UNiSYS A Series
COBOL ANSI-74

Programming
Reference Manual

Volume 2: Product
Interfaces

Release 3.9.0 September 1991

U S America
Priced Item 8600 0130-000

Product Information
Announcement

0 New Release o Revision e Update o New Mail Code

UNISYS

Title

A Series COBOL ANSI-74 Programming Reference Manual, Volume 2: Product Interfaces

This Product Information Announcement announces the release of Update 1 to the A Series COBOL ANSI-74
Programming Reference Manual, Volume 2: Product Interfaces, dated September 1991, relative to the Mark
3.9.0 System Software Release.

This manual describes the extensions to the standard COBOL ANSI-74 language. These extensions are designed to
allow application programs to interface with the Advanced Data Dictionary System (ADDS), the Communications
Management System (COMS), the Data Management System |1 (DMSII), the DMSI| Transaction Processing System
(TPS), the Screen Design Facility (SDF), the Screen Design Facility Plus (SDF Plus), and the Semantic Information
Manager (SIM) products. This manual is written for programmers who are familiar with COBOL74 programming
language concepts and terms.

Update 1 includes varied technical changes and clarifications that have developed since publication of the 3.9.0
version of this manual. '

Changes to the text are indicated by vertical bars in the margins of the replacement pages.

Remove Insert
iii through iv iii through iv
vii through x vii through x

xiii through xxiv
1-5 through 1-6
2-1 through 2-2
2-5 through 2-10
2-13 through 2-14
2-19 through 2-20
3--3 through 3-6
3-9 through 3-10
3-23 through 3-26
3-47 through 3-48
3-55through 3-56

4-51 through 4-52
6-1 through 6-26
7-1 through 7-8
7-17 through 7-20
8-1 through 8-6

8-13 through 8-14

xiii through xxiv

1-5 through 1-6
2-1 through 2-2
2-5 through 2-10
2-13 through 2-14
2-19 through 2-20
3-3 through 3-6
3-9 through 3-10B
3-23 through 3-26
3-47 through 3-48
3-55 through 3-56

4-18A through 4-18B

4-51 through 4-52B

_6-1 through 6-30

7-1 through 7-8
7-17 through 7-20
8-1 through 8-2B
8-3 through 8-6
8-13 through 8-14

continued

Announcement and attachments: System: A Series
AS121 Release: Mark 4.0.0 July 1992

Announcement only:

Part number: 8600 0130-010 -

Remove Insert

8-37 through 8-40 8-37 through 8-40
8-57 through 8-58 8-57 through 8-58B
8-65 through 8-72 8-65 through 8-72
8-77 through 8-78 ' 8-77 through 8-78
Bibliography-1 through 2 Bibliography-1 through 2
Index-1 through 32 Index-1 through 32

Retain this Product Information Announcement as a record of changes made to the base publication.

To order additional copies of this document

® United States customers call Unisys Direct at 1-800-448-1424

o Al other customers contact your Unisys Subsidiary Librarian

® Unisys personnel use the Electronic Literature Ordering (ELO) system

UNISYS

Printed on recycled paper

A Series
COBOL ANSI-74

Programming
Reference Manual

Volume 2: Product
Interfaces

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0 September 1991

U S America
Priced Item 8600 0130-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The infofmation contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 19 Morgan,
Irvine, CA 92718.

Page Status

Page , Issue
iii through iv —010
v through vi -000
vii through x _ -010
Xi -000
Xii Blank
xiii through xix -010
XX Blank
XXi -010
XXii Blank
Xxiii -010
XXivV Blank
1-1 through 1-4 -000
1-5 through 1-6 -010
1-7 through 1-8 - =000
2-1 through 2-2 ' -010
2-3 through 24 -000
2-5 through 2-10 - -010
2-11 through 2-12 -000
2-13 through 2-14 -010
2-15 through 2-18 -000
2-19 through 2-20 -010
2-21 through 2-22 -000
3-1 through 3-2 -000
3-3 through 3-6 -010
3-7 through 3-8 - -000
3-9 through 3-10A -010
3-10B Blank
3-11 through 3-22 -000
3-23 through 3-26 -010
3-27 through 3-46 -000
3-47 through 3-48 -010
3-49 through 3-54 -000
3-55 through 3-56 -010
3-57 through 3-61 -000
3-62 Blank
4-1 through 4-18 -000
4-18A -010
4-18B Blank
4-19 through 4-50 -000
continued

8600 0130-010

Page Status

continued
Page ‘ - lssue
4-51 through 4-52A -010
4-52B Biank
4-53 through 4-82 -000
5-1 through 5-51 - =000
5-52 Blank
6-1 through 6-29 -010
6-30 Blank
7-1 through 7-8 =010
7-9 through 7-16 -000
7-17 through 7-20 -010
7-21 through 7-34 -000
8-1 through 8-2A -010
8-2B Blank
8-3 through 8-6 -010
8-7 through 8-12 -000
8-13 through 8-14 -010
8-15 through 8-36 -000
8-37 through 8-40 -010
8-41 through 8-56 -000
8-57 through 8-58A -010
8-58B ‘ Blank
8-59 through 8-64 -000
8-65 through 8-72 -010
8-73 through 8-76 -000
8-77 through 8-78 -010
8-79 through 8-84 -000
A-1 through A-5 -000
A-6 : ‘ Blank
B-1 -000
B-2 Blank
Glossary—1 through 31 -000
Glossary-32 ‘ Blank -
Bibliography-1 through 2 -010
Index—1 through 31 -010

Index-32 . Blank

Unisys uses an 11-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of —~000. A suffix of —130 designates the
third update to revision 1. The third digit (2) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

8600 0130-010

About

Purpose

This Manual

This manual is the second volume of a two-volume reference set. The A Series COBOL
ANSI.74 Programming Reference Manual, Volume 1: Basic Implementation provides

the

syntax and general usage of standard COBOL74. Volume 2 contains information on

using Unisys standard COBOL74 to write application programs that interface with the
following products:

Advanced Data Dictionary System (ADDS)
Communications Management System (COMS)
Data Management System IT (DMSII)

DMSII transaction processing system (TPS)
Screen Design Facility (SDF)

Screen Design Facility Plus (SDF Plus)
Semantic Information Manager (SIM)

SDF is a member of the InterPro™ (Interactive Productivity) family of products. ADDS
and SIM are members of the InfoExec™ (Information Executive) family of products.

Scope

For

each product, Volume 2 presents information on

The purposes of COBOL74 interfaces with the product

The product features and functions that an interface can manipulate
The uses of the language extensions of a product

The means by which each language extension is used

The information necessary for writing COBOL74 programs that use combined
products

The Unisys standard COBOL.74 covered in the manual is implemented for use on
A Series systems. Unisys standard COBOL74 is based on, and compatible with, the
American National Standard, X3.23-1974.

InfoExec and InterPro are trademarks of Unisys Corporation.

8600 0130-000

About This Manual

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the Conference
on Data Systems Language (CODASYL) as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee in connection therewith.

The authors and copyright holders of the copyrighted material used herein have

_ specifically authorized the use of this material, in whole or in part, in the COBOL

specifications. These authors or copyright holders are the following:
e FLOW-MATIC, programming for the UNIVAC I and II, Data Automation Systems,
copyrighted in 1958, by Sperry Rand Corporation

e IBM Commercial Translator, form No. F 28-8013, copyrighted in 1959 by the
International Business Machines Corporation

e FACT DSI 27 A5260-2760, copyrighted in 1960 by Minneapolis-Honeywell

Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

Audience

The information in this manual is intended for application programmers who are
programming in COBOL74 and require the capabilities of one or more products.

Prerequisites

- To use this manual, you should be familiar with COBOL74, the product or products

being used, and the programming concepts for the products.

How to Use This Manual

vi

Throughout this manual, Volume I refers to the A Series COBOL ANSI-74
Programming Reference Manual, Volume 1: Basic Implementation.

This manual is structured so that you only need to look at the sections that apply to
your needs. The first section summarizes the extensions used with each product. After
this introductory section, a separate section is provided for each product. This volume
contains information that complements Volume 1 and the manuals that describe the
interfaced products. For a discussion of those products, refer to the documentation for
each product. A list of this documentation is provided in “Related Product Information”
later in this preface. For the usage of Unisys Standard COBOL74 not specific to the
products in this volume, refer to Volume 1.

Many of the discussions in this volume use COBOL74 code to illustrate an aspect of a
product interface. Most examples do not include line numbers; it is assumed that the

8600 0130-000

About This Manual

first character of a line of source code is located in the appropriate column. Complete
program examples have line numbers to provide continuity for programs that span
several pages.

The glossary includes terms whose definitions help you to understand the functions
and extensions described in this volume. For definitions of general Unisys Standard
COBOL74 terms, refer to Volume 1. For definitions of product-specific terms, refer to
the manual for that product.

The glossary defines and spells out each acronym found in this volume. Acronyms are
also spelled out the first time they occur in the manual.

The syntax for the language extensions is described in COBOL notation; for a compléte
explanation of COBOL format notation, refer to Volume 1. ‘

Unless otherwise specified, manuals referred to in the text are for A Series systems.
The full title of a manual is used the first time the manual is referenced; shortened titles
are used in subsequent references.

Organization

This volume is organized into eight sections. The first section is an introduction to
program interfaces, and each subsequent section describes a program interface for a
specific product. - Appendixes are included to provide related information. A glossary, an
index, and a bibliography are provided at the end of the volume. A brief description of
the contents of the manual follows. '

Section 1. Introduction to COBOL74 Program Interfaces

This section describes the concept of a COBOL74 interface with a product and
introduces the product sections that follow. It includes information on the extensions
covered in each product section, and the extensions that apply when products are used in
combination. :

Section 2. Using the ADDS Program Interface

This section describes how the ADDS interface invokes entities from the data dictionary,
tracks programs, selects processing options, and sets entity status. It covers the
requirements and options for using ADDS with other products, and presents the syntax,
explanations, and program examples of the language extensions. It also references
information on defining prefixes and synonyms and about entity tracking for programs.

Section 3. Using the COMS Program Interface

This section introduces the COMS interface and gives an overview of the extensions

and their relationships to the product features. COMS provides a general message
control system. This section describes the syntax and explanation for each extension and
provides program examples. Information is also provided on using COMS with other
products. ' ‘

8600 0130-010 , vii

About This Manual

Section 4. Using the DMSII Program Interface

This section contains information on the extensions developed for the DMSII interface
that invoke databases, use data management statements and database items, and
handle exception conditions. This section also contains an explanation of the syntax and
examples of extensions.

Section 5. Using the DMSII TPS Program Interface

This section outlines the features of TPS and describes the extensions that invoke a
transaction base, create transaction records, use the transaction library entry points, and
process transactions. The section also includes program samples.

Section 6. Using the SDF Program Interface

This section summarizes the features of SDF and explains the extensions that process
forms, use message keys, and manipulate programmatic controls. The syntax and
explanation of extensions are included as well as program examples. The section briefly
discusses the use of other products with SDF. ' :

Section 7. Using the SDF Plus Program Interface

- This section contains the extensions developed for the SDF Plus interface. These
extensions define a complete form-based user interface for COBOL74 application
systems.

Section 8. Using the SIM Program Interface

This section describes the extensions for the SIM interface. The extensions manipulate
data stored in a SIM database. The section provides information about declaring
queries, performing transactions, using functions and expressions in a program, and
handling exceptions. The text includes syntax, explanations, and examples.

Appendix A. Reserved Words

This appendix lists COBOL reserved words. A reserved word has a special meaning to
COBOL and cannot be redefined by the programmer.

Appendix B. User-Defined Words

This appendix lists variable words or terms required in clauses or statements for which
you must define names. '

viik 8600 0130-010

About This Manual

Related Product Information

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (8600 0296) '

This manual describes the basic features of the standard COBOL ANSI-74 programming
language, which is fully compatible with the American National Standard, X3.23-1974.
This manual is written for programmers who are familiar with programming concepts.

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide
(1169901)

This guide documents COBOL74 TADS, an interactive tool for testing and debugging
COBOL74 programs and libraries. This guide is written for programmers familiar with
COBOL74 programming language concepts and terms.

A Series Communications Management System (COMS) Programming Guide
(8600 0650)

The guide explains how to write online, interactive, and batch application programs that
run under COMS. This guide is written for experienced applications programmers with
knowledge of data communication subsystems.

A Series DMSII Application Program Interfaces Programming Guide
(5044225) '

This guide explains how to write effective and efficient application programs that access
and manipulate a Data Management System II (DMSII) database using either the
DMSII interpretive interface or the DMSII language extensions. This guide is written
for application programmers and database administrators who are already familiar with
the basic concepts of DMSIL. ’

A Series DMSII Transaction Processing System (TPS) Programming Guide
(1164043) :

This guide describes the various modules of TPS and provides information on the TPS
library of transaction processing procedures. This guide is intended for experienced
systems programmers who are familiar with DMSII.

A Series InfoExec Advanced Data Dictionary System (ADDS) Opérations
Guide (8600 0197)

This guide describes InfoExec ADDS operations, such as creating and managing database
descriptions. This guide is written for those who collect, organize, define, and maintain
data and who are familiar with the Data Management System IT (DMSII), the Semantic
Information Manager (SIM), and with the Structured Query Language Database
(SQLDB).

A Series InfoExec Semantic Infdrmation Manager (SIM) Object Manipulation
Language (OML) Programming Guide (8600 0163)

This guide describes how to interrogate and update SIM databases using SIM OML. Also
described are two methods for processing queries: one method embeds calls on the SIM
library in an application program and the other method uses the InfoExec Interactive

8600 0130-010 iX

About This Manual

Query Facility (IQF). This guide is written for application programmers and experienced
IQF and Workstation Query Facility (WQF) users.

A Series InfoExec Semantic Information Manager (SIM) Programming Guide
(8600 1666)

This guide descrlbes how to use Unisys value-added language extensions to access
InfoExec SIM databases from application programs written in COBOL74, Pascal,
and ALGOL. This guide is written for programmers who know at least one of these
programming languages thoroughly and who are familiar with SIM.

A Series InfoExec Semantic Information Manager (SIM) Technical Overview
(8600 1674)

This overview describes the SIM concepts on which the InfoExec data management
system is based. This overview is written for end users, apphcatlons programmers,
database designers, and database administrators.

A Series Screen Design Facility (SDF) Operations and Programming Guide
(1185295)

This guide explajns how to install SDF. It gives detailed instructions on interactively
defining fields, forms, and formlibraries, painting form images, and generating
formlibraries. It also provides suggestions and examples for writing applications that use
SDF features effectively. This guide is written for application programmers.

A Series Screen Design Facility Plus (SDF Plus) Capabilities Manual
(8600 0270)

This manual describes the capabilities and benefits of SDF Plus. It gives a general
introduction to the product and explains the differences between SDF and SDF Plus.
This manual is written for executive and data processing management.

A Series Screen Design Facility Plus (SDF Plus) Installatwn and Operations
Guide (8600 0262)

This guide explains how to use SDF Plus to create and maintain a user interface. It gives
specific instructions for installing SDF Plus, using the SDF Plus forms, and installing and
running a user interface created with SDF Plus.

A Series Screen Design Faczlzty Plus (SDF Plus) Technical Overview
(8600 0072)

This overview provides the conceptual information needed to use SDF Plus effectively to
create user interfaces. :

A Series System Software Utilities Operations Reference Manual (8600 0460)

This manual provides information on the system utilities, such as DCSTATUS,
FILECOPY, and DUMPALL. This manual is written for applications programmers and
operators.

X ' 8600 0130-010

About This Manual

A Series Task Attributes Programming Reference Manual (form 8600 0502).
Formerly A Series Work Flow Administration and Programming Guide

This manual describes all the task attributes available on A Series systems. It also gives

examples of statements for reading and assigning task attributes in various programming

languages. The A Series Task Management Programming Guide is a companion
manual.

8600 0130-000 xi

Xii 8600 0130-000

 Contents

Section 1.

Section 2.

Section 3.

8600 0130-010

About ThisManual

Introduction to COBOL74 Program Interfaces

Using Program Interfaces for Specific Products
Using Language Extensions for Specific Products

ADDS Extensions i,
COMS Extensionscvuvi it
DMSIIExtensionscovvivinnnvne...
DMSII TPS EXtensionsovvveenennnen... .
SDF EXtensions . . v v v vt it e e e
SDF Plus Extensionscuviiinenn..
SIMEXtensionso i ii i e

Using the ADDS Program Interface

Accessing Entities with a Specific Status
Identifying Specific Entities e e e

VERSIONClause.ccv ittt i i
DIRECTORYClause. it

Assigning Alias Identifiers
Identifying a Dictionary
SelectingaFile i i
Invoking File Descriptions

File Description Entries
"INVOKE ALL Option ... oo ovei i

Invoking Data Descriptions :
ADDS Programming Examples

Invoking Entities and Program Tracking
Using ADDSwithSDF,

Using the COMS Program Interface

Preparing the Communication Structure

Declaringa Message Area
Declaringa COMS Interface

UsingCOMS Headers i,

Declaring COMS Headers oovvvvvvnennnn..

Mapping COMS Data Types to COBOL74....... .. .

Using COMS Input Header Fields
Using COMS Output Header Fields
Using the VT Flag of the Output Header.
Requesting Delivery Confirmation on Output

Preparing to Receive and Send Messages

L]

|—-|—-n—-r—avl—a»—-r—tn—ar-a
NO OOt W NN = -

|

I

NI\)I\)II\)NI\)N
OO WWN

I

||

!
—

CQUIUIN~=OO

|

|
N k= = =

l\)l\)l\)ll\)l\)l\)(\)

Xiil

Contents

Linking an Application Program toCOMS

Initializing an Interface Link

UsingtheDCl Library

Using Communication Statements

ACCEPT MESSAGE COUNT Statement

DISABLE Statement

ENABLEStatement

RECEIVE Statement

SEND Statement. e

- Segmenting Options

AdvancingOptions

Using Service Functions

Using COMS Designators

Identifying Information with Service Function

Mnemonics L.

Calling Service Functions

Passing Parameters to Service Functions

CONVERT_TIMESTAMP Service Function.
GET_DESIGNATOR_ARRAY_USING_DESIGNATOR

Service Function
GET_DESIGNATOR_USING_DESIGNATOR Service

Function0
GET_DESIGNATOR_USING_NAME Service

Function
GET_INTEGER_ARRAY_USING_DESIGNATOR

Serwvice Function
GET_INTEGER_USING_DESIGNATOR Service

Function
GET_NAME_USING_DESIGNATOR Service

Function

GET_REAL_ARRAY Service Function
GET_STRING_USING_DESIGNATOR Service -

Function
STATION_TABLE_ADD Service Function
STATION_TABLE_INITIALIZE Service Function . .
STATION_TABLE_SEARCH Service Function. . . .
TEST_DESIGNATORS Service Function

COMS Sample Programscouuunnoin.
COMS Sample Program with a DMSI| Database
COMS Features Used in the Sample Program . . .
Data Sets in the Database
Using the Sample Program
COMS Sample Program with a SIM Database ‘
COMS Features Used in the Sample Program . . .
Classes in the Database

Section 4. Using the DMSII Program Interface

Using Databasetems
Naming Database Components
Using Set and Data SetNames

[
—_

—

[
e

|
[
WHOONOO WN -

NN

3-36
3-37
3-38

3-39
3-40

3-41
3-42
3-42
3-42
3-44
3-44
3-44
3-45
3-45
3-45
3-53
3-53
3-53
3-54

xiv , ' 8600 0130-010

Contents

Section 5.

8600 0130-010

Referencing Database ltems 4-4
Declaringa Database 4-6
InvokingDataSets i, 4-8
Using a Database Equation Operation 4-16
Using Selection Expressions 4-18
Using Data Management Attributes e . 4-20

' Count Attributeo ve e 4-20

Record Type Attribute 4-21

Population Attribute 4-22
Using the DATADICTINFO Option 4-24
Manipulating Data in a Database e 4-25

ABORT-TRANSACTION Statement e 4-25

ASSIGN Statement 4-26

BEGIN-TRANSACTION Statement e 4-29

CANCEL TRANSACTION POINT Statement 4-32

CLOSE Statement 4-33

COMPUTE Statementc.c.... 4-35

CREATE Statement, 4-36

DELETE Statement [4-39

DMTERMINATE Statement 4-41

END-TRANSACTION Statement e 4-42

FIND Statement 4-45

FREEStatement, 4-47

GENERATE Statement e e 4-48

IFStatement. e 4-52

INSERT Statement 4-53

LOCK/MODIFY Statement 4-55

OPENStatement. i, 4-57

RECREATE Statement e 4-59

REMOVE Statementot 4-61

SAVE TRANSACTION POINT Statement. 4-64

SECURE Statement 4-64

SET Statement i 4-66

: STORE Statement o nn. 4-68
Processing DMSII Exceptions. e 4-71 °

DMSTATUS Database StatusWord 4-71

DMSTRUCTURE Structure Number Function 4-72

DMSII Exceptions i e 4-73

DMERROR Use Procedure 4-74
ON EXCEPTION Optioncvvvvit 4-75

DMSII Sample Programciiiiiiinnn .. 4-76

Using the DMSII TPS Program Interface

Using the Transaction Formatting Language (TFL) 5-2
Declaring a TransactionBase 5-3
Creating Transaction Records 5-7
Declaration of Transaction Record Variables 5-7

Creation of Transaction Record Formats 5-9

Using Transaction Records e 5-10
" Transaction Record Variables as Parameters 5-11

XV

Contents

Xvi:

Section 6.

Section 7.

Transaction Record Variable Assignment

Accessing Transaction Record ltems
Subscripts e

Data Item Qualification

Inquiring about Transaction Record Control Items
Using Transaction Compile-Time Functions
Using Transaction Library Entry Points
Parameter Passing with COBOL74 Constructs

TPS Entry Points inCOBOL74

Using the Update Library
Update Library Programming Conventions
Declaration of the Transaction Use Procedures

Parameter Passing to an Update Library
Transaction Processing Statements

OPEN Statement.......................

MID-TRANSACTION Statement.

- END-TRANSACTION Statement

TPS Programming Examples
‘DMSII TPS Complete Programming Example

DASDL Description

TFL Description e

UpdateLibrary

COBOL74 Banking Transaction Program
Transaction Base and Entry Points for a COBOL74

Programming Example

Using the SDF Program Interface

Identifying the Dictionary
Invoking Data Descriptions
Reading Forms e e e e,
Writing Forms
Using the FORM-KEY Function
Manipulating Programmatic Controls
Programmatic Flag Setting

Flag Group Generation nn.

Using SDF with COMS e e
SDF Sample Programsc.ccoviiinnnnn..
SDF Program Using the READ Statement

SDF Program Using the WRITE and READ Statements

SDF Program Using Programmatic Controls

. SDF Program Using MessageKeys

Using the SDF Plus Program Interface
Understanding Interface Elements

FormRecord Librariesccvvn..
FormRecords . ..o v v i i e e

5-11
5-12
5-14
5-16
5-17
5-18
5-20
5-21
5-23
5-24
5-24
5-25
5-26
5-27

5-27

5-28
5-29
5-30
5-32
5-32
5-32
5-33
5-35
5-39

5-49

- 6-2

6-3

6-5

6-8
6-10
6-11
6-12
6-15
6-17
6-19
6-19
6-21
6-22
6-26

7-1
7-2
72
7-2

8600 'O 130-010

Contents

Section 8. .

8600 0130-010

Transaction TYypes . . . oo v i it i e e
Transaction Numbers.
Identifying the Dictionary
Invoking Data Descriptions
Selecting a Global Remote File
READ FORM Statement.

WRITEFORM Statement
) WRITE FORM Statement for a Form Record

Library (Format 1)
WRITE FORM Statement for a Form Record

(Format2)
WRITE FORM Statement for Error Messages -

(Format3) i
WRITE FORM Statement for Text Arrays (Format

A) e

Using the Form Record Number Attribute T
Using the Transaction Number Attribute
Using SDF PluswithCOMS
Using COMS Input/Output Headers

Sending and Receiving Messages S

Sending Transaction Errors,

Sending Text Messagescuuun.

SDF Plus Sample Programs uu..

SDF Plus Program with a Remote File Interface
SDF Plus Program with a COMS Interface

Using the SIM Program Interface

Usingthe RESERVEOption.
Declaringa Databasein SIM
Mapping SIM Types intoCOBOL74
Qualifying Attributes L
Qualification for Single-Perspective Queries
Qualification for Multiple-Perspective Queries
Using the Query Declaration to Declare aQuery
Opening and Closinga Database
OPENStatement........... ... oo,
CLOSE Statementc i,

~Using Transactions

ABORT-TRANSACTION Statement
BEGIN-TRANSACTION Statement

CANCEL TRANSACTION POINT Statement
END-TRANSACTION Statement

SAVE TRANSACTION POINT Statement.

Declaring an Entity Reference Variable
Using Functions and Expressions
Using Functions e e

Aggregate Functions

Arithmetic Functions

Special Constructs.t

String Functions i,

7-18

7-19
7-22
7-23
7-25
7-25
7-26
7-26
7-27
7-28
7-28
7-31

8-2A

8-4

8-7
8-10
8-10
8-12
8-13
8-16
8-16
8-18
8-18
8-21
8-22
8-23
8-24
8-25
8-25
8-27
8-27
8-27
8-28
8-28
8-30

Xvii

Contents

Symbolic Functions 8-31

Time and Date Functions 8-32

- UsSiNg EXPressionso vvevine i 8-34

Arithmetic Expressions. 8-34

Conditional Expressions P 8-34

Selection Expressions 8-36

String Expressions, 8-37

Expression Formats 8-38

Selecting and Retrieving Entities 8-45

SELECT Statement 8-46

SET Statement 8-53

RETRIEVE Statement e 8-55

DISCARD Statement 8-56

Updating and Deleting Entities 8-56

INSERT Statement e 8-57

Single-Statement Update 8-57

Multiple-Statement Update 8-59

START INSERT Statement 8-59

APPLY INSERT Statement 8-60

MODIFY Statement, 8-61

Single-Statement Update 8-61

Multiple-Statement Update 8-63

START MODIFY Statement. 8-63

APPLY MODIFY Statement e 8-64

Attribute Assignment Statements 8-65

ASSIGN Clause and Statement 8-66

CompoundClause 8-67

EXCLUDE Clause or Statement 8-69

INCLUDE Clause or Statement 8-71

DELETE Statementt 8-72

Processing SIM Exceptions, 8-74

DMSTATE Statementt 8-74

CALL SYSTEM Statement. 8-76

Handling SIM Exceptions 8-77

ON EXCEPTIONOptionvvva... 8-78

DMERROR Use Procedure e 8-79

SIMSample Programs.cciviniinnnnn. 8-79
SIM Program to Update Project Assignments for

Employees i i, 8-79

SIM Program to Archive Assignments. 8-81

SIM Program to List Subprojects 8-83

Appendix A. Reserved Words

Appendix B. User-Defined Words

Glossary ... 1

Xviii ' ' 8600 0130-010

Contents

BIBOZIAPRY . . .o\ 1
INdeX ... e 1

8600 0130-010 Xix

8600 0130-010

Examples

6-3.

8600 0130-010

ADDS Sample Program to Invoke Entities
ADDS Sample ProgramwithSDF

COMS Sample Program with a DMSI| Database
COMS Sample Program with a SIM Database

DMSII Sample Program e

DASDL Description for Banking Transaction Program
TFL Description for Banking Transaction Program
Update Library for Banking Transaction Program
Banking Transaction Program i ...
Declaring the Transaction Base and Entry Points

SDF Sample Program with a READ Statement e
SDF Sample Program with READ and WRITE Statements
SDF Sample Program with Programmatic Controls. e
SDF Sample Program with Message Keys. RPN

SDF Plus Program with a Remote File INterfaceooeunnnn..
Using SDF Plus witha COMS Interface

Updating Project Assignments for Employees . . . e
Archiving Project Assignments i i

Listing Subprojects

XXi

XXii

8600 0130-010

Tables

3-1 COMS Data Types and COBOL74 Usage vviviin i eenns 3-6
3-2 Input Header Fields i 3-7
3-3. Output Header Fields. i i i 3-9
3-4 Transmission Indicators for Identifier-1, 3-24
3-5 Service Function Mnemonicsc.. i i 3-27
5-1. TFL Item Interpretations i e 5-3
5-2. Using Compile-Time Functions i, 5-20
5-3. TPS Entry Points e e e S 5-23
6-1. Programmatic Flag Suffixes and Settings 6-13
6-2. Programmatic Flag Information oL 6-13
8-1. Mapping SIM Types into COBOL74o i i e 8-8
8-2. Valid Corresponding Types e e 8-10
8-3. Aggregate Functions e 8-27
8-4. Arithmetic Functions it i e 8-28
8-5. Special CoNStIUCES . v v v vt e i e e e e e - 8-29
8-6. String Functions e e e e 8-30
8-7. Symbolic Functions it e e 8-31
8-8. Timeand Date Functions e 8-32
8-9. Conditional Expression Operators oo, e 8-35
8-10. Special Characters Used for Pattern MatchinginSIM. 8-37
8-11. Expression FormatElements........... ..o, 8-42

8600 0130-010 Xxiii

XXiv 8600 0130-010

Section 1 |
Introduction to COBOL74 Program
Interfaces

A program interface comprises the syntax, conventions, and protocols of a programming -
language that are used to manipulate a software product. Interfaces are developed to aid
you in writing applications that use the full functionality of Unisys products.

Using Program Interfaces for Specific Products

COBOL74 program interfaces for products are easy to use, flexible, and efficient. The
interfaces are the Unisys COBOL74 extensions to ANSI-74 COBOL. These extensions
make it easier to manipulate special product features.

COBOL74 program interfaces have been developed for each of the following products:

e Advanced Data Dictionary System (ADDS)

e Communications Management System (COMS)

e Data Management System II (DMSII)

e DMSII transaction processing system (TPS)

e Screen Design Facility (SDF)

e Screen Design Facility Plus (SDF Plus)

e Semantic Information Manager (SIM)

Each program interface is described in a section of this manual. Each section includes

suggested ways to implement some of the features in your application of the product,
including any requirements or options for using a combination of products.

Using Language Extensions for Specific Products
The extensions for Unisys standard COBQL74 comprise two groups:

o Extensions used only with specific products

o Extensions used with all Unisys products
The extensions used only with specific products are explained in this volume. The
extensions used with all Unisys products are explained in Volume 1 of this manual;

however, these general extensions might appear in this volume to provide context and to
illustrate their use with specific products.

8600 0130-000 1-1

Introduction to COBOL74 Program Interfaces

The following information briefly describes the extensions used only with specific
products. The extensions for each product are presented alphabetically. Detailed
discussions of the extensions are provided in the appropriate sections of this volume.

ADDS Extensions

The following extensions have been developed for the ADDS interface. Detailed
information on the extensions is provided in Section 2, “Using the ADDS Program

Interface.” ‘

Extension Explanation

DICTIONARY compiler control Enables the compiler to access entities within a specified

option status.

DICTIONARY statement Identifies a dictionary and provides optional information
about a program to be tracked.

DIRECTORY clause Uniquely identifies an entity in the data dictionary when
used with an entity name and optional version number.

File description (FD) Provides information about the physical structure and record
names of a file.

FROM DICTIONARY clause Invokes a structure from the dictionary.

INVOKE clause Assigns an alias identifier to a data name.

INVOKE ALL clause invokes the entire structure, including record descriptions of
a specified file from the dictionary.

SELECT statement Includes a file definition from the dictionary.

Sort-merge file description Provides information about the physical structure,

(SD) identification, and record names of a file to be sorted.

VERSION clause Uniquely identifies an entity in the dictionary when _used

with an entity name and optional directory.

COMS Extensions

The following extensions have been developed for the COMS interface. Detailed
information on the extensions is provided in Section 3, “Using the COMS Program

Interface.”

Extension Explanation

ACCEPT MESSAGE COUNT Makes available the number of messages in a program

statement application queue. -

COMS header declaration Provides information about the message for input or output.

DISABLE statement Closes a COMS direct window to a station, or disconnects a
station reached through a modem or a Communications
Processor 2000.

ENABLE statement Initializes the interface between COMS and a program, and
opens a COMS direct window to a station not currently
attached to COMS.

continued

1-2 ' 8600 0130-000

Introduction to COBOL74 Program Interfaces

continued

Extension Explanation

RECEIVE statement Makes a message and pertinent information available to the
program from a queue maintained by the message control
system (MCS).

SEND statement Releases a message or message segment to one or more
output queues maintained by the MCS.
Accesses COMS service function routines and enables a

VALUE clause
. mnemonic parameter to be passed to obtain a numeric
result. The VALUE clause appears in the CALL statement.

DMSII Extensions

The following extensions have been developed for the DMSII interface. Detailed
information on each extension is provided in Section 4, “Using the DMSII Program

Interface.”

Extension Explanation

ABORT-TRANSACTION Discards updates made in a transaction after a

statement BEGIN-TRANSACTION statement.

ASSIGN statement Establishes the relationship between a record in a data set
and a record in the same or another data set.

BEGIN-TRANSACTION Places a program in transaction state. This statement is

statement used only with audited databases.

CANCEL TRANSACTION Discards all updates in a transaction to an intermediate

POINT statement transaction point or to the beginning of the transaction.

CLOSE statement Closes a database unconditionally when further access is no
longer required. A syncpoint is caused in the audit trail, and

‘ all locked records are freed.

COMPUTE statement Provides an extension to the standard COMPUTE statement.
This data management statement assigns a value to a
Boolean item in the current record of a data set.

CREATE statement Initializes the user work area of a data set record.

Database declaration Provides information about one or more databases during
compilation.

Database equation Enables the database to be specified at run time, and allows
access to databases under different usercodes and on packs
not visible to a task.

Data management (DM) Enable read-only access to the count, record type, and

attributes population information in a record. '

Data set reference entry Specifies the structures that are to be invoked from the
declared database.

DELETE statement Finds a specific record, and then locks and deletes it.

DMERROR Use procedure Handles exception conditions.

continued

8600 0130-000 o 1-3

Introduction to COBOL74 Program Interfaces

continued

Extension

DMSTATUS database status
word

DMSTRUCTURE function

DMTERMINATE statement

END-TRANSACTION
statement

FIND statement

FREE statement
GENERATE statement

IF statement

INSERT statement
LOCK/MODIFY statement

ON EXCEPTION option

OPEN statement

RECREATE statement
REMOVE statement
SAVE TRANSACTION POINT

statement
SECURE statement

Selection expression

SET statement

STORE statement

Explanation

Indicates whether an exception condition has occurred and
identifies the exception.

Determines the structure number of a data set, set, or subset
programmatically. This data management structure function
can be used to analyze exception condition resuits.

Halts a program with a fault when an exception occurs that
the program does not handle.

Takes a program out of transaction state. This data
management statement is used only with audited databases.

Transfers a record to the work area associated with a data
set or global data.

Urlocks the current record.

Creates a subset in one operation. All subsets must be
disjoint bit vectors.

Provides an extension to the standard IF statement. The
statement tests an item to determine if it contains a NULL
value.

Places a record into a manual subset.

Finds a record or structure, and locks it against concurrent
modification by another user.

Handles exception conditions. The clause is placed after
certain data management statements to handle exception
conditions.

Opens a database for subsequent access and designates the
access mode.

Partially initializes the user work area.

Finds a record, and then locks it and removes it from the
subset.

Provides an intermediate point in a transaction for audit.

Locks a record in such a way that other programs can read
the record but not update it.

identifies a certain record in a data set. Selection
expressions are used with FIND, LOCK, MODIFY, and
DELETE statements.

Alters the current path or changes the value of an item in the
current record.

Places a new or modified record into a data set.

8600 0130-000

Introduction to COBOL74 Program Interfaces

DMSII TPS Extensions

The following extensions have been developed for the DMSII TPS interface. More
information on the extensions is provided in Section 5, “Using the DMSII TPS Program
Interface.” : : '

Extension

BEGIN-TRANSACTION
statement

Compile-time function

CREATE statement

END-TRANSACTION
statement

MID-TRANSACTION
statement

OPEN statement

Transaction base declaration

Transaction record control
item reference

Transaction record reference
entry

Transaction record variable
declaration

USE statement

Explanation

Places a program in transaction state. This statement is
used only with audited databases.

Provides access to constant properties of the transaction
record formats at compile time.

Defines and initializes the contents of a transaction record
variable to a particular format.

Takes a program out of transaction state. This statement is
used only with audited databases.

Causes the compiler to generate calls on the SAVEINPUTTR
procedure before the call on the DMSII procedure in
Accessroutines.

Provides the TRUPDATE option to open a database for
subsequent access, designates the access mode, and
enables the use of the BEGIN-TRANSACTION,
END-TRANSACTION, and MID-TRANSACTION statements.

Invokes a transaction base or subbase into a program.

Inquires about record control items in a transaction record
for read-only access.

Accesses a transaction record item in a declared format and
subformat.

Associates thé records for a given transaction with the

-fransaction base.

Passes transaction records as parameters to transaction
library procedures.

SDF Extensions

The following extensions have been developed for the SDF interface. Detailed
information about the extensions is provided in Section 6, “Using the SDF Program
Interface.” Related extensions are described in Section 2, “Using the ADDS Program
Interface,” and Section 3, “Using the COMS Program Interface.” :

Extension Explanation

DICTIONARY statement ‘[dentifies the dictionary to be used during cbmpilation.

FORM-KEY function Enables access to an internal binary number of a form name

for programmatic uses. This function is required for using

SDF with COMS.
'FROM DICTIONARY clause Invokes a formlibrary from the dictionary.
READ FORM statement Reads specific and self-identifying forms.

J : ' continued

8600 0130-010 1-5

Introduction to COBOL74 Program Interfaces

continued
Extension

REDEFINES clause
. SAME RECORD AREA clause

WRITE FORM statement

SDF Plus Extensions

The following extensions have been developed for the SDF Plus interface. Detailed

information about the extensions is provided in Section 7,

Interface.”

Extension
DICTIONARY statement

Form record number attribute
FROM DICTIONARY clause
GLOBAL clause

READ FORM statement

REDEFINES clause

SAME RECORD AREA clause

SEPARATE RECORD AREA
clause '

Transaction number attribute

WRITE FORM statement

WRITE FORM TEXT statement

Explanation

Enables formlibraries invoked into a program to redefine the
same record area as the first formlibrary.

Enables all form descriptions in the formlibrary to be invoked
as redefinitions of the first form in the formlibrary.

Wirites forms from a station to a program.

“Using the SDF Plus Program

. Explanation

Identifies the dictionary to be used during compilation.

Provides a means of performing |/0 operations on form
record libraries to enable individual form records to be
specified at run time. -

Invokes an SDF Plus form record library from the dictionary.

Allow references in subprograms to form record libraries
declared in host programs.

Causes a form record to be read from a specified remote file
and stored in a specified buffer.

Enables muitiple form record libraries to have the same
record area.

Enables all form record descriptions in the form record
library to be invoked as redefinitions of the first form record
description in the form record library.

Invokes each form record in the form record library as a
separate data description with its own record area.

Provides a means of bperforming I/O operations on form
record libraries to enable individual transactions to be
specified at run time.

Writes the contents of a form record to a specified remote
file. :

Causes the contents of a text array to be written to a remote
file.

8600 0130-010

Introduction to COBOL74 Program Interfaces

SIM Extensions

The following extensions have been developed for the SIM interface. Detailed
information on the extensions is provided in Section 8, “Using the SIM Program

Interface.”
Extension Explanation
ABORT-TRANSACTION Causes a program to revert to the point in time just before
statement the BEGIN-TRANSACTION statement was executed.

APPLY INSERT statement

Applies to the database all multiple-statement update
INSERT statements between the START INSERT and APPLY
INSERT statements.

APPLY MODIFY statement Applies to the database all multiple-statement update
MODIFY statements between the START MODIFY and APPLY
MODIFY statements.

ASSIGN clause and ASSIGN Updates single-valued database attributes.

statement

BEGIN-TRANSACTION Places a program in transaction state.

statement

CALL SYSTEM statement Obtains text that describes the current exception, and gives
information about multiple exceptions. DMEXCEPTIONMSG,
DMEXCEPTIONINFO, and DMNEXTEXCEPTION are the
clauses used with this statement.

CANCEL TRANSACTION Discards all updates in a transaction to an intermediate

POINT statement transaction point or to the beginning of the transaction.

CLOSE statement Closes a database when further access is not required.

Compound clause

Assigns or adds values to compound‘ attribufes. This clause
is used with the ASSIGN or INCLUDE statement.

Database declaration Specifies the name and type of database that is used ina
query.

DELETE statement Causes the entities in the specified class that meet the
selection requirements to be deleted from the database.

DISCARD statement Discards, or terminates, a currently active query.

DMERROR Use procedure Handles exceptions.

DMSTATE statement Indicates information about exceptions. This database status
word contains a value associated with each program that
accesses a database.

END-TRANSACTION Takes a program out of transaction state.

statement

Entity reference variable
declaration

Declares an entity reference variable in a USAGE clause.
This variable, which contains an explicit reference to a
database entity, can be used to compare and assign
entity-valued attribute values (EVAs) without selecting and
retrieving the entities involved.

EXCLUDE clause and Removes values from either single-valued or multivalued
EXCLUDE statement attributes.
continued
8600 0130-000 - 1-7

Introduction to COBOL74 Program Interfaces

continued

Extension

Expressions

Functions

INCLUDE clause and
INCLUDE statement

INSERT statement
MODIFY statement

ON EXCEPTION option
OPEN statement

Query declaration
RESERVE clause

RETRIEVE statement

SAVE TRANSACTION POINT

statement
SELECT statement

SET statement

START INSERT statement

START MODIFY statement

Explanation

include data management (DM) expressions, which
determine values or entities, and selection expressions. A
selection expression is a type of DM expression that identifies
a set of entities upon which a query is to operate. Selection
expressions can be either global or local.

Perform various activities. These functions include
aggregate, time and date, symbolic, string, arithmetic, and
special constructs.

Adds values to multivalued attributes (MVAs). This attribute
assignment is in the form of a statement when used in a
multiple-statement update.

Creates an entity in the specified class by using the
accompanying attribute assignments.

Updates existing entities in the specified class by using the
accompanying attribute assignments.

Handles exceptions.

Opens a database for access and specifies the access mode.

Specifies the name of the query and the classes or items
used in the query.

Notifies the compiler that SIM keywords are handled as
reserved words for the program.

Retrieves the query and makes the entities available to the
program.

Provides an intermediate transaction point.

Selects a set of entities from a database and associates the
set with the query.

Alters the level value in a retrieval involving transitive
closure.

Describes the type of selection, if any, and associates a
query name with the statement. This statement precedes a
multiple-statement update insertion.

Describes the selection and associates a query name with
the statement. This statement precedes a multiple-statement
update to the database.

8600 0130-000

Section 2
Using the ADDS Program Interface

The Advanced Data Dictionary System (ADDS) is a centralized storage system used to
create and maintain data descriptions. ADDS is the Unisys repository for the A Series
systems. With ADDS, you can manipulate data, define complex data structures, and
update and report on entities or structures in the data dictionary.

The program interface for ADDS enables you to invoke entities such as files, records,
record collections, and databases. It also provides the following options:

e Using the DICTIONARY compiler control option to include only entities with a
particular status in the dictionary in your program

e Using the INVOKE clause to assign alias identifiers to file and data names to be used
in the program

e Using the DICTIONARY statement with the PROGRAM-NAME option to allow
tracking to occur where ADDS has already specified program tracking

e Allowing entity tracking to occur where ADDS has already specified both entity and
program tracking

You can use ADDS to define Data Management System IT (DMSII) databases. If you are
running ADDS in the InfoExec environment with Semantic Information Manager (SIM),
you can also use ADDS to define SIM databases.

For information on DMSII, see Section 4, “Using the DMSII Program Interface.” For
information on SIM, refer to Section 8, “Using the SIM Program Interface.” For
information on using the ADDS product, refer to the InfoExec ADDS Operations Guide.

If you have created formlibraries using the Screen Design Facility (SDF) and stored
them in an ADDS dictionary, you can access these formlibraries just as you would

other entities. Using SDF with ADDS provides some additional capabilities: form and
formlibrary creation, automatic form painting using entities previously defined in ADDS,
use of the ADDS prefixing and synonym features, and entity tracking for programs. For
more information on SDF, refer to Section 6, “Using the SDF Program Interface.” For
information on ADDS prefixing, synonym, and entity tracking features, refer to the
InfoExec ADDS Operations Guide.

If you have created form record libraries using the Screen Design Facility Plus

(SDF Plus) and stored them in an ADDS dictionary, you can access these form record
libraries just as you would other entities. For more information, refer to Section 7,
“Using the SDF Plus Program Interface.” :

The information on the following pages explains how to write a program using the

extensions developed for ADDS. Each extension is covered individually, with a
description of its purpose or use, the syntax, an explanation, and an example. Two

8600.0130-010 2-1

Using the ADDS Program Interface

sample programs are shown at the end of this section. For an alphabetiied list of the
extensions, refer to Section 1, “Introduction to COBOL74 Program Interfaces.”

Accessing Entities with a Specific Status

The DICTIONARY compiler control option causes the COBOL74 compiler to access
entities with a specified status. The use of this compiler control option is optional.
Additional information on compiler control options is provided in Volume 1.

You can define a program entity in ADDS and use the DICTIONARY compiler control
syntax in your program to restrict invocation of entities to those with a particular status.

Entities with historical status cannot be invoked by the COBOL74 compiler. You can
invoke entities with historical status if you first change their status. Refer to the

InfoExec ADDS Operations Guide for information on status and for the rules ADDS
uses to search for an entity.

General Format

The general format for the DICTIONARY compiler control option is as follows:

DICTIONARY = {

PRODUCTION}
TEST

Explanation of Format Elements

PRODUCTION

This format element ensures that onty PRODUCTION status data dictionary entities are
invoked. There is no default value. :

TEST

This format element ensures that only TEST status data dictionary entities are invoked.
There is no default value.

. Example

The following example shows the DICTIONARY compiler control option used to invoke
entities that are defined in ADDS with a PRODUCTION status:

$SET DICTIONARY = PRODUCTION

8600 0130-010

Using the ADDS Program Interface

Identifying Specific Entities

The VERSION and DIRECTORY clauses uniquely identify an entity in the data
dictionary. These clauses are assigned to an entity in an ADDS session. Refer to the
InfoExec ADDS Operations Guide for information on entity default rules.

The VERSION and DIRECTORY clauses identify the following:
e A tracking program by using the PROGRAM-VERSION and PROGRAM-
DIRECTORY clauses of the DICTIONARY statement
e A particular file in the dictionary when the clause is used in the SELECT statement
" e A particular lower-level entity (such as a data item or record description) in the
dictionary by using the data description FROM DICTIONARY clause

Although the VERSION and DIRECTORY clauses are optional, they provide additional
information for identifying a particular entity. This is especially helpful if there are
many duplicate items under different directories in the dictionary. If the VERSION
and DIRECTORY clauses are not specified, ADDS follows its default rules to determine
which entity to retrieve. See the InfoExec ADDS Operations Guide for information on
ADDS default rules.

VERSION Clause

ADDS creates a unique version number for every entity that you define. The VERSION
clause identifies the version number of the record description.

The general format for the VERSION clause is as follows:

[VERSION is literal-1]

Explanation of Format Element

fiteral-1
The version number is a numeric literal that can be up to 6 digits in length and can

contain any value from 1 to 999999. Literal-1 must be a valid version number of the
entity in the data dictionary.

8600 0130-000 2-3

Using the ADDS Program Interface

Example

The following example specifies 2 as the version:

@1 SAMPLELIB. FROM DICTIONARY
VERSION IS 2
DIRECTORY IS "JONES".

DIRECTORY Clause

The DIRECTORY clause specifies the directory under which the entity is stored in the
data dictionary. Refer to the InfoExec ADDS Opereations Guide for detailed information
about directories.

The DIRECTORY syntax replaces the former USER clause. The USER syntax is still
supported; however, Unisys recommends that you use the DIRECTORY syntax in your
programs.

General Format

The general format of the DIRECTORY clause is as follows:

[DIRECTORY is literal-1]

2-4

Explanation of Format Element

literal-1

This literal describes the directory under which a data description is stored in
the dictionary specified in the SPECIAL-NAMES paragraph. Literal-1 must bea
nonnumeric literal of 1 to 17 alphabetic characters.

Example

In the following example, the version is I and the directory is specified as Smith:

SELECT ADDS-FILE FROM DICTIONARY
VERSION IS 1
DIRECTORY IS “SMITH".

8600 0130-000

Using the ADDS Program Interface

Assigning Alias Identifiers

The optional INVOKE clause assigns an alias identifier to an entity name invoked from
the dictionary. You then refer to the entity by its alias identifier throughout the rest of
your program.

Assigning an alias is useful when, for example, you want to invoke the same record twice
in your program. The alias enables you to use a unique qualifier.

In the program, the INVOKE clause is in the DATA DIVISION. Use the INVOKE clause
to assign an alias as follows: '

o In the SELECT statement, aésigns an.alias to a file

e In the data-description entry FROM DICTIONARY clause, assigns an alias to a
lower-level entity such as a record or data item A

See Also

See “Selecting a File” and “Invoking File Descriptions” later in this section for more
information. '

General Format

The general format of the INVOKE clause is as follows:

[data-name—l {——“IE\IVOKE}]

ExplanatiOn of Format Element

data-name-1

This data name must bé at the 01-level. Once an alias is assigned, aﬁy reference to the
data name in the program must specify data-name-1. All PROCEDURE DIVISION

statements must also use this alias.

Examplg

In the following example, MY-INTERNAL-NAME is an alias identifier for the
ADDS-ENTITY-NAME identifier:

g1 MY-IN#ERNAL-NAME INVOKE ADDS-ENTITY-NAME
FROM DICTIONARY.

8600 0130-010 2-5

Using the ADDS Program Interface

Identifying a Dictionary

You can use the DICTIONARY statement to identify the dictionary to be used during
compilation. The dictionary is identified in the SPECIAL-NAMES paragraph of the
program. Optional program clauses provide program tracking. If no dictionary is
specified using the DICTIONARY statement, the compiler uses DATADICTIONARY by
default.

Note: A program can invoke only one dictiondry. Therefore, if a program

- accesses both a SIM database (from a dictionary) and SDF forms,
‘both must be in the same dictionary.

_ General Format

The general format of the DICTIONARY statement is as follows:

, DICTIONARY IS literal-1
[, PROGRAM-NAME IS literal-2

, PROGRAM-VERSION IS literal-3
, PROGRAM-DIRECTORY IS literal-4

Explanation of Format Elements

DICTIONARY

This statement specifies the function name of the dictionary library. The function
name is the name equated to a library code file using the SL (support library) system
» command. The function name can be no longer than 17 characters. '

literal-1

This format element designates the function name of the dictionary library. The function
name can be 17 characters in length and optionally terminated by a period.

PROGRAM-NAME

This option specifies the name of the program entity defined in ADDS. The
PROGRAM-NAME option is required if you desire tracking information to be sent to
ADDS. Tracking is an ADDS feature. By defining a program entity in ADDS and setting
the tracking attribute to YES, you can direct the dictionary to make a list (track) of

the data structures and entities that are invoked in the DATA DIVISION and that are
explicitly referenced in the PROCEDURE DIVISION of your program. ADDS will then
associate this list with the program entity. More information on program tracking is
provided in the InfoExec ADDS Operations Guide. ‘ '

8600 0130-010

Using the ADDS Program Interface

If the PROGRAM-NAME option appears but tracking is not set in ADDS, a warning is
generated only if the WARNSUPR option is reset when the PROGRAM-NAME option
appears.

If the PROGRAM-NAME option appears and tracking is set in ADDS, tracking

information is sent to ADDS only if the program compiles correctly. Tracking
information is not sent if syntax errors are encountered or if compilation is aborted.

literal-2

This format element designates a valid program name in the data diétionary.

PROGRAM-VERSION

This option specifies to which version of the program entity tracking information is sent. ‘

literal-3

This format element designates a numeric literal that contains from 1 to 6 digits.

PROGRAM-DIRECTORY

This option specifies the directory of the program to be tracked.

literal-4

This format element designates a valid data dictionary directory.

See Also

See “Identifying Specific Entities” earlier in this section for information on the
VERSION and DIRECTORY clauses. '

Example

The following example shows DATADICTIONARY specified as the function name of the
dictionary library. EXAMPLE-PROGRAM is the name of the program entity in ADDS to
which tracking information is sent.

SPECIAL-NAMES.

DICTIONARY IS "DATADICTIONARY"
PROGRAM-NAME IS "EXAMPLE-PROGRAM"
PROGRAM-VERSION IS 1
PROGRAM-DIRECTORY IS "JOHNDOE".

8600 0130-010 2-7

Using the ADDS Program Interface

Selecting a File

The SELECT statement includes files from a dictionary in your program. You can assign
an alias identifier to a selected file. You can also use the VERSION and DIRECTORY
clauses to identify the particular file. In your program, you include the SELECT
statement in the FILE-CONTROL paragraph of the INPUT-OUTPUT SECTION.

General Format

The general format for the SELECT statement is as follows:

SELECT [ﬁle-name-l {
[, VERSION IS Iitera]—l] [, DIRECTORY IS Iitera1-2] .

INVOKE

}] file-name-2 FROM DICTIONARY

Explanation of Format Elements

file-name-1

This name designates the alias for the file selected from a dictionary.

INVOKE

This option specifies an alias for file-name-2.

file-name-2

This name designates the file selected from the dictionary. Subsequent references to this
file name must use the file-name-1 alias.

FROM DICTIONARY

This clause obtains an entity from the dictionary.

VERSION IS literal-1

This format element specifies a numeric literal that identifies a version of the file.
Literal-1 comprises from 1 to 6 numeric digits.

DIRECTORY IS literal-2

This format element specifies a nonnumeric literal that designates the directory under
which the file is stored in the data dictionary.

8600 0130-010

Using the ADDS Program Interface

Considerations for Use

If you run SDF with ADDS, you can use the SELECT statement to select a remote file
from the dictionary by followmg these instructions:

1. Define the file in ADDS, and relate the formhbrary to the file. For information on
defining files in ADDS, refer to the InfoExec ADDS Operations Guide.

2. Use the SELECT statement with the FROM DICTIONARY clause, and invoke the
formlibrary in the file description statement of the program.

See Also

e TFor more information on using SDF with ADDS, refer to the SDF Operations and
Programming Guide and to Example 2-2, “ADDS Sample Program with SDF,” later
in this section.

e Refer to Section 6, “Using the SDF Program Interface,” for a discussion of using
SDF extensions in your COBOL74 program.

e For information on the VERSION and DIRECTORY clauses, see “Identifying
Specific Entities” earlier in this section.

e See “Assigning Alias Identifiers” earlier in this section for information on assigning
an alias identifier to a selected file.

Example

The following example of the SELECT statement contains comments that explam the
selection of a remote file: :

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT ADDS-FILE FROM DICTIONARY
VERSION IS 1
DIRECTORY IS "*".
*--DICTIONARY DIRECTORY : *.
*- ASSIGN TO. DISK
*- RESERVE 2 AREAS
*- ORGANIZATION IS SEQUENTIAL
K
SELECT REMOTE-FILE FROM DICTIONARY.
*--DICTIONARY DIRECTORY : *.
*em ASSIGN TO REMOTE

*

DATA DIVISION.
FILE SECTION.

8600 0130-010 2.9

| Using the ADDS Program Interface

Invoking File Descriptions

The file description entries provide information about the physical structure,
identification, and record names pertaining to a file. An FD entry identifies the
beginning of a file description; an SD entry identifies the beginning of a sort-merge file
description. The FD and SD entries are level indicators that invoke all file attributes
named in the SELECT statement. Using the INVOKE ALL option, you can invoke the
record descriptions as well as the file attributes.

File Description Entries
The file description entries are valid only for files previously selected using the SELECT
statement. If you assigned an alias using the INVOKE option in the SELECT statement,
then you must use that alias identifier for the file name.
If you do not use the INVOKE ALL option, one or more record description entries must
follow the file description entry or sort-merge file description entry: No I/O statements

(except RELEASE and RETURN) can be executed for the sort-merge file. Refer to
. Volume 1 for information on I/O statements.

General Formats

The formats for ADDS file descriptions are as follows:

Format 1

FD file-name 4[INV OKE @] .

Format 2

SD file-name [INVOKE ALL] .

2-10 8600 0130-010

Using the ADDS Program Interface

Explanation of Format Elements

FD

This level indicator identiﬁes the beginning of a file description and must precede the file
name. FD stands for file description. ’

)

This level indicator identifies the beginning of a file description and must precede the file
~ name. SD refers to a sort-merge file description.

See Also

o For general information on the FILE SECTION and the file description entriesin a
program, refer to Volume 1.

e See “INVOKE ALL Option” later in this section for a description of that option.

e See “Assigning Alias Identifiers” earlier in this section for information on assigning
an alias identifier to a selected file.

e See “Selecting a File” earlier in this section for information on the SELECT
statement.

Examples
The following statements are examples of FD and SD statements:

FD REMOTE-FILE.

SD SORT-FILE - INVOKE ALL.

INVOKE ALL Option
If you used the SELECT statement to select a file, the INVOKE ALL option invokes

form and record descriptions as well as file attributes associated with the file. The option
appears in the file description in the DATA DIVISION of the program.

| General Format

The general format of the INVOKE ALL option is as follows:

[INVOKE ALL]

8600 0130-000 2-11

Using the ADDS Program Interface

Explanation of Format Element

INVOKE ALL

This option invokes all the record description, SDF form, and SDF Plus record
descriptions defined for the file.

If the INVOKE ALL option is not specified in the file description, all file attributes are
invoked; however, a selected set of record descriptions, SDF form or SDF Plus record
descriptions can be invoked separately.

Example

The following code is an example of the INVOKE ALL option:

FILE SECTION.
FD ADDS-~FILE INVOKE ALL.

Invoking Data Descriptions

A data-description entry specifies the characteristics of a particular data item. You use
the FROM DICTIONARY clause to obtain an entity from the dictionary. If you are using
SDF with ADDS, you can also invoke formlibraries into your program. Section 6, “Using
the SDF Program Interface,” contains information on invoking formlibraries and using
the optional REDEFINES and SAME RECORD AREA clauses.

The data-description entry is used within the FILE SECTION to invoke record

descriptions, SDF Plus record descriptions, or SDF formlibraries for any file that has not
been declared with an INVOKE ALL optional clause in its FD entry.

General Format
The general format for invoking data descriptions in ADDS is as follows:

data-name-2
level-number [data-name-l {M}] {group—list-name-l }
B formlibrary-name-1

FROM DICTIONARY
[; VERSION IS literal-1] [; DIRECTORY IS literal-2]

2-12 8600 0130-000

Using the ADDS Program Interface

Explanation of Format Elements

data-name-1

This data name must be at the 01-level. Once an alias is assigned, any reference to the
data name in the program must specify data-name-1. All PROCEDURE DIVISION
statements must also use this alias. ‘

INVOKE

This option specifies an alias for data-name-2. INVOKE and the equal sign (=) are .
Synonyms.

data-name-2

This format element identifies a dictionary structure that is a record description. The
record description is at the 01-level and it is to be included in the FILE SECTION,
WORKING-STORAGE SECTION, LINKAGE SECTION, or LOCAL-STORAGE
SECTION.

group-list-name-1

This format element identifies a dictionary structure that is a collection of unrelated
descriptions (at the 77-level or 01-level, or both), items, and records that are to '
be included in the WORKING-STORAGE SECTION, LINKAGE SECTION, or
LOCAL-STORAGE SECTION. An alias cannot be specified for group-list-name-1.

formlibrary-name-1
This format element identifies a dictionary structure that is a collection of record
descriptions describing forms. For information on formlibraries, which are created using

Screen Design Facility (SDF), refer to the SDF Operations and Programming Guide.
An alias cannot be specified for formlibrary-name-1.

VERSION IS literal-1

This format element specifies a numéric literal that identifies a version of the file.
Literal-1 comprises from 1 to 6 digits.

DIRECTORY IS literal-2

This format element specifies a nonnumeric literal that identifies the directory under
which the file is stored in the data dictionary.

8600 0130-010 2-13

Using the ADDS Program Interface

Considerations for Use
When invoking data descriptions, the following rules apply:

e The 01-level records, SDF Plus form record libraries, or SDF formlibraries can be
invoked within the FILE SECTION, the WORKING-STORAGE SECTION, the
LINKAGE SECTION, or the LOCAL-STORAGE SECTION. Record collections,
however, cannot be invoked within the FILE SECTION; they can be invoked only
within the WORKING-STORAGE SECTION, the LINKAGE SECTION , or the
LOCAL-STORAGE SECTION.

e Within the FILE SECTION, no data-description entry can follow a file description
that includes the INVOKE ALL option under an FD entry.

e Within the FILE SECTION, if the file has been selected using the SELECT
statement shown for ADDS, the record or the formlibrary must be associated with
that file in the data dictionary.

¢ Arecord collection or formlibrary cannot be given an alias identifier using the
INVOKE clause. ‘ :

See Also

For information about the VERSION and DIRECTORY clauses, see “Identifying Specific
Entities” earlier in this section.

Example

In the following example, an invocation with an SDF Plus record description is coded in
the WORKING-STORAGE SECTION because record descriptions cannot be invoked in
the FILE SECTION:

WORKING-STORAGE SECTION.
g1 MY-REC-LIST INVOKE
ADDS-REC-LIST FROM DICTIONARY.
VERSION IS 2
DIRECTORY IS "=*",

2-14 , 8600 0130-010

Using the ADDS Program Interface

ADDS Programming Examples

'Examples 2-1 and 2-2 are sample programs that illustrate the use of exf.ensions in
your COBOL74 program. The first program shows how to invoke entities; the second
program shows how to run ADDS with the SDF interface.

