomplished by performing
a Clear/Start. The following list will explain the HALT codes and their meanings.

Halt Code Description of Halt

Evaluation/Program Pointer Stack overflow.

Control Stack oveif1ow.

3 Name/Value Stack overflow.

4 Cassette data error.

5 Invalid parameter passed to a procedure.

6 Invalid substring.

7 Invalid subscript.

8 Invalid value returned from a procedure.

9 Invalid case.

2-4

A

B

c

D

10

11

12

22

25

29

MCP OPTIONS

Description of Halt

Divide by zero.

Invalid index.

Memory parity. The "T" register will contain the
address of the parity error. If the "T" register equals
@FFFFFF@, the error was caused by an attempt to read
outside the physical bounds of memory.

Invalid operator.

Console HALT. (INTERRUPT switch) To continue
processing tum INTERRUPT switch off and press
START.

This is a controlled HALT. The "T" register will contain
a message from the MCP.

TREG

TA~ @C@

DESCRIPTION

Result Descriptor with Exception
Bits Set.

ALL OTHERS First Six Characters of MCP
Source Sequence Number (Submit
Memory Dump an.d Trouble
Report).

Attempt to write outside of the MCP base or limit register.

Invalid service request.

Second operation complete bit is missing from the result
status field. Result descriptor in T register.

Memory parity error during I/O operation.

The MCP will perform certain functions based on the settings of various options. The system operator can
use the SO input message to set an option, or the RO message to reset an option, except in the case of the
LOG option which is independently set with the SL message.

At COLDSTART all of the MCP options with the exception of DATE, TIME, DUMP, BOJ, and EOJ are
reset and must be set if desired as part of the MCP's operations.

The DATE and TIME options are set automatically at COLD START time. The date and time must be
entered after Clear/Start before the MCP will allow programs to execute. However, these options may be
reset, thereby making it unnecessary to enter the date and time after each Clear/Start. After a Clear/Start,
the MCP options remain in the same state, set or reset, as they were before the Clear/Start was performed.

2-5

The following is a list of the available MCP options:

BOJ
CHRG
CLOS
DATE
DBM

DUMP
EOJ
LAB
LIB
LOG

MEM
OPEN
PBD
PBT
PWS

The MCP options are defined in the following paragraphs.

BOJ

RMOV
SCHM
TERM
TIME
ZIP

The BOJ option specifies that a Beginning-of-Job message be displayed each time the MCP initiates an
executable object program.

CHRG

The CHRG option requires that all program executions be accompanied by a charge number which will be
entered in the log.

CLOS

The CLOS option specifies that a "file-id CLOSED ... " message be displayed each time an object program
closes a file,

DATE

The DATE option is set at COLDSTART and specifies that the "**DR PLEASE" message be displayed at
Clear/Start. When the "** DR PLEASE" message is displayed, the system operator must enter the date
with the DR input message before program execution may begin.

DBM

The DBM (Data Base Management) option pulls into memory an overlay disk segment containing a search
operator to be bound into the CSM for disk search at Clear/Start time. The DBM option must be set to
cause the presence of the overlay and must be used for Data Base Management, or when a RPG program
uses the Index Sequential filing technique. A Clear/Start is required by the MCP after the option is set or
reset.

DUMP

The DUMP option must be set in order to dump memory. If the DUMP option is reset, SYSTEM/
DUMPFILE will be removed from disk and the space made avaiiabie to the system. Any attempt to dump
system memory (not OM or DP) will be ignored if the DUMP option is reset.

EQj

The EOJ option specifies that an End-of-Job message be displayed each time an object program reaches
normal End-of-Job.

LAB

The LAB option causes the MCP to display a tape label-name when a BOT (Beginning-of-Tape) is sensed.
The character set for a Train Printer will also be displayed.

2-6

LIB

The LIB option causes the MCP to display library maintenance actions performed on disk files. The
message displayed on the console printer can be one of the following;

LOG

file-identifier
file-identifier
file-identifier
file-identifier

REMOVED
CHANGED TO file-identifier
LOADED
DUMPED

The LOG option will request the MCP to keep a log of all program executions on disk. See the LG, SL,
and TL input messages for actions pertaining to the LOG.

MEM

When reset, the MEM option will inhibit any messages from being displayed by the MCP regarding
insufficient memory conditions.

OPEN

The OPEN option specifies that a "file-identifier OPENED ... " message be displayed each time an object
program opens a file.

PBD

The PBD option specifies that output files assigned to a printer or card punch will be diverted to a disk
backup file if the required output device is not available when the object program tries to open that file.

PBT

The PBT option specifies that output files assigned to a printer or card punch will be diverted to a tape
backup file if the required output device is not available when the object program tries to open that file.

PWS (MCPI only)

NOTE

If both the PBD and the PBT options are set, backup will
go to tape if a unit is available; if not, the backup will go
to disk.

The PWS (Program Working Set) option allows the MCP to minimize the amount of memory it has to swap
when going from the user program to the MCP and back again. The PWS option will only benefit a system
with 32 Kor greater. The working set of a program is defined to be those code segments needed in memory
to run the program efficiently.

RMOV

The RMOV option if set will automatically remove the old file in "DUPLICATE FILE ON DISK"
situations as though an RM message had been typed in by the system operator.

2-7

SCHM

The SCHM option causes the MCP to display a message when a program is placed in the schedule. The
message has the foiiowing format:

job-number program-name NEEDS integer KB: SCHED PR= schedule-priority:
IN FOR hh:mm:ss.t, number-of-levels DEEP IN ACTIVE SCHEDULE

TERM

The TERM option specifies that the MCP automatically discontinue (DS) processing of a program when an
error condition is encountered. If an error condition occurs and it is necessary to obtain a memory dump
of the program, the TERM option should not be set.

TIME

The TIME option is set at COLDSTART and specifies that the "**TR PLEASE" message be displayed at
Clear/Start. When the"** TR PLEASE" message is displayed, the system operator must enter the time
with the TR input message before program execution may begin.

ZIP

The ZIP option when set will display on the console printer all programmatic ZIP statements made to
the MCP.

2-8

MCP-OPERATOR INTERFACE

General

The Master Control Program is directed to perform particular actions by the system operator through the
use of Control Instructions. These control instructions apply to both the MC:P I and the MCP II.

Control instructions may be supplied to the Master Control Program by punched cards, the console printer,
or ZIP statements in an executing program.

I

There are four major types of control instructions:

(1) Library Maintenance Instructions

(2) Control Instructions

(3) Control Attributes

(4) File Parameter Instructions

MCP Communication

PUNCHED CARDS

If punched cards are used to communicate a control instruction to the MCP, the following rules apply:

a. Column 1 must contain an invalid character (80-column cards) or a question mark (96-column
cards). An invalid character or question mark may not appear in any other column.

b. The remainder of the card may contain control instructions in free-field format; the MCP ignores
information in the last eight columns.

c. If the special character percent (%)appears in a control card, all information following it is
ignored for control purposes. This allows comments to be present in control cards.

d. The appearance of the "less than" (<) sign in a control message will cause the MCP to backspace
its pointer one position for each < sign in memory while scanning the control instruction. This
allows correction of mistakes without requiring that the entire message be re-entered. Even
though this is intended mainly for messages entered via the keyboard, it will work with control
instructions entered on punched cards as well. The "less than" sign may not be used for any
other purpose.

e. Any program-name or file-identifier which contains the special characters listed below must be
enclosed in quotes.

semicolon
comma

= equal sign
I slash

blank or space
" quote mark
@ at sign
% percent sign

Any special characters not contained in the above list do not require quote marks to enclose
the identifier. The < sign may not appear in an identifier.

2-9

Examples:

"FILE%001"
"%3 "/"%ABC=;;
"/XYZ"
SDLTNTRIN/# 00000000 l

The slash in the second example above separates the family-name from the file-name and is not
enclosed in quotes.

In the third example, the slash is part of the family-name and is, therefore, enclosed in quote
marks.

In the last example the pound sign (#)is not listed as a special character, so the identifier does
not need to be enclosed with quote marks.

f. Control instructions may be contained on more than one card; however, words may not be split
between cards. The invalid character is optional on continuation cards.

Example:

? EXECUTE ALPHA/BETA PRIORITY= 5 MEMORY
= 16000 CHARGE= 123456 DATA CARDS

g. All control instructions are described on the following pages under headings which would indicate
that each of them must consist of a separate card. This is not necessarily so; if the text of one
control instruction is delimited by a space then this is considered the "logical end" of that con
trol instruction. It may be followed by another control instruction on the same card as the
example above indicates.

CONSOLE PRINTER

Control instructions may be entered via the console printer as input to the MCP. The control statements are
restricted to one line; there can be no continuation lines. When the END OF MESSAGE is pressed, the
MCP assumes the end of the control instruction and processes the control statement.

MCP control statements may be also passed to the MCP by the use of a ZIP statement in an executing
program. The ZIP statement in the program must reference a defined data area where the control state
ment is located. Refer to the appropriate language reference manual for specific syntax regarding the ZIP
statement.

GENERAL TERMS

These terms are defined as follows:

a. identifier: A word consisting of from one to ten alphabetic, numeric, or special characters in
any combination.

b. disk-pack-id (dp-id): An identifier which is the name of a disk pack or cartridge.

c. family-name: An identifier which is a file name, or the name given to identify a main file with
sub-directory entries.

d. program-name: A file-identifier which is the name of a program.

e. compiler-name: A file-identifier which is the name of a compiler.

f. interpreter-name: A file-identifier which is the name of an interpreter.

g. unit-mnemonic: A name which consists of from one to six characters, used to identify a
peripheral device.

unit-mnemonic

CDx
CRx
CPx
CSx
DCx
DISK
DPx
LPx
MTx
PPx
PRx
SPO
SRx

Device

96-Column Card Device
80-Column Card Reader
80-Column Card Punch
Magnetic Tape Cassette
Disk Cartridge
Head-per-Track Disk
Disk Pack
Line Printer
Magnetic Tape
Paper Tape Punch
Paper Tape Reader
Console Printer
MICR Reader Sorter

The "x" notation represents an alpha character which distinguishes multiple units of the same
type. For example two Line Printers would have mnemonic names of LPA and LPB.

h. system disk: A disk pack or cartridge that is initialized as a system type pack. A system pack is
under the control of the MCP and one or more must be present on the system for the MCP to
function. Head-per-track disk is always considered system disk.

i. removable disk: A disk pack or cartridge that can be removed from the system during operations.
The MCP does not need removable disk packs in order to function.

j. file-identifier: All disk-file-identifiers used on the system must be unique, therefore, there can
be no duplication of file names. Throughout this manual "file-identifier" will incorporate all
the combinations allowed for a file-identifier. Such as:

file-identifier
family-name/file-identifier
dp-id/family-name/file-identifier
dp-id/file-identifier/

I CHANGE I
LIBRARY MAINTENANCE INSTRUCTIONS

CHANGE

The CHMJGE statement changes the file-identifier of a disk file, causing the file to be referenced by the new
file identifier.

The format of a CHANGE statement is:

[?] { ~ANGE } file-iden tifier-1 TO file-identifier-2 [1 file-iden tifier-3 TO file-iden tifier-4] ... i.

The control word CHANGE may be abbreviated as CH.

Any CHANGE statements affecting more than one file must have the file-identifiers separated by commas.

The CHANGE statement will cause the MCP to change the file-identifier of specified disk files from one
name to another. If the file referenced in the CHANGE statement resides on a removable disk, the disk
pack-id must precede the file-identifier in order for the MCP to locate the proper file to change.

" CHANGE A.LPHA/BETAONE/ TO ALPHA/BETATWO/

If the CHANGE statement is entered and the MCP cannot locate the file or if the file is in use, the
following message is displayed on the console printer:

file-identifier NOT CHANGED ... (reason) ...

The CHANGE statement is not allowed on a Multi-Pack File.

The CHANGE statement may consist of additional cards where two or more "changes" may be made. For
example:

? CHANGE
? A/B C/D;
? x y' z Q,
? ABC DEF;

Termination will occur when a semicolon(;) is detected.

2-12

ADD, LOAD

~
~

The ADD statement will cause a file on a LIBRARY tape to be placed on disk only if the file is not already
on disk.

The LOAD statement will cause a file on a LIBRARY tape to be placed on disk. If the file is already on
disk, the old file will be removed.

The format of the ADD and LOAD statements is:

[?]

{
ADD } -- [TO disk-pack-identifier] FROM library-tape-identifier
LOAD - --

The=/= causes every file on the tape to be considered.

Example:

? LOAD FROM SYSTEM COBOL,
? RPG, BASIC;

2-13

{
-;-- -

family-name/=

file-identifier

DUMP
UNLOAD

DUMP, UNLOAD

The DUMP statement will cause one or more disk files to be placed on a LIBRARY tape. The file will not
be removed from disk by the dump.

The UNLOAD statement will cause one or more disk files to be placed on a LIBRARY tape. The disk file
will be removed after the successful completion of the UNLOAD.

The format of the DUMP and UNLOAD statements is:

[?] { ~~:~AD } [FROM disk-pack-identifier] TO library-tape-identifier

The=/= option indicates all files on the disk are to be DUMP/UNLOADED.

Example:

? DUMP TO A/B
X/Y.
Z/Q,
AAA

! ;::ily-name/=} 2.

file-identifier

I REMOVE I

REMOVE

The REMOVE statement deletes specified files from the disk directory making the file space available to
the MCP.

The format of the REMOVE statement is:

[?] ! REMOVE {

~ RE) l file-identifier l
family-name/=

dp-id/family-name/=

The control statement REMOVE may be abbreviated as RE.

[, ...]

The "/="form will delete the main directory entry and in tum delete all the files in its sub-directory.

The REMOVE statement may delete any number of files. However, any statement affecting more than
one file must have the file-identifiers separated by commas.

If the file-identifier referenced in the REMOVE statement resides on a removable disk pack, the disk-pack
id must precede the file-identifier in order for the MCP to locate the correct file. When the disk-pack-id
is not included, the MCP assumes that the file resides on a system pack.

Once a file has been removed, there is no means of recovering it.

The REMOVE statement may be continued to additional cards with the last "remove" terminated by a
semicolon.

Example:

? REMOVE A/B
,X,Y,
Z;

2-15

I COMPILE I

CONTROL INSTRUCTIONS

COMPILE

The COMPILE statement designates the compiler to be used, and the type of compilation to be performed.

The format of the COMPILE statement is:

TO

[?] program-name WITH compiler-name FOR

[control-attributes] ...

The COMPILE statement may be abbreviated as CO.

The compiler control statement must be the first statement in a set of control statements. The COMPILE
statement has four options:

1. COMPILE

2. COMPILE TO LIBRARY

3. COMPILE SAVE

4. COMnLEFORSYNTAX

The COMPILE is a "compile and go" operation. Providing the compilation is error-free, the MCP
schedules the object program for execution. The program will not be entered into the disk directory, and
must be recompiled to be used again. The "compile and go" is the default option of the COMPILE
statement.

The COMPILE TO LIBRARY will leave the program object file on disk and will enter the program-name
into the disk directory after an error-free compilation. The program is not scheduled for execution.

The COMPILE and SAVE combines the execute and library options. The MCP will enter the program
name into the disk directory and will leave the object program file on disk, as well as schedule the program
for execution after an error-free compilation. The program remains in the disk directory.

The COMPILE FOR SYNTAX provides a diagnostic listing as the only output. This option does not enter
the program-name into the disk directory or leave the program object file on disk, Some uses are as a
debugging tool, first time compilation, or a new source listing.

2-16

DYNAMIC

DYNAMIC

The DYNAMIC statement will modify the working copy of a program that is already in the mix or
scheduled for execution.

The format of the DYNAMIC statement is:

[?] job-number [control-attributes] ...

The DYNAMIC control word may be abbreviated as DY.

Any change that can be made by using the MODIFY statement is valid for the DYNAMIC statement;
however, only the working copy of the program will be altered.

2-17

EXECUTE

EXECUTE

The EXECUTE statement instructs the MCP to call a program from the library for subsequent
execution.

The format of the EXECUTE statement is:

[?]
EXECUTEl

EX }
program-name [control-attributes] ...

The EXECUTE control word may be abbreviated as EX.

The EXECUTE control statement must be the first statement in a set of control statements pertaining to
the execution of a program.

If the program referenced in the EXECUTE statement resides on a removable disk cartridge or disk pack,
the disk-pack-id must be part of the program-name in order for the MCP to locate the correct file.

Example:

? EXECUTE TEST
? DATA file-identifier

(data cards)
? END

This example shows that a program named TEST is to be called out of the library on disk and
executed. One of the files in the program TEST assigned as a card file is identified by the DATA control
card. If the program does not require a card file, only the EXECUTE control statement is necessary and
can be entered through the card reader with the "?EXECUTE TEST" or the console printer with the
"EX TEST" command.

2-18

I MODIFY]

MODIFY

The MODIFY statement is used to permanently change attributes within a program.

The format of a MODIFY statement is:

[?] program-name [control-attributes] ...

The MODIFY control statement may be abbreviated as MO.

The MODIFY statement has the same syntax as the EXECUTE statement, but does not execute the
program.

Example:

? MODIFY A/B PRIORITY 6

The above example will permanently change the priority of program A/B to six.

The MODIFY statement can be used to change the following attributes:

CHARGE
DYNAMJC.SPACES
FILE
FREEZE
INTERPRETER
INTRINSIC.NAME
INTRINSIC.DIRECTORY
MEMORY
PRIORITY
SCHEDULE.PRIORITY
UNFREEZE
VIRTUAL.DISK

2-19

IAmRl
CONTROL INSTRUCTION ATTRIBUTES

AFTER

The AFTER attribute is used to conditionally schedule a program after the termination of another
program (by program-name).

The format of the AFTER statement is:

[?]
{

AFTER l
AF }

The AFTER control word may be abbreviated as AF.

Example:

EXECUTE ALPHA AFTER BETA or
EX ALPHA AF BET A

program-name

When BET A reaches EOJ, ALPHA will be placed in the ACTIVE SCHEDULE for execution as soon as
memory resources are available.

If BETA was not either executing or scheduled when ALPHA was scheduled, ALPHA will remai11 in the
WAITING SCI-IEDCLE until BETA is executc:d and reaches EOJ, or until FS-ed the system operatc)r.

2-20

AFTER.NUMBER

AFTER.NUMBER

The AFTER.NUMBER attribute is used to conditionally schedule a program after the termination of
another program (by job-number) that is already in the mix or scheduled for execution.

The format of the AFTER.NUMBER statement is:

[?] {~ER.NUMBER} job-number

The AFTER.NUMBER control word may be abbreviated as AN.

Example:

EXECUTE ALPHA AFTER.NUMBER 7 or
EX ALPHA AN 7

NOTE

A job-number is assigned by the MCP to every job scheduled for execution on the
system. Each job-number is unique and is incremented sequentially from the last
COLDSTART.

2-21

THEN

The THEN attribute is used to conditionally schedule execution of a program in relation to another
program.

The format of the THEN statement is:

[?] {~:EN}

The THEN control word may be abbreviated as TH.

Example:

? EXECUTE ALPHA PRIORITY 14 MEMORY 20000 THEN COMPILE BETA COBOL SYNTAX

Program BETA will be executed (compiled) as soon as program ALPHA has terminated.

2-22

I CONDITIONAL I

CONDITIONAL

The CONDITIONAL attribute is used in conjunction with the AFTER, AFTER;NUMBER, .and THEN
attributes and inhibits the program from being fired-up unless its predecessor successfully reaches EOJ.
The CONDITIONAL attribute is a default statement.

The format of the CONDITIONAL statement is:

[?] { :NDITIONAL }

The CONDITIONAL control statement may be abbreviated as CA.

Example:

? EXECUTE A/B AFTER C/D CONDITIONAL or
? EX A/B AF C/D CA

2-23

UNCONDITIONAL I

UNCONDITIONAL

The UNCONDITIONAL attribute is used in conjunction with the AFTER, AFTER.NUMBER, and THEN
attributes and forces the program to be fired-up regardless of its predecessor's outcome.

The format of the UNCONDITIONAL statement is:

[?] {~CONDITIONAL }

The UNCONDITIONAL control statement may be abbreviated as UC.

Example:

? EXECUTE A/B AFTER C/D UNCONDITIONAL or
? EX A/B AF C/D UC

? EXECUTE A/B THEN CID UNCONDITIONAL or
EX A/B TH C/D UC

CHARGE

CHARGE

The CHARGE attribute is used to insert a charge number into the log record for a program.

The format of a CHARGE statement is:

[?] [OBJ] { :ARGE} [=] integer

The CHARGE control word may be abbreviated as CG.

The integer cannot exceed six digits. If less than six digits are used, leading zeros will be assumed. This
number will be carried in the MCP log file for subsequent analyzation.

If the MCP's CHRG option is set, the CHARGE statement must be used before a program will be scheduled.

2-25

DYNAMIC.SPACES I

DYNAMIC.SPACES

The DYNAMIC.SPACES statement allows the operator to specify the maximum number of overlays that
will ever be present in a program's dynamic memory.

The format of the DYNAMIC.SPACES statement is:

[?] [OBJ] { :NAMIC.SPACES } [=] integer

The DYNAMIC.SPACES control word may be abbreviated as DS.

The purpose of DYNAMIC.SPACES is to allow dynamic memory space for the Memory Links that will be
associated with the overlayable data within a program.

The MCP at run time will assign a value of 10 if the DYNAMIC.SPACES is zero. This attribute is normally
used only when the exact memory requirement for a program's data overlays is specified.

For example:

? EXECUTE A/B MEMORY= 20000

The MCP will assign the program A/B 20000 bits of dynamic memory plus the following:

(2 *AVAIL.LINK) + (DYNAMIC.SPACES* IN.USE.LINK)

or

(2 * 175 BITS) + (DYNAMIC.SPACES* 163 BITS)

2-26

FILE

The FILE statement may be used to specify various attribute changes for both input and/or output files.

The format of the FILE statement is:

[?] [OBJ]
{

FILE i
FI I in ternai-file-id en tifi er file-a ttri bu te-1 [file-attribute-2] ... '

The control word FILE may be abbreviated as FI.

The FILE statement must have each element within the statement separated by at least one space, and must
be terminated with a semicolon or ETX. If more than one card is required for a FILE statement, each of
the continuation cards must have a question mark in column 1.

The FILE statement must immediately follow the COMPILE, EXECUTE, DYNAMIC, or MODIFY state
ment. The MCP modifies the information in a working ~opy of the program's FILE PARAMETER
BLOCK (FPB).

The file-identifier used in the FILE statement must refer to the internal-file-name used in the program that
opens the file. For example, if the file-identifier is to be changed for this run only, the FILE statement
would be as follows:

? FILE internal-file-identifier NAME file-identifier

FILE ATTRIBUTES

Following is a list of the file-attributes that may be modified at execution time with the use of a FILE
statement.

FILE ATTRIBUTE

ALLOCATE.AT.OPEN

AREAS[=] integer

ASCII

BACKUP

BACKUP.DISK

BACKUP.TAPE

FUNCTION

All of the areas requested by this file will be allocated at the
time the file is opened.

The number of areas assigned to the file at compile time will
be altered to the value of the integer.

The recording mode of the file will be changed to ASCII.

The output of the file will be allowed to go to backup. This
sets BACKUP.DISK and BACKUP. TAPE by implication.

If the file is allowed to go to BACKUP, the output of the file
will be allowed to go to disk backup.

If the file is allowed to go to BACKUP, the output of the file
will be allowed to go to tape backup.

2-27

FILE
continued

FILE ATTRIBUTE

BCL

BINARY

BLOCKS.AREA[=] integer

BUFFERS[=] integer

COPY

FUNCTION

The recording mode of the file will be changed to BCL.

The recording mode of the file will be changed to BINARY
(80-column card and paper tape only).

Assign integer blocks (physical records) to an area.

The number of buffers assigned to the file will be altered to the
value of the integer. The integer must be a positive number
from 1 to 15.

The entire File Parameter Block except the internal file identi
fier of one file will be copied to.the receiving file's File Para
meter Block. The internal file-identifier will nc,t be changed.

SYNTAX

(L~ ~ ioh-num her)

COPY internal-file-identifier FROM

t
{ ~B.NUM:BER) (~o~ki~i ~~PY) J

CYLINDER.BOUNDARY

DEFAULT

DRIVE[=]integer

EBCDIC

EU[=] integer

T:'TT:1'T
DVLl'i

FILE.TYPE[=] integer

l PN)

PRocRAM.NAME j
program-name
(original copy)

Each area of a disk file will start at the beginning of a
CYLINDER when the file is directed to a disk pack or disk
cartridge.

Override the disk allocation declared and use the file header
block and record sizes. (Input disk and tape files only.)

The file will be directed to the drive or EU specified by the
integer. The drive must be a system disk. The integer must be
a positive number from 0 to 15.

The recording mode of the file will be changed to EBCDIC.

Same as DRIVE.

The file's type may be changed at run time.

TYPE CODE

0
7
8
9

2-28

DESCRIPTION

Data
Interpreter
Code
Data

FILE ATTRIBUTE

FORMS

HARDWARE

INCREMENT.DRIVE

INCREMENT.EU

INVALID.CHARACTERS
[=]integer

LABEL.TYPE[=] integer

LOCK

FUNCTION
FILE

continued

The program will be suspended and the MCP will display a
message for the operator to load special forms in the device
(printer or punch) before the file is opened.

A printer or punch file will be allowed to go to the hardware
device assigned.

Each area of a disk file will start on the next system disk pack
or disk cartridge drive. When the last system drive has been
used it will start over from drive ZERO again.

Same as INCREMENT.DRIVE.

The integer may contain a value of 0, 1, 2, or 3, and determines
the course of action for invalid characters output to a train
printer.

0 = Report all lines that contain invalid characters. The
following console message will be output for each
occurrance:

FILE file-name IS PRINTING
INVALID CHARACTERS ON LPx.

= Report all lines that contain invalid characters and stop
the program at that point.

2 Report once that the file is printing invalid characters.
The following console message will be output:

FILE file-name IS PRINTING
INVALID CHARACTERS ON LPx.
(one-time warning)

3 = Do not notify operator of invalid character output.

The file will be processed as labeled (integer=O) or unlabeled
(integer= 1).

The file will be LOCKED during file close or program termina
tion time.

MAXIMUM.BLOCK.SIZE[=] integer Fixed block size to be used for variable length records.

MULTI.PACK

NAME [=] file-identifier

The file will be considered a multi-pack file. (MPF)

The external file-identifier or dp-id will be changed to the value
of file-identifier. If only the dp-id is to be changed the
PACK.ID attribute may be used.

2-29

FILE
continued

FILE ATTRIBUTE

\NO l
{NOT\

ODD

file-8ttribute

OPTIONAL

PACK.ID[=] disk-pack-id

PSEUDO

RANDOM

RECORDS.BLOCK [::c] integer

RECORD.SIZE[=] integer

SERIAL

SAVE[=] integer

VARIABLE

WORK.FILE

FUNCTION

When this option is used it will negate the file-attribute follow
ing the word NO or NOT For example; a file 8s~dgnecl to go
strictly to backup could be changed to go to the printer by
entering a NO BACKUP file statement. The following is a list
of file-attributes that the NO or NOT statement can negate.

a. ALLOCA.TE.A.T.OPEN
b. BACKUP
c. BACKUP.DISK
d. BACKUP.TAPE
e. CYLINDER.BOUNDARY
f. DEFAULT
g. FORMS
h. HARDWARE
i. INCREMENT.DRIVE
j. INCREMENT.EU
k. LOCK
1. MULTI.PACK
m. OPTIONAL
n. VARIABLE
o. WORK.FILE

The file will be changed to ODD parity.

Select optional file (COBOL only).

Alter the pack-id.

Makes file a pseudo type.

The file will be changed to a RANDOM access file.

The number of logical records per block for a fixed record
length file.

The number of bytes assigned for the logical record will be
changed to the value of the integer.

reel.

The fi1e is to he processed sequentially.

A save factor representing the number of days a tape or disk
file may be saved.

The file will be processed using variable length records.

Assigns this file as a work file used internally.

2-30

FILE
continued

The following list of device attributes may be used to change the input or output device originally assigned
to a file.

READER.96
READER.PUNCH
READER.PUNCH.PRINTER
READER.SORTER
CARD.READER
CARD.PUNCH
DISK
DISK.PACK
DISK.FILE
DISK.CARTRIDGE
CASSETTE
QUEUE

FILE ATTRIBUTE ABBREVIATIONS

REMOTE
MFCU
TAPE.7
TAPE.9
TAPE.PE
TAPE
PAPER.TAPE.READER
PAPER.TAPE.PUNCH
PRINTER
PUNCH.96
PUNCH.PRINTER

The following abbreviations may be used to identify the FILE statement attributes.

ADVERB
ALLOCATE.AT.OPEN
AREAS
ASCII
BACKUP
BACKUP.DISK
BACKUP.TAPE
BUFFERS
BLOCKS.AREA
BCL
BINARY
COPY
CARD.READER
CARD.PUNCH
CYLINDER.BOUNDARY
CASSETTE
DRIVE
DISK.CARTRIDGE
DISK
DISK.PACK
DISK.FILE
DEFAULT
DATA.RECORDER.SO
EU
EVEN
EBCDIC
FORMS
HARDWARE
INCREMENT.EU
INCREMENT.DRIVE
INVALID.CHARACTERS
LOCK
LABEL.TYPE
MFCU
MAXIMUM.BLOCK.SIZE

ADV
ALL
ARE
ASC
BAC
BDK
BTP
BUF
B.A
BCL
BIN
CPY
CRD
CPC
CYL
CAS
DRI
DCG
DSK
DPC
DFL
DEF
DRC
EU
EVN
EBC
FMS
HAR
INC
INC
INV
LOC
LAB
MFC
MAX

2-31

Fi LE
continued

MULTI.PACK
NAME
NO
1' Tr>."T"
l'ljVl

OPTIONAL
ODD
PACK.ID
PAPER.TAPE.READER
PAPER.TAPE.PlJ'NCH
READER.PUNCH.PRINTER
READER.SORTER
RECORD.SIZE
RANDOM
REEL
RECORD SB LOCK
REMOTE
SERIAL
SAVE
TAPE
TAPE.9
TAPE.7
TAPE.PE
UNIT.NAME
VARIABLE
WORK.FILE

MUL
NAM
NO
~T£YT'
l~V.!

OPT
ODD
PID
PTR
PTP
RPP
RSR
RSZ
RAN
REE
R.B
REM
SER
SAV
TAP
TP9
TP7
TPE
UNI
VAR
WFL

2-32

I FREEZE I

FREEZE

The FREEZE control attribute will prohibit rolling a program out to disk at any time during its execution,
thereby remaining in the same memory location regardless of the situation until End-of-Job.

The format of the FREEZE statement is:

{
FREEZE}

[?] [OBJ] FR

The FREEZE control word may be abbreviated as FR.

2-33

HOLD

The HOLD control attribute allows the system operator to place a program into the waiting schedule
prohibiting its execution until it is forced (FS'ed) into the active schedule.

The format of the HOLD statement is:

[?] { =~LD}

The HOLD control word may be abbreviated as HO.

The HOLD attribute may not be used with the MODIFY or DYNAMIC control statements.

2-34

I INTERPRETER J
INTERPRETER

The INTERPRETER attribute allows selection of a different interpreter for use by a program.

The format of the INTERPRETER statement is:

[?] [OBJ]
} ~~TERPRETER ~

(INTERP)
[=] interpreter-identifier

The INTERPRETER control word may be abbreviated as IN or INTERP.

Examples:

? EXECUTE ALPHA/BETA INTERPRETER COBOL/INTERPOOl

? EX X/Y IN CCC/SDL/INTERP3

2-35

I INTRINSIC.NAME I
INTRINSIC.NAME

The INTRINSIC.NAME attribute makes it possible to change the family-name of all intrinsics requested
by a program.

The format of the iNTRINSIC.NAME statement is:

{
~TRINSIC.NAME } [?] [OBJ] [=] intrinsic-identifier

The INTRINSIC.NAME control word may be abbreviated as IT.

The file-id portion of the intrinsics may not be changed.

Example:

? EXECUTE ALPHA/BETA INTRINSIC.NAME ZZZ.INTRIN

or

? EX ALPHA/BET A IT ZZZ.INTRIN

2-36

[!NTRINSIC.DIRECTORY I

INTRINSIC.DIRECTORY

The INTRINSIC.DIRECTORY attribute makes it possible to reference intrinsic files from a selected
removable disk pack.

The format of the INTRINSIC.DIRECTORY statement is:

[?] [OBJ] { ::TRINSIC.DIRECTORY} [=] dp-id

The INTRINSIC.DIRECTORY control word may be abbreviated as ID.

Example:

? EX ALPHA/BETA INTRINSIC.DIRECTORY UTILPACKA

2-37

MEMORY I
MEMORY

The MEMORY attribute makes it possible to override the dynamic memory size assigned by the compiler
for a given program at execution time.

The format of a MEMORY statement is:

l __ {
MEMORY} [?] [OBJ] =

- ME

The MEMORY control word may be abbreviated as ME.

The integer expresses the dynamic memory size in bits.

[=] integer

The program will be terminated if there is not enough dynamic memory assigned to execute.

When the MEMORY statement is used following a compile statement, the memory will be reserved for the
compiler, not the program being compiled.

Examples:

? COMPILE program-name COBOL SYNTAX MEMORY = 50000

or

? COMPILE program-name COBOL SYNTAX

? MEMORY = 50000

Both of the above examples will assign 50,000 bits of dynamic memory for the compiler. The following
example will assign. 50,000 bits of dynamic memory for the execution of a program.

? EXECUTE program-name MEMORY = 50000

2-38

I PRIORITY I

PRIORITY

The PRIORITY attribute specifies the operational priority assigned to a given program.

The format of a PRIORITY statement is:

[?] [OBJ] {:ORITY} [=] integer

The PRIORITY control word may be abbreviated as PR.

The system operator has the ability to assign program priorities to maximize output and scheduling.
Priorities range from zero to fifteen (0-15), where zero is the lowest and fifteen is the highest.

When a PRIORITY of nine or greater is specified, the following action occurs in a multiprogramming mode:

a. If necessary, jobs which are running and which have a lower priority will be "rolled-out"
from memory to disk to create space for the high-priority job. This action is called "crashout."

b. A high-priority job entered in the schedule will not automatically suspend any other high
priority job running in memory. However, the system operator may stop (ST) them.

c. Upon termination of the high-priority job, the suspended programs will be automatically
reinstated to memory.

2-39

SCHEDULE.PRIORITY

SCHEDULE.PRIORITY

The SCHEDULE.PRIORITY attribute assigns priorities of programs in the schedule.

The format of the SCHEDULE.PRIORITY statement is:

{
~HEDULE.PRIORITY} [?] [OBJ]

The SCHEDULE.PRIORITY control word may be abbreviated as SC.

[=] integer

The priorities of the schedule are separate from the mix priorities in that SCHEDULE.PRIORITY will only
alter or assign priorities pertaining to the schedule, not the mix.

The priority integer must be equal to or less than fourteen.

Jobs in the ACTIVE SCHEDULE having the same assigned priority are further discriminated by the actual
time the jobs have been in the schedule.

Example:

? EXECUTE A/B SCHEDULE.PRIORITY= 12

Once the program has been placed in the schedule, the SP
console message must be used to change the scheduled priority.

2-40

I SWIT~~
SWITCH

The SWITCH control attribute allows the system operator to set programmatic switches.

The format of the SWITCH statement is:

[?] [OBJ] {:ITCH} switch-identifier-number [=] value

The SWITCH control word may be abbreviated as SW.

The switch-identifier-number must be a decimal digit from zero to nine (0-9) that references the switch or
switches to be set. To determine what switches are available, the specific language manual for the program
for which the switches are being set must be referenced.

The value is the value that the switch or switches will be assigned.

Example:

? SWITCH 0 = 5 SWITCH 1 = 3 or

? SWO=S SWl =3

2-41

I UNFREEZE I
UNFREEZE

The UNFREEZE attribute allows the system operator to remove the FREEZE condition from a program,
thus permitting the roiiing-out to disk of a program that is in an interrupted state.

The format of the UNFREEZE statement is:

[?] [OBJ] {;FREEZE}

The UNFREEZE control word may be abbreviated as UF.

2-42

VIRTUAL.DISK

VIRTUAL.DISK

The VIRTUAL.DISK attribute gives the operator the ability to change the number of disk segments
assigned by a compiler for saving data overlays during execution.

The format of the VIRTUAL.DISK statement is:

{~RTUAL.DISK} [?] [OBJ]

The VIRTUAL.DISK control word may be abbreviated as VI.

Integer must be eight digits or less.

[=] integer

If the integer is zero and the program requires disk space for data overlays, the MCP will assign a default
size of 1000 segments.

2-43

FILE PARAMETER INSTRUCTIONS

DATA

The DATA. control instruction informs the MCP of the name of a punched card data file.

The format of the DATA control instruction is:

file-identifier

The control word DATA may be abbreviated as DA.

The DATA control statement must be the last control instruction prior to the actual data.

2-44

END

The END statement indicates to the MCP that the card data input has reached the End-of-File (EOF).

The format of the END statement is:

1- ? END

L_ ____ _
The END control statement cannot be abbreviated.

When the END statement is used it must be the last card in that file. It signals the MCP to close the file,
and makes the card reader available to the system.

The END control card is not required at the end of a data deck if the program recognizes the last card in
the file and closes that file without trying to read another record. However, if the program does try to
read another record from that file and the card reader is empty, the MCP will hold the card reader waiting
for more data or a "? END" statement to be read.

If a data card with an invalid punch in column 1 is read within a data deck, the MCP stops the card reader
and notifies the operator that the card just read has an invalid punch in column (1). This allows the
operator to correct the card and permit the program to continue reading cards.

2-45

KEYBOARD INPUT MESSAGES

General

Information may be supplied to the MCP through the use of input messages entered through the console
printer. These messages are referred to as keyboard input messages throughout this manual. The keyboard
input messages are used by the system operator to communicate with the MCP. In order to make the
operating system an effective and informative tool, the system operator should be familiar with all the
keyboard input messages.

Keyboard input messages may be entered through a card reader by using the "?" or an invalid character
in column one (1), followed by the input message. The last eight columns will be ignored as in a control
card.

Keyboard Entry Procedure:

a. Press INPUT REQUEST button.

b. 'vVait for the READY indicator to light.

c. Type in message.

d. Depress END OF MESSAGE button (ETX) to terminate message.

If there are errors, press the ERROR button and retype the message. The MCP will print an exclamation
point(!) at the end of error lines for ease of identification.

The (<) less than sign may also be used for error correction. See paragraph (d.) of MCP Communications.

I

INPUT

REQUEST

READY

END OF

MESSAGE

ERROR

I ______ ___J

L _____ .
2-46

Keyboard Input Messages

AX (Response to ACCEPT)- IL (Ignore Label)

BB (Backup Blocks per Area) KA (Disk Analyzer)

BD (Backup Designate) {~ (Print Disk Sements)

BF (Display Backup Files)
LC (Load Cassette)

CD (List Card Decks in Pseudo Readers)
LD (Pseudo Load)

CE (Change to Entry System Software)

{~ CL (Clear Unit)
(Transfer and Print Log)

CM (Change System Software) LT (List File Types)

CN (Change to Non-Trace System Software) MP (List MPF Tables)

CP (Compute) MR (Close Output File with Purge)

CQ (Clear Queue) MX (Display MIX)

cs (Change to Standard System Software) OF (Optional File Response)

CT (Change to Trace System Software) OK (Continue Processing)

DF (Date of File) OL (Display Peripheral Status)

DM (Dump Memory and Continue) OU {Specify Oµtput Device

DP (Dump Memory and Discontinue) PB (Print/Punch Backup)

f DR
(Change MCP Date)

lDT
PD (Print Directory)

PG (Purge)
DS (Discontinue Program)

PM (Print Memory)
ED (Execute Pseudo Deck)

PO (Power Off)
EM (ELOG Message)

PR (Change Priority)
ET (ELOG Transfer)

PS (PROD Schedule)
FM (Response to Special Forms)

PW (Set Program Working Set-MCPI)

FN (Display Internal File Name)
QC (Quit Controller)

FR (Final Reel of Unlabled Tape File)

FS (Force from Schedule)
QF (Query File)

FT (Change File Type) QP (Query Program)

GO (Resume Stopped Program)

{~ HS (Hold in Waiting Schedule)
(Remove Backup Files)

HW (Hold in Waiting Schedule until Job EOJ) RD (Remove Psuedo Card Files)

2-47

Keyboard Input Messages {cont)

RL (Relabel User Pack) TD (Time and Date)

RM (Remove Duplicate Disk File) TI (Time Interrogation)

RN (Assign Pseudo Readers) TL (Transfer LOG)

RO (Reset Option) TO (Display Options)

RP (Ready and Purge) TR (Time Change)

RS (Remove Jobs from Schedule) TS (Test Switches)

RT (Remove MPF Table) UL (Assign Unlabeled File)

RY (Ready Peripheral) WD (Display MCP Date)

SD (Assign Additional System Drives) WM (Display Current MCP and Interpreter)

SL (Set LOG) WS (Display Schedule)

so (Set Option) WT (Display MCP Time)

CD (Change Schedule Priority) llTllT (List Contents of NAME TABLE) ...:i.L vvn

ST (Suspend Processing) WY (Program Status Interrogation)

sv (Save Peripheral Units) xc (Remove Disk Segments-Temporarily)

SW (Set Switch) XD (Remove Disk Segments-Permanently)

2-48

AX INPUT MESSAGE (Response to ACCEPT)

The AX message is a response to an ACCEPT message requested by an object program through the MCP.

The format of the AX message is:

mix-index AX ... input message ...

All responses are assumed to- be alphanumeric format. The input message starts in the first position after the
AX on the input line.

If the End-of-Message is depressed immediately after the AX, the MCP fills the area in the requesting pro
gram with blanks.

Example:

2 AX CHECK VOID IF OVER 500 DOLLARS

Input messages shorter than the receiving field in the program will be padded with trailing blanks. Longer
messages will be truncated on the right.

The AX message has an unsolicited console feature in that the operator may enter as many AX message
responses as needed for a given program prior to the actual ACCEPT. The AX messages must be entered
in the order they will be used, since the queue is structured on a first-in, first-out basis.

The queue is automatically cleared at program EOJ or an abort.

2-49

BB INPUT MESSAGE (Backup Blocks per Area)

The BB input message allows the operator to specify the number of blocks to assign each area of a
printer or punch backup disk file.

The format of the BB message is:

BB integer

Each block is 900 bytes or 5 segments, and a backup file is always assigned 25 areas. There are
200 blocks or 1000 segments per area assigned at COLDSTART as the BB default value.

If the integer input via the BB message is less than 5, 200 will be assigned by default.

2-50

BD INPUT MESSAGE (Backup Designate)

The BD input message allows the operator to designate a specific disk pack or disk cartridge for backup
files.

The format of the BD message is:

BD {disk-pack-identifier {

"blank" (system pack))

2-51

BF INPUT MESSAGE (Display Backup Files)

The BF input message lists disk backup files on the console printer.

The format of the BF message is:

BF [pack-identifier/]

-1-- -

integer

PRT/=

PRN/=
PCH/=.

The PRT /= option will list all printer backup files on disk. The PCH/= option will list all punch backup
files on disk.

The=/= option will list both the printer and punch backup files that are stored on disk.

PRN and PRT are both to be assumed to mean printer backup files. That is, PRN and PRT are equivalent.

The unit-mnemonic requests displaying the backup files on the designated removable disk drive. If it is
omitted, the MCP will display the backup files resident on system disk.

2-52

CD INPUT MESSAGE (List Card Decks in Pseudo Readers)

The CD input message allows the system operator to obtain a list of the pseudo card files and their file
numbers that have been previously placed on disk by SYSTEM/LDCONTRL.

The CD message format is:

CD

The MCP displays the number of each pseudo deck and the first fifty (50) characters of the first card in
the deck.

If a deck is in use, its name and the program using it are displayed.

2-53

CE INPUT MESSAGE (Change to Entry System Software)

The CE input message allows the operator to specify that during the next Clear/Stan MCP I system
software and firmware will be loaded on the system.

The format of the CE message is:

CE

2-54

CL INPUT MESSAGE (Clear Unit)

The CL input message allows the operator to clear a unit on the system because of an apparent system
software loop or hardware malfunction. Any program using the unit that has been cleared using the
CL message will be discontinued (DS 'ed).

The format of the CL message is:

CL unit-mnemonic

Example:

CLLPA

2-55

CM INPUT MESSAGE (Change System Software)

The CM input message allows the operator to identify programs to the system for subsequent usage. The
purpose of the CM message is to identify a file, exclusively on System Disk, that contains the program to
be used for a designated function.

The format of the CM message is:

system-software-mnemonic program-identifier i

I
___ __j

The resultant action of the CM message will not take affect until the next Clear/Start.

Refer to the Clear/Start procedure for a list of the system software mnemonics that are used in the
NAME TABLE.

Exampie:

CM MX MCP/XYZ

The C:\f message at the next Clear/Start makes the program l\ICP/XYZ the experimental I\ICP.

CN INPUT MESSAGE (Change to Non-Trace System Software)

The CN input message allows the system operator to change the operating environment to non-trace
system software after the next Clear/Start.

The format of the CN message is:

r-- CN

L _____ __

CAUTION

The CN input message is strictly for system software
development and debugging. It should not be used
in the standard operating environment.

2-57

CP INPUT MESSAGE (Compute)

The CP input message allows the operator to perform simple arithmetic functions on the console printer,
as well as decimaiihexadecimal conversion.

The format of the CP message is:

CP operand-I [operator operand-2] ... [=]

The valid operators recognized by the CP message are as follows:

+ addition

subtraction

* multiplication

I division

M MOD (remainder divide)

The equal sign (=)terminates the expression and must be the last entry when entered from a card reader.

The CP message will calculate an arithmetic expression strictly on a left-to-right basis. Therefore,
quantities contained in parentheses or brackets are invalid. Spaces are not used as delimiters and are
ignored.

The response is displayed in both decimal and hexadecimal formats.

When a hexadecimal number is to be used in a calculation, it must be enclosed by @signs. The valid
hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. If A, B, C, D, E, or F, is entered
without @signs, the message is invalid.

Example:

response: CP: @OOOOF7@=247

CP@F@

CP: @OOOOOF@=l 5

2-58

CQ INPUT MESSAGE (Clear Queue)

The CQ input message causes all messages stored in the Console Printer QUEUE to be cleared.

The CQ message format is:

2-59

CS INPUT MESSAGE (Change to Standard System Software)

The CS input message allows the system operator to insure that during the next Clear/Start MCP II system
software and firmware will be loaded on the system.

The fo1mat of the CS message is:

cs

2-60

CT INPUT MESSAGE (Change to Trace System Software)

The CT input message allows the system operator to change the operating environment to trace system
software after the next Clear/Start.

The format of the CT message is:

CT

CAUTION

The CT input message is strictly for system software
development and debugging. It should not be used
in the standard operating environment.

2-61

DF INPUT MESSAGE (Date of File)

Tne DF input message allows the operator to display on the console printer the compilation date and time
for code and interpreter files, and the creation date for all other types of files.

The format of the DF message is:

DF
{

file-identifier }

family-name/=

2-62

DM INPUT MESSAGE (Dump Memory and Continue)

The DM input message allows the system operator to dump the contents of a program's memory space to
disk for subsequent analysis by DUMP/ ANALYZER.

The format of the DM message is:

mix-index DM

Processing automatically continues when the dump is finished.

The DM message will create a file called DUMPFILE/integer. The integer will be incremented by one each
time a DM is performed in order to make each DUMPFILE unique.

The DUMPFILE may be printed by the DUMP/ ANALYZER program. Refer to the "PM" message.

Example:

2DM

2-63

DP INPUT MESSAGE (Dump Memory and Discontinue)

The DP input message allows the system operator to initiate a memory dump during a program's execution,
and then abort that program.

The DP message format is:

mix-index DP

The input of the DP message signals the MCP to halt program execution, dump memory out to disk, and
abort the program as though a DM message had been entered immediately followed by a DS message.

Example:

i DP

2-64

{
DR
DT INPUT MESSAGE (Change MCP Date)

lo;l
~

The DR input message allows the system operator to change the current date maintained by the MCP.

The DR message format is

{D
DTR} mm/dd/yy

The MCP will accept only valid dates. The month entry must be between one and twelve, the day must be
between one and thirty-one, and the year must be valid numeric digits.

2-65

DS INPUT MESSAGE (Discontinue Program)

The DS input message permits the system operator to discontinue the execution of a program.

The format of the DS message is:

mix-index DS

The DS message may be entered at any time after the BOJ and prior to EOJ.

The DS message signals the MCP to stop the program's execution and return the memory the program
occupied to the system. Any files not previously entered into the disk directory are lost and the disk
area occupied is returned to the disk available table. All other files are closed.

2-66

ED INPUT MESSAGE (Execute Pseudo Deck)

The ED input message will cause a specified pseudo deck to be executed.

The format of the ED message is:

ED integer

If a pseudo reader is not available, a new reader will be allocated for that deck.

When the deck has been processed the pseudo reader will be de-allocated.

2-67

The EM input message allows the operator to place a message into the ELOG.

The format of the EM message is:

EM input-message

2-68

ET INPUT MESSAGE (ELOG Transfer)

The ET input message transfers the information in the file SYSTEM/ELOG to the file ELOG/ #integer.
The program SYSTEM/ELOGOUT is then executed label equating ELOG/ #integer and prints the file.

The format of the ET message is:

ET

2-69

FM INPUT MESSAGE (Response to Special Forms)

The FM input message is a response to the "SPECIAL FORMS REQUIRED" message.

The fonnat of the FM message is:

mix-index FM unit-mnemonic

The unit-mnemonic designates which unit is to be assigned to the file.

The message

program-name = mix-index SPECIAL FORMS REQUIRED FOR file-id

is displayed on the console printer requiring that a FM message be submitted by the system operator before
the file can be opened.

Example:

2-70

FN INPUT MESSAGE (Display Internal File Name)

The FN input message allows the system operator to display the internal file names of an object program.

The format of the FN input message is:

FN program-name external-file-identifier

The MCP will list on the console printer all the internal-file-names of the object program which have the
specified external-file-identifier in the following format:

FN = internal-file-identifier-I

FN = internal-file-identifier-2

FN = ...

2-71

FR INPUT MESSAGE (Final Reel of Unlabeled Tape Fiie)

The FR input message gives the operator the ability to notify the MCP that the last reel of an unlabeled
tape file has completed processing, and there are no more input reels to be read.

The format of the FR message is:

mix-index FR

The FR message is a response to the message:

mix-index NO FILE

This message is the result of an unlabeled tape file reaching the End-of-Reel; the FR message notifies the
program that the file has reached EOF.

FS INPUT MESSAGE (Force from Schedule)

The FS input message is used to force jobs from the WAITING SCHEDULE into the ACTIVE SCHEDULE.

The format for the FS message:

The equal sign option will force all jobs into the ACTIVE SCHEDULE.

See the HS message for placing a job in the WAITING SCHEDULE.

NOTE

The WAITING SCHEDULE is a schedule of jobs that are waiting to be placed in
the ACTIVE SCHEDULE. For example, an EXECUTE with the attribute THEN
or AFTER.NUMBER would place the program in the WAITING SCHEDULE.

The ACTIVE SCHEDULE are those jobs that have satisfied all the requirements
for execution and are only waiting for memory space to run.

In order for a program to be in the mix, it must have gone to BOJ.

2-73

FT INPUT MESSAGE (Change File Type)

The FT input message allows the operator to ··change the type of a disk file in the disk directory and file
header.

The format of the FT message is:

Ff file-identifier file-type

By using the FT message the file type is the only change made to the file; the format of the file remains
the same.

A CONTROL type file is a pseudo file or control deck.

A CODE file is the only type of file that an EXECUTE, MODIFY, COMPILE, or DYNAMIC statement
may be vaiid as an operation.

The LT message will list the file types.

2-74

GO INPUT MESSAGE (Resume Stopped Program)

The GO input message is used by the system operator to request resumption of a program that has been
stopped (ST message).

The format for the GO message is:

mix-index GO

A program retains its assigned mix-index number when STOPped and rolled-out to disk. The MCP uses
this mix-index number in the GO message to identify the program for resumption.

2-75

HS INPUT MESSAGE (Hold in Waiting Schedule)

The HS input message will allow the system operator to place a HOLD on a specificjob(s), thereby
temporarily removing them from the ACTIVE SCHEDULE.

The format of the HS message is:

HS { job-n~mber}

The equal sign (=) option will place all jobs in the ACTIVE SCHEDULE into the WAITING SCHEDULE.

A job-number is assigned when a program is scheduled by the MCP.

A job that has been piaced in the WAITING SCHEDULE by a HS message will remain in the WAITING
SCHEDULE until FS-ed.

2-76

HW INPUT MESSAGE (Hold in Waiting Schedule until Job EOJ)

The HW input message allows the system operator to designate that certain jobs are to be placed in the
WAITING SCHEDULE, awaiting the EOJ of another job (by job-number).