Invoking Entities and Program Tracking

Example 2-1 shows how to invoke ADDS entities into a COBOL74 program.

The clauses that are used to invoke dictionary entities are accurately coded. However,

attributes that are generated from the ADDS definition.

200960 $$SET LIST MAP
021009 $SET DICTIONARY = TEST
201196 IDENTIFICATION DIVISION.

001260 PROGRAM-ID.

EXAMPLE-PROGRAM.

©P1300 ENVIRONMENT DIVISION.
901460 CONFIGURATION SECTION.
091590 SPECIAL-NAMES.

AEARKARXARERERAXREREAEXXEXXARAAXREXAXXRRXARNRNAARARARTRERTT

* *
* This clause identifies the dictionary that *
* contains the data descriptions this program *
* jnvokes. It also specifies in the *
* dictionary the program to be tracked. *
* *

AXEAXRAAXRARXEAXARATRARXAXRARAXRAARXAARXERARAARZARAXARAREES

291600 DICTIONARY IS "DATADICTIONARY"

0017090 PROGRAM-NAME IS “EXAMPLE-PROGRAM"
001800 PROGRAM-VERSION IS 1
201909 PROGRAM-DIRECTORY IS “EXAMPLE".

992000 INPUT-OUTPUT SECTION.
" 992190 FILE-CONTROL.

ARREARRRKARXAARAAXRXXAXRRARAREAAXARRARRARAXARAARARFTARTEREET

* *
* Files can be invoked from the dictionary by *
* ysing the SELECT statement. *
* . *

ARRERKARAXARAREARXEARRARRXRXAXRAXXRRARRAXARAARRARRAARRRS

002209 SELECT ADDS-FILE FROM DICTIONARY
002309 VERSION IS 1
002400 DIRECTORY IS "*".

8600 0130-000

Example 2-1. ADDS Sample Program to Invoke Entities

this is only a program fragment and not a complete COBOL74 program. Note thata

numbered line with an asterisk (*) in the first column of the excerpt code indicates file

2-15

Using the ADDS Program Interface

2-16

900100*--DICTIONARY DIRECTORY : *,

000110*-- ASSIGN TO DISK

000120*-- RESERVE 2 AREAS

000130*-- ORGANIZATION IS SEQUENTIAL
000140* -~ .

002500 SELECT REMOTE-FILE FROM DICTIONARY.
209100*--DICTIONARY DIRECTORY : *,

0200119*-- ASSIGN TO REMOTE

090120* - .

- 992600 DATA DIVISION.

202700 FILE SECTION.

002800 FD ADDS-FILE INVOKE ALL.
000100*-~DICTIONARY DIRECTORY : *,
000110*-- BLOCK CONTAINS @ TO 50 RECORDS
290120*~-- LABEL RECORDS ARE STANDARD
099130*-- VALUE OF PROTECTION IS SAVE
009140*-~ VALUE OF MYUSE IS IO
200150*-- VALUE OF NEWFILE IS TRUE
009160*-- VALUE OF TITLE IS

200170*-- "ADDS/FILE/@61484 ON DISK"
200180* -~ . ‘

900116 21 ADDS-A.

900130 @2 ADDS-B.

000149 @3 ADDS-D PIC X(9).

2909150 @3 ADDS-E PIC X(7).

009176 @2 ADDS-C.

000190 @3 ADDS-F.

000210 64 ADDS-G.

000230 @5 ADDS-H.

0009240 @6 ADDS-I PIC 9(4).

800250 ' 96 ADDS-J PIC 9(4).

900268 96 ADDS-K PIC 9(1)VS9 COMP.
0002790 86 ADDS-L PIC S9(1)V99999 COMP.
000280 06 ADDS-M PIC X(6).

209299 24 ADDS-F1 PIC X(8).

000390 @3 ADDS-N.

0904009 24 ADDS-N1 PIC 9(14) BINARY.
0909420 @3 ADDS-0.

0900430 24 ADDS-01 PIC 9(4) BINARY.
000450 @3 ADDS-P.

200460 94 ADDS-P1 PIC 9(3) BINARY.

000480 91 ADDS-REC-2.
000500 @2 ADDS-A.
000520 @3 ADDS-B.

0800530 94 ADDS-D PIC X{9).
009540 84 ADDS-E PIC X(7).
090560 @3 ADDS-C.

900580 64 ADDS-F.

900600 @5 ADDS-G.

999629 @6 ADDS-H.

990630 @7 ADDS-I PIC 9(4).

Example 2-1. ADDS Sample Program to Invoke Entities (cont.)

8600 0130-000

Using the ADDS Program Interface

000640 @7 ADDS-J PIC 9(4).

000650 97 ADDS-K PIC 9(1)V99 COMP.
000660 @7 ADDS-L PIC S9(1)V99999 COMP.
900670 87 ADDS-M PIC X(6).

0096890 @5 ADDS-F1 PIC X(8).

000780 @4 ADDS-N.

000790 @5 ADDS-N1 PIC 9(18) BINARY.
200810 84 ADDS-0.

009820 @5 ADDS-01 PIC 9(4) BINARY.

000840 g4 ADDS-~P.

900850 @5 ADDS-P1 PIC 9(3) BINARY.

202900 FD REMOTE-FILE.
080108*--DICTIONARY DIRECTORY : *.
@OP110*-- BLOCK CONTAINS 2580 CHARACTERS
pOP120*-- RECORD CONTAINS 2580 CHARACTERS
§0@130*-- VALUE OF FILETYPE IS 3
P90140*-- VALUE OF MYUSE IS I0
PP@150*-- CODE-SET IS EBCDIC
209160*-~
003600 ©1 ADDS-FL FROM DICTIONARY.
P09116*--DICTIONARY FORMLIST<ADDS-FL>
909139 @1 ADDS-FORM-1.
900146 @2 ADDS-FF-1 PIC X(69).
@o@15¢ 02 ADDS-FF-2 PIC 9(12) COMP.
993100 DATA-BASE SECTION.
923200 DB ADDSSAMPLEDB ALL.
* ADDSSAMPLEDB ON DISK
* ADDSSAMPLEDB TIMESTAMP = 82/26/85 @ 17:55:80
* @2 ADDS-GBL-DATA-1
* @2 ADDS-GBL~DATA-2 PIC S9(4)v99
* g1 ADDS-DS-1 STANDARD DATA SET(;3).
* ADDS-DS1-SET1 SET(;5,AUTO)
* OF ADDS-DS-1 KEY IS ADDS-
* ADDS-DS1-SET2 SET(;6,AUTO)
* OF ADDS-DS-1 KEY IS ADDS-
* g2 ADDS-DS1-GRP1.
* @3 ADDS-GRP1-Al - PIC X(19)
* 93 ADDS-GRP1-R1
* @2 ADDS-DS1-GRP2.
* @3 ADDS-GRP2-Al PIC X(19)
* @3 ADDS-GRP2-R1
* @2 ADDS-DS1-R1
* @2 ADDS-DS1-Al PIC X(19)
* g1 ADDS-DS-2 STANDARD DATA SET(;4).
* ADDS-DS2-SET1 SET(37,AUTO)
* OF ADDS-DS-2 KEY IS ADDS-
* p2 ADDS-DS2-R1
* @2 ADDS-DS2-GRP1.
* 93 ADDS-GRP1-Al PIC X(10)
* @3 ADDS-GRP1-R1
* @2 ADDS-DS2-GRP2.

Example 2-1. ADDS Sample Program to Invoke Entities (cont.) -

8600 0130-000

BOOL
comp

DISP
REAL

DISP
REAL
REAL

DISP

REAL

DISP
REAL

2-17

Using the ADDS Program Interface

2-18

* @3 ADDS-GRP2-A1 PIC x(18)
* @3 ADDS-GRP2-R1 :
* 82 ADDS-DS2-Al PIC X(18)

003309 WORKING-STORAGE SECTION.
903400 @1 MY-REC-LIST INVOKE

003450 ADDS-REC-LIST FROM DICTIONARY.
200100*--DICTIONARY DIRECTORY : *.

P@911¢ 77 ADDS-RL-1 PIC 9(11) BINARY.
900120 77 ADDS-RL-2 PIC 9(11) BINARY.
902140 @1 ADDS-RL-GRP-1.

#00150 @2 ADDS-RLG-1 PIC S9(18)V99.
000160 @2 ADDS-RLG-2 PIC S9(6)Vv99

000179 SIGN IS TRAILING SEPARATE CHARACTER.
909186 @2 ADDS-RLG1-3 PIC $$$.99CR.
000208 @1 ADDS-RL-GRP-2.

000210 @2 ADDS-RLG2-1 PIC 9(12) COMP.
000220 @2 ADDS-RLG2-2 PIC 9(12).

009240 91 ADDS-RL-GRP-3

900256 REDEFINES ADDS-RL-GRP-2.

0002680 @2 ADDS-RLG3-1 PIC 9(12).

00027¢ @2 ADDS-RLG3-2 PIC 9(12) COMP.
208280 @1 ADDS-ACTION-CODE PIC X(2).

000299 88 ADDS-VALID-CODES ,

000300 VALUE "I" , *C", "M", “p",
P09310 61 ADDS-ALPHA-CHECK PIC X(1).

009326 88 ADDS-ALPHA-CHARS

000330 VALUE "A" THRU "z,

900340 @1 ADDS-NUMBER-CHECK PIC 9(2) COMP.
009350 88 ADDS-NUMBERS

200360 VALUE 1 THRU 9.

990380 01 ADDS-RL-GRP-4.

900398 @2 ADDS-RLG4-2 PIC X(20).

000408 @2 FILLER PIC X(68).
000410*--DICTIONARY FILLER NAME : ADDS-FILLER
900439 @2 ADDS-RL-GRP-5

000440 OCCURS 1 TO 5 TIMES

000459 DEPENDING ON ADDS-RL-1.

2009469 23 ADDS-RLG5-1 PIC 9(6) COMP.
P83508 PROCEDURE DIVISION.

2036006 MAIN-BLOCK.

08037090 PERFORM INITIALIZE.

903809 PERFORM MAIN-ROUTINE.
003900 PERFORM EOJ.

894000 STOP RUN.

904190 INITIALIZE.

004200 OPEN. OUTPUT ADDS-FILE.
004309 MOVE SPACES TO ADDS-REC-2.
204500 WRITE ADDS-REC-2.

P2460¢ MAIN-ROUTINE.

004650 MOVE "ENTER YOUR DATA" TO ADDS-FF-1.
2804700 WRITE FORM ADDS-FORM-1

DIsP
REAL
pISP

Example 2-1. ADDS Sample Program to Invoke Entities (cont.)

8600 0130-000

Using the ADDS Program Interface

2804725 ON ERROR STOP RUN.

2048040 READ FORM REMOTE-FILE USING ADDS-FORM-1
204825 ON ERROR STOP RUN.

2048590 IF ADDS-FF-1 = "YOUR DATA"

204900 WRITE ADDS-REC-2.

295000 EO0J.

0805100 CLOSE ADDS-FILE.

B T S T S R T T P e S e e s S T e Xk e st et

*

The information shown below is printed at the end of each listing
and documents various statistics.

Note the DATADICTIONARY Program Tracking Summary. This is only
printed if tracking is established for your program in the
dictionary. The summary displays the program name, directory,
and version under which the program is stored in the dictionary.

* % % F ¥ % %
* % F % ¥ ok %k

B T R T T R R R T L e s s e e S S s

COMPILE 0.K.

TOTAL CARD COUNT: 157

D[@1] STACK SIZE: @823(@17) WORDS

D[@2] STACK SIZE: 9853(©935) WORDS

CORE ESTIMATE: - 2782 WORDS

STACK ESTIMATE: 318 WORDS

CODE FILE SIZE: 21 RECORDS :

PROGRAM SIZE: 3 CODE SEGMENTS, 225 TOTAL WORDS

SUBROUTINE NAME: CODE378@, LEVEL 92

COMPILED ON THE MICRO A FOR THE A SERIES .

COMPILER COMPILED WITH THE FOLLOWING OPTIONS:

BDMS.
COMPILE TIMES: ELAPSED CpPU I-0 RPM
po42.645 0902.074 0002.112 94541

DATADICTIONARY PROGRAM TRACKING SUMMARY :
PROGRAM NAME : EXAMPLE-PROGRAM , DIRECTORY : EXAMPLE ,
VERSION : 9000081 :
STATUS & TEST

Example 2-1. ADDS Sample Program to Invoke Entities (cont.)

'8600 0130-010 2-19

-

Using the ADDS Program Interface

Using ADDS with SDF

Example 2-2 shows an SDF program run with ADDS. The program uses a remote file
and specific forms.

Refer to the SDF Operations and Programming Guide for more information on
using SDF with ADDS. Refer to Section 6, “Using the SDF Program Interface,” for a
discussion of using SDF extensions in your COBOL74 program.

001908 IDENTIFICATION DIVISION.
007000

208008 ENVIRONMENT DIVISION.
0099099 CONFIGURATION SECTION.

* The following lines specify the dictionary that *
* stores the formlibrary. *
* This example program also indicates the version *
* and dlrectory of the program ent1ty *

211100

011200 SPECIAL-NAMES.

011309 DICTIONARY IS "DATADICTIONARY"

911400 © PROGRAM-NAME IS "SAMPLE2"

911425 PROGRAM-VERSION IS 1

11450 PROGRAM-DIRECTORY IS "USER1".

011500

£1200@ INPUT-OUTPUT SECTION.
013008 FILE-CONTROL.

014000 SELECT REMFILE:

914599 ASSIGN TO REMOTE.
* The lines following the FD statement illustrate *
* file attributes that ensure a correct record size *
* for full screen writes when using remote files. *
* *

215000

2160003 DATA DIVISION.

017000 FILE SECTION.

918000 FD REMFILE.

000100*--DICTIONARY DIRECTORY : *

P0g20@*-- BLOCK CONTAINS 25@@ CHARACTERS
00930@*-~ RECORD CONTAINS 25@@ CHARACTERS

Example 2-2. ADDS Sample Program with SDF

2-20 8600 0130-010

Using the ADDS Program Interface

00P490*-- VALUE OF FILETYPE IS 3

§0P500*-- VALUE OF MYUSE IS 10

PoB6PP*-- CODE-SET IS EBCDIC

009700*--
* The following lines invoke the formlibrary *
* in the FILE SECTION. *
* This example program also indicates the version *
* *
* *

and directory.

nn

£21200 91 SAMPLELIB FROM DICTIONARY
921308 VERSION IS 2
@2135¢ DIRECTORY IS "USER1".

921400
*) *
* The following lines indicate where *
* the system automatically invokes and *
* copies these program record descriptions *
* for all forms in the formlibrary *
* into the program during compilation. *
* %*
9098100*--DICTIONARY D
9P3110*--DICTIONARY FORMLIST <SAMPLELIB>. D
900130 91 SAMPLEFORMI. D
g80140 @2 ACTION PIC X(10). D
@@0156 @2 ACCOUNT-NO PIC 9(9). D
000160 ©2 NAME PIC X(15). D
P80170 @2 STREET PIC X(25). D
g89180 @2 CITY PIC X(15). D
980199 @2 STATE PIC X(2). D
peo200 92 ZIP PIC 9(9). D
224000 PROCEDURE DIVISION.
224500 MAIN-PARA.
925000
* *
* The following line opens the remote file. *
* *

uuu

026098 OPEN 1-O REMFILE.
926190

Example 2-2. ADDS Sample Program with SDF (cont.)

8600 0130-000 ' 2-21

Using the ADDS Program Interface

RERRARKXRRKRARARARRRRARRERARARAXRRARRRAAAAAARARERNARRh

The following lines write a form from the
formlibrary to the terminal with default
values; the program then waits for a
transmission to do a read operation. WRITE
statements are not necessary when you are
sending a form with default values to the

terminal. :
RERRERRKERRKARRARRRRARRERREARRAXRRAREARRARRARAREER AR TR AL

* % % % % % *
% % % * X

£32000 READ FORM REMFILE USING SAMPLEFORM1 FROM DEFAULT FORM
932109 ON ERROR STOP RUN.
938008 STOP RUN.

Example 2-2. ADDS Sample Program with SDF (cont.)

2-22 8600 0130-000

Section 3
Using the COMS Program Interface

The Communications Management System (COMS) is a general message control system
(MCS) that controls online environments on A Series systems. COMS supports a
network of users and handles a high volume of transactions from programs, stations, and
remote files.

The program interface for COMS enables you to create online, interactive, and batch
programs that take advantage of the features which COMS offers for transaction
processing through direct windows. The program interface enables your program to
communicate with COMS, using the following COMS functions:

e Message routing by transaction codes (trancodes) and agendas

e Processing of message data through processing items

e Security checking of messages

e Service functions

e Dynamic opening of direct windows to terminals not attached to COMS, and dynamic
communication by modem

e Synchronized recovery

COMS can be used with the Advanced Data Dictionary System (ADDS), Data
Management System IT (DMSII), Screen Design Facility (SDF), Screen Design Facility
Plus (SDF Plus), and Semantic Information Manager (SIM). For more information on
the extensions developed for these products, see the section that provides an explanation
of each product interface. ’ :

This section explains how to use the COMS extensions to communicate with COMS
through direct windows. For an alphabetized list of the extensions developed for
COMS, refer to “COMS Extensions” in Section 1, “Introduction to COBOL74 Program
Interfaces.”

The tasks presented in this section include

e Preparing a communication structure for routing or for describing information about
the message. '

e Declaring and using COMS headers when receiving and sending messages.

e Attaching to and detaching from stations dynamically.

e Preparing to receive and send messages. This preparation includes linking to COMS
and initializing a program.

¢ Using communication statements to receive and send messages.

e Using service functions.

8600 0130-000 , 3-1

Using the COMS Program interface

Note that processing items can be written using COBOL74 with an ALGOL shell.
Instructions on using the shell, as well as general COMS programming concepts, are
provided in the A Series Communications Management System (COMS) Programming
Guide. For information about using DMSII and SIM databases together, see the

A Series InfoExec Semantic Information Manager (SIM) Programming Guide.

When DMSTI is run with COMS, the following DMSII statemer;ts are used to enable a
program interfacing with COMS to support synchronized transactions and recovery:

e ABORT-TRANSACTION

e BEGIN-TRANSACTION

e CLOSE

¢ DMTERMINATE

e END-TRANSACTION

COMS can also use the DMSII TPS MID-TRANSACTION statement.

When COMS is run with SIM, the following statements are used to support transactions
and recovery:

¢ ABORT-TRANSACTION

o BEGIN-TRANSACTION

e CLOSE

e END-TRANSACTION

_ See Also

e Information about the syntax and use of DMSII statements is provided in Section 4,
“Using the DMSII Program Interface.”

e Information about the use of the DMSII TPS MID-TRANSACTION statement is
provided in Section 5, “Using the DMSII TPS Program Interface.”

e Information about the syntax and use of SIM statements is provided in Section 8,
“Using the SIM Program Interface.”

¢ Information on syntax used with SDF is provided in Section 6, “Using the SDF
Program Interface.”

Preparing the Communication Structure

3-2

The program must provide a communication structure for routing or for describing
information about the message. To provide a communication structure, you must do the

following:

e Declare an area for the message

¢ Declare a COMS interface that directs input and output and that provides an
optional conversation area for user-defined information

8600 0130-000

Using the COMS Program Interface

Declaring a Message Area

To receive and send messages, you must declare a message area in the DATA DIVISION
of the program. Always declare the message area as an 01-level record.

Declare the message area with a format and size that are appropriate to the data your
program is to receive. If the message area is too small to contain all the incoming text,
COMS truncates the message.

After a message is received, the Text Length field in the header contains the number of
characters in the entire message text.

Example

The following example shows the declaration for a COMS message area. The declaration
occurs in the DATA DIVISION.

IDENTIFICATION DIVISION.
PROGRAM-ID. COMSMSG.
DATA DIVISION.
WORKING-STORAGE SECTION.
@1 COMS-MESSAGE-AREA.
g2 COMS-MESSAGE PIC X(2599).
COMMUNICATION SECTION. '

When a program performs updates with SDF forms, the message area can receive the
SDF form. For information on how to write an application that uses SDF forms with
COMS, see Section 6, “Using the SDF Program Interface,” and the sample programs in
the COMS Programming Guide. ' '

Declaring a COMS Interface

You declare a COMS interface by using COMS headers for input or output. COMS
headers are dynamically built at compilation. The compiler requests the header
structure from COMS and constructs the headers.

COMS headers offer the following advantages:
e You do not need to know the memory structure because COMS handles the location

of fields in the headers.

e COMS identifiers access all fields within the header; therefore, there is no need to
rename the fields in the queue structure.

e You need not change your program when new releases of COMS oceur.

e COMS headers can be referenced by bound-in procedures.

8600 0130-010 : 33

Using the COMS Program Interface

Using COMS Headers

There are two types of COMS headers: input headers used to receive messages and
output headers used to send messages. The fields in each of the input and output
headers can be used to receive or send values that provide information or instruction for
various activities.

This discussion of using COMS headers begins with a description of the declaration for
COMS headers and an explanation of how the COMS data types map into COBOL74.
The rest of the discussion covers the use of the header fields.

For detailed information on the use of the headers and fields, refer to the COMS
Programming Guide.

Declaring COMS Headers
Input and output headers are declared in the COMMUNICATION SECTION of the

COBOL74 program. The following explanation contains the COBOL74 syntax, rules,
and steps for declaring COMS headers in your program. Examples are also provided.

General Format

The general format for declaring input and output COMS headers is as follows:

INPUT :
{ ———OUTPUT}HEADER datg-na.me-l

[data-name-2 IS data-name-3] ...
[CONVERSATION AREA [IS data-name-4 SIZE IS integer-1]] .

[record-description-entry] .

Explanation of Format Elements

INPUT or OUTPUT HEADER

This phrase specifies COMS header declarations.

data-name-1

This format element names the input or output header. The header description is
invoked and provides access to all the fields of the input header.

3-4 ‘ 8600 0130-010

Using the COMS Program Interface

data-name-2

This format element is any identifier retrieved from COMS. If data-name-2 is not
unique to the input header, you can access it with an OF qualification that mentions
data-name-1.

IS

This option renames the identifier.

data-name-3

This option replaces the field name supplied by COMS; it is not equated. However, a
field cannot be renamed with a name that already exists in the header. If data-name-2 is
renamed, it must be referred to by data-name-3.

CONVERSATION AREA

This option provides a user-defined area associated with the input or output header.
This option must include either data-name-4 and a SIZE phrase, or be mapped with the
record-description-entry.

data-name-4

This format element names the conversation érea. The area is specified as
02 data-name-4 PIC X(integer-1).

SIZE

This phrase defines the conversation area as a PIC X representation with the length
- indicated by integer-1. -

record-description-entry

This format element is added to the end of the header. The record-description-entry
must start at level 02. -

See Also

e For more information on using the OF qualification, see the discussion of using set
and data set names in Section 4, “Using the DMSII Program Interface.”

e For more information on the CONVERSATION AREA option and the fields of the
input and output headers see “Using COMS Input Header Fields” and “Using
COMS Output Header Fields” later in this section.

e For more information on a specific requirement for SDF, see Section 6, “Using the
SDF Program Interface.” '

8600 0130-010 3-5

Using the COMS Program Interface

Example

The following example shows the declarations for COMS input and output headers. An
example of declarations for headers within the context of a complete program is provided

~ in Example 3-1, “COMS Sample Program with a DMSII Database.”

COMMUNICATION SECTION.
INPUT HEADER COMS-IN
PROGRAMDESG IS COMS-IN-PROGRAM.
CONVERSATION AREA.
@2 CA. :
@5 CA-1 PIC X(29).
@5 CA-2 PIC X(32).
_OUTPUT HEADER COMS-0UT.

Mapping COMS Data Types to COBOL74

3-6

Table 3-1 shows the COMS data types and the valid COBOL74 usage. For information
on COMS types and COBOL74 usage for the fields of the COMS headers, see “Using
COMS Input Header Fields” and “Using COMS Output Header Fields” later in this
section.

Table 3—-1. COMS Data Types and COBOL74 Usage

COMS Type COBOL74 Usage
Boolean DMS Boolean
Designator Real

Display Display
Mnemonic Binary

Record ‘ Display

TIME(6) N Real

COMS data types include a COMS designator data type that is used only for specific
fields and with service functions. COMS determines the kind of designator and required
name from the value that is passed. The designator type is compatible with COBOL74
data items of type real. More information about COMS designators used with service

functions is provided in “Using COMS Designators” later in this section.

Boolean items are similar to DMS Boolean items; fhey can be tested with an IF condition
and set with a COMPUTE statement.

Note that when using logical tests against the COMS type TIME(S), you must redefine

the type as a PIC X(6) DISPLAY item that you test against.

8600 0130-010

Using the COMS Program Interface

Using COMS Input Header Fields

The fields of the input header are COBOL74 attributes of the header. The conversation
area is not part of the header provided by COMS; it is an optional user-defined field that
is associated with the input header. All other fields of the input header are defined by
either COMS or COBOL74. The structure of COMS input headers is obtained from
COMS at compilation.

COMS places values (designators and integers) in the input header fields when a
RECEIVE, ACCEPT, DISABLE, or ENABLE statement is executed.

You use a service function to translate a designator to a name representing a COMS
" entity. See “Using Service Functions” later in this section for more information.

COMS uses input headers for the following tasks:

o Confirming message status

e Passing data in the Conversation Area field

e Detecting queued messages

e Determining message origin

e Processing transaction codes (trancodes) for rbuting
e Obtaining direct-window notifications

See Also

o For more information about input headers and fields, refer to the COMS
Programming Guide.

e For information about data types, see “Mapping COMS Data Types into COBOL74”
and “Using COMS Designators” in this section.

Table 3-2 lists the fields of the input header, showing the COMS and COBOL74

field names, the COMS data types, and the COBOL74 usages. The fields are listed
alphabetically. An example of coding the input header fields is provided in Example 3-1,
“COMS Sample Program with a DMSII Database,” (lines 017002 through 017062) at the

end of this section.

Table 3-2. Input Header Fields

COBOL74 Field COBOL74
COMS Field Name Name COMS Data Type - Usage
Agenda Designator AGENDA Designator ' Real
Function Index FUNCTIONINDEX Mnemonic Binary
Function Status FUNCTIONSTATUS Mnemonic Binary

continued

8600 0130-000 - 37

Using the COMS Program Interface

Table 3-2. Input Header Fields (cont.)

COBOL74 Field COBOL74
COMS Field Name Name COMS Data Type Usage
Message Count MESSAGECOUNT Integer Binary
Program Designator PROGRAMDESG Designator Real
Restart RESTART Designator Real
Security Designator SECURITYDESG Designator Real
Station Designator STATION Designator Real
Status Value STATUSVALUE Mnemonic Binary
Text Length TEXTLENGTH Integer Binary
Timestamp TIMESTAMP TIME(6) Real
- Transparent TRANSPARENT Boolean DMS
Boolean
Usercode Designator USERCODE Designator Real
User-Defined User defined User defined User
Conversation Area defined
VT Flag VTFLAG Boolean DMS
Boolean

Using COMS Output Header Fields

3-8

The fields of the output header are COBOL74 attributes of the header. The

conversation area is not a field in the header provided by COMS; it is an optional
user-defined field that is associated with the output header. All other fields in the header
are defined by either COMS or COBOL74. The structure of COMS output headers is
obtained from COMS during compilation.

COMS uses the output header when sending messages. You place designators into the
output header fields to route outgoing messages and describe their characteristics. You
can obtain designators by calling service functions to translate names representing

COMS entities to designators.

COMS uses the output header fields for the following tasks:

Specifying a destination

Routing by transaction code (trancode)
Sending messages using direct windows
Confirming message delivery

Checking the status of output messages

8600 0130-000

Using the COMS Program Interface

See Also

e For general information on output headers and fields, refer to the COMS
Programming Guide.

e For information on data types, refer to “Mapping COMS Data Types to COBOL74”
earlier in this section and to “Using COMS Designators” later in this section.

e See“Calling Service Functions” later in this section for more information on
obtaining designators.

e For information on values returned to the output header to indicate errors in
’ destination routing, refer to the COMS Programming Guide.

e For more information on a specific requirement for SDF, see Section 6, “Using the
SDF Program Interface.”

Table 3-3 lists the fields of the output header, showing COMS and COBOL?74 field
names, the COMS data types, and the COBOL74 usages. The fields are listed

alphabetically.
Table 3-3. Output Header Fields
) ; " COMS Data COBOL74
COMS Field Name COBOL74 Field Name Type | Usage
Agenda Designator AGENDA Designator Real
Casual Output CASUALOUTPUT ~ Boolean DMS
Boolean
Destination Count DESTCOUNT ' Integer Binary
Destination Designator DESTINATIONDESG Designator Real
Delivery Confirmation Flag CONFIRMFLAG Boolean DMS
. ' Boolean
Delivery Confirmation Key CONFIRMKEY . . Display Display
VT Flag | VIFLAG Boolean DMS
_ Boolean
Next Input Agenda NEXTINPUTAGENDA Designator Real
Designator
Retain Transaction Mode RETAINTRANSACTIONMODE Boolean DMS
Boolean
Set Next Input Agenda | SETNEXTINPUTAGENDA = | . Boolean DMS
. Boolean
Status Value STATUSVALUE Mnemonic Binary
Text Length . TEXTLENGTH Integer Binary
continued

8600 0130-010 3-9

Using the COMS Program Interface

Table 3-3. Output Header Fields (cont.)

‘COMS Data COBOL74
COMS Field Name COBOL74 Field Name Type Usage
Transparent TRANSPARENT Boolean DMS
: Boolean
User-Defined User defined User defined User defined
Conversation Area '

Using the VT Flag of the Output Header

You can use the VT (virtual terminal) flag bit of the output header with a COMS direct
window. The window can have a virtual terminal name when it is used within a CP 2000
environment. The virtual terminal name describes to BNA the way in which the direct
window has formatted the output.

A direct-window program can set the VT ﬂag before sending output messages by using
the following syntax:

COMPUTE VTFLAG OF OUTHDR = TRUE

COMS returns the result in the VT Flag field of the input header. You can test the result
directly by using the following IF statement: '

IF VTFLAG OF INHDR..

Requesting Delivery Confirmation on Output

Delivery confirmation is available for network support processor (NSP) and CP 2000
stations. This COMS feature informs a direct-window program when a station receives a
particular message the window has sent.

To request delivery confirmation, perform the following steps before executing the -
SEND statement:

e Use the COMPUTE statement to set the Delivery Confirmation Flag field. For
- example, enter the following:

COMPUTE CONFIRMFLAG OF OUTHDR = TRUE

¢ Identify a message individually by placihg a unique value of your choice into the
Delivery Confirmation Key field. When confirming delivery, COMS uses the default
input agenda to return the unique value in the first three characters of the message
area.

8600 0130-010

Using the COMS Program Interface

See Also

e For more information on requesting delivery confirmation on output, see the COMS
Programming Guide. : '

e Refer to “Using Communication Statements” later in this section for information on
receiving and sending messages.

8600 0130-010 : 3-10A

- Using the COMS Program Interface

3-10B - 8600 0130-010

Using the COMS Program Interface

Preparing to Receive and Send Messages

Before you can receive or send messages, you must first link to COMS and initialize the
program. The following information explains how to perform these tasks.

Linking an Application Program to COMS

To prepare for receiving or sending messages, you must link your application program to
COMS. Linkage of the program to COMS is achieved through the data communications
interface (DCI) library, which contains the programmatic interface with COMS. The DCI
library is linked to COMS by specifying COMSSUPPORT as a function name and by
designating library access by function. Because COMS must be installed as the system
library COMSSUPPORYT, library access by function is the access method most often used
to link an application program to COMS. If you want to test versions of COMS with the
currently installed version of COMS, you must specify a different library access method
to enable the DCI library to link to the test version. A discussion of the DCI Library is
provided in “Using the DCI Library” later in this section.

' Examples

Examples of library access by function, by initiator, and by title are explained in the
following paragraphs.

Example of Linking by Function (Default Method)

The syntax illustrated in this example is the programming equivalent of the default
method used by the DCI library. COMS is installed under a different object code file
title, for example COMS/ENTRY or COMS/PRODUCTION. Note that a change in the
title of the object code file requires appropriate data communications configuration
changes. The LIBACCESS library attribute specifies that the function name —not

the object code file title—is used to access the library. The FUNCTIONNAME library
attribute designates the function name of the library. Additional information on library
attributes is provided in the discussion of libraries in Volume 1. Refer to the A Series
System Software Utilities Operations Reference Manual for a description of the library
attributes.

CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY"
TO BYFUNCTION.

CHANGE ATTRIBUTE FUNCTIONNAME OF "DCILIBRARY"
TO "COMSSUPPORT".

Example of Linking by Initiator
The following example shows how to link a COMS program by initiator. This method

of linking to COMS is the preferred method for COMS programs. All other programs
should be linked by function.

CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY"
TO BYINITIATOR.

8600 0130-000 3-11

Using the COMS Program Interface

Example of Linking by Title

A COMS application program can link to COMS by title. Unisys does not recommend
this method. Linking by title might be used, for example, when linkage is needed to
a test version of COMS that was not assigned a function name with the SL (support
library) system command, and access by initiator is not available on the level of the
operating system you have installed.

Note: Linking by title can cause COMS to be initiated at an inappropriate
time and with inappropriate attributes (for example, the usercode
of the requestor; the family statement, or limits). Linking by title
can fail because of the family substitution action if the object code
file was renamed since initiation or if a new version of the code file
was installed that replaced the code file of the current installation of
COMS. ’ ' .

The following example shows how to link your program to COMS by title:

CHANGE ATTRIBUTE TITLE OF "DCILIBRARY" TO
"SYSTEM/COMS/TEST ON TESTPACK". :
Alternatively, the following constructs can be used. This
code is a close equivalent of linking by initiator.
MOVE ATTRIBUTE NAME OF ATTRIBUTE EXCEPTIONTASK OF
ATTRIBUTE EXCEPTIONTASK OF MYSELF TO workarea.
CHANGE ATTRIBUTE TITLE OF "DCILIBRARY" TO workarea.
Store the family name so it can be temporarily changed.
MOVE ATTRIBUTE FAMILY OF MYSELF TO workarea.
Reset the family name to null so that family substitution
does not interfere with linkage to COMS by title.
CHANGE ATTRIBUTE FAMILY OF MYSELF T0 ".".
ENABLE INPUT input-header-name KEY "ONLINE".
Restore the family name for accessing files, etc.
CHANGE ATTRIBUTE FAMILY OF MYSELF TO workarea.

* % %k % % * * * % * % * ¥

Initializing an Interface Link

You can initialize the interface between COMS and your program by including the
following statement in the PROCEDURE DIVISION:

ENABLE INPUT COMS-IN KEY "ONLINE".

3-12 8600 0130-000

Using the COMS Program Interface

Example

The following example shows the initialization statement used within the context of code
that links an application program to COMS:

77 SYSTEM-COMS PIC X(50).
START-UP-SECTION SECTION 59.
START-UP.

CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY"
TO BYINITIATOR.
ENABLE INPUT COMS-IN KEY "ONLINE".

Using the DCI Library

A DCI library is a library to which the compiler builds references whenever a program
uses the ACCEPT, DISABLE, ENABLE, RECEIVE, or SEND statements; in fact, a DCI
library must be present for a COBOL program to use these statements.

A DCl library enables programs to deal with symbolic sources and destinations instead of
peripherals. Program recompilation when the peripherals are changed or rearranged

is therefore avoided. The library reference is built with the title DCILIBRARY and the
library object name DCIENTRYPOINT. The DCIENTRYPOINT library object is an
untyped procedure.

The DCIENTRYPOINT library object has the following five parameters:

¢ An integer with a value that specifies one of the following statements:

Value Statement

1 ACCEPT MESSAGE COUNT

2 DISABLE

3 ENABLE

4 RECEIVE

5 SEND

6 BEGIN-TRANSACTION WITH TEXT

7 BEGIN-TRANSACTION ABORT

9 END-TRANSACT!ON ABORT

10 END-TRANSACTION WITH NO TEXT

11 END-TRANSACTION WITH TEXT
All statements except DISABLE, ENABLE, RECEIVE, and SEND are A Series
extensions to ANSI-74 COBOL. '

e An integer with a value indicating the length, in characters, of the EBCDIC array
(unindexed descriptor) that contains the message or the password.

8600 0130-000 ' ' 3-13

Using the COMS Program Interface

e An integer with a value indicating either the type of end-indicator option to be sent
or received or the type of enable or disable operation to be performed. For the
SEND or RECEIVE statements, the following values are associated with an indicator

option:
Value
1
2
3

Indicator Optlon
End-of-segment indicator (ESI)
End-of-message indicator (EMI)
End-of-group indicator (EGI)

For the DISABLE or ENABLE statement, the value specifies the device type as

follows:

Value
11
12
13

Device Type
Input terminal
Input terminal

Output terminal

e Aninteger with a value that indicates advancing control when the SEND statement
is performed. The parameter also indicates whether or not to wait for messages
when the statement is a RECEIVE statement.

For the SEND statement, the value of the parameter specifies advancing as follows:

Value Advancing Control

0 No advancing

1 Advance after lines

2 Advance before lines

3 Advance after page

4 Advance before page
For the RECEIVE statement, the value of the integer can be set as follows in the
program or by the DCI library:

Setting Integer Value

Program setting The value indicates to the DCI library whether or not to wait if no

DCl library
setting

message or text is available. A value of O (zero) means do not wait,
and a value greater than O means wait that number of seconds. If
this parameter is set to 0 and a NO DATA clause is supplied, no
waiting occurs and the action specified in the NO DATA clause is
taken if no message is available.

Before returning control to the program, the DCI'Iibrary sets the value
of the integer to 1 if no text is available; otherwise, a value of O (zero)
is returned with the text to the program.

e An integer equal to the number of lines the device is to advance when using the
SEND statement. If a SEND statement is not used, the value of this parameter is

0 (zero). >

3-14

8600 0130-000

Using the COMS Program Interface

Example

You can write the DCI library in COBOL, ALGOL, or DCALGOL to allow access to disk
files, remote files, or port files. The symbolic queues, selection algorithms, sources, and
destinations —as set out in standard ANSI-74 COBOL —can be tailored to the particular
application using the DCI library. The following example shows a typical DCI library
object written in COBOL74:

IDENTIFICATION DIVISION.
PROGRAM-ID. DCIENTRYPOINT.
DATA DIVISION.

LINKAGE SECTION.

*

* Integer value of the statement
*

77 DCI-FUNCTION COMP PIC 9.

*

* Length of the array that contains the message or password
*
@1 THE-MESSAGE
93 THE-MESSAGE-SUB PIC X
OCCURS 1 TO 9999 DEPENDING ON THE-MESSAGE~LENGTH.

*

* Indicator option or type of enable or disable to be performed
*

77 THE-MESSAGE-LENGTH CoMP PIC 999.

*

* Value of advancing control
*

77 10-OR-END-INDICATOR CoMP PIC 99.

*

* Amount to advance in a SEND statement
*
77 NO-DATA-OR-ADVANCING-TYPE COMP PIC 99.
77 ADVANCING-VALUE COMP PIC 99.
PROCEDURE DIVISION
USING DCI-FUNCTION
THE-MESSAGE,
THE-MESSAGE-LENGTH,
10-OR-END-INDICATOR,
NO-DATA-OR-ADVANCING-TYPE,
ADVANCING-VALUE.
MAIN SECTION.
P1.
PERFORM FUNCTION-SPECIFIED-BY-DCI-FUNCTION.
EXIT PROGRAM.

8600 0130-000 3-15

Using the COMS Program Interface

Using Communication Statements

Communication statements are coded in the PROCEDURE DIVISION of the COBOL74
program. The statements include

e ACCEPT MESSAGE COUNT

e DISABLE

e ENABLE

e RECEIVE

e SEND

General information on using communication statements in a program is provided in the
COMS Programming Guide.

ACCEPT MESSAGE COUNT Statement

The ACCEPT MESSAGE COUNT statement makes available to you the number of
messages in the application queue of the program.

When the ACCEPT MESSAGE COUNT statement is executed, the Status Value field of
the input header and Message Count field are appropriately updated.

General Format

The general format of the ACCEPT MESSAGE COUNT statement is as follows:

ACCEPT COMS-header-name-1 MESSAGE COUNT

3-16

Explanation of Format Elements

ACCEPT MESSAGE COUNT

This statement updates the Message Count field to indicate the number of messages
present in the queue that COMS maintains for the program.

@:OMS-header-name-l

This format element is the name of the COMS input header.

8600 0130-000

Using the COMS Program Interface

| DISABLE Statement

The DISABLE statement closes a direct window to a station or disconnects a station
reached through a modem or a CP 2000 communications processor.

Information on detaching a station dynamically is provided in the COMS Programming
Guide.

If the logical disconnection specified by the DISABLE statement has already occurred
or is denied by COMS, the data item in the Status Value field is updated. See “Using

COMS Input Header Fields” earlier in this section for more information on the Status
Value field.

General Format

The general format of the DISABLE statement is as follows:

DISABLE INPUT [TERMINAL)]

COMS-header-name-1 [WITH KEY {identiﬁer-l}]

literal-1

Explanation of Format Elements

DISABLE INPUT

This phrase logically disconnects COMS from the specified sources or destinations. If
this logical disconnection has already occurred or is handled by means external to the
program, the DISABLE statement is not required in the program. In this case, the

DISABLE statement does not affect the logical path for the transfer of data between the
COBOL74 programs and COMS.

TERMINAL

This optional word specifies that only the data item in the Station field is meaningful.

COMS-header-name-1

This format element specifies the name of the COMS input header.

WITH KEY literal-1 or identifier-1

This format element must be alphanumeric. The KEY options are literals defined for use
with COMS. KEY options are described in the COMS Programming Guide.

8600 0130-000 3-17

Using the COMS Program Interface

Example

The following example shows how to use the DISABLE statement with the optional word
TERMINAL:

DISABLE INPUT TERMINAL COMS-IN WITH KEY "RETAIN".

ENABLE Statement

The ENABLE statement dynamically opens a direct window to a station not currently
attached to COMS. You can check the status of a station attachment by querying values
in the fields of the COMS input header.

For information about the use of this statement to dynamically attach a station, refer to
the COMS Programming Guide.

When the logical connection specified by the ENABLE statement already exists or is
denied by COMS. the data item in the Status Value field is updated.

General Format

The general format of the ENABLE statement is as follows:

ENABLE INPUT [TERMINAL]
COMS-header-name-1 [WITH KEY {

identiﬁer-l}]
literal-1

Explanation of Format Elements

'ENABLE INPUT

This phrase provides a logical connection between COMS and the specified sources or
‘destinations. When this logical connection is already present or is handled by means
external to the program, the ENABLE statement is not required in the program. In this

case, the ENABLE statement does not affect the logical path for the transfer of data
between the COBOL74 program and COMS.

TERMINAL

This option dynamically opens a direct window to a station that is not attached to COMS. |

COMS-header-name-1

This format element specifies the name of a COMS output header.

3-18 8600 0130-000

Using the COMS Program Interface

fiteral-1 or identifier-1

This format element must be alphanumeric. The KEY values provided by COMS are
described in the COMS Programming Guide.

Examples

The following examples illustrate the use of the KEY values with the ENABLE
statement. The first example can be seen within the context of a complete program in
line 019100 of Example 3-1, “COMS Sample Program with a DMSII Database,” later in
this section. For more information on the use of the ENABLE statement to establish
communication with the COMS MCS, see “Initializing an Interface Link” earlier in this
section.

ENABLE INPUT COMS-IN KEY "ONLINE".
ENABLE INPUT COMS-IN KEY "BATCH".
ENABLE INPUT TERMINAL HDR-IN KEY "NOWAIT".

MOVE "WAITNOTBUSY (HOSTNAME = AB1@)" TO TEMP.
ENABLE INPUT TERMINAL HDR-IN KEY TEMP.

RECEIVE Statement

The RECEIVE statement makes a message and pertinent information about the data .
available to the COBOL74 program from a queue maintained by COMS. You can use the
RECEIVE statement to execute a specific imperative statement when you use the NO
DATA option, as shown in the following format diagram.

You can use the RECEIVE statement as many times as needed in the PROCEDURE
DIVISION of your program. You can structure your program to receive messages from
one or more stations or programs, but you cannot programmatically limit the reception of
messages to selected stations on the network or to certain types of programs.

Before you can receive or send messages, however, you must link to COMS and initialize
the program. For information, refer to “Preparing to Receive and Send Messages”
earlier in this section.

General Format

_ The general format of the RECEIVE statement is as follows:

RECEIVE COMS-header-name-1 MESSAGE INTO identifier-1

NO DATA imperative-statement-1
WITH DATA imperative-statement-2

8600 0130-000 | 3-19

Using the COMS Program Interface

3-20

Explanation of Format Elements

' COMS-header-name-1

This format element specifies the name of a COMS input header.

MESSAGE INTO identifier-1

This format element references an area to which a message is transferred. The message
is aligned to the left without space fill

NO DATA imperative-statement-1

This option enables COMS to transfer control to the next executable statement when
you execute a RECEIVE statement and receive data.

If COMS does not make data available in the identifier-1 data item, one of the following
actions takes place when you execute a RECEIVE statement:

e If you specify the NO DATA option, the RECEIVE statement is terminated, which
indicates that action is complete. Imperative-statement-1 is executed.

e Ifyou do not specify the NO DATA option, then the object program execution is
suspended until data is made available in identifier-1 or until end-of-task (EOT)
notification.

Imperative-statement-1 can consist of a NEXT SENTENCE option.

WITH DATA imperative-statement-2

This option enables COMS to transfer control to imperative-statement-2.

Considerations for Use

The data items identified by the COMS input header are appropriately updated by
COMS each time the RECEIVE statement is executed.

The following rules apply to the data transfer:

o Ifamessage is the same size as the area of identifier-1, the meésage is stored in the
identifier-1 area.

‘o Ifamessage is smaller than the area of identifier-1, the message is aligned to the

leftmost character position of the identifier-1 area with no space fill.

e Ifamessage is larger than the area of identifier-1, the message fills the identifier-1
area from left to right, starting with the leftmost character of the message. The rest
of the message is truncated.

You cannot use a RECEIVE statement between BEGIN-TRANSACTION and

END-TRANSACTION statements. Doing so violates the rules of synchronized recovery
and you might lose some of the data in your database.

8600 0130-000

Using the COMS Program Interface

Example

The following example shows part of an application routine that is written to receive

a message from COMS and place it in an area defined in the WORKING-STORAGE
SECTION. An example of a RECEIVE statement within the context of a complete
program begins at line 019700 in Example 3-1, “COMS Sample Program with a DMSII
Database,” later in this section.

@1 MSG-IN-TEXT PIC X(1928).
COMMUNICATION SECTION.

INPUT HEADER COMS-IN.

OUTPUT HEADER COMS-OUT.

PROCEDURE DIVISION.

RECEIVE-MSG-FROM-COMS.
RECEIVE COMS-IN MESSAGE. INTO MSG-IN-TEXT.
IF STATUSVALUE OF COMS-IN = 99
GO TO EOJ-ROUTINE.

* Process the message.

GO TO RECEIVE-MSG-FROM-COMS.
EOJ-ROUTINE.
STOP RUN.

SEND Statement

The SEND statement releases a message, message segment, or portion of a message

to one or more output queues maintained by COMS. Before you can send or receive
messages, however, you must link to COMS and initialize the program. For information
on these functions, refer to “Preparing to Receive and Send Messages” earlier in this
section.

When a SEND statement is executed, the Status Value field is updated by COMS. See
the COMS Programming Guide for information on the values in the Status Value field.

General Formats

The following are two general formats for the SEND statement. The second format is
for segmented output. ’ ’

General Format for the SEND Statement

SEND COMS-header-name-1 FROM identifier-1

8600 0130-000 4 3-21

Using the COMS Program Interface

General Format for the SEND Statement with Segmented Output

"'WITH identifier-

iy WITH ESI

SEND COMS-header-name-1 [FROM identifier-1] WITH EMI

WITH EGI

{ identiﬁer—3} LINE]
BEFORE integer LINES
{AF'I‘ER }QV;AM_IN(_} mnemonic-name
PAGE

Explanation of Format Elements

COMS-header-name-1

This format element specifies the name of a COMS output header.

FROM identifier-1

This phrase moves the message or message segment to the sending character positions
of the area of identifier-1 and is aligned to the left with space fill.

Identifier-1 specifies the data name of the area where the data to be sent is made
available to COMS.

When you execute a SEND statement, COMS interprets the value in the Text Length
field of the output header as the number of leftmost character positions of identifier-1
from which data is to be transferred.

If the value of Text Length is 0 (zero), no characters of identifier-1 are transferred. The
value of Text Length cannot be outside the range 0 through the size of identifier-1. If
the value is outside the range, the message is truncated to the size of identifier-1 and the
Status Value field of the output header is set to 0.

The effect of special control characters within identifier-1 is undefined.

3-22 8600 0130-000

Using the COMS Program Interface

Explanation of Format Elements for Segmented Output

The following is an explanation for segmented output only:

WITH

This option designates the nonsegmented output in identifier-2 or a type of segmented
output.

identifier-2

This format element must be the name of a 1-character integer without an operatiorial
sign, for example, PIC S9(11) USAGE BINARY. . '

ESI, EMI, and EGI

These options specify the segmenting options. See “Segmenting Options” later in this
section for information on the three segmenting options.

BEFORE or AFTER ADVANCING

This option controls the vertical positioning of each message.

identifier-3

This format element is the name of an elementary nonnegative integer item.

integer

This format element specifies the number of lines to advance. The value can be 0 (zero).

mnemonic-name

This format element specifies a name that is identified with a particular feature specified
in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Segmenting Options
There are three segmenting options: the end-of-message indicator (EMI), the
end-of-group indicator (EGI), and end-of-segment indicator (ESI). COMS recognizes
these indicators and establishes the appropriate linkage to maintain control over
groups, messages, and segments. For example, the following statement sends output

immediately after values have been moved to the required fields of the output header:

SEND output-header-name FROM message-area WITH EMI.

8600 0130-010 | B 3-23

Using the COMS Program Interface

The contents of identifier-2 indicate that the contents of identifier-1 are to have an
associated ESI, EMI, or EGI according to the explanations in Table 3-4.

Table 3-4. Transmission Indicators for Identifier-1

identifier-2 Identifier-1 » Explanation
0 No indicator No indicator
1 ESI Message segment complete
2 EMI Message complete
3 EGI ‘ Group of messages complete

Any character other than 1, 2, or 3 is interpreted as 0 (zero). If identifier-2 is a number
other than 1, 2, or 3 and if identifier-1 is not specified, the data is transferred and no
error is indicated.

The hierarchy of ending indicators (major to minor) 'is EGI, EMI, and ESI. An EGI need
not be preceded by an ESI or an EMI, and an EMI need not be preceded in the code by
an ESL

A single execution of the SEND statement with segmented output never releases
to COMS more than the single message or message segment that is indicated by
the contents of the data item referenced by identifier-2 and by the specified ESI,
EGI, or EMI. However, the MCS does not transmit any portion of a message to a
communications device until the entire message is placed in the output queue.

During the execution of the run unit, the disposition of a portion of a message not
terminated by an EMI or EGI is undefined. Thus, the message does not Ioglcally exist
for the MCS and cannot be sent to a destination. :

After the execution of a STOP RUN statement, the system removes any portion of -
a message transferred from the run unit as a result of a SEND statement, but not
terminated by an EMI or EGI. As a result, no portion of the message is sent.

Advancing Options

3-24

The ADVANCING option enables you to control the vertical positioning of each message
or message segment on an output device where this control is possible. If vertical
positioning is not possible on a device, COMS i 1gnores the specified or implied vertical
positioning. .

On a device where vertical positioning is possible and the ADVANCING option is not
specified, the COMS default setting of BEFORE ADVANCING one line is used.

You can use the BEFORE ADVANCING and AFTER ADVANCING options to specify
whether the text of a message should be written to the output device before or after
the device advances to the next page, or before or after the device advances a specified
number of lines. If you specify neither of these options, it is assumed that you are

(

8600 0130-010

Using the COMS Program Interface

specifying lines. For example, the following code instructs the device to write a message
after advancing one line: '

SEND COMS-OUT FROM MSG-OUT-TEXT WITH ... AFTER ADVANCING 1 LINE.

Although COMS supplies a default setting for carriage control, a processing item can
alter carriage control before an output message reaches its destination. For instructions
on how to alter carriage control, refer to the COMS Programming Guide.

If you specify identifier-3 in the ADVANCING option and the value of identifier-3 is 0,
the MCS ignores the ADVANCING option.

If you implicitly or explicitly specify the ADVANCING option, the following rules apply:

e Ifyouuse the BEFORE ADVANCING option, the output device writes the message
or message segment before it repositions the device vertically according to the rules
for identifier-3, integer, and mnemonic-name.

In the following SEND statement, the BEFORE ADVANCING option instructs
the output device to advance two lines after values have been moved into the
appropriate fields of the output headers:

SEND COMS-OUT FROM COMS-OUT-AREA WITH EMI
BEFORE ADVANCING 2 LINES.

e Ifyou use the AFTER ADVANCING option, the output device writes the message or
. message segment after it repositions the device vertically according to the rules for
identifier-3, integer, and mnemonic-name.

e If you specify identifier-3 or integer, the output device repositions characters
vertically downward a number of lines equal to the value of identifier-3 or integer.

e If you specify mnemonic-name, the output device positions characters according to
the rules for that device.

e If you specify the PAGE advancing control, the output device writes characters
either before or after the device is repositionied to the next page (depending on
the option used). For example, in the following SEND statement, the AFTER
ADVANCING option instructs the output device to advance one page after the
message has been displayed:

SEND COMS-OUT FROM COMS-OUT-AREA WITH EMI
AFTER ADVANCING PAGE.

If you specify the PAGE advancing control, but PAGE has no meaning in conjunction
with a specific device, then the output device advances as if you had specified a
- BEFORE ADVANCING 1 LINE option or an AFTER ADVANCING 1 LINE option.

Considerations for Use

You cannot use a SEND statement between BEGIN-TRANSACTION and
END-TRANSACTION statements. Doing so violates the rules of synchronized recovery
and you might lose some of the data in your database.

8600 0130-010 , . 3-25

Using the COMS Program Interface

Example

The following example shows SEND statements that specify segmented output using the
WITH ESI and WITH EGI options. The options are specified to hold output until the
message is complete.

WORKING-STORAGE SECTION.
@1 MESSAGE-1 PIC X(100).
@1 MESSAGE-2 PIC X(109).
@1 MESSAGE-3 PIC X(100).

COMMUNICATION SECTION.

INPUT HEADER INHDR.

OUTPUT HEADER OUTHDR.

PROCEDURE DIVISION. . .
MOVE OUTPUT-SIZE1 TO TEXTLENGTH OF OUTHDR.
MOVE @ TO STATUSVALUE OF OUTHDR.
SEND OUTHDR FROM MESSAGE-1 WITH ESI.

MOVE OUTPUT-SIZE2 TO TEXTLENGTH OF OUTHDR.
MOVE @ TO STATUSVALUE OF OUTHDR.
SEND OUTHDR FROM MESSAGE-2 WITH ESI.

MOVE OUTPUT-SIZE3 TO TEXTLENGTH OF OUTHDR.

MOVE 1 TO DESTCOUNT.

MOVE STATIONDESG OF INHDR TO DESTINATIONDESG OF OUTHDR.
MOVE @ TO STATUSVALUE OF OUTHDR. .

SEND OUTHDR FROM MESSAGE-3 WITH EGI.

Using Service Functions

This discussion of service functions includes explanations of the following:

¢ COMS designators used with service functions
e Mnemonics used to request information
e Statements used to call service functions

e Parameters used with service function calls
COMS uses the following service functions:

e CONVERT TIMESTAMP _

e GET DESIGNATOR ARRAY USING DESIGNATOR
e GET_DESIGNATOR USING DESIGNATOR

¢ GET_DESIGNATOR USING NAME

» GET_INTEGER ARRAY USING DESIGNATOR

e GET_INTEGER USING DESIGNATOR

e GET NAME USING DESIGNATOR

3-26 8600 0130-010

Using the COMS Program Interface

e GET_REAL_ARRAY

e GET_STRING_USING_DESIGNATOR

e STATION_TABLE_ADD

e STATION TABLE_INITIALIZE

e STATION TABLE_SEARCH

e TEST DESIGNATORS

In COBOL74, you can use hyphens (-) rather than underscores () in the names of

service functions. The compiler automatically translates hyphens to underscores for use
with COMS. '

. For a complete discussion of the COMS service functions and their use, refer to the
COMS Programming Guide.
Using COMS Designators
Service functions use numeric designators that are part of an internal code understood

by COMS. You can obtain designators from COMS headers or from service functions that
allow you to translate names to designators.

See Also

e Refer to “Mapping COMS Data Types to COBOL74” earlier in this section for
information on the COMS designator data type and its use with COBOL74.

e See the COMS Programming Guide for information about COMS designators.

Identifying Information with Service Function Mnemonics
The COMS entities have designators that can be used in service function calls. Table 3-5

lists the service function mnemonics that you can use to identify particular data items.
The data items indicate the kinds of information that can be requested in a program.

Table 3-5. Service Function Mnemonics

Data Item Mnemonic

Agenda AGENDA

Database } DATABASE

Device designator DEVICE

Device list DEVICE-LIST

Installation data INSTALLATION-DATA
Installation data link by another COMS entity INSTALLATION-DATA-LINK

continued

8600 0130-000 3-27

Using the COMS Program Interface

3-28

Table 3-5. Service Function Mnemonics (cont.)

Data Item

Mnemonic

Installation data string

Installation data string

Installation data string

Installation data string

Installation data

Installation data

Installation data integer

installation data /integer

Installation data integer

Installation data integer

Installation data integer

Library

Message date in format MMDDYY
Message time in format HHMMSS
Processing item ¢
Processing item list

Program

Program: current input queue depth
Program: mix numbers for active copies
Program: response time for last transaction
Program: aggregate response time
Program: security designator

Program: total number of input messages
handled

Security category
Security category list
Station

‘Station: language attribute

“Station: convention attribute

INSTALLATION-STRING-1
INSTALLATION-STRING-2
INSTALLATION-STRING-3
INSTALLATION-STRING-4

INSTALLATION-HEX-1
INSTALLATION-HEX-2
INSTALLATION-INTEGER-ALL

INSTALLATION-INTEGER-1
INSTALLATION-INTEGER-2
INSTALLATION-INTEGER-3
INSTALLATION-INTEGER-4
LIBRARY

DATE

TIME

PROCESSING-ITEM
PROCESSING-ITEM-LIST
PROGRAM

QUEUE-DEPTH
MIXNUMBERS
LAST-RESPONSE
AGGREGATE-RESPONSE
SECURITY
MESSAGE-COUNT

SECURITY-CATEGORY -
CATEGORY-LIST

STATION
LANGUAGE

CONVENTION

continued

8600 0130-000

Using the COMS Program Interface

Table 3-5. Service Function Mnemonics (cont.)

Data ltem Mnemonic

Station list STATION-LIST

Station: logical station number (LSN) LSN

Station: security designator SECURITY

Statistics STATISTICS

Transaction code TRANCODE

Window WINDOW

Window: maximum number of users MAXIMUM-USER-COUNT
Window: current number of users CURRENT-USER-COUNT
Window list WINDOW-LIST

Usercode " USERCODE

Calling Service Functions

You can call the COMS service functions with application programs and processing items.
When you call a service function, do the following:

e Use the CALL statement syntax for calling library procedures in COBOL74. The
CALL statement is explained in detail in Volume 1.

e Pass the integer parameters (using unscaled integer values) by name rather than by
value.

Do not perform arithmetic computations on the values returned from the procedure
calls. You can move the values to other locations of a compatible type within your
program, and you can pass them as parameters when calling other library objects. For
information on compatible types, refer to “Mapping COMS Data Types to COBOL74”
earlier in this section. .

Note: If the library being called is DCILIBRARY, you must use hyphens (-)
in the mnemonic names. The hyphens are automatically translated
to underscores (_) by the compiler for use with COMS.

Example
The following example shows the use of the CALL statement to pass an agenda

designator to obtain an agenda name. The agenda designator and name used in the
example are also declared in the WORKING-STORAGE SECTION of the program.

8600 0130-000 3-29

Using the COMS Program Interface

The service function result value indicates the result of the service function call. The
result value is returned to the parameter specified in the GIVING clause of the CALL
statement.

CALL "GET-NAME-USING-DESIGNATOR OF DCILIBRARY"
USING agenda-designator,
agenda-name
GIVING service-function-result-value

See Also

e Formore information on the GET_NAME_USING_DESIGNATOR service function,
and for an example of the CALL statement used for this service function, see
“GET_NAME_USING_DESIGNATOR Service Function” later in this section.

o Refer to the COMS Programming Guide for information about the service function
result values.

o Refer to “Passing Parameters to Service Functions” later in this section for
information on valid parameters and examples of the CALL syntax.

General Format of the VALUE Option

You can use the VALUE option with the CALL statement for COMS service functions in
which a mnemonic parameter is passed for a numeric resuit.

The format for the VALUE option is as follows:

[VALUE mnemonic-1]

3-30

Explanation of Format Elements

VALUE

This parameter indicates that a service function mnemonic is being passed by value to
the service function. :

mnemonic-1
This identifier designates the mnemonic parameter.

Refer to “Identifying Information with Service Function Mnemonics” earlier in this
section for information on valid mnemonics.

8600 0130-000

Using the COMS Program Interface

Example

The following example uses the CALL statement with the VALUE parameter. The
LSN-NUM variable contains the value of the LSN service function mnemonic. SF-RSLT
receives the result of the procedure call. If the result of the procedure call is successful,
SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.