The format of the HW message is:

HW
{ job-n~mber-1 }

job-number-2

The equal sign (=) option will place all jobs in the ACTIVE SCHEDULE into the WAITING SCHEDULE,
and mark them as waiting for the completion of job-number-2.

A job that has been placed in the WAITING SCHEDULE by a HW message will remain in the WAITING
SCHEDULE until job-number-2 reaches EOJ or until FS-ed by the operator.

2-77

IL INPUT MESSAGE (Ignore Label)

The IL input message allows the system operator to ignore the label on the file mounted on the designated
unit.

The format of the IL message is:

mix-index IL unit-mnemonic

The mix-index must be used to identify the program. In a multiprogramming environment there may be
more than one "NO FILE" condition at a time.

The IL message may be used in response to the following messages:

NO FILE ...

DUPLICATE INPUT FILE ...

file-identifier NOT IN DISK DIRECTORY

It is assumed that the system operator knows that the file on the unit selected is the file needed regardless
of the original file-identifier's location. If the unit-mnemonic specifies a disk drive, the directory on that
drive will be searched for the required file-identifier.

NOTE

A RESTRICTED disk cannot be assigned to a program with
the IL message. The program must have the correct dp-id
prior to the opening of the file.

2-78

KA INPUT MESSAGE (Disk Analyzer)

The KA input message provides the system operator the means to analyze a disk directory's contents and
the file area assignments.

The format for the KA message is:

/=/=

DSKAVL

KA [disk-pack-identifier] family-name/file-identifier >
1

file-identifier 1

I, family-name/=

The KA message prints a list of the disk areas available to be used, followed by a description of each file
in the directory.

When the file-identifier is used with the KA, only the information concerning that file is printed.

The DSKA VL will list the available areas on the disk.

The=/= option lists all files and disk available space.

The dp-id option is used to obtain a disk directory on a removable disk pack.

Examples:

KA

KA DSKAVL

KA dp-id

KA file-identifier

2-79

~ I ~p I
jKC
t KP INPUT MESSAGE (Print Disk Seg.rnents)

The KC or KP message provides a means for the system operator to print selected disk files or segments of
a disk on the line printer.

The format of the KC or KP message is:

} } ! file-identifier

) ~ {DI~K integer-.1 }
~ umt-mnemomc

~
@integer-2@)

[integer-3]

The printout created by the KP message is in HEXADECIMAL format.

The printout created by the KC message is in CHARACTER format.

The file-identifier option will print a file by that name. The DISK option is used for the Head-per-Track
disk. Integer-I is required with head-per-track disk and designates the electronics unit.

Integer-2 is used to specify the disk address from which printing is to begin, and must be entered in
hexadecimal format.

Integer-3 is used to specify the number of segments to print beginning either from the first segment of a
fiie or the address specified by integer-2. lf omitted_, number of segments printed is one.

Examples:

KP A/B l 0 Print 10 segments of file A/B

KP A/B Print 1 segment of file A/B

KP CCC/Xi Print 1 segment of file A on pack CCC

KP DPA@ SC@- 15. Print 15 segments from HEX LOC. SC

KP DISK 1 @ 200 @ 10 Print 10 segments on EU 1 from HEX LOC 200

2-80

LC INPUT MESSAGE (Load Cassette

The LC message is used to load system programs (compilers, interpreters, object code, system software)
from a cassette in the console cassette reader to disk with appropriate additions in the disk directory.

The format of the LC message is:

LC [disk-pack-identifier]
} fam~ly-name/file-identifier}
) family-name/=

l =/=

The LC message cannot be used to load a freestanding program that does not execute under the control
of the MCP.

The LC message calls the program SYSTEM/LOADCAS which loads the files.

2-81

LD INPUT M_ESSAGE (Pseudo Load)

The LD input message is used by the system operator to initiate the building of pseudo card deck(s) on disk
to be processed by pseudo readers.

The LD message format is:

LD

After receiving a LD message, the program, SYSTEM/LDCONTRL, looks for a"? DATA CTLDCK" control
statement that initiates the read.

The card deck's "file-id" is assigned by a "?DATA file-id" control statement preceding the data deck to be
read. Each data deck that is loaded will be numbered consecutively along with its file-id which is used in
opening the pseudo card files.

Terminating the LD function requires a "? END CTLDCK" control statement immediately following the
last data deck that is to be read.

Example:

The following example demonstrates how two compile decks and one data deck can be loaded as
pseudo card files to be used by pseudo readers.

? DATACTLDCK

r ? COMPILE program-name COBOL SYNTAX
CONTROL DECK ? DATA CARDS

DECK A
data deck

? END

I ~ COMPILE program-name FORTRAN

DATA CARDS

DECK

l ?

data deck
B

END

? DAT A file-id

DECK data deck
c

? END

? ENDCTL

2-82

{
LG
LN INPUT MESSAGE (Transfer and Print Log)

fLGl
~

The LG, LN input message allows the system operator to transfer and print the log. The log files are
numbered sequentially starting with LOG/#00000001. The program SYSTEM/LOGOUT is executed
performing the necessary file equate to print the log. The program SYSTEM/LOGOUT must be in the
disk directory in order for the MCP to accept the message.

The format of the LG, LN message is:

2-83

LT INPUT MESSAGE (List File Types)

The LT input message will list the valid file types able to be changed by the FT message.

LT

J

2-84

MP INPUT MESSAGE (List MPG Tables)

The MP input message gives the operator the ability to interrogate the MCP's multi-pack file table which
contains all multi-pack files that have been entered in the table since the last Clear/Start or RT message.

The format of the MP message is:

MP

2-85

I

The MR input message gives the system operator the ability in a duplicate file situation to save the old file
by purging the newly created file.

The format of the MR message is:

mix-index MR

L~~~~~~~~~~~~~~--~-

MX INPUT MESSAGE (Display MIX)

The MX input message allows a system operator to request that the MCP display on the console printer all
the programs currently in the MIX.

The format of the MX message is:

MX

The MX response lists the priority numbers, program-names and the MIX numbers of all programs currently
running.

Example:

MX

program-name = 1 PR:04

program-name = 2 PR:OS ·

END MX

2-87

OF INPUT MESSAGE (Option~ 1 File Response)

The OF input message is used in response to the NO FILE message. It informs the MCP that the specified
file is optional and can be bypassed.

The format of the OF message is:

mix-index OF

The OF message indicates that the file being requested is to be bypassed for this execution. Usage is
restricted for input files that have been declared or label-equated (FILE control word) as OPTIONAL.

2-88

OK INPUT MESSAGE (Continue Processing)

The OK message is used by the system operator to direct the MCP to attempt to continue processing a
program marked as WAITING.

The format of the OK message is:

mix-index OK

The OK message should only be given after the necessary action has been taken to correct the problem that
caused the program to be placed in WAITING status.

Examples:

job-specifier DUPLICATE INPUT FILES .. .

job-specifier DUPLICATE FILE ON DISK .. .

job-specifier NO DISK ...

job-specifier NO MEMORY ...

job-specifier FILE file-identifier NOT PRESENT

If the corrective action is not taken before the OK message is entered, the original output message is
repeated.

2-89

r\T T1'.TDTT'T' l...f"C'C'C' A ~"C'
'-'.LI .l.l 'l.l U .l .lY.l.Li>J>J.rl.'-.J.1...J

The OL input message allows the system operator to interrogate the status of the system's peripheral units.

The format of the OL message is:

OL { unit-mnemonic }

unit-type-code

The unit-mnemonic option displays the status of a specific unit.

The unit-type-code option displays the status of all peripherals of the same type.

The following responses are generated:

unit-mnemonic IN USE BY program-name file name

unit-mnemonic LABELED file-name

unit-mnemonic NOT READY

unit-mnemonic UNLABELED

Any invalid type unit used in the OL message will cause the MCP to display the following message.

NULL unit-type-code TABLE

2-90

OU INPUT MESSAGE (Specify Output Device)

The OU input message is a response to direct an output file to a specified output device.

The format of the OU message is:

mix-index OU unit-mnemonic

Example:

4 OU DPC

The OU is normally used in response to the "PUNCH RQD ... or "PRINTER RQD ... "message to direct
the file to backup.

2-91

PB INPUT MESSA.GE

The PB input message permits the system operator to print and/or punch backup files.

The format of the PB message is:

PB [unit-mnemonic]

integer-I

PRT/=

PCH/=

±:__

[SAVE] [integer-2]

The integer-1 option is the number given to the file by the MCP when the backup was performed and is
used to specify a single file for printing or punching.

The PRT /=and PCH/= options will either print or punch all printer or punch backup files on disk.

The=/= option will both print and/or punch all backup files on disk.

Tne SA VE option wili prohibit the purging of the file(s) at close time.

The integer-2 option is a counter to tell the MCP the number of copies of each file to be printed or
punched for output. If this option is omitted, one (1) is assumed.

The unit-mnemonic option directs the MCP to a specific removable disk drive or magnetic tape unit.

2-92

PD INPUT MESSAGE (Print Directory)

The PD input message allows a system operator to request a list of all files on a disk directory or to
interrogate a disk directory for a specific file(s).

The PD message has two formats:

Format 1

PD

Format 2

PD

{

dp-id/=/= J

-1-- -

file-identifier

family-name/=

dp-id/family-name/=

(removable pack)

(system pack)

The format 1 message will give a complete listing of all files in a disk directory.

The format 2 message will give a partial listing of the files in a disk directory.

The family-name/= format will list all files with the specified family-name.

If the file-identifier is not present in the disk directory the MCP will respond with the message:

file-identifier NOT IN DIRECTORY

Examples:

Does a file named COBOLZ reside on the system pack?

request: PD COBOLZ

response: PD= COBOLZ (affirmative response)

What files reside on the system pack?

request: PD=/=

response: PD = file-identifier- I

PD = file-identifier-2

PD =

2-93

PD
continued

Does a family-name PAYROLL with a file-identifier QUARTERLY reside on a removable pack called
MASTER?

request: PD MASTER/PAYROLL/QUARTERLY

response: PD MASTER/PAYROLL/QUARTERLY

Do the files ALPHA, BETA, CHARLIE, reside on the system pack?

request: PD ALPHA, BET A, CHARLIE

response: PD = ALPHA

PD =BETA

CHARLIE NOT IN DIRECTORY

2-94

PG INPUT MESSAGE (Purge)

The PG message permits the system operator to purge a removable disk cartridge, disk pack, or magnetic
tape.

The format of the PG message is:

PG unit-mnemonic [serial-number]

A disk cartridge/pack that is purged will be marked as UNRESTRICTED with its disk pack-id remaining
unchanged. •

The serial number is required when purging a disk, and must be a six-digit number matching the serial
number of the pack being purged.

Magnetic tape must have a write ring in place in order to be PURGED.

The serial number is not used when purging a tape.

Example:

PG DPA 000456

2-95

PM INPUT MESSAGE (Print Memory)

The PM input message allows a system operator to print the entire contents of memory or single program
dump file.

The format of the PM message is:

PM [integer [SA VE]]

A PM by itself will cause the execution of the MCPI/ANALYZER or MCPII/ANALYZER program which
will analyze and print the contents of SYSTEM/DUMPFILE. (System Memory)

The "integer" option will cause the execution of the DUMP/ANALYZER program which will analyze and
print the contents of DUMPFILE/integer. (Program Memory)

The programs DUMP/ ANALYZER and either MCPI/ ANALYZER (MCPI) or MCPII/ ANALYZER (MCPII)
must be located on systems disk to perform a PM message.

The SAVE option will cause the DUMP/ANALYZER to leave the specified DUMPFILE on disk at EOJ:
without this option, the DUMPFILE will be removed from disk.

2-96

PO INPUT MESSAGE (Power Off)

The PO input message informs the MCP that a removable disk pack or cartridge is to be removed from the
system.

The format of the PO message is:

PO unit-mnemonic

A system pack may not be powered off.

A PO message entered for a unit that is currently being used will cause the MCP to display the following
message:

unit-mnemonic HAS integer USERS

A PO message entered for a unit that is not currently in use will cause the message:

unit mnemonic MAY NOW BE POWERED DOWN

to be displayed.

The PO message may be used on a multi-pack file base pack if there are no single-pack files in use at the
time of the request.

2-97

PR INPUT ~.1ESSA.GE fr'ho::inaP Pr1nr1hr) '....._...£ ... ""' o-,J /

The PR input message allows the system operator to change to priority of a program that is currently in the
MIX.

The format of the PR message is:

mix-index PR [=] integer

See the PRIORITY Control Instruction Attribute for a further explanation of priority.

2-98

PS INPUT MESSAGE (PROD Schedule)

The PS input message gives the system operator the ability to request that the MCP attempt to execute
the "top" entry in the ACTIVE SCHEDULE.

The format of the PS message is:

PS

The normal function of the MCP checks the ACTIVE SCHEDULE at each EOJ or when a program is
scheduled. The PS message will c(fuse the MCP to check the ACTIVE SCHEDULE when the message is
entered.

2-99

PW INPUT MESSAGE (Set Program Working Set - MCP I)

The PW input message is used to set the field PROG.WORKING.SET in the program's Program Parameter
Block to the size in bytes of the memory space needed to hold the program's working set.

The format of the PW message is:

PW program-identifier f blank= (

([=] size-in-bytes }

When the blank= entry is input, the current value of the Program Working Set will be used. When the
size-in-bytes is specified, the Program Working Set will be set to the value indicated.

NOTE

If the Program Working Set is made too large for available memory, the MCP will
ignore the value assigned. If set too small, the program will run inefficiently.

The PW message responds by returning the following message.

PW program-identifier = size-in-bytes

Therefore the Program Working Set may be interrogated for size by entering this message:

PW program-identifier=

Example:

PW A/B = (Test Size)

PW A/B = 5000 (Response)

PW A/B = 4500 (Set Size)

PW A/B = 4500 fR P.~nnn~P.) ,----r -----,,,

2-100

QC INPUT MESSAGE (Quit Controller)

The QC input message allows the system operator to bring the Network Controller to End-of-Job.

The format of the QC message is:

QC

There can be only one Network Controller executing on the system. If any additional Network Controllers
are attempted to be executed the following message will be output:

NETWORK CONTROLLER ALREADY RUNNING DS OR DP

After entering the QC message and all activity in the DATACOM system has stopped, the Network
Controller issues STOP codes to the DATACOM Controls and then goes to End-of-Job.

If a station for any reason is unable to receive its output messages, the Network Controller waits
indefinitely.

With a MCS in the system, the QC message is invalid and its function should be performed within the
MCS.

2-101

QF INPUT MESSAGE (Query File)

The QF input message allows the system operator to interrogate a program on disk for the status of its
control attributes.

The format of the QF message is:

QF program-identifier control-attribute-identifier [...]

Examples:

QF A/B CG

QF A/B FILE BACKUP

2-102

QP INPUT MESSAGE (Query Program)

The QP input message allows the system operator to interrogate a program while running on the system for
the status of its control attributes.

The format of the QP message is:

QP job-number control-attribute-identifier [...]

Examples:

QP 14 PRIORITY

QP 15 CHARGE FREEZE

2-103

rRBl
~

~RB INPUT MESSAGE
tRF

(Remove Backup Fiies)

The RB or RF input message gives the system operator the ability to remove backup files on disk.

The format of the RB,.RF message is:

{ RRFB} [disk-pack-identifier/]

The integer will remove the backup file specified by the integer.

l -;- l integer
PRT/=
PRN/=

, PCH/=

The PRT /= and PCH/= options will remove either all print backup files or all punch backup files
respectively. PRN is equivalent to PRT.

The=/= option will remove E:!!_ backup files from disk.

The unit-mnemonic option specifies that the backup files to be removed are on the designated removable
disk.

2-104

'

RD INPUT MESSAGE (Remove Pseudo Card Fiies)

The RD input message allows the system operator to remove pseudo card files from disk.

The format of the RD message is:

RD } integer i·

l =/=

2-105

RL INPUT MESSAGE (Relabel User Pack)

The RL input message gives the operator the ability to change the disk-pack-id and/or the type of user
pack.

The format of the RL message is:

RL unit-mnemonic disk-pack-id { : }

2-106

RM INPUT MESSAGE (Remove Duplicate Disk File)

The RM input message allows the system operator to remove a disk file from the disk directory in
response to a DUPLICATE FILE ON DISK message.

The format of the RM message is:

mix-index RM

The DUPLICATE FILE message is a result of a program trying to close a disk output file with the same
name as a file already in the directory. This causes the program to go into a wait state. The RM message
will remove the old file, close the new file, enter it in the directory, and continue processing.

Example:

1 RM

2-107

RN INPUT MESSAGE (Assign Pseudo Readers)

The RN message is used by the system operator to assign a specific number of pseudo card readers.

The format of the RN message is:

RN integer

The RN message can be entered either before or after the creation of pseudo files.

It is the responsibility of the operator to determine the optimum number of pseudo readers in relation to
the number of pseudo files to be processed.

By entering RN 0 (zero) all pseudo card readers will be closed as soon as they are finished processing the
file that they are presently reading.

The pseudo card readers may also be closed by performing a Clear /Start.

2-108

RO INPUT MESSAGE (Reset Option)

The RO message allows the system operator to reset the options used to direct or control some of the MCP
functions.

The format of the RO message is:

RO option-name- I [option-name] ...

The MCP replies with a verification that the option has been reset after each RO input message.

Example:

request: RO EOJ

response: EOJ = 0

The LOG and CHRG options cannot be reset. The MCP message LOG LOCKED or CHRG LOCKED will
be displayed when an attempt has been made to reset these options.

The TO message may be entered to determine which options are set at any given time. The option indica
tor equals one when set and zero when reset. A complete list of the MCP options and their status will be
displayed.

2-109

RP INPUT MESSAGE (Ready and Purge)

The RP message entered by the system operator will set a tape unit in "READY" status and "PURGE" the
tape.

The format of the RP message is:

RP unit-mnemonic [unit-mnemonic] ...

The RP message can be used for tape only.

2~ 110

RS INPUT MESSAGE (Remove Jobs from Schedule)

The RS input message will allow the system operator to remove a job from the schedule prior to its being
entered in the MIX for execution.

The format of the RS message is:

[job-number-2] ...)

The RS message can remove one or more jobs from the schedule.

The schedule number is the number assigned to the job by the MCP when it is entered into the schedule.

The job-number will be displayed by the MCP when the job is entered into the schedule if the SCHM
option is set. The WS message will display the jobs in the schedule together with their job-numbers.

The "=" option will remove all jobs from the schedule.

If the requested program(s) are not in the schedule, the MCP will notify the operator that an invalid
request has been entered.

Example:

RS 33 , 34 , 35 , 36

#33 RS-ED
#34 RS-ED
#35 RS-ED

36 NULL SCHEDULE Gob 36 not in schedule)

2-111

RT INPUT MESSAGE (Remove MPF Table)

The RT input message allows the operator to remove an entry from the multi-pack file table on the system
disk.

The format of the RT message is:

RT file-identifier

2-112

RY INPUT MESSAGE (Ready Peripheral)

The RY input message allows the system operator to ready a peripheral unit and make it available to the
MCP.

The format of the RY message is:

RY unit-mnemonic-I [unit-mnemonic-2] ...

Any number of units may be made ready with one RY message.

When a removable disk cartridge or disk pack is placed on a system, the MCP must be notified of its
presence with the RY message.

If the designated unit is not in use and is in the remote status, the RY message causes all exception flags
maintained by the MCP for the specified unit to be reset. After the unit has been made ready, the MCP
attempts to read a file label (input devices only).

Example:

RY DPB
RY DPC
RY LPA

(ready second drive on system)
(ready third drive on system)
(ready line printer on system)

2-113

SD INPUT MESSAGE (Assign Additional System Drives)

The SD input message gives the system operator the ability to assign additional system drives for the MCP.

The format of the SD message is:

SD unit-mnemonic serial-number

The SD message, after verification of the serial-number, will PURGE the pack, and add it to the system
packs already on the system.

At COLDSTART, there is only one system drive, so additional drives may be added by the SD message.
Once a system drive has been added to the system, it cannot be removed without performing a
COLDSTART.

The following message is displayed when the new system drive is linked to the 5ystem.

unit-mnemonic IS NOW A SYSTEM PACK-CLEAR ST ART REQUIRED

2-114

SL INPUT MESSAGE (Set LOG)

The SL input message gives the operator the ability to set the LOG option, and allocate the area required.

The format of the SL message is:

SL integer-I [integer-2]

The integer-I entry is the size of each area to be assigned to the LOG and cannot be less than I 00 or
greater than 1000 disk segments.

The integer-2 entry is optional and is the maximum number of areas desired. It must be between 2 and
105, il}clusive. Default is 25.

The MC? will respond with the following message when an SL message has been entered.

LOG NOW SET-CLEAR START REQUIRED

or

NO SPACE TO BUILD LOG

SL 0 will cause the LOG option to be reset.

2-115

SO INPUT MESSAGE (Set Option)

The SO input message allows the system operator to set the options used to direct or control some of the
MCP functions.

The format of the SO message is:

SO option-name- I [option-name-2] ...

The MCP replies with a verification that the option has been set after each SO input message.

The LOG option cannot be set with an SO message. The MCP message "LOG LOCKED" will be displayed
when an attempt has been made to set LOG with an SO message.

The TO input message may be entered to determine which options are set at any given time. The option
indicator equals one when set and zero when reset A complete list of the MCP options and their stntus
will be displayed.

2-116

SP INPUT MESSAGE (Change Schedule Priority)

The SP input message provides a means for the system operator to change the schedule priority of a pro
gram currently in the schedule.

The fonnat of the SP message is:

SP job-number integer

The Schedule Priority is separate from the priority of the job when it is in the mix.

The job-number will identify the program in the schedule that is to be affected by the SP message.

The integer in the SP message specifies the new priority that will be assigned to the program. Priorities
may range from zero through 14, where zero is the lowest priority and 14 is the highest priority.

To change the priority of a program in the schedule with a job-number of 33 to a priority of 7, the follow
ing SP message would be used.

SP 33 7

This program would be selected from the schedule ahead of the other programs with a lower priority.

The following message would be displayed in response to the above input message:

program-name 33 PR = 07

2-117

ST INPUT MESSAGE (Suspend Processing)

The ST input message provides a means for the system operator to temporarily suspend the processing of a
program in the MIX.

The format of the ST messgae is:

mix-index ST

The mix-index identifies the program to be suspended.

The MCP will not suspend the program until all I/O operations in progress for that program have been
completed.

When the MCP suspends a program, it is rolled-out to disk and the memory it was using is returned to the

A suspended program will retain the mix-index and peripherals assigned to it; the MCP will use this to
identify the program when referenced by another keyboard input message.

To restart a program after it has been suspended, the GO message must be used. If for some reason all of the
conditions necessary for the program to run are not met when the GO message is issued, the MCP will not
restart the program_

Exarnple.

3 ST

2-118

SV INPUT MESSAGE (Save Peripheral Units)

The SV message allows the system operator to make a peripheral unit inaccessible to the MCP until a Clear
Start operation occurs, or an RY input message is used to ready the unit.

The format of the SV message is:

SV unit-mnemonic [unit-mnemonic] ...

Any number of peripheral units may be saved with one SV input message.

When the SV message is entered and the unit is not in use, the specified unit is marked SAVED and "unit
mnemonic SAVED" is displayed by the MCP.

If the unit is in use, the MCP will respond with "unit-mnemonic TO BE SAVED" and will save the unit as
soon as it is no longer being used.

Example:

SV LPA

2-119

SW INPUT MESSAGE (Set Switch)

The SW input message allows the system operator to set programmatic switches.

The format of the SW message is:

mix-index SW switch-identifier-number [=] value

Programmatic switches may also be set at schedule time by using the SWITCH control statement
attribute. Refer to Section 2, SWITCH control attribute.

The switch-identifier-number must be a decimal digit from zero to nine (0-9) that references the switch
or switches to be set. To determine what switches are available, the specific language manual for the
program for which the switches are being set must be referenced.

The \'"l'ue ~S +1"o \'alue th"+ +1"e '"'"'~+,...i.. " ~+,...i~"'" .. ,~11 h"' """~"'"~~.-:1 .1 U. .!. L.lJ.\..I -' - Hl.L Lii c~VVll.l..Jll \JI :,vv1~l,.1lll._,~ V¥!!.~ 1_1.::__., Q~;:"!!:::,!!C°•U;

Example:

5 SWl = @4F@ SW8 = 6

2-120

TD INPUT MESSAGE (Time and Date)

The TD input message allows the system operator to request that the MCP type the current values of the
time and date.

The format of the TD message is:

The MCP displays the date and time in the following format:

DATE = mm/dd/yy TIME = hh:mm:ss.t

Where:

hh - hours
mm - minutes

ss - seconds
t - tenths of seconds

2-121

The TI input message allows the system operator to interrogate the MCP as to the amount of processor time
the program has used up to the time the interrogation was made.

The format of the TI message is:

mix-index TI J
.._____ ____ _

The mix-index identifies the program for which the interrogation was requested.

The time is given in hours, minutes, seconds, and tenths of seconds.

Example:

4TI

COBOL: A/B = 4 CPU TIME = 00:03:15.7

2-122

TL INPUT MESSAGE (Transfer LOG)

The TL input message allows the system operator to· transfer the information in the SYSTEM/LOG to
LOG/ #integer. To print the LOG refer to the LG input message.

The format of the TL message is:

TL

2-123

The TO input message allows the system operator to interrogate the status of the MCP options.

The format of the TO message is:

TO [option-name] ...

The TO message entered by itself will display all of the options and their settings.

A value of zero (0) indicates a reset (off) condition; a value of one (1) indicates a set (on) condition.

Example:

TO LOG

LOG= 1

or:

TO

BOJ = 0 DATE = 1 ... (lists all options)

2-124

TR INPUT MESSAGE (Time Change)

The TR message allows the system operator to change the current value of the time maintained by the MCP.

The format of the TR message is:

TR integer

The time specified by the integer is designated according to a 24-hour clock, and must be four digits in
length.

This message is not accepted by the MCP if the value of the integer is greater than 2400 hours.

Example:

Set the time in the MCP to 7: 19 P.M.

TR 1919

2-125

TS INPUT MESSAGE (Test Switches)

The TS input message allows the system operator to test the programmatic switches set by the SW
console message or the SWITCH control statement attribute.

The format of the TS message is:

mix-index TS

The output of the TS message is in hexadecimal format.

Example:

4TS

2-126

UL INPUT MESSAGE (Assign Unlabeled File)

The UL m~ssage allows the system operator to designate the unit on which a particular unlabeled input file
is located in response to a "FILE NOT PRESENT" message from the MCP.

The format of the UL message is:

mix-index UL unit-mnemonic [integer]

The UL message is used only if the unit designated is to be acted on as an unlabeled file. The MCP assumes
the file on the designated unit is the file requested by the program that caused the "FILE NOT PRESENT"
message.