Note that the GET_INTEGER_USING_DESIGNATOR service function has hyphens (-)
between the words in its name because the DCILIBRARY library is the library called.

For information on valid parameters and an example of program code
using the GET_INTEGER_USING_DESIGNATOR service function, see
“GET_INTEGER_USING_DESIGNATOR Service Function” later in this section.

WORKING-STORAGE SECTION.

77 HDR-STATION REAL.
77 LSN-NUM PIC S9(11) USAGE BINARY.
77 SF=-RSLT PIC S9(11) USAGE BINARY.

PROCEDURE DIVISION.

CALL "GET-INTEGER-USING-DESIGNATOR OF DCILIBRARY"
USING HDR-STATION
VALUE LSN
LSN-NUM
GIVING SF-RSLT.

8600 0130-000 3-31

Using the COMS Program Interface

Passing Parameters to Service Functions
The following parameters can be passed to service functions:

e Designators
e Mnemonics
e Arrays

Designators and arrays must be declared in the WORKING-STORAGE SECTION of
your COBOL74 program. ‘

You cannot pass header fields as parameters. To pass fields, you must first move them to
a declared temporary parameter, and then pass the values. The temporary parameter
must be declared as a real value.

The service function declarations and valid parameters for passing service functions in
a COBOL74 program are explained on the following pages. Note the following general
characteristics:

e An entity name is a data item with DISPLAY usage.

¢ A mnemonic is a COMS mnemonic representing an entity or a designator.

e Anarray is an EBCDIC or integer array.

e A designator is a data item of type real.

See Also
e For general information about passing service function parameters, refer to the
COMS Programming Guide.

¢ For information on service function mnemonics used in COBOL74, refer to
“Identifying Information with Service Function Mnemonics” earlier in this section.

¢ Refer to the coded examples of declarations of designator, integer, and real tables
that are provided at the end of the discussion of each service function.

3-32 : 8600 0130-000

Using the COMS Program Interface

CONVERT_TIMESTAMP Service Function

The CONVERT_TIMESTAMP service function converts the COMS timestamp TIME(G)
to the date or time in EBCDIC. For information on the COMS timestamp TIME(6) type
and COBOL74 usage, refer to “Mapping COMS Data Types to COBOL74” earlier in this
section.

The input parameters are the following:

e Areal value that represents the timestamp.

e A mnemonic that represents the requested function. The allowable mnemonics
include DATE, which returns MMDDYY, and TIME, which returns HHMMSS.

The output parameter is an EBCDIC array in which the time or date is returned.

Example

In the following example of the CONVERT_TIMESTAMP service function, SF-RSLT
receives the result of the call to the service function. If the result of the call is successful,
SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.

77 WS-TIMESTAMP REAL.
91 WS-TIME PIC X(6).
77 SF-RSLT PIC S9(11) USAGE BINARY.

CALL "CONVERT-TIMESTAMP OF DCILIBRARY"
USING WS-TIMESTAMP
VALUE TIME
WS-TIME
GIVING SF-RSLT.

8600 0130-000 3-33

Using the COMS Program Interface

GET_DESIGNATOR_ARRAY_USING_DESIGNATOR Service Function

The GET_DESIGNATOR_ ARRAY USING_DESIGNATOR service function obtains
a designator list representing the list of stations associated with the STATION LIST
designator.

The input parameters are the following:

e The STATION LIST designator. Because the STATION LIST designator is not a
field of the header, you must first obtain the designator representing the station list
by using the GET_DESIGNATOR_USING_NAME service function. Then use the
STATION LIST designator supplied by that function as the designator variable in
the GET_DESIGNATOR_ARRAY USING_DESIGNATOR function.

e The total number of designators in the station list by COMS.

The output parameter is a real array containing the designators.

Example

In the following example of the GET_DESIGNATOR_ARRAY _

USING_DESIGNATOR service function, SF-RSLT receives the result of the call to

the service function. If the result of the call is successful, SF-RSLT contains a 0 (zero);
- otherwise, SF-RSLT contains an error code.

77 WS-TABLE-DESG REAL.
77 WS-DESG-TABLE-MAX-INDEX PIC S9(11) USAGE BINARY.
91 WS-DESG-TABLE REAL.
85 WS-D-TABLE REAL OCCURS 19 TIMES.
77 SF-RSLT PIC S9(11) USAGE BINARY.

CALL "GET-DESIGNATOR-ARRAY-USING-DESIGNATOR OF DCILIBRARY"
USING WS-TABLE-DESG ‘ '
WS-DESG-TABLE-MAX-INDEX
WS-DESG-TABLE
GIVING SF-RSLT.

3-34 : 8600 0130-000

Using the COMS Program Interface

GET_DESIGNATOR_USING_DESIGNATOR Service Function

The GET_DESIGNATOR_USING_DESIGNATOR service function obtains a specific
designator from the structure represented by the designator.

The input parameters are the following:

e A designator that represents the structure.

e A mnemonic that describes the requested integer array. The mnemonics allowed for
the designators are as follows:

Designator _ Mnemonic

Al INSTALLATION_DATA_LINK
Station, usercode, program SECURITY

Station » DEVICE

The output parameter is a designator.

Example

In the following example of the GET_DESIGNATOR_USING_DESIGNATOR service
function, SF-RSLT receives the result of the call to the service function. If the result
of the call is successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an

error code.

77 WS-DESG REAL.

77 WS-DESG-RSLT REAL.

77 SF-RSLT PIC S9(11) USAGE BINARY.

.

CALL "GET-DESIGNATOR-USING-DESIGNATOR OF DCILIBRARY"
' USING WS-DESG
VALUE INSTALLATION-DATA-LINK
WS-DESG-RSLT
GIVING SF-RSLT.

8600 0130-000 3-35

Using the COMS Program Interface

GET_DESIGNATOR_USING_NAME Service Function

3-36

The GET_DESIGNATOR_USING_NAME service function converts the COMS name

variable into a designator.

The input parameters are the following:

e A mnemonic that is the entity type for the required name.

e Anentity name. The string for the entity name of an agenda, a transaction code
(trancode), and installation data includes the window name if the program calling the
service function is running in another window or is outside COMS. For example, the
following input passes the entity name:

agenda-name of window-name

For installation data, the data with a window value equal to the ALL entity (the
default value) is used if no window is specified and if the window in which the
program is running does not have an entity of the same name.

The output parameter is a designator.

Example

In the following example of the GET_DESIGNATOR_USING_NAME service function,
SF-RSLT receives the result of the call to the service function. If the result of the call is

successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.
]

g1 WS-NAME PIC X(39).
77 WS-DESG REAL.

77 SF-RSLT PIC S9(11) USAGE BINARY.

CALL "GET-DESIGNATOR-USING-NAME OF DCILIBRARY"
USING WS-NAME
VALUE STATION-LIST
WS-DESG
GIVING SF-RSLT.

8600 01 30-000

Using the COMS Program Interface

GET_INTEGER_ARRAY_USING_DESIGNATOR Service Function

The GET_NTEGER_ARRAY_USING_DESIGNATOR service function obtains an array
of integers from the structure represented by the designator.

The input parameters are the following:

e A designator that represents the structure.
e A mnemonic that describes the requested integer array. The mnemonics allowed for

designators are as follows:
Designator Mnemonic
Al | INSTALLATION_INTEGER_ALL
Program ' MIXNUMBERS

The output parameters are the following:

e An integer representing the number of integers returned in the array

e Aninteger array containing the returned information

Example

In the following example of the GET INTEGER_ARRAY _

USING_DESIGNATOR service function, SF-RSLT receives the result of the call to
the service function. If the result of the call is successful, SF-RSLT contains a 0 (zero);
otherwise, SF-RSLT contains an error code.

.

.

77 WS-DESG REAL.

77 WS-INT-TABLE-MAX-INDEX PIC S9(11) USAGE BINARY.
77 SF-RSLT PIC S9(11) USAGE BINARY.
@1 WS-INT-TABLE USAGE BINARY.

03 WS-INT-TABLE-DETAIL PIC S9(11) OCCURS 18 TIMES.

CALL "GET-INTEGER-ARRAY-USING-DESIGNATOR OF DCILIBRARY"
USING WS-DESG ‘
VALUE INSTALLATION-INTEGER-ALL
WS~INT-TABLE-MAX-INDEX
WS-INT-TABLE
GIVING SF-RSLT.

8600 0130-000 ' 3-37

Using the COMS Program Interface

GET INTEGER_USING_DESIGNATOR Service Function

The GET_INTEGER_USING_DESIGNATOR service function obtains a specific integer
from the structure represented by the designator.

The input parameters are the following:

o A designator representing the structure.
e A mnemonic that describes the requested integer. Allowable mnemonics and

designators are as follows: ‘
Designator Mnemonic
Al ' 4 INSTALLATION_INTEGER_1, 2, 3, 4
Station SN
Window MAXIMUM_USER_COUNT and
CURRENT_USER_COUNT
Program QUEUE_DEPTH, MESSAGE_COUNT,

LAST_RESPONSE, and
AGGREGATE_RESPONSE

The result parameter is an integer.

Example

In the following example of the GET_INTEGER_USING_DESIGNATOR service
function, SF-RSLT receives the result of the call to the service function. If the result
of the call is successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an

error code.
77 WS-DESG REAL.
77 WS-INT PIC S9(11) USAGE BINARY.

77 SF-RSLT PIC S9(11) USAGE BINARY.

CALL "GET-INTEGER-USING-DESIGNATOR OF DCILIBRARY"
USING WS-DESG
VALUE INSTALLATION-INTEGER-1
WS-INT
GIVING SF-RSLT.

3-38 8600 0130-000

Using the COMS Program Interface

GET_NAME_USING_DESIGNATOR Service Function

The GET_NAME_USING_DESIGNATOR service function converts a COMS designator
to the COMS designator name.

The input parameter is a designator. All designators are allowed.

The result parameter is an entity name.

Example

In the following example of the GET_NAME_USING_DESIGNATOR service function,
SF-RSLT receives the result of the call to the service function. If the result of the call is
successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.

77 WS~DESG REAL.
@1 WS-NAME ' PIC X(30).
77 SF-RSLT PIC S9(11) USAGE BINARY.

.

.

CALL "GET-NAME-USING-DESIGNATOR OF DCILIBRARY"
USING WS-DESG
WS -NAME
GIVING SF-RSLT.

8600 0130-000 3-39

Using the COMS Program Interface

GET_REAL_ARRAY Service Function

The GET REAL_ARRAY service function obtains a data structure with no connection to
any entity. ’

The input parameter is a mnemonic representing the requested function. The

only allowable mnemonic is STATISTICS, which returns a table. Each table entry
contains the following six items. (The input parameter items that show DCI library in
parentheses are passed from DCI library programs only, and not from remote files.)

o Entity designator
o Type of entity, as follows:

Entry Code : Entity Represented
1 DCI library program
2 Remote file interface
3 MCS window

e Queue depth (DCIvlibrary)
e Number of transactions
e Last transaction response in milliseconds (DCI library)
e Aggregate response in milliseconds (DCI library)
The result parameters are the following:
e An integer representing the number of elements returned in the array
e An array containing the returned information
Example
In the following example of the GET_REAL_ARRAY service function, SF-RSLT receives

the resuilt of the call to the service function. If the result of the call is successful,
SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.

77 WS-REAL-TABLE-MAX-INDEX PIC S9(11) USAGE BINARY.
g1 WS-REAL-TABLE REAL.

@5 WS-R-TABLE REAL OCCURS 500 TIMES.
77 SF-RSLY PIC S9(11) USAGE BINARY.

CALL "GET-REAL-ARRAY OF DCILIBRARY"
USING VALUE STATISTICS
WS-REAL-TABLE-MAX-INDEX
WS-REAL-TABLE
GIVING SF-RSLT.

3-40 ' ' 8600 0130-000

Using the COMS Program Interface

GET_STRING_USING_DESIGNATOR Service Function

The GET_STRING_USING_DESIGNATOR service function obtains an EBCDIC string
from the structure represented by the designator.

The input parameters are the following:

e Anentity designator that represents the structure.

e An entity mnemonic that describes the requested integer vector. The
allowable mnemonics are INSTALLATION_STRING 1 through
INSTALLATION_STRING 4; IN STALLA'I‘ION HEX land
INSTALLATION HEX_2; LANGUAGE; and CONVENTION.

INSTALLATION_STRING_1 through INSTALLATION_STRING 4,
INSTALLATION HEX 1, and INSTALLATION_HEX 2 can be used to return
strings that you have set up as installation data in 1 the COMS utility.

The LANGUAGE and CONVENTION mnemonics provide a way of determining the
language and convention attributes of the stations to which the program sends or
receives messages.

The result parameters are the following:

e Aninteger that indicates the number of valid characters in the string
e An EBCDIC array indicating the returned string

Example

In the following example of the GET_STRING_USING_DESIGNATOR service function,
SF-RSLT receives the result of the call to the service function. If the result of the call is
successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.

77 WS-DESG REAL.
77 WS-STRING-MAX-CHAR PIC $9(11) USAGE BINARY.
g1 WS-STRING PIC X(32).

77 SF-RSLT PIC S9(11) USAGE BINARY.

MOVE SPACES TO WS-STRING.
CALL "GET-STRING-USING-DESIGNATOR OF DCILIBRARY“
USING WS-DESG
VALUE INSTALLATION-STRING-1
WS-STRING-MAX-CHAR
WS-STRING
GIVING SF-RSLT.

8600 0130-000 : " 3-41

Using the COMS Program Interface

STATION_TABLE_ADD Service Function

The STATION_TABLE_ADD service function adds a station designator to a table of
station designators. The table is controlled by the transaction processor.

The input parameters are the following:

e Areal array that contains the table of station designators
e A station designator that is to be added to the table

An example of the use of this service function is provided at the end of the explanation of
the STATION_TABLE_SEARCH service function.

STATION_TABLE_INITIALIZE Service Function

The STATION_TABLE_INITIALIZE service function initializes the table into which the
station index values are placed. Unisys recommends that the size of the table be based
on the number of stations that exist.

The input parameters are the following:

e A real table of station designators. The table is implemented as a hash table.

e A table modulus. You use the modulus to determine the density and access time of
the table. If, for example, you have a table with a sparse population and you desire
very fast access time, select a modulus that is twice the maximum number of table

‘entries. You should use a modulus with half the maximum number of entries if the
table has a compact population and slower access is acceptable.

An example of the use of this service function is provided at the end of the explanation of
the STATION_TABLE_SEARCH service function.

STATION_TABLE_SEARCH Service Function

3-42

The STATION_TABLE_SEARCH service function searches a table and locates a station
designator.

The input parameters are the following:

e The name of the real table of designators to be searched

‘e The name of the stations designator to be found

If the designator is found, the value of the table index is returned; however, if the
returned value is 0 (zero), the station designator was not found.

8600 0130-000

Using the COMS Program Interface

Example

The following example shows the declarations and statements for the station

table service functions. After the execution of the code in the example,
STATION-SEARCH-RESULT will contain the index of the station designator in the
hash table.

WORKING STORAGE SECTION.

77
77
77

.

.

STATION-HASH REAL.

82 STATION-DESIGNATOR REAL OCCURS 104.
STATION-SEARCHRESULT PIC S9(11) BINARY.
STATION-SEARCH-DESIGNATOR REAL.
STATION-SEARCH-MODULUS - PIC S9(11) BINARY.

PROCEDURE DIVISION.

.

CALL "STATION_TABLE_INITIALIZE OF DCILIBRARY"
USING STATION-HASH, STATION-SEARCH-MODULUS.

MOVE STATION OF COMS-IN TO STATION-SEARCH-DESIGNATOR.
CALL "STATION_TABLE_SEARCH OF DCILIBRARY"
USING STATION- HASH STATION-SEARCH- DESIGNATOR
GIVING STATION-SEARCH-RESULT.
IF STATION-SEARCH-RESULT IS EQUAL TO 9
CALL "STATION_TABLE_ADD OF DCILIBRARY"
USING STATION-HASH, STATION-SEARCH-DESIGNATOR
GIVING STATION-SEARCH-RESULT.

8600 ©130-000 343

Using the COMS Program Interface

TEST_DESIGNATORS Service Function

The TEST_DESIGNATORS service function determines whether a designator is part

of a list included in the other designator. The input parameters are two designators
representing structures. The allowable designator combinations must include an array of
designators using either the mnemonics DEVICE and DEVICE_LIST or the mnemonics
SECURITY and SECURITY_CATEGORY. The order in which the parameters for the
designators appear in the code does not matter.

If one designator is contained within the list of the other designator, a value of 0 is
returned. If not, an error occurs and a value of 2 is returned.

Example

In the following example of the TEST_DESIGNATORS service function, SF-RSLT
receives the result of the call to the service function: :

77 WS-DESG REAL.
77 WS-DESG-RSLT REAL.
77 SF-RSLT : PIC S9(11) USAGE BINARY.

.

CALL "TEST-DESIGNATORS OF DCILIBRARY"
USING WS-DESG
WS-DESG-RSLT
GIVING SF-RSLT.

COMS Sample Programs

The two sample programs track sailboat races. Each updatesa database by using
features of the COMS direct-window interface. Although both programs have the same
purpose and both use the same COMS features, they illustrate the use of different
databases. The first program, SAILOLPROG, uses a DMSII database; the second
program, ONLINESAIL, uses a SIM database.

COMS Sample Program with a DMSII Database

3-44

The SAILOLPROG program maintains the SAILDB database. The program contains
three transactions. Each transaction has a unique trancode and a unique module
function index (MFI). CRERAC creates a race entry in the database. ADDENT adds a
boat entry to a race. The race must exist for the ADDENT transaction to be completed.
DELENT deletes a boat from a race.

The program exempliﬁeé the programming techniques used in writing transaction

processors that allow synchronized recovery. The program also shows the use of the Test
and Debug System (TADS).

?

8600 0130-000

Using the COMS Program Interface

COMS Features Used in the Sample Program
The following features of the COMS direct-window interface are used in the program:

e Declared COMS input and output headers
e Trancodes
e Synchronized recovery
The SAILOLPROG program runs in a COMS environment that has been configured to
include a DMSII database called SATLDB and the following COMS entities:
o Adirect window called SAIL
e An agenda called SATLAGINOL
o The following three trancodes:
- CRERAC (MFI=1)
- ADDENT (MFI=2)
- DELENT (MFI=3)

All entities must be defined to COMS to allow the program to run.

See Also

e Information on synchronized recovery when COMS is used with DMSII is provided
in the explanation of the CLOSE statement under “CLOSE Statement” in Section 4,
“Using the DMSII Program Interface.”

e Information on TADS is provided in the A Series COBOL ANSI-74 Test and Debug
System (TADS) Programming Guide.

Data Sets in the Database

The database SAILDB contains three data sets. The data set RACE-CALENDAR
contains one record for every race. The data set ENTRY contains one record for each
boat entered in a particular race. A boat can have several records, depending on the
number of races entered. The data set RDS is the restart data set with the appropriate
fields requested by COMS. The DMSII option RDSSTORE is not set for the database.

Using the Sample Program

The SAILOLPROG program is shown in Example 3-1. This representation of the
program contains comments to indicate the program actions at each step.

All transactions in the program are two-phase transactions. In phase 1, all

records are locked. In phase 2, the data is stored in the database and only the
END-TRANSACTION statement unlocks records. All transactions instruct COMS to
audit the input message when the END-TRANSACTION statement takes the program
out of transaction state.

8600 0130-000 3-45

Using the COMS Program Interface

@01088$SET DICTIONARY = TEST.
916108$SET TADS (REMOTE RMT)

10209 IDENTIFICATION DIVISION.
919388 PROGRAM-ID. ONLINESAIL.
210499 ENVIRONMENT DIVISION.
10508 CONFIGURATION SECTION.
910608 SOURCE-COMPUTER. MICROA.
910780 OBJECT-COMPUTER. MICROA.
910898 INPUT-OUTPUT SECTION.
910988 FILE-CONTROL.

911000
11180 DATA DIVISION.

91120 FILE SECTION.

011360 FD RMT.

011480 01 REM-REC

911580 DATA-BASE SECTION.
911680 DB SAILDB ALL.
811708 WORKING-STORAGE SECTION.
1188 77 SCRATCH

211999

SELECT RMT ASSIGN TO REMOTE ACCESS SEQUENTIAL.

"PIC X(72).

~ PIC X(256).

B120B** XA H AR AR EFEEERERRRRREARIAR

$12108* MESSAGE AREA DECLARATIONS

ARAXRREEEAREARNAANREREEXEEAERAXXARXRARTARRRIEX

B12200**H*HAAKERAAREERRREAKE XN RSN AR

212309
912490 91 MSG-TEXT.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

912500 23 MSG-TCODE PIC X(6).
912609 93 MSG-FILLER PIC X.
912700 93 MSG-CREATE-RACE.
912800 @5 MSG-CR-ID PIC 9(6).
912900 @5 MSG-CR-NAME PIC X(28).
13900 @5 MSG-CR-DATE PIC X(6).
913100 @5 MSG-CR-TIME PIC X(4).
913200 #5 MSG-CR-LOCATION PIC X(29).
213300 @5 MSG-CR-SPONSOR PIC X(18).
913350 @5 FILLER PIC X(18).
913400 @3 MSG-ADD-ENTRY REDEFINES MSG-CREATE-RACE.
913500 @5 MSG-AE-RACE-ID PIC 9(6).
213600 85 MSG-AE-ID PIC X(6).
913720 85 MSG-AE-NAME PIC X(20).
9138090 @5 MSG-AE-RATING PIC 9(3).
913900 @5 MSG-AE-OWNER PIC X(20).
914000 @5 MSG-AE-CLUB PIC X(15).
914100 85 FILLER PIC X(6).
914200 @3 MSG-DELETE-ENTRY REDEFINES MSG-CREATE-RACE.
914300 #5 MSG-DE-RACE-ID PIC 9(6).
914400 85 MSG-DE-ID PIC X(6).
914500 25 FILLER' PIC X(64).
214608 23 MSG-STATUS PIC X(30).
214700

Example 3-1. COMS Sample Program with a DMSII Database

8600 0130-000

Using the COMS Program Interface

g147 lﬂ**

914720* COMS INTERFACE DECLARATIONS *

g1473”**

214809 COMMUNICATION SECTION.

017000

917092 INPUT HEADER COMS-IN;

217004 PROGRAMDESG IS COMS-IN-PROGRAM;
217086 FUNCTIONSTATUS IS COMS-IN-FUNCTION-STATUS;
017088 FUNCTIONINDEX IS COMS-IN-FUNCTION-INDEX;
@17910 USERCOBE IS COMS-IN-USERCODE;
@17012 SECURITYDESG IS COMS-IN-SECURITY-DESG;
917014 TRANSPARENT IS COMS-IN-TRANSPARENT;
217016 VTFLAG - IS CONS-IN-VT-FLAG;
817018 TIMESTAMP IS COMS-IN-TIMESTAMP;
917028 STATION IS COMS-IN-STATION;
217822 TEXTLENGTH IS COMS-IN-TEXT-LENGTH;
917824 STATUSVALUE IS COMS-IN-STATUS-KEY;
817026 MESSAGECOUNT IS COMS-IN-MSG~COUNT;
917028 RESTART IS COMS-IN-RST-LOC;
917930 AGENDA IS COMS-IN-AGENDA;

917832 CONVERSATION AREA.
817833 g2 CA PIC X(60).

217034

917936 OUTPUT HEADER COMS-OUT;

017238 DESTCOUNT IS COMS-OUT-COUNT;

917048 TEXTLENGTH IS COMS-OUT-TEXT-LENGTH;
917042 STATUSVALUE IS COMS-QUT-STATUS-KEY;
917044 TRANSPARENT IS COMS-OUT-TRANSPARENT;
g17046 VTFLAG IS COMS-OUT-VT-FLAG:
917948 CONFIRMFLAG IS COMS-OUT-CONFIRM-FLAG;
917050 CONFIRMKEY : . IS COMS-OUT-CONFIRM-KEY;
-@17@852 DESTINATIONDESG IS COMS-OUT-DESTINATION;
217954 NEXTINPUTAGENDA IS COMS~QUT-NEXT-INPUT-AGENDA;
917055 CASUALOUTPUT IS COMS-OUT-CASUAL-OUTPUT;

017856 SETNEXTINPUTAGENDA IS COMS-QUT-SET-NEXT-INPUT-AGENDA;
917058 RETAINTRANSACTIONMODE IS COMS-OUT-SAVE-TRANS-MODE;
@17068 AGENDA IS COMS-OUT-AGENDA;

ﬂ17 lgﬂ**

917209 PROCEDURE DIVISION.

LR i e Rt T e
917400 DECLARATIVES.

917500 DMERROR-SECTION SECTION.

217600 USE ON DMERROR.

917788 DMERROR-PARA.

217898 '

©17908 END DECLARATIVES.

018000

018109 ©0@5-MAIN SECTION.

918116* LINK APPLICATION PROGRAM TO COMS.

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

8600 0130-010 3-47

Using the COMS Program Interface

018200 @@5-MAIN-SN.

218500 CHANGE ATTRIBUTE LIBACCESS OF

018600 "DCILIBRARY" TO BYINITIATOR.
2189090 OPEN UPDATE SAILDB.

919000 IF DMSTATUS (DMERROR) CALL SYSTEM DMTERMINATE.
919010* INITIALIZE INTERFACE TO COMS.

219100 ENABLE INPUT COMS-IN KEY "ONLINE".
019208 CREATE RDS.

2193089* MOVE COMS-IN-PROGRAM TO RDS-PROG.
419400* MOVE COMS-IN-RST-LOC TO RDS-LOCATOR.
819420 PERFORM 907 -PROCESS-COMS-INPUT

819449 UNTIL COMS-IN-STATUS-KEY = 99.

919500 005-MAIN-EXIT.

019510 PERFORM 91@-CLOSEDOWN.

919520 STOP RUN.

219530

g1954@***

019550 907-PROCESS-COMS-INPUT SECTION.
gl956@***
919562* Get the next message from COMS. If the value is a 99,
219564* go to the end of task (EOT); otherwise, make sure that the
#19566* message is valid before processing it. '

419568* .

819570 @07-PROCESS-CI-SN.

219699 MOVE SPACES TO MSG-TEXT. .

919790 RECEIVE COMS-IN MESSAGE INTO MSG-TEXT.

219809 IF COMS-IN-STATUS-KEY NOT = 99

020000 PERFORM 92@-CHECK-COMS-INPUT-ERRORS
220100 IF (COMS-IN-STATUS-KEY = @ OR 92) AND
026200 COMS-IN-FUNCTION-STATUS NOT < @ THEN
020300 PERFORM 100-PROCESS-TRANSACTION.

0204080 997 -PROCESS-CI-EXIT.
920450 EXIT.
2205090

gz1ggg**

02110¢ 106-PROCESS-TRANSACTION SECTION.
ﬁz12ﬂﬂ**
9212206* Because the transaction type is programmatically based on
0921249* the MFI, make sure that the type is within range -before
921260* exiting to the appropriate subprogram.

092128¢*

021300 100-PROCESS-TRANS-SN.

921409 IF MSG-TCODE = "CRERAC"

0921509 PERFORM 20@-CREATE-RACE

0921620 ELSE

921799 IF MSG-TCODE = "ADDENT"

921809 PERFORM 3@@-ADD-ENTRY

021909 ELSE

022009 IF MSG-TCODE = "DELENT"

0922109 PERFORM 408-DELETE-ENTRY

922200 ELSE :

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

3-48 ' 8600 0130-010

Using the COMS Program Interface

0922300 MOVE "INVALID TRANS CODE" TO MSG-STATUS
922320 PERFORM 90B-SEND-MSG.
922340

922490 100-PROCESS-TRANS-EXIT.
922500 EXIT.
0822600

ﬁ227ﬁﬂ**

922800 200-CREATE-RACE SECTION.
gzzggg**
023000 206-CREATE-RACE-SN.

923920* Enter a new race record in the database.

223030* Because the transaction is done in online mode,

g23940* save the restart data set (RDS) in the conversation area
923050* only. If there is an abort on the BEGIN-TRANSACTION or
923060* END-TRANSACTION statement, return to the RECEIVE statement.
923089

923100 CREATE RACE-CALENDAR.

923200 MOVE MSG-CR-NAME TO RACE-NAME.

923300 MOVE MSG-CR-ID TO RACE-ID.

923490 MOVE MSG-CR-DATE TO RACE-DATE.

923590 MOVE MSG-CR-TIME TO RACE-TIME.

223600 MOVE MSG-CR-LOCATION TO RACE-LOCATION.

023700 MOVE MSG-CR-SPONSOR TO RACE-SPONSOR.

223800

0823900* BEGIN-TRANSACTION COMS-IN USING MSG-TEXT NO AUDIT RDS
923950 BEGIN-TRANSACTION COMS-IN NO-AUDIT RDS
924000 ON EXCEPTION ’

024100 IF DMSTATUS (ABORT)

g24200* THEN MUST GET BACK TO RECEIVE STMT

924300 GO TO 20B-CREATE-RACE-EXIT

024400 ELSE

924500 CALL SYSTEM DMTERMINATE.

B24600* MOVE COMS-IN-RST-LOC TO RDS-LOCATOR.
824790 STORE RACE-CALENDAR.
0624800 IF DMSTATUS (DMERROR)

924900 MOVE "STORE ERROR" TO MSG-STATUS
025900 ELSE

925100 MOVE "RACE ADDED" TO MSG-STATUS.
825200 END-TRANSACTION COMS-OUT AUDIT RDS
925300 ON EXCEPTION

925400 IF DMSTATUS (ABORT)

925500 GO TO 209-CREATE-RACE-EXIT
0925600 ELSE

925700 CALL SYSTEM DMTERMINATE.

225890 PERFORM 909-SEND-MSG.
925900 208-CREATE-RACE-EXIT.
226090 EXIT.

026100

gzszgg***

£26300 306-ADD-ENTRY SECTION. .

026420**

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

8600 0130-000 ‘ 349

Using the COMS Program Interface

026500 300-ADD-ENTRY-SN.
926520* Enter a boat in a race. The restart requirements are the same

826540* as for the previous transaction.

0926560

926600 FIND RACE-SET AT RACE-ID = MSG-AE-RACE-ID
0926709 ON EXCEPTION

9268090 IF DMSTATUS (NOTFOUND)

926900 } MOVE "RACE DOES NOT EXIST" TO MSG-STATUS
927908 PERFORM 900-SEND-MSG

9271008 GO TO 389-ADD-ENTRY-EXIT

0927200 ELSE

027320 CALL SYSTEM DMTERMINATE.

0927490

027500 CREATE ENTRY.

0927600 MOVE MSG-AE-NAME TO ENTRY-BOAT-NAME.
927709 MOVE MSG-AE-ID TO ENTRY-BOAT-ID.

927800 MOVE MSG-AE-RATING TO ENTRY-BOAT-RATING.
027900 MOVE MSG-AE-OWNER TO ENTRY-BOAT-OWNER.

028008 MOVE MSG-AE-CLUB TO ENTRY-AFF-Y-CLUB.

028100 MOVE MSG-AE-RACE-ID TO ENTRY-RACE-ID.

628200 |

0283p0* BEGIN-TRANSACTION COMS-IN USING MSG-TEXT NO AUDIT RDS
0283506 BEGIN-TRANSACTION COMS-IN NO-AUDIT RDS
028490 ON EXCEPTION

028500 IF DMSTATUS (ABORT)

028600* THEN MUST GET BACK TO RECEIVE STMT

028709 GO TO 38B-ADD-ENTRY-EXIT

528807 ELSE

028908 CALL SYSTEM DMTERMINATE.

029000* MOVE COMS-IN-RST-LOC TO RDS-LOCATOR.
929100 STORE ENTRY.
029209 IF DMSTATUS (DMERROR)

929300 MOVE "STORE ERROR" TO MSG-STATUS
929400 ELSE '
929500 MOVE "BOAT ADDED" TO MSG-STATUS.
029600 END-TRANSACTION COMS-OUT AUDIT RD
929790 ON EXCEPTION v
929800 IF DMSTATUS (ABORT)

929990 GO TO 3@8-ADD-ENTRY-EXIT
930000 ELSE

930100 CALL SYSTEM DMTERMINATE.

030200 PERFORM 908-SEND-MSG.
030300 300-ADD-ENTRY-EXIT.
030409 EXIT.

930500

g3ﬂsgg**

930799 480-DELETE-ENTRY SECTION.

g3g8gg**

9309090 409-DELETE-ENTRY-SN.
030920* Delete a boat from a race. The restart requirements are the
930940* same as for the previous transaction.

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

3-50 8600 0130-000

Using the COMS Program Interface

930969

0931000 LOCK ENTRY-RACE-SET AT

931799 ENTRY-RACE-ID = MSG-DE-RACE-ID AND

2312090 ENTRY-BOAT-ID = MSG-DE-ID

931309 ON EXCEPTION

931400 IF DMSTATUS (NOTFOUND) THEN

931509 MOVE “BOAT ENTRY NOT FOUND" TO MSG-STATUS

931600 GO TO DE-SEND-MSG

0931790 ELSE

931800 CALL SYSTEM DMTERMINATE.

931909

032000* BEGIN-TRANSACTION COMS-IN USING MSG-TEXT NO-AUDIT RDS
932059 BEGIN-TRANSACTION COMS-IN NO-AUDIT RDS
932100 ON EXCEPTION

032209 " IF DMSTATUS (ABORT) :

932300* THEN MUST GET BACK TO RECEIVE STMT

0832400 GO TO 4@@-DELETE-ENTRY-EXIT

032500 ELSE .

032600 CALL SYSTEM DMTERMINATE.

g32700* MOVE COMS-IN-RST-LOC TO RDS-LOCATOR.
932800 DELETE ENTRY.
932900 IF DMSTATUS (DMERROR)

933000 MOVE "FOUND BUT NOT DELETED" TO MSG-STATUS
933100 ELSE

933200 MOVE “BOAT DELETED" TO MSG-STATUS.

933300 END-TRANSACTION COMS-OUT AUDIT RDS

933400 ON EXCEPTION

933500 IF DMSTATUS (ABORT)

933600 GO TO 49@-DELETE-ENTRY-EXIT

233700 ELSE

933800 CALL SYSTEM DMTERMINATE.

©33909 DE-SEND-MSG.

934000 PERFORM 90@-SEND-MSG.

934100 400-DELETE-ENTRY-EXIT.

934200 EXIT.

934300

[RTOY, ettt bbb b b bt fobdalababdadadalaiaiaiaioiaiaiainisiainiaialainiaiaialaisialalalaloinial
934500 99P-SEND-MSG SECTION.

B346QQ* K *rrkrkdxkk Ak A kkhhkkhkx bedabudeiaiuiodedalainiaialaiadalaiaiabeiale FhIERIKFIFIIK KK *ddk
0934709 998-SEND-MSG-SN.

934720* Send the message back to the originating station.

934740* Do not specify an output agenda. Test the result

934760* of the SEND statement. -

093478p*

034800 MOVE 1 TO COMS-OUT-COUNT.
0934950 MOVE 9 TO COMS-OUT-DESTINATION.
935000 MOVE 9 TO COMS-OUT-STATUS-KEY.
935100 MOVE 106 TO COMS-OUT-TEXT-LENGTH.

935200 SEND COMS-OUT FROM MSG-TEXT.
935309 IF COMS-OUT-STATUS-KEY = @ OR 92
935400 NEXT SENTENCE '

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

8600 0130-000 3-51

Using the COMS Program Interface

935500 ELSE

235600 DISPLAY "ONLINE PROGRAM SEND ERROR: " COMS-OUT-STATUS-KEY.
935700 900-SEND-MSG-EXIT.

235800 EXIT.

ﬂ3sggﬂ**

936000 919-CLOSEDOWN SECTION.
336lgg********************#***
036200 918-CLOSEDOWN-SN.

936220* Close the database.

936240 .

936300 BEGIN-TRANSACTION NO~AUDIT RDS.
936400 RECREATE RDS AND STORE RDS.
236609 END-TRANSACTION NO-AUDIT RDS.
0367020 CLOSE SAILDB.

236800 919-CLOSEDOWN-EXIT.

0936900 EXIT.

ﬂ37”00**

937120 920-CHECK-COMS-INPUT-ERRORS SECTION.
ﬂs726@**
937300 920-CHECK-CIE-SN.

937320* Check for COMS control messages.

937349

937409 IF (COMS-IN-STATUS-KEY = @ OR 92 OR 99)

0937450 _

937500* These codes signify a successful message, a recovery
#37550* message and an EOT notification, respectively.
937575*

937600 NEXT SENTENCE

937650

29377900 ELSE
9378090 IF COMS-IN-STATUS-KEY = 93

937900 MOVE. "MSG CAUSES ABORT, PLS DONT RETRY" TO MSG-STATUS
038000 PERFORM 99@-SEND-MSG

938100 ELSE

9381590

0938200* The COMS control message is 29, 186, 101, or 182. These
938300* values mean the application is manipulating the dynamic
938400* attachment or detachment of stations and has

938410* received an error.

938450

938500 MOVE "ERROR IN STA ATTACH/DETACHMENT* TO MSG-STATUS
938600 PERFORM 908-SEND-MSG.

938700 .

238800 IF COMS-IN-FUNCTION-STATUS < & THEN

938850

938900* This means that the application ID is tied to a default
639090* input agenda. MSG-TEXT probably does not contain a valid
839019* transaction.

039020

839100 MOVE “"NEGATIVE FUNCTION CODE " TO MSG-STATUS

0939200 PERFORM 99P-SEND-MSG THRU 908-SEND-MSG-EXIT.

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

3-52 8600 0130-000

Using the COMS Program Interface

939309

939408 920-CHECK-CIE-EXIT.
939500 EXIT.

939600

Example 3-1. COMS Sample Program with a DMSII Database (cont.)

COMS Sample Program with a SIM Database

This sample program, called ONLINESAIL, tracks sailboat races and updates a SIM
database by using features of the COMS direct-window interface.

COMS Features Used in the Sample Program
The following features of the COMS direct-window interface are used in the program:

¢ Declared COMS input and output headers
e Trancodes
e Recovery

The ONLINESAIL program runs in a COMS environment that has been configured to
include a SIM database called SIMSAILDB and the following COMS entities: :

o A direct window called SAIL
e An agenda called SAILAGINOL
e The following three trancodes:
-~ CRERAC (MFI=1)
-~ ADDENT (MFI=2)
- DELENT (MFI=3)

All entities must be defined to COMS to allow the program to run.

See Also
For more information on TADS, see the COBOL ANSI-74 TADS Guide.

Classes in the Database
The database SIMSAILDB contains two classes. The class RACE-CALENDAR contains

one entity for every race. The class ENTRY contains one entity for each boat entered in
arace. A boat can have several entities, depending on the number of races entered.

8600 0130-000 3-53

Using the COMS Program Interface

Using the Sample Program

3-54

The ONLINESAIL program is shown in Example 3-2. The program maintains the
SIMSAILDB database. The RESERVE SEMANTIC clause is used in the SPECIAL
NAMES paragraph, and the database is declared using the VALUE OF DBKIND IS
SEMANTIC statement to identify SIMSAILDB as a semantic database.

The program contains three transactions. Each transaction has a unique trancode and
a unique MFI. The trancode CRERAC creates a race entry in the database. ADDENT
adds a boat entry to a race. The race must exist for the transaction to be completed.
DELENT deletes a boat from a race.

All transactions instruct COMS to audit the input message at END-TRANSACTION.

The program also contains the coding required by TADS. The program must be compiled
with the TADS option and the TADS diagnostic station specified. No changes need to be
made to the program if TADS is not present.

The program sample contains comments to indicate the program actions at each step.

0@010@$SET TADS (REMOTE RMT) WARNSUPR LIST

900200 IDENTIFICATION DIVISION.

200492 PROGRAM-ID. ONLINESAIL.

000500 ENVIRONMENT DIVISION.

000609 CONFIGURATION SECTION.

000709 SOURCE-COMPUTER. MICROA.

000800 OBJECT-COMPUTER. MICROA.

900990 SPECIAL-NAMES. RESERVE SEMANTIC.

991008 INPUT-OUTPUT SECTION.

901109 FILE-CONTROL.

001200 SELECT RMT ASSIGN TO REMOTE ACCESS SEQUENTIAL.
901300 DATA DIVISION.

901499 FILE SECTION.

901508 FD RMT.

201600 @1 REM-REC PIC X(72).

001700 DATA-BASE SECTION.

001809 DB SIMSAILDB VALUE OF DBKIND IS SEMANTIC.
291999* This query description is from class RACE-CALENDAR.

9020069 QD RACE.

902100 @1 RACE-REC,

002200 92 RACE-NAME PIC X(29).
202300 92 RACE-ID PIC 9(6) COMP.
002400 @92 RACE-DATE PIC X(6).
0992500 @92 RACE-TIME PIC X(4).
902609 @2 RACE-LOCATION PIC X(29).
902700 @2 RACE-SPONSOR PIC X(18).

0202800* From class ENTRY
902900 QD ENT.
203008 21 ENTRY-REC.

993100 @2 ENTRY-BOAT-NAME PIC X(29).
003200 @2 ENTRY-BOAT-ID PIC X(6).
003300 @2 ENTRY-BOAT-RATING PIC 9(3) CoMP.

Example 3-2. COMS Sample Program with a SIM Database

8600 0130-000

Using the COMS Program Interface

203400 @2 ENTRY-BOAT-HELMSMAN
203500 22 ENTRY-AFF-Y-CLUB
203600 @2 ENTRY-RACE-ID
203700*

203800 WORKING-STORAGE SECTION.
203908 77 SCRATCH
204003 77 NUM-KEY
2041909 77 E-RACE
004208 77 E-BOAT

PIC X(29).
PIC X(15).
PIC 9(6) COMP.

PIC X(256).

PIC 9(6) COMP.
PIC 9(6).

PIC 9(6).

ﬂﬂ43@@**

004400* MESSAGE AREA

gg4sgﬂ**

*

204600
094700 @1 MSG-TEXT.

004800 @3 MSG-TCODE PIC X(6).
204900 @3 MSG-FILLER PIC X.
005000 @3 MSG-CREATE-RACE.

2051008 @5 MSG-CR-ID PIC 9(6).
005200 @5 MSG-CR-NAME PIC X(24).
205300 @5 MSG-CR-DATE PIC X(6).
005400 25 MSG-CR-TIME PIC X(4).
2805500 @5 MSG-CR-LOCATION PIC X(29).
205600 25 MSG-CR-SPONSOR PIC X(14).
205700 @5 FILLER PIC X(14).
205800 @3 MSG-ADD-ENTRY REDEFINES MSG-CREATE-RACE.
0805990 , 05 MSG-AE-RACE-ID PIC 9(6).
206000 ' @5 MSG-AE-ID PIC 9(6).
0206100 @5 MSG-AE-NAME PIC X(20).
006200 @5 MSG-AE-RATING PIC 9(3).
206300 25 MSG-AE-HELMSMAN PIC X(20).
006400 @5 MSG-AE-CLUB PIC X(15).
006500 @5 FILLER PIC X(6).
006600 @3 MSG-DELETE-ENTRY REDEFINES MSG-CREATE-RACE.
206700 @85 MSG-DE-RACE-ID PIC 9(6).
006800 @5 MSG-DE-ID PIC 9(6).
206920 25 FILLER PIC X(64).
007000 23 MSG-STATUS PIC X(49).
007100 ‘

007200 @1 WS-FAMILY PIC X(48).
007308 @1 WS-MSG.

207400 23 MsSG-1 PIC X(78).
0075900 g3 MSG-2 PIC X(98).

gg?Ggg********************************

#@7625* COMS INTERFACE DECLARATIONS
BOT 6 5G*F*FAKKKIKKRKKKFK KKK EIRKARKKERKKR
0077980 COMMUNICATION SECTION.

007808 INPUT HEADER COMS-IN;

hhkkkkhkkkkkhkhhkhkkhkkkkhkkhkkhkhhkkhkhkhkkkhkk
*

hkkkkhkkkhkhkhhhhhkhhkkhhkhkhhhhkhihhrk

8600 0130-010

007900 PROGRAMDESG IS COMS-IN-PROGRAM;
908003 FUNCTIONSTATUS IS COMS-IN-FUNCTION-STATUS;
008109 FUNCTIONINDEX IS COMS-IN-FUNCTION-INDEX;

208208 USERCODE IS COMS-IN-USERCODE;

Example 3-2. COMS Sample Program with a SIM Database (cont.)

3-55

~

Using the COMS Program Interface

3-56

208300
008400
008500
0086900
008700
008800
008900
209000
209100
009200
209400
009500

. 099600

089708
0098090
209900
210000
010100
010200
019309
210400
010500
210600
010700

SECURITYDESG
TRANSPARENT
VTFLAG
TIMESTAMP
STATION
TEXTLENGTH
STATUSVALUE
MESSAGECOUNT
RESTART
AGENDA

OUTPUT HEADER COMS-OUT;
DESTCOUNT
TEXTLENGTH
STATUSVALUE
TRANSPARENT
VTFLAG
CONFIRMFLAG
CONFIRMKEY
DESTINATIONDESG
NEXTINPUTAGENDA
SETNEXTINPUTAGENDA
RETAINTRANSACTIONMODE
AGENDA '

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

IS
IS
IS
IS
Is
IS
IS
IS
IS
1S
IS
IS

b}
COMS-IN-SECURITY-DESG;
COMS-IN~TRANSPARENT;
CONS-IN-VT-FLAG;
COMS-IN-TIMESTAMP;
COMS-IN-STATION;
COMS-IN-TEXT~LENGTH;
COMS-IN-STATUS-KEY;
COMS-IN-MSG-COUNT;
COMS=~IN-RST-LOC;
COMS-IN-AGENDA;

COMS~OUT-COUNT;
COMS-OUT-TEXT-LENGTH;
COMS-OUT-STATUS-KEY;
COMS-OUT-TRANSPARENT;

COMS-0UT-VT-FLAG;

COMS-0UT-CONFIRM-FLAG;
COMS-OUT-CONFIRM-KEY;
COMS-OUT-DESTINATION;

COMS-OUT-NEXT-INPUT-AGENDA;

COMS-QUT-SET-NEXT-INPUT-AGENDA;

COMS-0UT-SAVE-TRANS-MODE ;

COMS-0UT-AGENDA;

ﬂlgggg**

011000

PROCEDURE DIVISION.

gl 1 lﬂg**

011208
911300
011400
211500
011800
911909
012000
012109
0912200
2912300
912400
913500
913709
213800
213909
2914000
2914100
214200

P05-MAIN SECTION.
©@5-MAIN-SN.

CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY" TO BYINITIATOR.

OPEN UPDATE SIMSAILDB.

IF DMSTATE THEN

CALL SYSTEM DMEXCEPTIONMSG GIVING SCRATCH

DISPLAY SCRATCH
STOP RUN.

ENABLE INPUT COMS-IN KEY "ONLINE".
PERFORM 907-PROCESS-COMS-INPUT
UNTIL COMS-IN-STATUS-KEY = 99.

005-MAIN-EXIT.

PERFORM 910-CLOSEDOWN.

STOP RUN.

ﬂ143@@***

214400 @@7-PROCESS-COMS-INPUT SECTION.

gl4Sﬁﬂ***

214600*

Get the next message from COMS. If the message is 99, go to

Example 3-2. COMS Sample Program with a SIM Database (cont.)

8600 0130-010

Using the COMS Program Interface

914625* end of task (EOT); otherwise, make sure that the message
014700* is valid before processing it.

914809

914999 ©07-PROCESS-CI-SN.

015000 MOVE SPACES TO MSG-TEXT.

915100 RECEIVE COMS-IN MESSAGE INTO MSG-TEXT.

915200 IF COMS-IN-STATUS-KEY NOT = 99

915300 PERFORM 928-CHECK-COMS-INPUT-ERRORS
915400 IF (COMS-IN-STATUS-KEY = @ OR 92) AND
0915500 COMS-IN-FUNCTION-STATUS NOT < @ THEN
915600 PERFORM 109-PROCESS-TRANSACTION.

915799 897-PROCESS-CI-EXIT.

015800 EXIT.

915900

G160GQ****xFkdhkrrREXXEXNX fadaiadabeidaboiaiiiaboiiiadaiaialaiaiaiaiaiainiaioiaiaieiaialaialaialolaiolaiaialaialabalel ’
916180 108-PROCESS-TRANSACTION SECTION.

ﬂ 1 szgg**
#16320* Because the transaction type is programmatically based
#16400* on MFI, make sure that it is within range before

p16450* exiting to a subprogram.

916590 :

0166860 108-PROCESS-TRANS-SN.

916709 MOVE @ TO E-RACE, E-BOAT.

916800 IF MSG-TCODE = "CRERAC"

916900 PERFORM 2@@-CREATE-RACE

0817000 ELSE

917106 IF MSG-TCODE = "ADDENT"

9172006 PERFORM 30@-ADD-ENTRY

217300 ELSE

2917400 IF MSG-TCODE = "DELENT"

017500 PERFORM 40@-DELETE-ENTRY

017600 ELSE

217799 MOVE "INVALID TRANS CODE" TO MSG-STATUS
217800 PERFORM 908-SEND-MSG.

817990

918092 108-PROCESS-TRANS-EXIT.
918100 EXIT.
218209

g 1 83 gg**************** AXIAKXAKAAKERKRRAREXAXKRARARAARRRRATTRRRA AL A RRAA kR TX

918400 200-CREATE-RACE SECTION.

ﬂ 1 8 5gg*******************_***
918600 209-CREATE-RACE-SN.

918700* Enter a new race in the database.

218800

918900 MOVE MSG-CR-ID TO E-RACE.

019009 IF MSG-CR-ID NOT NUMERIC

919100 MOVE "Race # must be numeric" TO MSG-STATUS
219209 GO TO CRE-SEND-MSG.

919309 BEGIN-TRANSACTION

919409 ON EXCEPTION

919568 - PERFORM 995-SIM-ERR-RTN

Example 3-2. COMS Sample Program with a SIM Database (cont.)

8600 0130-000 3-57

Using the COMS Program Interface

919600
29197090
219800
019909
0920000
920100
920200
920300
920400
09205090
9205508
2921100
021200
921300
921409
- 921500
221600
021709
021800
921900
022000
922100
0922200
922300

GO TO CRE-SEND-MSG.
INSERT RACE-CALENDAR

ASSIGN MSG-CR-NAME TO RACE-NAME
ASSIGN MSG-CR-ID TO RACE-ID

ASSIGN MSG-CR-DATE TO RACE-DATE
ASSIGN MSG-CR-TIME " TO RACE-TIME

ASSIGN MSG-CR-LOCATION TO RACE-LOCATION
ASSIGN MSG-CR-SPONSOR TO RACE-SPONSOR
ON EXCEPTION -
PERFORM 985-SIM-ERR-RTN.

IF DMSTATE

MOVE "Store Error" TO MSG-STATUS
ELSE

MOVE "Race added " TO MSG-STATUS.

END-TRANSACTION COMS-OUT
ON EXCEPTION
PERFORM 985-SIM-ERR-RTN.

CRE-SEND-MSG.

PERFORM 908-SEND-MSG.

200-CREATE-RACE-EXIT.

EXIT.

g224ﬂg***

922509 3P0-ADD-ENTRY SECTION.

g22666**

P2R700 3@0-ADD-ENTRY-SN.

022800*
. 22900*
923000*
923100*
923200
023300
023409
923500
923699
923799
923809
823909
9240098
0924100
024209
024309
09244909
0824500
09246909
924709
0924809
024909
025009

3-58

To enter a boat in a race, determine if the race exists.
If not, do not add a boat. A DM error in this section of
code indicates a duplicate entry. Note that the

key is numeric and must be defined and compared.

IF MSG-AE-RACE-ID NOT NUMERIC OR
MSG-AE-ID NOT NUMERIC :
MOVE "Keys must be numeric" TO MSG-STATUS
GO TO ADD-SEND-MSG.
MOVE MSG-AE-RACE-ID TO E-RACE.
MOVE MSG-AE-ID TO E-BOAT.
MOVE MSG-AE-RACE-ID TO NUM-KEY.
SELECT RACE FROM RACE-CALENDAR
WHERE RACE-ID = NUM-KEY.
RETRIEVE RACE
ON EXCEPTION
MOVE "Race not found" TO.MSG-STATUS
DISCARD RACE
GO TO ADD-SEND-MSG.
DISCARD RACE.
BEGIN-TRANSACTION
ON EXCEPTION
PERFORM 9@5-SIM-ERR-RTN

Example 3-2. COMS Sample Program with a SIM Database (cont.)

8600 0130-000

Using the COMS Program Interface

925100 GO TO ADD-SEND-MSG.

925200 INSERT ENTRY

925300 ASSIGN MSG-AE-NAME TO ENTRY-BOAT-NAME
925400 ASSIGN MSG-AE-ID TO ENTRY-BOAT-ID
925500 ASSIGN MSG-AE-RATING TO ENTRY-BOAT-RATING
925609 ASSIGN MSG-AE-HELMSMAN TO ENTRY-BOAT-HELMSMAN
9257490 ASSIGN MSG-AE-CLUB TO ENTRY-AFF-Y-CLUB
925800 ASSIGN MSG-AE-RACE-ID TO ENTRY-RACE-ID
925990 ON. EXCEPTION

0926000 PERFORM 985-SIM-ERR-RTN.

026180* Do not leave the transaction state. An END-TRANSACTION
926150* statement must be processed.
026200 IF DMSTATE

026300 MOVE "Store Error" TO MSG-STATUS
09264900 ELSE

0926500 MOVE "Boat added" TO MSG-STATUS.
826600 END-TRANSACTION COMS-OUT

926799 ON EXCEPTION

0926800 PERFORM 985-SIM-ERR-RTN.

£26908 ADD-SEND-MSG.

927000 PERFORM 908-SEND-MSG.

027100 300-ADD-ENTRY-EXIT.

027200 EXIT.

0627300

[Py LT it i bbb bbbt iaiaiabedaiatuilalaialuialaiaiaiiaialoininiaiainialalalalololsialainiaininialainiale **
- @27500 400-DELETE-ENTRY SECTION.

[31| dedadeiediaiaiaiaiaiaialalaiaiaialoiaiaioiaiaininiainininialoiaiaiaiaialaluinlel biidaidebieiaiaialaiaialalabnisialaiel

927700 400-DELETE-ENTRY-SN.

§27809* Delete a boat from a race. SIM always returns a positive

927900* result; therefore, check to see if the boat exists.

927959* If it does, delete it.

928000

928100 IF MSG-DE-RACE-ID NOT NUMERIC OR

028200 MSG-DE-ID NOT NUMERIC

028300 MOVE "Keys must be numeric" TO MSG-STATUS
0284009 GO TO DE-SEND-MSG.

928500 MOVE MSG-DE-RACE-ID TO NUM-KEY.
928600 MOVE MSG-DE-RACE-ID TO E-RACE.

0928700 MOVE MSG-DE-ID TO E-BOAT.

928800 SELECT ENT FROM ENTRY

028999 WHERE ENTRY-RACE-ID = NUM-KEY AND
229009 ENTRY-BOAT-ID = MSG-DE-ID.
929100 RETRIEVE ENT

929209 ON EXCEPTION

029309 MOVE “"Boat not found" TO MSG-STATUS
0929409 DISCARD ENT

929500 GO TO DE-SEND-MSG.

829609 DISCARD ENT.

929700 BEGIN-TRANSACTION

829800 ON EXCEPTION

029900 PERFORM 985-SIM-ERR-RTN

Example 3-2. COMS Sample Program with a SIM Database (cont.)

8600 0130-000 ' . 359

'Using the COMS Program Interface

930000 GO TO DE-SEND-MSG. _ i
930109 DELETE ENTRY WHERE ENTRY-RACE-ID = NUM-KEY AND
930200 ENTRY-BOAT-ID = MSG-DE-ID
930309 ON EXCEPTION .

030409 PERFORM 985-SIM-ERR-RTN.

930500 IF DMSTATE

0930600 MOVE "Delete Error" TO MSG-STATUS

930790 ELSE

930800 MOVE "Boat deleted" TO MSG-STATUS.

9309900 END-TRANSACTION COMS-OUT

931000 ON EXCEPTION

931100 PERFORM 985-SIM-ERR-RTN.

31209 DE-SEND-MSG.

©313¢68 PERFORM 998-SEND-MSG.
£3140p 409-DELETE-ENTRY-EXIT.
931500 EXIT.

931600

g317ﬁg**t*********

031800 900-SEND-MSG SECTION.
ﬂ31Qﬁﬂ**
032009 908-SEND-MSG-SN.

932109* Send the message back to the originating station.

932150* Do not specify an output agenda.

0932200* Test the result of the SEND statement.

N 932300
232400 MOVE 1 TO COMS-OUT-COUNT.
932500 MOVE ¢ TO COMS-OUT-DESTINATION.
032600 MOVE @ TO COMS-OUT-STATUS-KEY.
032700 MOVE 116 TO COMS-OUT-TEXT-LENGTH.

032800 SEND COMS-OUT FROM MSG-TEXT.
9329068 IF COMS-OUT-STATUS-KEY = @ OR 92

033009 NEXT SENTENCE
933109 ELSE
933209 DISPLAY "On-line program SEND error: " COMS-OUT-STATUS-KEY.

©33300 900-SEND-MSG-EXIT.
233490 EXIT.

g33sgg**

0933600 905-SIM-ERR-RTN SECTION. ‘
ﬂ337ﬁﬂ**
§33800 905-SIM-ERR-RTN-SN.
@33929* Get the error message from SIM. The message can be
@§33950* 176 bytes in length.
@33955*
0234000 DISPLAY "SIM Error: Race=", E-RACE, " Boat=", E-BOAT. \
934100 CALL SYSTEM DMEXCEPTIONMSG GIVING WS-MSG.
934209 DISPLAY MSG-1.
934300 DISPLAY MSG-2.
934400 995-SIM-ERR-RTN-EXIT.
934500 EXIT.

Example 3-2. COMS Sample Program with a SIM Database (cont.)

3-60 ’ 8600 0130-000

Using the COMS Program Interface

g345””**

034799 918-CLOSEDOWN SECTION.
D348”“**
934906 919-CLOSEDOWN-SN.

935000* Close the database.

935108 CLOSE SIMSAILDSB.

935200 910-CLOSEDOWN-EXIT.

935300 EXIT.

9354”0**

935500 920-CHECK-COMS-INPUT-ERRORS SECTION.
035sﬂg**
935700 920-CHECK-CIE-SN.

935800* Check for COMS control messages.

935900

" 936200 IF (COMS-IN-STATUS-KEY = @ OR 92 OR 99)
936250* The codes signify a successful message, a recovery
936300* message, or an EOT notification, respectively.
936350* .
936400 NEXT SENTENCE

236509 ELSE
936600 IF COMS-IN-STATUS-KEY = 93

8367909 MOVE “93: MSG CAUSED ABORT, DONT RETRY" TO MSG-STATUS
936800 PERFORM 909-SEND-MSG

036909 ELSE

636950* COMS-IN STATUS-KEY is 20, 100, 181, or 102. These
937000* values mean the application is manipulating the
937100* dynamic attachment or detachment of stations, and has
0837200* received an error.

937300 DISPLAY COMS-IN-STATUS-KEY

037408 MOVE "ERROR IN STA ATTACH/DETACHMENT" TO MSG-STATUS
837500 PERFORM 990-SEND-MSG.

037600

937700 IF COMS-IN-FUNCTION-STATUS < @ THEN

937800* This statement means that the application ID is tied
937900* to a default input agenda. MSG-TEXT probably does not
837950* contain a valid transaction.

938000 MOVE "NEGATIVE FUNCTION CODE " TO MSG-STATUS

938100 DISPLAY COMS-IN-FUNCTION-STATUS

038200 PERFORM 909-SEND-MSG-SN THRU 988-SEND-MSG-EXIT.
938300

038400 920-CHECK-CIE-EXIT.
038500 EXIT.
238609

Example 3-2. COMS Sample Program with a SIM Database (cont.)

8600 0130-000 , 3-61

8600 0130-000

Section 4
Using the DMSII Program Interface

Data Management System I (DMSII) is used to invoke a database and maintain
relationships between the various data elements in the database.

This section explains how to use the extensions developed for the DMSII application
program interface. The DMSII extensions allow you to perform the following tasks:
o Identify, qualify, and reference database items.

e Declare and invoke a database.

e Invoke data sets.

¢ Use database equation operations to specify and manipulate database titles, and to
override compiled titles.

e Use selection expressions to identify a particular record in a data set.

e Use data management attributes for read-only access to the count, record type, and
population information in a record.

e Use the DATADICTINFO option to place database and transaction base usage data
into the object code file.

e Manipulate data through data management statements.

e Process exceptions.

For an alphabetized list of the extensions developed for DMSII, refer to Section 1,
“Introduction to COBOL74 Program Interfaces.” Refer to the A Series DMSII
Application Program Interfaces Programming Guide for information on general
programming considerations and concepts.

The DMSII program interface can be used with the Advanced Data Dictionary System
(ADDS), Communications Management System (COMS), DMSII transaction processing
system (TPS), and the Semantic Information Manager (SIM). For more information on
the extensions developed for one of these products, see the section that provides an
explanation of that product.

See Also
e For additional information on using ADDS with DMSII, see the InfoExec ADDS
Operations Guide.

e For additional information on using COMS with DMSII, see the COMS
Programming Guide.

e For additional information on using SIM with DMSII, see the A Series InfoExec
Semantic Information Manager (SIM) Programming Guide.

8600 0130-000 4-1

Using the DMSII Program Interface

Using Database Items

This discussion describes the naming conventions for database items and explains how to
rjference the items. A data record from a database is accessed directly by a COBOL74
program.