Tne mix-index must be used to identify the program to which the file is to be assigned.

If integer is used, the MCP spaces forward "integer" blocks prior to reading the first data block into the
object program. Tape marks are read as blocks. This is done at the time the file OPEN is performed.

Example:

A program with a mix-index of 1 calling for an unlabeled input tape file could be assigned a tape on
a unit with the unit-mnemonic of MT A with the following UL message:

1 ULMTA

If the first three blocks on the tape are not desired, they can be skipped with the following UL
message:

I ULMTA 3

2-127

WD INPUT MESSAGE (Display MCP Date)

The WD iJ1put message permits the system operator to request the current date used by the MCP.

The format of the WD message is:

WD

2-128

WM INPUT MESSAGE (Display Current MCP and Interpreter)

The WM input message allows the system operator to inquire which MCP and Interpreter are currently being
used since there can be more than one MCP and Interpreter residing on the system pack.

The format of the WM message is:

WM

The reply to the WM message is in the following format:

MCP = mcp-name INTERP = interpreter-name GISMO = gismo-name INIT = initializer-name

2-129

WS INPUT MESS.A.GE

The WS input message allows the system operator to interrogate what program or programs are currently in
the schedule and their status.

The format of the WS message is:

The job-number is assigned by the MCP as the program is entered into the schedule.

The MCP response to the WS message gives the program-name, schedule number, memory required in KB's,
program priority, and the length of time the program has been in the schedule.

Example:

WS 4

ALPHA = 4 NEEDS 8 KB PR = 4 IN FOR 00:08 :3 7.4

2-130

WT INPUT MESSAGE (Display MCP Time)

The WT input message permits the system operator to request the current time used by the MCP. The
reply is in the twenty-four hour clock format.

The format of the WT message is:

WT

2-131

The WW input message gives the operator the ability to list the different types of system software/
firmware in the NAME TABLE.

The format of the VvW message is:

WW

See the Clear/Start procedure for an explanation of the system software-mnemonics used m the
NAME TABLE.

2-132

WY INPUT MESSAGE (Program Status Interrogation)

The WY message allows the system operator to check the current status of one program or all the
programs in the MIX.

The format of the WY message is:

[mix-index] WY

The mix-index identifies the program in the MIX that is to be checked and its status displayed on the
console printer. If the mix-index is omitted the MCP will display the program status of the entire MIX.

The MCP response to the WY message is:

program-name = mix-index ... status message ...

Example:

1 WY

ALPHA = 01 WAITING OPERATOR ACTION

WY

ALPHA = 01 WAITING OPERATOR ACTION

BETA = 02 EXECUTING

DELTA = 03 AX-WAITING FOR KEYBOARD INPUT

ECHO = 04 IN COMMUNICATE QUEUE

2-133

XC INPUT MESSAGE (Remove Disk Segments-Temporarily)

The XC input message allows the temporary removal of contiguous disk segments from the Working
Available Table.

The format of the XC message is:

XC Characteristics

XC { ~~= } @beginning-segment-address@ number-of-segments

DISKn

x - used with the DC (Disk Cartridge) and the DP (Disk Pack) and must be an alphabet character that
references the DP or DC in the operation.

n - used with the DISK (Head-per-track) and must be a decimal integer less than 16 referencing the DISK
EU in the operation.

@beginning-segment-address@ - is the beginning disk segment address of those segments to be removed
expressed in hexadecimal format.

number-of-segments - is the number of contiguous segments to be removed.

Restrictions

The disk segments to be removed must be in the Working Available Table. Therefore, when the :iffected
tracks contain files or other information~ the tracks or segments must be made available before the MCP
will accept the XC message. The following message will be output in this situation:--

REQUESTED SEGMENTS NOT ENTIRELY AVAILABLE

A fiie residing on a Disk Cartridge may be contained on segments prior to the beginning address. It must
also be made available before the XC message will be valid.

The removed disk segments will not be made available for use until the next Clear/Start.

If the segments am to be disabled pennanen.Uy refer to the XD message.

2--134

XD INPUT MESSAGE (Remove Disk Segments-Permanently)

The XD input message allows the permanent removal of contiguous disk segments from the Working
Available Table and the Master Available Table.

The form'!t of the XD message is:

@beginning-segment-address@ number-of-segments

XD Characteristics

~ - used with the DC (Disk Cartridge) and the DP (Disk Pack) and must be an alphabet character that
references the DC or DP in the operation.

11 - used with the DISK (Head-per-track) and must be a decimal integer less than 16 referencing the DISK
in the operation.

@beginning-segment-address@ - is the beginning disk segment address of those segments to be removed
expressed in hexadecimal format.

number-of-segments- is the number of contiguous segments to be removed.

The XD message removes the segments from both the Working Available Table and the Master Available
Table. The removed segments are not placed in the Temporary Available Table.

The removed segments or tracks cannot be recovered without a disk reinitialization, and the data contained
on those removed segments cannot be accessed and must be considered lost.

2-135

MCP OUTPUT MESSAGES

General

The MCP communicates to the system operator via the console printer. Messages can either be originated
by the MCP for information and possible operator action, or they can originate from an executing pro
gram. In either case, the MCP has complete control over all messages.

All output messages are indented one space by the MCP, in order for the operator to easily distinguish
them from input messages.

Numbers enclosed in at signs(@) indicate hexadecimal; all others are decimal.

Syntax

The paragraphs below outline the syntax used in defining the MCP messages in this section.

Classification: MCP messages are listed in alphabetical order using the first word of the actual
message as the key. The job-specifier portion and any "optional" type entries are not
considered part of the key.

Job-Specifier: Job-Specifier is simply used to identify the job for which that message is intended.
The format of the job-specifier is:

[compiler-name:] program-name= mix-index ...

The compiler-name portion is only printed when the executing program is a compilation.

Terminal-reference: The phrase "terminal-reference" following any message indicates that a
termination message will be printed. Any time this message is printed, the program must
be DS-ED or DP-ED, except when the TERM option is set causing the program to be
terminated automatically.

or

The format of the terminal-reference message is:

P = nn, S = nn, D = nn
(@-@,@-@,@-@)DSorDP

S = nn, D = nn
(@-@, @-@) DS or DP

NOTE

There are situations usually occurring when memory is approaching
saturation that the program-identifiers will be omitted from console
messages and referenced only by their mix-index number. Tris is done
to conserve memory. For example, the following message:

3 NO MEMORY

might be used instead of

A/B/C = 3 NO MEMORY

MCP Messages

job-specifier-ABORTED

job-specifier-ACCEPT

job-specifier-ACCESS PPB TARGET OUT OF RANGE terminal-reference

2-136

ATTEMPTED TO WRITE OUT OF BOUNDS

unit-mnemonic ASSIGNED TO SYSTEM USE

unit-mnemonic AVAILABLE AS OUTPUT

BACKUP FILE nnnnnn NOT REMOVED-NOT ON DISK

BACKUP TAPE NOT FOUND-"RY" unit-mnemonic

BATCH COUNT COMMUNICATE ISSUED WHILE SORTER FLOWING terminal-reference

job-specifier-BEGINNING DATA OVERLAY ADDRESS= nnnn, WHILE BR= nnnn
terminal-reference

{
BOJ. }

job-specifier- EOJ. =job-number PR= nn [integer SYNTAX ERRORS] TIME = hh:mm:ss.
DS-ED.

job-specifier-CANNOT ACCEPT "[IL'UL'OF'FR'FM'OU'OK'RM'MR] "MESSAGE

CANNOT ACCEPT DATA STATEMENT FROM THE SPO

unit-mnemonic CANNOT BE OPENED OUTPUT FOR file-identifier

CANNOT CHANGE PACK-ID OR FAMILY NAMES WITH EQUALS ... id's ...

CANNOT FIND UNIT REQUESTED FOR FN

CANNOT READ LABEL ON unit-mnemonic

CANNOT READ THE LABEL ON unit-mnemonic

CANNOT REMOVE PACK.ID OR FAMILY NAMES WITH = -S file-identifier

CANNOT SA VE THIS DEVICE unit-mnemonic

file-identifier CHANGED TO new-file-identifier

CHAR OR BIT STRING IS INCOMPLETE input message

CLEAR/STARTBl 700 MCPII MARK nnn.nn mm/dd/yy hh:mm

***CLEAR/START REQUIRED

CLEAR/START REQUIRED-SYSTEM/PRINTCHAIN MISSING

COMPILE program-name CTRL RCD ERR:

job-specifier-CONTROL STACK OVERFLOW terminal-reference

job-specifier-"CONVERT" ERROR terminal-reference

COULD NOT CHANGE THE MCP

job-specifier-CPU TIME= hh:mm:ss.t

CURRENT MCP IS identifier USING interpreter-id

job-specifier-DATA OVERLAY RELATIVE DISK ADDRESS= nnnn, WHILE SIZE OF
AREA = nnnn terminal-reference

2-137

DECK nnnn = 50 CHAR

DECK nnnn IN USE BY program-name

**DECK NUMBER nnnn NOT ON DISK

DEFAULT CHARGE NO.= nnnnnn

DISK ERROR ON OVL y {READ } FROM {DISK ADDRESS@nn.nn_® .. _ }
WRITE . MEMORY ADDRESS@nnnn@

job-specifier-DISK FILE DECLARED SIZE EXCEEDED ON file-identifier terminal-reference

job-s.pecifier-unit-mnemonic DISK PARITY @nnnn@

job-specifier-nnnnDISK SEGMENTS REQUIRED FOR AREA OF file-identifier

job-specifier-DIVIDE BY ZERO terminal-reference

**DR PLEASE

job-specifier-DUPLICATE INPUT FILES file-identifier

END BF

ENDMX

END PD

job-specifier-ENDING DATA OVERLAY ADDRESS= nnnn, WHILE BR= nnnn
terminal-reference

"="NOT PERMITIED IN FILE NAME FOLLOWING "FN"

unit-mnemonic ERROR/pack-id IS [RESTRICTED or INTERCHANGE] PACK

unit-mnemonic ERROR unit-id

job-specifier-EVALUATION OR PROGRAM PTR STACK OVERFLOW terminal-reference

EXECUTE program-name CTRL RCD ERR: ...

job-specifier-EXPONENT OVERFLOW terminal-reference

job-specifier-EXPONENT UNDERFLOW terminal-reference

job-specifier-EXPRESSION OUT OF RANGE tenninal-reference

~
RELEASE
PURGE

job-specifier j OUTPUT { FILE file-identifier CLOSED NO REWIND I INPUT REMOVE
CRUNCH

- {INPUT/OUTPUT j !iggi l
CONDITIONAL
ROLLO UT
TERMINATE

2-138

job-specifier-FILE internal-file-identifier LABELED ... REEL nnnnnn NOT PRESENT

job-specifier-FILE internal-file-identifier NEEDS nnnn BITS TO OPEN, WHICH I COULDN'T
FIND-"OK" WILL TRY AGAIN, ELSE "DS"

file name "file-identifier" REQUESTED BY "FN" NOT FOUND

FN = "internal-file-identifier"

FREE UP SOME DISK AND CLEAR/START

GOOD MORNING, TODAY IS name-<>f-day, hh:mm:ss.t {~:} JLN DT = yy/ddd

unit-mnemonic HAS nnnn USERS

unit-mnemonic HAS BEEN PURGED

job-specifier-unit-mnemonic HOPPER EMPTY

INVALID BIT CHARACTER- ...

INVALID BIT SPECIFIER- ...

INVALID CHAR COL nn

INVALID CHARACTER ...

INVALID CHANGE-PACK-IDS DO NOT AGREE

job-specifier-INVALID CASE terminal-reference

job-specifier-INVALID COMMUNICATE IN USE ROUTINE terminal-reference

unit-mnemonic INVALID CONTROL CARD

INVALID DECK NUMBER ...

INVALID ED MESSAGE DECK NUMBER

job-specifier-INVALID index terminal-reference

INVALID JOB NUMBER

INVALID MC-CHARGE OPTION ALREADY SET

INVALID MIX NUMBER

INV AUD MNEMONIC ...

job-specifier-INVALID LINK terminal-reference

job-specifier-INVALID OPERATOR terminal-reference

INVALID PACK.ID OR TAPE MNEMONIC FOR PB ...

job-specifier-INVALID PARAM TO VALUE DESC terminal-reference

2-139

job-specifier-INVALID PARAMETER terminal-reference

INVALID PG

job-specifier-INVALID RETURN terminal-reference

INVALID SD-SERIAL NUMBER REQUIRED

INVALID SERIAL NUMBER

INVALID SL-LOG ALREADY SET

job-specifier-INVALID SUBSCRIPT terminal-reference

job-specifier-INVALID SUBSTRING terminal-reference

INVALID SYNTAX for {~::~~i} COMMA IS REQUIRED FOR MORE THAN ONE { ~~~~i~}

unit-mnemonic INVALID TYPE CODE ...

INVALID unit-mnemonic

INVALID UNIT MNEMONIC FOR FN, MUST BEGIN WITH ALPHA

"IL" REQUIRES A PARAMETER

file-identifier IN USE

job-specifier-INSUFFICIENT MEMORY TO OPEN file-identifier

job-specifier IS EXECUTING

pack-id IS ALREADY A SYSTEM DRIVE

pack-id IS A NONREMOVABLE SYSTEM PACK OR IS ALREADY OFF LINE

pack-id IS AN INTERCHANGE PACK

unit-mnemonic IS NOT A USER PACK

pack-id IS NOT INITIALIZED

j RESTRICTED {

f, INTERCHANGE j

job-specifier IS SUSPENDED

PACK

job-specifier-INTEGER OVERFLOW terminal-info

INTRINSIC "intrinsic-name" REQUESTED BY program-name =job-number IS NOT IN
DIRECTORY - FS or RS.

INV OPTION option-name

unit-mnemonic LABELED REEL nnnnnn

2-140

unit-mnemonic LABELED [S,R,U, or I] SERIAL NO= nnnnnn

unit-mnemonic
{

LABELED ... }
UNLABELED

IN USE BY job-specifier ...

file-identifier LOAD TERMINATED-DISK ESTIMATE ERROR

file-identifier LOADED

unit-mnemonic LOCK OUT

job-specifier LOCKED DISK FILE file-identifier

option-name LOCKED

unit-mnemonic LOCKED

LOG NOW SET-CLEAR/START REQUIRED

LOG OPTION NOT SET

LOG TRANSFER COMPLETE

pack-id MAY NOW BE POWERED DOWN

unit-mnemonic MEMORY ACCESS ERROR WAIT TILL UNIT IS RESET AND TRY AGAIN

job-specifier-unit-mnemonic MEMORY PARITY

MISSING PARENTHESIS ...

unit-mnemonic MISSING PACK-ID

MCP RAN OUT OF WORK SPACE WHILE LOOKING FOR interpreter-id WANTED BY
program-name =job-number

MODIFY program-name CTRL RCD ERR: ...

NO SEGMENT DICTIONARY SPACE for program-name =job-number

job-specifier-NO SPACE AVAILABLE FOR [CODE or DATA] [PAGE nnnn] SEGMENT
nnnn

NO SPACE AVAILABLE FOR interpreter-name SOUGHT BY program-name =job-number

NO SPACE FOR program-name =job-number

NO SPACE IN INTERPRETER DICTIONARY FOR interpreter-name SOUGHT BY
program-name =job-number

**NO SYSTEM DISK FOR PSR DIRECTORY

**NO USER MEMORY FOR CD

2-141

file-identifier NOT A BACKUP FILE-REQUEST IGNORED

pack-id NOW A SYSTEM DRIVE-CLEAR/START REQUIRED

unit-mnemonic NOT AVAILABLE

NOT A DISK PACK-CANNOT RL

NOT A QUOTE-MARK ...

file-identifier NOT CHANGED-

NOT ENOUGH MEMORY FOR CM

" <FILE-NAME) /=" NOT ALLOWED
BLACK OR ZERO FIRST NAME
file-identifier ALREADY ON DISK
NOT ON DISK
IN USE
RESTRICTED FILE

job-specifier-NAME OR VALUE STACK OVERFLOW terminal-reference

job-specifier-NEEDS AN AX REPLY

program-name job-number NEEDS nnnnnnKB PR= nn hh:mm:ss.s

job-specifier-NO DISK AVAILABLE FOR DUMP

NO DISK SPACE TO BUILD LOG

job-specifier-NO MEMORY AVAILABLE FOR DUMP

NO MEMORY FOR KA

**NO MEMORY FOR PSEUDO READER

**NO MEMORY FOR PSR DATA DIRECTORY (PSR = Pseudo Reader)

NO OVL Y DISK A VL FOR program-name =job-number AMT RQD: nnnn
SEGMENTS-RS-ED

NO PRINTER AVAILABLE

NO PRINTER AVAILABLE FOR KP

NO PROGRAMS RUNNING

job-specifier-NO PROVISION FOR I/O ERROR ON file-identifier tenninal-reference

job-specifier-NO PROVISION FOR END OF FILE ON file-identifier terminal-reference

NO PSEUDO DECKS ON DISKS

job-specifier-NO ROOM TO OPEN FILE file-identifier

file-identifier NOT IN DIRECTORY

2-142

file-identifier NOT IN DISK DIRECTORY

"=" NOT PERMITTED IN PROGRAM NAME FOLLOWING "FN"

file-identifier NOT LOADED-IN USE BY SYSTEM

file-identifier NOT {
LOCKED }
REMOVED

INVALID PACK-ID pack-id

file-identifier NOT ON DISK

pack-id NOT ON LINE

unit-mnemonic NOT READY

NULL SCHEDULE

NULL ... TABLE

NUMBER OF PSEUDO READERS CHANGED TO nnnnnn

unit-mnemonic OFF LINE

OUT OF MEMORY SPACE

job-specifier-OUTPUT UNIT NOT AVAILABLE FOR BACKUP

{
PARITY ERROR}

job-specifier-unit-mnemonic
ACCESS ERROR

- NO RECOVERY

PM CANNOT FIND DUMPFILE/integer FOR DUMP/ANALYZER

job-specifier-POCKET LIGHT COMMUNICATE REQUESTED WHILE SORTER
FLOWING terminal-reference

job-specifier-PRIORITY CHANGED TO new-priority-number

job-specifier-unit-mnemonic PRINT CHECK

PRINTER NOT READY

job-specifier-PROGRAM ABORTED terminal-reference

job-specifier-PROGRAM IS NOT WAITING SPO INPUT-AX IGNORED

PSEUDO/nnnnnn NOT ON DISK

PSEUDO/nnnnnn NOT REMOVED-INUSE

job-specifier-unit-mnemonic PUNCH CHECK

2-143

unit-mnemonic = ! PURGED LABEL

file-identifier [REEL

\ lJNLABELED

unit-mnemonic READ CHECK

nnnnnn]l
J

job-specifier-READ OUT OF BOUNDS terminal-reference

job-specifier-REQUESTED A { CODE } SEGMENT OF LENGTH ZERO terminal-reference
DATA

job-specifier-REQUESTED A CORE SPACE NOT EQUAL TO THE SIZE I JUST COMPUTED
AS HIS REQUIREMENT-RS-ED MY SIZE= nnnn HIS SIZE= nnnn

job-specifier-READ REQUESTED ON OUTPUT FILE file-identifier terminal-reference

program-name REQUESTED BY "FN" NOT IN DIRECTORY

program-name REQUESTED

(READ)

t:~~:E j ON CLOSED FILE

{~g} REQUIRES THREE OR FOUR CHARACTERS

device-mnemonic REQUIRED FOR REEL nnnnnn file-identifier

message REQUIRES MIX NO.

job-number RS-ED

unit-mnemonic REWINDING

unit-mnemonic {
SAVED }
.TO BE SAVED

SD REQUIRES NULL MIX

SCHEDULED: program-name =Job-number PR= nn hh:mm:ss.s

job-specifier-SEEK REQUESTED ON SERIAL FlLE file-identifier terminal-reference

nnnn SEGS REQ FOR SYSTEM DUMP FILE

SERIAL NUMBER REQUIRED

SPACE REQUIRED BEFORE " or @ ...

2-144

job-specifier-ST ACK OVERFLOW terminal-reference

job-specifier-SUPERFLUOUS EXIT terminal-reference

SYSTEM/LOGOUT NOT IN DIRECTORY

job-specifier-TANK OVERFLOW terminal-reference

3 DISK SEGMENTS NEEDED FOR SYSTEM/PRINTCHAIN

THERE ARE NO ENTRIES IN LOG ... NO TRANSFERS OCCURRED

THERE ARE NO RELEVANT BACKUP FILES-PB IGNORED

***THERE IS NO BACKUP PRINT OR PUNCH FILE WITH NUMBER nnnnnn [ON PACK-ID]

job-specifier-unit-mnemonic TIMEOUT @nnnnnn@

TOKEN TOO LONG-REQUEST IGNORED

job-specifier-TOO LONG IN USE ROUTINE

TOO MANY"=" IN NAME ... TRY AGAIN

TOO MANY "/"-SIN NAME ... TRY AGAIN

job-specifier-TRIED TO INITIALIZE A GLOBAL BLOCK LARGER THAN ENTIRE
STATIC SPACE REQUESTED STATIC= nnnn GLOBAL= nnnn -RS-ED

job-specifier-TRIED TO "program-name" WHICH IS NOT RUNNING
{

SEND TO }
RECEIVE FROM

**TR PLEASE

job-specifier-UNDEFINED RUN TIME ERROR terminal-reference

job-specifier-UNEXPECTED POCKET SELECT terminal-reference

job-specifier-UNINITIALIZED DATA ITEM terminal-reference

unit-mnemonic UNIT PURGED

job-specifier-unit-mnemonic
~NOTREADY}

JAM

lMISSORT

UNIT-MNEMONIC MUST START WITH ALPHA

unit-mnemonic UNLABELED

pack-id WRITE-LOCKOUT

job-specifier-WRITE REQUESTED ON INPUT FILE file-identifier tenninal-reference

job-specifier ZIPPED AN INVALID CONTROL CARD

2-145

DISK CARTRIDGE INITIALIZER

General

SECTION 3
SYSTEM SOFTWARE

A disk cartridge must be initialized before it can be used on the system. The purpose of disk initialization
is threefold. One, it assigns addresses to all segments on the disk. Two, it checks to see what segments, if
any, are unusable (cannot be read from or written to). Any segment found to have errors will cause the
entire track in which it resides to be removed from the MASTER AVAILABLE TABLE. If any flaws occur
in track ZERO or ONE the entire pack is considered faulty and cannot be used on the system. Three,
skeleton table entries, the disk directory, and available tables, for example, are built and the label is written
in segment zero.

Disk Initialization Instructions

The Disk Initializer program does not operate under the control of the MCP and must be loaded and
executed through the cassette reader on the control panel.

Informatio·n will be supplied to the initializer through the card reader. There must be one input card for
each disk cartridge to be initialized followed by an ? END card. The following is a description of the
Initialization input card.

Card
Columns

1
2

3-8
10-19

21

23
29-42

Description

Drive Mnemonic Letter (A ... P)
"V" = Verify; Blank = Initialize
Disk Cartridge Serial Number
Label
TYPE of Cartridge

S = System
U = Unrestricted
R = Restricted
I = Interchange

Julian Date (YYDDD)
Remarks (Owner's Name)

The initializer program is contained on a cassette tape and its operations are explained in the paragraphs
that follow.

a. Place the DISK INITIALIZER cassette in the cassette reader in the control panel. The BOT light
should be lit at this time.

b. Place the console printer on-line.

c. Place input cards in the card reader. One card for each cartridge to be initialized or verified
followed by the ? END card.

d. Set the system MODE switch to the TAPE position and press the CLEAR, then START buttons.
This loads the bootstrap loader from the cassette tape and halts the processor.

e. Set the system MODE switch to the RUN position and press ST ART (DO NOT PRESS CLEAR).
This will load and execute the initializer.

3-1

f. When the cassette tape has been read, the following message will be displayed on the console
printer.

Bi 700 DISK CARTRIDGE INITIALIZER - MARK level-number

Note: When a disk cartridge is initialized, all previous data is lost and must be re!oaded if needed.

Example:

The following message would be displayed if a successful initialization had been compieted.

ID = UNRESTRICTED SER#= 222001 000000 BAD SECTORS
INITIALIZATION COMPLETE DRIVE 0

The disk cartridge is now ready to be used on the system.

Disk Verification

Any disk pack/cartridge previously initialized may be verified by using the same control card and placing a
Vin column 2 or any non-blank character.

Each segment is tested using the same criteria for the verification as is used for an initialization.

3-2

COLDSTART

General

The COLDSTART routine is used to load basic system software and firmware to disk. The routine is
furnished on a cassette tape and is loaded via the control panel cassette reader.

The following actions are performed by COLDSTART:

a. Constructs and initializes the disk directory and available tables on the system disk if head
per-track.

b. Loads the MCP from magnetic tape to system disk.

c. Loads the SDL Interpreters for both the 1710 and 1 720 series of computers from magnetic tape
to the system disk.

d. Loads the CSM firmware for both the 1710 and 1 720 series of computers from magnetic tape
to system disk.

e. Loads the System Initializer from magnetic tape to system disk.

f. Loads SYSTEM/LOAD.DUMP and FILE/LOADER from magnetic tape to system disk.

g. Makes appropriate entries in the NAME TABLE for all system software and firmware loaded.

h. Constructs the COLDSTART VARIABLES on system disk.

i. Displays a message on the console printer instructing the operator to perform a Clear/Start.

Procedure

When a COLDSTART is performed on a system disk that was previously
in operation, all the files entered in the disk directory are lost and must
be reconstructed. This is due to the disk directory being initialized and
cleared by the COLDSTART.

The COLDSTART procedure is as follows:

a. Mount a "system" pack on drive 0, (if not a head-per-track system).

b. Set MODE switch to TAPE.

c. Place the COLDSTART cassette in the cassette reader. Cassette is automatically rewound.

d. Press CLEAR, then START.

e. Cassette will read a few feet and the system will HALT.

f. Set MODE switch to RUN, press START.

g. Cassette will continue to read. If the system HALTS with@ 4@ in the L register, the cassette
has a hash total error and must be reloaded otherwise it should contain @AAAAAA@. When
the cassette has finished loading, the STATE light will come on, and COLDSTART will begin
execution.

3-3

During COLDST ART execution one message is displayed requiring action by the system operator. This
message and its response is as follows:

\VHERE IS THE MCP-MT (X) Respond with the tape unit with
the MTx input message.

The system disk created by COLDSTART is a single system pack configuration, and does not contain a
LOG. Once the system is running under MCP control, the number of system drives may be increased
using the SD message, and the LOG option set with the SL message.

CLEAR/START and MEMORY DUMP PROCEDURE

General

A Clear/Start is used by the system operator to restore the system to an operable state. A Clear/Start
must be performed under any of the following conditions:

a. System Power-up.

b. an unscheduled halt.

c. an uninterruptible system software loop.

d. the system software/firmware is changed (via CM message).

A Clear /Start performs the following functions:

a. Terminates all programs being executed.

b. Empties the schedule.

c. Writes correct parity and zeros throughout memory.

d. Loads the MCP, SDL Interpreter, System Initiaiizer and the Central Service Module (CSM)
specified by the NAME TABLE entries selected.

e. Returns control to the MCP.

If the processor is running at the time a Clear /Start is to be performed, the INTERRUPT switch on the
console should be used to bring the system to an orderly halt.

Clear/Start Procedure

a. Halt processor with the INTERRUPT switch.

b. Place Clear/Start cassette in cassette reader.

c. Press CLEAR.

d. Set MODE switch to TAPE position.

e. Press ST ART (When tape stops, check the L register for all A's. At this point enter any
temporary changes to be made in the Tor X registers.)

f. Set MODE switch to RUN position.

g. Press ST ART.

The same Clear/Start program is usable on any system and with either the MCP I or the MCP II.

3-4

Name Table

The NAME TABLE is built during COLDSTART and resides on disk. It identifies firmware and system
software that can be used in the operational environment of the system.

The operator may select from NAME TABLE different environments for operation. However, not all
systems will be able to use many of these programs since they are strictly for experimental system software
development and system software debugging.

The main advantage of the NAME TABLE method of selecting an operating environment is the ability to
at all times recover to the standard mode of operation.

A typical COLDSTART procedure will load and identify for the system the following:

a. A standard MCP

b. A SDL Interpreter for both the B 1710 and B 1720 series of computers

c. A CSM for both the B 1710 and B 1720 series of computers

d. A System Initializer

e. SYSTEM/LOAD.DUMP

f. FILE/LOADER

g. SYSTEM/MEM.DUMP

This is enough system software and firmware to begin operations on whatever hardware is available. A sys
tem pack may be moved from one system to another and started by merely performing a Clear/Start.

Operating Environments

The CM message is used to identify the function of various programs to the system for subsequent usage.
See the CM input message for the syntax to be used.

The following list describes the function code or the system software mnemonic and its meaning.

NAMETABLE
Entry Number

0

2

3

4

6

7

System
Software

Mnemonic
(Function Code)

N

NE

NX

Gl

G2

GE

GIT

Meaning

Standard System Initializer

Entry System Initializer

Experimental System Initializer

1710 Central Service Module

1720 Central Service Module

Entry Central Service Module

1710 Trace Central Service Module

3-5

System
Software

NAME TABLE Mnemonic
Entry Number (Function Code) Meaning

8 G2T 1720 Trace Central Service Module

·10 GET Entry Trace Central Service Module

1i GX Experimental Central Service Module

12 II 1710 MCP Interpreter

13 I2 1720 MCP Interpreter

14 IE Entry MCP Interpreter

15 IlT 1710 MCP Trace Interpreter

16 I2T 1720 MCP Trace Interpreter

17 IET Entry MCP Trace Interpreter

18 IX Experimental MCP Interpreter

19 M Standard MCP II

20 ME Entry MCP (MCP I)

21 MT Trace MCP

22 MET Entry Trace MCP

23 MX Experimental MCP

24 SD Stand-Alone Memory Dump

25 SDE Stand-Alone Entry Memory Dump

26 SDD Stand-Alone Disk Dump

27 SDL Stand-Alone SDL Program

28 SIO Stand-Alone I/O Debug

29 SL Loader for Stand-Alone SDL Program

30 SD Stand-Alone MIL Program

The purpose of the CM input message is to identify a file on System Disk to be used for a designated
function.

Example:

CM MX MCP/XYZ

The above example makes the file MCP/XYZ the experimental MCP and will be the program executed
when an experimental MCP is called fer.

3-6

Selecting Environments

With the appropriate files loaded and CM-ed, there are four general environments which can be selected as
a basis for operation:

a. Standard MCP (MCP II)

b. Standard MCP with Trace

c. Entry MCP (MCP I)

d. Entry MCP with Trace

The operator may select one of these by making two choices:

a. STANDARD vs. ENTRY

b. TRACE vs. NON-TRACE

The following input messages are used to make the above choices.

Input message Description

CE Use Entry MCP/firmware

cs Use Standard MCP /firmware

CT Make Trace Available.

CN Non-Trace

A Clear/Start is required to effect any change. The choices become the new basis for operation. They
remain in effect until they are changed explicitly, but they can be switched on a temporary basis during
the Clear/Start procedure.

Temporary Environment Changes

Operations following a Clear /Start can be tailored to the needs of system programmers by setting the
following values in the T register.

Bits on the control panel are numbered from LEFT to RIGHT.

Bits

0

2

3

4

5

6

Description

Dump Memory

Run a stand-alone program
(see, below, bits 8-11)

Switch MCPs, I vs. II

Switch TRACE vs. NON-TRACE

Run with experimental MCP

Run with experimental System Initializer

Run with experimental Interpreter

3-7

Bits

7

8-11

12-23

Description

Run with experimental CSM

When bit 1 is set, the following programs will be run.

Value

0
1
2
3

Must be left zeros

Identification

sx
SDD
SIO
SDL, using SL to load with interpreter

Another option that can be made during Clear/Start is the designation of the system disk. To override the
usual Clear/Start selection, load the following values in the X register.

Value

16-19 Port

20-23

Memory Dump Procedure

The memory dump as well as other temporary changes may be accomplished during the Clear/Start
procedure. Between steps (e) and (f) in the Clear/Start Procedure simply set the proper bits in the appm
priate register and continue with the normal Clear/Start procedure.

The memory dump requires that bit 0 of the T Register be turned on at this time.

Firmware Detected Errors

Errors detected during Clear/Start will cause a halt with an error message in the L register identifying
the error and the progran1 that found it.

L Register Value
Bits 0-15

@0000@
@OOOF@
@OOFO@
@OFOO@

L Register Value
Bits 16-23

@01@
@02@
@03@
@04@
@05@
@06@
@07@
@08@

Program Identification

SYSTEM/INIT
CLEAR/START
MEM/DUMP

Error Description

No device on the designated 1/0 channel.
1/0 device on channel is not disk. (See T register.)
Disk is not idle. (See T register for status.)
Time-out while waiting for service request.
Bad reference address. (X = good, Y = bad.)
Bad status count after service request. (See T register.)
Bad result status from 1/0 control. (See T register.)
Seek time-out (timed by system software).

3-8

L Register Value
Bits 16-23

@09@
@OA@
@OB@
@OC@
@OD@
@OE@
@OF@
@10@
@ 11@
@12@
@ 13@
@14@
@15@
@16@
@17@
@18@
@19@
@lA@
@lB@
@lC@

Error Description

Memory parity error in I/O descriptor.
Memory parity error in I/O data.
Time-out waiting for I/O operation to complete.
Exception condition after 15 retries. (See T register.)
Exception on test I/O operation.
Designated port and channel is not disk.
No disk on system.
Designated port is invalid.
Designated channel is invalid.
Not enough memory for this program.
Memory parity after CSM overlay.
Parity error somewhere in memory.
NAME TABLE entry (number in T register) is zero or blank.
Memory dumpfile port not equal to 7.
Memory dumpfile address equal zero.
Disk address in INITIALIZER IPB equal zero.
MCP type field in HINTS is zero.
Invalid stand-alone program specified.
Stand-alone SDL file not available.
No console printer on system.

3-9

DISK FILE COPY

General

The DISK/COPY program will copy one or more disk files from one disk to another or to another location
on the same disk.

Cards are used as input for the DISK/COPY routine. Any number of files may be copied during one
execution of DISK/COPY.

DISK/COPY Operating Instructions

The following figure represents the DISK/COPY control deck.

Specification Cards

1
_ _ _ (SP~-Cj-:A-R_D_S -11~

/ fDAT:JAARDS _JJ_J
? EXECUTE
DISK/COPY

Figure 3-1. DISK/COPY Control Deck

There may be multiple specification cards processed with a single execution of DISK/COPY, but each
specification card is limited to one file.

Specification cards are free-form. Each card must contain two disk file-identifiers with the first file
identifier being the file to be copied, and the second file-identifier being the new copy of the file.

The format for the file-identifiers is the same as used for MCP control cards. See the REMOVE control
instruction for further syntax explanation.

If the file-identifier is to be retained when copying to another disk, the new file-identifier may specify only
the name of the pack-id followed by a slash.

Examples:

a. To copy file AAA on a systems disk to another location on the systems disk with the name BBB:

AAA BBB

3-10

b. To copy a file AAA on a systems disk to another disk named NEWDISK and retain the
file-identifier:

AAA NEWDISK/ AAA/

c. Since the file-identifier is not changed in example (b), the same result would be obtained by
using the following specification card.

AAA NEWDISK/

3-11

DMPALL

General

The program DMPALL has two separate functions: (1) printing the contents of files, and (2) reproducing
data from one hardware device to another. Execution may be from either the console printer or card
reader.

Printing

Printing files consist of the following:

a. Data may be card, magnetic tape, paper tape, or disk.

b. Any file can be read up to a 1000 bytes per logical record.

c. Contents can be printed in byte, digit, or combined form.

d. Printing may begin with a specified record number and terminate after a specified number of
records are printed.

Reproducing

Reproducing files may be executed as follows:

a. A file may be reproduced from any card, magnetic tape, paper tape, or disk.

b. File-identifiers, record lengths, and blocking factors may be changed during the reproduction.

c. Reproducing may begin with a specified record number and terminate after a specified number
of records.

Operating Instructions

CONSOLE PRINTER

DMPALL executed from the console printer responds with the following three messages:

DMPALL = mix-index BOJ.

DMPALL = = mix-index ENTER SPECS.

DMPALL = mix-index ACCEPT.

The operator replys to the ACCEPT message by entering an AX message containing the specifications
needed to perform the DMPALL operation.

The directory of a LIBRARY tape created by the program SYSTEM/LOAD.DUMP can be either punched
or printed using the following procedure:

I
I
L_ ______ _

mix-index AX PD [PUNCH] tape-identifier

When PUNCH is specified, the tape directory will be output to cards for use with the program SYSTEM/
LOAD.DUMP. With PUNCH omitted, the default print option will list the directory.

3-12

CARDS

The DMPALL execute control deck has the following format:

? EXECUTE DMPALL FILE SPEC NAME specification-file-identifier;

? DATA specification-file-identifier

(specification cards)

? END

A semicolon must terminate the specification string, after which comments may be entered. There may
be more than one card in a specification card file.

All specification entries are free form in the first 72 columns of the card, and may be separated by either
a space or a comma, or a combination thereof. The card file containing the specifications (one per card)
is loaded to disk, and each specification is executed in turn from there.

Print Specifications

The specification string for printing a file is as follows:

{
LST } file-identifier [Record-length] [Blocking-factor]
LIST

[Output-format] [Hardware-type] [SKIP integer]

~{ INCLUDE} . 1
mteger

INCL

L... l -'
r{ =ABLE }1 li{:_RCH} JI start-position

L... -' L...

search-argument

The file-identifier entry must immediately follow the LIST or LST entry, and is required for all files. The
format of the file-identifier entry is the same as used MCP control instructions; therefore may consist of
from one to three separate identifiers separated by slashes. A file-identifier that is entirely numeric or
which contains special characters must be surrounded by quotes.

The record-length in bytes must be the first numeric entry following the file-identifier. If omitted, a
record-length of eighty is assumed. For disk files the record-length used will be that of the file when
created.

The blocking-factor must be the second numeric entry following the file-identifier. If omitted, a blocking
factor of one is assumed. For a disk fite when both the record length and blocking factor entry are
omitted, the blocking factor with which the file was created will be used.

The output-format entry may be specified as:

a. Alpha: A or ALF A.

b. Numeric: N, NUM, H, or HEX.

c. Alphanumeric: When entry is omitted.
3-13

The hardware-type entry may be one of the following:

a. Card files: CRD or CARD

b. Magnetic tape files: MTP or TAPE

c. Paper tape files: PPT or PAP.ER

d. Disk files: DSK, DISK, or the entry may be omitted.

e. 96-col. card files: C96 or CARD96

The SKIP integer entry may be entered to begin printing with a specified record as denoted by the integer.

The INCLUDE or INCL integer entry may be used to specify how many records should be included in the
printout.

The VARIABLE or VARY entry may be used to specify tape or disk files having variable length records.

The SEARCH or SEA entry may be used to specify that printing should begin with the first record
containing the value of the specified search-argument at the specified start-position (byte-number) in the
record. The first byte in the record is relative position 1.

The printed output is headed with the file-identifier, record length, blocking factor, the current date, and
t'ha +• a T.,,.. nrlrl'+•n.,,.. ,, -n-M.,,..+n11t nf' <:> rl•c-lr f'•la tu111,,,..,.,. +'h.,. tr<:>l11'3 nf +'h.,. p.,,..,..Lnf_P11.,. nn1nt'3r 1n t"hi:> hi:><::1r11no
&..J.J.\.I l,..1..lJ..1\.1. .1..1.l U\..&.\..l..lt..J..V..l.l u. p.1..1..11.\.VUt.. V.J. u. \..l..1.l3.l'\.. .1..1...J.V ' ' .l..1..1. .1..U • .&.1' '\..I t...1..1.V y U..l\A.V V.1. \...J..1.V .L...J.1.J.U. '\J.1. .L .1..lV yv..a..1..1. v.1. ..&....1.1. \..1..1.."" .i..1.. \.4.µ.Ll.a.z:,.

A running record count is printed in the left hand margin.

Reproducing Specifications

The reproduction string consists of the following specifications:

{

PERFORM}
PFM
COPY

[Routine-typelJ input-file-identifier [Input-record-length flnput-blocking-factorll I
L Jj

[l VARIABLE l l Output-file-identifier lr Output-record-length
VARY)

[Output-blocking-factor

I Outout-blocks-uer-area foutuut-areasll l l
L ~ ~ L - Jj J J

SKIP integer

search-argument]

r, -- - \
li lNCLUDE l

(INCL

l
integer J

PERFORM, PFM, or COPY informs DMPALL that media conversion is desired.

The Routine-type entry may be either in the Ieng-hand or short-hand form.

3-14

start-position

The long hand form utilizes the names of two of the following media:

a. Card files: CARD

b. Magnetic tape files: TAPE

c. Paper tape files: PAPER

d. Disk files: DISK or the entry may be omitted.

e. 96-col. card: CARD96.

f. Binary 80-col. card reproduction: BINBIN

The short hand form uses a combined abbreviation format.

OUTPUT DEVICES

96-col.
From To Card Mag. Tape Paper Tape Disk CARD

Card CRDCRD CRDMTP CRDPPT CRDDSK CRDC96

Mag. Tape MTPCRD MTPMTP MTPPPT MTPDSK MTPC96

Paper Tape PPTCRD PPTMTP PPTPPT PPTDSK PPTC96

Disk DSKCRD DSKMTP DSKPPT DSKDSK DSKC96

96-col. card
I

C96CRD
I

C96MTP C96PPT C96DSK C96C96

Example:

To go from card to magnetic tape the short-hand form Routine-type would be CRDMTP. The long
hand form would be CARD TO TAPE with the TO being optional.

The format of input-file-identifier is the same as used in MCP control instructions.

The input-record-length must be the first numeric entry following the input-file-identifier in bytes. If
omitted, a record length of eighty is assumed for all files except disk files which will use the record length of
the file when created.

The input-blocking-factor must be the second numeric entry following the input-file-identifier. If omitted,
a blocking factor of one is assumed. For a disk file where both the record length and blocking factor
entries are omitted, the blocking-factor with which the file was created will be used.

The VARIABLE or VARY entry may be used after the input-file-identifier entries to indicate that the
input file will have variable length records, but not variable length output.

The format of the output-file-identifier is the same as for the input-file-identifier.

The first numeric entry following the output-file-identifier must be the output-record-length in bytes. If
omitted, a record length of eighty is assumed unless the input file and the output file are both disk files.
Then the default output-record-length will be assumed to be the same as the input-record-length.

3-15

1;11e output-blocking-factor must be the second numeric entry following the output-file-identifier. If
o:mitted, a blocking-factor of one is assumed unless the input file and the output file are both disk files and
th~ output-record-length entry was omitted. Then the default output-blocking-factor will be assumed to be
the same as the input-blocking-factor.

Th~ number of blocks.per.area must be the third numeric entry following the output-file-identifier. This
en tty is only applicable to disk files. If omitted, 100 blocks.per.area is assumed unless both the input file
and the output file are disk files and the record-length, blocking-factor entries were omitted for both the
input file and the output file. Then the number of blocks.per.area for the input file will be used for the
output file as well.

The Output-areas is the number of areas set for the output file, Default is 25.

The VARIABLE or VARY entry may be used after the output identifier to indicate variable length input
records with variable length records being produced.

The SKIP integer entry may be used to skip to a specified record prior to creating the output file.

The INCLUDE or INCL integer entry may be used to specify how many records should be included in the
output file.

The SEARCH or SEA entry may be used to specify that copying should begin with the first record contain
ing the value of the specified search-argument at the specified start-position in the record. The first relative
location in the record is one.

Examples:

a. Keyboard Console Input

EXECUTE DMPALL

DMPALL = mix-index BOJ.

DMPALL = mix-index ENTER SPECS.

DMP ALL = mix-index ACCEPT.

A response of

LIST PACKA/PAYROLL/ A SKIP 50

..,,.. •• ____ ..:1:_1_,c:1_1 _ _,_..__..:1_._.._1. _________ 1_1_..:1•_1.nAriTK.A• 1 • .._ ..:i· 1 t.. c .._, . . .,
1 \,;au:st:::s a u1:sl\. 111c iu\,;aLcu vu u1c 1c111uvau1c ui:sl\. r ft\._, LO oe prllileu in aipua 10i1iiat oeguuung Wiul tlie

fiftieth record.

lAX COPY CRDDSK CARD SOURCE 80 2

causes a card file with the file-identifier of CARD to be written to a disk file, 80 character records blocked
2, with a file-identifier of SOURCE. '

3-16

A response of

lAX COPY PROGRAM/B CCC/PROGRAM/B

causes a disk file PROGRAM/B located on a system disk to be copied to the removable disk CCC with the
file-identifier PROGRAM/B. The new copy on disk CCC will be an exact copy. Therefore, record length,
blocking, number of areas, and area size will be the same as the original file.

b. Card Input

? EXECUTE DMP ALL FILE SPEC NAME SPECCARDS will allow the operator to enter any num
ber of specifications via a card reader. DMPALL will look for a card file with the file-identifier
SPECCARDS. The specifications will be loaded to disk, and then executed one-at-a-time from
there.

? EXECUTE DMPALL FILE SPEC NAME SPECCARDS;
? DATA SPECCARDS

COPY CRDDSK XXX 80 1 DSKFIL 80 1
LIST DSKFIL A

? DATAXXX
(card data deck)

? END

The specifications will cause the card file XXX to be loaded to disk, then listed in alpha format.

3-17

Fl LE/LOADER

General

The purpose of FILE/LOADER is to load card decks to disk punched by the program FILE/PUNCHER.

The FILE/LOADER card deck consists of the standard EXECUTE control card, a dollar card, an asterisk
card, the data cards, and the END card.

Dollar Card

The dollar card is output by FILE/PUNCHER and identifies the file to be loaded. The dollar card can also
be modified by the operator to change the name of the file-identifier.

The format of the FILE/LOADER dollar card is:

$ file-identifier

The"$" must be in column one and the file-identifier being free-form from column 2 through 80.

Files produced by the MIL compiler (Micro Implementation Language) must be loaded using the $ $ card to
distinquish them from card files output by FILE/PUNCHER. The asterisk(*) card must not be used when
using the $$card.

Below is the card format produced by the MIL compiler which takes six cards to fill a disk segment.

Column

1-6
7

8-9
10

11-70
71-72
73-80

Load address (Relative)
Blank
Number of bits on card
Blank
Data in hexadecimal format (30 Bytes)
Blank
Card sequence number

The format of the FILE/LOADER dollar dollar card is:

$$ file-identifier

Asterisk Card

The asterisk card is used to input the values for the file which is being]oaded to disk. This card is produced
by FILE/PUNCHER and should not be changed prior to input. When the asterisk card is missing, the card
file is assumed to be a code file. The asterisk card must not be used when the first card of the file is a dollar
dollar($$) card.

3-18

The format of the FILE/LOADER asterisk card is:

RESPONSE:

Error Messages

Column

1
3

5-10
12-17
19-20
22-24
26-31

Description

"*" Asterisk Sign
File Type

1 LOG
3 Control Deck
4 Backup Punch
5 Backup Print
6 Dump
7 Interpreter
8 Code
9 Data

EOF pointer l
Record Size in bits
Records.per.Block
Areas
Segments.per.Area

NOTES

Right Justified,
Leading Zeros
Optional

(1) If a code file is being loaded, the asterisk card is optional
and default values are assumed.

(2) If a code or interpreter file is designated on the asterisk
card, only the EOF pointer is used. All other fields are
ignored. If the EOF pointer field is blank, 100 segments
for the interpreter or 500 segments for the code will be
used as default values.

(3) All code and interpreter files will be closed with CRUNCH
which frees the area not being used for the file.

Example:

? EXECUTE FILE/LOADER DATA CARDS
$ file-identifier
* ... (Optional)

data deck

[~ file-identifier]

data deck
? END

File-identifier LOADED (Displayed after each load)

MISSING "$" IN COLUMN ONE

The first card of the input deck does not have "$"in column one.

3-19

MISSING file-identifier

The first card of the input deck has a"$" in column one, but is otherwise biank.

SEQUENCE ERROR FOLLOWING nnnnnnn-file-identifier NOT LOADED

The card foliowing the card number specified is out of sequence.

RECORD.SIZE SPECIFIED nnnn-file-identifier NOT LOADED

AREAS SPECIFIED = 0 - file-identifier NOT LOADED

RECORDS.BLOCK SPECIFIED = 0 - file-identifier NOT LOADED

SEGMENTS.AREA SPECIFIED = 0 - file-identifier NOT LOADED

EOF.POINTER SPECIFIED = 0 - file-identifier NOT LOADED

INVALID FILE TYPE SPECIFIED-file-identifier NOT LOADED

BLOCK SIZE 56 - file-identifier NOT LOADED

EMPTY DECK-file-identifier NOT LOADED

There are no cards following the specification card(s).

"*"CARD INV AUD-file-identifier NOT LOADED

An asterisk card following a dollar dollar card is invalid.

3-20

FILE/PUNCHER

General

The purpose of FILE/PUNCHER is to output disk files to cards in a hexadecimal format that is acceptable
as input to FILE/LOADER. The dollar card and the asterisk card used by FILE/LOADER are also output
when FILE/PUNCHER is executed.

The file-identifier is supplied to the program by an AX input message. For example:

EXECUTE FILE/PUNCHER

FILE/PUNCHER=mix-index ENTER FILE IDENTIFIER
FILE/PUNCHER=mix-index ACCEPT

mix-index AX file-identifier (free-form)

After punching the output file, the program will repeat the above messages and wait for another file-identi
fier to be entered. By responding with a blank file-identifier, the program will go to EOJ.

Below is the card format produced by FILE/PUNCHER which takes five cards to fill a disk segment.

Error Messages

Column

1-72
73-80

file-identifier NOT ON DISK

Description

Data in hexadecimal format (36 bytes)
Card sequence number

The file-identifier requested for output cannot be located by the MCP.

3-21

SORT

General

The SORT is a system program that provides the user with a means to arrange a file of records. It
processes specification cards that describe the input and output files, the keys by which the file will be
~rr~noP.rl ~nrl vi:irinn~ nnt1nn~ -----o--, --- . ------ -.r ·-----·

A parameter table is generated by the SORT and a sort intrinsic is invoked. The sort intrinsic may also be
invoked from within a language (RPG or COBOL), and the manual for that language contains a description
of its sort statement.

The sort intrinsic does the actual sorting of the file in either an ascending or descending sequence according
to a designated key or keys.

There are two sort intrinsics, referred to as the vector replacement and the INPLACE technique.
The intrinsic using the vector replacement technique is normally the one invoked.

Tlre intrinsic using the INPLACE technique is invoked when the user includes an optional INPLACE
specification card in the SORT source deck. This option should be used when a minimum of disk space
!~ ~··~!l~Ll~ C-- ~--+!- -
1~ dVC111dU1C 1U1 ~Ul Lill~.

SORT reserved words and characters appear in uppercase type throughout the SORT text. A list of the
SORT reserved words appears at the end of the SORT text.

SORT Execution Deck

The SORT execution deck consists of specification cards and control cards. See figure 3-2.

Three of the specification cards are required: FILE IN,OUT, and KEY. Other specification cards are
optionaJ and a.How modification and optimization of the sort.

A description of each of the SORT specification cards (statements) appears in the following pages.

1E_JN!J I
OPTION CARDS / ___ K_e_v __ I

/ OUT I

/

-_J_J FILE IN ------?DATA CARDS ---------

Figure 3-2. SORT Execution Deck

3-22

The FILE Statement

The FILE statement is comprised of two parts which describe the input file to be sorted and the output
file to be produced. The first part must be the FILE IN statement and the second part is the OUT state
ment which must immediately follow FILE IN.

FILE IN

The FILE IN statement describes the input file to be sorted, and is one of the three specification cards
that are required. The parameters following the file-identifier must be enclosed in parentheses and
separated by a space. The FILE IN statement has the following format:

FILE IN file-identifier

{

CARD J
(TAPE [~ PURGE l] record-size [blocking-factor])DEFAULT)

~ MULTI -DISK (records-per-area)

The dp-id is the name of the disk pack or disk cartridge that the file is to be read from or written to. If
dp-id is omitted on input, the file is assumed to reside on the systems disk. If it is omitted on output, the
file is written on the systems disk.

FILE-IDENTIFIERS

File-identifiers are standard.

When the INPLACE sort option is specified and the file-identifiers are the same for both the FILE IN and
OUT statements, the original file will be altered during the sorting process and the output of the sort will
occupy the same space when the files are on disk.

If the file-identifiers are different, the input file will not be disturbed and a new output file will be created.

When the PURGE option is used, the input file-identifier will be removed from the disk directory at the
completion of the sort intrinsic.

The word CARD specifies that the input file is on cards.

The word TAPE specifies that the input file is on magnetic tape.

The word DISK specifies that the input file is on disk.

3-23

RECORDS-PER-AREA

When the file is on disk the records-per-area must be supplied and enclosed within parentheses. The
records-per-area must be calculated by the user.

RECORD-SIZE

The record-size is a required entry and is the actual record size in bytes (characters) associated with the
file. When the DEFAULT option is used a record-size must be specified but need not be correct.