Naming Database Components

Data and Structure Definition Language (DASDL) naming conventions for database
components follow COBOL74 rules; that is;some item or structure names can require
qualification and some can contain hyphens (-). Whenever syntax specifies the names
of database components, these names can be fully qualified names and can contain
hyphens

Using Set and Data Set Names

You must qualify set and data set names that are used to find records if the names are
not unique. You can declare a variable name with the same name as a database item if
the item can be qualified.

If you invoke a data set more than once and that data set uses internal names to invoke
two paths, you must qualify each path by the data set that it spans. If you use lmproper
or insufficient qualification, you receive a syntax error.

You qualify an item name by the name of any structure that physically contains the item.
You can use any number of qualifying names as long as the result is unique.

A set name can be qua]iﬁéd by the name of the data set it spans. A group name can
qualify an item contained within the group.

Note that the compiler usually issues a syntax error when qualification is logically
required but not prowded. However, unexpected results can still occur, even when the
compiler issues a warning. If qualification is insufficient, the compiler usually uses the
last item invoked in the database that has the same name as the variable. To avoid
unexpected results, do one or both of the following when invoking DMSII data sets more
than once in the same program:

o Use full qualification on all references.

e Invoke all data sets with INVOKE clauses. In addition, use the USING and
INVOKE clauses to explicitly invoke all sets associated with each data set.

General Format

The general format of the statement to qualify a name is as follows:

identifier-1[OF identifier-2]...

4-2 ' : 8600 0130-000

Using the DMSII Program Interface

Explanation of Format Elements

identifier-1 and identifier-2

These format elements specify DASDL identifiers.

Examples

The following examples show code in which name qualification is needed or in which
a successful or unsuccessful attempt has been made to provide qualification. The
applicable DASDL descriptions precede examples.

Example of Qualifying Valid and Invalid Names

The following DASDL description is used by the COBOL74 code in the following
example:

DASDL (compiled as DBASE):
D1 DATA SET (
XYZ NUMBER (5););

In the following example, XYZ declared at level 77 is invalid because it cannot be
qualified. However, XYZ declared at level 03 is valid because it can be qualified.

*Invalid DATA DIVISION entry:
77 XYZ PIC. . .

*Valid DATA DIVISION entry:
21 Q.
g3 XYz . . .

Example of Using Names That Require Qualification

The following DASDL description is used by the COBOL74 code in the following
example:

DASDL {compited as DBASE):
D1 DATA SET (

A NUMBER (5);

B...

.)s
S1 SET OF D1 KEY A;

8600 0130-000 4-3

Using the DMSII Program Interface

In the following example, SI and A require qualification:

DB DBASE.
@1 Di.
@1 DA=D1.

FIND S1 OF D1 AT A=V.
MOVE A OF D1 TO LA.

Referencing Database Items

You can invoke all or part of a database in the DATA-BASE SECTION of your program.
When the description is invoked, the compiler generates the interfaces needed to
allocate the proper record areas when the database is opened.

The record area for a data set is established in two parts: one part contains control

items, and the other contains data items. You code the data items just as an 01-level

WORKING-STORAGE SECTION entry, with appropriate lower level entries. This

setup enables you to use the data manipulation statements to move database items,
- including groups.

Group moves are always considered alphanumeric moves. The arrangement of the data
item record area also enables you to use MOVE CORRESPONDING statements. For
more information on MOVE statements, refer to Volume 1.

If you use variable-format records in your programs, a group move at the 01-level fills the
receiving area without regard to the individual items contained within either the sending
or receiving area. Using variable-format records can therefore cause unexpected values
to be stored in the receiving area. For MOVE CORRESPONDING statements, only
items in the fixed portion of the record are candidates for the move.

Examples

The following examples reference database items that contain compiler-produced

Example of Group Naming

The following example illustrates a group move involving database items. The items T,
CT L, E, and S are control items and are not affected by moves to or from D.

The record area for D is the following:

g1 D
g2 A
g2 B
g2 C
@3 El1
23 E2.

4-4 8600 0130-000

Using the DMSII Program Interface

E1 and E2 are items of the record area for E rather than D; therefore, these items are
not affected by moves to or from D.

@1 D DATA SET (#1).

@2 T RECORDTYPE.

@2 CT COUNT.

@2 A PIC X(6) DISPLAY.

22 B PIC 9(6) COMP.

@2 C PIC 9(6) COMP.

@2 L REFERENCE TO E.

@2 E DATA SET (#2).
g3 E1...
23 E2 ...

g2 S SET(#3,MANUAL) OF E.

Example of Receiving Fields of a MOVE CORRESPONDING Statement

The following example shows database items that will be used in a MOVE
CORRESPONDING statement. The items contained in the record depend on the value
of T as follows:

e IfT equals 0, then the record area contains T, A, and B.
e If T equals 1, then the record area contains T, A, B, and X.
e If T equals 2, then the record area contains T,A,B,and Y.

In this example, because A and B are in the fixed portions of the record, these items are
the only candidates for a MOVE CORRESPONDING statement on D.

The items X and Y are never moved as a result of a MOVE CORRESPONDING
statement.

g1 D
@2 T RECORDTYPE.
@2 A PIC X(6) DISPLAY.
@2 B PIC 9(6) COMP.

* FORMAT TYPE 1.
g2 X PIC 9(6) COMP.

* FORMAT TYPE 2.
g2 Y PIC 9(11) COMP.

Example of Creating Valid and Invalid DMSII Indexes

The following DASDL description is used by the COBOL74 code in the following
example:

DASDL:
C COMPACT DATASET
(N NUMBER (1);
X NUMBER (5) OCCURS 9 TIMES DEPENDING ON N);

8600 0130-000 ' 4-5

Using the DMSII Program Interface

The following example shows three lines of COBOL74 code that use MOVE statements.
In the statements, the variable N in the DASDL description equals 5. The first and
second lines execute successfully. The third line, however, creates an invalid index error
because the program attempts to access an occurrence of an OCCURS DEPENDING
ON item that is larger than the current value of the DEPENDING ON item.

MOVE 123 to X(3).
MOVE 5 TO N.

MOVE 456 to X(7).

Declaring a Database

The DATA-BASE SECTION of a COBOL74 program supplies the COBOL74 compiler
with a description of all or selected portions of one or more databases. You place the

. DATA-BASE SECTION in the DATA DIVISION after the FILE SECTION and before
the WORKING-STORAGE SECTION.

The database declaration supplies information that identifies a given database. The

compiler lists all the invoked descriptions of record formats, items, sets, subsets, and
keys.

Generél Format B

The general format for a database declaration is as follows:

INVOKE

DB [data—name-l{ }] [data-name-2 OF] data-name-3

[GLOBAL]

[ALL]
[VALUE OF TITLE IS literal-1]

Explanation of Format Elements

data-name-1

This format element specifies the internal name of the database, data sets, sets, or
subsets within the program.

You can invoke a database, data set, set, or subset more than once; however, you must
use the external name to reference only one invocation of each structure. Data-name-1
must be used to provide unique names for all other invocations of the structures. The
default internal name is the external name of the structure.

4-6 : 8600 0130-000

Using the DMSII Program Interface

You can establish multiple record areas and set paths, or both, by specifying data-name-1
with a data set reference or set reference. In this way, several records of a single data
set can be manipulated simultaneously.

INVOKE or the equal sign (=)

These format elements invoke a database, data set, set or subset. The INVOKE option
and the equal sign (=) are synonyms.

When you use the INVOKE option in your program, you must use the internal names of

renamed structures in all subsequent references to the structures. A structure using an
alias identifier can be a string literal enclosed in quotation marks (“”).

data-name-2
This format element enables the program to reference a logical database. A program can
invoke structures selectively from a logical database, or it can invoke the entire logical

database. You can specify selective invocations such as physical databases; however, you
can select only those structures that are included in the logical database.

data-name-3
This format eiement designates the name of the database to be invoked. You can use

data-name-3 as a qualifier of a data set, set, or subset. If you use the INVOKE clause,
data-name-3 can be a string literal enclosed in quotation marks (“”).

GLOBAL
This option declares a database to be global, enabling a separately compiled procedure or
program to reference the database declared in your COBOL74 program. The database

reference in the separately compiled procedure or program must match the database
reference in your COBOL74 program.

ALL

This option specifies that all structures of the specified database are to be used.

VALUE OF
This option specifies the file attribute name. The only mnemonic allowed in the VALUE

OF option is TITLE. For more information about the VALUE OF clause, refer to
Volume 1.

literal-1

This format element designates the name of the file attribute. Literal-1 can be a string
literal enclosed in quotation marks “m.

8600 0130-000 4-7

Using the DMSII Program Interface

Considerations for Use
For a database, the operating system constructs the control file title from the title
specified in the declaration. The default title is that title plus the control file usercode

and family name, if any, from the description file. Refer to the DMSII DASDL Reference
Manual for a discussion of control and description files.

- Examples
The following examples show varied formats you can use to declare a databwe
DB DATABASE-1.
DB MY-DB-2 = DATABASE-2.
DB DATABASE-3 GLOBAL.
DB DATABASE-4 VALUE OF TITLE IS "(XYZ)DATABASE/4".
DB DATABASE-5 ALL.
DB DATABASE-6.

@1 DATASET-1.
P1 DATASET-2.

Invoking Data Sets
The data set reference specifies the structures that are to be invoked from the declared
database. If you do not specify a particular data set to be invoked, all structures are
invoked implicitly. The data set reference must be written at the 01-level.

The maximum number of structures that can be invoked by a user program is 4000.
Only 1000 of the invoked structures can be data sets or remaps.

General Format

The general format for the data set reference is as follows:

i

NONE
data-name-2 [[_J_S..M{ [data-name—3 {m—}] data-name-4... }]

data-name-5

4-8 ' 8600 0130-000

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1

This format element designates the internal name of the data set or set.

INVOKE or the equal sign (=)

These format elements invoke only the data sets that you specify if you use the data set
reference. If you do not use the data set reference, you implicitly invoke all structures of
the specified database.

You cannot invoke only the global data from a database; you must invoke at least one
structure. You can invoke the structure explicitly in the data set reference, or implicitly
by default or by using the ALL option in the database statement.

INVOKE and the equal sign (=) are synonyms.

data-name-2

This format element must be the name of the data set to be used. You can use
data-name-2 as a qualifier for its embedded structures. If the INVOKE option is used,
data-name-2 can be a string literal enclosed in quotation marks (“”).

USING

This option invokes specific sets from the data sets declared in the data set reference. If
you omit the USING option, you invoke all sets. If you specify the USING option, you
invoke either no sets (NONE) or only the specified sets.

data-name-3

' This format element contains the name of a set. You can use data-name-3 in your
program to reference a synonym for the set specified by data-name-4. All subsequent
references to the set previously specified as data-name-4 must use the name specified for
data-name-3.

data-name-4

This format element contains the name of a set.

data-name-5

This format element is a set reference that is not implicitly associated with any particular
record area. When you choose data-name-5, data-name-1 must be the name of a set.

You must specify the data set name VIA option in the selection expression to load a
record area by using data-name-5. Additional information on the VIA option is provided
in “Using Selection Expressions” later in this section.

8600 0130-000 | 49

Using the DMSII Program Interface

4-10

Considerations for Use

You can explicitly invoke only disjoint structures. Embedded data sets, sets, and subsets
are always implicitly invoked if their master data sets are (implicitly or explicitly)
invoked. You must reference all implicitly invoked structures by their external names.

To use a path, you must invoke the disjoint data set. You establish a path by invoking a
data set containing either of the following:

e An embedded set associated with a disjoint data set
e Alink to another disjoint data set

Multiple invocations of a structure provide multiple record areas, set paths, or both, so
that several records of a single data set can be manipulated simultaneously. Select only
needed structures for the UPDATE and INQUIRY options to make better use of system
resources. An explanation of these two options is provided in “OPEN Statement” ldter
in this section.

You invoke remaps declared in DASDL the same way as you invoke conventional data
sets.

Examples of Invoking Data Sets

The following DASDL description applies to the following six examples that show
COBOL74 code that invokes a data set:

DASDL (compiled as DB):
D DATA SET (
K NUMBER (6);
R NUMBER (5);
)s
S1 SET OF D KEY K;
S2 SET OF D KEY R;

Example of Establishing One Record Area and Two Paths

The following exahxple shows the establishment of one current record area for the data
set D, one path for the set S1, and one path for the set S2. If you execute either of the
following statements, the program automatically loads the data to the D record area:
FIND S1, MODIFY S1, FIND S2, or MODIFY S2. S1 and S2 are invoked implicitly.

21 D.

8600 0130-000

Using the DMSII Program Interface

Example of Establishing Two Record Areas and Two Paths

The following example shows the establishment of two current record areas (D and

X) and two paths (S1 and S2). The sets S1 and S2 are implicitly associated with the

D record area. The USING NONE option prevents a set from being associated with the
X record area. Thus, the FIND S1 or FIND S2 statement loads the D record area. The
FIND X VIA S1 or FIND X VIA S2 statement must be executed to load the X record
area using a set. S1 and S2 are invoked implicitly.

g1 D.

@1 X=D USING NONE.

Example of Establishing Multiple Record Areas and Paths

The following example shows how multiple current record areas and multiple current
paths can be established. The FIND S1 OF D statement loads the D record area without
disturbing the path S1 OF X, and the FIND S1 OF X statement loads the X record area
without disturbing the path S1 OF D. The S1 set must be qualified. S1 and S2 are
invoked implicitly.

21 D.

g1 X=D.

Example of Establishing More Record Areas Than Paths

The following example shows how to establish more current record areas than paths.
The three record areas (D, X, and Y) are established with only two paths (S1 OF D and
S1 OF X). The program must execute the following statements to load the Y record area:
FIND Y VIA S1 OF D, FIND Y VIA §1 OF X, or FIND Y. S1 is invoked explicitly.

g1 D USING S1.

@1 X=D USING S1.

@1 Y=D USING NONE.

Example of Associating a Set with a Record Area
The following example shows how the USING clause syntax can be used to explicitly
associate a set with a given record area. The FIND S1 statement loads the X record

area, and the FIND T statement loads the Y record area. The S1 and T sets both use the
same key.

g1 X=D USING S1.

g1 Y=D USING T=S1.

8600 0130-000 , 4-11

Using the DMSII Program Interface

Example of Establishing a Set That Is Not Associated with a Record Area

The following example shows how the set reference can be used to establish a set that is
not implicitly associated with any particular record area. The FIND D VIA SY statement
must be executed to load a record area using the set S1.

g1 D.

g1 sy=sl.

Examples of Invoking Disjoint Data Sets with a Data Set Reference

The following DASDL description applies‘to the following two examples that use data set
references to invoke disjoint data sets:

DASDL (compiled as DBASE):
F DATA SET (
FI NUMBER (4);
)
E DATA SET (
EK NUMBER (8);
)
D DATA SET (
A NUMBER (6);
SE SET 0F E KEY EK;
LINK REFERENCE TO F;
)s

In the following example, the data set references are not specified to invoke the‘E and F
data sets; however, the paths are established by invoking the embedded set SE and the
link item LINK:

g1 D.

The paths established in the preceding example, however, cannot be used unless they are
specified as data set references for the E and F data sets to establish record areas for
these paths, as shown in the following lines of code:

g1 F.
g1 E.
g1 D.

4-12 ' 8600 0130-000

Using the DMSII Program Interface

Example of Designating Sets That Are Visible or Invisible to User Programs

The following DASDL description applies to the following example that shows how
DASDL can be used to designate sets visible or invisible in user programs:

DASDL (compiled as EXAMPLEDB):
D1 DATA SET (
A REAL;
B NUMBER (5);
C ALPHA (19);
)s
S1A SET OF D1 KEY IS A;
S1B SET OF D1 KEY IS (A,B,C);
D2 DATA SET (.
FIELD (8);
NUMBER (2);
REAL;
DATA SET (
V1l REAL;
V2 ALPHA (2);
)s
SE SET OF E KEY IS V1
)s
S2A SET OF D2 KEY IS X;
S2B SET OF D2 KEY IS (X,Y,Z);
LDB1 DATABASE (D1(NONE), D2(SET S=S2A));
LDB2 DATABASE (D1(SET S1=51B), D2(SET $2=32B));
LDB3 DATABASE (D=D2);

m N < >

The following example shows the commented code as it appears in the listing. For logical
database LDB2, the following sets are visible to the user program:

- e Data set D1 and its set S1B (referenced as S1)
e Data set D2 and its set S2B (referenced as S2)

8600 0130-000 » 4-13

Using the DMSII Program Interface

Sets S1A and S2A are invisible to the user program because logical databases LDB1 and
LDBS are not declared in the DATA-BASE SECTION of the COBOL74 program.

IDENTIFICATION DIVISION.'
PROGRAM-ID. DBTEST.
DATA DIVISION.
DATA-BASE SECTION.
DB LDB2 OF EXAMPLEDB ALL.
* g1 D1 STANDARD DATA SET(#2).
* $1 SET(#4,AUTO) OF D1 KEYS ARE A,B,C.
* 82 A REAL.
* @2 B PIC 9(5) COMP.
* g2 C PIC X(18) DISPLAY.
* g1 D2 STANDARD DATA SET(#5).
* S2 SET(#9,AUTO) OF D2 KEYS ARE X,Y,Z.
* @2 X FIELD SIZE IS @8 BITS.
* g2 Y PIC 99 COMP.
* 82 7 REAL.
* @2 E STANDARD DATA SET(#6).
* SE SET(#7,AUTO) OF E KEY IS V1.
* 23 V1 REAL.
* @3 V2 PIC XX DISPLAY.
PROCEDURE DIVISION.
T.
STOP RUN.

Examples of Using the GLOBAL Option to Reference a Database

The separately compiled procedure SEP/P uses the GLOBAL option to reference the
database declared in a COBOL74 program. The database reference in the separately
compiled procedure or program must match the corresponding database reference in the
COBOL74 program; otherwise an error occurs at binding. '

The following DASDL description is used by the COBOL74 code in the following two
examples:

DASDL (compiled as TESTDB):
DS DATA SET (
NAME GROUP (
LAST ALPHA (19);
FIRST ALPHA (18);
)s
AGE NUMBER (2);
SEX ALPHA (1);
SSNO ALPHA (9);
)s
NAMESET SET OF DS KEY (LAST, FIRST);

4-14 8600 0130-000

Using the DMSII Program Interface

Using a Separately Compiled Procedure to Reference a Database with the GLOBAL Option
The following example shows the SEP/P procedure:

$ LEVEL=3

DATA-BASE SECTION.
DB TESTDB GLOBAL ALL.
PROCEDURE DIVISION.
P1.
SET NAMESET TO BEGINNING.
SET NAMESET TO BEGINNING.
PERFORM P2 UNTIL DMSTATUS (DMERROR) =
P2.
FIND NEXT NAMESET AT LAST = “SMITH" AND FIRST = "JOHN".
* OTHER STATEMENTS

The following Work Flow Language (WFL) program binds the SEP/HOST procedure
with the COBOL74 program. Refer to the A Series Work Flow Language (WFL)
Programming Reference Manual for more information on using WFL.

?BEGIN JOB BIND/GLOB;

BIND GLOBDB WITH BINDER LIBRARY'
BINDER DATA CARD

HOST IS SEP/HOST;

BIND P FROM SEP/P;

?END JOB.

Using a DMSII Host Program to Call a Separately Compnled Procedure That References the Same
Database

The following example shows the COBOL 74 program declarations for the DMSII
host program and the corresponding database reference. The program is compiled as
SEP/HOST.

DATA-BASE SECTION.
DB TESTDB ALL.
PROCEDURE DIVISION.
DECLARATIVES.
P SECTION. USE EXTERNAL AS PROCEDURE.
END DECLARATIVES.
P1.
OPEN UPDATE TESTDB.
CALL P.
CLOSE TESTDB.
STOP RUN.

8600 0130-000 4-15

Using the DMSII Program Interface

Using a Database Equation Operation

Database equation refers to three separate operations:

e Specification of database titles during compilation

e Use of a Work Flow Language (WFL) equation to override titles specified at
" compilation time :
¢ Run-time manipulation of database titles

The specification of the title of a database at run time enables the Accessroutines to use
the reentrance capability. A database equation enables the database to be specified at
run time, and enables access to databases stored under other usercodes and on pack
families not visible to a task.

A database equation is like a file equation. A WFL equation overrides the specification of
a database title in a language declaration, and run-time modification of a database title
overrides both WFL equations and user language specifications. However, a database
equation differs from a file equation in that a run-time error results ifa COBOL74
program attempts to set or examine the TITLE attribute of the database while it is open.

The MOVE statement and the CHANGE statement manipulate the database TITLE
attribute during program execution. For information on the use of the TITLE attribute,

see the discussion of file attributes in Volume 1. Also refer to Volume 1 for more detailed
information on the MOVE and CHANGE statements.

General Format

The general format of the MOVE and CHANGE statements is as follows:

MOVE OF) .
{ CHANGE}ATTRIBUTE TITLE {m } internal-name
TO alphanumeric-data-item
Example

In the following example, the first OPEN statement opens the LIVEDB database.
The data and control files of LIVEDB are stored under the disk directory of the user.
The second OPEN statement opens TESTDB. The files for TESTDB are stored on
TESTPACK under the usercode UC.

4-16 8600 0130-000

Using the DMSII Program Interface

Later in this section, Example 4-1, “DMSII Sample Program,” shows the MOVE
statement within the context of a complete program. ’

IDENTIFICATION DIVISION.
PROGRAM-ID. DBEQUATE.

DATA-BASE SECTION.

DB MYDB ALL
VALUE OF TITLE IS "LIVEDB".

OPEN UPDATE MYDB.

CLOSE MYDB.

CHANGE ATTRIBUTE TITLE OF MYDB
TO "(UC)TESTDB ON TESTPACK".

OPEN UPDATE MYDB.

.

CLOSE MYDB.
STOP RUN.

8600 0130-000 . ‘ 4-17

Using the DMSII Program Interface

Using Selection Expressions

A selection expression is used in FIND, LOCK, MODIFY, DELETE, and SECURE
statements to identify a particular record in a data set. In the following explanation, the
condition option is referred to as the key condition.

General Format

The general format for selection expressions is as follows:

([data-name-1 VIA])

(1 (FIRST Y
LAST
¢ NEXT
L \PRIOR
\ data-name-3
(FIRST 7
LAST

NEXT

| \PRIOR) | J

' data-name-2 [{%—TI‘-IERE} key condition]

data-name-4

A

4-18

Explanation of Format Elements

data-name-1
This format element identifies the record area and current path that are affected if the

desired record is found. You can use this option for link items and for sets not implicitly
associated with the data set.

VIA

This option indicates the path to be taken to identify the record in the data set.

FIRST
This option selects the first recoi'd in the specified data set, set, or subset. FIRST is

specified by default. If you specify a key condition, DMSII selects the first record that
satisfies the key condition.

LAST

This option selects the last record in the specified data set, set, or subset. If you specify
a key condition, DMSII selects the last record that satisfies the key condition.

8600 0130-000

Using the DMSII Program Interface

However, the record returned might not always be the absolute last record. Assume
that program A performs a LOCK LAST operation when program B has the last record
locked. Assume also that while program A is waiting, one or more records are added to
the data set, set, or subset. The record program A receives is the last record that existed
when program A performed the LOCK LAST and began its wait for the record, not the
last existing record at the time program B released the record.

8600 0130-010 ‘ 4-18A

Using the DMSII Program Interface

4-18B ’\ 8600 0130-010

Using the DMSII Program Interface

NEXT
This option selects the next record relative to either of the following:

o The set path if you specify a set name or subset name
o The data set path if you specify a data set name

If you specify a key condition, DMSII selects the next record (relative to the current
path) that satisfies the key condition.

PRIOR
This option selects the prior record relative to either of the following:

e The set path if you specify a set name or subset name
e The data set path if you specify a data set name

If you specify a key condition, DMSII selects the prior record (relative to the current
path) that satisfies the key condition.

data-name-2
This option identifies the record referred to by the set path. Data-name-2 must be a set

or a subset. DMSII returns a NOTFOUND exception if the record has been deleted or if
the path does not refer to a valid current record.

AT or WHERE

This option indicates that a key condition follows. AT and WHERE are synonyms.

key condition

This option specifies values used to locate specific records in a data set referenced by a
particular set or subset.

data-name-3

This format element specifies a link item defined in DASDL. DMSII selects the record to
which the link item refers and returns an exception if the link item is NULL.

data-name-4
This format element selects the record referred to by the data set path. DMSII returns

a NOTFOUND exception if the record has been deleted or if the path does not refer toa
valid current record. Data-name-4 must be a data set name.

FIRST, LAST NEXT and PRIOR

These options are described after the explanation of data-name-1. .

8600 0130-000 | 4-19

Using the DMSHI Program Interface

Considerations for Use

If a specified data item is not unique, the compiler provides implicit qualification
through the set name or subset name. You can qualify the item with the data set name
containing the item; however, the compiler handles this qualification as documentation
only.

Example

The following example locates the record S where A is equal to 50 and B is equal to 50,
or locates the record S where A is equal to 50 and C is less than 90. The example als
locates the record S where A is equal to the literal “MYNAME”. '
FIND S AT A = 50 AND (B = 50 OR C < 96);

FIND S WHERE A = "MYNAME".

Using Data Management Attributes

Déta management (DM) attributes are similar to file and task attributes in COBOL74.
DM attributes allow read-only access to the following:

e Count field of a record
e Record Type field of a record

e Current population of a structure name

A description of the count, record type, and population attributes is provided in the
following text.

Count Attribute

The value of the count attribute is the number of counted references pointing at the
record in the Count field.

Because the ASSIGN statement updates a count item directly in the database, the value
of the Count field can differ from the actual value in the database, even if the field is
tested immediately after the record containing the Count field is made current.

DMSII returns an exception when you attempt to delete a record and the count itemis
not 0 (zero).

General Format

The general format for the count attribute is as follows:

data-name-1 (data-name-2)

4-20

8600 0130-000

Using the DMSII Program Interfacé

Explanation of Format Elements

data-name-1

This format element specifies the name of the data set.

data-name-2

This format element designates a count name. The use of data-name-2 enables read-only
access to the Count field of a record. ‘
Example

The following example provides the DASDL description for code that exemplifies the use
of the count attribute:

D DATA SET (

A ALPHA (3);

L IS IN E COUNTED;

)s
E DATA SET (

C COUNT;

N NUMBER (3);

)s
A COBOL74 statement that tests the count attribute follows:

IF E(C) = @ DELETE D ON EXCEPTION PERFORM . . .

Record Type Attribute

The value in the record type attribute represents the type of record in the current
record area.

General Format

The general format for the record type attribute is as follows:

data-name-1 (record-name-1)

8600 0130-000 4-21

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1

This format element specifies the name of the data set

record-name-1

+ This format element is the name of the record. Specifying the record enables read-only
access to the Record Type field of a record.

Example

The following example provides the DASDL description for code that exemplifies the use
of the record type attribute:

D DATA SET (

‘T RECORD TYPE (2);
A ALPHA (3);

)s

2: (
B BOOLEAN;
R REAL;
N NUMBER (3);

A COBOL74 statement that tests the record type attribute follows:

IFD(T) =260 TO . ..

Population Attribute

The population attribute enables read-only access to the current population of the
structure name. However, this value is often inaccurate, even if it is tested immediately
after the record that contains it is made current. This inaccuracy occurs because other
programs running concurrently on a multiprocessing system can cause the value of the
population item in the database to change.

General Format

The general format for the population attribute is as follows:

' data-name-1 (data-name-2)

4-22 » 8600 0130-000

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1

This format element specifies the name of the data set.

data-name-2

This format element specifies a population item.

Example

The following example provides the DASDL description for COBOL74 code that
exemplifies the use of the population attribute: :

D DATA SET (. . .
EPOP POPULATION (100) OF E; -

E DATA SET (...);

)s

The operation in this example accesses not the population of D, but the population of the
structure embedded in D to which EPOP refers.

A COBOL74 statement that uses the population attribute follows:

MOVE D (EPOP) TO X.

8600 0130-000 4-23

Using the DMSII Program Interface

Usmg the DATADICTINFO Option

The DATADICTINFO option causes the compiler to place database and transaction base
usage data into the object code file. This compiler control optlon is used with the DMSII
data dictionary. It is not used with ADDS.

To save usage data in the object code file, use the SET statement to set the

DATADICTINFO option before the first source-language statement. You cannot use the
SET, RESET, or POP option action indicators within the program.

General Format

The format of the DATADICTINFO option is as follows:

[DATADICTINFO]

4-24

Explanation of Format Element

DATADICTINFO

This option specifies the use of the DATADICTINFO option. The option is of type
Boolean; the default value is FALSE.

See Also

e For information on compiler control options and the option action indicators, refer to
Volume 1.

e For more information on the SET statement, see “SET Statement” later in this
section.

Example
The following statement is an example of the DATADICTINFO option:

$SET DATADICTINFO.

8600 0130-000

Using the DMSII Program Interface

Manipulating Data in a Database

You can use the following DM statements to manipulate data in a database.

ABORT-TRANSACTION Statement
The ABORT-TRANSACTION statement discards any updates made in a transaction

after a BEGIN-TRANSACTION statement, and removes a program from transaction
state.

General Format

The format of the ABORT-TRANSACTION statement is as follows:

ABORT-TRANSACTION [COMS-header-name-1] data-name-1
imperative-statement-1
[ON EXCEPTION {conditional-statement—l }]
NEXT SENTENCE

Explanation of Format Elements

COMS-header-name-1
This option is used only with COMS and specifies a COMS header. COMS-header-name-
1 calls the DCIENTRYPOINT of a data communications interface (DCI) library when a

program detects an exception condition. This feature enables a program interfacing with
COMS to support synchronized transactions and recovery.

data-name-1

This format element specifies the name of a restart data set (RDS).

ON EXCEPTION

This clause handles exceptions. Refer to “DMSII Exceptions” later in this section for
information on the clause.

See Also

Refer to Section 3, “Using the COMS Program Interface,” for more information on
COMS. : '

8600 0130-000 4-25

Using the DMSII Program Interface

Examples

The following lines of code.provide examples of the ABORT-TRANSACTION statement:
ABORT-TRANSACTION VENDOR-RESTART.

ABORT-TRANSACTION OUTHDR MY-RESTART.

ASSIGN Statement

The ASSIGN statement establishes the relationship between a record in a data set and a
record in the same or another data set. The ASSIGN statement is effective immediately;
therefore, the second record does not need to be stored unless data items of this record
have been modified.

General Format

The general format of the ASSIGN statement is as follows:

ASSIGN{

ON EXCEPTION {conditionaLstatement-l

data-name-1

NULL } TO data-name-2

imperative-statement-1 }]

NEXT SENTENCE

4-26

Explanation of Format Elements

data-name-1
This format element specifies a data set or a link item.
If data-name-1 is a data set, you must declare it in DASDL as the object data set of the

link item data-name-2. Data-name-2 is a value that points to the current record in
data-name-1.

The current path of the data set specified by data-name-1 must be valid, but the record
need not be locked. Your program returns an exception if the data set path is not valid.

If data-name-1 is a link item, it is assigned to data-name-2. Data-name-1 must be
declared in DASDL according to the following requirements:

e Data-name-1 must have the same object data set as data-name-2.

e Data-name-1 must be the same type of link as data-name-2, for example, a counted
link, a self-correcting link, a symbolic link, an unprotected link, or a verified link.

8600 0130-000

Using the DMSII Program Interface

NULL

This clause severs the relationship between records by assigning a NULL value to
data-name-2. If data-name-2 is already NULL, then DMSII ignores this clause.
Executing a FIND, MODIFY, or LOCK statement on a NULL link item results in an
exception.

data-name-2

This format element points either to the current record in the data set specified by
data-name-1 (a data set) or to the record pointed to by data-name-1 (a link item).

The current path of the data set containing data-name-2 must be valid and the record
locked; otherwise, the program returns an exception.

If data-name-1 refers to a disjoint data set, data-name-2 can point to any record in the
data set. If data-name-2 refers to an embedded data set, it can reference only certain
records in the data set. In this case, the record being referenced must be owned by the
record containing data-name-2 or by an ancestor of the record containing data-name-2.
(An ancestor is the owner of the record, the owner of the owner, and so forth.)

ON EXCEPTION

This clause handles exceptions. If the program finds an exception, it terminates the
ASSIGN statement and assigns a NULL value to data-name-2. Refer to “DMSIL
Exceptions” later in this section for information on the ON EXCEPTION option.

Considerations for Use

Link items can easily join unrelated records. However, link items can also complicate the
database as follows: '

¢ Links must be maintained by the program. Other DMSII structures, such as
automatic subsets, can perform the tasks that links perform but are maintained by
the system.

e Links must be removed. If you delete a record pointed to by several links, you might
forget to remove all the links pointing to that record. As a result, the links would
point to nothing.

e Links are one-way pointers to a record. While you can find the record a link is
pointing to, you cannot easily determine which record is pointing to the linked
record. _ ‘ ‘

If the link item is a counted link, DMSII automatically updates the count item, even if
the referenced record is locked by another program.

8600 0130-000 4-27

Using the DMSII Program Interface

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

D DATA SET (
A ALPHA (3);
B BOOLEAN;
L IS IN E VERIFY ON N;
);
S SET OF D KEY A;

E DATA SET (
N NUMBER (3);
R REAL;
)s

T SET OF E KEY N;

The following example uses the ASSIGN statement;

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
FILE SECTION.
FD TAPE-FILE.
g1 TAPE-REC.

g2 X PIC XXX.

g2 Y PIC 999.
DATA-BASE SECTION.
DB DBASE ALL.

PROCEDURE DIVISION.
OPEN-INPUT-FILE.
OPEN INPUT TAPE-FILE.
OPEN-DB.
OPEN UPDATE DBASE.
START-PRG.
READ TAPE-FILE AT END
CLOSE TAPE-FILE
CLOSE DBASE

STOP RUN.
FIND S AT A = X.
FIDTATN =Y.
ASSIGN E TO L.
FREE D.

GO TO START-PRG.

4-28 8600 0130-000

Using the DMSII Program Interface

BEGIN-TRANSACTION Statement

The BEGIN-TRANSACTION statement places a program in transaction state. This
statement can be used only with audited databases.

The BEGIN-TRANSACTION statement performs the following steps:
1. Capture the RDS if the AUDIT clause is specified.

2. Place a program in transaction state.
General Format

The general format of the BEGIN-TRANSACTION statement is as follows:

BEGIN-TRANSACTION [COMS-header—name—loptionUSlNG identiﬁer-l]
AUDIT '
NO-AUDIT

} data-name-1

imperative-statement-1
[ON EXCEPTION { conditional-statement-1 }]
NEXT SENTENCE

Explanation of Format Elements

COMS-header-name-1

This option is used only with COMS and specifies the input header. You can use
COMS-header-name-1 to call the DCIENTRYPOINT of a DCI library when your
program detects an exception condition. This feature enables a program interfacing with
COMS to support synchronized transactions and recovery.

Your program calls the DCI library before it performs the exception-handling procedure.

USING
If you have employed the USING option and your program does not detect an exception,

your program calls the DCI library and passes the message area indicated by identifier-1
to the DCIENTRYPOINT. :

identifier-1

This format element specifies the message area.

8600 0130-000 : 4-29

Using the DMSII Program Interface

AUDIT

This clause captures the restart area. The path of the RDS named is not altered when .
the restart record is stored.

NO-AUDIT

This clause prevents the restart area from being captured.

data-name-1

This format element is the name of the RDS you want to update.

ON EXCEPTION

This clause handles exceptions. Your program returns an exception if you execute a
BEGIN-TRANSACTION statement while the program is already in transaction state.

If an exception occurs, the program is not placed in transaction state. If the program
returns an ABORT exception, all records that the program had locked are freed. Refer
to “DMSII Exceptions” later in this section for information on the ON EXCEPTION
option.

Considerations for Use

Any attempt to modify an audited database when the program is not in transaction state
results in an audit error. The following DM statements modify databases:

e ASSIGN.

e DELETE

e GENERATE

o INSERT

¢ REMOVE

e STORE

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

4-30 ‘ 8600 0130-000

Using the DMSII Program Interface

OPTIONS (AUDIT);
R RESTART DATA SET (
P ALPHA (18);
Q ALPHA (109);
)s
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)s
S SET OF D KEY N;

The following example uses the BEGIN-TRANSACTION statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
FILE SECTION.
FD TAPE-FILE.
81 TAPE-REC.
g2 X PIC 999.
g2 Y PIC XXX.
DATA-BASE SECTION.
DB DBASE ALL.
WORKING-STORAGE SECTION.
1 CNT PIC 999.
PROCEDURE DIVISION.
OPEN-INPUT-FILE.
OPEN INPUT TAPE-FILE.
OPEN-DB.
OPEN UPDATE DBASE.
* CREATE-D.
CREATE D.
ADD 1 TO CNT.
MOVE CNT TO N.
BEGIN-TRANSACTION AUDIT R.
STORE D.
END-TRANSACTION NO-AUDIT R.
IF CNT < 108
GO TO CREATE-D.
START-PRG.
READ TAPE-FILE AT END
CLOSE TAPE-FILE
CLOSE DBASE
STOP RUN.
LOCK S AT N = X.
BEGIN-TRANSACTION AUDIT R
MOVE Y TO A.
STORE D.
END-TRANSACTION NO-AUDIT R.
GO TO START-PRG.

8600 0130-000 4 4-31

Using the DMSII Program Interface

Later in this section, Example 4-1, “DMSII Sample Program,” shows the
BEGIN-TRANSACTION statement within the context of a complete program.

CANCEL TRANSACTION POINT Statement

The CANCEL TRANSACTION POINT statement discards all updates in a transaction
or all updates after an intermediate transaction point or to the beginning of the
transaction. The execution of the program continues with the statement following the
CANCEL TRANSACTION POINT statement.

General Format

The general forﬁxat for the CANCEL TRANSACTION POINT statement is as follows:

CANCEL TRANSACTION POINT data-name-1 [arithmetic-expression-1]

ON EXCEPTION {conditional-statement-l

imperative-statement-1 }]

NEXT SENTENCE

4-32

Explanation of Format Elements

data-name-1

This format element is the name of an RDS.

arithmetic-expression-1

The CANCEL TRANSACTION POINT statement discards all database changes
made between the current point in the transaction and the point specified by
arithmetic-expression-1.

If you do not specify arithmetic-expression-1, DMSII discards all data updated since the

BEGIN-TRANSACTION statement placed the program in transaction state. For details
on arithmetic expressions, see Volume 1.

ON EXCEPTION

This clause handles exceptions. Refer to “DMSI Exceptions” later in this section for
information on the ON EXCEPTION option.

8600 0130-000

Using the DMSII Program Interface

Examples

The following lines of code provide examples of the CANCEL TRANSACTION POINT
statement:

CANCEL TRANSACTION POINT MY-RESTART MAIN-SAVE-POINT.

CANCEL TRANSACTION POINT MY-RESTART.

CLOSE Statement

The CLOSE statement closes a database when your program requires no further access
to it. The CLOSE statement is optional because the system closes any open database
when the program terminates. A successfully closed database causes a syncpoint in the
audit trail.
The CLOSE statement performs the following steps:

1. Closes the database

2. Frees all locked records
General Format

The general format of the CLOSE statement is as follows:

CLOSE data-name-1
' imperative-statement-1
{ON EXCEPTION {conditional-statement—l }]
NEXT SENTENCE

Explanation of Format Elements

data-name-1

This format element specifies the database you want to close.

ON EXCEPTION
This clause handles exceptions. Your program returns an exception if the specified

database is not open. Refer to “DMSII Exceptions” later in this section for information
on the clause.

8600 0130-000 4-33

Using the DMSII Program Interface

Considerations for Use

The CLOSE statement is the only statement in which the status word has meaning
when no exception is indicated. Your program should therefore examine the status word
after it closes a database and should take appropriate action, whether or not it received
an exception. If the ON EXCEPTION option is not used and the CLOSE statement is
invalid, the program aborts. '

The CLOSE statement closes the database unconditionally, regardless of exceptions. If
you use just the CLOSE syntax, the program is discontinued on all exceptions that raise
the exception flag.

Your program does not return some exceptions when the CLOSE statement is used.
To be sure your program detects all exceptions that occur during the execution of the
CLOSE statement, do both of the following:

‘e Use the ON EXCEPTION option to prevent the program from being discontinued if
an exception flag is raised.

o Use an IF statement to check for exceptions that do not raise an exception flag.

If you are running COMS for synchronized recovery, Unisys recommends that you do not
use the ON EXCEPTION option. If DMSII detects a database error during the closing
of a database, the system allows your program to terminate abnormally; otherwise, the
database might abort recursively. If you do use the ON EXCEPTION option, you should
ensure that your program calls the DMTERMINATE statement for those exceptions
that your program does not handle. Use the following syntax, therefore, to close a
database when you are using COMS with DMSII for synchronized recovery:

CLOSE DBASE.

Example

The following example shows the recommended syntax for the CLOSE statement when
the ON EXCEPTION option and the IF statement are used:

CLOSE MYDB
ON EXCEPTION
DISPLAY "EXCEPTION WHILE CLOSING MYDB"
CALL SYSTEM DMTERMINATE
IF DMSTATUS (DMERROR)
OPEN MYDB
GO TO ABORTED. Y

Later in this section, Example 4-1, “DMSII Sample Program,” shows the CLOSE
statement within the context of a complete program.

4-34 8600 0130-000

Using the DMSII Program Interface

COMPUTE Statement
The COMPUTE statement assigns a value to a Boolean item in the current record of a
data set. The COMPUTE statement affects only the record area. The database is not
affected until a subsequent STORE statement is executed.

No exceptions are associated with this statement.

General Format

The general format of the COMPUTE statement is as follows:

condition
COMPUTE data-name-1 = {TRU'E }
FALSE

Explanation of Format Elements

data-name-1

This format element specifies the current record of a data set.

condition

If you specify a condition, DMSII assigns the value of the condition to the specified
Boolean item. The format rules for the condition are the same as the standard
COBOL74 rules for the relation conditions.

TRUE

This clause assigns a TRUE value to the specified Boolean item.

FALSE

This clause assigns a FALSE value to the specified Boolean item.

8600 0130-000 . 4-35

Using the DMSII Program Interface

Examples

The following lines of code provide two examples of the COMPUTE statement:
COMPUTE CLOSEFLAG = TRUE.

COMPUTE CHECKBALANCE = OLD-BALANCE + DEPOSIT EQUAL CURR-BALANCE

Later in this section, Example 4-1, “DMSII Sample Program,” shows the COMPUTE
statement within the context of a complete program.

CREATE Statement

The CREATE statement initializes the user work area of a data set record.
The CREATE statement performs the following steps:

1. Frees the current record of the specified data set. Note that if the
INDEPENDENTTRANS option in DASDL is set and the CREATE statement
is issued during transaction state, the locked record is not freed until an
END-TRANSACTION statement is executed.

For more information on the INDEPENDENTTRANS option, refer to the DMSIT

DASDL Reference Manual. '
2. Reads the specified expression to determine the format of the record to be created.
3. Initializes data items to one of the following values:

e INITIALVALUE value declared in DASDL, if present

o NULL value declared in DASDL, if present

e NULL value as a default value

General Format

The general format of the CREATE statement is as follows:

CREATE data-name-1 [(expression)]
imperative-statement-1

[ON EXCEPTION {conditional—statement-l }]
NEXT SENTENCE

4-36 : 8600 0130-000

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1

This format element specifies the data set you want to initialize. The current path of the
data set is unchanged until you execute a STORE statement.

{expression)

The expression option specifies a variable-format record. You must use an expression
only to create a variable-format record; otherwise, the expression must not appear.

ON EXCEPTION .

This clause handles exceptions. Your program returns an exception if the expression
does not represent a valid record type. See “DMSII Exceptions” later in this section for
information.

Considerations for Use

You normally use a CREATE statement with a STORE statement to place the newly
created record into the data set. A BEGIN-TRANSACTION statement must precede
the STORE statement and an END-TRANSACTION statement is coded after the
STORE statement. If you do not want to store the record, you can nullify the CREATE
statement by executing a subsequent FREE statement or by using a FIND, LOCK,
DELETE, CREATE, or RECREATE statement.

The CREATE statement only sets up a record area. If the record contains embedded
structures, you must store the master record before you can create entries in the
embedded structures. If you create only entries in the embedded structure (that is, if
you do not alter items in the master), you need not store the master record a second
time.

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

D DATA SET (
A ALPHA (19);
B BOOLEAN;
N NUMBER (3);
)s
S SET OF D KEY N;

8600 0130-000 , 4-37

Using the DMSII Program Interface

4-38

The following example uses the CREATE statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
FILE SECTION.
FD TAPE-FILE.
@1 TAPE-REC.
g2 X PIC X(10).
g2 Y PIC 9.
@2 Z PIC 999.
DATA-BASE SECTION.
DB DBASE ALL.
PROCEDURE DIVISION.
OPEN-~INPUT-FILE.
OPEN INPUT TAPE-FILE.
OPEN-DB.
OPEN UPDATE DBASE.
START-PRG.
READ TAPE-FILE AT END
CLOSE TAPE-FILE
CLOSE DBASE
STOP RUN.
CREATE D.
MOVE X TO A.
IFY=1
COMPUTE B = TRUE.
MOVE Z TO N.
BEGIN-TRANSACTION.
STORE D.
END-TRANSACTION.
GO TO START-PRG.

Later in this section, Example 4-1, “DMSI Sample Program,” shows the CREATE

statement within the context of a complete program.

8600 0130-000

Using the DMSII Program Interface

DELETE Statement

The DELETE statement finds a record by a method identical to that of the FIND
statement. However, whereas the FIND statement transfers the record to the user
work area associated with a data set or global data, the DELETE statement performs
the following steps:

1. Frees the current record, unless the selection expression is the name of the data set
and the current record is locked. In this case, the locked status is not altered.

2. Alters the current path to point to the record specified by the selection expression,
and locks this record.

3. Transfers that record to the user work area.

4. Removes the record from all sets and automatic subsets, but not from manual
subsets.

5. Removes the record from the data set.

If your program finds a record that cannot be deleted, the program returns an exception
and terminates the DELETE statement, leaving the current path pointing to the record
specified by the selection expression.

If you use a set selection expression and your program cannot find the record, the
program returns an exception and changes and invalidates the set path. The selection
expression refers to a location between the last key that is less than the condition

and the first key that is greater than the condition. You can execute a set selection
expression with the NEXT or PRIOR options from this location, provided keys that
are greater than or less than the condition exist. The current path of the data set,

the current record, and the current paths of any other sets for that data set remain
unchanged. : :

When the DELETE statement is completed, the current paths still refer to the deleted
record.

General Format

The general format of the DELETE statement is as follows:

DELETE selection-expression-1
imperative-statement-1
[ON EXCEPTION { conditional-statement-1 ”
NEXT SENTENCE

8600 0130-000 4-39

Using the DMSII Program Interface

Explanation of Format Elements

selection-expression-1

This format element identifies the record you want to delete. Selection expressions are
explained in “Using Selection Expressions” earlier in this section.

ON EXCEPTION

This clause handles exceptions. For information on the clause, refer to “DMSII
Exceptions” later in this section.

Your program returns an exception and does not delete the record if one of the following
is true:

¢ Counted links are pointing to the record.

e The record contains a link other than a NULL link, or an embedded structure that
contains entries.

Your program returns an exception if the record belongs to a manual subset. Refer to
“REMOVE Statement” later in this section.

Example

The following DASDL description is used by the COBOL74 code in ihe following
example. The description is compiled with the name DBASE.

D DATA SET (

A ALPHA (3);

B BOOLEAN;

N NUMBER (3);
R REAL;

)s
S SET OF D KEY N;

8600 0130-000

Using the DMSII Program Interface

The following example uses the DELETE statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
FILE SECTION.
FD TAPE-FILE.
@1 TAPE-REC.

g2 X PIC 999.
DATA-BASE SECTION.
DB DBASE ALL.

PROCEDURE DIVISION.
OPEN-INPUT-FILE.
OPEN INPUT TAPE-FILE.
OPEN-DB.
OPEN UPDATE DBASE.
START-PRG. '
READ TAPE-FILE AT END
CLOSE TAPE-FILE
CLOSE DBASE
STOP RUN.
DELETE S AT N = X.
GO TO START-PRG.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the DELETE
statement within the context of a complete program.

DMTERMINATE Statement

The DMTERMINATE statement terminates programs. When an exception occurs that
the program does not handle, DMTERMINATE terminates the program with a fault.

General Format
The general format of the DMTERMINATE statement is as follows:

CALL SYSTEM DMTERMINATE

Example
The following example uses the DMTERMINATE statement:

FIND FIRST D

ON EXCEPTION
DISPLAY "D IS EMPTY DATA SET"
CALL SYSTEM DMTERMINATE.

8600 0130-000 | 4-41

Using the DMSII Program Interface

END-TRANSACTION Statement

The END-TRANSACTION statement takes a program out of transaction state. You can
use this statement only with audited databases. The END-TRANSACTION statement
performs the following steps: : ”

1. Captures the restart area if the AUDIT clause is specified

2. Forces a syncpoint if the SYNC option is specified

3. Implicitly frees all records of the database that the program has locked
General Format

The general format of the END-TRANSACTION statement is as follows:

END-TRANSACTION [COMS-header-name-l[US]NG identifier-1]]
AUDIT
NO-AUDIT

} data-name-1 [SYNC]

imperative-statement-1
ON EXCEPTION/{ conditional-statement-1 }]
NEXT SENTENCE

Explanation of Format Elements

COMS-header-name-1

This option specifies the COMS output header. For information on COMS, refer to
Section 3, “Using the COMS Program Interface.”

The COMS-header-name-1 option is used only with COMS. You can specify
COMS-header-name-1 to call the DCIENTRYPOINT of a DCI library whenever you
execute the statement. This feature enables a program interfacing with COMS to
support synchronized transactions and recovery. When your program detects an

exception condition, it calls the DCI library before it performs any exception-handling
procedures.

USING

This option causes your program to call the DCI library and pass the message area
indicated by identifier-1 to the DCIENTRYPOINT.

identifier-1

This format element specifies the message area passed to the DCIENTRYPOINT.

4-42 ‘ 8600 0130-000

Using the DMSII Program Interface

AUDIT

This clause captures the restart area. Storing the restart record does not alter the path

of the RDS.

NO-AUDIT

This clause prevents the restart area from being captured.

data-name-1

This format element is the name of the restart data area specified in the AUDIT or
NO-AUDIT clause.

SYNC

This option forces a syncpoint.

ON EXCEPTION

This clause handles exceptions. Refer to “DMSII Exceptions” later in this section
for information on the clause. The program returns an exception if you execute an
END-TRANSACTION statement when the program is not in transaction state.

The END-TRANSACTION statement frees all records. However, if your program
returns an exception, the transaction is not applied to the database. -

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

OPTIONS (AUDIT);
R RESTART DATA SET (
P ALPHA (18);
Q ALPHA (109);
);
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)
S SET OF D KEY N;

8600 0130-000

Using the DMSII Program Interface

The following example shows two sections of code, each of which begins with a
BEGIN-TRANSACTION statement and ends with an END-TRANSACTION statement.
Both sections of code define a transaction. The transaction becomes an indivisible, logical
unit. During processing, the transactions are audited for recovery. The AUDIT or
NO-AUDIT clause determines whether the restart record of the data set is captured.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
FILE SECTION.
FD TAPE-FILE.
@1 TAPE-REC.

@2 X PIC 999.

@2 Y PIC XXX.
DATA-BASE SECTION.
DB DBASE ALL.
WORKING-STORAGE SECTION.
@1 CNT PIC 999.
PROCEDURE DIVISION.
OPEN-INPUT-FILE.

OPEN INPUT TAPE-FILE.
OPEN-DB.

OPEN UPDATE DBASE.
CREATE-D.

CREATE D.

ADD 1 TO CNT.

MOVE CNT TO N.

BEGIN-TRANSACTION AUDIT R.

STORE D.
END-TRANSACTION AUDIT R.
IF CNT < 100
GO TO CREATE-D.

START-PRG.
READ TAPE-FILE AT END
CLOSE TAPE-FILE
CLOSE DBASE
STOP RUN.
LOCK S AT N = X.
BEGIN-TRANSACTION AUDIT R.
MOVE Y TO A. '
STORE D.
END-TRANSACTION NO-AUDIT R
GO TO START-PRG.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the
END-TRANSACTION statement within the context of a complete program.

4-44 8600 0130-000

Using the DMSII Program Interface

FIND Statement

The FIND statement transfers a record to the user work area associated with a data
set or global data. Additional information on the use of the FIND statement with
the REBLOCK and READAHEAD options is provxded in the DMSII Application
Programming Guide.

The FIND statement performs the following steps:

1. Frees alocked record in the data set if you specify a data set in the FIND statement. .
Specifying a set in the FIND statement frees a locked record in the associated data
set.

2. Alters the current path to point to the record specified by the selection expression or
the database name.

"~ 8. Transfers that record to the user work area.

Using the FIND statement does not prevent other transactions from reading the record
before the current update transaction is completed.

General Format

The general format of the FIND statement is as follows:

FIND { selection-expression-1 }
data-name-1

FIND KEY OF selection-expression-2
imperative-statement-1
[ON EXCEPTION { conditional-statement-1 } }
NEXT SENTENCE

Explanation of Format Elements

selection-expression-1

This format element specifies the record you want to transfer to the user work area.

data-name-1
This format element specifies the global data record you want to transfer to the user

work area associated with the global data. If no global data is described in DASDL,
DMSII returns a syntax error.

8600 0130-000 ' 4-45

Using the DMSII Program Interface

FIND KEY OF

This clause moves the key and any associated data (as specified in the DASDL
description) from the key entry to the user work area. Your program does not perform
a physical read on the data set; consequently, the value and contents of all items in the
record area that do not appear in the key entry retain whatever value they had before
you executed the FIND KEY OF clause. The FIND statement does not affect the
current path of the data set.

selection-expression-2

If you use selection-expression-2 and your program fails to find the record, the program
returns an exception, and changes and invalidates the set path. The selection expression
refers to a location between the last key that is less than the condition and the first key

~ that is greater than the condition. You can process selection-expression-2 by using the
NEXT or PRIOR option from this location, provided the keys that are greater than or
less than the condition exist. The current path of the data set, the current record, and
the current paths of any other sets for that data set remain unchanged.

ON EXCEPTION
This clause handles exceptions. Refer to “DMSII Exceptions” later in this section for

information on the clause. The program returns an exception if no record satisfies the
selection expression.

Examples

The following example shows the FIND statement used with a record selection
expression:

FIND FIRST OVER-65 AT DEPT-NO = 1019
ON EXCEPTION
MOVE @ TO POP-OVR-65 (1019).
The following example shows the FIND statement used with a FIND KEY OF clause:
FIND KEY OF NAME-KEYS AT NAME = "FRED JONES".

Later in this section, Example 4-1, “DMSII Sample Program,” shows the FIND
statement within the context of a complete program.

4-46 | | -) 8600 0130-000

Using the DMSII Program Interface

FREE Statement

The FREE statement explicitly unlocks the current record or structure. A FREE
statement executed on a record enables other programs to lock that record or structure.

Note that if you set the INDEPENDENTTRANS option in DASDL for the database, the
program ignores a FREE statement during transaction state. For more information on
the INDEPENDENTTRANS option, refer to the DMSIT DASDL Reference Manual and
the DMSII Application Programming Guide.

You can execute a FREE statement after any operation. If the current record or
structure is already free, or if no current record or structure is present, DMSII ignores
the FREE statement.

You can use the FREE statement to unlock a record or structure that you anticipate will
not be implicitly freed for a long time.

The FREE statement is optional in some situations because the FIND, LOCK, MODIFY,
and DELETE statements can free a record before the program executes them.
Generally, an implicit FREE operation is performed, if needed, during any operation that
establishes a new data set path.

FIND, LOCK, and MODIFY statements using sets or subsets free the locked record only
if a new record is retrieved. Other constructs that can free data set records are

e END-TRANSACTION

¢ BEGIN-TRANSACTION

o CREATE

o RECREATE

e SET TO BEGINNING

e SET TO ENDING

General Format

The general format for the FREE statement is as follows:

FREE

data-name-1 :

{ STRUCTURE data-name-2 }
imperative-statement-1

[ON EXCEPTION {conditiona.l-statement-l }]
NEXT SENTENCE

8600 0130-000 4-47

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1
This format element specifies either the data set whose current record is to be unlocked

or the global data record to be unlocked. The data set path and current record area
remain unchanged.

STRUCTURE

This phrase frees all records in the structure.

data-name-2

This format element specifies the structure to be freed.

ON EXCEPTION

This option handles exceptions. Refer to «DMSII Exceptions” later in this section for
information on the clause. If the program returns an exception, the state of the database

remains unchanged.

Example
The following example uses the FREE statement:

LOCK NEXT S

ON EXCEPTION
GO TO NO-MORE. ,

IF ITEM-1 NOT = VALID-VALUE
FREE DS
GO ERR.

GENERATE Statement

The GENERATE statement creates an entire subset in one operation. All subsets must
be disjoint bit vectors. The GENERATE statement performs the following steps:
1. Deletes all records from the subset if the subset is not empty
2. Assigns to the generated subset the records in another subset, a combination of the
records in two other subsets, or NULL values

Note: Unisys recommends that you coordinate any subset declaration with
other users because subsets can be used concurrently and altered
without your knowledge.

8600 0130-000

Using the DMSII Program Interface

General Format

The general format of the GENERATE statement is as follows:

NULL

GENERATE data-name-1 = data-name-2 | { =) data-name-3

imperative-statement-1
[ON EXCEPTION { conditional-statement-1 }]
NEXT SENTENCE

Explanation of Format Elements

data-name-1

This format element is the name of the subset you want to generate. Data-name-1 must
be a manual subset and a disjoint bit vector.

NULL

This phrase assigns a NULL value to the generated subset so that the subset remains
empty.

data-name-2
This format element is the name of the subset you want to assign to data-name-1. The

data-name-2 subset must be of the same data set as the data-name-1 subset and must be
a disjoint bit vector.

AND
This operator assigns the intersection of data-name-2 and data-name-3 to data-name-1.

The intersection is defined to be all the records in data-name-2 that are also in
data-name-3.

OR

This operator assigns the union of data-name-2 and data-name-3 to data-name-1. The
union is defined to be all the records that are in either data-name-2 or data-name-3.

8600 0130-000 4-49

Using the DMSII Program Interface

4-50

+ (plus)

This operator is the subset-exclusive OR. This operator assigns the records contained in
either data-name-2 or data-name-3 (but not both) to data-name-1.

~ (minus)

This operator is the subset difference. This operator assigns the records contained in
data-name-2 that are not in data-name-3 to data-name-1.

data-name-3
This format element is the name of the subset you want to combine with data-name-2

and assign to data-name-1. The data-name-3 subset must be of the same data set as the
data-name-2 subset and must be a disjoint bit vector.

ON EXCEPTION

This option handles exceptions. Refer to “DMSII Exceptions” later in this section for
more information on the clause.

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

_ DASDL {compiled as DBASE):

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s :
X SUBSET OF D WHERE (N GEQ 21 AND NOT B) BIT VECTOR;
Y SUBSET OF D WHERE (R LSS 1889) BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

8600 0130-000

Using the DMSII Program Interface

The following example uses the GENERATE statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
FILE SECTION.
FD TAPE-FILE.
@1 TAPE-REC.

@2 S PIC XXX.

@2 T PIC 9.

g2 U PIC 999.

@2 VvV PIC 9(4).
DATA-BASE SECTION.
DB DBASE ALL.
PROCEDURE DIVISION.
OPEN-INPUT-FILE.

OPEN INPUT TAPE-FILE.
OPEN-DB.

OPEN UPDATE DBASE.
START-PRG.

READ TAPE-FILE AT END

CLOSE. TAPE-FILE

GO TO GENERATE-SUBSET.

CREATE D.

MOVE S TO A.

IFT=1

COMPUTE B = TRUE.

MOVE U TO N.

MOVE V TO R.

STORE D.

GO TO START-PRG.
GENERATE-SUBSET.

GENERATE Z = X AND Y,

CLOSE DBASE.

STOP RUN.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the GENERATE
statement within the context of a complete program.

8600 0130-010 4-51

| Using the DMSII Program Interface

IF Statement

The IF statement tests an item to determine if it contains a NULL value.

Note: Unisys recommends that you use the IF NULL test to test a database
item for a NULL value. Attempts to compare a database item against
some value assumed to be equivalent to NULL might not always
produce correct results.

General Format

The general format of the IF statement is as follows:

IF{

data-name-3
[M{data-nme-4 is NULL}]

[ELSE imperative-statement-2]

data-name-1 [NOT],

NOT data-name-2 IS} UL

imperative-statement-1

Explanation of Format Elements

data-name-1 and data-name-2

These format elements identify items you want to test.

imperative-statement-1

" Your program executes imperative—statement-l if the condition you are testing is

satisfied. '

NULL

This phrase is the null value defined in the DASDL description. The NULL phrase
specifies a condition that can also appear in combined conditions. Refer to Volume 1 for

information on combined conditions.

4-52

When the NULL phrase is applied to a group item, the NULL phrase defined in the
DASDL description is used, regardless of the NULL specification for any elementary
item contained within the group.

Data items declared in the DASDL description, besides being used in the NULL test, can
also be used in standard COBOL74 relation conditions, exactly like data items declared
in a COBOL74 program.

8600 0130-010

Using the DMSII Program Interface

data-name-3

This format element specifies a Boolean item declared in the DASDL specification.