BLOCKING-FACTOR

The blocking-factor is optional and specifies the number of logical records in a block. When this entry
is omitted the blocking-factor default of one (1) will apply.

PURGE

This option will result in the input file-identifier being removed from the disk directory at the completion
of the sort.

DEFAULT

This option allows the user to sort a file when he doesn't know anything about the file except the file
identifier. If the file is not on the system pack the user must also supply the disk pack name.

This option applies only to disk files.

MULTI

This option allows the user to sort a muiti-pack disk fiie. If MULTI is designated on the IN specification, it
must also be designated on the OUT specification.

The OUT statement describes the output file to be created, and is one of the three specification cards
that are required.

The OUT statement must immediately follow the FILE IN statement. The parameters following the ·
file-identifier must be enclosed in parentheses and separated by a space.

The OUT statement has the following format:

(

(CARD

) DISK

) TAPE

~PRINTER

(records-per-area) l record-size (blocking-factor)[MUL Tl] l_

3-24

The elements of the OUT statement have the same function as they do in the FILE IN statement except
that they describe the desired output file.

Examples:

FILE IN CARDX (CARD 80)
OUT LINE (PRINTER 80)

FILE IN CARDX(CARD 80) OUT LINE(PRINTER 80)

Both of the above examples will produce the same result.

FILE IN RANDOM (DISK(IOOO) 100 10)
OUT SORTED (DISK (1000) 100 10)

Note that in the above example parentheses serve as delimiters between parameters so that additional
spaces are permitted but not required.

The Key Statement

The KEY statement defines the field or fields within a record that will determine the order in which the
file is to be arranged. It is one of the three specification cards that are required.

The format of the KEY statement is:

{
KEY }
FIELD

Q<ey-location key-length
'{ ~SCENDING '] l ~ESCENDING }

[(. ..)] [(. ..)] [(...)]

ALPHA

UA
I NUMERIC I

UN >) I -
~

Multiple key descriptions are allowed and must be enclosed in parentheses. The first key is the major key
and any additional keys are minor keys of decreasing significance. Each succeeding minor key is sub
ordinate to any preceding minor or major key.

The maximum number of keys is 30 unsigned keys, 15 signed keys, or any combination not exceeding 30
where each signed key is counted as two unsigned keys.

KEY-LOCATION

The key-location specifies the relative position of the most significant byte or digit (alpha or numeric) of
the field from the beginning of the record.

The first byte or digit in a record is relative position one (1). The position is counted in the number of
units applicable to the data type for that key. This permits all possible data types to appear within a
record. Additional information describing position will be found in following paragraphs concerning data
types (ALPHA, NUMERIC, etc.).

3-25

For signed fields the key-location is specified as the most significant byte or digit of the key itself, and not
the position of the sign. The sign location is the left-most or high order position of the field.

KEY-LENGTH

111~ key-length specifies the number of significant bytes or digits in the key. lt should not include the
length of the sign when the key is signed.

ASCENDING or A

Ascending sequence does not have to be specified as it is the default. The file will be arranged with the
record having the smallest key appearing first, followed by records with increasingly larger keys.

DESCENDING or D

The use of this option will result in the sorted file being arranged with the record having the largest key
appearing first, followed by records with succeedingly smaller keys.

ALPHAorUA

ALPHA or UA (unsigned alpha) indicates that the data is alphanumeric, and the key-location of the field
is counted in 8-bit units from the beginning of the record. ALPHA or UA need not be specified as they are
the _default when no data type is specified.

NUMERIC or UN

NUMERIC or UN (unsigned numeric) indicates that the data is 4-bit numeric, and the relative position of
the field is counted in 4-bit units.

SA (signed alpha) indicates that the data is alphanumeric and that some or all of the keys may contain a
minus sign.

The key-location is specified as the most significant byte of the key.

The minus sign is represented as a hexadecimal D.

SN (signed numeric) indicates that the data is 4-bit numeric and that some or all of the keys may contain a
minus sign. The key-location is specified as the most significant digit of the key.

The minus sign is represented as a dexadecimal D.

Examples to illustrate several key descriptions follow:

UNSIGNED ALPHA SIGNED ALPHA

+
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 i 9 20 2 i 22 23 24 25

3-26

The method of referencing the key-location and key-length of ALPHA and SA data may be illustrated with
the use of the above illustration which represents a record twenty-five bytes (8-bit) in length. 111e first
twelve bytes are type ALPHA and the following thirteen bytes are type SA. The thirteenth byte of the
record contains the minus sign if the field is a negative value.

KEY (5 2) describes the field that starts with the fifth byte and is two bytes long. The data is type ALPHA
and the output sequence is to be ascending order.

KEY (5 2 A UA) explicitly names the options A and UA and will have the same result as the above
description.

KEY (14 12 SA) describes the signed field starting at byte fourteen and continuing to the end of the
record.

KEY (14 1 D SA) describes the one byte field at byte fourteen. The output sequence will be in descending
order so that all positive keys will appear in the output before any of the negative fields.

KEY (1 12) (14 6 SA) describes an unsigned major key field twelve bytes long that starts in the first
byte of the record, and a signed alpha field starting in byte fourteen that is six bytes long.

I UNSIGNED NUMERIC I SIGNED NUMERIC I
II I I I I I I I I I I I II I I ~1 I I II I I I I I I I I I I II I I I I I I I I I I I II I

1 2 3 4 5 6 7 8 9 10 15 19 20 25 30 35 40 45 50

The method of referencing the key-location and key-length of NUMERIC and SN data is illustrated by the
above example which represents a record fifty digits (4-bit) long. The first eigi1.teen digits are type unsigned
numeric, and the remaining thirty-two digits are type SN. The nineteenth digit from the beginning of the
record is the sign location.

KEY (1 18 A UN) describes all of the eighteen digit unsigned numeric field. The reserved word A could
be omitted since ascending sequence is the default option.

KEY (18 UN) describes the last digit of the unsigned numeric portion of the record.

KEY (20 5 SN) describes the left-most five digits of the sig_ned numeric part of the record. Digit nineteen
is the sign location.

Data of the type NUMERIC or SN could only be associated with disk or tape files because of its "packed"
nature.

SORT Option Statements

The purpose of the sort option statements is to allow the user to optimize the sort and add commments to
the SORT specification card deck.

There are eight option cards as described below.

NO PRINT

Tirn NOPRINT option will inhibit the printing of the sort specifications on the line printer. This allows the
sort to be executed when the printer is in use, and also results in less execution time.

The NOPRINT statement must be the first entry in the sort specifications.

The TIMING option is not affected by the use of the NOPRINT option.

3-27

MEMORY

The MEMORY option can be used to allocate more memory to the sort tha.11 the 6000 bytes assigned by
default.

Increasing the memory available to the sort will usually make the sort run faster, untii an optimum memory
size is reached. Increasing the memory size beyond this optimum will result in a slower sort. The optimum
size is dependent on file size (record size and number ofrecords).

Example: MEMORY 15000

integer RECORDS

The user may furnish an estimate of the number of records in the input file, which helps to optimize the
execution of the sort. If this option is omitted the default is 20,000 records.

Example: 12500 RECORDS

TIMING

The TIMING option may be used when the vector replacement sort intrinsic is used, and furnishes an esti
mate of the number of merge passes that will be required during execution of the sort. The estimate and
some other information that may be useful for debugging will be printed on the line printer.

This option does not apply to the INPLACE sort.

BIAS

This option is used to estimate how ordered or sequenced a file is in relation to the keys the file is to be
sorted on. The estimate is used to optimize the execution of the sort intrinsic.

The number entered may be from zero (0) to ninety-nine (99), where a fifty (50) indicates completely
random data and is the default if no BIAS statement is included. A zero (0) would indicate that the file
is in reverse order in relation to the keys to be sorted on. A ninety-seven (97) would suggest that the file
is nearly in the desired sequence.

Example: BIAS 60%

The percent sign is optional and may be omitted.

The BIAS option does not apply when the INPLACE option is used.

TAGSORT

TAGSORT is a means of sorting a file that leaves the original file intact, and creates a new file containing
h:ulices pointing to the relative locations of records within the originai file.

Input files can be of any type.

The output file (tagfile) must be defined as four characters per record. It consists of eight decimal digit
indices pointing to the input file's records.

TAGSORT cannot be used with INPLACE sort.

In COBOL the access method would be RANDOM using tagfile as the ACTUAL KEY.

In RPG the access method would be INDEXED using the relative record number as delivered in the tagfile
to DIRECTiy access the original file.

3-28

INPLACE

This option may be used when a minimum of disk space is available for sorting. The vector replacement
sort produces work files approximately two-and-one-third times the size of the input file. The INPLACE
sort requires work file space equal to the input file space, unless the input and output file identifiers are
the same. In the latter case, no work file space is required but the input file is replaced by the output file
during the sorting process.

SYNTAX

The SYNTAX option should be used when the SORT specification cards are to be checked for errors only.
The sort intrinsic will not be executed, even when no errors are detected in the specifications.

COMMENT

Any non-reserved word or character.

This option allows explanations or notes to be interspersed between SORT statements. SORT control
(reserved) words may not be used in the text of the comment.

Specification cards for a typical sort might be as shown below:

FILE IN SRT/AAA/ (DISK(500) 100 1)
OUT XYZ/BBB/ (DISK(500) 100 10)

2500 RECORDS
MEMORY 12000
BIAS 50%
KEY (7 12) (1 6)

The above specification cards could also appear in different format as shown below and produce the same
results.

FILE IN SRT/AAA/ (DISK(500) 100 1) OUT XYZ/BBB/ (DISK(500) 100 10) 2500 RECORDS
MEMORY 12000 BIAS 50 KEY (7 12) (1 6)

The disk pack names SRT would contain the file AAA and the sort intrinsic would order the file, with the
output file (sorted) BBB getting written on disk pack XYZ. The sort intrinsic using the vector replacement
method would be used in both cases.

FILE IN CARDX (CARD 80)
OUT LINE (PRINTER 80)

KEY (1 10)
INPLACE
1900 RECORDS
BIAS 60

The above SORT specification cards would result in the INPLACE sort intrinsic being invoked to do the
sorting. The input file CARDX in the card reader would be read in, the records sorted according to the
single ten-byte key, and the sorted file would be printed on the line printer. The BIAS estimate would be
meaningless since that option has no effect when the INPLACE option is used. The example below shows
a tagsort execution deck:

? EXECUTE SORT
FlLE IN A/B (DISK (10) 200) ·
OUT A/BT AG FILE (DISK (20) 4)
KEY (10 8 UA)
TAGSORT

?END

3-29

SORT Reserved Words

(
)

'
%
I

A
ALPHA
ASCENDING
ASSEMBLE

BIAS

CARD
CARDS
COMP
COMPILE
COMPLEMENT
CORE

D
DEFAULT
DESCENDING
DISK
DISTRIBUTE

E
EVEN
EXECUTE

FIELD
FIELDS
FILE

GENERATE

IDENT
IN
INPLACE

¥PY
KEYS

MEMORY
MERGE

NO PRINT
NUMERIC

0
ODD
OUT

PACK
PAPER
PARTITION
PRINTER
PURGE

RECORDS
RESTART

SA
SAVEBLOCK
SB
SN
SYNTAX

TAGSEARCH
TAGSORT
TAPE
TIMING

UA
UN
USE RB LOCK

v

WAIT

ZIP

3-30

COBOL CROSS REFERENCE UTILITY PROGRAM (COBOL/XREF)

General

The COBOL Cross Reference Utility Program accepts as input a syntactically correct COBOL source
program, and depending on the option selected, outputs a cross reference listing, or a program source
listing only, or both a cross reference and a program source listing.

Operating Instructions

The source program may reside on disk, magnetic tape, or punched cards. The figure below is an example
of a COBOL/XREF execution card deck.

? END

I SOURCE DECK

I-
(OPTION CARD) I-

I-

I DATA CARDS

? EXECUTE COBOL/XREF

Figure 3-3. COBOL/XREF Execution Deck

Option Cards

The option entry specifies the location of the source medium and the output desired. Below is the format of
the COBOL/XREF option card.

~col. I ~col. 7

[option] [C]

The option entry must begin in column I.

The letter C denotes that the COBOL COPY verb is used within the source program. C, when used, must be
in column 7. Requested library files must reside in the disk directory. The library sequence numbers within
a soutce program are indicated by a L to the left of the sequence number.

The options and their descriptions are as follows:

CARD The input source program is punched cards. Produces a cross reference listing.

CARD is the default input. If the option entry is omitted the input is assumed to
be cards.

3-31

CD LIST

DISK

DKLIST

LIST CD

LISTDK

LISTTP

TAPE

TPLIST

The input source program is punched cards. Produces both a source program listing
and a cross reference.

The input source program having a file identifier COBOLW /SOURCE resides on disk.
Produces a cross reference listing.

The input source program having a file identifier of COBOLW iSOURCE resides on disk.
Produces both a program source listing and a cross reference.

TI1e input source program is punched cards. Produces a source program listing only.

The input source program is on disk. Produces a source program listing only.

The input source program having a file identifier of SOLT is on magnetic tape. Produces
a source program listing only.

The input source program having a file identifier of SOLT is on magnetic tape. Produces
a cross reference listing.

The input source program having a file identifier of SOLT is on magnetic tape. Produces
both a source program and cross reference listing.

Internal File Names

Internal File
Identifiers

CARDS

TAPES

DISKS

CBXPRT

External File
Identifiers

CARDS

SOLT

COBOLW/SOURCE*

XREFER

*Refer to the COBOL Compiler Option NEW for the creation of this file.

Examples:

Card: ? EXECUTE COBOL/XREF

? DATACARDS

CARD C

(source deck)

? END

3-32

Description

Input Source Cards

Input Source Tape

Input Source Disk

Printer Output
!

,J

Disk:

Tape:

? EXECUTE COBOL/XREF

? DATA CARDS

DISK

? END

NOTE

If more than one cross reference file may exist, the FILE
statement must be used to make each file identifier unique.

? EXECUTE COBOL/XREF

? DATACARDS

TAPE

? END

3-33

LOG/CONVERSION

General

The LOG/CONVERSION program extracts information from the file LOG/#n and creates an output file
NEW.LOG/#n in COBOL-RPG format. The output file NEW.LOG/#n is assigned the same eight digit
number (n) as the input file.

Execution

The program LOG/CONVERSION cannot be executed until the file SYSTEM/LOG has been transferred to
LOG/#n (Refer to the LG and TL Input Messages). The eight digit numerical identifier is assigned using an
ACCEPT message.

NEW.LOG/#n

The file NEW.LOG/#n may contain three types of records:

1. Clear/Start
2. Program Parameter Blocks (PPBs)
3. File Parameter Blocks (FPBs)

A Clear/Start record is constructed for each Clear/Start performed on the system. Each program executed
on the system will have a Program Parameter Block record followed by one or more File Parameter Blocks,
depending on the number of files deciared.

3-34

DISK/DUMP

General

The DISK/DUMP program is a segment-by-segment transfer from cartridge to cartridge or pack to pack.
If a segment cannot be read or written, two retries will be attempted. If the retries are unsuccessful, the
DISK/DUMP will not be allowed. The pack label is checked for validity but not copied.

Operating Instructions

The DISK/DUMP program does not operate under the control of the MCP. It is loaded and executed
through the cassette reader on the control panel. Information will be supplied to DISK/DUMP through
the console printer as to which drives to use. To terminate the DISK/DUMP program, enter a blank after
the last dump has been made.

After the DISK/DUMP program has been loaded, the following messages will be output:

DISK DUMP MARK version-number

ENTER INPUT DRIVE (DC? or DP?)

ENTER OUTPUT DRIVE <DC? or DP?)

Then after each successful execution of a disk dump, the following set of messages are output:

DUMP COMPLETE FROM input-drive TO output-drive

ENTER INPUT DRIVE (DCx Oi DPx) OR BLANK TO TERMINATE

END DISK DUMP (if a blank is entered)

Example:

DISK DUMP MARK IV.1

ENTER INPUT DRIVE - (DC? OR DP?)

DCC

ENTER OUTPUT DRIVE - (DC? OR DP?>

DCB

DUMP COMPLETE FROM DCC TO DCB

ENTER INPUT DRIVE - (DC? OR DP?) OR BLANK TO TERMINATE

END DISK DUMP

Error Messages

1. DISK ERROR - RESULT STATUS IN "T" (Observe the T register to determine type of error.
Press START for a retry.)

2. · INVALID RESPONSE - TRY AGAIN

3. CANNOT COPY FROM PACK TO CARTRIDGE

3-35

4. CANNOT COPY FROM 200 TPI TO 100 TPI

5. COMPARISON ERROR ON COPIED DATA (Press START to restart.)

6. TEMPORARY TABLE FILLED-CANNOT COPY (input drive). (Clear/Start this pack and
trv :::iO":::iin) --.; -o---·,,

7. INVALID DRIVE ENTRY (drive-entry)

8. VALID ENTRIES ARE A-X (an entry's high limit depends on the system. It can be from
D ... X.)

9. DISK NOT READY (input-or-output drive)

10. DISK NOT PRESENT (input-or-output drive). Reset the disk control and reload program.

11. WRITE LOCKOUT (output-drive)

12. PACK LABEL BAD (input-or-output-drive)

13. INVALID DUMP-REMOVED SECTORS ON (input-or-output-drive). Pack with bad sectors
cannot be used with DISK/DUMP.

14. I/O ERROR (input-or-output-drive address address-of-error)

Ten retries have been made on input parity errors.

Two retries have been made on timeout errors.

Ten retries, rewrites, and l 0 more retries have been made on output parity errors.

3-36

REMOTE JOB ENTRY SYSTEM (RJE)

Introduction

The B 1700 Remote Job Entry System uses data communication techniques that allow an operator to
enter through a B 1700 computer a job or program that is to be executed on a Central computer. Both the
B 1710 and the B 1720 series of computers may be used as input. The central computer or "host" may be
any Burroughs Medium or Large System. Following execution of the job by the central system, all output
information for the console printer, line printer,. and/or card punch is transmitted to the remote B 1700
system.

Figure 3-4 is an example of a typical RJE system. Although all central computer systems can accomodate
more than one remote system, the maximum number depends on the central system restrictions.

RJE/10
PROGRAM

RJE/DCH
PROGRAM

Figure 3-4. Remote Job Entry System

M
c
p

CENTRAL
COMPUTER
HOST
SYSTEM

The Remote Job Entry system software consists of two programs: RJE/DCH and RJE/IO. The RJE/DCH
program is a' data communications handler that performs all transmitting and receiving of data to and from
the central computer, and sends all messages received from the central computer to RJE/IO .

. The RJE/IO program performs all input/output operations for the B 1700 RJE system. Also it sends all
messages received from the central system to the appropriate output device.

3-37

Operating Instructions

The B 1 700 Remote Job Entry system software resides on the systems disk, and is initiated by executing
RJE/IO. The RJE/IO program then zips the program RJE/DCH which first displays the date and time of
execution on the console printer, and then makes a request for the port, channel, and adapter numbers using
a..~ .. Aa.CCEPT (AX) message. Fer exan1ple:

mix-index

AX Enn i nn adapter numbers
· channel

port
.___ __________ mix-index of RJE/IO

lAX 070400

With the acceptance of this message, RJE/DCH will establish communication with the Central System.
When switched lines are used, the B 1700 operator must manually dial-up the central system. Either one
of the two following messages will be displayed on the console printer to indicate communication has been
established between the remote and central system.

ON LINE Indicates that the remote system detected the central system first

HOST ESTABLISHING Indicates that the central system detected the remote system first

Remote Deck Controi Cards

A special feature has been implemented in the MCP to distinguish those control cards for the remote
(B 1700) system from the control cards for the host (Large or Medium Burroughs computer) since each
require an invalid character to define a control card. This feature uses the control words STREAM and
TERMINATE to allow programs to read control cards in RJE mode.

Example:

? STREAM RJE/CARDS

remote deck(s)

? TERMINATE RJE/CARDS

All card images in the remote deck(s) will be transmitted to the central system. If the last card in the
remote deck(s) is not the TERMINATE card, the CARD READER NOT READY message is output and
waits for more card input.

RJE System Control Messages

Input messages for the remote jobs being processed by the central computer may be input by the B 1700
console printer using the following format:

mix-index AX (message)

The mix-index of the AX message refers to the mix index number of the RJE/IO program. The content of
the message sent by the AX message is dependent on the central systems demands. In general, these
messages include all central system input messages that allov; the operator to check the status of, and exert
control over, all programs and data files entered via the remote system.

3-38

Remote Control Message Entry

Local control messages or those being entered through the B 1700 and intended for B 1700 RJE system
software are designated by the use of a period(.) immediately preceding the context of the message.

Example:

mix-index AX (.message)

Blanks (spaces) are allowed anywhere within the text of the message, but the first character must be a
period(.).

There are eight local control messages. Any other messages entered using the period as the first character
will result in the following message being displayed:

ERROR: INVALID OPERATOR IN . INSTRUCTION, RE-ENTER

Valid Local Messages

Following are the eight valid local messages .

. RE or.READ

This command directs the RJE/IO program to open a card file named RJE/CARDS and begin reading the
remote deck that is to be transmitted to the central system. RJE/CARDS is closed after the entire remote
deck has been read.

1 AX.READ

.CL or .CLOS

The .CL or .CLOS commands may be used to close all output files that were opened by RJE/IO. The output
of the central system is a continuous stream of data, and if it is directed to a backup disk or tape, it is some
times desirable to divide the data into a set of logical backup files. These commands are useful for that
function.

1 AX.CLOS

.CLCP

The .CLCP command will close the card punch file.

lAX.CLCP

3-39

.CLLP

The .CLLP command will close the line printer.

1 AX.CLLP

.ST or .STOP

The .ST or .STOP command terminates the current RJE session. A message is sent from RJE/IO to
RJE/DCH instructing it to cease all activity and to terminate itself. All queued messages are lost.

I AX.STOP

.WT or.WAIT

The .WT or .WAIT command instruct the RJE/DCH program to cease all line activity and wait to answer a
cali from the centrai system. The RJEiDCH issues a test command for a ringing phone. When control
returns to RJE/DCH indicating the phone is ringing, RJE/DCH answers the phone and indicates so by the
following message displayed on the console printer.

PHONE RINGING

A bell will ring at the remote system when the PHONE RINGING message is displayed. At that point,
RJE/DCH attempts to re-establish the line connection with the central system.

1 AX.WAIT

The .EST command causes the RJE/DCH program to attempt to re-establish the line connection with the
central system. The message ONLINE is displayed when the line connection is re-established,

The .EST command may be used in conjunction with the retry function of RJE. The error message
RETRIES-UP is displayed by the RJE/DCH program when the current buffer being sent to the central
system is not being received.

1 AX.EST

3-40.

The .LOG command outputs on the console printer, a summary of the line exceptions that have occurred
during transmission. By analyzing the number displayed, the operator can obtain an indication of the
quality of the line connection and the rate of error activity on the line. Each .LOG command entry resets
the counters to zero. The format of the summary messages are below.

NAKS-SENT-BECAUSE-OF-PARITY -ERRORS = (number)

NAKS-SENT-BECAUSE-OF-NO-BUFFERS = (number)

TIMEOUTS-IN-READ-OPERATIONS = <number)

TIMEOUTS-IN-WRITE-OPERATIONS = (number)

OTHER-EXCEPTIONS-IN-READ-OPERATIONS = (number)

OTHER-EXCEPTIONS-IN -WRITE-OPERA TIO NS = (number)

Error Conditions

During a RJE session, certain error conditions may occur that may require operator intervention. The
RJE/DCH program which outputs the error messages will try to recover from the error condition auto
matically. However, if it cannot do so, the system operator must discontinue RJE processing. The format
of the error messages appears below. The result descriptor and operator code fields indicate the 24-bit
hexadecimal representation of the particular result descriptor error and the operator in which the error
occurred.

PEW 1 @ result descriptor @/@ op-code @

The program was reinstated but the COMPLETE bit was not set in the result descriptor. This error
message is displayed when the operation that resulted in the error was a WRITE-READ operation.

PERI @result descriptor@/@ op-code@

The program was reinstated but the COMPLETE bit was not set in the result descriptor. This error
results from a .READ operation.

PER2 @ result descriptor @/@ op-code @

The program was reinstated but the COMPLETE bit was not set in the result descriptor. This error
results from the READ of a WRITE-READ sequence. Both result descriptors and op-codes of the
WRITE-READ will be displayed.

LOSS OF DATA SET READY

This error was caused during the last I/O sequence because the data set was down. The error is
recoverable, but the data set should be checked.

LOSS OF CLEAR TO SEND

A loss-of-line occurred during the last attempt to transmit by the RJE/DCH program. The error is
recoverable but the data set should be checked.

MEMORY PARITY ERROR

While attempting to send a message to the central system, a parity error occurred while fetching the
message from the B 1700. This error is unrecoverable.

3-41

RETRIES-UP

This message indicates that the current buffer being sent to the central system is not being
acknowledged. This may be the result of either the central system not acknowledging, thereby
returning a NAK, or line problems including errors mentioned previously causing exceptions whenever
the message is traiismitted.

The RETRIES-UP message is displayed by the RJE/DCH program after fifty attempts of message
transmission have failed. RJE/DCH continues to try to transmit the message until successful, or until
RETRIES-UP is displayed again, or until an .EST message is received by RJE/10. If it is the latter
then the buffer is discarded and a new one obtained if possibie.

3-42

COMPILERS

SECTION 4
PROGRAM PRODUCTS

Compilers generate executable code from a programmer's source statements. Each compiler has various
options and operational techniques which affect its output. The following pages discuss each compiler and
its individual operating procedures.

The COMPILE card, DATA card, and the Label equate (FILE) cards are standard for all compilers and
are not discussed in detail for each compiler concerned. See the Control Instruction section for their
particular usage and syntax.

REPORT PROGRAM GENERATOR

General

The Report Program Generator (RPG) enables the user to obtain comprehensive reports from existing
files with a minimum time involved in source coding. An object program produced from RPG source
coding is in the COBOL S-Language format.

Compilation Card Deck

A program written in Burroughs RPG, called a source program, is accepted as input by the RPG compiler.
The compiler has two major functions: (1) verify all syntax rules outlined in the RPG Program Manual,
and (2) convert the source program language into COBOL S-Language which is then ready for execution.

The program generated by the RPG compiler is executed under control of the MCP using the COBOL
interpreter.

Following is an example of an RPG compilation deck.

? END

CALCULATI NS

t INPUT

L LINE COUNTER

E EXTENSION

F FILE DESCRIPTION
H CONTROL CARD

? DATA RPG/CARD

FILE STATEMENTS
OPTIONAL

? COMPILE

Figure 4-1. RPG Compilation Deck

4-1

$DOLLAR CARD

Dollar Card Specifications

Dollar Card Specifications allow the RPG Compiler or Translator to accommodate various extensions to
other manufacturers RPG and RPG II languages, which cannot be handled on the other specification forins.
Dollar Cards also allow certain compiler-control options to be set or reset during compilation.

Dollar cards may appear anywhere within the source deck, as required. Only one option can be entered on
a card and must be in the following format:

Columns

1-5

6

7

8

9-14

iS-24

25-74

75-80

RPG Extensions

Description

Page and Line Sequence Number

This field may be left blank or contain the form type to align with the
associated form that the $ option was inserted in.

A $ sign must appear in this field.

This field is used to specify that the option entered in the KEY WORD
field is set ON or OFF. (Blank= ON, N =OFF).

KEY WORD: This field is used to name the option that is to be used.
The option must be left-justified.

VALUE: This fieid is used to specify a vaiue to be associated with the
option. All values in alphanumeric form must be left-justified, numeric
form must be right-justified.

COMMENTS: This field is available for comments and documentary
remarks.

Program Name

The following options may appear only within the file description specifications, and must immediately
precede the specification line describing the file to which they apply.

NOTE

PACKID Specifies the pack name of a disk file. Similar to $ FAMILY and $ FILEID, default of
blank dp-id name and the MCP will assume systems pack. This entry should be included
to ensure correct handling of files by the MCP.

FAMILY Specifies the external family name (MFID) associated with the file. The VALUE
field contains the name which is one to ten characters, left-justified.

FILEID Specifies the external file identification (FID) associated with the file. The VALUE
field contains the name which is one to ten characters, left-justified.

AREAS Specifies the maximum number of areas to be allocated for the file (disk files only).
The VALUE field contains an integral value, I to 40, right-justified, leading zeros
optional. The default value assigned is 40, unless specified otherwise.

4-2

RPERA Specifies the maximum number of logical records that will be written in each disk
area. The VALUE field contains an integral value, right-justified, leading zeros optional.
The default value assigned is 500 unless specified otherwise.

OPEN Explicit open allows for all files to be opened at Beginning-of-Job. Default is an
implicit open when the files are actually called for.

CLOSE Explicit close allows all input serial files to remain opened until End-of-Job. Default
is the implicit close of files at End-of-File.

AAOPEN Is a file option used to set a bit in the MCP file parameter block and allocate
all disk space areas at the beginning of the program.

ONEPAK Specifies that this particular file must be contained on one disk.

CYL Allocates file areas starting on an integral cylinder boundary.

DRIVE Allocates a physical drive to that particular file. VALUE field must be 0-15. Option
may not be reset and is not related to P ACKID.

REFORM Input and update disk files are assumed to have the block and record length
declared on the file header unless the$ REFORM option is used. However, on input or
update chained indexed file specifications "data keys in core" option, it may be
desirable to also use$ REFORM to indicate to the compiler that it may juggle the
blocking factor to optimize the speed of chaining. Under this condition, the blocking
record-length specified on the File Description Specifications must be the same as when
the file was outputted. This combination will produce the fastest chaining possible.

REORG Specifies a specialized method of sorting indexed files will be invoked at End-of-Job.

NONEPACK

The REORG feature only sorts the additions and then merges them, in place, into the
master file. This method of sorting should decrease the sort time and the temporary
disk area required. The VALUE field contains the external file identifier of the indexed
file including disk pack-id.

File may be multipack.

Compiler-Directing Options

LIST

LOGIC

MAP

NAMES

Specifies that the compiler produce a single spaced output listing of the source
statements with the error or warning messages. This option is set "on" by default.
Resetting to "off' will not inhibit the errors or warning messages from printing.

Specifies that the compiler produce a single-spaced listing of each source specification
line followed immediately by an intermediate code used to generate COBOL-S code.
The listing is produced after the NAMES listing (if the NAMES option is set), and
does not include addresses or bit configurations, but only the opcodes and logical
operands of the program.

Specifies that the compiler produce a single-spaced listing detailing the program's
memory utilization. The MAP listing is produced after the LOGIC listing (if the
LOGIC option is set).

Specifies that the compiler is to produce a single-spaced listing of all assigned indicators
file names, and field names. The attributes associated with each file and field are also
listed. The NAMES listing is produced immediately after the normal source input
listing.

4-3

RSIGN

SEG

SUPR

XMAP

STACK

Indicates to the compiler, the location of the sign in numeric data items. When set,
all signs are assumed to be right-justified; when reset, all signs are assumed to be
left-justified. This option may be set and reset at different points in the Input and
Output-Format Specifications, allowing different fields to have different sign positions.
If the option is used, it will override the sign position specified in the Control Card
Specifications.

Orders the compiler to begin placing code in an overlayable segment identified by the
integer in the VALUE field (right-justified, between 0 and 7 inclusive). Segmentation
is an automatic function of the RPG compiler and opthnized for its best uage.
When the SEG option is used, automatic segmentation is not suppressed.

Specifies that the Compiler is to suppress all warning messages from the source pro
gram listing. (Error messages still print.)

Specifies that the compiler print a single-spaced listing of all the code generated,
complete with actual bit configurations and addresses. Combined with the listing
produced by the LOGIC option, complete information about the generated code of
the program is available. The XMAP listing is produced after the MAP listing if the
MAP option is set.

Due to infrequent stack overflow conditions during program execution, the user may
now change the stack size of the resultant program. This should only be used when a
ST ACK overflow condition has occurred. The default stack size is 313 bits which will
al!O\v 8 entries in the stack. To increase the stack size add 39 bits, for each additional
stack entry, to the default size of 313.

BAZBON This specifies that if an indicator is assigned to a field to test for ZERO or BLANK in
the Input or Calculation Specifications and the same field is used in the Output
Specifications with a BLANK AFTER designation, that indicator will be turned ON
after the field is blanked during the output operations. Should a N (not) be specified
in column 8 the indicator will be turned OFF, overriding the original RPG I or
RPG II specifications.

ZBINIT This specifies that all ZERO BLANK indicators are initialized ON at Beginning-of-Job
or if a N (not) is specified in column 8 they will be initialized OFF regardless of the
specifications for RPG II or RPG I.

XREF The XREF option must be placed at the beginning of the RPG source program, prior
to the first File Specification and prior to H card if present. This option allows the
RPGXRF file to be created during compilation for use as input to the RPG/XREF
program. At the completion of the compilation it is necessary to manually execute
the RPG/XREF program in order to obtain the cross reference listing.

PARMAP Produces a single-spaced listing of the compiler-generated paragraph names, source
statement numbers, and actual segment displacements of the emitted code. This
listing may be used to relate to the LOGIC listing.

RPG to COBOL Options

The following options may appear prior to the first source statement in the RPG program to direct the
compiler to terminate prior to generation of the code file. The intermediate work files in the disk
directory may then be used as input to COFIRS.

4-4

XLATE

XLIST

Specifies termination of the compiler prior to generation of the code file.

Specifies a single-spaced listing of the COBOL source language will be produced
during the execution of COFIRS.

Internal File Names

The RPG Compiler's internal file-identifiers and external file-identifiers for use in file statement are as
follows:

Internal External Description

LINE RPG/LIST Source output listing to the line printer.

SOURCE RPG/CARD Input file from the card reader.

TABCRD RPG/VECTOR Input file for TABLES from the card reader.

RPG Internal File Names

4-5

RPG TO COBOL TRANSLATOR (COFIRS)

General

The RPG to COBOL translator converts the intermediate disk file, previously created from the RPG
compiler through the$ XLATE option, to a COBOL source ianguage fiie on disk (SOLD fiie). This source
file is then acceptable input to the B 1700 COBOL compiler. The flexibility of this translator allows for
any RPG source statement, acceptable to the B 1700 RPG compiler, to be translated to COBOL with
little or no loss of run-time efficiency of the object program.

Execution of Translator

As a preliminary step to the execution of the translator, the RPG program must be compiled with the RPG
compiler using the$ XLATE option. An additional dollar card,$ XLIST, may also be included in the RPG
source deck if a listing of the generated COBOL source file is desired during the execution of the translator.

Example:

? COMPILE program-name RPG LIBRARY

? DATA RPG/CARD

$ XLATE
[$ XLIST] optional
(RPG SOURCE cards)

? END

Once the program has been compiled, the intermediate disk work file will be locked, prior to generating
the COBOL S-Language file. This file is then used as input to the translator.

The following is an example of the execute statement:

? EXECUTE COFIRS

At end of job, COFIRS will lock a COBOL source file named RPGCOB in the disk directory. This file may
then be used as input to the B 1700 COBOL compiler.

The following is an example of the RPGCOB file used as input to the COBOL compiler:

? COMPILE program-name COBOL LIBRARY

? FILE SOURCE NAME RPGCOB;

? DATACARDS

$MERGE

? END

4-6

COBOL COMPILER

General

The COBOL compiler is designed in accordance with the COBOL standard as specified by the American
National Standards Institute (ANSI). The COBOL compiler can function with any system that runs under
the control of the MCP.

The COBOL compiler in conjunction with the MCP allows for various types of actions during compilation
which are explained in the following paragraphs.

Compilation Card Deck

Control of the COBOL source language input is derived from presenting the compilation card deck to the
MCP. See figure 4-2.

Dollar Option Card

? DATA CARDS

FILE STATE
----------MENTS

(OPTL)

? COMPILE CARD

Figure 4-2. COBOL Compilation Deck

? END

$DOLLAR
OPTION
CARD(S)

The third card, excluding file statement cards, is the COBOL$ Option card. This card is used to notify
the compiler which options are desired during a compilation. Without the$ Option Card,$ CARD LIST
CHECK SINGLE will be assumed.

The $Option card has the following characteristics:

a. A $ sign must appear in column 7.

b. There must be at least one space separating options on a card.

c. There may be more than one option per card.

d. The options may be in any order.

e. Any number of$ cards may be used and may appear anywhere in the source deck. The option
will be set or reset from that point on.

4-7

f. Columns 1 - 6 are used for sequence numbers

The format of the$ Option card is as follows:

! [NO] option-I · · · [NO] option-n

OPTIONS

The options available for the COBOL compiler are listed below:

CARD Input is from the source language cards or paper tape. This option is for documentation
only.

LIST Creates a single-spaced output listing of the source language input, with error and/or
warning messages, where required.

_LISTP Lists the source images during the first compilation pass, and prints the error messages
as they occur.

SINGLE Causes the output listing to be printed in a single-spaced format.

DOUBLE Causes the output listing to be printed in a double-spaced format.

CODE List object code following each line of source code from the point of insertion.

MERGE Primary input is from a source other than a card reader and may be merged with a
patch deck in the card reader. It is assumed to be from a disk file, with a file-ID of
COBOLW /SOURCE, by default.

If it is desired to change the input file-ID or change the input device from disk to tape, a
LABEL EQUATION CARD must be used. The NEW option may be used with the
MERGE option to create a new output source file plus changes.

NEW Creates a NEW output source file with changes, if any, entered through the use of the
MERGE option, but does not include compiler option cards which must be merged in
from the card reader when compiling from disk or tape.

CHECK

The output file will be created on disk by default with the file-ID of COBOLW /SOURCE.

If it is desired to change the output file-ID or change the output device from disk to tape,
a LABEL EQUATION CARD must be used.

This option will cause the compiler to check for sequence errors and print a warning
message for each sequence error. The CHECK option is set on by default at the beginning
of each compile, but may be terminated with the NO CHECK option.

SUPPRESS Suppresses all warning messages except sequence error messages. The sequence
error message can be suppressed with the NO CHECK option.

SPEC If syntax ERRORS occur, this option negates the control and LIST option and causes
only the syntax errors and associated source code to be printed. Otherwise the CONTROL
and UST options r~main in effect.

4-8

"Non-numeric literal"
Is inserted in columns 73-80 of all following card images when creating a new source
file and/or listing. This option can be turned off or changed by a subsequent control
card with the area between the quote marks containing blank characters.

SEQ Starts resequencing, the output listing and the new source file if applicable, from the
last sequence number read in and increments the sequence number by ten or by last
increment presented in a previous $-option card. When resequencing starts at the
beginning of the program source statements the sequence will start with 000010.

SEQ nnnnnn
Starts reweauencing the output listing and new source file if applicable from the
sequence number specified by nnnnnn and increments the sequence numbers by ten.

SEQ +nnnnnn
Starts resequencing the output listing and new source file if applicable from the
last sequence number read in and increments by the number specified by +nnnnnn.
When resequencing starts at the beginning of the program source statements, the
sequence will start with 000010.

SEQ nnnnnn +nnnnnn

NO SEQ

Starts resequencing the output listing and new source file if applicable from the
sequence number specified by nnnnnn and increments by the value of +nnnnnn.

Terminates the SEQ option and resumes using the sequence number in the source state
ment as it is read in.

CONTROL Prints the $-option control cards on the output listing. The LIST option must be on.

NO When the NO option precedes one of the above options, with the exception of MERGE
which cannot be terminated, it will terminate the function of that option.

REFERENCE

ANSI

During debugging additional monitoring can be done to see the effect upon variables
specified in the MONITOR declaration and referenced in a statement that does not
change its value.

When used, will inhibit the EXTENSION of AT END ... ELSE, and during compilation
will flag them as syntax errors.

ST ACK [integer]

NOCOP

Is used to increase the program stack by "integer" bits. The default size, when at
least one PERFORM statement is used, is 1000 bits.

When used will generate COP entries in the code instead of a COP table causing more
memory to be utilized but faster program execution.

The NEW option does not have to be included when operating with a tape or disk source input, thus allow
ing temporary source language alterations without creating a new source output file.

The MERGE option without the NEW option allows a disk or tape input file to be referenced and to have
external source images included from the card reader on the output listing and in the object program. A
new output file will not be created.

Columns 1 - 6 of the Compiler Option Control card may be left blank when compiling from cards. A
sequence number is required when compiling from tape or disk when the insertion of the $ option is
requested within the source input.

4-9

Source Data Cards

The Source Data cards follow the $ Option control cards. These cards have two functions: (I) to update
and create a newer version of a program, and (2) cause temporary changes to the tape or disk source
program.

The following two paragraphs outline the Source Data Cards that are available to use with the COBOL
Compiler:

a. VOID Patch Card. Punch the beginning·sequence number in card columns 1-6 followed by a
$ sign in column 7 with the word VOID starting in column 8, and terminate with the optional
ending sequence number. This will delete the source statements beginning with the 6-digit
sequence number through the ending 6-digit sequence number. For example:

nnnnnn $VOID [nnnnnn]

If the ending sequence number is omitted, only the source statement associated with the beginning
sequence number will be deleted. For exarr._?le:

nnnnnn $VOID

b. CHANGE or Addition Patch Card. Punch the 6-digit sequence number in card columns 1-6 of the
card that is to be changed or added, followed by the data to be input in their applicable columns.
These cards must be arranged in the sequential order of the source program in order to be
MERGED correctly into the program.

The COBOL Compiler has the capability of merging inputs from punched cards or paper tape, either of
which may be merged with magnetic tape or disk.

The output listing wiil indicate any inserts andior replacements when in the MERGE mode.

The following are examples of a COBOL compile deck.

Example 1:

? COMPILE ALPHA WITH COBOL FOR SYNTAX

? DATACARDS

$ CARD LIST DOUBLE

. . . source program deck .

? END

? COMPILE ALPHA WITH COBOL SA VE

? DATACARDS

$ CARD NO CHECK DOUBLE

. . .source program deck.

? END

4-10

Internal File Names

The COBOL compiler's internal file-identifiers and external file-identifiers for use in Label Equation are
as follows:

Internal File-name External File-ID Description

CARDS CARDS Input file from the card reader. If $ MERGE is
used, this file will be merged with the input file
on disk or tape. The default input is from the card
reader.

SOURCE COBOLW /SOURCE Input file from disk or tape when the MERGE option
is used. The default input is from disk.

NEWSOURCE COBOLW /SOURCE Output file to disk or tape for a NEW source file when
the NEW option is used. The default output is to disk.

LINE LINE Source output listing to the line printer.

COBOL Internal File Names

4-11

FORTRAN COMPILER

General

FORTRAN (FORmula TRANslation) was designed for writing programs concerned with scientific and
engineering applications in mathematical-type statements. The FORTRAN compiler translates these state
ments into object code which can be executed by the B 1700.

B 1700 FORTRAN is designed to be compatible with FORTRAN IV, Level H, and to contain ANSI
Standard FORTRAN as a subset.

Compilation Card Deck

Control of the FORTRAN source program is derived by presenting to the MCP the FORTRAN compilation
card deck. See figure 4-3.

Dollar Option Card

_so~
/ I I

JJ~______,

Figure 4-3. FORTRAN Compilation Deck

$DOLLAR
OPTION
CARD(S)

The third card, excluding Label equation cards, and the standard COMPILE and D~AATA cards, is the
FORTRAN compiler$ Option control card. This card is used to notify the compiler as to which options
are required during the compilation. By omitting the $ Option card, the options "CARD LIST SINGLE"
are assumed.

The format for the FORTRAN$ Option control card is:

$ [NO] option-I · · · [NO] option-n

4-12

The FORTRAN$ Option control card has the following characteristics:

a. A$ sign inay appear in column 1 or 2. When placed in column 2, the$ option card will be
included in the new output source file if such a file is generated.

b. There must be at least one space between each item.

c. Options may be in any order.

d. Columns 73-80 are reserved for sequence numbering.

e. Any number of option cards may appear within the source deck.

OPTIONS

The options that are available for the FORTRAN compiler are as follows:

BIND Causes the intermediate code files to be bound into an executable code file.
This is a default option; if BINDING is not desired then NO BIND should be
used.

CARD Input is from source language cards. This is a default option.

CODE Lists the object code for each source code line from the point of its insertion
into the source deck.

DOUBLE Causes output source listing to be double spaced.

DYNAMIC [integer] This specifies the size in words to be assigned for an object program's dynamic
memory. The compiler by default will assign the dynamic memory either of
two ways: (1) if the data pages are less than 10, it assigns a size equal to the
sum of the data pages, or (2) if the data pages exceed 10, then the size of the
10 largest data pages are used.

ERRORTRACE Provides a FORTRAN level trace of subprogram and statement usage prior to
the detection of a run-time error. The ERRORTRACE option must be placed
before the first executable statement of the main program or any subprogram.
Once set it may reset at any point by the NO ERRORTRACE option.

LIST Creates a single spaced output listing of the source statements with error and/or
warning messages. This is a default option.

MERGE The MERGE option allows source input from disk or tape (disk by default,
file-identifier SOURCE) to be merged with source statements from a card
reader. The NEW option must be used with the MERGE option to create a new
output source file. When the NEW option is not used, both the output listing
and the object code file will reflect the merged statements but a new output
source file will not be created.

NEW Creates a new source output file having a file-identifier of NEWSOURCE. The
new output file will include any changes made by the use of t]J.e MERGE
option and any compiler option statements that have the dollar sign in
column two.

4-13

NO

PAGE

PROFILES

When used in conjunction with the following options, it will negate or put them
in a reset condition. There must be a space between NO and the option.

BIND
CODE
DOUBLE
LIST
SEQ ERR
SAVEICM

PROFILES
TRACEF

Causes the output listing to eject at that point and starta new page.

Is an optimization aid that indicates to the user those areas of a program that
can be optimized to improve program performance. At run time the following
data will be output by using the PROFILES option:

a. Frequency of subprogram usage.

b. Time spent in each subprogram.

c. Use of individual statements within a subprogram.

d. Use of each statement during program execution.

The PROFILES option must be placed before the first executable statement of
the main or subprogram. To reset the option use the$ NO PROFILES at any
point within the program.

SAVEICM Causes the intermediate code files for each syntax-error-free program part to
be made a permanent disk file at the end of the compilation.

SEQ Causes resequencing of the output listing and the new source file, if applicable,
starting with the default number 00001000 and incrementing sequence num
bers by 1000.

SEQ nnnnnnnn [nnnnnnnn]

Causes resequencing of the output listing and the new source file if applicable.
SEQ is followed by either an eight digit number which is the starting sequence
number; or two eight digit numbers with the first number being the starting
sequence number and the second the resequencing increment value. The
default resequence increment is 1000.

SEQERR Causes a warning message to be printed for statements out of sequence.

SINGLE Causes the output listing to be printed in single spaced format. This is a
default option.

STACKSIZE [integer]

TRACEF

Specifies the size in words to be allocated for the object program Evaluation
stack. Default size is 100; maximum size is 4096.

Causes a FORTRAN level trace to be printed for each FORTRAN statement
executed in the program. This option may be inserted anywhere within the
program. Once set, it remains set until reset by using NO TRACEF.

4-14

VOID

VOIDnnnnnnnn

Internal File Names

Causes the source input image corresponding to the sequence number of the
VOID card to be deleted from the input disk file.

Causes a series of source images to be deleted starting from the sequence num
ber in the sequence number field (73-80) through and including the sequence
number of the VOID option.

The FORTRAN Compiler's internal file-identifiers and external file-identifiers for use in Label Equation
are as follows:

Internal File-name External File-ID
(file-number) (Label) Description

CARDS CARDS Input file from the card reader.

LINE LINE Source output listing to the line printer.

SOURCE NEWSOURCE When$ NEW is used the output file will go to disk or tape.
The default output is to disk (80 character records,
blocked 2).

SOURCE SOURCE Input file is from disk or tape when $ MERGE is used.
The default input is from disk and assumed to be 80 char-
acter records, blocked 2.

FORTRAN Internal File Names

4-15

BASIC COMPILER

General

BASIC is a problem-oriented language designed for a wide range of applications and may be easily applied to
business, commercial, engineering and scientific processing tasks. The BASIC language is designed for
use by individuals who have little previous knowledge of computers, as well as individuals with considerable
programming experience. A distinct advantage of BASIC is that its rules of form and grammar are quite
easily learned.

B 1 700 BA.SIC includes the capabiiities of the original Dartmouth Coilege BASIC pius extensions provided
for compatibility with the General Electric MARK II® BASIC language.

The BASIC compiler, in conjunction with the Master Control Program, enables source programs to be
compiled through the use of a card reader or a card device. Compilation of the BASIC source language
input is achieved by presenting the compilation card deck to the MCP. Control cards included in the
compilation deck are of two general types: (1) MCP control cards, and (2) compiler $ Option control
cards. The structure of the BASIC compilation deck is discussed in the text that follows:

Compilation Card Deck

The entities comprising the structure of the BASIC compilation deck and the order of their occurrence
are shown in figure 4-4 below.

SOURCE DECK ---------DAT AC ARD

FILE STATEMENT
---------(OPTL)

COMPILE CARD ~~'--·

Figure 4-4. BASIC Compilation Deck

4-16

$DOLLAR
OPTION
CARD(S)

Dollar Option Card

The third card, exCiuding the optional Label Equation cards and the standard COMPILE and DAT A cards,
is the BASIC$ Option card. This card is used to notify the compiler which options are desired during a
compilation. By omitting the$ Option card, the options "CARD LIST SINGLE" are assumed.

The $Option cards for the BASIC compiler have the following characteristics:

a. All option cards are in a free-form format.

b. A line-number,which is required to be sequential within the program, cannot be greater than five
digits and must precede the $ sign.

c. The $sign may appear anytime after the line-number and before the first option.

d. All options listed on the card may appear in any order.

e. There must be at least one space between each option.

f. $ cards may be used anywhere within the source deck to either set or reset an option.

The format of the $ Option card is:

line-number $ [NO] option-I · · · [NO] option-n

OPTIONS

The following options are available for the BASIC compiler.

CARD Symbolic input is from source language cards. At the present time, this option is for
documentation purposes only.

LIST Creates a compilation output listing of the source language input, with error and/or
warning messages, where required. LIST is a default option.

SINGLE Causes the compilation output listing to be printed in a single-spaced format. SINGLE
is a default option.

DOUBLE Causes the compilation output listing to be printed in a double-spaced format.

CODE Lists the object code generated for a source statement from the point of insertion into
the source deck.

NO Each of the above options may be preceded with NO. This enables the options to be
set for selected program parts and then reset as desired. When an option is preceded
by NO, there must be at least one space between the word NO and the option to be
terminated.

Source Input Cards

The source program cards have the following characteristics:

a. Each card is taken as a different line and can contain only one statement. If the 96-column
cards are used, the source statement must be contained in the first 80 columns.

4-17

b. There can be no continuation cards.

c. Each card between the? DATA card and the? END card must contain a line-number.

d. A line-number starts in column 1 and can be a length of 5 digits.

e. The first non-numeric character will terminate the line-number when less than 5 digits.

f. The line-number is used both as a statement label and sequence number.

g. Each statement is sequence checked by the BASIC compiler as it is read in.

h. Spaces or blanks have no significance within a source statement except for information con
tained in string constants. Spaces can be used to make a program more readable.

Intrinsic Files

The BASIC intrinsic files (identified by the name BAS.INTRIN/ nnnnnnnn) must be present on disk when
a compiled BASIC program is executed; however, they are not needed when compiling the BASIC pro
gram. The intrinsic files contain input/output routines and intrinsic functions provided by the BASIC
language. If the intrinsic files reside on a user pack the INTRINSIC.DIRECTORY control instruction must
be used to identify the user pack, otherwise, the intrinsics are assumed to reside on the system pack.

Example:

? EXECUTE program-name

? INTRINSIC.DIRECTORY dp-identifier

? END

Sample Compilation Deck

In the following example, a BASIC program is to be compiled to LIBRARY and the object program,
EXAMPLE/PROGRAM, is to be entered in the disk directory of a removable disk cartridge labeled BAS.
In addition, the BASIC compiler resides on the removable disk, BAS. A $ card is enclosed to cause the
compilation output listing to be printed in a double-spaced format. The options CARD and LIST being
default options are not required, but are included on the $card for documentation purposes only.

? COMPILE BAS/EXAMPLE/PROGRAM BAS/BASIC/LIBRARY

? DATACARDS

10 $CARD LIST DOUBLE

20 INPUT X, Y, Z

30 PRINT "X="; X, "Y="; Y, "Z="; Z

40 END

? END

4-18

In the next example the compiled program EXAMPLE/PROGRAM is ready for execution. The compiled
program as well as the BASIC intrinsic files and the BASIC interpreter reside on the removable disk pack
labeled BAS. The card file labeled INPUT is required during execution of this program.

? EXECUTE BAS/EXAMPLE/PROGRAM

? INTRINSIC.DIRECTORY= BAS

? INTERPRETER = BAS/BASIC/INTERP2

? END

? DATAINPUT

12,32,56

? END

Internal File Names

The BASIC Compiler's internal file-identifiers and external file-identifiers for use in Label Equation are as
follows:

Internal File-name External File-ID Description

CARDS CARDS Input file from the card reader.

LINE LINE Source output listing to the line printer.