8600 0130-010 ' 4-52A

Using the DMSII Program Interface

4-528 _ 8600 0130-010

Using the DMSII Program Interface

data-name-4

This format element specifies a link item declared in the DASDL specification. The
 specified link item contains a NULL value if one of the following is true:

e The link item does not point to a record. .

e No current record is present for the data set containing the link item. This
condition occurs following the OPEN, SET TO BEGINNING, or SET TO ENDING
statements, or when the record containing the link item has been deleted.

The data-name-4 link item contains a value other than null if the link item points to a
record, even if that record has been deleted.

imperative-statement-2

If the condition specified in imperative-statement-1 is not satisfied,
imperative-statement-2 is executed.

Example
The following example illustrates the use of the NULL phrase with the IF statement:

IF THE-ITEM IS NULL
PERFORM NEVER-USED.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the IF statement
within the context of a complete program.

INSERT Statement

The INSERT statement places a record into a manual subset. To accomplish this task,
the statement performs the following steps:

1. Inserts the current record of the specified data set into the specified subset
2. Alters the set path for the specified subset to point to the inserted record
General Format

The general format of the INSERT statement is as follows:

INSERT data-name-1 INTO data-name-2
imperative-statement-1
[ON EXCEPTION {conditional-statement-l }]
NEXT SENTENCE

8600 0130-000 A 4-53

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1

This format element identifies the data set whose current record you want to insert into
the subset specified by data-name-2. Data-name-1 must be the object data set of the
specified subset. The path of data-name-1 must refer to a valid record; otherwise, the
program returns an exception.

data-name-2

This format element must specify a manual subset of the data set specified by
data-name-1.

ON EXCEPTION

This option handles exceptions. Refer to “DMSII Exceptions” later in this section for
information on the clause. The program returns an exception if one of the following is
true:

e The subset you specified does not permit duplicates, and the record you want to
insert has a key identical to that of a record currently in the specified subset.

e The specified subset is embedded in a data set, and the data set does not have a valid
‘current record. ‘

e The LOCK TO MODIFY DETAILS option was specified in the DASDL description,
and the current record is not locked.

Example

The following DASDL description is used by the COBOL74 code in the following .
example. The description is compiled with the name DBASE.

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

4-54 ' 8600 0130-000

Using the DMSII Program Interface

The following example uses the INSERT statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
DATA-BASE SECTION.
DB DBASE ALL.
PROCEDURE DIVISION.
OPEN-DB.
OPEN UPDATE DBASE.
SET D TO BEGINNING.
START-PRG.
FIND NEXT D ON EXCEPTION
CLOSE DBASE
STOP RUN.
IF N> 10
INSERT D INTO X.
GO TO START-PRG.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the INSERT
statement within the context of a complete program.

LOCK/MODIFY Statement

. The LOCK statement finds a record in a manner identical to that of the FIND

' statement, and then locks a found record against a concurrent modification by another
user. LOCK and MODIFY are synonyms. The LOCK statement also provides the
STRUCTURE phrase, which simultaneously locks all records in a structure.

If the record to be locked has already been locked by another program, the system
performs a contention analysis. The present program waits until the other program
unlocks the record, unless the wait would result in a deadlock. If a deadlock would
result, the system unlocks all records locked by the program having the lowest priority of
the programs that would be involved in the deadlock, and terminates the lower-priority
program with a DEADLOCK exception.

No other user can lock or secure the record once it is locked; therefore, the record must
be freed when locking is no longer required. You can free a record explicitly by using a
FREE statement or free a record implicitly by executing a subsequent LOCK, FIND
DELETE, CREATE, or RECREATE statement on the same data set.

The LOCK/MODIFY statement performs the following steps:

1. Implicitly frees a locked record. However, if you have set the
INDEPENDENTTRANS option in DASDL, the LOCK/MODIFY statement does not
free the locked record until you execute an END-TRANSACTION statement.

2. Alters the current path to point to the record spemﬁed by the selection expression or
data name included in the statement.

8600 0130-000 . 4-55

Using the DMSII Program Interface

3. Locks the specified record.
4. Transfers that record to the user work area.

General Format

The general format of the LOCK/MODIFY statement is as follows:

LOCK
MODIFY

{

ON EXCEPTION {conditional—statement-l

data-name-1

} { selection-expression-1
STRUCTURE data-name-2 }

imperative-statement-1 }]

NEXT SENTENCE

4-56

Explanation of Format Elements

selection-expression-1

This format element specifies the record you want to lock.

data-name-1

This format element specifies the global data record you want to lock.

STRUCTURE

This phrase locks or secures all records in the structure simultaneously. If other users
have locked or secured the structure or records in the structure, you must wait until
those users free the records or the structure, or end their transactions to do so. A
deadlock occurs when other users attempt to lock or secure more records while you
are locking the structure. Once you have locked a structure, you must continue to lock
individual records. Each new lock implicitly frees the previous record, even if you have
set the INDEPENDENTTRANS option in DASDL. These freed records continue to be
available only to the user securing the structure.

You cannot free structure locks with an END-TRANSACTION statement; instead, you
must use a FREE statement. More information is provided in “FREE Statement”
earlier is this section.

data-name-2

Data-name-2 must be a data set.

8600 0130-000

Using the DMSII Program Inteﬁate

ON EXCEPTION !

This option handles exceptions. Refer to “DMSII Exceptions” for more information

on the clause. The program returns an exception if no record satisfies the selection
expression. If the program returns an exception, the record is not freed. ADEADLOCK
exception occurs if the program waits on a LOCK statement for a time longer than that
specified in the MAXWAIT task attribute. For more information about the MAXWAIT
attribute, refer to the A Series Task Attributes Programming Reference M. anual.

If the LOCK statement uses a selection expression and an exception is returned, the _
program invalidates the current path of the specified set. However, the current path of
the data set, the current record, and the current paths of any other sets for that data set
remain unaltered.

Examples

The following line of code shows the LOCK statement used with the STRUCTURE
phrase: :

LOCK STRUCTURE VENDOR-DATA.

The following example shows the LOCK statement used with the ON ON EXCEPTION
option:
LOCK FIRST EMP AT DEPT-NO = 1019

" ON EXCEPTION
MOVE & TO POP-EMP (1019).

The following example shows the MODIFY statement used with the ON EXCEPTION
clause:

MODIFY EMP AT EMP-NO = IN-SSN

ON EXCEPTION
MOVE INV-EMP-NO-ERR TO ERR-MSG
PERFORM ERR-OUT.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the LOCK
statement within the context of a complete program.

OPEN Statement
The OPEN statement opens a database for subsequent access and specifies the access

‘mode. You must execute an OPEN statement before the database is first accessed;
otherwise, the program terminates at run time with an invalid operator error.

8600 0130-000 : 4-57

Using the DMSII Program Interface

The OPEN statement performs the following steps:

1. Opens an existing database. If files fequired for invoked structures are not in the
system directory, DMSII displays an informative message.

2. Performsan implicit create operation on the RDS.

General Format

The general format of the OPEN statement is as follows:

{UPD ATE } data-name-1

imperative-statement-1
ON EXCEPTION conditional-statement—l}
NEXT SENTENCE

Explanation of Format Elements

INQUIRY

This phrase enforces read-only access to the database specified by data-name-1. You
use this option when you do not want to update the database. The program returns
an exception to the following statements if you have opened the database with the

INQUIRY phrase:
ASSIGN " GENERATE
BEGIN-TRANSACTION INSERT
DELETE : REMOVE
END-TRANSACTION STORE

DMSII does not open any audit files if the OPEN INQUIRY statement has been specified
in all programs that are currently accessing the database.

UPDATE

This phrase enables you to modify the database specified by data-name-1. You must
specify the UPDATE phrase to use the following statements:

ASSIGN GENERATE
BEGIN-TRANSACTION INSERT
DELETE REMOVE
END-TRANSACTION STORE

4-58 ' 8600 0130-000

Using the DMSII Program Interface

data-name-1

This format element specifies the database to be opened.

ON EXCEPTION

This option handles exceptions. More information on the clause is provided later in this
section under “DMSII Exceptions.” The program returns an exception if the database is
already open or if access to the database is denied because of security. If the program
returns an exception, the state of the database remains unchanged.

Examples

The following example illustrates the use of the OPEN statement with the INQUIRY
phrase:

OPEN INQUIRY DBASE.

The following example uses the OPEN statement with the INQUIRY phrase and an ON
EXCEPTION option:

OPEN INQUIRY MYDB

ON EXCEPTION
DISPLAY "EXCEPTION OPENING MYDB"
CALL SYSTEM DMTERMINATE.

Later in this section, Example 4-1, “DMSII Sample Program,* shows the OPEN
statement within the context of a complete program. '

RECREATE Statement
The RECREATE statement partially initializes the user work area.
This statement performs the following steps:

1. Frees the current record of the specified data set

9. Reads any specified expression to determine the format of the record to be created

3. Unconditionally sets control items such as links, sets, counts, and data sets to
NULL, although no data items are altered

To re-create variable-format records, you must supply the same record type as that
supplied on the original CREATE statement. If you do not, the subsequent STORE
statement results in a DATAERROR subcategory 4. Refer to the DMSII Application
Programming Guide for more information.

8600 0130-000 _ 4-59

Using the DMSII Program Interface

General Format

The general format of the RECREATE statement is as follows:

RECREATE data-name-1 [(expression)]

[ON EXCEPTION {conditional-statement—l

imperative-statement-1 }]

NEXT SENTENCE -

Explanation of Format Elements -

data-name-1

This format element is the name of the data set you want to initialize.

{expression)

The expression specifies a variable-format-record. You must use an expression to create
a variable-format record; otherwise, the expression must not appear. The program
returns an exception if the expression does not represent a valid record type.

ON EXCEPTION

This option handles exceptions. More information on this clause is provided later in this
section under “DMSII Exceptions.”.

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

D DATA SET (
A ALPHA (3);
N NUMBER (3):
);

S SET OF D KEY N;

8600 0130-000

Using the DMSII Program Interface

The following example uses the RECREATE statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
DATA-BASE SECTION.
DB DBASE ALL.
PROCEDURE DIVISION.
START-PRG.
OPEN UPDATE DBASE.
CREATE D.
MOVE “ABC" TO A.
MOVE 1 TO N.
STORE D.
RECREATE-D.
RECREATE D.
ADD 1 TO N.
STORE D.
IF N < 500
GO TO RECREATE-D
ELSE
CLOSE DBASE
STOP RUN.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the RECREATE
. statement within the context of a complete program.

REMOVE Statement

The REMOVE statement is similar to the FIND statement except that a found record is
locked and then removed from the specified subset. '

The REMOVE statement performs the following steps:

1. Frees the current record

2. Alters the current path to point to the record specified by the CURRENT option or '
by the data set name

8. Locks the record found in step 2.

4. Removes the record from the specified subset
If the program returns an exception after step 2, the current path is invalid.
If the program returns an exception after step 3, the operation terminates, leaving the
current path pointing to the record specified by the CURRENT phrase or by the data set
name. A ,
When the REMOVE statement is completed, the current paths still refer to the deleted

record. As aresult, a FIND statement on the current record results in a NOTFOUND
exception, although the FIND NEXT and FIND PRIOR statements give valid results.

8600 0130-000 : 4-61

Using the DMSII Program Interface

General Format

The general format of the REMOVE statement is as follows:

CURRENT } FROM data-name-2

data-name-1 :
imperative-statement-1

[ON EXCEPTION {conditional—statement-l }]
NEXT SENTENCE

REMOVE {

Explanation of Format Elements

CURRENT
This phrase removes the current record from the subset specified by data-name-2. If you

specify this option, the subset must have a valid current record. If the subset does not
have a valid current record, the program returns an exception.

data-name-1
This format element identifies the name of record. If you specify data-name-1, the

program finds the record located by the current path and removes it from the subset.
The program returns an exception if the record is not in the subset. -

data-name-2

This format element specifies the subset from which you want to remove a record.
Data-name-2 must specify a manual subset of the data set specified by data-name-1.

If the subset is embedded in a data set, the data set must have a current record defined

and that record must be locked. If the record is not locked, the program returns an
exception.

4-62 ' ’ 8600 0130-000

Using the DMSII Program Interface

ON EXCEPTION

This option handles exceptions. More information on this clause is provided later in this
section under “DMSII Exceptions.” Exceptions are returned if one of the following is
true: :

e You specify the CURRENT phrase, and the specified subset does not have a valid
current record. . -

e You use the data set name (data-name-2) option, and the record is not in the subset.

e You specify a subset that is embedded in a data set, and the data set does not have a
current record defined and locked.

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

The following example uses the REMOVE statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
DATA-BASE SECTION.
DB DBASE ALL.
PROCEDURE DIVISION.
OPEN-DB.
OPEN UPDATE DBASE.
SET X TO BEGINNING.
START-PRG.
FIND NEXT X ON EXCEPTION
CLOSE DBASE
STOP RUN.
IF N > 100
REMOVE D FROM X,
GO TO START-~PRG.

Later in this séction, Example 4-1, “DMSII Sample Program,” shows the REMOVE
statement within the context of a complete program.

8600 0130-000 4-63

Using the DMSII Program Interface

SAVE TRANSACTION POINT Statement
The SAVE TRANSACTION POINT statement provides an intermediate transaction
point record for audit. The transaction point applies only to the current transaction, and

does not affect halt/load recovery. The system completes halt/load recovery at the end of
the transaction, not when it encounters a transaction point.

General Format

The format for the SAVE TRANSACTION POINT statement is as follows:

SAVE TRANSACTION POINT data-name-1 [arithmetic-expression-l]
imperative-statement-1

[ON EXCEPTION {conditional-statement-l }]
NEXT SENTENCE

Explanation of Format Elements

data-name-1

This format element is the name of a RDS that identifies the database.

arithmetic-expression-1

This expression indicates a marker to be assigned to the present execution point in the
transaction. Arithmetic expressions are discussed in Volume 1.

ON EXCEPTION

This option handles exceptions. An explanation of the ON EXCEPTION option is
provided later in this section under “DMSII Exceptions.”

Example

The following line of code shows an example of the SAVE TRANSACTION POINT
. statement: '

SAVE TRANSACTION POINT MY-RESTART 3.

SECURE Statement

The SECURE statement prevents other programs from updéting a record by applying a
shared lock. It is called a shared lock because other users can read, find, or secure the
record; however, they cannot update the record.

4-64 8600 0130-000

' Using the DMSII Program Interface

You can execute a LOCK statement to upgrade secured records to locked records. If two
or more users try to upgrade the records at the same time, however, a deadlock can
occur and cause an exception.

General Format

The format for the SECURE statement is as follows:

selection-expression-1
SECURE {data-name—l }
STRUCTURE data-name-2
imperative-statement-1
[ON EXCEPTION { conditional-statement-1 }]
NEXT SENTENCE

Explanation of Format Elements

selection-expression-1
. This format element specifies the record you want to secure. For more information, see
“Using Selection Expressions” earlier in this section.
data-name-1
This format element specifies the global data record you want to secure. If the invoked

database contains a remap of the global data, your program uses the name of the logical
database, not the name of the global data remap, to lock the global data record.

STRUCTURE

The STRUCTURE phrase secures all records in the structure simultaneously. The
structure must be a data set. If other users have locked records in the structure, you
must wait until the users free the records or structures or end their transactions before
you can secure the structure. A deadlock can occur if other users attempt to lock more
records while you are securing the structure.

You cannot free a secured structure by ending the transaction; instead, you must use the
FREE statement. More information on this statement is provided in “FREE Statement”
earlier in this section.

data-name-2

This format element specifies the name of the data set used in the STRUCTURE phrase.

8600 0130-000 4-65

Using the DMSII Program Interface

ON EXCEPTION

This option handles exceptions. See “DMSII Exceptions” for information on this clause.

Example

The following line of code shows an example of the SECURE statement used with the
STRUCTURE phrase:

SECURE STRUCTURE VENDOR-DATA.

SET Statement

The SET statement alters the current path or changes the value of an item in the
current record. The SET statement affects only the record area; it does not affect the
data set until you execute a subsequent STORE statement.

The SET statement performs the following steps:

1. Frees the current path of the data set, set, or subset
2. Performs one of the following:

e Alters the current path of a data set, set, or subset to point to the beginning or
the ending of the respective structure

e Alters a set or subset path to point to the current path of a data set
e Assigns a NULL value to a particular item
A FIND NEXT statement appearing after a SET TO BEGINNING statement is

equivalent to a FIND FIRST statement. A FIND PRIOR statement appearing after a
SET TO ENDING statement is equivalent to a FIND LAST statement.
]

General Format

The general format of the SET statement is as follows:

SET

BEGINNING
data-name-1 TO {ENDIN G }
data-name-2 TO data-name-3
data-name-4 TO NULL

imperative-statement-1 }]

[ON EXCEPTION {conditional—statement-l

NEXT SENTENCE

8600 0130-000

Using the DMSII Program Interface

Explanation of Format Elements

data-name-1 and BEGINNING or ENDING

Data-name-1 specifies the data set, set, or subset whose current path you want to alter
to point to the beginning or ending of the data set.

data-name-2 and data-name-3

These format elements identify the name of a set or subset. Data-name-2 specifies the
set or subset whose current path you want to alter to point to the current record of
data-name-3.

data-name-4

This format element specifies an item of the current record that is to be assigned a
NULL value. Data-name-4 canriot be a link item.

NULL

If you declare a null value in DASDL, that value is used as the NULL value in this
statement. Otherwise, the statement uses the system default NULL value.

When the NULL value is applied to a group item, the NULL value defined in DASDL is
used, regardless of the NULL specification for any elementary item contained within the

group.

ON EXCEPTION

This option handles exceptions. Information on this clause is provided later in this
section under “DMSII Exceptions.”

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE.

DS DATA SET
(A ALPHA (28);
N NUMBER (2)

)s

S SET OF DS
KEY (A);

SS SUBSET OF DS
WHERE (N=3);

8600 0130-000 4-67

Using the DMSII Program Interface

The following example uses the SET statement:

FIND S AT A = "ABC".
SET SS TO DS
ON EXCEPTION

NEXT SENTENCE.
FIND NEXT SS.

SET S TO BEGINNING
ON EXCEPTION
DISPLAY "NONE".

SET SS TO ENDING
ON EXCEPTION
DISPLAY "NONE".

Later in this section, Example 4-1, “DMSII Sample Program,” shows the SET statement
within the context of a complete program.

STORE Statement

The STORE statement places a new or modified record into a data set. The statement
ipserts the data from the user work area for the data set or global record into the data
set or global record area.

After you. execute a CREATE or RECREATE statement, you can execute a STORE
statement to do one of the following:

¢ Ensure the validity of the data in the user work area if you have specified a VERIFY
condition in DASDL.

e Test the record for validity before the STORE statement inserts the record into
each set in the data set. For example, the STORE statement can test the record to
determine whether or not duplicate values for keys are allowed.

e Evaluate the WHERE condition for each automatic subset.

e Insert the record into all sets and automatic subsets if all conditions are satisfied.
e Lock the new record.

e Alter the data set path to point to the new record.

4-68 ' 8600 0130-000

Using the DMSII Program Interface

After you execute a LOCK or MODIFY statement, the STORE statement does the
following:

e Checks the data in the user work area for validity if you have specified a VERIFY
condition in the DASDL.
¢ Depending on the condition, performs the following steps:

- Ifitems involved in the insertion conditions have changed, reevaluates the
conditions

- If the condition yields a FALSE value, removes the record from each automatic
subset that contains the record

— If the condition yields a TRUE value, inserts the record into each automatic
subset that does not contain the record

o Deletes and reinserts the record into the proper position if you have modified a key
used in ordering a set or automatic subset so that the record must be moved within
that set or automatic subset.

e Stores the record in a manual subset, but does not reorder that subset. Your
program is responsible for maintaining manual subsets. A subsequent reference to
the record using that subset produces undefined results.

General Fofmat

The general format of the STORE statement is as follows:

STORE data-name-1
imperative-statement-1
[ON EXCEPTION {conditional-statement-l }]
' NEXT SENTENCE

Explanation of Format Elements

data-name-1

This format element identifies the name of the data set you want to store. Data-name-1
causes the STORE statement to do one of the following:

e Return the data in the specified data set work area to the data set.
e Return the data in the global data work area to the global data record area.

You must lock the global data record before you execute a STORE statement; otherwise,
the program terminates the STORE statement with an exception.

8600 0130-000 ~ 4-69

Using the DMSII Program Interface

4-70

ON EXCEPTION

This option handles exceptions. The program returns an exception and does not store
the record if the record does not meet any of the validation conditions. The program also |
returns an exception if either of the following is true:

e The data set path is valid and the current record is not locked.
o The global data record is not locked.

Information on the ON EXCEPTION option is provided later in this section under
“DMSII Exceptions.” ‘

Example

The following DASDL description is used by the COBOL74 code in the following
example. The description is compiled with the name DBASE. :

D DATA SET (

A ALPHA (3);
N NUMBER (3);
)s

S SET OF D KEY N;

The following example uses the STORE statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
DATA DIVISION.
DATA-BASE SECTION.
DB DBASE ALL.
PROCEDURE DIVISION.
START-PRG.
OPEN UPDATE DBASE.
CREATE D.
MOVE “ABC" TO A.
MOVE 1 TO N.
STORE D.
RECREATE-D.
RECREATE D.
ADD 1 TO N.
STORE D.
IF N.< 500
GO TO RECREATE-D
ELSE :
CLOSE DBASE
STOP RUN.

Later in this section, Example 4-1, “DMSII Sample Program,” shows the STORE
statement within the context of a complete program.

8600 0130-000

Using the DMSII Program Interface

Processing DMSII Exceptions

During the execution of data management (DM) statements, the program can encounter
any one of several exception conditions. Exception conditions prevent an operation
from being performed as specified. The conditions result if the program encounters a
fault or does not perform the expected actions. For example, execution of the following
statement results in an exception if no entry in S has a value of “JONES” for the key
item: : ‘

FIND S AT NAME = "JONES"
If the operation terminates normally, the program returns no exception.

The database status word, DMSTATUS, is associated with each COBOL74 program
that accesses a database. The value of DMSTATUS indicates whether an exception has
occurred and specifies the nature of the exception. The data management structure
number attribute, DMSTRUCTURE, can also be helpful in analyzing the results of
exception conditions.

DMSTATUS Database Status Word
The system sets the value of DMSTATUS 4t the completion of each data management
statement. You can use the DMSTATUS entry to discover information about an
exception. When interrogating DMSTATUS, you must include an attribute name in
parentheses after the DMSTATUS entry.

Information on the exception categories, subcategories, and mnemonies used in
exception processing is provided in the DMSII Application Programming Guide.

General Format

The general format of the DMSTATUS database status word is as follows:

(category-mnemonic)
DMCATEGORY
DMERRORTYPE
DMSTATUS (4 DMSTRUCTURE »)
DMERROR

| DMRESULT)

8600 0130-000 ' ' , 4-71

Using the DMSII Program Interface

‘Explanation of Format Elements

category-mnemonic

This format element yields a TRUE value if the major category specified by
category-mnemonic has occurred.

DMCATEGORY

This attribute yields a numeric value identifying the major category.

DMERRORTYPE

This attribute yields a numeric value identifying the subcategory of the major category.

DMSTRUCTURE
This attribute yields a numeric value identifying the structure number of the structure

involved in the exception. See “DMSTRUCTURE Structure Number Function” in this
section for more information.

DMERROR

This procedure yields a TRUE value if any error has occurred.

DMRESULT

This attribute yields the 48-bit contents of DMSTATUS as a PIC X(6) data item.
If no exception has occurred, the program returns six EBCDIC nulls (that is,
48“0000000000007). ' '

DMSTRUCTURE Structure Number Function

4-72

The DMSTRUCTURE function enables you to programmatically determine the
structure number of a data set, set, or subset. The structure numbers of all invoked
structures are shown in the invocation information in the program listing. Your program
can use the structure number to analyze the results of exception conditions.

The DMSTRUCTURE function is most useful when the previous operation against a
data set that is spanned by several data sets yielded an exception. The program can
determine from the structure number which structure caused the exception.

When you declare a partitioned structure in DASDL, the structure is assigned one or
more structure numbers, depending on the value of the integer in the following option:

OPEN PARTITIONS = integer

8600 0130-000

Using the DMSII Program Interface

For example, three structure numbers are assigned to the structure when you specify
the following option:

OPEN PARTITIONS = 3
The DMSTRUCTURE function returns the lowest structure number assigned to the

structure. However, the value in DMSTRUCTURE can be any of the values assigned by
DMSII at run time; it is not necessarily the same value every time.

General Format

The general format for the DMSTRUCTURE function is as follows:

data-name-1 (DMSTRUCTURE)

Explanation of Format Element

data-name-1

This format element returns the structure number of the data set, set, or subset.

Example
The following example uses the DMSTRUCTURE structure number function:

IF D(DMSTRUCTURE) = DMSTATUS (DMSTRUCTURE) DISPLAY "D FAULT".

DMSII Exceptions

‘You can use any of the following methods in your program code to handle exceptions:

e Call the DMERROR Use procedure.
o Specify the ON EXCEPTION option with the data management statement.

If you neither call the DMERROR Use procedure nor specify the ON EXCEPTION
option, the program returns an exception and terminates the program with an error. As
a result, the values of the DMSTATUS category, subcategory, and structure number
are displayed on the system console, placed in the system log, and printed with the job

summary output.

An explanation of the DMERROR Use procedure and ON EXCEPTION option are
included in this discussion of DMSII exceptions. See Volume 1 for information on the
USE statement with Use procedures.

8600 0130-000 4-73

\

Using the DMSII Program Interface

DMERROR Use Procedure

4-74

You can use the DMERROR Use procedure to extend the DECLARATIVES SECTION
of the PROCEDURE DIVISION to enable you to specify a DMERROR Use procedure.
The DMERROR Use procedure yields a TRUE value if any error has occurred.

You can call the DMERROR Use procedure each time the program returns an exception
during the execution of a data management (DM) statement, unless the program
contains an ON EXCEPTION option for that statement. The DMERROR Use procedure
passes control of your program to the statement following the data management
statement that encountered the exception.

The DMERROR Use procedure can appear by itself or in any order with other Use
procedures in the DECLARATIVES SECTION. However, you can declare only one
DMERROR Use procedure in a COBOL74 program. In addition, the DMERROR
Use procedure cannot contain GO TO statements that reference labels outside the
procedure. - .

If you use both a DMERROR Use procedure and an ON EXCEPTION option, the
ON EXCEPTION option takes precedence, and the DMERROR Use procedure is not
executed.

Example

The following example shows the declaration for the DMERROR Use procedure:

DECLARATIVES.
DMERR-SECT SECTION.

USE ON DMERROR.
DMERR-PARA.

IF DMSTATUS(NOTFOUND)...
END DECLARATIVES.

8600 0130-000

Using the DMSII Program Interface

ON EXCEPTION Option

You can place the ON EXCEPTION option after the verb of the following DM
statements to handle exceptions:

ABORT-TRANSACTION INSERT
ASSIGN LOCK
BEGIN-TRANSACTION MODIFY
CANCEL TRANSACTION POINT OPEN
CLOSE RECREATE
CREATE REMOVE
DELETE SAVE TRANSACTION POINT
END-TRANSACTION SECURE
FIND SET

FREE STORE
GENERATE

The ON EXCEPTION option is also shown in the syntax of these data management
statements.

If you use both a DMERROR Use procedure and an ON EXCEPTION option, the

ON EXCEPTION option takes precedence, and the DMERROR Use procedure is not
executed.

General Format

The general format of the ON EXCEPTION option is as follows:

imperative-statement-1
[ON EXCEPTION { conditional-statement-1 } }
NEXT SENTENCE

Explanation of Format Elements

imperative-statement-1, conditional-statement-1, or NEXT SENTENCE

One of these format elements is executed if the program returns an exception. Refer to
Volurme 1 for information about these statements.

8600 0130-000 4-75

Using the DMSII Program Interface

Examples

In the following line of code, a branch to the LBL1 subprogram is executed if a STORE
statement encounters an exception:

STORE D ON EXCEPTION GO TO LBLI1.

The following example uses the ON EXCEPTION option and interrogates DMSTATUS:

MODIFY S AT X = 3 ON EXCEPTION
IF DMSTATUS (NOTFOUND) GO NOT-FOUND-L ELSE
IF DMSTATUS (DEADLOCK) GO DEAD-LOCK-L ELSE

.

NOT-FOUND-L.
IF DMSTATUS (DMERRORTYPE)
IF DMSTATUS (DMERRORTYPE)

1 statement ELSE
2 statement ELSE

-

DEAD-LOCK-L.
IF DMSTATUS (DMERRORTYPE) = 1 statement ELSE

DMSII Sample Program

Example 4-1 shows methods of using DMSII programming interfaces. Examples of
coding the DMSTRUCTURE and DMERRORTYPE attributes for the DMSTATUS
database status word begin at line 035700. The example shows the use of many verbs
discussed in this section; however, the sample program is not designed to demonstrate
recommended programming practices. The following verbs are used with the ON

EXCEPTION option:
CLOSE INSERT SET .
DELETE LOCK ' STORE
FIND REMOVE

The program accesses the UNIVDB database to create and update a master student
file called MSF. The master student file is sorted by the social security number of each
student. Updates can be performed to the file such as changing the name or grade of a
student. For example, the code for changing grades begins at line 032900. Two subsets
are created for students beginning at line 030000. One subset is based on the sex of
each student; the other subset contains information on students who have a grade point
average greater than 3.5.

4-76 - 8600 0130-000

Using the DMSII Program Interface

010006$ SET LINEINFO BDMS

210100
0910200
919300
910408
910500
210600
910700
010809
910900
011000
211109
011200
911300
911400
911502
211600
911700
011800
911900
012000
012100
012200
912300
- 912400

012500

212600
912709
212800
212900
013000
213100
913200
0913300
213400
213508
013600
913700
913800
0913900
014800
914100
914200
014300
914400
014500
014609
214700
014809
214900
915000

8600 0130-000

IDENTIFICATION DIVISION.
PROGRAM-ID. UNIVERSITY.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-~CONTROL.

SELECT CARD ASSIGN TO READER.

SELECT MONITOR-DMS ASSIGN TO PRINTER.

DATA DIVISION.
FILE SECTION.
FD CARD.
P21 CARD-REC.
23 C-TYPE
P93 C-SSNO
@3 C-GRD-PT-AVG
@3 C-SEX
#3 C-AGE
23 C-QTR
@3 C-TYPECOURSE
93 C-GRADE
@3 C-TITLE-PAPER
93 C-NAME
93 FILLER
FD MONITOR-DMS.
@1 MONITOR-REC.
@3 MONITOR-EXCEPTION
B3 MONITOR-STATUS-B
@3 MONITOR~STATUS
©3 MONITOR-VERB
" @3 MONITOR-SET
£3 MONITOR-STRUCTURE
@3 FILLER

DATA-BASE SECTION.
DB UNIVDB.

81 MSF.

21 ADR.

@1 RSTDS.

WORKING-STORAGE SECTION.
77 TOOMANYEXCEPTIONS
77 N

77 END-OF-DATA-IND

PROCEDURE DIVISION.

MAIN-PROC.
OPEN OUTPUT MONITOR-DMS.
MOVE SPACES TO MONITOR-REC.
OPEN UPDATE UNIVDB.
BEGIN-TRANSACTION AUDIT RSTDS.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC

9.
9(9).
999v99.
X.

99.
X(4).
9.

XX.
X(30).
x(24).
X.

X(4).
X(29).
77798B.
X(29).
X(17).
999.
X(62).

99 COMP.
9(2).
9.

PERFORM CREATE-ADR THRU CREATE~ADR-EXIT.

Example 4-1. DMSII Sample Program

4-77

Using the DMSII Program Interface

915100 PERFORM RECREATE-ADR THRU RECREATE-ADR-EXIT
915290 VARYING N FROM 1 BY 1 UNTIL N = 11.

0915300 END-TRANSACTION NO-AUDIT RSTDS.

915400 OPEN INPUT CARD. :

015509 MOVE @ TO END-OF-DATA-IND.

915600 PERFORM READ-CARD-LOOP THRU READ-CARD-LOOP-EXIT

915709 UNTIL END-OF-DATA-IND = 1.
015800 GO TO EOJ.
215900

29160006 CREATE-ADR.

0916109 CREATE ADR.

616200 MOVE 1 TO FACULTY-STUDENT.
916309 MOVE 1 TO ZIPC.

016409 MOVE 1 TO PHON.

916500 MOVE "FIRST AVE" TO ADLN(1).
616600 ADD 1 TO SNO.

016799 STORE ADR ON EXCEPTION

716800 PERFORM STATUS-BOOLEAN.
©16920 CREATE-ADR-EXIT.

017909 EXIT.

917100

0917209

917300 RECREATE-ADR.

9174909 RECREATE ADR.

917509 ADD 1 TO SNO.

617600 STORE ADR ON EXCEPTION

0917799 PERFORM STATUS-BOOLEAN.
917890 RECREATE-ADR-EXIT.

917900 EXIT.

£18000*

g18100* Build MSF master student file.
018200*

£18300 READ-CARD-LOOP.

918499 READ CARD AT END MOVE 1 TO END-OF-DATA-IND.
918500 WRITE MONITOR-REC FROM CARD-REC.

218600

918709 IF C-TYPE=1

918800 BEGIN-TRANSACTION AUDIT RSTDS '
0918900 PERFORM 18@-CREATE-MSF THRU 108-CREATE-MSF-EXIT
019099 END-TRANSACTION NO-AUDIT RSTDS

219100

919200 ELSE IF C-TYPE=2

919300 BEGIN-TRANSACTION AUDIT RSTDS

919409 PERFORM 280-CREATE-QUARTER THRU 20@-CREATE-QUARTER-EXIT
619500 END-TRANSACTION NO-AUDIT RSTDS

019600

019700 ELSE IF C-TYPE=3

219809 BEGIN-TRANSACTION AUDIT RSTDS

919900 PERFORM 3@@-CREATE-CORSES THRU 3@0-CREATE-CORSES-EXIT
920000 END-TRANSACTION NO-AUDIT RSTDS

9201929

Example 4~-1. DMSII Sample Program (cont.)

4-78 8600 0130-000

Using the DMSII Program Interface

020200
020300
020400
920500
0920600
020700
920800
0920900
621000
0921109
0921200
921300
921400
0215298
0621609
0921700
221800
021900
0922000
022109
0822200
922309
0922400
0922500
0922600
022799
922800
0922900
0923000
923100
023200
023300
023400
923500
023600
023700
0923809
823900
2240090
2824100
924200
0924300
024400
024500
024600
024700
224800

ELSE IF C-TYPE=4
PERFORM 498-LINK-MSF-TO-ADR

ELSE IF C-TYPE=5
BEGIN-TRANSACTION AUDIT RSTDS
PERFORM 508-DELETE-ADR THRU 588-DELETE-ADR-EXIT
END-TRANSACTION NO-AUDIT RSTDS

ELSE IF C-TYPE=6
PERFORM 620-GENERATE-SUBSET

ELSE IF C-TYPE=7
BEGIN-TRANSACTION AUDIT RSTDS
PERFORM 780-CHANGE-MSF-NAME THRU 780-CHANGE-MSF-NAME-EXIT
END-TRANSACTION NO-AUDIT RSTDS

ELSE IF C-TYPE=8
BEGIN-TRANSACTION AUDIT RSTDS
PERFORM 800-CHANGE-GRADE THRU 80P-CHANGE-GRADE-EXIT
END-TRANSACTION NO-AUDIT RSTDS

ELSE DISPLAY C-TYPE "INVALID CARDTYPE"
MOVE 1 TO END-OF-DATA-IND.

READ-CARD-LOOP-EXIT.

EXIT.

196-CREATE-MSF.

IF C-SSNO <1 OR > 19
MOVE "C_SSNO COLS 2-18 MUST BE BETWEEN 8 AND 11
TO MONITOR-REC
WRITE ‘MONITOR-REC
GO TO 180-CREATE-MSF-EXIT.
CREATE MSF.
MOVE C-SSNO TO SSNO.
MOVE C-GRD-PT-AVG TO GRADE-POINT-AVG.
IF C-SEX = "M"
COMPUTE SSEX = TRUE.
MOVE C-AGE TO SAGE.
MOVE C-NAME TO LNAME.
STORE MSF ON EXCEPTION
PERFORM .STATUS-BOOLEAN.
IF GRADE-POINT-AVG > 3.50
INSERT MSF INTO SMART ON EXCEPTION
PERFORM STATUS-BOOLEAN.

100-CREATE-MSF-EXIT.

EXIT.

024909 200-CREATE-QUARTER.

0825000
925100
925200

8600 0130-000

LOCK MSFSET AT SSNO = C-SSNO ON EXCEPTION .
IF DMSTATUS (NOTFOUND)
DISPLAY C-SSNO "NOT IN MSF"

Example 4-1. DMSII Sample Program (cont.)

4-79

Using the DMSII Program Interface

925300
925400
825500
925600
825700
925800
925900
026000
026100
926200
826300
026400
026500
026600
026700
926800
026909
§27000
227100
027200
827300
627400
027500
027600
927700
927800
027900
028000
928100
928200
928300
028400
928500
028600
828700
628800
228900
029000
929109
829200
629300
829400
629500
829600
929700
329800
829900
930000
030100
030200
030300

s GO TO 209-CREATE-QUARTER-EXIT
ELSE
PERFORM STATUS-BOOLEAN.

CREATE QUARTER.
MOVE C-QTR TO QTR.
STORE QUARTER.

200-CREATE-QUARTER-EXIT.
EXIT.

3p0-CREATE-CORSES.
LOCK MSFSET AT SSNO = C-SSNO ON EXCEPTION
IF DMSTATUS (NOTFOUND)
DISPLAY C-SSNO "NOT IN MSF"
GO TO 30@@-CREATE-CORSES-EXIT
ELSE
PERFORM STATUS-BOOLEAN.
LOCK QSET AT QTR = C-QTR.
IF C-TYPECOURSE = 1 CREATE CORSES(1).
IF C-TYPECOURSE = 2 CREATE CORSES(2).
MOVE C-TYPECOURSE TO TYPECOURSE.
IF C-TYPECOURSE = 1
MOVE C-GRADE TO GRADE
ELSE
MOVE C-GRADE TO GGD.
STORE CORSES ON EXCEPTION
PERFORM STATUS-BOOLEAN.
300-CREATE-CORSES-EXIT.
EXIT.

490-LINK-MSF-TO-ADR.
LOCK MSFSET AT SSNO = C-SSNO.
LOCK ‘SSAD AT SNO OF ADR = C-SSNO.
MOVE ADLN(1) TO HOME-ADDRESS.
4pP-LINK-MSF-TO-ADR-EXIT.
EXIT.

500-DELETE-ADR. :
MOVE "LOCK MSFSET" TO MONITOR-VERB.
LOCK MSFSET AT SSNO = C-SSNO ON EXCEPTION
PERFORM STATUS-BOOLEAN.
DELETE ADR ON EXCEPTION
PERFORM STATUS-BOOLEAN.
5@@-DELETE-ADR-EXIT.
EXIT.

600-GENERATE-SUBSET.
MOVE “GENERATE AND" TO MONITOR-VERB.

GENERATE UTILITY = SMART AND SEXSET.
FIND FIRST UTILITY ON EXCEPTION

Example 4-1. DMSII Sample Program (cont.)

8600 0130-000

Using the DMSII Program interface

930400 IF DMSTATUS (NOTFOUND)

930500 DISPLAY "SUBSET EMPTY"
930600 GO TO 600-GENERATE-SUBSET
930790 ELSE

930800 PERFORM STATUS~BOOLEAN.

930900 MOVE LNAME TO MONITOR-REC.

931000 WRITE MONITOR-REC.

931100 MOVE "GENERATE NULL" TO MONITOR-VERB.
931209 GENERATE UTILITY = NULL.

" §31300 609-GENERATE-SUBSET-EXIT.

931490 EXIT.

931500

231600 700-CHANGE-MSF-NAME.

931700 MODIFY MSFSET AT SSNO = C-SSNO.
931800 MOVE LNAME TO MONITOR-REC.

931900 WRITE MONITOR-REC.

932000 MOVE “"NAME IN MSF WAS CHANGED TO" TO MONITOR-REC.
932100 WRITE MONITOR-REC.

932200 MOVE C-NAME TO LNAME.

932300 STORE MSF.

032400 MOVE LNAME TO MONITOR-REC.

932500 WRITE MONITOR-REC.

032600 708-CHANGE-MSF-NAME-EXIT.

832700 EXIT.

0932800

932900 809-CHANGE-GRADE.

033000 MOVE "LOCK MSFSET" TO MONITOR-VERB.
933100 LOCK MSFSET AT SSNO = C-SSNO ON EXCEPTION
033200 PERFORM STATUS-BOOLEAN.

933300 MOVE C-GRD-PT-AVG TO GRADE-POINT-AVG.
933400 MOVE "STORE MSF" TO MONITOR-VERB.
033500 STORE MSF ON EXCEPTION

033600 PERFORM STATUS-BOOLEAN.
033760 IF GRADE-POINT-AVG NOT < 3.58
0933800 GO TO 89@-CHANGE-GRADE-EXIT.
2339909 SET SMART TO MSF ON EXCEPTION
0634000 PERFORM STATUS-BOOLEAN.

934100 MOVE "REMOVE CURRENT" TO MONITOR-VERB.

934200 REMOVE CURRENT FROM SMART ON EXCEPTION

034300 PERFORM STATUS-BOOLEAN.

934400

934500*

#34600* Set SMART to MSF and remove the current record (MSF).
934780*

934800 809-CHANGE-GRADE-EXIT.

934900 EXIT.

935000

935190 STATUS-BOOLEAN.

935200 ADD 1 TO TOOMANYEXCEPTIONS.

935300 IF TOOMANYEXCEPTIONS > 19

935400 DISPLAY TOOMANYEXCEPTIONS "IS TOO MANY EXCEPTIONS"

Example 4-1. DMSII Sample Program (cont.)

8600 0130-000

Using the DMSII Program Interface

935500
035690
935700
935800
935909
936000
036100
936200
936300
236400
236500
936600
936700
236800
936900
037000
237120
937200
837300
937400
237509
0937600
037709
037800
9379900
238000
238100
938200
238300
938400
238500
238620
938700
938800
0938900
939000
939100
939200
939300
039409
839500
939609
939700 £0J.
939800
939996
040099 XIT.
2949100

GO TO XIT.

MOVE ALL "*" TO MONITOR-EXCEPTION.
MOVE DMSTATUS (DMSTRUCTURE) TO MONITOR-STRUCTURE.
MOVE DMSTATUS (DMERRORTYPE) TO MONITOR-STATUS.

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

IF

DMSTATUS (NOTFOUND)

MOVE “NOTFOUND" TO MONITOR-STATUS-B ELSE
DMSTATUS (DUPLICATES)

MOVE "DUPLICATES" TO MONITOR-STATUS-B ELSE
DMSTATUS (DEADLOCK)

MOVE "DEADLOCK" TO MONITOR-STATUS-B ELSE
DMSTATUS (DATAERROR)

MOVE "DATAERROR" TO MONITOR-STATUS-B ELSE
DMSTATUS (NOTLOCKED)

MOVE "NOTLOCKED" TO MONITOR-STATUS-B ELSE
DMSTATUS (KEYCHANGED)

MOVE "KEYCHANGED" TO MONITOR-STATUS-B ELSE
DMSTATUS (SYSTEMERROR)
MOVE "SYSTEMERROR" TO MONITOR-STATUS-B ELSE

DMSTATUS (READONLY)

MOVE "READONLY" TO MONITOR-STATUS-B ELSE
DMSTATUS (IOERROR)

MOVE "IOERROR" TO MONITOR-STATUS-B ELSE
DMSTATUS (LIMITERROR)

MOVE "LIMITERROR" TO MONITOR-STATUS-B ELSE
DMSTATUS (OPENERROR)

MOVE “OPENERROR" TO MONITOR-STATUS-B ELSE
DMSTATUS (CLOSEERROR)

MOVE "CLOSEERROR" TO MONITOR-STATUS-B ELSE
DMSTATUS (NORECORD)

MOVE "NORECORD" TO MONITOR-STATUS-B ELSE
DMSTATUS (INUSE)

MOVE "INUSE" TO MONITOR-STATUS-B ELSE
DMSTATUS (AUDITERROR)

MOVE "AUDITERROR" TO MONITOR-STATUS-B ELSE
DMSTATUS (ABORT)

MOVE "ABORT" TO MONITOR-STATUS-B ELSE
DMSTATUS (SECURITYERROR)

MOVE "SECURITYERROR" TO MONITOR-STATUS-B ELSE

DMSTATUS (VERSIONERROR)
MOVE "VERSIONERROR" TO MONITOR-STATUS-B.

WRITE MONITOR-REC.
MOVE SPACES TO MONITOR-REC.

CLOSE UNIVDB ON EXCEPTION

STOP RUN.

STOP RUN.

Example 4-1. DMSII Sample Program (cont.)

8600 0130-000

Section 5
Using the DMSII TPS Program Interface

The transaction processing system (TPS) provides users of the Data Management
System I (DMSH) with improved processing for a high volume of transactions. To
minimize program coding and maintenance, TPS separates the database processing
functions into modules and provides a library of transaction do printed procedures.

Typically, there are two types of programs you can write for TPS:

e The application program
e The update library, which is a collection of processing routines that provide an
interface between the transaction library and a DMSII database

The COBOL74 program interface developed for TPS includes extensions that enable
you to invoke a transaction base, declare and manipulate transaction records, and pass
records to procedures in the transaction library.

This section discusses the functions of the program interface and provides program
samples that demonstrate a typical application using TPS. The following topics are
included:

e Identifying and interpretihg the Transaction Formatting Language (TFL) items in
COBOL74

¢ Declaring the transaction base

e Creating transaction records

¢ Using transaction records to pass variables as parameters and to assign(‘(or copy) the
contents of a variable to another transaction record variable

e Accessing transaction record items
¢ Inquiring about transaction record control items

¢ Using transaction record compile-time functions to access certain properties of
transaction record formats

¢ Using transaction library entry points to invoke library procedures
e Using the update library to perform data management against the database with
statements for processing transactions

The section also provides information about the extensions developed for use with TPS
and provides examples and sample programs. For an alphabetized list of the extensions
for TPS, refer to “DMSI TPS Extensions” in Section 1, “Introduction to COBOL74
Program Interfaces.”

-8600 0130-000 5-1

Using the DMSII TPS Program Interface

See Also

Refer to the A Series DMSII Transaction Processing System (TPS) Programming
Guide for information on general programming considerations and concepts, and for
detailed information on the Transaction Formatting Language (TFL) used in TPS to
describe transaction processing information.

Using the Transaction Fdrmatting Language (TFL)

The basic constructs for the Transaction Formatting Language (TFL) are described in
the DMSIT TPS Programming Guide. However, it is important to know how COBOL74
processes some constructs, and how COBOL74 interprets TFL items.

In TFL, descriptive information about a transaction base is stored in the
TRDESCRIPTION file as comments. If the COBOL74 LIST compiler control option is
set and the program invokes a transaction base, the TFL comments are listed with each
transaction record format and transaction item.

If you are using identifiers in a COBOL74 program, reference these identifiers as they

are declared in the TFL source. Note that BDMSCOBOL74 compilers support the
hyphenated identifier.

5-2 8600 0130-000

Using the DMSH TPS Program Interface

Table 5-1 shows how COBOL74 interprets TFL items in programs that access a

transaction base.
Table 5-1. TFL item Interpretations
TFL item COBOL74 Interpretation
<name> ALPHA(n) <name> PIC X(n) DISPLAY

<name> NUMBER(n)
<name> NUMBER(Sn)
<name> NUMBER(n,m)
<name> NUMBER(Sn,m)
<name> REAL
<name> REAL(n)
<name> REAL(Sn)
<name> REAL(n,m)
<name> REAL(Sn,m)
<name> BOOLEAN
<name> FIELD(n)
<name> GROUP

<name> PIC 9(n) COMP

<name> PIC S9(n) COMP
<name> PIC 9(n-m)V9(m) COMP
<name> PIC $9(n-m)V9(m) COMP
<name> BINARY

<name> 9(n) BINARY

<name> PIC S9(n) BINARY
<name> PIC 9(n-m)V9(m) BINARY
<name> PIC $9(n-m)V9(m) BINARY
<name> BOOLEAN

<name> FIELD SIZE IS n BITS

<name>

Legend

<name> Declared item name
n,m Unsigned integers

s Optional negative sign (-)

Declaring a Transaction Base

You must declare a transaction base before making any references to formats or items

defined within that transaction base. The transaction base declaration specifies the
transaction base to be invoked. In the declaration, you can do the following:

e Specify only a transaction base to invoke all structures in the transaction base by
default.

e Optionally specify a list of transaction record formats and subformats, to invoke only
those structures of the transaction base. :

The program can designate alternative internal names for the transaction base and for
any of the formats or subformats declared. If alternative internal names are used for
the base name, subbase name, format name, or subformat name, the program must
reference these internal identifiers rather than the TFL source identifiers.

A program can also declare a subbase that has been defined for the transaction base. Ifa
subbase is declared, only the transaction record formats and subformats defined within

8600 0130-000 ' 5-3

Using the DMSII TPS Program Interface

that subbase are accessible to the program. The program can specify a list of transaction
record formats and subformats, using internal names if needed, that can be invoked from
that subbase. '

The TRANSACTION SECTION in thé DATA DIVISION contains the declarations
of all transaction bases that can be referenced in a COBOL74 program. The

TRANSACTION SECTION must appear between the DATA-BASE SECTION and the
WORKING-STORAGE SECTION.

General Format

The generaly format for invoking the transaction base is as follows:

TRANSACTION SECTION.
"TB[[internal-base-id-1 =] subbase-id] OF base-id [GLOBAL]
rUSING [internal-format-id-1 =] format-id-1 1
ALL
NONE
=} [internal-subformat-id-3 =] subformat-id-3
[[, internal-subformat-id-4 =] subformat-id-4...]
[,[internal-format-id-2 =] format-id 2
ALL
NONE
E [internal-subformat-id-3 =] subformat-id-3
([, internal-subformat-id-4 =] subformat-id-4 ...] J

I~

[N

Explanation of Format Elements

TRANSACTION SECTION

This section invokes all transaction bases that can be referenced in a program.

B
This option specifies the name of the transaction base or transaction subbase to be

invoked in the program. All transaction bases that can be referenced by the program
must have transaction base declarations. ‘

internal-base-id-1

If internal-base-id-1 is specified, the program must reference this internal-base-id rather
than the base-id or subbase-id.

54 8600 0130-000

Using the DMSIHI TPS Program Interface

subbase-id

If subbase-id is specified, only the transaction record formats and subformats defined
within that subbase are accessible.

base-id

This format element specifies the TFL base name of the transaction base to be invoked.

GLOBAL

This option enables a separately compiled bound procedure to reference the same
transaction base declared in the host program.

The transaction base formats and subformats must be declared in the same order in the
two programs being bound. The logical identifiers for transaction bases, formats, and
subformats also must be the same in the two programs being bound.

Any transaction library entry point that is used in the bound procedure must be declared

in the host program. Therefore, a COBOL74 host program must have CALL statements
to all the transaction library entry points that are used in the bound procedure.

USING
' 'This option specifies one or more transaction record formats and subformats to be
invoked. If this option is used, only the indicated transaction record formats and

subformats are invoked. If this option is not used, transaction record formats and
subformats are invoked for that transaction base or subbase.

internal-format-id-1 and internal-format-id-2

If an optional internal-format-id is specified, the program must reference the internal ID
rather than the format ID.

format-id-1 and format-id-2

These format-ids specify the names of the transaction record format being invoked.

ALL

If the ALL option is used in the subformat list, all the subformats of that format are
invoked.

NONE

If the NONE option is used in the subformat list, no subformats of that format are
invoked.

8600 0130-000 | 5.5

Using the DMSII TPS Program Interface

internal-subformat-id-1 through 4

If an optional internal-subformat-id is specified, the program must reference these
internal subformat IDs rather than the subformat IDs.

subformat-id-1 through 4

If a list of subformat IDs is specified, only those subformats are invoked. If this list is not
specified, all subformats of the transaction record format are invoked.

See Also

See “Using Transaction Library Entry Points” later in this section for more information

on that topic.

Examples

The following example shows the syntax for declaring a transaction base:

TRANSACTION SECTION.
TB TRB = BANKTR
USING STATIS=STATUS, CREATEACCT, RESTARTDETANKER,
DEPOSIT, WITHDRAWAL, PURGEACCT, SYSTEMTR.

In the next example, subbase-id SUBB is the transaction record format of the BANKTR
base-id. The USING option includes ALL, which specifies that all the subformats are
invoked. , ‘

TRANSACTION SECTION.
TB TRB = SUBB OF BANKTR
USING ALL.

5-6 8600 0130-000

Using the DMSII TPS Program Interface

Creating Transaction Records

A transaction record is an array row that can contain the transaction data of one of the
transaction record formats declared in the TFL source. A transaction record variable
pames one of these array rows. A transaction record variable can contain the transaction
data of one of the transaction record formats, in effect becoming a structured variable.

A transaction record variable can be associated with only one transaction base or
transaction subbase and can contain only one of the formats or subformats that have
been invoked for that particular transaction base or subbase. The size of the array row
must be large enough to accommodate the largest of all the formats invoked for it.

The following information explains how transaction record variables are declared, and

how transaction records are created. '
Declaration of Transaction Record Variables

Each transaction record for a given transaction base is declared using a COBOL74

01-level indicator immediately after the appropriate transaction base entry in the

TRANSACTION SECTION. This declaration associates the records with that particular

transaction base entry.

Different formats are used to declare variables for the single array row and table array
row.

General Formats

The general formats used to declare transaction record variables for a single array row
and for a table array row are as follows:

Declaration for a Single Array Row

01 transaction-record-id-1.

Declaration for a Table Array Row

[01 transaction-record-id-2 [QCCURS integer-2 [TIMES]] [GLOBAL]].

-

8600 0130-000 5-7

Using the DMSII TPS Program Interface

Explanation of Format Elements

transaction-record-id-1 and transaction-record-id-2

These identifiers specify a transaction record variable.

OCCURS integer-2

This option declares the number of occurrences of a transaction record. The
transaction-record-id can be considered an array of transaction records. You can select a
specific transaction record within the transaction-record-id by subscripting.

TIMES

The keyword TIMES is optional.

GLOBAL

A transaction record or transaction record array that is declared in the host program can
be declared global in the bound procedure by using this option. The GLOBAL option
cannot be specified in the host program; it is allowed only in COBOL74 procedures
compiled with the LEVEL option set at 3 or higher. If a transaction base is declared
global, the associated transaction records are not made global unless the record syntax
also includes the GLOBAL option. '

See Also

Refer to “Accessing Transaction Record Items” later in this section for more information
about subscripts. .

Example

The following example shows declarations for transaction record variables:

TRANSACTION SECTION.
TB TRB = BANKTR
USING STATIS=STATUS, CREATEACCT, RESTARTDETANKER,
DEPOSIT, WITHDRAWAL, PURGEACCT, SYSTEMTR.
@1 TRIN.
21 TROUT.
g1 LASTINPUT.
@1 RESTARTTRREC.
@1 LASTRESPONSE.

5-8 8600 0130-000

Using the DMSII TPS Program Interface

Creation of Transaction Record Formats

The contents of a transaction record variable are undefined until you initialize the
variable to a particular format by using a CREATE statement. The CREATE statement
does the following:

e Assigns to the record variable the initial values of all items in the transaction record
format and subformat, if given. The items that are assigned are all declared in TFL.

o Initializes the transaction record control items.

When a format is created, only those items in the common part are assigned initial
values. When a subformat is created, the common part items as well as the subformat
part items are assigned initial values. The record variable contains the given format until
you reinitialize it with a subsequent CREATE statement. It is never cleared by the

system.

Once a transaction record variable has been created in a particular format and optional
subformat, the items defined within the format and subformat can be accessed and
manipulated. If a transaction record is created in a particular format, the record
contains only the data items associated with that format. If a transaction record is
created in a particular format and subformat, the record contains the data items
associated with the format and the data items associated with the subformat.

General Format

The general format of the CREATE statement is as follows:

., [OF .. [OF
CREATE [subformat-ld {IN }] format-id {IN }

transaction-record-id [(subscript)].

8600 0130-000 5-9

Using the DMSIHI TPS Program Interface

Explanation of Format Elements

subformat-id

This format element is the name of the subformat in which the initial values of the data
items are assigned to the transaction record variable.

format-id

This format element is the name of the format in which the initial values of the data
items are assigned to the transaction record variable.

transaction-record-id

This format element identifies the transaction record variable that is initialized to the
particular format, and the subformat if specified.

subscript
A subscript is a COBOL74 arithmetic expression that 1dentiﬁes a particular element

within a table. If transaction-record-id is declared with the OCCURS option, the
subscript must appear.

See Also

Q More information on subscripts is provided in “Subscnpts” later in this section.

e More information on transaction record variables is provided in “Declaratmn of
Transaction Record Variables” earlier in this section.

Examples

The following examples illustrate the use of the CREATE statement to initialize a
variable to a particular format:

CREATE RESTARTDETANKER IN RESTARTTRREC.

CREATE CREATEACCT IN TRIN.

Using Transaction Records

5-10

The compiler enforces certain restrictions on the use of transaction record variables. To
avoid syntax errors, you must use transaction record variables as follows:

e To create transaction records and to use compile-time and run-time functions

e To store data in transaction record fields

e To obtain data from transaction record fields

e To pass transaction records as parameters in procedures

s

8600 0130-000

Using the DMSHI TPS Program Interface

Note that transaction record variables cannot be used as follows:

e Inalist of multiple destinations

¢ Ininput/output statements

o Inassignment statements, except as described in “Transaction Record Variable
Assignment” later in this section

e As arithmetic, Boolean, or string primaries in expressions

The following information explains how to pass transaction record variables as

parameters and how to assign (or copy) the contents of one transaction record variable to
another.

Transattion Record Variables as Parameters

In transaction processing, most of the work is carried out by transaction library
procedures. Transaction records are passed to these procedures as parameters.

The formal and actual parameters must refer to the same transaction base, but need not
specify the same list of transaction formats.

A transaction record is passed as a parameter in the same way that any 01-level entry is
passed.

See Also

¢ For more information on passing an 01-level entry as a parameter, refer to the
discussion of the USE statement in Volume 1.

¢ For coded program examples of parameter passing, see “TPS Programming
Examples” later in this section.

e For information on transaction library procedures see “Using Transaction Library
Entry Points” later in this section.

Transaction Record Variable Assignment
The contents of a transaction record variable can be assigned, or copied, to another
transaction record variable, provided that both variables represent the same transaction

base. This assignment is performed by the MOVE statement. Both the control and data |
portions of the transaction record are transferred when an assignment is performed.

General Format

The general format for the MOVE statement is as follows:

MOVE transaction-record-1 TO transaction-record-2.

8600 0130-000 - 511

Using the DMSII TPS Program Interface

Explanation of Format Elements

_ transaction-record-1

This format element is a fully subscripted transaction record variable whose contents
you are assigning or copying to another transaction record variable.

transaction-record-2

This format element is a fully subscripted transaction record variable that receives its
contents from another transaction record variable.

See Also

For more information on the syntax and semantics of the MOVE statement, refer to
Volume 1.

Example

The following example assigns a transaction record variable named TRIN to the
transaction record variable named TROUT:

MOVE TRIN TO TROUT.

Accessing Transaction Record Items

5-12

A transaction record can contain a transaction of any format or subformat that is
declared in the TFL source. Data items in the declared format and subformat of that
transaction can be referenced.

Transaction record data items are considered normal data items and can be referenced
at any place in the PROCEDURE DIVISION that is acceptable for a normal data item.

The following rules apply to the use of the CORRESPONDING phrase of a MOVE, ADD,
or SUBTRACT statement in referencing transaction record items:

e A transaction record name alone is not considered a legitimate group name. Instead,
a transaction record format name, a transaction subformat name, or a subordinate
group data item must be referenced.

¢ When a transaction record format is referenced, only the data items in the common
portion of the format are considered eligible for use in the CORRESPONDING
- phrase.

See Also

Refer to Volume 1 for more information on the CORRESPONDING phrase used in these
statements.

8600 0130-000

Using the DMSII TPS Program Interface

General Format

The general format for accessing transaction record items is as follows:

transaction-record-item-id {g%,}

., JIN L JIN . .
[subformat-ld { QE}] [format-ld { Q_I‘:}] transaction-record-id

[(subscript-1 [, subscript-2]...)].

Explanation of Format Elements

transaction-record-item-id

This format element identifies a particular transaction format data item that you want to
reference.

subformat-id

This format element identifies a particular transaction subformat. To access a data item
within a particular transaction record, you can specify subformat-id to qualify the item.

format-id

This format element identifies a particular transaction format. You might need to use
format-id as a qualifier to access a data item within a particular transaction record.

transaction-record-id

This format element identifies the transaction record variable that contains the data
item to be referenced.

_ subscript-1 and subscript-2

Subscripts for the transaction-record-id are explained in “Subscripts” later in this
section. Coded examples are also provided.

See Also

See “Data Item Qualification” later in this section for more information on data item
qualification.

8600 0130-000 5-13

Using the DMSII TPS Program Interface

Examples

Following are examples of code used to access transaction record items:

MOVE ACCT TO ACCTNUM OF CREATEACCT OF TRIN.
" MOVE USER-NAME TO NAME OF CREATEACCT OF TRIN.

MOVE ACCT TO ACCTNUM OF PURGEACCT OF TRIN.

MOVE TIME(1) TO TRANDATE OF DEPOSIT OF TRIN.
MOVE AMT TO AMOUNT OF DEPOSIT OF TRIN.