BASIC Internal File Names

4-19

UPL COMPILER

General

The User Programming Language (UPL) is a problem oriented language developed for writing B 1700 system
softwarn. The UPL Compiler is a single pass compilation that transforms the programmer's source state=
ments into object code. Figure 4-5 illustrates the generation of an UPL object program.

UPLSOURCE
COMPILATION
CARD DECK

Compilation Card Deck

UPL
COMPILER

UPL
PROGRAM
SOURCE
LISTING

Figure 4-5. UPL Compilation Process

Figure 4-6 contains an example of a UPL Compilation deck.

?COMPILE

FILE
STATEMENTS
(OPTIONAL)

Figure 4-6. UPL Compilation Card Deck

4-20

UPL
OBJECT
CARD

$DOLLAR
OPTION
CARDS

Compiler Options

The UPL Compiler has certain options available through a Dollar card ($)that gives the operator the ability
to override some of the standard compiler functions, alter stack sizes, suppress error and/or warning mes
sages, and merge and create a new source file from an existing file. Dollar options are either in a set or
reset condition. The UPL Compiler is preset with the following options: AMPERSAND, CHECK, LIST,
and SINGLE.

The UPL Compiler option card has the following format:

_! [NO] option-I · · · [NO] option-n

The UPL Compiler Dollar option card has the following characteristics:

a. Column one must contain a $ sign.

b. There must be at least one space between options on the same card.

c. Options may be set or reset in any order.

d. Columns 73-80 are reserved for sequential numbering.

e. There is no limit as to the number of options being set or reset during the compilation.

f. The option NO when appearing before any other option resets or negates that option.

The UPL Compiler options and their description are as follows:

AMPERSAND

CHECK

CODE

CONTROL

CREA TE.MASTER

CSSIZE integer

DEBUG

DETAIL

DOUBLE

Prints those ampersand cards that are examined.

Checks the source input file for sequence errors.

Print the SDL object code generated for each source statement.

Prints all compiler option cards from that point. If the option control
word CONTROL is required to be printed, the $ CONTROL (space)
CONTROL format must be used.

This option must be the first card in the compilation deck and causes the
compiler to perform the following functions:

a. Dump information to the master information files.

b. Create a new source file.

c. Create a new code file.

Assigns the number of entries in the Control stack represented by
integer and overrides the compiler estimate.

Compiler debug only.

Causes the compiler to list the expansion of all define invocations.

Double space listing.

4-21

DYNAMICSIZE integer

ESSIZE integer

FORMAL.CHECK

INTERPRETER
file-identifier

INTRINSIC
file-identifier
(family-name only)

LIST

LIST ALL

MERGE

NEW

NO

NSSIZE integer

PAGE

PPSIZE integer

SEQ beginning
sequence-num ber
increment

SINGLE

SIZE

SUPPRESS

Assigns the value of the integer as the estimated memory size allocated
for paged arrays. Integer is expressed in bits.

Assigns the number of entries in the EVALUATION stack by integer and
overrides the compiler estimate.

The checking of the actual parameters passed to each procedure during
execution against the TYPE and LENGTH specifications of their corre
sponding formal declarations. Also, the values returned from function
~ .. ,....,...,...,..:i .. .,.,... ... u.;11 i.,... ,...i,.,...,...1,,...,..:i ,..,..,..; + +i..,,. TVDD ..,.,.,.,..1 T Dl\.T~Tl-l ~ tho ...,..,.,..__
pl V\,;\,;U Ul \,;;:) VV 111 U\;; \,;11\;;\,;.1'.\;;U a 0 a111;:, l. Ul\,; .I. .I. .I. .L.J auu .l..J.l..J.l '11 '--' .1. .1. .1. .Ul t..llv 1-'.l v-

cedure head statement. Lack of correspondence is a run time error.

Causes the program when executed to use the assigned Interpreter rather
than the compiler default interpreter.

Causes the program when executed to use those intrinsics with the
assigned family-name rather than the compiler assigned family-name.

Prints the source input that was compiled. The NO option when invoked
with LIST will reset the LISTALL option also.

Prints all source input regardless if conditionally excluded. The LISTALL
option sets the LIST option, but NO LISTALL does not reset LIST.

Indicates to the compiler that the source file is on tape or disk and
there are cards to be merged during the current compilation.

Creates a new primary source file.

The presence of the NO option immediately before any other option
causes that option to be reset from that point on during the
compilation.

Assigns the number of entries expressed by integer to the Name
stack thereby overriding the compiler's estimated size.

Ejects page.

Assigns the number of entries expressed by integer to the Program
Pointer stack thereby overriding the compiler's estimated size.

Causes the output file to be resequenced beginning with the number
used with SEQ.

Single space listing.

Outputs at the end of the listing, the code segment names and
their sizes.

Causes all warning messages to be suppressed. To suppress sequence
error messages invoke the NO CHECK option.

4-22

VOID sequence
number

VSSIZE integer

XMAP

XREF
XREF.ONLY

Internal File Names

Causes all records in the primary source file (as in the case of the
MERGE) to be removed from the sequence number of the VOID
card itself through the sequence number entered with the VOID
option.

The VOID option has the following restrictions:

a. Must be the only compiler option on the card.

b. Cannot be preceded by the NO option.

c. Must contain a sequence number in columns 73-80.

Assigns the number of entri~s expressed by integer to the size of the
VALUE stack thereby overriding the compiler estimated size.

Causes an extended SDL object code MAP file to be created showing
the relative displacement of object code per source card sequence
number, per Code Segment.

The XREF options may be used in one of the two following modes:

a. A $XREF card at the beginning of the source deck will
cause the compiler to build and XREF file, then ZIP
SDL/XREF to sort and print the file at the end of the
pre-pass. The compilation will continue.

b. A $XREF .ONLY card at the beginning of the source deck will
cause the compilation to be terminated at the end of the pre
pass after the SDL/XREF program has been ZIPPED.

The UPL Compilers internal and external file identifiers are as follows:

Internal External Description

CARDS CARDS Card source input file.

SOURCE SOURCE Primary source input file if MERGE option
used.

NEWSOURCE NEWSOURCE Updated source output file if NEW option used.

LINE LINE Line printer file.

4-23

NOL COMPILER

General

The Network Definition Language (NDL) is a high level language for data communication and provides
a means of generating a B 1700 Network Controller. The B 1700 NDL Compiler translates the input
source code and outputs a NDL program listing, a Network Controlier code fiie, and the Network
Information File (NIF). Figure 4= 7 below illustrates the NDL generation process.

Compilation Card Deck

NOL
COMPILER

NOL
LISTING

Figure 4-7. NDL Generation Process

NOL
FILES

Figure 4-8 contains an example of a NDL compilation card deck used to compile a NDL program.

7 COMPILE

? DATA CARDS

~====~
FILE
STATEMENTS
(OPTIONAL)

(

1

:DL
SOURCE DATA
CARDS

Figure 4-8. NDL Compilation Card Deck

4-24

?END

$DOLLAR
OPTION
CARDS

Compiler Options

There are various options available that when invoked affect the compilation process. The options cover
areas such as list format, error and warning message handling, maintenance, changing stack sizes, and
merging source code.

An option is either in a set or reset condition. The NDL compiler is preset with the following options:
LIST, CHECK, and DOUBLE. All other options must be invoked using the dollar option card at compile
time. The NDL dollar option card has the following format:

~ [NO] option-I ... [NO] option-n

The dollar symbol($) must be in column one with one or more spaces separating each option specified.
With the one exception LIBRARY, there may be multiple options per card.

The available options and an explanation of their functions appear alphabetically as follows:

Option

CHECK

CODE

CONTROL

CSSIZE integer

DOUBLE

DYNAMICSIZE integer

ESSIZE integer

FORGETERRORS

LIBRARY

LIST

Description

This option causes the compiler to print warning messages
for sequence errors in the source language input. A
sequence error will occur when the sequence number of
the last card is greater than or equal to the current
sequence number.

The generated SDL code (S-operators) will be listed on
the line-printer.

The dollar($) option cards will be output on the object
program listing.

This option is used to alter the Control stack size to
integer entries.

Double space listing.

Sets the Network Controller's dynamic memory size to
integer bits.

The Network Controller's Evaluation stack size may
be set to integer entries.

Directs the compiler to generate the object Network
Controller despite syntax errors.

The NDL source code specified by standard identifier
is retrieved from the NDL source/standards and inserted
in the user's program following the $ LIBRARY card.

The LIBRARY option may not be included on a card
containing other options.

When the LIBRARY option is used to access standard
REQUEST and CONTROL routines, the standard
REQUESTS must precede the standard CONTROLS.

The source code will be listed.

4-25

LST

MERGE

NEW

NIF

NSSIZE integer

NO

PPSSIZE integer

SEQ

SGL

SINGLE

SUPPRESS

VS SIZE integer

VOID

The source code will be listed.

This option is used to merge the primary input with the
secondary input.

A new source file will be created for use later as secondary
input when this option is specified.

This option allows the creation of a new Network
Controller in about half the time required for a totai
compilation. The old requests and line control code
must remain unchanged.

The Network Controller's Name stack size may be set
to integer entries.

Options may be reset by specifying $ NO followed by the
name of the option to be reset. This allows options to be
set and reset at the user's discretion. NO does not affect
the VOID or LIBRARY options.

Sets the Network Controller Program Pointer
stack size to integer entries.

The source may be sequenced by supplying a beginning
sequence number and an increment. The numbering will
begin at SEQ BASE and will be incremented by SEQ
INCRMT. A plus sign(+) is used to separate SEQ BASE
and SEQ INCRMT which are both integers.

$ SEQ SEQBASE + SEQ INCRMT

If only $ SEQ is specified thereby omitting SEQ BASE
and SEQ INCRMT, the numbering will start with
00000000 and increment by 100.

Single space listing.

Single space listing.

Prohibits the syntax warnings to be printed on the object
program listing.

The Network Controller Value stack size may be set to
integer bits.

When VOID is used in conjunction with $ MERGE, it eiimi
nates certain unwanted secondary source records from the new
new source file being created.

By specifying$ VOID, the secondary source record with the
current sequence number is skipped by the compiler.

$VOID may also be followed by an eight character integer
which instructs the compiler to skip all secondary source
records beginning at the current sequence number and con
tinuing until a secondary source record is read that has a
sequence number higher than the eight character integer
specified.

4-26

Internal File Names

The NDL's internal and external file identifiers are as follows:

Internal External Description

CARDS CARDS Input file from card reader.

LINE LINE Source output listing to line printer.

SOURCE SOURCE Input file from disk or tape when the
MERGE option is invoked.

NEWSOURCE NEWSOURCE Output file to disk or tape when the new
option is invoked. Default is to disk.

NIP NDL/NIF Network Information File

ADDRESS NOL/ADDRESS Network Controller Address File

MACRO NDL/MACRO Skeletal Network Controllers

LIBRARY NOL/LIBRARY Library

I

4-27

MIL COMPILER

General

The Micro Implementation Language (MIL) is a symbolic coding technique that makes available all the
capabilities of the B 1700 processor. A MIL program contains a set of micro instructions that are
directly executable upon the B I 700 hardware. MIL assumes interpretive or indirect processing of
information contained in main memory.

Compilation Card Deck

Figure 4-9 contains an example of a MIL compilation deck.

FILE
STATEMENTS

________ COPTIONAL)

?COMPILE

$DOLLAR
OPTION
CARDS

Figure 4-9. MIL Compilation Card Deck

Compiler Options

?END

$DOLLAR
MODULE
OPTION CARD

The$ Option Card is used to notify the MIL Compiler as to which options are required by the programmer
during compilation.

The $Option card for the MIL Compiler has the following format:

1 [NO] option-I ... [NO] option-n

The MIL$ Option Card has the following characteristics:

a. Column one must be a $ sign.

b. There must be at least one space between options.

c. Op lions may u~ i11 a11y 01 der.

4-28

d. Columns 73-80 are reserved for sequence numbering.

e. Any number of$ Option Cards may appear anywhere within the source deck.

f. The optional word NO appearing before any option RESETS that option.

The MIL Compiler is preset with the following options: LIST, ALLCODE, SINGLE, AMPERSAND,
and CHECK. --

ALLCODE

AMPERSAND

CHECK

DEBUG

DECK

DOLLAR

DOUBLE

EXPAND

FORCE

HEADINGS

LINES.PER.PAGE

LIST

LIST ALL

MERGE

NEW

NO

PAGE

PAGE.NUMBERS

PARAMETER.BLOCK

SEQ

SINGLE

SUBSET

Lists all codes generated by each MIL statement.

Prints all ampersand(&) cards.

Checks for sequence errors.

Debugs compiler only.

Punches an object deck.

Prints all dollar($) cards.

Double spaces listing.

Prints all statements within a macro invocation.

Outputs all files regardless of syntax errors.

Prints headings and titles on top of each page; does not
affect line count.

Specifies the number of lines to be put on the page of a listing.

Lists all MIL source input that is compiled.

Lists all MIL source input regardless whether conditionally
excluded.

Merges the secondary source of input with the file SOURCE. When
a duplicate sequence number exists the record from the card file will
be used.

Creates a new source file.

Resets option.

Ejects page of listing at that point.

Numbers the pages of the listing and maintains a count.

Used in conjunction with DECK and causes a parameter block to be
punched with the deck. Used primarily with interpreters that are
to be run with the MCP.

Resequences and outputs NEWSOURCE file and listing.

Single spaces program listing.

Generates code for the B 1710 series processors.

4-29

SUPPRESS

VOID

XREF

XREF .LABELS

XREF.NAMES

Module Option Dollar Card

Suppresses all warning messages except sequence error messages.

Voids those images from the secondary input file SOURCE which
have sequence fields less than or equal to the terminating
sequence field. If the terminating sequence field is missing, then the
only image voided is the first one with the same sequence field as
the VOID card.

Produces a listing of all user specified names and labels with each
identifier associated with its sequence number for each declaration
and invocation.

Produces a cross reference of labels only.

Produces a cross reference of user specified names only.

The module option dollar card($) is used to set or reset user defined toggles used in conjunction with
IF statements in the conditional inclusion of source statements. It may be used anywhere within the
source deck, and each module option dollar card affects only those user defined toggles which are
referenced on that card. A user defined toggle can only be referenced by an IF statement when declared
(set or reset) on a module option dollar card.

Exam pie:

$ SET SYSTEM!, RESET SW2, SET SW4, SET SWS

Internal File Names

The MIL Compiler's internal and external file identifiers are as follows:

External

I

. CARDS

LINE

CARDS

LINE

I SOURCE SOURCE

NEWSOURCE NEWSOURCE

Description

Input file from the card reader.

Source output listing to the printer.

Input file from disk or tape when the MERGE

Output file to disk or tape when the NEW
on ti on llO: tnvol<PO np f~111 lt llO: t" il1~ 'k -r ----- --- . -----· - ------- - -- _..__

4-30

Object Code Deck Format

The DECK option causes the object code to be output to punched cards. The cards have the following
format with all fields except the program identifier in hexadecimal format.

Card Columns Description

1-6 24-bit control memory address.

8-9 8-bit count of the number of bits of data on this card.

11-70 Contains up to 240 bits of data, left justified.

72-80 Program identifier, used for documentation only.

Compiler Restrictions

a. The only source of input is the card reader, unless otherwise specified by the MERGE option.
Once the MERGE option has been invoked, card only input is not possible.

b. When dollar cards($) are not included in the compilation deck, the default options will prevail.

c. Options may be reset only by using the NO option. A space must separate NO and the
option being reset.

d. Comments may appear on dollar cards only if preceded by either an asterisk(*) or a percent(%)
sign.

e. Dollars cards are not included as part of the NEWSOURCE file when the option NEW is specified.

4-31

SOL COMPILER

General

The Software Development Language (SDL) was developed specifically for writing the system software
for B 1700 systems. SDL is a high-level, procedure oriented language. All programs written in SDL
source language must be processed by the SDL Compiler. The SDL Compiler transforms the source
statements into S-Code to be interpreted by a set of micro-instructions called firmware.

Compilation Caid Deck

Figure 4-10 contains an example of a SDL compiiation card deck.

?COMPILE

Compiler Options

7 DATA CARDS

~====::::;;,
FILE
STATEMENTS
COPTIONAL)

SOURCE
DECK

Figure 4-10. SDL Compilation Card Deck

7END

$DOLLAR
OPTION
CARDS

The SDL Compiler has certain options that are available to the operator or programmer that may be
implemented at the time of compilation. These options are input by card along with the source deck
and have the following format:

~ [~"O] option- I ... [NO] option-n

The SDL Dollar($) Options have the following characteristics:

a. Column one must contain a $ sign.

b. There must be at least one space between options.

c. Options may be in any order.

d. Columns 73-80 are reserverl for ~equence numhering,

4-32

e. Any number of options may appear anywhere within the source deck.

f. The option NO appearing before any other option resets or negates that option.

The following is a list of the SDL Compiler options ai:id their definitions.

AMPERSAND

CHECK

CODE

CONTROL

CREATE.MASTER

CSSIZE integer

DEBUG

DETAIL

DOUBLE

DYNAMICSIZE integer

ESSIZE integer

FORMAL.CHECK

INTERPRETER
file-identifier

INTRINSIC
file-identifier
(family-name only)

Prints those ampersand cards that are examined.

Checks the source input file for sequence errors.

Prints the SDL object code generated for each source
statement.

Prints all Compiler Dollar Option cards from that point.
If the option word CONTROL is to be printed, $ CONTROL
(space) CONTROL format must be used.

When used, this option must be the first card in the compilation
deck and causes the compiler to perform the following
functions:

a. Dump information to the master information files.

b. Create a new source file.

c. Create a new code file.

Assigns the number of entries in the Control stack
represented by integer and overrides the compiler estimate.

Debugs compiler only.

Causes the compiler to list the expansion of all define
invocations.

Double spaces listing.

Assigns the value of the integer as the estimated memory size
allocated for paged arrays. Integer is expressed in bits.

Assigns the number of entries in the Evaluation stack
by integer and overrides the compiler estimate.

Causes the checking of the actual parameters passed to each
procedure during execution against the TYPE and LENGTH
specifications of their corresponding formal declarations.
Also, the values returned from function procedures will be
checked against the type and length in the procedure head
statement. Lack of correspondence is a run time error.

Causes the program when executed to use the assigned
interpreter rather than the compiler default interpreter.

Causes the program when executed to use those Intrinsics
with the assigned family-name rather than the compiler
assigned family-name.

LIST

LIST ALL

MERGE

NEW

NO

NSSIZE integer

PAGE

PPSIZE integer

SEQ beginning-sequence
number increment

SINGLE

SIZE

SUPPRESS

VOID sequence number

VSSIZE integer

XMAP

Prints the source input that was compiled. The NO option
when invoked with LIST will reset the LIST ALL option also.

Prints all source input regardless if conditionally excluded.
The LISTALL option sets the LIST option on, but NO
LISTALL docs not reset LIST.

Indicates to the compiler that the source file is on tape or
disk and there are cards to be merged for the current
compilation.

Creates a new primary source file.

The presence of NO immediately before any other option
negates that option.

Assigns the number of entries expressed by integer to the
Name stack thereby overriding the compiler estimated size.

Ejects page.

Assigns the number of entries expressed by integer to the
Program Pointer stack thereby overriding the compiler
estimated size.

Causes the output file to be resequenced beginning with the
number used with SEQ.

Single spaces listing.

Outputs at the end of the listing the code segment names
and their sizes.

Causes all warning messages to be suppressed. To suppress
sequence error message invoke the NO CHECK option.

Causes all records in the primary source file (as in the case of
the MERGE) to be removed from the sequence number of the
the VOID card itself through the sequence number entered
with the VOID option.

The VOID option has the following restrictions:

a. Must be the only compiler option on the card.
b. Cannot be preceded by the NO option.
c. Must contain a sequence number in columns 73-80.

Assigns the number of entries expressed by integer to the size
of the Value stack thereby overriding the compiler
estimated size.

Causes an extended SDL object code MAP file to be created
showing the relative displacement of object code per source
card sequence number, per Code Segment.

4-34

Internal File Names

The SDL Compiler's internal and external file identifiers are as follows:

Internal External Description

CARDS CARDS Card source input file.

SOURCE SOURCE Primary input source file if MERGE option
used.

NEWSOURCE NEWSOURCE Updated source output file if NEW option
used.

LINE LINE Line printer file.

SOL Recompilation

The recompilation of an SDL program creates a Master Information File.

The create master must take place once and then may be followed by successive recompilations. Both the
create master and the recompilation may be performed at the same time. In addition it is possible to
perform successive regular compilations without invoking the recompilation facility~-

CREATING MASTER INFORMATION FILES

In order to crec;ite Master Information Files, the first card of the compilation source file must be a
$ CREATE.MASTER option card. This option causes the SDL Compiler to perform the following
functions:

a. Save information needed for the recompilation into master files.

b. Create a new source file about which the information is to be used.

c. Use the Master Information Files and the new source file to create a new output code file.

The following files contain the information to be saved and used in the recompilation process.

NEWSOURCE

NEW .INFO .FILE

NEW.BLOCK.ADDRESS.FILE

NEW.SECONDARY.FILE

NEW.PPB.FILE

4-35

The following information is contained in the master information files: the input source images, Lexie
Level one procedure boundaries for both the source file and object file, Lexie Level zero symbol tables, a
record of all code addresses that have been emitted, the object code from which code addresses that have
been emitted, the object code from which code addresses that have been emitted, the object code from which
code addresses have been excised, the File Parameter Blocks, and SCRA TCHPADS. (Refer to B 1700 Master
Control Reference Manual~ dated June~ 1974, and B 1700 System Reference Manual, dated December, ! 973.)

CREATE MASTER RESTRICTIONS

The create master operation has the foliowing restrictions:

a. $ CREATE.MASTER must be the first card of the compilation source card file.

NOTE

This is to include any ampersand c<:irds; they sould be
sequenced.

b. $ NEW is not needed for this operation.

c. $SEQ should be used if any input source images do not contain sequence numbers.

RECOMEILING

Recumpiiation is performed on a Lexie Levei one procedurai basis. That is, the outermost procedure
containing a recompilation source card is the procedure which is recompiled. The code that is produced by
the recompilation will be merged into, and in some cases replace some of the information created during
the create master process.

The recompilation is invoked by including as the first card of the recompilation source deck a
$ RECOMPILE.

The $ RECOMPILE causes the compiler to use the recompilation source deck (usually referred to as
"patches'') and the master information files to locate the Lexie Level one procedures and generate the same
information for them as was generated for the entire program in the create master operation. This infor
mation is then combined, procedure by procedure, with the Master Information Files to produce the final
form of the program that is turned into a new code fiie.

RECOMPILATION RESTRICTIONS

Tne recompilation process has the following restrictions:

a. The $RECOMPILE must be the first card of the recompilation source deck (patch deck).

b. The recompilation source deck may contain dollar cards, and ampersand (SET and RESET)
cards, followed by the patch cards.

c. Lexie Level zero code cannot be patched. This includes all global data, Lexie Level one procedure
headings, and the main program.

d. Neither$ SEQ or$ MERGE options may be invoked while using$ RECOMPILE process.

e. The source file that is input during the recompilation must be on disk in order that it may be
accessed randomly.

4-36

CREATE MASTER AND RECOMPILE OPERATION PERFORMED TOGETHER

Both the create master and the recompilation process may be performed at the same time. Simply adhere
to the rules for each separate operation and use $ RECOMPILE CREATE.MASTER as the first card of the
source deck. It should be noted, however, that this procedure updates some of the information in the file
MASTER.INFO.FILE. Therefore, the file must be saved because if any subsequent recompilations are
desired, they must be performed against the saved master file.

GENERAL INFORMATION

1. The only information which may be listed during a recompilation is that which is being
recompiled.

2. Both the source file used with$ CREATE.MASTER and the file created by$ CREATE.MASTER
may be on tape, but the new source file must be placed on disk prior to any recompilations.

3. Because of the disk space required for recompilation, it is advantageous to keep source files on
tape until needed.

4. The source image file created by the create master process contains no information other than the
source images. Therefore it may be used in a regular compilation.

SDL COMPILATION DECK EXAMPLES

Compile and Create Master

? COMPILE SA SDL LIBRARY
? FILE SOlJRCE NAME SA0206/SOURCE TAPE;
? FILE NEWSOURCE NAME SA0410/SOURCE TAPE;
? FILE NEW.INFO.FILE NAME SA0410/INFO;
? FILE NEW.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE NEW.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE NEW.PPB.FILE NAME SA0410/FPB;
? DATA CARDS
$ CREATE.MASTER
$ MERGE LIST SINGLE SIZE SEQ
[PATCH CARDS]
[99999999 CARD]
? END

Recompile

? COMPILE SA SDL LIBRARY
? FILE SOURCE NAME SA0410/SOURCE;
? FILE MASTER.INFO~FILE NAME SA0410/INFO;
? FILE MASTER.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE MASTER.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE MASTER.PPB.FILE NAME SA0410/FPB;
? DATACARDS
$ RECOMPILE
$ LIST SINGLE SIZE
$ VSSIZE 10000 NSSIZE 100
[PATCH CARDS]
[99999999 CARD]
? END

4-37

Recompile and Create Master

? COMPILE SA SDL LIBRARY
? FILE SOURCE NAME SA0410/SOURCE;
? FILE MASTER.INFO.FILE NAME SA0410/INFO;
? FILE MASTER.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE MASTER.SECONDARY.FILE NAME SA04iOiSECONDARY;
? FILE MASTER.FPB.FILE NAME SA0410/FPB;
? FILE NEWSOURCE NAME SA0411/SOURCE TAPE;
? FILE NEW.INFO.FILE NAME SA 0411/INFO;
? FILE NEW.BLOCK.ADDRESS.FILE NAME SA0411 /BLOCK.ADDRESS;
? FILE NEW.SECONDARY.FILE NAME SA041 l/SECONDARY;
? FILE NEW.FPB.FILE NAME SA041 l/FPB;
? DATACARDS
$ RECOMPILE CREATE.MASTER
$ VSSIZE I 0000 NSSIZE 100
$ UST SING LE SIZE
[PATCH CARDS]
[99999999 CARD]
? END

4-38

"'O
G) --0 ,,
C>
c

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 1700 SYSTEMS
SYSTEM SOFTWARE

. OPERATIONAL GUIDE

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM: 1068731

DATE: 3-75 ------

0ERROR

-2 0 11--~~----~~-~----"--~---------------~
GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: -::>

u

FROM: NAME
TITLE
COMPANY~~~~~~~~~~

ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

-----------------------~-------------------------------------~----------------------------

attn: Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
Burroughs Place
Detroit, Michigan 48232

Technical Information Organization, TIC-Central

-------~---~-----------------~---------

FOLD UP FIRST FOLD UP

1068/Jl 3- 75 Printed in U.S. America