Subscripts

A subscript is a COBOL74 arithmetic expression. A subscript identifies an element
declared with an OCCURS clause and within a table. A subscript is required if the
transaction-record-id is declared with an OCCURS clause, and this subscript must be
specified first if there are several subscripts.

The following must be subscripted:

‘e Data items of transaction record formats or subformats that are occurring items '
e Items embedded within one or more occurring groups

e Occurring items embedded within occurring groups

If there is a subscript for the transaction record, subscripts within a list of transaction

record items follow that subscript. The subscripts within a list of transaction record
items are listed from left to right, and from the outermost occurring group to the

innermost occurring group or occurring items.

A valid subscript for a transaction record item ranges from 1 to the value of the unsigned
integer, which must not exceed 4095.

See Also

More information on transaction record variables declared with an OCCURS clause is
provided in “Declaration of Transaction Record Variables” earlier in this section.

5-14 8600 0130-000

Using the DMSII TPS Program Interface

Example of Subscripting with a TFL Description

Subscripting is illustrated in the following example, which uses a TFL fragment of a
transaction record format. The fourth item of C-2, in the second GROUP (B-2), in the
seventh GROUP of A is referenced with the subscript triple C-2 (7,2,4). Referencing
data item C-1 in the eighth GROUP of B-2, and the first GROUP of A requires the
subscript pair C-1 (1,8).

A GROUP
(
B-1 REAL;
B-2 GROUP
(.
C-1 REAL;
C-2 NUMBER(6) OCCURS 5 TIMES;
) OCCURS 19 TIMES;
) OCCURS 28 TIMES;

The following example shows the TFL description in COBOL74 code:

@4 A OCCURS 20.
95 B-1 REAL.
@85 B-2 OCCURS 10.
g6 C-1 REAL.
26 C-2 PIC9(6) COMP OCCURS 5.

Example of a Subscript for a Transaction Record

In this example, the third occurrence of the transaction record TR in the fourth item of
C-2, in the second GROUP of B-2, in the seventh GROUP of A, can be referenced with
the following syntax:

c-2 OF TR (3,7,2,4)
The following example shows the declaration for the subscripted reference:

@1 TR OCCURS 184.
24 A OCCURS 28.
@95 B-1 REAL.
@5 B-2 OCCURS 18.
96 C-1 REAL.
96 C-2 PIC(6) COMP OCCURS 5.

8600 0130-000 5-15

Using the DMSII TPS Program Interface

Data ltem Qualification

You can qualify a data item to make it unique. The use of qualification is recommended
to assure that the items referenced are the correct data items.

The amount of qualification required to access a data item of a particular transaction
record format or subformat varies. In every case, however, the transaction record
variable containing the desired data item must be referenced. The following table shows
the requirements for qualification:

item

Data item

Format name and data
item name

Subformat name and
data item name

Format name,
subformat name, and
data item name

5-16

Qualification Requirement

If the name of the desired data item is unique with respect to data
items of other invoked formats, then only the data item name need

be specified. For example:

DATAITEMNAME OF TRANREC

If the name of the desired data item is not unique with respect to
data items of other invoked formats, but is unique to the format that
contains it, both the format and data item names are needed for
qualification. For example: ,
DATAITEMNAME OF FORMATNAME IN TRANREC

Both the subformat name and the data item name are needed for
qualification when all the following conditions prevail:

e The name of the desired data item is not unique with respect to
the common portion of another invoked format.

o The data item is contained within a subformat.

e Another data item within a different subformat of the same
format has the same name as the desired data item.

Also, if the data item is contained within a subformat whose name is
unique to all invoked formats and subformats, but is not unique with
respect to a subformat of another format, both the subformat name
and data item names are needed for qualification. For example:
DATAITEMNAME OF SUBFORMATNAME IN TRANREC

The format name, subformat name, and data item name are needed
for qualification when all the following conditions prevail:

e The name of the desired item is not unique with respect to a
subformat of another invoked format.

e The name of the desired data item is not unique with respect to
the format that contains it.

e The name of the subformat that contains the desired data item
is not unique with respect to all invoked formats and
subformats.

For example:

DATAITEMNAME OF SUBFORMATNAME OF FORMATNAME IN TRANREC

8600 0130-000

Using the DMSII TPS Program Interface

Inquiring about Transaction Record Control ltems

Control items are system-defined items contained in every transaction record and can
be inquired about at run time. These items are maintained by TPS and are read-only

in all BDMSCOBOL74 programs. The initial values of these control items are assigned
when a transaction record is created. After a transaction record has been created with a
particular format and optional subformat, the control items are defined.

Additional information and a description of the record control items are provided in the
DMSII TPS Programming Guide.

General Format

The general format used to inquire about transaction control record items is as follows:

transaction-control-item (transaction-record-id [(subscript)])

Explanation of Format Elements

transaction-control-item

This format element is the name of the transaction control record about which you are
inquiring.

transaction-record-id

This format element identifies a transaction record variable. It must be fully subscripted
if a transaction record array element is used.

subscript
A subscript is a COBOL74 arithmetic expression that identifies a particular transaction

record variable within an array of transaction record variables. If transaction-record-id is
declared with the OCCURS clause, the subscript must appear.

8600 0130-000 ' 5-17

Using the DMSII TPS Program Interface

Example

The following example shows code used to inquire about transaction control record
items:
READP.

KhRkihk

MOVE "F/B/O =" TO RMT-1.

MOVE TRFILENUM(TRIN) TO RMT-2.
MOVE TRBLOCKNUM(TRIN) TO RMT-3.
MOVE TROFFSET(TRIN) TO RMT-4.
MOVE TRFORMAT(TRIN) TO RMT-5.
MOVE TRSUBFORMAT(TRIN) TO RMT-6.

Using Transaction Compile-Time Functions

5-18

Transaction compile-time functions provide access to certain properties of transaction
record formats that are constant at compile time. These compile-time constructs

are particularly useful for coding an update library. However, they are not used in
application programs.

The compile-time functions are discussed in detail in the DMSII TPS Programming

Guide. The format shown in the following text provides the syntax you use to access the
functions.

See Also

For examples of using compile-time functions, refer to “Update Library Programming
Conventions” later in this section.

8600 0130-000

Using the DMSII TPS Program Interface

General Format

The general format for using compile-time functions is as follows:

(TRFORMAT
TRSUBFORMAT
TRDATASIZE :
{ TRBITS > g[transaction-tecord-item-id {
TRDIGITS

TRBYTES
\TROCCURS /
format-id

{%\IE} transaction-base-id] .

F}]) [subformat—id {

219

}

219

Explanation of Format Elements

transaction-record-item-id

This format element is the name of a data item contained within an invoked transaction
format or subformat. :

subformat-id

This format element is the name of a transaction subformat that has been invoked
within the program.

format-id

This format element is the name of a transaction format that has been invoked within
the program.

transaction-base-id

This format element is the name of a transaction base that has been invoked within the
program.

Considerations for Use

Table 5-2 includes an explanation of the purpose of each compile-time function when it
is used with a specific argument. You must reference transaction-base-id only when
transaction base qualification is required. Note that OF and IN are synonyms; the
syntax is shown with only the OF construct. ‘

8600 0130-000 ’ 5-19

Using the DMSII TPS Program Interface

Table 5-2. Using Compile-Time Functions

Function

Explanation

TRFORMAT format-id
TRSUBFORMAT subformat-id OF format-id

TRDATASIZE format-id

TRDATASIZE subformat-id OF fdrmat-id

TRBITS transaction-record-item-id OF
format-id

TRBITS transaction-record-item-id OF
subformat-id OF format-id

TRDIGITS transaction-record-item-id OF
format-id)

TRDIGITS transaction-record-item-id OF
subformat-id OF format-id

TRBYTES transaction-record-item-id OIF
format-id

TRBYTES transaction-record-item-id OF
subformat-id OF format-id

TROCCURS transaction-record-item-id OF
format-id

TROCCURS transaction-record-item-id OF
subformat-id OF format-id

Returns the numeric value aSigned to the
format-id.

Returns the numeric value assigned to the
subformat-id.

Returns the size, in bytes, of the common
portion of the transaction record.

Returns the size, in bytes, of the subformat
record.

Returns the size, in bits, of the referenced
data item.

Returns the size, in bits, of the referenced
data items.

Returns the size, in digits, of the referenced
data item.

Returns the size, in digits, of the referenced
data items.

Returns the size, in bytes, of the referenced
data item.

Returns the size, in bytes, of the referenced
data items.-

Returns the maximum number of occurrences
of the data item. This value is O (zero) if the
item has no OCCURS clause in the TFL
source.

Returns the maximum number of occurrences
of the data items. This value is O (zero) if an
item has no OCCURS clause in the TFL
source.

Using Transaction Library Entry Points

The transaction library is a collection of procedures that are accessed by application

5-20

-programs to process or store transactions and to read the transactions back from

transaction journal files. The transaction library is tailored for a particular transaction
base during compilation. The library performs functions such as

e Calling the update library to process a transaction against a database
e Saving transaction records in transaction journal files

e Automatically reprocessing transactions backed out by DMSII recovery

8600 0130-000

Using the DMSII TPS Program Interface

The transaction library supplies a set of entry points that allow you to invoke the
transaction library procedures. Each entry point returns a nonzero result as the value of
the procedure if the library detects an exception condition. The value returned can be
examined to determine the cause of the exception.

The following information explains how to pass a numeric item to an integer parameter
of an entry point and a display item to a string parameter of an entry point. It also
discusses the TPS entry points and the CALL statement syntax used to access the entry

points.
See Also

For detailed information on transaction hbra.ry entry points, refer to the DMSII TPS
Programming Guide.

Parameter Passing with COBOL74 Constructs

The program interface provides the means by which you can use the entry points of the
transaction library. The interface provides two methods for passing a numeric item to an
integer parameter of an ALGOL library entry point; additionally, the interface provides
one method for passing a display item to a string parameter of an entry point.

To pass a numeric item to an ALGOL integer parameter, you use one of the following
two methods:

e TUse the INTEGER function, which converts an item declared with USAGE
COMPUTATIONAL to an ALGOL integer representation.

e Specify the BINARY option in the USAGE clause of the item declaration. When the
BINARY option is specified, the item is represented in binary form, which is the
same as an ALGOL integer representation.

In addition, you can pass an item declared with the USAGE DISPLAY clause to an
ALGOL string parameter of a library entry point by using the STRING function to
convert the item to an ALGOL string representation.

See Also
e For more information regarding the STRING and INTEGER functions, refer to
Volume 1.

e For information on how integer parameters must be declared so that an update
library can receive them from transaction library entry points, refer to “Parameter
Passing to an Update Library” later in this section.

8600 0130-000 ' 5-21

Using the DMSII TPS Program Interface

Genéral Format

The general format for the INTEGER and STRING functions is as follows:

INTEGER (COBOL74-identifier)
STRING (COBOL74-identifier)

5-22

Explanation of Format Elements

INTEGER (COBOL74-identifier)

This function converts the COMP item specified by the identifier to an ALGOL integer
representation. The identifier must be a COMP item.

STRING (COBOL74-identifier)

This function converts the DISPLAY item specified by the identifier to an ALGOL string
representation so that the item can be passed to an ALGOL string parameter of a library
entry point.

Examples of Using the INTEGER Function to Pass Parameters

The INTEGER function can be used in both the USING phrase and the GIVING phrase
of the CALL statement. The function performs the data conversion on both the call to
and the return from the library entry point. Refer to Volume 1 for the syntax of the
CALL statement used with libraries.

CALL......USING INTEGER(VARNAME),....
GIVING INTEGER(RESULT).

If VARNAME and RESULT are COMP items declared with the BINARY optxon in the
USAGE clause, the previous example is changed to

CALL......USING VARNAME,......
GIVING RESULT.

~ Example of Using the STRING Function to Pass Parameters

The STRING function can be used in the USING phrase of the CALL statement. This
function performs the data conversion on both the call to and the return from the library
entry point.

CALL......USING INTEGER(VARNAME-1),
STRING(DISPLAYVAR) GIVING INTEGER(VARNAME-2).

8600 0130-000

Using the DMSII TPS Program Interface

TPS Entry Points in COBOL74

To call TPS entry points, use the standard CALL statement for use with libraries.
Refer to Volume 1 for the syntax of the CALL statement. For detailed information on

" the entry points and the related parameters used with them, refer to the DMSII TPS
Programming Guide.

Example

The following example uses the CALL statement with a TPS entry point. Refer to the
TPS sample programs at the end of this section for more examples of the syntax used to
call the entry points.

PROCESSTRANSACTION.
CALL "PROCESSTRANSACTION "
USING IDNUM, TRIN, TROUT,
RESTARTTRREC
GIVING TPS-RESULT.

Table 5-3 includes the TPS entry points and their parameters.

Table 5-3. TPS Entry Points

Entry Point Parameters

CLOSETRBASE (No parameters)

CREATETRUSER ID-X, IDNUM

HANDLESTATISTICS STATOPTION

LOGOFFTRUSER IDNUM

LOGONTRUSER ID-X, IDNUM

OPENTRBASE OPT, TIMEOUTV

PROCESSTRANSACTION IDNUM, TRIN, TROUT, RESTARTTRREC

PROCESSTRFROMTANK IDNUM, TRIN, RESTARTNUM, RESTARTTR

PROCESSTRNORESTART IDNUM, TRIN, TROUT

PURGETRUSER IDNUM

READTRANSACTION TRIN

RETURNLASTADDRESS FILENUM, BLOCKNUM, OFFSET, IDNUM

RETURNLASTRESPONSE IDNUM, TROUT

RETURNRESTARTINFO IDNUM, TROUT ‘

SEEKTRANSACTION FILENUMBER, BLOCKNUMBER, OFFSETS

SWITCHTRFILE (No parameters)

continued

8600 0130-000 5-23

Using the DMSII TPS Program Interface

Table 5-3. TPS Entry Points (cont.)

Entry Point * Parameters -
TANKTRANSACTION IDNUM, TRIN, RESTARTTR
TANKTRNORESTART IDNUM, TRIN
TRUSERIDSTRING IDSTRING, IDNUM

Using the Update Library

The update library is a collection of user-written transaction processing routines that
serve as an interface between the transaction library and a DMSII database. The
update library is the only user-written module within TPS that contains the database
declaration and all the code that performs data management statements against the
database.

The following paragraphs explain the conventions used to program the update library,
describes methods used to declare transaction Use procedures, and covers methods
used to declare ALGOL integer parameters so that they are passed to an update library
from TPS entry points. The following text also describes the transaction processing
statements that are extensions developed for the TPS program interface.

See Also

For information on TPS entry points, refer to “Using Transaction Library Entry Points”
earlier in this section. .

Update Library Programming Conventions

5-24

Although the update library is user-written, it must conform to conventions established
by TPS so that it can be accessed by the transaction library.

The update library must provide one entry point that makes it accessible to the
transaction library. The name of this entry point is ACCESSDATABASE. In a
COBOL74 program, ACCESSDATABASE must be the program-name defined in the
IDENTIFICATION DIVISION.

The ACCESSDATABASE entry point accepts certain parameters, which are explained in
detail in the DMSII TPS Programming Guide. '

8600 0130-000

Using the DMSII TPS Program Interface

¢ For information on programming the update library, refer to the DMSII TPS
Programming Guide.

¢ For an example of an update library, refer to “TPS Programming Examples” later in
this section.

Declaration of the Transaction Use Procedures

COBOL74 programs intended for the update library can declare as parameters untyped,
parameterless procedures called SAVEINPUTTR and SAVERESPONSTR. To declare
the procedures, you must name them in the USING clause of the PROCEDURE
DIVISION header and declare them as section headers in the DECLARATIVES. You can
use the CALL statement to invoke these procedures. The ability to pass procedures as
parameters is needed because the update library must accept two procedures as input.

General Format

The general format of the section header for a transaction Use procedure is as follows:

section-name SECTION. USE AS [GLOBAL| TRANSACTION PROCEDURE .

Explanation of Format Element

GLOBAL
A transaction record or transaction record array that is declared in the host program can

be declared global in the bound procedure, by using the GLOBAL option. The names of
the procedures must be the same in the bound procedure and in the host program.

See Also

For more information on the USE statement syntax, semantics, and general rules, refer
to Volume 1.

8600 0130-000 : 5-25

Using the DMSII TPS Program Interface

Examples of a Transaction Use Procedure Declaration

The following example shows the section header for the declaration of a transaction Use
procedure: '

PROCEDURE DIVISION USING TR1, TR2.
DECLARATIVES.
TR1 SECTION. USE AS TRANSACTION PROCEDURE.
TR2 SECTION. USE AS TRANSACTION PROCEDURE.
END DECLARATIVES.
PI. CALL TRI1.

CALL TR2.

The following example uses the declaration for a bound procedure:

DECLARATIVES.

TR1 SECTION. USE AS GLOBAL TRANSACTION PROCEDURE.
TR2 SECTION. USE AS GLOBAL TRANSACTION PROCEDURE.
END DECLARATIVES.

Parameter Passing to an Update Library

5-26

For an update library written in COBOL74 to receive integer parameters from '
transaction library entry points (written in ALGOL), the parameters must be declared
in the LINKAGE SECTION. The following are the two methods of declaring the
parameters; also included are examples of the parameters used in the PROCEDURE
DIVISION header.

o Declare the parameters in the LINKAGE SECTION as follows:

77 FUNCTIONFLAG COMP PIC 9(8)
In the PROCEDURE DIVISION, the parameters are used as follows:

PROCEDURE DIVISION USING INTEGER(FUNCTIONFLAG),
e Declare the parameters in the LINKAGE SECTION as follows:

77 BINARYFUNCTIONFLAG BINARY PIC 9(8)
In the PROCEDURE DIVISION, the parameters are used as follows:

PROCEDURE DIVISION USING BINARYFUNCTIONFLAG,

8600 0130-000

Using the DMSII TPS Program Interface

See Also

o For information about the update library, see “Using the Update Library” earlier in
this section.

e For examples of an update library written in COBOL74, refer to “TPS Programming
Examples” later in this section.

Transaction Processing Statements

Generally, you use the DMSII program interface statements for programming the update
library in TPS. There are some extensions to these statements, however, that have been
developed for the TPS program interface. The following extensions are required for the
update library to synchronize TPS recovery with DMSII recovery:

e The TRUPDATE option for the OPEN statement

e Optional extensions to the BEGIN-TRANSACTION and END-TRANSACTION
statements :

e The MID-TRANSACTION statement
See Also

e - For information on other statements used with DMSII and information on handling
exceptions, refer to Section 4, “Using the DMSII Program Interface.”

e For information about exception categories that are specific to the TPS transaction
processing extensions, see the DMSII TPS Programming Guide.

OPEN Statement

The OPEN statement opens a database for subsequent access and specifies the access
mode. It also performs an explicit CREATE statement on the restart data set (RDS).

The TRUPDATE option for the OPEN statement must be used in the update library.

General Format

The general format of the OPEN statement is as follows:

INQUIRY
OPEN [{mm}] data-name-l
imperative-statement-1
[ON EXCEPTION{conditional-statement-l }] .
NEXT SENTENCE

8600 0130-000 » 5-27

Using the DMSII TPS Program Interface

Explanation of Format Elements

INQUIRY
This option enforces read-only access to the database. This option is specified when
no update operations are to be performed on the database. If the INQUIRY option

is specified, the use of the BEGIN-TRANSACTION, MID-TRANSACTION, and
END-TRANSACTION statements is not allowed.

TRUPDATE

This option opens the database for subsequent access.

data-name-1

This format element designafes the name of the database to be opened.

ON EXCEPTION

This optioh handles exceptions. The program returns an exception if the following
statements are used when the database is opened with the INQUIRY option:

ASSIGN | EN D-TRANSACTION BEGIN-TRANSACTION

GENERATE o REMOVE MID-TRANSACTION
DELETE INSERT STORE

The program also returns an exception if the database is already open. If an exception is
returned, the state of the database is unchanged.

See Also

Refer to “Processing DMSII Exceptions” in Section 4, “Using the DMSI Program
Interface,” for information on the ON EXCEPTION option.

BEGIN-TRANSACTION Statement

5-28

The BEGIN-TRANSACTION statement places a program in transaction state. This
statement is used only with audited databases. The statement must be able to pass a
transaction record as well as pass parameters to procedures in the Accessroutines.

8600 0130-000

Using the DMSII TPS Program Interface

General Format

The general format of the BEGIN-TRANSACTION statement is as follows:

BEGIN-TRANSACTION (transaction-record-variable-id)
imperative-statement-1
restart-data-set-name [ON EXCEPTION { conditional-statement-1 }] .
: NEXT SENTENCE

Explanation of Format Elements

transaction-record-variable-id

This identifier is the name of the formal input transaction record variable.

restart-data-set-name

This format element is the name of the RDS. The RDS is declared in the TFL source as
parameters.

ON EXCEPTION

This option handles exceptions. The program returns an exception if the database is
already open. If an exception is returned, the state of the database is unchanged.

See Also

Refer to “Processing DMSII Exceptions” in Section 4, “Using the DMSII Program
Interface,” for information on the ON EXCEPTION option.

MID-TRANSACTION Statement

The MID-TRANSACTION statement causes the compiler to generate calls on the given
procedure immediately before the call on the DMSII procedure in the Accessroutines.
This statement must be able to pass a transaction record as well as present parameters
to procedures in the Accessroutines. The MID-TRANSACTION statement is used only
with audited databases.

8600 0130-000 5-29

Using the DMSII TPS Program Interface

General Format

The general format of the MID-TRANSACTION statement is as follows:

MID-TRANSACTION (transaction-record-variable-id,

saveinputtr-procedure-identifier)
imperative-statement-1

{ ON EXCEPTION {conditional-statement-l}] .
NEXT SENTENCE

Explanation of Format Elements

transaction-record-variable-id

This identifier is the name of the formal transaction record.

saveinputtr-procedure-identifier
This format element is an identifier for the SAVEINPUTTR procedure. SAVEINPUT
is the name of the SAVEINPUTTR formal procedure. SAVEINPUTTR is an untyped

formal procedure with no parameters. The compiler generates a call on a particular
procedure immediately before the call on the DMSII procedure in the Accessroutines.

ON EXCEPTION

This option handles exceptions. The program returns an exception if the database is
already open. If an exception is returned, the state of the database is unchanged.

See Also -

Refer to “Processing DMSII Exceptions” in Section 4, “Using the DMSII Program

Interface,” for information on the ON EXCEPTION option.
END-TRANSACTION Statement

The END-TRANSACTION statement takes a program out of transaction state.

_ This statement must be able to pass a transaction record and present parameters to
procedures in the Accessroutines.

5-30 : : 8600 0130-000

Using the DMSII TPS Program Interface

General Format

The general format of the END-TRANSACTION statement is as follows:

END-TRANSACTION (transaction-record-variable-id,

saveresponsetr-procedure-identifier) restart-data-set-name
imperative-statement-1

[SYNC] [ON EXCEPTION {conditional—statement-l }} .
NEXT SENTENCE

Explanation of Format Elements

transaction-record-variable-id

This identifier is the name of the formal input transaction record.

- saveresponsetr-procedure-identifier
This format element is an identifier for the SAVERESPONSETR procedure.
SAVERESPONSE is the name of the SAVERESPONSETR formal procedure.
SAVERESPONSETR is an untyped formal procedure with no parameters. The compiler

generates a call on a particular procedure immediately before the call on the DMSII
procedure in the Accessroutines.

restart-data-set-name

This format element is the name of the RDS.

SYNC

This option forces a syncpoint.

ON EXCEPTION

This option handles exceptions. The program returns an exception if the database is
already open. If an exception is returned, the state of the database is unchanged.

See Also

Refer to “Processing DMSII Exceptions” in Section 4, “Using the DMSII Program
Interface,” for information on the ON EXCEPTION option.

8600 0130-000 5-31

Using the DMSII TPS Program Interface

TPS Programming Examples

The following two programming examples illustrate the use of COBOL74 in programs for
DMSII TPS. The first example is a complete COBOL74 program with related DASDL
and TFL descriptions, and an update library. The second programming example includes
the declarations for the transaction base and library entry points for a COBOL74
program. :

DMSIHI TPS Complete Programming Example

This first programming example is a simple banking application in which bank accounts
are created and deleted, deposits and withdrawals are made, and account balances are
determined. The example includes the user-supplied DASDL and TFL descriptions,
update library, and COBOL74 program. The update library as well as the user-written
program are written in COBOL74.

DASDL Description

5-32

Example 5-1 shows the DASDL description for the COBOL74 banking transaction
program (Example 5-4).

OPTIONS (AUDIT) ;

PARAMETERS (SYNCPOINT = 18 TRANSACTIONS);

ACCOUNT DATA SET % SPECIFY A DATA SET TO HOLD THE ACCOUNT
(% NUMBERS AND INFO. ASSOCIATED WITH THEM.

ACCOUNT-NUM NUMBER(S) 3
NAME ALPHA(20);
BALANCE REAL(S10,2);

DEPOSIT UNORDERED DATA SET % USED TO KEEP HISTORY OF THE DEPOSITS
(% AND WITHDRAWALS MADE.

TRANDATE REAL;

OLD-BALANCE REAL(S18,2); ,

AMOUNT REAL(S18,2); % NEGATIVE FOR WITHDRAWAL

NEW-BALANCE REAL(S18,2);
)s

)3

ACCOUNT-SET SET OF ACCOUNT

KEY ACCOUNT-NUM;

RDS RESTART DATA SET % REMEMBER: MUST SPECIFY A RESTART DATASET

(
X ALPHA(10);

)s

Example 5-1. DASDL Description for Banking Transaction Program

8600 0130-000

Using the DMSII TPS Program Interface

TFL Description

Example 5-2 shows the TFL description for the banking transaction program in
Example 5-4.

BANKTR TRANSACTION BASE; % FIRST DECLARE THE NAME OF THE TRANSACTION
%

BASE WE ARE ABOUT TO DESCRIBE.
PARAMETERS

(
STATISTICS,
DATABASE = BANKDB ON DISK,
RESTARTDATASET = RDS,
HOSTSYSTEM = SYS456

)s
DEFAULTS % HERE WE SPECIFY DEFAULTS FOR ITEMS OF TRANSACTION
% FORMATS AND FOR JOURNAL CONTROL AND DATA FILES.
(
ALPHA (INITIALVALUE = BLANKS),
BOOLEAN (INITIALVALUE = FALSE),
NUMBER (INITIALVALUE = @),
REAL (INITIALVALUE = @),
CONTROL FILE
(
AREAS = 100,
AREASIZE = 160 BLOCKS,
BLOCKSIZE = 2@ SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE
)s
DATA FILE
(
AREAS = 109,
AREASIZE = 188 BLOCKS,
BLOCKSIZE = 3@ SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE
)
)s
CREATEACCT TRANSACTION FORMAT % THE FOLLOWING FORMATS ARE
(% USED IN THE APPLICATION
ACCTNUM NUMBER(6) ; % PROGRAM AND THE UPDATE
NAME ALPHA(29); % LIBRARY.
);
PURGEACCT TRANSACTION FORMAT
(
ACCTNUM NUMBER(S6) ;
):
DEPOSIT TRANSACTION FORMAT
(

Example 5-2. TFL Description for Banking Transaction Program

8600 0130-000 5-33

Using the DMSII TPS Program Interface

5-34

ACCTNUM NUMBER(S) 3

TRANDATE REAL;

AMOUNT REAL(18,2);
)s

WITHDRAWAL TRANSACTION FORMAT

ACCTNUM NUMBER(6) ;
AMOUNT REAL(19,2);
TRANDATE REAL;

)5

STATUS TRANSACTION FORMAT
(
ACCTNUM NUMBER(6) ;
BALANCE REAL(S19,2);
G GROUP
(A ALPHA(29);
B REAL;);
)s

RESTARTDETANKER TRANSACTION FORMAT % THIS FORMAT ILLUSTRATES POSSIBLE
(- % INFORMATION TO BE KEPT IN A
TANKFILENUM FIELD(14); % RESTART TRANSACTION RECORD.
TANKBLOCKNUM FIELD(32);
TANKOFFSET FIELD(16);

s

MANAGER TRANSACTION SUBBASE % EXAMPLE SUBBASE THAT A MANAGER MIGHT
(% USE. NOTE THAT A GUARDFILE IS ATTACHED
CREATEACCT, % TO IT FOR SECURITY.
PURGEACCT,
DEPOSIT,
WITHDRAWAL,
STATUS,

), ,
GUARDFILE = BANKTR/MANAGER/GUARDFILE;

TELLER TRANSACTION SUBBASE % EXAMPLE SUBBASE THAT A TELLER MIGHT USE
(. _

DEPOSIT,

WITHDRAWAL,

STATUS

)s

TRHISTORY TRANSACTION JOURNAL % THIS IS AN EXAMPLE OF SPECIFYING
CONTROL FILE . % EXPLICIT VALUES FOR THE ATTRIBUTES OF
(% THE TRHISTORY JOURNAL.

AREAS = 100,

AREASIZE = 198 BLOCKS,

Example 5-2. TFL Description for Banking Transaction Program (cont.)

8600 0130-000

Using the DMSH TPS Ptogram Interface

BLOCKSIZE = 2@ SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE

)s
DATA FILE

(
AREAS = 100,
AREASIZE = 2 BLOCKS,
BLOCKSIZE = 3 SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE

)s :

TANK1 TRANSACTION JOURNAL % EXAMPLE OF TANK JOURNAL ATTRIBUTE
%

CONTROL FILE

USERCODE = SAMPLEUSER,
FAMILY = PACK

)s

DATA FILE

(
USERCODE = SAMPLEUSER,
DUPLICATED ON DISK

)3

SPECIFICATION.

Example 5-2. TFL Description for Banking Transaction Program (cont.)

Update Libfary

Example 5-3 shows an update library capable of maintaining database consistency.
Refer to “Using the Update Library” earlier in this section for more information about

programming update libraries.

20P100$SET SHARING = PRIVATE
008200$SET TEMPORARY

090308 IDENTIFICATION DIVISION.
209400 PROGRAM-ID. ACCESSDATABASE.
090500 ENVIRONMENT DIVISION.
200600 DATA DIVISION.

900768 DATA-BASE SECTION.

000800 DB DBASE = BANKDB ALL.
900908 TRANSACTION SECTION.
901908 TB TRB = BANKTR

021100 USING STATIS = STATUS,
2901209 WITHDRAWAL, PURGEACCT,
001309 91 TRIN.

0291400 g1 TROUT.

001500*

001600 WORKING-STORAGE SECTION.
901799 77 FUNCTIONFLAG comp

CREATEACCT, RESTARTDETANKER, DEPOSIT,
SYSTEMTR.

PIC 9(8).

Example 5-3. Update Library for Banking Transaction Program

8600 0130-000

5-35

Using the DMSII TPS Program Interface

5-36

@01808 77 ACCT COMP PIC 9(6).
$01902 77 OLDBAL COMP PIC S9(8)V99.
902000 77 NEWBAL COMP PIC S9(8)V99.
202100*

ﬂgzzag**

002300*

0924060 PROCEDURE DIVISION USING FUNCTIONFLAG,TRIN,TROUT,SAVEINPUT,
092500 SAVERESPONSE.

0902600 DECLARATIVES.

092700 SAVEINPUT SECTION. USE AS TRANSACTION PROCEDURE.

002800 SAVERESPONSE SECTION. USE AS TRANSACTION PROCEDURE.

002900 END DECLARATIVES.

PO3000*
203100 MAIN SECTION.

993200 P1. :

§93300 IF FUNCTIONFLAG EQUAL 1 PERFORM OPENUPDATE ELSE

§03400 IF FUNCTIONFLAG EQUAL 2 PERFORM OPENINQUIRY ELSE

903500 IF FUNCTIONFLAG EQUAL 3 PERFORM UPDATEDB ELSE

203600 IF FUNCTIONFLAG EQUAL 4 PERFORM FORCEABORT ELSE

8037900 IF FUNCTIONFLAG EQUAL 5 PERFORM CLOSEDB.

§93800 UPDATELIB-EXIT,

603900 EXIT PROGRAM.

po4000*
ﬂﬁ41ﬁz**
904200*

204300 OPENUPDATE.
ﬂga4ﬂg************ .
004509 OPEN TRUPDATE DBASE.
004600

204700* /
204800 OPENINQUIRY.

ge49gg Jedededk ke dedekde ek k

0205000 OPEN INQUIRY DBASE.

005100*

005200*

905300 UPDATEDB.

gﬂ54ﬂg*********

0905500 IF TRFORMAT(TRIN) EQUAL TRFORMAT(CREATEACCT) PERFORM MAKEACCT
905600 PERFORM MAKEACCT ELSE

805700 IF TRFORMAT(TRIN) EQUAL TRFORMAT(PURGEACCT) PERFORM ELIMACCT
205800 PERFORM ELIMACCT ELSE

205900 IF TRFORMAT(TRIN) EQUAL TRFORMAT(STATIS)

086002 PERFORM STATUSCHK ELSE

006109 IF TRFORMAT(TRIN) EQUAL TRFORMAT(DEPOSIT)

206200 PERFORM DEPAMNT ELSE

006309 IF TRFORMAT(TRIN) EQUAL TRFORMAT(WITHDRAWAL)

206400 PERFORM WITHAMNT ELSE

296500 DISPLAY "NO UPDATE ROUTINE FOR THE FORMAT PASSED IN" .
206600*

006700*

206800 FORCEABORT.

Example 5-3. Update Library for Banking Transaction Program (cont.)

8600 0130-000

Using the DMSII TPS Program Interface

ggGggg***********

007000 CLOSE DBASE.
997 100*
907200*
907300 CLOSEDB.
Bg74gﬂ********
907568 CLOSE DBASE.
007600*
607700*
907800* This is the update routine for creating 2 new account.
097 9900*
908008 MAKEACCT.
ggslgg*********
908200 CREATE ACCOUNT ON EXCEPTION PERFORM ERR.
908300 MOVE ACCTNUM OF CREATEACCT OF TRIN TO ACCOUNT-NUM.
008400 MOVE NAME OF CREATEACCT OF TRIN TO NAME OF ACCOUNT.
908500 BEGIN-TRANSACTION(TRIN) RDS ON EXCEPTION PERFORM ERR.
008600 MID-TRANSACTION(TRIN,SAVEINPUT) RDS ON EXCEPTION PERFORM ERR.
008700 STORE ACCOUNT ON EXCEPTION PERFORM ERR.
208800*
908900 RETURN INPUT TRANSACTION AS GOOD TRANSACTION RESPONSE RECORD.
099000*
909190 MOVE TRIN TO TROUT.
009200 END-TRANSACTION (TRIN,SAVERESPONSE) RDS ON EXCEPTION PERFORM
009300 ERR.
909400*
@09500* This is the update routine for eliminating an existing account.
909600*
909790 ELIMACCT.
ﬁﬁgSﬂﬁ*********
989900 MOVE ACCTNUM OF PURGEACCT OF TRIN TO ACCT.
910100 LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT ON EXCEPTION PERFORM
910200 ERR. '
010300 BEGIN-TRANSACTION(TRIN) RDS ON EXCEPTION PERFORM ERR.
810400 MID-TRANSACTION(TRIN,SAVEINPUT) RDS ON EXCEPTION PERFORM ERR.
' 910509 DELETE ACCOUNT ON EXCEPTION PERFORM ERR.
919600*
918780* Return same transaction as good transaction response record.
210800*
210908 MOVE TRIN TO TROUT.
211109 END-TRANSACTION(TRIN,SAVERESPONSE) RDS ON EXCEPTION PERFORM
011200 - ERR. '
211300*
$11408* This is an example of an inquiry routine. It returns the balance
911509* of a particular account. '
211600*
911790 STATUSCHK.
allsggk**********
- 911990 MOVE ACCTNUM OF STATIS OF TRIN TO ACCT.
912090 FIND ACCOUNT-SET AT ACCOUNT-NUM = ACCT ON EXCEPTION PERFORM
912100 ERR.

Example 5-3. Update Library for Banking Transaction Program (cont.)

8600 0130-000 , " ’ 5-37

Using the DMSII TPS Program Interface

912290 MOVE TRIN TO TROUT.

912300 MOVE BALANCE OF ACCOUNT TO BALANCE OF STATIS OF TROUT.
912400*

2125008* This is the update routine to place deposits into accounts.
912600*

012700 DEPAMNT,

alzagg******** .

912900 MOVE ACCTNUM OF DEPOSIT OF TRIN TO ACCT.

013000 LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT ON EXCEPTION PERFORM
913109 ERR.

913200 MOVE BALANCE OF ACCOUNT TO OLDBAL.

913300 ADD OLDBAL, AMOUNT OF DEPOSIT OF TRIN GIVING NEWBAL.
913400 CREATE DEPOSIT OF ACCOUNT ON EXCEPTION PERFORM ERR.

013500 MOVE TRANDATE OF DEPOSIT OF TRIN TO TRANDATE OF DEPOSIT OF
813600 ACCOUNT.

913700 MOVE AMOUNT OF DEPOSIT OF TRIN TO

913800 AMOUNT OF DEPOSIT OF ACCOUNT.

913999 MOVE OLDBAL TO OLD-BALANCE.

914000 MOVE NEWBAL TO NEW-BALANCE.

914190 MOVE NEWBAL TO BALANCE OF ACCOUNT.

214200 BEGIN-TRANSACTION(TRIN) RDS ON EXCEPTION PERFORM ERR.
9143009 MID-TRANSACTION(TRIN,SAVEINPUT) RDS ON EXCEPTION PERFORM ERR.
914400 STORE ACCOUNT ON EXCEPTION PERFORM ERR. _

914500 STORE DEPOSIT OF ACCOUNT ON EXCEPTION PERFORM ERR.

914600 CREATE STATIS IN TROUT.

814700 MOVE NEWBAL TO BALANCE OF STATIS OF TROUT.

914800 MOVE ACCTNUM OF DEPOSIT OF TRIN TO

214900 ACCTNUM OF STATIS OF TROUT.

215000 END-TRANSACTION(TRIN,SAVERESPONSE) RDS ON EXCEPTION PERFORM
915100 ERR. :

015200*

£15300* This is the update routine that performs withdrawals against
915400* accounts.

9155009*

0£15690 WITHAMNT.

g15700*********

915800 MOVE ACCTNUM OF WITHDRAWAL OF TRIN TO ACCT. :
915900 LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT ON EXCEPTION PERFO
216090 ERR.

9216109 MOVE BALANCE OF ACCOUNT TO OLDBAL.

916209 SUBTRACT AMOUNT OF WITHDRAWAL OF TRIN FROM OLDBAL GIVING
916309 NEWBAL.

916400 CREATE DEPOSIT OF ACCOUNT ON EXCEPTION PERFORM ERR.

916500 MOVE TRANDATE OF WITHDRAWAL OF TRIN TO TRANDATE OF DEPOSIT OF
216600 ACCOUNT.

916799 MOVE AMOUNT OF WITHDRAWAL OF TRIN TO AMOUNT OF DEPOSIT OF
216800 ACCOUNT.

9169920 MOVE OLDBAL TO OLD-BALANCE.

217090 MOVE NEWBAL TO NEW-BALANCE.

917109 MOVE NEWBAL TO BALANCE OF ACCOUNT.

917209 BEGIN-TRANSACTION(TRIN) RDS ON EXCEPTION PERFORM ERR.

Example 5-3. Update Library for Banking Transaction Program (cont.)

5-38 8600 0130-000

Using the DMSII TPS Program Interface

017300 MID-TRANSACTION(TRIN,SAVEINPUT) RDS ON EXCEPTION PERFORM ERR.
§17408 © STORE ACCOUNT ON EXCEPTION PERFORM ERR.

617500 STORE DEPOSIT OF ACCOUNT ON EXCEPTION PERFORM ERR.

017690 CREATE STATIS IN TROUT.

017700 MOVE NEWBAL TO BALANCE OF STATIS OF TROUT.

217800 MOVE ACCTNUM OF DEPOSIT OF TRIN TO ACCTNUM OF STATIS OF TROUT.
917900 END-TRANSACTION(TRIN,SAVERESPONSE) RDS ON EXCEPTION PERFORM
918000 ERR.

#18199*

$18200* Report any exceptions that were detected.

918300*

218400 ERR.

§18500*****

2186900 DISPLAY “UPDATE RESULT:".

9187900 DISPLAY "CATEGORY, ERRORTYPE STRUCTURE " DMSTATUS (DMCATEGORY)
218800 . w_ % DMSTATUS(DMERRORTYPE) ", " DMSTATUS (DMSTRUCTURE) .
18960 GO TO UPDATELIB-EXIT.

Example 5-3. Update Library for Banking Transaction Program (cont.)

COBOL74 Banking Transaction Program

Example 5-4 shows how TPS can be used for a number of simple banking transactions.
The DASDL and TFL descriptions and the update library are provided in Examples 5-1
through 5-3.

0881083$SET FREE

990200 IDENTIFICATION DIVISION.
-PP3300 ENVIRONMENT DIVISION.
900406 INPUT-OUTPUT SECTION.
pop500 FILE-CONTROL.

2000600 SELECT REMOTEFILE

000700 ASSIGN TO REMOTE.
290800 SELECT PRINTFILE
0900990 ASSIGN TO PRINTER.

261088 I-0-CONTROL.

201108 DATA DIVISION.

9061206 FILE SECTION.

901300 FD REMOTEFILE

0901400 RECORD CONTAINS 72 CHARACTERS.

201500 91 RMT-REC PIC X(72).
991600 @1 RMT-FIELDS.

291799 @3 RMT-1 PIC X(19).
001800 @3 RMT-2 PIC X(18).
001900 @83 RMT-3 PIC X(19).
002000 g3 RMT-4 PIC X(10).
002109 23 RMT-5 PIC X(10).
002200 @3 RMT-6 PIC X(10).
2902300 @3 RMT-7 PIC X(12).

202400 FD PRINTFILE
0902500 RECORD CONTAINS 132 CHARACTERS.

Example 5-4. Banking Transaction Program .

8600 0130-000 5-39

Using the DMSHI TPS Program Interface

9092609 1 PRINT-REC ‘ PIC X{132).

0902700*
B
902900*

993900* Declare the transaction base to be used, and assign an internal
$93100* name to the status format.

993200*

ﬂﬁ3 3“@**
903400*

903508 TRANSACTION SECTION.

993680 TB TRB = BANKTR

993700 USING STATIS=STATUS, CREATEACCT, RESTARTDETANKER,
0903800 DEPOSIT, WITHDRAWAL, PURGEACCT, SYSTEMTR.
993900 @1 TRIN.

2040990 61 TROUT.

904108 @1 LASTINPUT.

$04200 @1 RESTARTTRREC.

904300 @1 LASTRESPONSE.

004400*

994509 WORKING-STORAGE SECTION.

094620 77 USER-N PIC 999 VALUE 4.

004790 77 USER-ID PIC X(7).

P94805 91 JOBPARAMCOMP COMP WITH LOWER-BOUNDS.

204900 P93 FILLER PIC 9(11) OCCURS 24.

05009 91 JOBPARAM REDEFINES JOBPARAMCOMP.

9051008 93 JOBPARAMCHAR PIC X OCCURS 99.

2052008 77 IDNUM COMP PIC 9(8).
005300 77 N COMP PIC 9(8).
p05490 77 X COMP PIC 9(8).
p@5500 77 OPT COMP PIC 9(8).
085680 77 TANKING COMP PIC 9(8).
905708 77 ACCT PIC X(6).
P@5800 77 TPS-RESULT COMP PIC 9(8).
995900 77 TOTAL COMP PIC 9(6).
006000 77 TIMEOUTV COMP PIC 9(8).
§06106 77 USER-NAME PIC X(20).
906200 77 OPT-X PIC X(1).
906300 77 AMT PIC X(6).
996400 77 FILENUMBER COMP PIC 9(4).
P06500 77 BLOCKNUMBER COMP PIC 9(8).
906680 77 OFFSETS COMP PIC 9(8).
006708 77 TEMP PIC X(4).
206808 77 1D-X PIC X(17).
806900 77 STATOPTION PIC 9(4).

997000 91 SP.

907100 @3 SPCHAR PIC X OCCURS 80.

907200 @1 LIBPARAM PIC LX(128) DEPENDING ON N.

097300*

L L I T T L
097500*

007680 PROCEDURE DIVISION.

Example 5-4. Banking Transaction Program (cont.)

5-40 ' 8600 0130-000

Using the DMSII TPS Program Interface

0907708 MAIN SECTION.

087800 P1.

007900
0908000
208109
0908200*

OPEN I-O REMOTEFILE.
OPEN OUTPUT PRINTFILE.
MOVE 3 TO TANKING.

008300****

008400*
608500*
208690*
908700*

nnn

Set the LIBPARAMETER before the first call on the library
entry point.

2P88GP****

208900*
099000
209180
299200
009300
209409
009500*
209620
009700
299800
009900
010000
910190
010200
210300
910400
018599
910690*

ARKFTAAEAEAXEXEARARAXAREARALAARRAXXAEXAAARAAXERXXRRARXXXARARARAARAAARZZTET

MOVE "JOURNAL NAME?" TO RMT-REC.

PERFORM WRITE-RMT.

READ REMOTEFILE INTO USER-NAME ; INVALID GO TO ERR.

CHANGE ATTRIBUTE LIBPARAMETER OF "BANKTR/CODE/HOSTLIB"
TO USER-NAME.

MOVE "WHAT DO YOU WANT TO DO?" TO RMT-REC.

PERFORM WRITE-RMT.

MOVE “CHOICE (1=UPDATE, 2=INQUIRY, 3=TANK, 4=READ)"
TO RMT-REC.

PERFORM WRITE-RMT.

READ REMOTEFILE INTO OPT-X ; INVALID KEY GO TO EXT.

MOVE OPT-X TO OPT.

MOVE OPT TO RMT-REC. PERFORM WRITE-RMT.

PERFORM OPENTRBASE.

IF TPS-RESULT > @ GO TO ERR.

010709***
010800*

@10900* Create a restart transaction to be written to the TRHISTORY
p11000* file along with the input transaction. Note that values are
#11180* not assigned to the items of this record. Normally the values
§11209* are assigned; however, for readability the code is not shown
911399* in this example.

011400*

911500****

911608*
011790
211809
211929
08129000
012190
0912200
912309
912409
812500*

nnnnnnnnnnnnnn ARAAARXKARARXARARELXEARKEAEEREAXEEAXAXXAXAXRRARXARRARARARRRRRR

CREATE RESTARTDETANKER IN RESTARTTRREC.

MOVE "USER ID ? (X17)" TO RMT-REC.

PERFORM WRITE-RMT.

READ REMOTEFILE INTO ID-X ; INVALID KEY GO TO EXT.
PERFORM LOGONTRUSER.

IF TPS-RESULT > @ GO TO ERR.

MOVE IDNUM TO RMT-2.

PERFORM WRITE-RMT.

912600 LOOP.

2612709

8600 0130-000

MOVE "FUNCTION NAME (OR HELP)" TO RMT-REC.

Example 5-4. Banking Transaction Program (cont.)

5-41

Using the DMSII TPS Program Interface

212800 PERFORM WRITE-RMT.
012990 READ REMOTEFILE INTO SP ; INVALID KEY GO TO EXT.

913000 IF SP = "CREATEUSER" PERFORM CREATEUSERP ELSE
913100 IF SP = "PURGEUSER" PERFORM PURGEUSERP ELSE
913200 IF SP = "CREATE" PERFORM CREATEP ELSE
213300 IF SP = “"PURGE" PERFORM PURGEP ELSE
213400 IF SP = "DEPOSIT" PERFORM DEPOSITP ELSE
913500 IF SP = "WITHDRAWAL" PERFORM WITHDRAWLP ELSE
213600 IF sp = "QuUIT" PERFORM QUITP ELSE
913700 IF SP = "STAT" PERFORM STATUSP ELSE
213800 IF SP = "NEWUSER" PERFORM NEWUSERP ELSE
213900 IF SP = "REOPEN" PERFORM REOPENP ELSE
214900 IF SP = “SEEK" PERFORM SEEKP ELSE
914100 IF SP = "R" : PERFORM READP ELSE
014200 IF SP = "HELP" PERFORM HELPP ELSE
014309 IF SP = "GETLAST" PERFORM GETLASTP THRU GETLASTP-EXIT

914400 ELSE
214500 IF SP = "Sy" PERFORM SWITCHP ELSE
214600 IF SP = "STAT" PERFORM STATISTICSP ELSE

914709 DISPLAY "DID NOT RECOGNIZE FUNCTION NAME".
914800 GO TO LOOP.

214900 EXT.

215000 STOP RUN. :

g15 1gﬂ**
015200 CREATEP.

01 53”0*********

215400 MOVE "FUNCTION IS CREATE" TO RMT-REC.
915500 PERFORM WRITE-RMT.

2915600 PERFORM GETACCT.

0915700 MOVE "CUSTOMER NAME? (X17) " TO RMT-REC.
215800 PERFORM WRITE-RMT.

215900 READ REMOTEFILE INTO USER-NAME ; INVALID KEY GO TO EXT .
216000 CREATE CREATEACCT IN TRIN.

216100 MOVE ACCT TO ACCTNUM OF CREATEACCT OF TRIN.
216200 MOVE USER-NAME TO NAME OF CREATEACCT OF TRIN.
016300 PERFORM PROCESSTR THRU PROCESSTR-EXIT.
216400*

916508 PURGEP.

Elssgﬂ********

216700 MOVE "FUNCTION IS PURGE" TO RMT-REC.
216800 PERFORM WRITE-RMT.

916900 PERFORM GETACCT.

017000 CREATE PURGEACCT IN TRIN.

917160 . MOVE ACCT TO ACCTNUM OF PURGEACCT OF TRIN.
817200 PERFORM PROCESSTR THRU PROCESSTR-EXIT.
817300* :

217408 STATUSP.

g175zﬂ*********

217600 MOVE "FUNCTION IS STATUS" TO RMT~REC.
0177090 PERFORM WRITE-RMT.

917809 PERFORM GETACCT.

Example 5-4. Banking Transaction Program (cont.)

5-42 : 8600 0130-000

Using the DMSII TPS Program Interface

2917900 CREATE STATIS IN TRIN. v

918000 MOVE ACCT TO ACCTNUM OF STATIS OF TRIN.

018109 PERFORM PROCESSTR THRU PROCESSTR-EXIT.

918200*

$18280* If there is no tanking, display the status of an account.
918300* :
918409 IF OPT NOT EQUAL TANKING

918500 PERFORM DISPLAYSTATUS.

918600*

918700 DEPOSITP.

glesgg***********

618909 MOVE “FUNCTION IS DEPOSIT" TO RMT-REC.

919009 PERFORM WRITE-RMT.

919100 PERFORM GETACCT.

219200 MOVE "AMOUNT OF DEPOSIT? (NNNNNN) * TO RMT-REC.
619300 PERFORM WRITE-RMT. '

919400 READ REMOTEFILE INTO AMT ; INVALID KEY GO TO EXT .
919500 CREATE DEPOSIT IN.TRIN.

919600 MOVE ACCT TO ACCTNUM OF DEPOSIT OF TRIN.

919708 MOVE TIME(1) TO TRANDATE OF DEPOSIT OF TRIN.

£19890 MOVE AMT TO AMOUNT OF DEPOSIT OF TRIN.

919900 PERFORM PROCESSTR THRU PROCESSTR-EXIT.

020000* :

§20108* If there is no tanking, display the status of an account.
920100*

- D20200 IF OPT NOT EQUAL TANKING

020300 PERFORM DISPLAYSTATUS.

020490*

9203500 WITHDRAWLP.

BPOPG**F*x*rxx KKK

0920799 MOVE “FUNCTION IS WITHDRAWAL" TO RMT-REC.

920800 PERFORM WRITE-RMT.

920990 PERFORM GETACCT. :

0210900 MOVE "AMOUNT OF WITHDRAWAL? (NNNNNN) " TO RMT-REC.
921100 PERFORM WRITE-RMT.

921200 READ REMOTEFILE INTO AMT ; INVALID KEY GO TO EXT .
921300 CREATE WITHDRAWAL IN TRIN.

921400 MOVE ACCT TO ACCTNUM OF WITHDRAWAL OF TRIN.

921500 MOVE AMT TO AMOUNT OF WITHDRAWAL OF TRIN.

921600 MOVE TIME(1) TO TRANDATE OF WITHDRAWAL OF TRIN.
921706 PERFORM PROCESSTR THRU PROCESSTR-EXIT.

921800*

#21998* If there is no tanking, display the status of an account.
922000*

622100 IF OPT NOT EQUAL TANKING

922200 PERFORM DISPLAYSTATUS.

922309*

022490 NEWUSERP.

azzsgg***********

0922600, MOVE "FUNCTION IS NEW USER" TO RMT-REC.

922700 PERFORM WRITE-RMT.

Example 5-4. Banking Transaction Program (cont.)

8600 0130-000

Using the DMSII TPS Program Interface

022800 MOVE "USER ID ? (X17) “ TO RMT-REC.
0622900 PERFORM WRITE-~RMT.

0823000 READ REMOTEFILE INTO ID-X ; INVALID KEY GO TO EXT.

623100 PERFORM LOGONTRUSER.

0923200 IF TPS-RESULT > @ GO TO ERR.

923300 MOVE "USER# =" TO RMT-1.

923400 MOVE IDNUM TO RMT-2.

923500 PERFORM WRITE-RMT.

023620*

023700 REOPENP.

6238gg*********

023909 MOVE "FUNCTION IS REOPEN" TO RMT-REC.
924900 PERFORM WRITE-RMT.

924100 PERFORM CLOSETRBASE.

824200 IF TPS-RESULT > @ GO TO ERR.

0624300 MOVE "WHAT DO YOU WANT TO DO?" TO RMT-REC.
924400 PERFORM WRITE-RMT.

024500 MOVE “"CHOICE (1=UPDATE,2=INQ,3=TANK,4=READ)" TO RMT-REC.

924600 PERFORM WRITE-RMT.

924700 READ REMOTEFILE INTO OPT-X ; INVALID KEY GO TO EXT .

024800 MOVE OPT-X TO OPT.

024900 PERFORM OPENTRBASE.

025000 IF TPS-RESULT > @ GO TO ERR.

925180*

925200 SEEKP.

gzssgg******** .

925400 MOVE "FUNCTION IS SEEK" TO RMT-REC.
825500 PERFORM WRITE-RMT.

025600 MOVE "ENTER FILENUM (NNNN) * TO RMT-REC.
025700 PERFORM WRITE-RMT.

925800 READ REMOTEFILE INTO TEMP s INVALID KEY GO TO EXT .

0625900 MOVE TEMP TO FILENUMBER.
0826000 MOVE "ENTER BLOCK (NNNN) " TO RMT-REC.
926100 PERFORM WRITE-RMT.

026200 READ REMOTEFILE INTO TEMP s INVALID KEY GO TO EXT .

026300 MOVE TEMP TO BLOCKNUMBER.
026400 MOVE "ENTER OFFSET (NNNN) " TO RMT-REC.
926500 PERFORM WRITE-RMT.

226600 READ REMOTEFILE INTO TEMP s INVALID KEY GO TO EXT .

026700 MOVE TEMP TO OFFSETS.

226800 PERFORM SEEKTRANSACTION.
926990 IF TPS-RESULT > @ GO TO ERR.
027000

0627120 READP.

g27zgg********

927300 MOVE “FUNCTION IS READ" TO RMT-REC.
027409 PERFORM WRITE-RMT.

0827500 PERFORM READTRANSACTION.
027606 IF TPS-RESULT > @ GO TO ERR.
927700 MOVE "F/B/O =" TO RMT-1.
927809 MOVE TRFILENUM(TRIN) TO RMT-2.

Example 5-4. Banking Transaction Program (cont.)

8600 0130-000

Using the DMSII TPS Program Interface

927900
028000
928109
028200
0928309

028400*

MOVE TRBLOCKNUM(TRIN) TO RMT-3.
MOVE TROFFSET(TRIN) TO RMT-4.
MOVE TRFORMAT(TRIN) TO RMT-5.
MOVE TRSUBFORMAT(TRIN) TO RMT-6.
PERFORM WRITE~RMT.

928509 CREATEUSERP.

a286g0**************

928700
228800
928900
029009
929109
829200
2929329
929490
929500
929690
9297900
929800

g29900*

MOVE "FUNCTION IS CREATEUSER" TO RMT-REC.
PERFORM WRITE-RMT.

MOVE “USER ID ? (X17) " TO RMT-REC.
PERFORM WRITE-RMT.

READ REMOTEFILE INTO ID-X ; INVALID KEY GO TO EXT.
PERFORM CREATETRUSER.

IF TPS-RESULT > @ GO TO ERR.

PERFORM LOGONTRUSER.

IF TPS-RESULT > @ GO TO ERR.

MOVE "USER# =" TO.RMT-1.

MOVE IDNUM TO RMT-2.

" PERFORM WRITE-RMT.

930009 PURGEUSERP.

g3g1gg************

930200 MOVE "FUNCTION IS PURGE USER" TO RMT-REC.
930308 PERFORM WRITE~RMT.

930400 PERFORM PURGETRUSER.

‘930500 IF TPS-RESULT > § GO TO ERR.
930600*

936708 QUITP.

ﬁ36860********

930900 MOVE "FUNCTION IS QUIT" TO RMT-REC.
931000 PERFORM WRITE-RMT.

931100 PERFORM CLOSETRBASE.

931209 GO TO EXT.

231300* ‘

931480 SWITCHP.

gs 1 Sga*********

931600 MOVE "FUNCTION IS SWITCH" TO RMT-REC.
931790 PERFORM WRITE-RMT.

931809 PERFORM SWITCHTRFILE.

931900 IF TPS-RESULT > @ GO TO ERR.

932000*

2321068 STATISTICSP.

@32200** kR kkkhkkhxk

232300
832499
232500
932600
232709
232800
632909

8600 0130-000

MOVE "FUNCTION IS STATISTICS" TO RMT-REC.
PERFORM WRITE-RMT.

MOVE "WHAT DO YOU WANT TO DO?" TO RMT-REC.
PERFORM WRITE-RMT.

MOVE “CHOICE(1=PRINT & RESET, 2=PRINT, 3=RESET)"
TO RMT-REC.

PERFORM WRITE-RMT.

Example 5-4. Banking Transaction Program (cont.)

Using the DMSII TPS Program Interface

933000 READ REMOTEFILE INTO TEMP; INVALID KEY GO TO

933109 EXT.

033200 MOVE TEMP TO STATOPTION.

9333090 PERFORM HANDLESTATISTICS.

933409 IF TPS RESULT > @ GO TO ERR.

0933500*

933608 HELPP.

a33 7”6********

0933809 MOVE “FUNCTIONS : TEST,CREATE,PURGE,DEPOSIT" TO RMT-REC.
933900 PERFORM WRITE-RMT.

934900 MOVE " WITHDRAWAL,QUIT,STATUS ,NEWUSER" TO RMT-REC.
934100 PERFORM WRITE-RMT.

934200 MOVE " 'REOPEN,SEEK,READ,GETLAST" TO RMT-REC.
034300 PERFORM WRITE-RMT.

934400 MOvVE " CREATEUSER,PURGEUSER,SWITCH" TO RMT-REC.
934500 PERFORM WRITE-RMT.

0934609 MOVE "STATISTICS,HELP." TO RMT-REC.
934700 PERFORM WRITE-RMT.

834800*

034909 ERR.

G35009%*****

935100 MOVE "RESULT =" TO RMT-1.

935200 MOVE. TPS-RESULT TO RMT-2.

935300 PERFORM WRITE=-RMT.

935400 GO TO LOOP..

@35500*

935600 WRITE-RMT.

03 5 7”0***********

935800 WRITE RMT-REC.

935900 WRITE PRINT-REC FROM RMT-REC.

0836000 MOVE SPACES TO RMT-REC.

236100*

036209 PROCESSTR.

g363gz***********

936400 IF OPT NOT EQUAL TANKING GO TO PROCESSTRANS.
936590 PERFORM TANKTRNORESTART.

936600 IF TPS-RESULT > @ GO TO ERR.

936700 GO TO PROCESSTR-EXIT.

936800 PROCESSTRANS.

936900 PERFORM PROCESSTRANSACTION.

0937009 IF TPS-RESULT > @ GO TO ERR.

937188 PROCESSTR-EXIT.

937200*

937309 GETACCT.

637 4””*********

837500 MOVE "ACCOUNT NUMBER ? (NNNNNN) “ TO RMT-REC.
28376008 PERFORM WRITE-RMT.

837790 READ REMOTEFILE INTO ACCT ; INVALID KEY GO TO EXT.
93780p*

937900 GETLASTP.

D38PPPR** kxR hFkk
Example 5-4. Banking Transaction Program »(cont.)

5-46 ' 8600 0130-000

Using the DMSII TPS Program Interface

038109 IF OPT NOT EQUAL TANKING GO TO GETLASTRESTRTREC.
238200 PERFORM RETURNRESTARTINFO.

938390 IF TPS-RESULT > @ GO TO ERR.

038400 MOVE "LAST RESTART (FILE,BLK,OFFSET,FMT):" TO RMT-REC.
038500 PERFORM WRITE-RMT.

938690 MOVE TRFILENUM(TROUT) TO RMT-2.

638700 MOVE TRBLOCKNUM{TROUT) TO RMT-3.

938800 MOVE TROFFSET(TROUT) TO RMT-9.

938909 MOVE TRFORMAT(TROUT) TO RMT-5.

039000 PERFORM WRITE-RMT.

939100 GO TO GETLASTP-EXIT.

939200 GETLASTRESTRTREC.

639300 PERFORM RETURNRESTARTINFO.

839400 IF TPS-RESULT > & GO TO ERR.

939599 MOVE "LAST RESTART (FILE,BLK,OFFSET,FMT):" TO RMT-REC.
639600 PERFORM WRITE-RMT.

939790 MOVE TRFILENUM(TROUT) TO RMT-2.

639800 MOVE TRBLOCKNUM(TROUT) TO RMT-3.

239990 MOVE TROFFSET(TROUT) TO RMT-4.

940000 MOVE TRFORMAT{TROUT) TO RMT-5.

040109 PERFORM WRITE-RMT.

240200*

040309 PERFORM RETURNLASTRESPONSE.

040400 MOVE "LAST RESPONSE(FILE,BLK,OFFSET,FMT)" TO RMT-REC.
049500 PERFORM WRITE-RMT.

040600 MOVE TRFILENUM(TROUT) TO RMT-2.

940700 MOVE TRBLOCKNUM(TROUT) TO RMT-3.

940800 MOVE TROFFSET(TROUT) TO RMT-4.

949900 MOVE TRFORMAT(TROUT) TO RMT-5.

241000 PERFORM WRITE-RMT.

941190 GETLASTP-EXIT.

941200*

941300 DISPLAYSTATUS.

Z4 14gg*************~k*

841500 IF TRFORMAT (TROUT) NOT EQUAL TRFORMAT(STATIS) GO TO ERR.
941690 MOVE "ACCOUNT # " TO RMT-1.

941799 MOVE ACCTNUM OF STATIS OF TROUT TO RMT-2.

941809 MOVE "CUR BAL =" TO RMT-3.

0419980 MOVE BALANCE OF STATIS OF TROUT TO TOTAL.

242000 MOVE TOTAL TO RMI-3.

942190 PERFORM WRITE-RMT.

942200*

D423 **rrRxhkdk kI KKk AR baekedaiab il iaiioliaiaiaialaiainiaiaiaiaininiaiaiale lahainininieiaialaialaladalole
942400*

@42500* The following are the library entry point calls.
842600* '

[LV St b b bbb i i ioiabiaiadaialuloiaisininiaiainiaininiaiolaioieisiaiaiatnininiaiaisiaiaialalolale
0842800*

942920 CREATETRUSER.

943000 CALL "CREATETRUSER OF BANKTR/CODE/HOSTLIB"
943109 USING ID-X , IDNUM

Example 5-4. Banking Transaction Program (cont.)

8600 0130-000 5-47

Using the DMSII TPS Program Interface

243200 GIVING TPS-RESULT.
§43300*

§43490 PURGETRUSER.

p42500 CALL "PURGETRUSER OF BANKTR/CODE/HOSTLIB"
942600 USING IDNUM

842700 GIVING TPS-RESULT.

p42800*

042908 LOGONTRUSER.

843000 CALL "LOGONTRUSER OF BANKTR/CODE/HOSTLIB"
243100 USING ID-X, IDNUM ‘

843200 GIVING TPS-RESULT.

p43300* ‘

P43409 LOGOFFTRUSER.

243500 CALL "LOGOFFTRUSER OF BANKTR/CODE/HOSTLIB"
943600 USING IDNUM .

243790 GIVING TPS-RESULT.

243800*

943900 RETURNRESTARTINFO.
944000 CALL "RETURNRESTARTINFO OF BANKTR/CODE/HOSTLIB"

044100 USING IDNUM, TROUT
044200 GIVING TPS~-RESULT.
244300*

044400 RETURNLASTRESPONSE.
044500 CALL "RETURNLASTRESPONSE OF BANKTR/CODE/HOSTLIB"

2944699 USING IDNUM, TROUT

044700 GIVING TPS-RESULT.

244800*

044990 TANKTRNORESTART.

245000 CALL "TANKTRNORESTART OF BANKTR/CODE/HOSTLIB"
945199 USING IDNUM, TRIN

945200 GIVING TPS-RESULT.

045300* '

045400 PROCESSTRANSACTION.

945500 CALL "PROCESSTRANSACTION OF BANKTR/CODE/HOSTLIB"
945600 USING IDNUM, TRIN, TROUT, RESTARTTRREC

0845700 GIVING TPS-RESULT.

945800*

0945900 OPENTRBASE.

046000 CALL "OPENTRBASE OF BANKTR/CODE/HOSTLIB"
246129 USING OPT, TIMEOUTV

946200 GIVING TPS~-RESULT.

946300*

046400 CLOSETRBASE.

046500 CALL "CLOSETRBASE OF BANKTR/CODE/HOSTLIB"
0946600 GIVING TPS-RESULT.

0946700*

948000 SEEKTRANSACTION.

948100 CALL "SEEKTRANSACTION OF BANKTR/CODE/HOSTLIB"
0948200 USING FILENUMBER, BLOCKNUMBER, OFFSETS

248300 GIVING TPS-RESULT.

048400*

Example 5-4. Banking Transaction Program (cont.)

8600 0130-000

Using the DMSII TPS Program Interface

248500 READTRANSACTION.

2486008 CALL "READTRANSACTION OF BANKTR/CODE/HOSTLIB"
048700 USING TRIN

948800 GIVING TPS-RESULT.

048900*

049009 SWITCHTRFILE.

2949108 CALL “SWITCHTRFILE OF BANKTR/CODE/HOSTLIB"
049208 GIVING TPS-RESULT.

0649300*

949400 HANDLESTATISTICS.

949500 CALL "HANDLESTATISTICS OF BANKTR/CODE/HOSTLIB"
949600 USING STATOPTION

949709 GIVING TPS-RESULT.

Example 5-4. Banking Transaction Program (cont.)

Transaction Base and Entry Points for a COBOL74 Programming
Example '

Exanqﬂe5—5showmluwvthetnmumcﬁonlumeamdlﬂnamyemtqrpohnsarededanml For
information about calling the entry points in COBOL74, see “Using Transaction Library
Entry Points” earlier in this section. For detailed information on the library entry points,
refer to the DMSII TPS Programming Guide.

900160 IDENTIFICATION DIVISION.

909200 ENVIRONMENT DIVISION.

000300 .

000400 .

000500 .

009600 DATA DIVISION.

900700 FILE SECTION.

000800 .

000900 .

001099 .

901160 DATA-BASE SECTION.

991200 TRANSACTION SECTION.

901300*

901490* Specify the transaction record format names to be used.
001500*

901680 TB TRB = BANKTR

001700 USING STATIS=STATUS, CREATEACCT, PURGEACCT, DEPOSIT,

001800 WITHDRAWAL, CHANGEACCT, STATEMENT, TEST,
001900 RESTARTDETANKER '

002000 .

002100*

902200* Specify the transaction record variables.
202309*

002400 91 TRIN.
002509 61 TROUT.
02600 91 LASTINPUT.

Example 5-5. Declaring the Transaction Base and Entry Points

8600 0130-000 549

Using the DMSII TPS Program Interface

5-50

902796 @1 LASTRESPONSE.

902800 WORKING-STORAGE SECTION.

002900 .

0930090 .

293100*

GB32GP*RF T AR RA KK RERKERIRREERREEEERREREERIIRIRRRRRRARRRAREERERARREEIRAR
903309 PROCEDURE DIVISION.

903490 MAIN SECTION.

9935090 .

903600 .

003708 .

9093808 STOP RUN.

GO3GPGH* A AKX RRRRRAERRRRIRIEEIEEIRERRKERKKREIRRARRARRIRRRKRRRIARRRRRRRNK
0294000* ‘
904190 CREATETRUSER.

204200 CALL “CREATETRUSER OF BANKTR/CODE/HOSTLIB"
0904300 USING ID-X , IDNUM ‘
204420 GIVING TPS-RESULT.

0904590*

09046006 PURGETRUSER.

004700 CALL "PURGETRUSER OF BANKTR/CODE/HOSTLIB"
004800 USING ID-X

004909 GIVING TPS~-RESULT.

095009*

905180 LOGONTRUSER.

205200 CALL "LOGONTRUSER OF BANKTR/CODE/HOSTLIB"
905309 USING ID-X, IDNUM

995400 GIVING TPS-RESULT.

905500*

995609 LOGOFFTRUSER.

005700 CALL “LOGOFFTRUSER OF BANKTR/CODE/HOSTLIB"
005800 USING IDNUM

2095909 GIVING TPS-RESULT.

056000*

9961080 RETURNRESTARTINFO.
006209 CALL "RETURNRESTARTINFO OF BANKTR/CODE/HOSTLIB"

006300 USING IDNUM, TROUT
206400 GIVING TPS-RESULT.
206500*

006600 RETURNLASTRESPONSE.
206709 CALL "RETURNLASTRESPONSE OF BANKTR/CODE/HOSTLIB"

0206800 USING IDNUM, TROUT

206929 GIVING TPS-RESULT.

097000*

8971060 TANKTRNORESTART.

097200 CALL "TANKTRNORESTART OF BANKTR/CODE/HOSTLIB"
007300 USING IDNUM, TRIN :
007400 GIVING TPS-RESULT.

297500*

907600 PROCESSTRNORESTART.
207700 CALL "PROCESSTRNORESTART OF BANKTR/CODE/HOSTLIB"

Example 5-5. Declaring the Transaction Base and Entry Points (cont.)

8600 0130-000

Using the DMSII TPS Program Interface

007800
0079090

go8og0*

USING IDNUM, TRIN, TROUT
GIVING TPS-RESULT.

908108 OPENTRBASE.

008200
008300
008400

208500*

CALL "OPENTRBASE OF BANKTR/CODE/HOSTLIB"
USING OPT, TIMEOUTV
GIVING TPS-RESULT.

PP8600 CLOSETRBASE.

008700
208800

008900*

CALL "CLOSETRBASE OF BANKTR/CODE/HOSTLIB"
GIVING TPS-RESULT.

209000 SEEKTRANSACTION.

0999190
209200
299300

299400*

CALL "SEEKTRANSACTION OF BANKTR/CODE/HOSTLIB"
USING FILENUMBER, BLOCKNUMBER, OFFSETS
GIVING TPS-RESULT.

$29500 READTRANSACTION.

0909600
28097900
209800

209900*

CALL "READTRANSACTION OF BANKTR/CODE/HOSTLIB"
"~ USING TRIN
GIVING TPS-RESULT.

010000 SWITCHTRFILE.

010189
910200

210300*

CALL "SWITCHTRFILE OF BANKTR/CODE/HOSTLIB"
GIVING TPS-RESULT.

£12408 HANDLESTATISTICS.

2910500
210600
0810700

8600 0130-000

CALL "HANDLESTATISTICS OF BANKTR/CODE/HOSTLIB"
USING STATOPTION
GIVING TPS-RESULT.

Example 5-5. Declaring the Transaction Base and Entry Points {cont.)

.5-51

5-52 8600 0130-000

Section 6
Using the SDF Program Interface

Screen Design Facility (SDF) is a tool to help programmers design and process forms for
applications. SDF provides form processing that eliminates the need for complicated
format language or code, and it enables you to provide validation for data entered on
forms by application users.

The program interface developed for SDF includes the following:

o Extensions that enable you to read and write forms easily
e Invocation of form data into your program as COBOL74 declarations
e Use of message keys for form processing A

e Programmatic control over data manipulation and display on a form image

This section provides information about the extensions developed for SDF and explains

_the syntax for using message keys and programmatic controls in an application. Each
extension is presented with its syntax and an example. Sample programs are included at
the end of the section.

For an alphabetized list of the extensions, see “SDF Extensions” in Section 1,
“Introduction to COBOL74 Program Interfaces.” Information on general programming
considerations and concepts is provided in the A Series Screen Design Facility (SDF)
Operations and Programming Guide. ’

You can use SDF with the Advanced Data Dictionary System (ADDS) and with the
Communications Management System (COMS).

‘When you use SDF with ADDS, you can take advantage of the following ADDS
capabilities: .

e Defining prefixes for entities, including DMSII database elements, COBOL74 data
description items, or fields of SDF or SDF Plus forms
. Deﬁning a synonym, which means referring to an entity by another name

For further information about defining prefixes and synonyms for entities, refer to the
InfoExec ADDS Operations Guide.

Refer to the product documentation for information on the concepts and programming
considerations for using ADDS and COMS with SDF. For more information on the
extensions used with these products, refer to Section 2, “Using the ADDS Program
Interface” and Section 3, “Using the COMS Program Interface.”

8600 0130-010 6-1

Using the SDF Program Interface

Identifying the Dictionary

The dictionary is identified in the SPECIAL-NAMES paragraph of the program, using
the DICTIONARY statement.

Note: A program can invoke only one dictionary. Therefore, if a program
accesses both a SIM database (from a dictionary) and SDF forms,
both must be in the same dictionary.

.

General Format

The general format of the DICTIONARY statement is as follows:

[, DICTIONARY IS literal-1]

6-2

Explanation of Format Elements

DICTIONARY

This clause enables ydu to identify the function name of the dictionary library.

literal-1

This literal is the function name that is equated to a library code file using the SL
(System Library) system command. See the SDF Operations and Programmmg Guide
for instructions on equating these names.

Example

The following example uses the DICTIONARY statement to identify the
SCREENDESIGN function name:

001093 IDENTIFICATION DIVISION.

207000

008000 ENVIRONMENT DIVISION.

909909 CONFIGURATION SECTION.

211100

91120% SPECIAL-NAMES.

011308 DICTIONARY IS "SCREENDESIGN".

8600 0130-010

Using the SDF Program Interface

Invoking Data Descriptions

A data-description entry specifies the characteristics of a particular data item. You can
use the FROM DICTIONARY clause in the DATA DIVISION to obtain a formlibrary
from the dictionary. There are two optional clauses: SAME RECORD AREA and
REDEFINES.

The SAME RECORD AREA clause, when used in the DATA DIVISION, applies only to
SDF forms. The clause invokes all form descriptions in the formlibrary as redefinitions
of the first form in the formlibrary. Only one record area is allocated for the formlibrary.
If the SAME RECORD AREA clause is not used, each form in the formlibrary is invoked
as a separate form description with its own record area. :

The SAME RECORD AREA clause is used with general files in the ENVIRONMENT
DIVISION; refer to Volume 1 for more information on its use in that division.

The REDEFINES clause enables the same storage area to be described by different data
descriptions. In the data-description entry for SDF, the REDEFINES clause facilitates
redefinition of a formlibrary that has previously been invoked with the SAME RECORD
AREA clause. The REDEFINES clause enables multiple formlibraries to have the same -
record area. In addition, multiple redefinitions of the same formlibrary are allowed.

Only information specific to the REDEFINES clause used in the data-description entry

for SDF is covered in this section. For the general syntax and rules of the REDEFINES
clause, refer to Volume 1.

General Format

The general format of the data-description entry is as follows:

level-number-1 formlibrary-name-1

FROM DICTIONARY

[; VERSION IS literal-1] [; DIRECTORY IS literal-2]
[; SAME RECORD AREA] o
[; REDEFINES formlibrary-name-2] .

8600 0130-010 A 6-3

Using the SDF Program Interface

Explanation of Format Elements

level-number-1

This entry must be at the 01-level.

formlibrary-name-1

This format element identifies a dictionary structure that is a collection of

record descriptions defining screen formats. An alias cannot be specified for
formlibrary-name-1.

The clauses can be written in any order. However, formlibrary-name-1 must
immediately follow level-number-1 and FROM DICTIONARY must immediately follow
form-library-name-1. '

For information on dictionaries, refer to the InfoExec ADDS Operations Guide.

FROM DICTIONARY

This format element obtains a formlibrary from the dictionary.

VERSION IS literal-1

This format element is used only with ADDS and specifies a numeric literal that
identifies a version of the file. Literal-1 comprises from 1 to 6 digits.

- DIRECTORY IS literal-2

This format element is used only with ADDS and specifies a nonnumeric literal that
identifies the directory under which the file is stored in the data dictionary.

SAME RECORD AREA and REDEFINES

The SAME RECORD AREA and REDEFINES options can be used only with formlibrary ‘
invocations in the WORKING-STORAGE, LINKAGE, and LOCAL-STORAGE sections.
All other uses of the clauses cause a syntax error.

The formlibrary invocation using the REDEFINES option must immediately follow
either the formlibrary-name-1 invocation that it is redefining, or another formlibrary
invocation that is using a REDEFINES option of formlibrary-name-1. The REDEFINES
option can be used to redefine only formlibraries that previously have been invoked using
the SAME RECORD AREA option.

formlibrary-name-2
This format element identifies a dictionary structure that is a collection of record

descriptions defining screen formats. Form-library-name-2 is used in the REDEFINES
option. : ' »

8600 0130-010

Using the SDF Program Interface

Considerations for Use

Only a formlibrary can be invoked directly from the dictionary; a form cannot be invoked
directly.

Formlibraries can be invoked within the FILE SECTION, the WORKING-STORAGE
SECTION, the LINKAGE SECTION, or the LOCAL-STORAGE SECTION.

A formlibrary cannot be given an alias using the INVOKE clause.

Example

The following example shows code for a data-description entry:

216000 DATA DIVISION.
917008 FILE SECTION.
218000 FD REMFILE. ‘
92120¢ @1 SAMPLELIB FROM DICTIONARY.

Reading Forms

The READ FORM statement is used to read a form from a station to a program. The
options enable you to read forms with message keys and to use default forms.

When the logical records of a file are described with more than one record description,
these records automatically share the same storage area. This sharing is equivalent to
an implicit redefinition of the area. The contents of any data items that are beyond the
range of the current data record depend on previous events. :

The appropriate formlibrary reads data from the station for the form, validates the input
for the record, performs input error handling if necessary, and passes the valid record or
detected error condition to the program.

One of the error conditions that can be passed to the program is a COMS error message.
For information on how to process COMS errors, refer to the COMS Programming
Guide.

8600 0130-010 6-5

Using the SDF Program Interface

General Format

The general format of the READ FORM statement is as follows:

formlibrary-name-1 }

READ FORM file-name-1 USING {form-name-l[FROM DEFAULT FORM]

[INTO identifier- 1]
[; ON ERROR imperative-statement-l]

Explanation of Format Elements

file-name-1

This format element identifies the file that must be open in the input or I/O mode when
this statement is executed. When the READ FORM statement is executed, the value of
the file status data item associated with file-name-1 is updated. The file status data item
must be defined in the DATA DIVISION as a 2-character, alphanumeric data item. For
further information on status reporting, see Volume 1.

If the read operation is successful, the data is made available in the record storage area
associated with file-name-1. For general information on opening files, see Volume 1.

The storage area associated with identifier-1 and the record area associated with
file-name-1 must not be the same area.

When form-name-1 is not invoked in the file description for file-name-1, the data is read
into the file-name-1 record area and transferred to form-name-1. To avoid truncation of
trailing characters in the message, make sure the record description for file-name-1 is as
large as the declaration of the largest form to be used with the file.

formlibrary-name-1

This format element is used in the USING clause to read self-identifying forms.
Self-identifying forms are forms that contain a Message Key field in the same
location in all forms in the formlibrary. The Message Key field is used to determine
programmatically which form record format has been read.

The READ FORM statement used with self-identifying forms requires the formlibrary
name rather than the form name, because the form is identified by its message key.

If you specify the message key option for the formlibrary, you must define message keys
for each form in the formlibrary. However, you can read a form using the READ FORM
statement for either a specific or a self-identifying form.

Refer to the appropriate sample program later in this section for an illustration of using

message keys. For an explanation of message keys and ways to specify them in SDF,
refer to the SDF Operations and Programming Guide. :

66 ' 8600 0130-010

Using the SDF Program Interface

form-name-1

This format element is used in the USING clause to read specific forms that are
‘identified by form-name-1.

FROM DEFAULT FORM

This option can be used only with a form name. When the FROM DEFAULT FORM
option is specified, the formlibrary writes a form with default values in each field before
performing the read and record validation.

INTO identifier-1

If the INTO option is specified, the record being read is moved from the record area
to the area specified by the identifier, according to the rules specified for the MOVE
statement. The sending area is considered to be a group item equal in size to the
maximum record size for this file.

Identifier-1 is a record item declared in the WORKING-STORAGE SECTION that is |
used to store the information received as a result of the READ FORM statement.

The INTO option can be used only if form-name-1 or formlibrary-name-1 is invoked in
the file description associated with file-name-1.

The implied move operation does not occur if the READ FORM statement cannot be
executed. Any subscripting or indexing associated with the identifier is evaluated after
the record is read and immediately before the record is moved to the data item.

When the INTO option is used, the record being read is available in both the input
record area and the data area associated with the identifier. For more information on the
MOVE statement, refer to Volume 1.

" For general information on error-handling with remote files, see the SDF Operations
and Programming Guide. '

s
ON ERROR imperative-statement-1
Execution of the ON ERROR option is the same as for an Invalid Key condition. When

the ON ERROR condition is recognized, imperative-statement-1 is performed. For
information on the Invalid Key condition, see Volume 1.

8600 0130-010 ' 6-7

Using the SDF Program Interface

Considerations for Use

Two run-time errors specific to forms can be handled programmatically by using the
FILE STATUS clause in the INPUT-OUTPUT SECTION. For information on the FILE
STATUS clause, see Volume 1. A form error message (82) is returned when either of
the following occurs: '

® Aread is executed on a specific form and that form no longer resides in the

formlibrary.

¢ The compile-time form version does not equal the run-time form version.

Examples

| The foﬂovving examples illustrate the use of the READ FORM statement.

Example of a Read Operation for a Self-Identifying Form When Message Keys Are Used

READ FORM REMFILE USING SAMPLELIB.

Example of Reading a Specific Form

READ FORM REMFILE USING SAMPLEFORM1.

Example of a Read Oberation Using a Specific Default Form

READ FORM REMFILE USING SAMPLEFORMI FROM DEFAULT FORM.

. Example of the INTO and ON ERROR Options

-

WORKING-STORAGE SECTION."
81 TEMPSAMPLEFORM PIC X(2000).

PROCEDURE DIVISION.

READ FORM REMFILE USING SAMPLEFORM1
INTO TEMPSAMPLEFORM
ON ERROR STOP RUN.

Writing Forms

6-8

The WRITE FORM statement is used to write forms from a program to a station. The
DEFAULT FORM option enables you to write a form with default values in each field,

The execution of the WRITE FORM statement releases a logical record to a file. The file

must be open in the output, I/0, or extend mode when the statement is executed. For
general information on opening files, see Volume 1.

8600 0130-010

Using the SDF Program Interface

Execution of a WRITE FORM statement does not affect the contents or accessibility of
the record area. If a file is named in a SAME RECORD AREA clause, the logical record
is also available as a record of other files referenced in that SAME RECORD AREA
clause.

The current record pointer also is unaffected by the execution of a WRITE FORM
statement.

General Format

The general format of the WRITE FORM statement is as follows:

record-name USING form-name-2 identifier-1
WRITE FORM {form-name-l : } [ER‘(M {DEFAULT FORM}]

[; ON ERROR imperative-statement-1].

Explanation of Format Elements

record-name

This format element is the name of a logical record in the FILE SECTION of the DATA
DIVISION and can be qualified. Record-name and identifier-1 must not reference the
same storage area.

form-name-1 and form-name-2

These form names must be uniquely named forms in the formlibrary identified in the file
description (FD) for this file. A formlibrary is a run-time library containing one or more
form-processing procedures.

USING

This clause enables you to write the forms of a formlibrary previously invoked in the
- WORKING-STORAGE SECTION. The normal record area (record-name) of the file is
ignored and the record area for form-name-2 is written. .

FROM identifier-1

A WRITE FORM statement with the FROM option is equivalent to the statement
MOVE identifier-1 TO record-name (according to MOVE statement rules) followed by
the WRITE FORM statement without the FROM phrase. For more information on the
MOVE statement, refer to Volume 1.

8600 0130-010 . 6-9

Using the SDF Program Interface

FROM DEFAULT FORM

The DEFAULT FORM option causes the formlibrary to write a form with default values
in each field.

ON ERROR imperative-statement-1

Execution of the ON ERROR option is the same as for an Invalid Key condition. When
the ON ERROR condition is recognized, imperative-statement-1 is performed. For
information on the Invalid Key condition, see Volume 1. '

The appropriate formlibrary performs the write. Any detected error condition is
returned to the program. For general information on error-handling when using remote
files, refer to the SDF Operations and Programming Guide.

Considerations for Use

Two run-time errors specific to forms can be handled programmatically by using the
FILE STATUS clause in the INPUT-OUTPUT SECTION. For information on the FILE
STATUS clause, see Volume 1. '

A form error message (82) is returned when either of the following occurs:

¢ A write operation is executed on a specific form and that form no longer resides in
the formlibrary.

¢ The compile-time form version does not equal the run-time form version.

Example
This example shows the WRITE FORM statement used with the ON ERROR option.

WRITE FORM SAMPLEFORM1
ON ERROR STOP RUN.

- Using the FORM-KEY Function

The FORM-KEY function enables the compiler to pass an internal binary number
uniquely identifying the form name for programmatic purposes. This function

is required for using the data communications interface (DCI) library with the
Communications Management System (COMS) interface.

When using SDF with COMS, this function must be used to move the form key into the -
first word of the conversation area of output before a SEND statement can be executed.

6-10 8600 0130-010

Using the SDF Program Interface

General Format

The general format of the FORM-KEY function is as follows:

FORM-KEY (form-name-1)

Explanation of Format Element

form-name-1

This format element is an internal binary number uniquely identifying the form name.

See Also
e Refer to “SDF Sample Programs” later in this section for examples of using the
FORM-KEY function in an application program.

¢ Information about using SDF extensions with COMS is provided later in this section
in “Using SDF with COMS.” '

e Refer to Section 3, “Using the COMS Program Interface,” for information about the
extensions developed for COMS.

Examples

The following is an example of the function syntax within the MOVE statement. For
more information on numeric functions or the MOVE statement, refer to Volume 1.

MOVE FORM-KEY(FORMA) TO SAVEKEY.

The following example shows the FORM-KEY function used with the COMS interface to
move the form key SDFFORM to the first word of the conversation area:

MOVE FORM-KEY (SDFFORM) TGO COMS-OUT-CONVERSATION.

Manipulating Programmatic Controls

SDF provides programmatic controls at the form level and at the field level. The controls
are fields identified by a scheme of names and suffixes. The naming conventions are
described under “Programmatic Flag Setting” later in this section. The following
paragraphs explain how these controls are manipulated in a COBOL74 application
program.

The symbolic name for SDF default programmatic flags takes the form
 <entity name> <-suffix>. If you do not use the default suffix names that SDF
- provides, the suffixes you specify must be unique for each flag type. The symbolic name,
including its suffix, can contain a maximum of 30 characters.

8600 0130-010 ’ 6-11

Using the SDF Program Interface

Example

In the following example of manipulating data using a programmatic control, assume that
a field is defined as EMPLOYEE. Assume also that you define the Cursor programmatic
control for the EMPLOYEE field and use the default Cursor flag suffix (CURSOR).
These definitions generate a data area in your program, as follows:

@2 EMPLOYEE-CURSOR

In the program, you can assign a value for the flag setting, as shown in the following
example:

21 CONSTANTS.
02 TRUE-FLAG - PIC 9 COMP VALUE 1.
02 FALSE-FLAG - PIC 9 COMP VALUE @.

In the program, you can use the following syntax to cause the cursor to be placed in the
EMPLOYEE field. SDFFORM is the name of the form to be written.

MOVE TRUE-FLAG TO EMPLOYEE-CURSOR.
WRITE SDFFORM. :

See Also

¢ For a detailed discussion of programmatic controls, refer to the SDF Operations and
Programming Guide.

- Refer to the sample programs in “SDF Sample Programs” at the end of this section
for another example of using programmatic controls in an application.

Programmatic Flag Setting

Programmatic flags are set either by the formlibrary (with a read operation) or by a,
program (with a write operation), depending on the type of flag. Programmatic controls
cause extra data items to be generated into the COBOL74 program record description.

SDF does not reset any form control flags. If you set a form control flag in a program,
you must also reset that flag when you no longer desire the control function served by

the flag.
The following tables summarize the programming information presented in the SDF

Operations and Programming Guide and provide the COBOL74 picture representations
generated by the flags.

6-12 : 8600 0130-010

Using the SDF Program Interface

Table 6-1 contains the programmatic control default suffixes and contains flag setting
information for each programmatic control.

Table 6-1. Programmatic Flag Suffixes and Settings

Programmatic

Control Default Suffix Flag Setting '

Cursor -CURSOR Set before a write operation

Data only -DATA Set before a write operation

Field suppress -SUPPRESS Set before a write operation

Flag groups -FLAGS . Set before a write operation

Highlight -HIGHLIGHT Set before a write operation

Input/Output -IOTYPE Set before a write operation

No input -NOINPUT Set by the formlibrary with a read
operation .

Page : -PAGE Set before a write operation

Specify ' -SPECIFY Set by the formlibrary with a read
operation

Table 6-2 lists the programmatic flags, their COBOL74 picture representation, and valid

© values.
Table 6-2. Programmatic Flag Information
'COBOL74 Picture ‘

Flag :) Representation Valid Values

Cursor PIC 9(1) COMP e 0 (No cursor positioning)
e 1 (Position cursor)

Data only PIC 9(1) COMP e 0 (Nodata only)
e 1 (Data only)

Field suppress PIC 9(1) COM‘P o 0 (Not suppressed)
‘e 1 (Suppressed)

Flag groups Not applicable Not applicable

continued

8600 0130-010 ' 6-13

Using the SDF Program Interface

Table 6-2. Programmatic Flag Information (cont.)

COBOL74 Picture
Flag Representation Valid Values

Highlight PIC 9(1) COMP Fixed highlighting:
e 0 (Not specified)
e 1 (Specified)
Variable highlighting:
e 0 (None)
e 1 (Bright)
e 2 (Reverse)
e 3 (Secure)

e 4 (Underline)

v e 5 (Blink)

Input/Output PIC 9(1) COMP e 0 (Input and output)

e 1 (Input and output)

e 2 (Input only)

e 3 (Output)

e 4 (Output) transmittable
No input PIC 9(1) COMP e 0 (Data input)

e 1 (No data input)
Page PIC 9(1) COMP Terminal page 1 -9
Specify . PIC 9(4) COMP

o 0 (Not specified)
e >0 (Specified)

The value of the flag field indicates -
the cursor position within the data
field.

6-14 v ' 8600 0130-010

Using the SDF Program Interface

Flag Group Generation
The names of the flag groups must follow COBOL74 naming conventions and be unique
for each entity. The hyphen (-) in the name is part of the user-specified group flag suffix
or flag suffix. ’ '
The syntax for the default name of a group of all flags is

<form name><-group flag suffix>

The syntax for the default name of individual groups for each type of flag is
<form name><-flag suffix><-group flag suffix>
You can reset flags to FO (zero), as follows:

e Ina group for all flags in a record or in a group for each type of flag, you use the
hexadecimal value @00@. :

e Inindividual flag fields, you can use the figurative constant LOW-VALUES.
You cannot use the constant LOW-VALUES for flag groups because the destination is

alphanumeric, causing spaces rather than zeros to be placed in the group. Spaces in the
group cause unexpected results. :

See Also

e For information on specifying and using flag groups, refer to the SDF Operations
and Programming Guide.

e For information on the use of the LOW-VALUES figurative constant, refer to
Volume 1.

Example

The following example shows the use of flag groups in an application. The statement to
reset all flags to the value 0 at the group level is

MOVE ALL @290 TO FORM-1-FLAGS.
The statement to reset all the highlight flags to the value 0 at the flag group level is

MOVE ALL LOW-VALUES TO FORM-1-HIGHLIGHT-FLAGS.

8600 0130-010 v 6-15

Using the SDF Program Interface

6-16

In the example, FORM-1 has two fields, FIELD-1 and FIELD-2. If each field had all the
possible programmatic flags set, and the form had all possible programmatic flags set, the

@1 FORM-1.

a2
22
g2

FIELD-1

FIELD-2

FORM-1-FLAGS.

03 FORM-1-PAGE-FLAGS.
24 FORM-1-PAGE.

93 FORM-1-SPECIFY-FLAGS.
24 FORM-1-SPECIFY
84 FIELD-1-SPECIFY
@4 FIELD-2-SPECIFY

£3 FORM-1-IOTYPE-FLAGS.
04 FIELD-1-IOTYPE
94 FIELD-2-IOTYPE

@3 FORM-1-CURSOR-FLAGS.
94 FIELD-1-CURSOR
@4 FIELD-2-CURSOR

93 FORM-1-SUPPRESS-FLAGS.
94 FIELD-1-SUPPRESS
94 FIELD-2-SUPPRESS

23 FORM-1-HIGHLIGHT-FLAGS.

94 FIELD-1-HIGHLIGHT
@4 FIELD-2-HIGHLIGHT
@3 FORM-1-DATA-FLAGS.
24 FORM-1-DATA
94 FIELD-1-DATA
P4 FIELD-2-DATA
@3 FORM-1-NOINPUT-FLAGS.
24 FIELD-1-NOINPUT
24 FIELD-2-NOINPUT

- 01 record in COBOL74 would appear as shown in the example.

PIC X(19).
9(6) v9(2).

PIC.

PIC

PIC
PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC
PIC

PIC
PIC

9

comp.

9(4) coMp.
9(4) Ccomp.
9(4) CcoMP.

9
9

COMP.
COomP.

COMP.
COMP.

COMP.
COMP.

COMP.
Ccomp.

COMP.
CoMP.
CoMp.

COMP.
COMP.

8600 0130-010

Using the SDF Program Interface

Using SDF with COMS

You can use SDF with COMS to take advantage of COMS direct windows. This |
combination gives you enhanced routing capabilities for forms and also enables
preprocessing and postprocessing of forms.

The following guidelines explain the extensions you can include in your application when
using SDF and COMS together: :

¢ You can use the REDEFINES and SAME RECORD AREA options when the
formlibrary is invoked in the WORKING-STORAGE SECTION for use with the
COMS direct-window interface. '

. The SAME RECORD AREA clause makes efficient use of record space, but an
additional WORKING-STORAGE SECTION might be needed to save SDF
information from the last SEND or RECEIVE statement for each form.

The following example illustrates the use of the SAME RECORD AREA clause in
a COBOL74 program using both SDF and COMS, where SAMPLELIB is the SDF

formlibrary name:

901808 WORKING-STORAGE SECTION.

092509 @1 COMS-MESSAGE-AREA.

002510 @2 SDF-MESSAGE-KEY PIC X(@11).

0202600 @2 SDF-MESSAGE PIC X(2500).

002620 @1 SAMPLELIB FROM DICTIONARY; SAME RECORD AREA.

The SDF-MESSAGE-KEY size should be the same size as the SDF input message
" key. The total COMS-MESSAGE-AREA size must be large enough to hold any
expected COMS input message.

e Unisys recommends that you program the main processing loop so that the
RECEIVE statement uses a working storage area for the input message. Messages
or errors might arrive at the program from sources other than your formlibrary.
Once the program determines that a valid input has been received from a form in
your formlibrary, you can process the data received.

In the following example, COMS-IN is the COMS header name: |

0206309 RECEIVE COMS-IN MESSAGE INTO COMS-MESSAGE-AREA.
906310* CHECK FOR COMS ERRORS

Once the COMS error checking has been processed, you can determine which form
was used for input and move the data in COMS-MESSAGE-AREA to the SDF form
record for further processing. For further information about COMS error checking,
refer to the COMS Programming Guide.

8600 0130-010 ' 617

Using the SDF Program Interface

In the following example, SDF-MESSAGE-KEY is checked for the form message key
-and then the SDF form SAMPLEFORM1 or SAMPLEFORMS2 is processed.

Note: A hyphen (-)is not allowed as a character in a COMS trancode. The
- corresponding COMS trancode with a length of 3 would be "ADD" for
"ADD-ITEM" and "MOD" for "MODIFY-ITEM".

Furthermore, only uppercase letters and numbers are allowed for
COMS trancodes, while SDF allows almost any combination of
uppercase, lowercase, and special characters, and blanks for a
message key, providing that the first 17 characters of the Message Key
field are unique.

206320 IF SDF-MESSAGE-KEY = "ADD-ITEM "
206322 MOVE COMS-MESSAGE-AREA TO SAMPLEFORM1
286325 PERFORM ADD-ITEM

206330 ELSE

006340 IF SDF-MESSAGE-KEY = "MODIFY-ITEM"
006342 MOVE COMS-MESSAGE-AREA TO SAMPLEFORM2
006350 PERFORM MODIFY-ITEM.

¢ Unisys recommends that you process all fields containing the Specify programmatic
~ control before you check for No input programmatic control data and process other
form input data.

¢ You must use the FORM-KEY function to move the form key into the first word of
the conversation area of output. In the following example, COMS-OUT is the COMS
header name and SAMPLEFORM2 is the form name. The FORM-KEY syntax must
precede a SEND statement from the form. The following is an example of the code:

206355

206368 MOVE 1 TO COMS-0UT~COUNT
006408 MOVE COMS-IN-STATION TO COMS-OUT-DESTINATION
206708 MOVE 69 TO COMS-OUT-TEXT-LENGTH

096720 MOVE SDF-AGENDA-DESIGNATOR TO COMS-OUT-AGENDA
086740 MOVE FORM-KEY(SAMPLEFORM2) TO COMS-OUT-CONVERSATION
006800 SEND COMS-OUT FROM SAMPLEFORM2

206810* CHECK FOR COMS-QUT SEND ERRORS

2071680 END-OF-JOB. -

¢ You must do the following to transmit a default form (that is, a form with only
default values):

— Move spaces to display items.
.= Move zeros to numeric items and programmatic control.

e You cannot use a SEND or RECEIVE statement between BEGIN-TRANSACTION
and END-TRANSACTION statements. Doing so violates the rules of synchronized
recovery. COMS will not allow you to send a request to a station for data correction
while your program is in transaction mode.

6-18 8600 0130-010

Using the SDF Program Interface

See Also

e Refer to the COMS Programming Guide for detailed information on the use of the
COMS direct-window interface and for an illustration of the use of SDF and COMS
- in an application.

e For information about the extensions used with COMS, refer to the Section 3,
“Using the COMS Program Interface.”

e See “Using the FORM-KEY Function” earlier in this section for more information
about that function.

SDF 'Sample Programs

The following are sample programs illustrating different uses of the SDF program
interface. For information about handling remote file errors in an application program,
refer to the SDF Operations and Programming Guide.

SDF Program Using the READ Statement

Example 6-1 is a program that uses a remote file and specific forms. The program
contains a READ FORM statement for a default form. The formlibrary was created
using SDF.

Sections of the program are explained in comment lines within the code.

001000 IDENTIFICATION DIVISION.
087000

908000 ENVIRONMENT DIVISION.
909000 CONFIGURATION SECTION.
011100

211105

. gl11lﬁ***

@01115* Specify the dictionary that stores the formlibrary. *
ﬂﬁl12%***
911125

911200 SPECIAL-NAMES.

911386 DICTIONARY IS "SCREENDESIGN".

711500
011600
ﬁl17ﬁﬂ**
911800* Declare the remote file. *
ﬂl1gﬁﬂ**
911950

912003 INPUT-OUTPUT SECTION.
913009 FILE-CONTROL.

914000 SELECT REMFILE
014500 ASSIGN TO REMOTE.
915000

915100

Example 6-1. SDF Sample Program with a READ Statement

8600 0130-010 6-19

Using the SDF Program Interface

gl5zgﬂ***

915300* Invoke the formlibrary in the FILE SECTION, and associate *
815400* it with the file. This action also causes the proper maximum *

915500* record s1ze (MAXRECSIZE) to be des1gnated for the file. *
ﬁlssg@‘kik*x xxxxxxxxxxxxxxxxxxx *kkhkkkkkkk khkhkhkhhhhkhkhhkhhkhkhkkikhkhhhhhkhhkikk
215700

016000 DATA DIVISION.

917000 FILE SECTION.

01800@ FD REMFILE.

921200 B1 SAMPLELIB FROM DICTIONARY.

821400
B2145G***kkxkx KA H AR AR AKX H AR e ook
021460* Include program record descriptions for all forms in the *

. @21470* formlibrary that are automatically invoked and copied into the*
£21480* program during compilation (see the following dictionary data *

92149¢* lines identified with the D flag). *
6216@@***
0239900

000108*--DICTIONARY D
900110*--DICTIONARY FORMLIST -<SAMPLELIB>. D

000130 81 SAMPLEFORMI. D

000149 92 ACTION PIC X(18). D

200156 @2 ACCOUNT-NO PIC 9(9). D

000168 92 NAME PIC X(15). D

200178 @2 STREET PIC X(25). D

206188 @2 CITY PIC X(15). D

200199 @2 STATE PIC X(2). D

000280 @2 ZIP PIC 9(9). D

024003 PROCEDURE DIVISION.

024500 MAIN-PARA. '

225000

gzSzgg***********k**

g25400* Open remote file I/0 *

gzssgg**

026000 OPEN I-0 REMFILE.

926199
ﬂzﬁzgﬂ***
£26300* WRITE FORM statements are not necessary when you are *
026350* sending a form with only default values to the *
026400* screen. The statement writes form SAMPLEFORM1 *
026500* with its default values in the fields, and then reads *
926550* the form. *
gz66@@***
032008 READ FORM REMFILE USING SAMPLEFORM1 FROM DEFAULT FORM.
238009STOP RUN.

Example 6-1. SDF Sample Program with a READ Statement (cont.)

6-20 : _ , 8600 0130-010

Using the SDF Program Interface

SDF Program Using the WRITE and READ Statements

Example 6-2 is a sample program that uses a remote file and specific forms. The
program contains WRITE and READ statements. The formlibrary was created using
SDE.

Sections of the program are explained in comment lines within the code.

1100@ IDENTIFICATION DIVISION.
11100

12099 ENVIRONMENT DIVISION.
13009 CONFIGURATION SECTION.
13200

133@“**

13499* Specify the dictionary that stores the formlibrary. *
13sgg**
13600

14000 SPECIAL-NAMES. :

1509¢ DICTIONARY IS "SCREENDESIGN".

16000

16lgﬂ***

16200* Declare the remote file. *
163@@***

16400

17008 INPUT-OUTPUT SECTION.

18000 FILE CONTROL.

1900¢ SELECT REMFILE ASSIGN TO REMOTE.

19100
1gzgg**
193@@* Invoke the formlibrary in the FILE SECTION, and associate *
19499* it with the file. This action also causes the proper maximum*

19500* record size (MAXRECSIZE) to be designated for the file. *
19ng**
19700

21009 DATA DIVISION.

22008 FILE SECTION.

23000 FD REMFILE.

24009 @1 SAMPLELIB FROM DICTIONARY.

24100
242&”***
245@0* Include program record descriptions for all forms in the *

24600* formlibrary that are automatically invoked and copied into the *
24790* program during compilation (see the following dictionary data *

248@0* lines identified with the D flag). *
249ﬂg***
24950

90108 *--DICTIONARY

90119 *--DICTIONARY FORMLIST <SAMPLELIB>.
20120 @1 SAMPLEFORM1.

00130 @2 ACTION PIC X(18).

[um B ww B v Bl e

Example 6-2. SDF Sample Program with READ and WRITE Statements

8600 0130-010 : 6-21

Using the SDF Program Interface

20149 @2 ACCOUNT-NO PIC 9(9).
20150 @2 NAME PIC X(15).
00160 @2 STREET PIC X(25).
020180 @2 CITY PIC X(15).
20199 @2 STATE PIC X(2).
909208 @2 ZIP PIC 9(9).

24000 PROCEDURE DIVISION.

24500 MAIN-PARA.

25000

27000* Opens the remote file I1/0.

2710@* If a file is not open, the formliibrary opens the
27200* file at the time of the write or read operation,
27380* using whatever file attributes are set.

ODoooooo

.2G@ﬂg***
*

*

*

*

zsﬁﬂﬂ***

29000
30090 OPEN I-0 REMFILE.
40000

4lggg**

42009* The WRITE FORM statement writes a form from the*

43000* formlibrary to the station. The statement *
4400@0* uses a form name. ' *
4sgg@**
46000 A

47009 WRITE FORM SAMPLEFORM1.

48000

4gg@ﬂ**

50000* The READ FORM statement reads the form back to *
51006* the program when the user transmits. *
5Zggﬂ**
53000 :

54000 READ FORM REMFILE USING SAMPLEFORMI1.

55000

56008 STOP RUN.

Example 6-2. SDF Sample Program with READ and WRITE Statements (cont.)

SDF Program Using Programmatic Controls

6-22

Example 6-3 is a sample program that uses SDF, a remote file, specific forms, and

programmatic controls.

Sections of the program are explained in comment lines within the code. -

8600 0130-010

Using the SDF Program Interface

As you read this ekample, you should be aware of the following programming
information about flags. .(The example does not contain lines of code demonstrating this
information.) '

e Ifyour forms use either Specify or No input flags, your program should check to see
if these flags are set after a READ operation before you begin processing data from
the form fields.

e Ifyou use both Specify and No input flags, check the Specify flag first. |

e Ifthe value in any Specify flag field is greater than zero, the values in the data fields
of the form are unchanged from the previous operation.

200200 IDENTIFICATION DIVISION.
200303 ENVIRONMENT DIVISION.
200406 CONFIGURATION SECTION.

ﬂﬂﬂ41ﬂ**

20@420* Specify the dictionary that stores the formlibrary. *
ﬂﬂg43ﬂ**

009500 SPECIAL-NAMES.

000608 DICTIONARY IS “SCREENDESIGN".

200803 INPUT-OUTPUT SECTION. |
202903 FILE-CONTROL.

gﬂgg16**

200920* Declare the remote and disk files. *
gﬁgg3”**
9010006 SELECT MTTERM ASSIGN TO REMOTE.

9031100 SELECT DISK-FILE ASSIGN TO DISK.

091200

901303 DATA DIVISION.

0013590

901403 FILE SECTION.

201459

ﬂﬂlslﬂ**

201520* Invoke the formlibrary in the FILE SECTION. *

ﬂﬂ153ﬂ**

£01500 FD MTTERM.
gﬂl55@**
©801575* The following attributes assure the correct record size *
901600* for write operations in which the form record can be *
@@1550* Tonger than 8@ characters. *
vgglﬁ?5**
@3173@ BLOCK CONTAINS 2208 CHARACTERS.

@01740 RECORD CONTAINS 2200 CHARACTERS.

@@1745 VALUE OF MAXRECSIZE IS 2208@.

901750 VALUE OF FILETYPE IS 3.

g@1768 VALUE OF MYUSE IS IO.

@9177¢ CODE-SET IS EBCDIC.

901780

931809 @1 VOTERLIB FROM DICTIONARY.

901900

Example 6-3. SDF Sample Program with Prbgrammatic Controls

8600 0130-010 , 6-23

| Using the SDF Program Interface

@ﬂ191ﬂ**
201920* Include program record descriptions for all the forms in the*
0@193@* formlibrary that are automatically invoked and copied into *
£01940* the program during compilation (see the following dictionary *

001945* data lines identified with the D flag). ok
gﬂl95@**
0281969

900100 *--DICTIONARY
200110 *--DICTIONARY FORMLIST<VOTERLIB>.
900130 @1 VRFORM.

002148 @2 PRECINCT PIC 9(4).

@00150 @2 LOCATION PIC X(28).

000168 @2 VRNAME PIC X(54).

000176 @2 ADDRESS PIC X(54).

000180 @2 CITY PIC X(24).

090199 @2 COUNTY PIC X(24).

000208 @2 CONGRESSDIS PIC 9(4).

@021 @2 REPRESDIS PIC 9(4).

000228 @2 SENATEDIS PIC 9(4).

000230 @2 COMMISSDIS PIC 9(4).

- @00248 @2 VRDATE PIC 9(6).

0P@250 @2 CLERK PIC X(29).

g0@260 @2 VRNAME-CURSOR PIC 9(1) COMP.
200270 ©2 VRNAME-HIGHLIGHT PIC 9(1) COMP.
002000 FD DISK-FILE.

902180 @1 DATA-RECORD PIC X(300).
002200

202308 WORKING-STORAGE SECTION.

202400

202500 PROCEDURE DIVISION.

002600 :

002700 MAIN-PARA.

002800

ggzggg B R e X X L T T % T g ey

003080 *Open the remote file and disk file.’ ' *
ﬁﬂ31gg hhhhhAAXKAAKRARKAKA KA KA AR AR A A A XA A A AR A AR AR AT AR AR A AR A TR A xdK
003200 OPEN I-0 MTTERM.

003309 OPEN OUTPUT DISK-FILE.

003409

ﬂ@35ﬁﬂ***

803510* Move values to the fields of the form so that a form can be *

COO0O000DU0U0UO0U0O0DDUODDoOOUO oo

. 003520* written to be displayed with those values. *
gﬂ353”***
093549

003500 MOVE SPACES TO VRFORM.
003600 MOVE ZEROS TO VRDATE.

.g036lg***

003628* The following code prevents highlighting from being *
903630* set incorrectly. *

ﬂﬂ363@***

Example 6-3. SDF Sample Program with Programmatic Controls (cont.)

’

6-24 ' 8600 0130-010

Using the SDF Program Interface

903619 MOVE @ TO VRNAME-CURSOR
903620 MOVE @ TO VRNAME-HIGHLIGHT
203700

ﬂgngg AKKEAAAKKAAKREK AL TR AAATAAAAAAARAXRAAAARA AR AR AdAd A Ak hhhhhhhid

203908 * Perform a loop to enter and store data in a disk file. *
ﬂﬂ4ﬂﬂﬂ AEAAKAEKAAAAAAARKAAARAARAXAAAXAEAAAAAAA A A AAIAAAA A AR AR A Ak A A AR Akh*%
204100

90420@ PERFORM DATA-ENTRY UNTIL CLERK = "DONE".

004390

204420 END-MAIN-PARA.

294500 STOP RUN.

094600

ﬂg47gg L R T T e T S TR L s e e e S e e R L S e

404800 *This is the beginning of the data-entry loop. . *

@g49gg ***

005000
ﬁg5g1g**
0095020* Move values to the fields indicated. The last values*
085030* entered in the form are displayed for those fields *
005040* whose values are not changed explicitly. *
ggsgsﬂ**
285060

005100 DATA-ENTRY.

995200

995300 MOVE SPACES TO VRNAME.

995409 MOVE SPACES TO ADDRESS.

995500 MOVE SPACES TO CITY.

795600 MOVE SPACES TO COUNTY.

005700
ﬂgs71g***
995720* Use the WRITE statement to write the form name. The READ *

995730* statement reads the form from the terminal. MOVE and WRITE *
905740* statements store the form into a record file. *
ﬂ@575g***
985760 .

905800 WRITE FORM VRFORM

085810 ON ERROR STOP RUN.

905900 READ FORM MTTERM USING VRFORM

095910 ON ERROR STOP RUN.

096003 MOVE VRFORM TO DATA-RECORD.

906109 WRITE DATA-RECORD.

206119
ggﬁ1zz***
PP6130* Uses programmatic control for cursor position (with the flag *
296140* name and suffix VRNAME-CURSOR) and places the cursor in the *
906150* VRNAME field when the form is displayed. Note that the users *
296160* can tab back to the first fields to enter data if they wish. *
ﬂgG17g***
996189

996199

Example 6-3. SDF Sample Program with Programmatic Controls (cont.)

8600 0130-010

6-25

Using the SDF Program Interface

206200 MOVE 1 TO VRNAME-CURSOR.
206300
006400 END-DATA-ENTRY.

Example 6-3. SDF Sample Program with Programmatic‘Controls (cont.)

SDF Program Using Message Keys

Example 64 shows the use of message keys and of the independent record area in

a COBOL74 program using SDF. SAMPLELIB is the SDF formlibrary name, and
SAMPLEFORM1 and SAMPLEFORM2 are the form names. The Action field is defined
as the Message Key field.

Sections of the pfogrém are explained in comment lines within the code.

900203 IDENTIFICATION DIVISION.

0290300

200400 ENVIRONMENT DIVISION.

209500 CONFIGURATION SECTION.

200600

gg@slukaxnxnnnxxxxnxnkkxxx%%ii*xaxxkx«x%%*xnxaannxnnnx%nnnwAA«a

20062@* Specify the dictionary that contains the formlibrary. *

ggﬂ63g***
- 090700 SPECIAL-NAMES.

900800 DICTIONARY IS "SCREENDESIGN".

001009

ﬂﬁlglg**

201020* Declare the remote file. *
gg1@3@**
291040

021199 INPUT-OUTPUT SECTION.

281299 FILE-CONTROL.

991300 SELECT REMFILE

201400 ASSIGN TO REMOTE.
291590 ' _
gglslﬂ***
901520* Invoke the formlibrary in the FILE SECTION. *
gzl53”***
2091540 ‘

001600 DATA DIVISION.

901708 FILE SECTION.

001808 FD REMFILE

901819 BLOCK CONTAINS 25@8 CHARACTERS
021820 RECORD CONTAINS 2508 CHARACTERS
901838 VALUE OF FILETYPE IS 3

00184¢ VALUE OF MYUSE IS IO

901850 CODE-SET IS EBCDIC

201860

002000 @1 SAMPLELIB FROM DICTIONARY.
002200

Example 6-4. SDF Sample Program with Message Keys

6-26 - ' 8600 0130-010

Using the SDF Program Interface

ggzz1@**

20222@* Include program record descriptions of all forms in the *
902230* formlibrary that are automatically invoked and copied into *
00224@* the program during compilation (see the following dictionary *
902245* data lines identified with the D flag). : *
69225@**
002260

22010@*--DICTIONARY

009110*--DICTIONARY FORMLIST <SAMPLELIB>.
909136 @1 SAMPLEFORM1.

900148 92 ACTION PIC X(11).

900158 @2 ACCOUNT-NO PIC 9(9).

900160 @2 NAME PIC X(15).

900176 @2 STREET PIC X(25).

900188 @2 CITY PIC X(15).

000198 @2 STATE PIC X(2).-

000208 @2 ZIP PIC 9(9).

090216 91 SAMPLEFORMZ.

@220 @2 ACTION PIC X(11).

900230 @2 ACCOUNT-BALANCE PIC 9(9).
000249 ©2 PAYMENT-DUE-DATE PIC X(6).
00P250 @2 DATE-LAST-PAYMENT PIC X(6).
000260 ©2 FINANCE-CHARGE PIC 9(5).
002262 '
ggzz64**
902266* The SDF-MESSAGE-KEY size should be the same size as the SDF *
002268* input message key. The total SDF-MESSAGE-AREA size must be *

[B v B v B e i v N B e i e R v S o 8 e S o B w B o (i e B

90227@* large enough to hold any SDF input message. *
ﬁﬂZZ72**
0902274

902288 WORKING-STORAGE SECTION.
992282 91 SDF-MESSAGE-AREA.
002284 @2 SDF-MESSAGE-KEY PIC X(@11).

002286 @2 SDF-MESSAGE PIC X(2509).

902288
ﬂﬂ23ﬂg**
002306* You program the main processing loop so that the RECEIVE *
992310* statement uses a working storage area, SDF-MESSAGE-AREA, for *
902314* the input message. Messages or errors might arrive for the *

©802316* program from your formlibrary. *

BO232O*H*HHAFKAKKIKFKAREFEKAKAFAREREIRKKIK KK TEFEIEEREFRIRARAIEIIAR R RAI,
0982322

99230@ PROCEDURE DIVISION.

002409 MAIN-PARA..

092500 ,
g026gg*************************************
002709* Open remote file I/0. *

ggzsgﬂ*************************************

902900 OPEN I-0 REMFILE.
203000

Example 6-4. SDF Sample Program with Message Keys (cont.)

8600 0130-010 6-27

Using the SDF Program Interface

ﬂﬂ311ﬂ nnnnnnn *hkkkkkhkhikhhhhhk *hkkkhhhhbrkhkhkhhkhhirihk *hkrkkkk LR 2 Tt e 2 2 T

0@312@* Move values to the fields of the form so that a write can be*
003120* done to display the form with those values. *

. gﬂ313giénnxx nnnnnnnn kkkhkkhkkhkhkhhkkhkhhhkhhkhkhrhhhrk hAhkhkhkkhkhkhkhkhkhhkhhkrhkhkhhkiik
0293200

903300 ~MOVE SPACES TO NAME.

903400 MOVE SPACES TO STREET.

9093500 MOVE SPACES TO CITY.

903600 MOVE SPACES TO STATE.

903700 MOVE ZEROS TO ACCOUNT-NO.

903809 MOVE ZEROS TO ZIP.

0903900

g@4gggkixxnnknxnkk xxxxxxxx R R R b R o e T L B T R o L RN AV S e *

@04100* These are WRITE FORM and READ FORM statements that explicitly *

£04118* state the form name. Use the WRITE FORM statement to write *

#04120* the form from the formlibrary to the terminal with the changed *
*
*

*

£04130* values. The READ FORM statement uses the form name. The form

form4d@* name can be used even if message keys have been defined for

094150* the forms in the formlibrary.

gg42gwxxaknxnxnk**nnx* xxxxx kkkhkhkkhkhhkhhiik khkkhkhhkkhhhkhkhkhkhkhhkhkhhkhhkhkrhhkhkrrhkh ki

084250

004300 WRITE FORM SAMPLEFORMI.

904350 ON ERROR STOP RUN.

904400 READ FORM REMFILE USING SAMPLEFORM1

204450 ON ERROR STOP RUN.

204509

gﬁ46g@kAanunxnxxi*xxnk ««««« *hkhkkhkhhkhkrkkhkhhkhkhkhhhhkhkhiik kkkkhkkhkhkkkkihhkkhkihk

604700* The forms in the formlibrary contain message keys; therefore, *

004880* they are self-identifying forms. Note the syntax of the READ *

g04850* FORM statement. *

004900* . *

004910* Use the WRITE FORM statement to write the specific form when *

004920* using message keys to identify input forms. The READ FORM *
*
*
*

*

094930* statement uses the formlibrary name and a separate working
0PA4940* storage area instead of the form name. The program examines
2094950* the field SDF-MESSAGE-KEY that contains the message key to
904955* identify the form.

QOAQEGH** K kkxhkkhhhk e g T TR e g s e Kk deddekhkdok hxkhkhhkkdkdkkk
0904979

905100 READ FORM REMFILE USING SAMPLELIB

005105 INTO SDF-MESSAGE-AREA

295119 ON ERROR STOP RUN.

295115

00513@* The value of the Message Key field SDF-MESSAGE-KEY determines *
#@5135* the conditional function to be performed. *
905145* *
005150* Once the program determines that a valid input has been *
£@5155* received from a form in your formlibrary, you can process the *
005160* data received. The example uses the STOP RUN statement to *

Example 6-4. SDF Sample Program with Message Keys (cont.)

6-28 ' 8600 0130-010

Using the SDF Program Interface

#05165*
90517@*
205175*
0@5180*
205185*
205190*
005195*
2@5200*
205205*
205210*
p@5215*

handle any error.

After the SDF errors have been processed, you can determine
which form was used for input and move the data in the
SDF-MESSAGE-AREA to the SDF form record for further processing.
In the following example, SDF-MESSAGE-KEY is checked for the
form message key and then the SDF form SAMPLEFORMI1 or
SAMPLEFORM2 is processed.

0% % % % %k X % F

Move the data in SDF-MESSAGE-AREA to the SDF form record before*
further processing. *

ggsz2g**

085230
0905250
2085252
005255
205260
9185265
805267
205270
805272

IF SDF-MESSAGE-KEY = "ADD-ITEM"
MOVE SDF-MESSAGE-AREA TO SAMPLEFORM1
PERFORM ADD-ITEM

ELSE

IF SDF-MESSAGE-KEY = "MODIFY-ITEM"
MOVE SDF-MESSAGE-AREA TO SAMPLEFORM2
PERFORM ‘MODIFY-ITEM.

gﬂsz74**

805276*
2@5278*
2@5280*

First process all Specify programmatic control data for the *

form before checking for No input programmatic control data and*
processing other input data. *

gﬂs282**

205284
205298
2p5295

ADD-ITEM.

gg53ﬁg***************************************

405385*

Insert code to add an item. *

ﬂg531@***************************************

205311
205315
205316

MODIFY-ITEM.

ﬂgs32@***************************************

205325*
005330*

Insert code to modify an existing *
item. *

ﬁﬂ5335***************************************

205340

@05480STOP RUN.

8600 0130-010

Example 6-4. SDF Sample Program with Message Keys (cont.)

6-29

6-30 8600 0130-010

Section 7/
Using the SDF Plus Program Interface

The Screen Design Facility Plus (SDF Plus) is a user interface management system that
gives you the ability to define a complete form-based user interface for an application
system. It is a programming tool for designing and processing forms simply and
efficiently. - SDF Plus provides form processing that eliminates the need for complicated
format language or code, and validates data entered on forms by application users.

The program interface developed for SDF Plus includes

o Extensions that enable you to read and write form records or form record libraries
easily

o Extensions that enable you to send and receive form records or form record libraries
easily "

e Extensions that enable you to invoke form record library descriptions into your
program as COBOL74 declarations '

This section provides information about the extensions developed for SDF Plus. Each
extension is presented with its syntax and examples; sample programs are also included.

For an alphabetized list of the extensions, see “SDF Plus Extensions” in Section 1,
“Introduction to COBOL74 Program Interfaces.” Refer to the A Series Screen Design
Facility Plus (SDF Plus) Capabilities Manual for information defining the concepts
and principles of SDF Plus. For information on general implementation and operation
considerations, and for information on describing the process of migrating SDF form
libraries to SDF Plus, refer to the A Series Screen Design Facility Plus (SDF Plus)

- Installation and Operations Guide. Consult the A Series Screen Design Facility Plus
(SDF Plus) Technical Quverview for information on general programming concepts and
considerations.

You can use SDF Plus with the Advanced Data Dictionary System (ADDS), the Semantic
Information Manager (SIM), and the Communications Management System (COMS).
Refer to the product documentation for information on the concepts and programming
considerations for using these products with SDF Plus. More information on the
extensions used with these products is provided in Section 2, “Using the ADDS Program
Interface;” Section 3, “Usmg the COMS Program Interface;” and Section 8, “Using the
SIM Program Interface,” in this volume.

Understanding Interface Elements

The interface between COBOL74 application programs and SDF Plus form libraries can
be achieved through either the remote file or the COMS interface. If you use the remote
file interface, you can interact with SDF Plus applications by means of remote files.

If you use the COMS interface, you can interact with SDF Plus applications through
COMS windows, and have access to all COMS capabilities and features.

8600 0130-010 7-1

Using the SDF Plus Program Interface

SDF Plus interface elements include

e Form record libraries
e Form records

¢ Form record numbers
e Transaction types

e Transaction numbers

Form Record Libraries

_ A form record library is a collection of form records and transaction types. You create

this collection by using SDF Plus, and you can store the form record library in either the
ADDS data dictionary or the SDF Plus dictionary. Form record libraries can be invoked
by using COBOL74 syntax. See the SDF Plus Installation and Operations Guide for
information on using SDF Plus to create a form record library. The form records can
then be used in various COBOL74 statements to transfer data. Multiple form record
libraries can be invoked in the COBOL74 program.

Form Records

Form records are elements of form record libraries. Form records represent records of
data. This data is used either to output data from a form or to input data to a form. A
form can require several form records; therefore, a one-to-one relationship between
forms and form records does not exist.

In some manuals, the term message type is a synonym for form record.

Forms and form processing are established through the use of SDF Plus. The COBOL74
program reads and writes data to the forms. This arrangement provides complete
separation between data entered on a terminal and actions completed within the
program. A user interface can be completely reconstructed through the use of SDF Plus
without modifying the application program, providing the form records are not changed.

Form Record Numbers

A form record number is a unique integer assigned at compile time for each form record
in a form record library.

In some manuals, the term message type number is a synonym for form record number-.
A form record number for a form record library is an attribute of the form record library.
Form record numbers determine I/O operations for form record libraries, allowing the

form record to be specified at run time.

A self-identifying read is used when the executing program has not established which

. form record in a specific form record library is being read. The program must access the

8600 0130-010

Using the SDF Plus Program Interface

form record number attribute for the form record library to determine the form record
that has been read.

A self-identifying write enables the executing program to specifically identify the form
record to be written by placing the appropriate form record number value into the form
record number attribute of the form record library.

Transaction Types

Transaction types are elements of form record libraries. A transaction type contains a
pair of form records: an input form record and an output form record. A transaction
type identifies the relationship of the two form records that are under it, namely,

the input form record to the transaction type and the output form record from the
transaction type.

Transaction Numbers

Transaction numbers are similar to form record numbers. A transaction number is a
unique integer assigned at compile time to each transaction in a form record library.

A transaction number for a form record library is an attribute of the form record
library. This attribute contains the transaction number of a specific transaction type.
Transaction numbers provide another means to determine I/O operations for form
record libraries at run time. :

After a self-identifying read, the application program must access the transaction

number attribute of the form record library being read in order to determine the
transaction type that has been executed.

8600 0130-010 7.3

Using the SDF Plus Program Interface

' Example

The following example shows the invocation of form record library MSGKEYS. The
syntax is constructed by the compiler. The form record library contains two transaction
types and two forms. Each form has the same response message (MSGKEYSSR).

001809 91 MSGKEYS FROM DICTIONARY; DIRECTORY IS "SMITH".
0031900*--DICTIONARY DIRECTORY :SMITH.
002000*--DICTIONARY FORMLIST <MSGKEYS>.

902100*--SDF TRANSACTION (FORMITT).

002200 @1 FORML.

002308 @4 KEYFIELD PIC X(5).
202400 24 DATAFIELD PIC X(4).
002459 @4 QUITFIELD PIC X(1).
002500 @1 MSGKEYSSR.

202600 24 MSGKEYSSRF PIC X(1).

002700@*-~-SDF TRANSACTION (FORM2TT).
002800 B1 FORMZ2.

202900 @4 KEY2FLD PIC X(5).
003009 @4 DATA2FLD PIC 9(4).
003109 @4 QUIT2FLD PIC X{1).

203200*@1 MSGKEYSSR.
903300*@1 FORMI1.
003420*31 FORM2.

Identifying the Dictionary

The dictionary is identified in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION, using the DICTIONARY clause.

Note: A program can invoke only one dictionary. Therefore, if a program

accesses both a SIM database (from a dictionary) and SDF forms,
both must be in the same dictionary.

General Format

The general format for the DICTION. ARY clause is as follows:

[, DICTIONARY IS literal-1]

Explanation of Format Elements

DICTIONARY

This clause enables you to identify the function name of the dictionary library.

7-4 . 8600 0130-010

Using the SDF Plus Program Interface

literal-1

This format element is the function name that is equated to a library source code
using the SL (support library) system command. See the SDF Plus Installation and
Operations Guide for instructions on equating these names.

Example
The following example shows code that identifies the SDFPLUSDICT dictionary:

9010280 IDENTIFICATION DIVISION.
007008

008000 ENVIRONMENT DIVISION.

009002 CONFIGURATION SECTION.

011100

011200 SPECIAL-NAMES.

911308 DICTIONARY IS "SDFPLUSDICT".

InVoking Data Descriptions

A data-description entry specifies the characteristics of a particular data item. There
are six options: SAME RECORD AREA, SEPARATE RECORD AREA, VERSION,
DIRECTORY, REDEFINES, and GLOBAL.

In the DATA DIVISION, either the SAME RECORD AREA option or the SEPARATE
RECORD AREA option can be used, but not both; all other options can be present.

The clauses and options can be written in any order. However, form-record-library-

name-1 must immediately follow the level number, and the REDEFINES option, when
used, must immediately follow form-record-library-name-1.

General Format

The general format of the data-description entry is as follows:

level-number form-record-library-name-1
FROM DICTIONARY
[(; SAME RECORD AREA
{; SEPARATE RECORD AREA} .
; VERSION IS literal-1
; DIRECTORY IS literal-2
; REDEFINES form-record-library-name-2
[; GLOBAL i

8600 0130-010 - ' 7-5

Using the SDF Plus Program Interface

7-6

Explanation of Format Elements

level-number

The level must be 01.

form-record-library-name-1

This format element identifies a dictionary structure that is a collection of record
descriptions defining screen formats. It must immediately follow the level number.

FROM DICTIONARY

The FROM DICTIONARY clause is used in the DATA DIVISION to obtain a form
record library from the dictionary. If the LIST compiler control option is also set, the
form data descriptions are listed in the DATA DIVISION of the COBOL74 program.

SAME RECORD AREA

This option applies to SDF Plus form records only when the option is used in the DATA
DIVISION; however, this option cannot be used in the FILE SECTION of the DATA
DIVISION. This option invokes all form record descriptions in the form record library as
redefinitions of the first form record description in the form record library.

SEPARATE RECORD AREA
This option applies to SDF Plus form records only when the option is used in the DATA
DIVISION; however, this option cannot be used in the FILE SECTION of the DATA

DIVISION. The SEPARATE RECORD AREA option is used to invoke each form record
in the form record library as a separate data description with its own record area.

VERSION

This option imports the version of the form record library being used.

literal-1

This format element must be a numeric literal, consisting of up to six digits, that
identifies a version of the form record library.

DIRECTORY
This option specifies the directory under which the form record library is stored in the

data dictionary. This option enables you to access form record libraries stored under
different usercodes.

8600 0130-010

Using the SDF Plus Program Interface

literal-2

This format element must describe the directory under which the form record library is
stored in the data dictionary.

REDEFINES form-record-library-name-2

The REDEFINES option applies to SDF Plus form records only when the option is used
in the DATA DIVISION; however, this option cannot be used in the file description
(FD) entry of the DATA DIVISION. The REDEFINES option enables different data
descriptions to describe the same memory. This option allows multiple form record
libraries to have the same record area. Multiple redefinitions of the same form record
library are also allowed.

The REDEFINES option can be used to redefine only form record libraries that
previously have been invoked using the SAME RECORD AREA option.

The form record library invocation using the REDEFINES option must immediately
follow either the form-record-library-name-2 invocation that it is redefining, or
another form record library invocation that is using a REDEFINES option for
form-record-library-name-2.

GLOBAL

This option is required in subprograms to reference form record libraries that were
declared in the host program. You cannot declare a local form record library in a
subprogram unless there is a matching form record library in the host program.

Considerations for Use

Only a form record library can be invoked directly from the dlctlonary neither a
transaction nor a form record can be invoked directly.

Form record libraries can be invoked within the FILE‘SECTION; the WORKING-
STORAGE SECTION, the LINKAGE SECTION, or the LOCAL-STORAGE
SECTION. A

The SAME RECORD AREA, SEPARATE RECORD AREA, and REDEFINES options
can be used only with form record library invocations in the WORKING-STORAGE
SECTION, the LINKAGE SECTION, and the LOCAL-STORAGE SECTION. All other
uses of the options cause a syntax error. :

The SAME RECORD AREA and SEPARATE RECORD AREA options cannot be used in
the same form record library. '

A form record library cannot be given an alias using the INVOKE clause.
See Also

See “Identifying Specific Entities” and “Assigning Alias Identifiers” in Section 2, ‘*Using
the ADDS Program Interface,” for additional information on these two topics.

8600 0130-010 ' 7-7

Using the SDF Plus Program Interface

Examples

The following examples illustrate the use of the FROM DICTIONARY clause.

In this example, the form record library SAMPLELIB is imported from the
dictionary: :

DATA DIVISION.

FILE SECTION.

FD REMFILE.

@1 SAMPLELIB FROM DICTIONARY.

In this example, version 2 of form record library SAMPLELIB is imported from the
data dictionary. The directory'is SMITH.

DATA DIVISION.

FILE SECTION.

FD REMFILE.

g1 SAMPLELIB FROM DICTIONARY
VERSION IS 2
DIRECTORY IS "SMITH".

In this example, the form record library SAMPLELIB is redefined as SAMPLELIBS:

DATA DIVISION.

FILE SECTION.

FD REMFILE.

WORKING-STORAGE SECTION.

@1 SAMPLELIB FROM DICTIONARY.

#1 SAMPLELIB3 FROM DICTIONARY;

REDEFINES SAMPLELIB.

In this example, the form record library SAMPLELIB is redkeﬁned as SAMPLELIB4
and SAMPLELIB5: -

DATA DIVISION.
FILE SECTION.
FD REMFILE.
@1 REM-REC PIC X(2420).
WORKING~STORAGE SECTION.
21 SAMPLELIB FROM DICTIONARY; SAME RECORD AREA.
@1 SAMPLELIB4 FROM DICTIONARY;
REDEFINES SAMPLELIB.
@1 SAMPLELIB5 FROM DICTIONARY;
REDEFINES SAMPLELIB.

8600 0130-010

Using the SDF Plus Program Interface

Selecting a Global Remote File

The SELECT statement is used to include a global remote file in your program. The
statement is used in the FILE-CONTROL paragraph under the INPUT-OUTPUT
SECTION of the ENVIRONMENT DIVISION.

General Format

The general format of the SELECT statement is as follows:

SELECT GLOBAL file-name-1 ASSIGN TO REMOTE.

Explanation of Format Elements

GLOBAL clause and file-name-1

This clause is used to import global form record libraries to subprograms. The global
form record libraries and the remote file (file-name-1) are declared in host programs.

Examples

The remote file REMFILE is declared in the host program as follows:

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT REMFILE
ASSIGN TO REMOTE.

In the subprogram, REMFILE is declared as follows:

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT GLOBAL REMFILE
ASSIGN TO REMOTE.

8600 0130-000 _ 7-9

Using the SDF Plus Program Interface

READ FORM Statement

The READ FORM statement causes a form record to be read from the specified remote
file and stored in the specified buffer.

The appropriate form record library reads the form record, validates the record,
performs screen error handling, and returns to the program the valid form record or any
detected error condition.

When the logical records of a file are described with more than one record description,
these records automatically share the same storage area. This sharing is equivalent to
an implicit redefinition of the area. The contents of any data items that are beyond
the range of the current data record are undefined after you execute the READ FORM
statement.

The implied move operation does not occur if the READ FORM statement cannot be

executed. Any subscripting or indexing associated with the identifier is evaluated after
the record is read and immediately before the record is moved to the data item.

General Format

The general format of the READ FORM statement is as follows:

READ FORM file-name-1 USING {

form-record-library-name-1
form-record-name-1 [FROM DEFAULT FORM]

[INTO identifier-1]
[- ON ERROR {imperative-statement-l }]

conditional-statement-1

7-10

Explanation of Format Elements

file-name-1

The file must be open in the input or /O mode at the time this statement is executed.
When the READ FORM statement is executed, the value of the file status data item
associated with file-name-1 is updated. If the read is successful, the data is made
available in the record storage area associated with file-name-1. For general information
on opening files, refer to Volume 1.

The storage area associated with identifier-1 and the record area associated with
file-name-1 must not be the same storage area.

8600 0130-000

Using the SDF Plus Program Interface

USING form-record-library-name-1

This clause is used to perform a self-identifying read. A self-identifying read is
performed to read a form record when you do not know in advance the form record that
is to be written. After a self-identifying read, you can check the form record number
attribute of the form record library to determine the form record that was read.

USING form-record-name-1
This clause is used for reading specific form records.

When form-record-name-1 is invoked in the DATA DIVISION and not in the file
description for file-name-1, the data is read into the file-name-1 record area and
transferred to form-record-name-1. To avoid truncating the trailing characters in the
message, you should make sure the record description for file-name-1 is as large as the
declaration of the largest form to be used with the file.

FROM DEFAULT FORM

This option can be used only with a form record name. When the FROM DEFAULT
FORM option is specified, the form record library writes a form record with default
values in each field before performing the read and record validation.

INTO identifier-1

When the INTO option is used, the record being read is available in both the input
record area and the data area associated with the identifier. For more information on the
MOVE statement, refer to Volume 1.

If the INTO option is specified, the record being read is moved from the record
area to the area specified by identifier-1, according to the rules specified for the
MOVE statement. The sending area is considered to be a group item equal in

size to the maximum record size for this file. The INTO option can be used only if
form-record-name-1 or form-record-library-name-1 is invoked in the file description
associated with file-name-1.

ON ERROR
The ON ERROR option actions are the same as for an Invalid Key condition. For

information on the Invalid Key condition, see Volume 1. For general information on
error handling with remote files, see the SDF Plus Technical Overview.

8600 0130-000 ' 7-11

Using the SDF Plus Program Interface

7-12

Considerations for Use

Two run-time errors specific to form records can be handled programmatically by using
the FILE STATUS clause in the INPUT-OUTPUT SECTION. For information on the
FILE STATUS clause, see Volume 1. A form error message (82) is returned when either
of the following occurs:

¢ Areadisexecutedona specific form record and that form record no longer resides in
- the form record library.

e The compile-time form record version does not equal the run-time form record
version.

Examples
The following examples illustrate the use of the READ FORM statement.

e The following example shows a READ FORM statement that causes a default form
record to be read:

READ FORM REMFILE-A USING FORMLIB-A
FROM DEFAULT. FORM.

e This example shows a READ FORM statement that causes a specific form record to
be read:

READ FORM REMFILE-A USING FORMREC-A.

e The following example illustrates the use of the USING, INTO, and ON ERROR
clauses:

WORKING-STORAGE SECTION.
@1 TEMPSAMPLEFORM PIC X(2409).
PROCEDURE DIVISION.

-

.

READ FORM REMFILE-A
USING FORMLIB-A
INTO TEMPSAMPLEFORM
ON ERROR STOP RUN.

8600 0130-000

Using the SDF Plus Program Interface

WRITE FORM Statement

The WRITE FORM statement writes the contents a form record, form record library, or
text array to a specified remote file. The information in the following paragraphs shows
the specific formats of the WRITE FORM statement that write the contents of each of
these entities to a remote file. Format 3 of the WRITE FORM statement enables you to
write user-defined error messages at the bottom of the previous screen.

WRITE FORM Statement for a Form Record Library (Format 1)

Format 1 of the WRITE FORM statement performs the self-identifying write operation
of a form record library to a specific remote file. The self-identifying write operation
enables the program to write a form record by placing the appropriate form record
number value into the form record number field of the form record library. The form
record number attribute specifies the form records before the self-identifying WRITE
statement.

The execution of the WRITE FORM self-identifying WRITE statement releases a logical
record to a remote file. The file must be open in the output, I/O, or extend mode at

the time this statement is executed. For general information on opening files, refer to
Volume 1.

Execution of a WRITE FORM statement does not affect the contents or accessibility
of the record area. If a file is named in the SAME RECORD AREA clause, the logical
record is also available as a record of other files referenced in that SAME RECORD
AREA clause. _

If you are not using the attribute form record number to place the form record number
into the form record number field of the form record library before the self-identifying
write operation, the self-identifying WRITE statement uses the existing value in the
form record number field of the form record library. 4

The appropriate form record library performs the write operation. Any detected error
condition is returned to the program when the WRITE FORM statement is performed.

See Also

e For more information on the form record number attribute, see “Using the Form
Record Number Attribute” later in this section.

o For general information on error handling when using remote files, refer to the
SDF Plus Technical Overview.

8600 0130-000 7-13

Using the SDF Plus Program Interface

General Format (Format 1)

The general format of the WRITE FORM statement to perform a self-identifying write
operation is as follows:

WRITE FORM {form-record—hbrary~name-1 }

record-name USING form-record-library-name-2

[; ON ERROR {imperative-statement-l }]
T conditional-statement-1J |

Explanation of Format Elements

form-record-library-name-1

This format element is used when the form record library is invoked from the file
description (FD) of the DATA DIVISION. :

USING

If a form record library is invoked in the WORKING-STORAGE SECTION, the USING
clause enables the form record library to be written. If a form record library is invoked
as a record area in the FD entry for a remote file, no USING clause is needed.

record-name and form-record-library-name-2

Record-name is the name of the logical record area in a specified remote file. When

a WRITE FORM statement that contains a USING clause is executed, the data in
form-record-library-name-2 is written directly to the device without affecting the logical
record area of the file. The specification of the record area only identifies the file to
which the data in form-record-library-2 is written.

ON ERROR
When the ON ERROR condition occurs, the actions that follow are the same as for an

Invalid Key condition. Refer to Volume 1 for a discussion of an Invalid Key condition on a
WRITE statement.

7-14 ’ 8600 0130-000

Using the SDF Plus Program Interface

Considerations for Use

Two run-time errors specific to forms can be handled programmatically by using the
FILE STATUS clause in the INPUT-OUTPUT SECTION. A form error message (82) is
returned when either of the following occurs:

e A write operation is executed on a specific form and that form no longer resides in
the form record library.

e The compile-time form record version does not equal the run-time form record
version.

Exaniples

The following examples illustrate the use of the WRITE FORM statement for a
self-identifying WRITE statement.

¢ In this example, the CHANGE statement places the form record number of
FORMREC-1 into the form record number field of the FORMRECLIB form record
library before the self- 1dent1fymg WRITE FORM statement is performed

CHANGE ATTRIBUTE FORMRECNUM OF FORMRECLIB TO
ATTRIBUTE FORMRECNUM OF FORMREC-1.
WRITE FORM FORMRECLIB.

o In this example, the form record library FORMRECLIB?2 is invoked in the
WORKING-STORAGE SECTION, not the FILE SECTION. F-REC is the logical
record area for a remote file.

WRITE FORM F-REC USING FORMRECLIB2.

WRITE FORM Statement for a Form Record (Format 2)

Format 2 of the WRITE FORM statement writes the contents of a form record to a
specified remote file. Format 2 does not perform a self-identifying write operation. The
DEFAULT FORM option enables you to write a form with default values in each field.

The execution of the WRITE FORM statement releases a logical record to a remote file.
The file must be open in the output, I/O, or extend mode at the time this statement is
executed. For general information on opening files, refer to Volume 1.

Execution of a WRITE FORM statement does not affect the contents or accessibility
of the record area. If a file is named in the SAME RECORD AREA clause, the logical
record is also available as a record of other files referenced in that SAME RECORD
AREA clause.

The current record pointer is unaffected by the execution of a WRITE FORM statement.
The appropriate form record library performs the write operation. Any detected error

condition is returned to the program. For general information on error-handling when
using remote files, refer to the SDF Plus Technical Overview.

8600 0130-000 7-15

A Using the SDF Plus Program Interface

General Format (Format 2)

The general format of the WRITE FORM statement to write the contents of a form
record is as follows:

WRITE FORM
[FROM {

[. ON ERROR {imperative-statement-l }]

record-name-1 USING form-record-name-2
identifier-1
DEFAULT FORM

{form-record—name-l }

conditional-statement-1

7-16

Explanation of Format Elements

form-record-name-1

This format element is used when the form record of a form record library is declared in
the FILE SECTION of the DATA DIVISION.

record-name-1

This format element is the name of the logical record in the FILE SECTION of the
DATA DIVISION and can be qualified. Record-name-1 and identifier-1 must not
reference the same storage area.

Record-name-1 with the USING clause enables the write operation to write the form
records of a form record library that is invoked in the WORKING-STORAGE SECTION.

USING

If a form record library is invoked in the WORKING-STORAGE SECTION, the USING
clause enables its form records to be written. If a form record library is invoked as a
record area in the FD entry for a remote file, no USING clause is needed.

form-record-name-2
When the WRITE FORM statement that contains a USING clause is executed, the data
in form-record-name-2 is written directly to the device without affecting the logical

record area of the file. The specification of the record area only identifies the file to
which the data in form-record-2 is written.

FROM

A WRITE FORM statement with the FROM phrase is equivalent to the statement
MOVE identifier-1 TO form-record-name-1 (according to MOVE statement rules)

8600 0130-000

Using the SDF Plus Program Interface

followed by the WRITE FORM statement without the FROM phrase. For more
information on the MOVE statement, refer to Volume 1.
identifier-1

vThis format element must be an 01-level record that is deciared in the DATA DIVISION.

DEFAULT FORM

This option is an SDF Plus feature. The DEFAULT FORM option causes the form
record library to write a form record with default values in each field. .

ON ERROR

When the ON ERROR condition is recognized, the actions that follow are the same as for
an Invalid Key condition. Refer to Volume 1 for a discussion of an Invalid Key condition
on a WRITE statement.

Considerations for Use

Two run-time errors specific to forms can be handled programmatically by using the v
FILE STATUS clause in the INPUT-OUTPUT SECTION. A form error message (82) is.
returned when either of the following occurs:

e A write is executed on a specific form and that form no longer resides in the form
record library.

e The compile-time form record version does not equal the run-time form record
version.

Examples

The following examples show the use of the WRITE FORM statement to write the
contents of a form record.

e In this example, the form record FORMREC-A is written. FORMREC-A is invoked
from the FILE SECTION.
WRITE FORM FORMREC-A.

e In this example, the WRITE FORM statement writes the form record FORMREC-B.
FORMREC-B is invoked from the WORKING-STORAGE SECTION. The record
name for the remote file is REMF-REC.

WRITE FORM REMF-REC USING FORMREC-B.

. In this example, the contents of the identifier TEMP-FORM-A are moved to form
record FORMREC-C before FORMREC-C is written.

WRITE FORM FORMREC-C USING FROM TEMP-FORM-A.

8600 0130-010 7-17

Using the SDF Plus Program Interface

'WRITE FORM Statement for Error Messages (Format 3)

Format 3 of the WRITE FORM statement enables you to reject the data received during
the preceding READ FORM statement and to display an appropriate transaction error
message to the user.

You define transaction errors using the SDF Plus Forms Editor, which assigns a unique
transaction error number to each transaction error you define for the transaction.

For each transaction error, you define an error message and a list of fields that are -
highlighted when the error occurs. The transaction error number you specify using
format 3 identifies which of the transaction errors is to be processed by SDF Plus.

You can perform more than one WRITE FORM FOR ERROR MESSAGE statement in
order to indicate multlple transaction errors.

Each WRITE FORM FOR ERROR MESSAGE statement must be followed by an
additional WRITE FORM statement, either format 1 or format 2, in order to initiate
SDF Plus transaction error processing. At that point, SDF Plus redisplays the form that
resulted in the transaction error, including the user’s data, any highlights associated with
the transaction error, and the transaction error message specified for the transaction
error. The cursor is positioned in the first highlighted field.

Because the last WRITE FORM statement is used only to initiate transaction error
processing, SDF Plus ignores any data received as the result of the last WRITE FORM

statement (format 1 or format 2).

You use format 3 of the WRITE FORM statement only with update transactions; you
cannot use it with prefill transactions.

General Format (Format 3)

The general format of the WRITE FORM FOR ERROR MESSAGE sfatement is as
follows:

WRITE FORM

form-record-library-name-1
form-record-name-1

record-name USING { form-record—]jbrary-na.me-2}

form-record-name-2

FOR ERROR MESSAGE {

identifier-1 }
numeric-literal-1J

7-18

Explanation of Format Elements

form-record-library-names, form-record-names, record-name, and USING

For explanations of these format elements, refer to the explanations of format 1 and
format 2 of the WRITE FORM statement.

8600 0130-010

Using the SDF Plus Program Interface

FOR ERROR MESSAGE

This format element indicates that a transaction error has occurred and identifies which
transaction error has occurred.

identifier-1

This format element must be a numeric data item. Identifier-1 contains the transaction
error number corresponding to the user-predefined transaction error to be processed by
SDF Plus.

numeric-literal-1

This format element must be an integer. It specifies the transaction error number
corresponding to the user-predefined transaction error to be processed by SDF Plus.

Examples

The following examples show the use of the WRITE FORM FOR ERROR MESSAGE
statement. '

e In this example, the WRITE FORM statement indicates that transaction error
number 5 has occurred:
WRITE FORM SAMPLEFORMLIB FOR ERROR MESSAGE 5.

e In this example, the WRITE FORM statement indicates that the transaction error

stored in identifier Al has occurred:

WRITE FORM SAMPLEFORMLIB FOR ERROR MESSAGE Al.

WRITE FORM Statement for Text Arrays (Format 4)

The WRITE FORM TEXT statement is an extended format of the WRITE FORM
statement that causes the contents of text arrays to be written to a designated remote
file by using a form record library.

The WRITE FORM TEXT statement must be used with the standard WRITE FORM
statement. A standard WRITE FORM statement immediately after a WRITE FORM
TEXT statement causes the contents of the text array to be written at the bottom of the
standard form. ‘

A WRITE FORM TEXT statement has no effect unless the next I/O related to SDF Plus
that is performed on the remote file is a WRITE FORM statement.

8600 0130-010 ' 7-19

~ Using the SDF Plus Program Interface

General Format (Format 4)

The general format of the WRITE FORM TEXT statement is as follows:

form-record-library-name-1

WRITE FORM {form—record-name-l } USING TEXT data-name-1

record-name-1

[FOR { integer-1 } CHARACTERS].

identifier-1

~

7-20

Explanation of Format Elements

form-record-library-name-1 and form-record-name-1

Form-record-library-name-1 is the name of a form record library. Form-record-name-1 is
the name of a form record. Both these format elements are invoked in the FD entry of
the DATA DIVISION.

If a form record library is invoked within an FD entry, the WRITE FORM

TEXT statement is performed by using either form-record-name-1 or
form-record-library-name-1, followed by the USING TEXT clause.

record-name-1
This format element is the logical record area for a remote file that is used in

the SDF Plus remote file interface. If a form record library is invoked in the
WORKING-STORAGE SECTION, record-name-1 followed by the USING TEXT clause

writes the text.

USING TEXT

This clause writes text to the end of the previous write form.

data-name-1

This format element specifies the name of the text array. Data-name-1 must be at the
01-level. Data-name-l is moved to record-name-1 before the write occurs.

FOR integer-l CHARACTERS

This format element identifies the number of characters of the text array to be written.

FOR identifier-1 CHARACTERS

This format element identifies the numeric identifier used to specify the number of
characters that are to be written.

8600 0130-010

Using the SDF Plus Program Interface

Examples
The following examples illustrate the use of the WRITE FORM TEXT statement.

e In the following example, CHAR-COUNT is the preassigned number of characters
to be written. The FORMRECLIB form record library is invoked in the FD section.
Format 1 or Format 2 of the WRITE FORM statement must follow this code to
provide a meaningful context for the example.

" WRITE FORM FORMRECLIB USING TEXT S-TEXT
FOR CHAR-COUNT CHARACTERS.

¢ In this example, the first 100 characters of the text array TEXT-A are written.
The form record library is invoked from the WORKING-STORAGE SECTION;
therefore, the FILE-FD-REC logical record area for the remote file writes the text.
Format 1 or Format 2 of the WRITE FORM statement must follow this code to
provide a meaningful context for the example.

WRITE FORM FILE-FD-REC USING TEXT TEXT-A
FOR 188 CHARACTERS.

¢ In this example, FORMRECLIB-2 is invoked under the FD section. The
TEXT-B text array is written to the bottom of the FORMREC-1 form record for
FORMRECLIB-2.

WRITE FORM FORMREC-1 USING TEXT TEXT-B.
WRITE FORM FORMREC-1.

¢ In this example, the form record library FORMRECLIB-3 is invoked under
the FD section. Text TEXT-C is written to the bottom of FORMRECLIB-3.
A self-identifying WRITE FORM statement follows the WRITE FORM TEXT
statement.

WRITE FORM FORMREC-3 USING TEXT TEXT-C.
WRITE FORM FORMRECLIB-3.

8600 0130-000 . , 7-21

Using the SDF Plus Program Interface

Using the Form Record Number Attribute

The form record number attribute is used with either individual form records or form
record libraries. In some manuals, the term message type number is used as a synonym
for form record number.

The form record number attribute associated with individual form records is preassigned
by SDF Plus at compile time. '

The form record number attribute associated with form record libraries is used to
perform self-identifying read operations and self-identifying write operations at run time.

General Format

The general format of the form record number attribute is as follows:

ATTRIBUTE FORMRECNUM {

OF form-record-library-name-1
OF form-record-name-1

7-22

Explanation of Format Elements

form-record-library-name-1

When the form record number attribute is used with form record libraries, the attribute
accesses the form record number of a particular form record that is returned on a
self-identifying read operation. This is necessary when you do not know the form record
that has been read, as is the case with self-identifying read operations. -

Before a self-identifying write operation can be completed, you must move the form
record number attribute of the form record to the form record number attribute of the
form record library. '

The value of the form record number attribute might change for each self-identifying I/O
operation (read or write). The returned value is valid immediately after a self-identifying
/O operation is performed and continues to be valid until the next self-identifying I/O
operation is performed.

form-record-name-1

" When the form record number attribute is used with individual form records, the

attribute enables the compiler to return the form record number integer of the form
record name for programmatic purposes.

8600 0130-000

Using the SDF Plus Program Interface

Examples
The following examples illustrate the use of the form record number attribute.

¢ In the following example, NUM-1 is assigned the unique value of the form record
number of form record FORMREC-A:

MOVE ATTRIBUTE FORMRECNUM OF FORMREC-A TO NUM-1.

e In this example, the form record number of FORMLIB-A is assigned the form record
number of FORMREC-A:

CHANGE ATTRIBUTE FORMRECNUM OF FORMLIB-A
TO ATTRIBUTE FORMRECNUM OF FORMREC-A.

e The following example illustrates the use of a check to determine whether the form
record pumber of form record library FORM-LIB is equal to the form record number
of FORMREC-B after a self-identifying read operation:

IF ATTRIBUTE FORMRECNUM OF FORMREC-B
= ATTRIBUTE FORMRECNUM OF FORM-LIB THEN
PERFORM PROCESS~-FORM-B.

Using the Transaction Number Attribute
_ The transaction number attribute is used with either individual transactions or form
record libraries. There is a pair of form records under each transaction to either output

data from a form or to input data to a form. The transaction number attribute provides
information for the form record that is under the current transaction.

General Format

The general format of the transaction number attribute is as follows:

ATTRIBUTE TRANSNUM {QE form-record-library '”ame'l}

OF form-record-name-1

8600 0130-000 7-23

Using the SDF Plus Program Interface

- Explanation of Format Elements

form-record-library-name-1

This format element identifies the name of the form record library. When used with
form record libraries, the transaction number attribute accesses the transaction number
of a particular form record that is returned on a self-identifying read operation. You can
retrieve the returned value from the transaction number attribute that indicates the
transaction that was performed on a self-identifying read operation.

The value of a transaction number attribute might change for each self-identifying read
operation. The returned transaction number attribute value is valid immediately after

the self-identifying read operation is performed and continues to be valid until the next
self-identifying read operation is executed.

form-record-name-1

This format element identifies the form record name. When used with individual form
records, the transaction number attribute returns the preassigned transaction number
of a designated transaction.

Examples
The following examples illustrate the use of the transaction number attribute.

¢ In this example, NUM-1 is assigned the transaction number that was last read using
the self-identifying syntax:

MOVE ATTRIBUTE TRANSNUM OF FORMREC-1 TO NUM-1.

e In the following example, a check is completed to determine whether the transaction
number attribute of form record library FORM-LIB is equal to the transaction
number attribute of the form record FORMREC-1 after a self-identifying read:

IF ATTRIBUTE TRANSNUM OF FORMREC-1TT
=ATTRIBUTE TRANSNUM OF FORM-LIB THEN
CHANGE ATTRIBUTE FORMRECNUM OF FORM-LIB
TO ATTRIBUTE FORMRECNUM OF FORMREC-1.

7-24 ' ' 8600 0130-000

Using the SDF Plus Program Interface

. Using SDF Plus with COMS

SDF Plus can be used with COMS to take advantage of COMS direct windows. This
feature gives you enhanced routing capabilities for form records and also enables
preprocessing and postprocessing of form records. Example 7-2 at the end of this
section shows an application program interacting with users through a COMS window.

Refer to the COMS Programming Guide for detailed information on the use of the

COMS direct-window interface. The following guidelines explain the steps to follow
when using SDF Plus with COMS.

Using COMS Input/Output Headers
' SDF Plus supports the use of COMS headers. Three fields are defined within the
headers for use with SDF Plus. These fieldsare SDFINFO, SDFFORMRECNUM, and
SDFTRANSNUM. A description of each follows. :

The SDFINFO field is used to identify specific form message processing requests (on
output) or to return form message processing errors (on input).

On the output (sending) path, the SDFINFO field can contain the following values:

Value Explanation

0 Normal form message processing
100 Last transaction error

101 More than one transaction error
200 Text message processing

On the input (receiving) path, the SDFINFO field can contain the following values, which
indicate the status of the requested form message processing:

Value Explanation

0 No error

-100 Form message timestamp mismatch

-200 Incorrect form record number specified from a send
operation

-300 Incorrect transaction nﬁmber specified from a send operation

-400 Invalid message key

The SDFFORMRECNUM field is used to specify the form record to be written (on
output) or the form record that was received (on input).

The SDFTRANSNUM field is meaningful only on input and contains the number of the
SDF Plus transaction that was received. This field should not be altered by the user
application.

8600 0130-000 ‘ 7-25

Using the SDF Plus Program Interface

Sending and Receiving Messages

When using SDF Plus and COMS together, follow the usual statements for each product,
with the following guidelines:

¢ Unisys recommends open notification for the window. Using open notification
ensures that the correct initialization is sent to the program. The program can then
be written to display the correct initial form without user input. If the initialization
test has a transaction code (trancode), the trancode must be created under the
default input agenda.

e Message sending requires the application program to first move the value 0 (zero)
into the SDFINFO field of the output header. ‘The application program
must also move the form record number of the form record library into the
SDFFORMRECNUM field. The buffer of the form record library must be passed as
the message area in the SEND statement.

e Message receiving has the following significance for the application program:

- If the SDFINFO field contains the value 0 (zero), then the application program
‘ can query the form record number and transaction number attributes for the
form record library from the SDFFORMRECNUM and SDFTRANSNUM fields
of the input header.

-~ If the SDFINFO field contains a value less than 0 (zero), then this field contains
an error code that indicates a problem with message processing. In addition, the
FUNCTION-INDEX field of the input header contains the value 100. '

e SEND or RECEIVE statements cannot be used between BEGIN-TRANSACTION
and END-TRANSACTION statements. Doing so violates the rules of synchronized
recovery. COMS will not allow you to send a request to a station for data correction
while SDF Plus is in transaction mode.

Sending Transaction Errors

SDF Plus supports the ability to send error codes in response to incorrect data received
by the user application. These error codes are sent as integer values, which SDF Plus
uses to process a user-defined error procedure for the form record library.

To send transaction errors, the user application must do the following:

¢ Move the value 100 into the SDFINFO field of the output header.

o Move the value of the transaction énor into the SDFFORMRECNUM field of the
output header.

¢ Move the SDFTRANSNUM field from the input header to the output header.
e Send the output header to display the message.

The user program can send any arbitrary message area along with the output header.
SDF Plus processes only the information within the output header.

7-26 8600 0130-000

Using the SDF Plus Program Interface

Example

The following example shows code in which transaction error number 1 is sent.
SDF-BUFFER is the user-defined buffer area.

MOVE & TO TEXTLENGTH OF COMS-OUT.

MOVE 108 TO SDFINFO OF COMS-OUT.

MOVE 1 TO SDFFORMRECNUM OF COMS-OUT.

MOVE SDFTRANSNUM OF COMS-IN TO
SDFTRANSNUM OF COMS-OUT.

SEND COMS-OUT FROM SDF-BUFFER.

Sending Text Messages

SDF Plus supports the ability to send text messages for display on the text area ofa
form.

To send a text message, the application program mtist do the following:

e Move the value 200 into the SDFINFO field of the output header.

e Move the text message into a messagé area to be sent through COMS.
e TUse the SEND statement to store the text message. 4
e Move the value 0 (zero) to the SDFINFO field of the output header.

. o Send the form to display the text message.

See Also

For information about the extensions used with COMS, refer to Section 3, “Using the
COMS Program Interface.”

Example

The following example shows code in which literal text is moved into the message area.
The form to display the text message is FORM]1. The first MOVE statement moves the
length of the message to COMS_OUT. .

MOVE 38 TO TEXTLENGTH OF COMS_OUT
MOVE 288 TO SDFINFO OF COMS-OUT
MOVE "This is an example of application text" TO SDF-BUFFER
SEND COMS-OUT FROM SDF-BUFFER
MOVE @ TO SDFINFO OF COMS-OUT
MOVE ATTRIBUTE FORMRECNUM OF FORM1 TO
SDFFORMRECNUM OF COMS-OUT
SEND COMS-OUT FROM FORM1

8600 0130-000 : 7-27

Using the SDF Plus Program Interface

SDF Plus Sample Programs

The following are two sample programs showing the SDF Plus program interface used
with a remote file interface and with a COMS interface. Both programs are in the
transaction mode. For information about handling remote file errors in an application
program, refer to the SDF Plus Technical Overview.

SDF Plus Program with a Remote File Interface

The sample program in Example 7-1 begins by performing a READ FORM statement.
The program then examines the transaction number attribute to determine the form
record that was read. The program indicates the appropriate response by setting the
form record number attribute.

The program accepts two string or binary inputs from a remote file, concatenates or adds
them together, and returns the original input and the results as output on the terminal
screen. The form record library was created in SDF Plus.

901005 IDENTIFICATION DIVISION.
207000
008000 ENVIRONMENT DIVISION.
909900 CONFIGURATION SECTION.
211100
£11200 SPECIAL-NAMES.
£11309 DICTIONARY IS “SDFPLUSDICT".
. B11509*
212000 INPUT-OUTPUT SECTION.
£1300% FILE-CONTROL.
014000 SELECT REMFILE ASSIGN TO REMOTE
914509 STATUS IS REMFILE-STATUS
214750 ACTUAL KEY IS REMFILE-RSN.
215000
016802 DATA DIVISION.
217000 FILE SECTION.
018002 FD REMFILE
0218058 RECORD CONTAINS 2408 CHARACTERS
218060 VALUE OF BLOCKSTRUCTURE IS EXTERNAL,

919079 MAXRECSIZE IS 2408.
021200 @1 DATATYPE6B FROM DICTIONARY
0921250 DIRECTORY IS "SMITH".

023150*--SDF TRANSACTION (AGETALPHASPTT).
923208 61 AGETALPHASPRE.

0225@0*--DICTIONARY DIRECTORY : SMITH D
622550*~-DICTIONARY FORMLIST < DATATYPE6B >. D
022600*--SDF TRANSACTION (APUTALPHASTT). D
922650 @1 APUTALPHAS. D
0922709 084 PASTRING1 PIC X(25). D
922900 @4 PASTRING2 PIC X(25). D
022950 @1 DATATYPEG6BSR. D
023000 04 DATATYPE6BSRF PIC X(1). D

D

D

Example 7-1. SDF Plus Program with a Remote File Interface

7-28 ' 8600 0130-000

Using the SDF Plus Program Interface

923259 @4 GASTRING1 PIC X(25).
923309 P4 GASTRING2 PIC X(25).
923359 94 GASTRING PIC X(58).

£23400*01 AGETALPHASPRE.
8235@0*--SDF TRANSACTION (AGETALPHASTT).
923558 @1 AGETALPHAS.

923600 P4 GASTRING1 PIC X(25).
923650 P4 GASTRING2 PIC X(25).
923700 94 GASTRING PIC X(59).

023750*@1 DATATYPEGBSR.

§238606*--SDF TRANSACTION (APUTBINARYTT).
923858 91 APUTBINARY.

823900 94 PBNUMBER1 PIC 9(3) BINARY.
923950 94 PBNUMBER2 PIC 9(3) BINARY.
924900*01 DATATYPEGBSR.

924@825%--SDF TRANSACTION (AGETBINARYPTT).
024050 81 AGETBINARYPRE. ‘

9824075 P4 GBNUMBER1 PIC 9(3) BINARY.
924109 @4 GBNUMBER2 PIC 9(3) BINARY.
924125 @4 GBNUMBER PIC 9(4) BINARY.

$24150*@1 AGETBINARYPRE.
@24175%--SDF TRANSACTION (AGETBINARYTT).
924200 81 AGETBINARY.

024225 P4 GBNUMBER1 PIC 9(3) BINARY.
024259 @4 GBNUMBER2 PIC 9(3) BINARY.
0924500 @4 GBNUMBER PIC 9(4) BINARY.

224519*@1 DATATYPE6BSR.
024539*31 APUTALPHAS.
224540*@1 AGETALPHAS.
924545*@1 APUTBINARY.
924547*91 AGETBINARY.

UUUUUUUUUUUUUUUOUUOUUUUUUUUUOUU

0924549*

924550 @1 OUT-LINE PIC X(72).

0824600*

824650 WORKING-STORAGE SECTION.

924660*

924670 @1 REMFILE-STATUS PIC X(92).

024680 91 REMFILE-RSN PIC 9(24).

924708 01 CONSTANTS.

p24750 B2 TRUE-FLAG PIC 9 COMP VALUE 1.

p24800 @2 FALSE-FLAG PIC 9 COMP VALUE 8.

924850

924920 @1 END-PGMV PIC 9 COMP VALUE @.

924958 91 TRANSTYPE PIC 9(8) VALUE @.

025000 @1 MYSTRING.

925100 83 MYSTRING1 PIC X(25) VALUE SPACES.
925150 @3 MYSTRING2 PIC X(25) VALUE SPACES.
025200 #1 MYBNUMBER PIC 9(4) BINARY VALUE ZERO.
925256 01 MYBNUMBER1 PIC 9(3) BINARY VALUE ZERO.
025300 81 MYBNUMBER2 PIC 9(3) BINARY VALUE ZERO.
925350

Example 7-1. SDF Plus Program with a Remote File Interface (cont.)

8600 0130-000 7-29

Using the SDF Plus Program Interface

925375*

925400 PROCEDURE DIVISION.

925450 MAIN-PARA. : ~
92547 5%*x

925500 OPEN I-0 REMFILE.

925700 PERFORM MAIN-FORM THRU MAIN-FORM-EXIT
925750 UNTIL END-PGMV = TRUE-FLAG.
925800 CLOSE REMFILE.

925850 STOP RUN.

g25875%**

925900 MAIN-FORM.

925950 READ FORM REMFILE USING DATATYPE6B

0226900 ON ERROR DISPLAY "READ FORM ERROR"

0926100 MOVE TRUE-FLAG TO END-PGMV

926150 GO TO MAIN-FORM-EXIT.

926200 IF ATTRIBUTE TRANSNUM OF DATATYPE6B =

026250 ATTRIBUTE TRANSNUM OF AGETALPHASPTT THEN
926300 CHANGE ATTRIBUTE FORMRECNUM OF DATATYPE6B TO
026359 ATTRIBUTE FORMRECNUM OF AGETALPHASPRE
026400 PERFORM GETALPHAS '

026450 ELSE IF ATTRIBUTE TRANSNUM OF DATATYPE6B =
026500 ATTRIBUTE TRANSNUM OF AGETBINARYPTT THEN
826550 CHANGE ATTRIBUTE FORMRECNUM OF DATATYPE68 TO
926609 ATTRIBUTE FORMRECNUM OF AGETBINARYPRE
?26650 PERFORM GETBINARY

026709 ELSE IF ATTRIBUTE TRANSNUM OF DATATYPE6B =
226750 ATTRIBUTE TRANSNUM OF APUTALPHASTT THEN
0926800 CHANGE ATTRIBUTE FORMRECNUM OF DATATYPE6B TO
226850 ATTRIBUTE FORMRECNUM OF DATATYPE6BSR
826900 PERFORM CONCATSTRINGS

926950 ELSE IF ATTRIBUTE TRANSNUM OF DATATYPE6B =
927000 ATTRIBUTE TRANSNUM OF APUTBINARYTT THEN
027169 CHANGE ATTRIBUTE FORMRECNUM OF DATATYPE6B TO
927159 ATTRIBUTE FORMRECNUM OF DATATYPE6BSR
027200 PERFORM BINARYADD

827205 ELSE IF ATTRIBUTE TRANSNUM OF DATATYPE6B =
927210 ATTRIBUTE TRANSNUM OF AGETALPHASTT OR

0927220 ATTRIBUTE TRANSNUM OF DATATYPE6B =
0927230 ATTRIBUTE TRANSNUM OF AGETBINARYTT THEN
927249 CHANGE ATTRIBUTE FORMRECNUM OF DATATYPE6S TO
027245 ATTRIBUTE FORMRECNUM OF DATATYPE6BSR
927250 ELSE MOVE TRUE-FLAG TO END-PGMV.

927275*

027300 WRITE FORM DATATYPEG6B ON ERROR

027350 DISPLAY "WRITE FORM ERROR"

927400 MOVE TRUE-FLAG TO END-PGMV.

927425 MAIN-FORM-EXIT.

227430 EXIT.

927450%**

927509 CONCATSTRINGS.
0275590 MOVE PASTRING1 TO MYSTRING1.

Example 7-1. SDF Plus Program with a Remote File Interface (cont.)

7-30 8600 0130-000

Using the SDF Plus Program Interface

027690 MOVE PASTRING2 TO MYSTRING2.

927675 STRING MYSTRING1, MYSTRING2, DELIMITED BY SIZE INTO MYSTRING
g276808 ON OVERFLOW DISPLAY "STRING ERROR ", MYSTRING.

927699*

028008 BINARYADD. _

028100 MOVE PBNUMBER1 TO MYBNUMBERI.

928150 MOVE PBNUMBER2 TO MYBNUMBERZ.

0928200 COMPUTE MYBNUMBER = MYBNUMBER1 + MYBNUMBERZ.

0282590

928309 GETALPHAS.

" 928350 MOVE MYSTRING1 TO GASTRING1 IN AGETALPHASPRE.
028400 MOVE MYSTRING2 TO GASTRING2 IN AGETALPHASPRE.
028459 MOVE MYSTRING TO GASTRING IN AGETALPHASPRE.
928500
028550 GETBINARY.

928609 MOVE MYBNUMBER1 TO GBNUMBER1 IN AGETBINARYPRE.
928650 MOVE MYBNUMBER2 TO GBNUMBER2 IN AGETBINARYPRE.
p28708 MOVE MYBNUMBER TO. GBNUMBER IN AGETBINARYPRE.
028750*

028800 LAST-PROC.

928850*

028909 EXIT.

Example 7-1. SDF Plus Program with a Remote File Interface (cont.)

SDF Plus Program with a COMS Interface

Example 7-2 shows the same programming logic as Example 7-1; however, the following
COMS interface example shows the application program interacting with users through
a COMS window. The SDFTRANSNUM field, which is imported from the COMS input
header, is interrogated to determine the form record that was read. The program
indicates its response by setting the SDFFORMRECNUM field. This field was imported
from the COMS output header. Additionally, the program accepts two string or binary
inputs from COMS into a message area declared in the DATA DIVISION.

9918060 IDENTIFICATION DIVISION.

pP1980 ENVIRONMENT DIVISION.

092080 CONFIGURATION SECTION.

002108 SPECIAL-NAMES.

902400 DICTIONARY IS “SDFPLUSDICT".
902508 DATA DIVISION.

902608 WORKING-STORAGE SECTION.

002798 @1 SDFMSG PIC X{(2400).
093000 81 COMS-NAME PIC X(72).

5@39 53************************************

@044g0* This is the form record library. *

GOAGEGHAAFHARHRERARREAN RARERRRRIXARRERERNR

04500 @1 DATATYPE6B FROM DICTIONARY. D
004700 DIRECTORY IS "SMITH". D
908100*--DICTIONARY DIRECTORY : SMITH. D

Example 7-2. Using SDF Plus with a COMS Interface

8600 0130-000 7-31

Using the SDF Plus Program Interface

960110*--DICTIONARY FORMLIST< DATATYPE6B >.
000120*--SDF TRANSACTION(APUTALPHASTT).
008140 31 APUTALPHAS.

999150 84 PASTRING1 PIC X(25).
£00160 84 PASTRING2 PIC X(25).
£00189 @1 DATATYPEGBSR.

200199 @4 DATATYPEGBSRF PIC X(1).
£00200*--SDF TRANSACTION(AGETALPHASPTT).
£00228 01 AGETALPHASPRE.

909230 @4 GASTRING1 PIC X(25).
900249 #4 GASTRING2 PIC X(25).
900259 @4 GASTRING PIC X(50).

000270*01 AGETALPHASPRE.
008280*-~SDF TRANSACTION(AGETALPHASTT).
000300 91 AGETALPHAS.

209310 P4 GASTRING1 PIC X(25).
000320 04 GASTRING2 PIC X(25).
902330 P4 GASTRING PIC X(58).

900350*01 DATATYPEGBSR.

900590*--SDF TRANSACTION(APUTBINARYTT).
000610 01 APUTBINARY.

000620 94 PBNUMBER1 PIC 9(3) BINARY.
009630 94 PBNUMBER2 PIC 9(3) BINARY.
000650*01 DATATYPEG6BSR.

0P0660*--SDF TRANSACTION(AGETBINARYPTT).
000680 2i AGETBINARYPRE.

200690 24 GBNUMBER1 PIC 9(3) BINARY.
200790 P4 GBNUMBER2 PIC 9(3) BINARY.
200719 04 GBNUMBER PIC 9(4) BINARY.

900730*31 AGETBINARYPRE.
P0@740*--SDF TRANSACTION(AGETBINARYTT).
000760 @1 AGETBINARY.

000770 P4 GBNUMBER1 PIC 9(3) BINARY.
000780 24 GBNUMBER2 PIC 9(3) BINARY.
090799 P4 GBNUMBER PIC 9(4) BINARY.

200810*01 DATATYPEG6BSR.
201540*31 APUTALPHAS.
901560*@1 AGETALPHAS.
201620*31 APUTBINARY.
001648*31 AGETBINARY.

OU0UO0U0UOU0DUU0DO0000D00O0DU0UO00D00VUDDODUOVUODUDODODOODLDDODODODODOUODO

001770*

204800 @1 SDF-AGENDA-NAME PIC X(17) VALUE "JONES".
9904905 77 SDF-AGENDA-DESIGNATOR USAGE REAL.

205099 77 SDF-CALL-ERROR PIC S9(11) USAGE BINARY.
905200 @1 CONSTANTS.

205309 @2 TRUE-FLAG PIC 9 COMP VALUE 1.
995400 22 FALSE-FLAG PIC 9 COMP VALUE #.
205509

005608 01 END-PGMF PIC 9 COMP VALUE 8.
205800 61 MYSTRING. '
205900 @3 MYSTRING1 PIC X{25) VALUE SPACES.

Example 7-2. Using SDF Plu_s with a COMS Interface (cont.)

7-32 8600 0130-000

Using the SDF Plus Program Interface

2066000 23 MYSTRING2 PIC X(25) VALUE SPACES.
996406 91 MYBNUMBER PIC 9(4) BINARY VALUE ZERO.
906500 ©1 MYBNUMBER 1 PIC 9(3) BINARY VALUE ZERO..
906609 01 MYBNUMBER 2 PIC 9(3) BINARY VALUE ZERO.
2809420*

§09562* In both the input header and output header, SDFINFO,
909600* SDFFORMRECNUM, and SDFTRANSNUM are imported.
pP970¢* These fields must be set correctly.

£09990*

010008 COMMUNICATION SECTION.
919100 INPUT HEADER INHDR.

910300*

910489 OUTPUT HEADER OUTHDR

010500

910600
PROCEDURE DIVISION.

010700
010800
211000
911100
211200
911309

CONVERSATION AREA.
g1 OUT-CA PIC REAL.

MAIN-PARA.

PERFORM START-UP..

PERFORM MAIN-FORM THRU MAIN-FORM-EXIT.
UNTIL STATUSVALUE OF INHDR = 99.

STOP RUN.

911508 START-UP.

011600
911709
011800
2119909
012000
012109
001229
012309
912480
0912449

MOVE ATTRIBUTE NAME OF ATTRIBUTE EXCEPTIONTASK OF
ATTRIBUTE EXCEPTIONTASK OF MYSELF TO COMS-NAME.
CHANGE ATTRIBUTE TITLE OF "DCILIBRARY" TO COMS-NAME.
ENABLE INPUT INHDR KEY "ONLINE".
CALL "GET_DESIGNATOR_USING_NAME IN DCILIBRARY"
USING SDF-AGENDA-NAME
» VALUE AGENDA
, SDF-AGENDA-DESIGNATOR
GIVING SDF-CALL-ERROR.

912608 MAIN-FORM.

912700
912800
0912900
913000
913109
913700
213809
213900
214000
914100
914150
08147026
214800
214929
915009
015190
215158
219709

8600 0130-000

RECEIVE INHDR MESSAGE INTO SDFMSG.
IF STATUSVALUE OF INHDR NOT = 99
IF NOT FUNCTIONSTATUS OF INHDR < @ THEN
MOVE 1 TO DESTCOUNT OF OUTHDR
MOVE STATION OF INHDR TO DESTINATIONDESG OF OUTHDR.
IF SDFTRANSNUM OF INHDR =
~ ATTRIBUTE TRANSNUM OF AGETALPHASPTT THEN
MOVE ATTRIBUTE FORMRECNUM OF AGETALPHASPRE TO
SDFFORMRECNUM OF OUTHDR
PERFORM GETALPHAS
MOVE AGETALPHASPRE TO SDFMSG
ELSE IF SDFTRANSNUM OF INHDR =
ATTRIBUTE TRANSNUM OF AGETBINARYPTT THEN
MOVE ATTRIBUTE FORMRECNUM OF AGETBINARYPRE TO
SDFFORMRECNUM OF OUTHDR
PERFORM GETBINARY
MOVE AGETBINARYPRE TO SDFMSG
ELSE IF SDFTRANSNUM OF INHDR =

Example 7-2. Using SDF Plus with a COMS Interface (cont.)

7-33

Using the SDF Plus Program Interface

219800
619900
020000
020050
020100
- 920700
. 620800
" 020900
021000
021950
021109
923790
£23800
#24100
024200
824900
625000
925700
£25800
§25850
626300
026350
926400
826425
82650
926500

g26800***

ATTRIBUTE TRANSNUM OF APUTALPHASTT THEN
MOVE ATTRIBUTE FORMRECNUM OF DATATYPEGBSR TO
SDFFORMRECNUM OF OUTHDR
MOVE SDFMSG TO APUTALPHAS
PERFORM CONCATSTRINGS
ELSE IF SDFTRANSNUM OF INHDR =
ATTRIBUTE TRANSNUM OF APUTBINARYTT THEN
MOVE ATTRIBUTE FORMRECNUM OF DATATYPEG6BSR TO
SDFFORMRECNUM OF OUTHDR
MOVE SDFMSG TO APUTBINARY
PERFORM BINARYADD
ELSE IF SDFTRANSNUM OF INHDR =
ATTRIBUTE TRANSNUM OF AGETALPHASTT OR
SDFTRANSNUM OF INHDR =
ATTRIBUTE TRANSNUM OF AGETBINARYTT THEN
MOVE ATTRIBUTE FORMRECNUM OF DATATYPE6BSR TO
SDFFORMRECNUM OF OUTHDR
ELSE MOVE TRUE-FLAG TO END-PGMV.

MOVE @ TO SDFINFO OF OUTHDR.

MOVE SDF-AGENDA-DESIGNATOR TO AGENDA OF OUTHDR.
MOVE 2409 TO TEXTLENGTH OF OUTHDR

SEND OUTHDR FROM SDFMSG.

MAIN-FORM-EXIT.

EXIT.

026998 CONCATSTRINGS.

027000
927100
0927409

MOVE PASTRING1 TO MYSTRINGI1.
MOVE PASTRING2 TO MYSTRING2.

928000 BINARYADD.

028109
028200
928300
928400

MOVE PBNUMBER1 TO MYBNUMBER1.
MOVE PBNUMBERZ TO MYBNUMBERZ.
COMPUTE MYBNUMBER = MYBNUMBER1 + MYBNUMBER2.

032909 GETALPHAS.

933009
933109
033200
933329

MOVE MYSTRING1 TO GASTRING1 OF AGETALPHASPRE.
MOVE MYSTRING2 TO GASTRING2 OF AGETALPHASPRE.
MOVE MYSTRING TO GASTRING OF AGETALPHASPRE.

033969 GETBINARY.

934009
934109
934200
934300
938900
938902

MOVE MYBNUMBER1 TO GBNUMBER1 OF AGETBINARYPRE.
MOVE MYBNUMBER2 TO GBNUMBER2 OF AGETBINARYPRE.
MOVE MYBNUMBER TO GBNUMBER OF AGETBINARYPRE.

939908 END-OF-JOB.

7-34

Example 7-2. Using SDF Plus with a COMS Interface (cont.)

8600 0130-000

Section 8
Using the SIM Program Interface

The Semantic Information Manager (SIM) is a database system that provides for the
control, retrieval, and maintenance of data. SIM is a member of the InfoExec family of
products. . :

The compiler translates statements into symbolic SIM queries and generates calls to
SIM at compile time and run time to process the queries. The program interface for SIM
consists of Unisys extensions to COBOL74 that perform the following functions:

Use the RESERVE clause to recognize SIM keywords as reserved words in a
program.

Declare a database.

Map SIM types into COBOL74.

Qualify attributes in single-perspective and multiple-perspective queries.
Declare query variables and records used in a query. ‘
Open and close a database.

Use statements for transaction states and transaction points.

Declare an entity reference variable to explicitly hold a reference to a database
entity.

Use functions and selection expressions to manipulate data and determine entities or
values within database statements.

Select a set of entities and associate it with the query.
Retrieve entities to make them available to the program.
Deactivate a query using the DISCARD statement.

Alter level values in retrieval that involve transitive closure.

Update entities with single-statement or multiple-statement update statements,
assign database attributes, and delete entities.

Process SIM exceptions.

8600 0130-010 8-1

Using the SIM Program Interface

In an InfoExec environment, the Advanced Data Dictionary System (ADDS) is used to
define Data Management System II (DMSII) or SIM databases. For information about
the extensions available with the ADDS program interface, refer to Section 2, “Using
the ADDS Program Interface.” Some optional features available to SIM through ADDS
include the following: ‘

. Declaringk a dictionary using the DICTIONARY statement when the location -
of the SIM database is in a data dictionary other than the ADDS default
DATADICTIONARY.

¢ Specifying program tracking in the DICTIONARY statement. Program tracking -
provides information about databases as components invoked in a program. If you
do not specify program tracking, it is not used. '

~ When opening a SIM database, if you declared a dictionary in the DICTIONARY
statement, the dictionary is used to locate the database. If you did not declare a
dictionary in the DICTIONARY statement, or if the database was not found in the
declared dictionary, the standard A Series file searching conventions are used to locate
the database.

If a dictionary is not declared in the DICTIONARY statement, then the REPOSITORY
option setting of the release specification in the InfoExec Configuration file determines if
a dictionary is declared by default. If the REPOSITORY option is set to REQUIRED,
then the ADDS default DATADICTIONARY is used. If the REPOSITORY option is set

~ to OPTIONAL, then no dictionary is used.

For further information about the REPOSITORY option of the release specifications
in the InfoExec Configuration file, refer to the A Series Data Management Software
Installation Guide.

Note: A program can invoke only one dictionary. Therefore, if a program
accesses both a SIM database (from a dictionary) and SDF forms,
both must be in the same dictionary. -

The information in this section explains how to use COBOL74 to manipulate data in a
- SIM database and provides samples of typical applications used with SIM.

For an alphabetical list of the extensions used with SIM, refer to “SIM Extensions” in
Section 1, “Introduction to COBOL74 Program Interfaces.”

Refer to the A Series InfoExec Semantic Information Manager (SIM) Programming
Guide for the concepts and programming considerations for using SIM. For information
on defining COBOL74 files and elements and for information about program tracking in
SIM, refer to the InfoExec ADDS Operations Guide.

An overview of the concepts underlying SIM is provided in the A Series InfoExec
Semantic Information Manager (SIM) Technical Overview.

8-2 ' 8600 0130-010

Using the SIM Program Interface

Using the RESERVE Option

The RESERVE option notifies the compiler that SIM keywords are recognized as
reserved words for the extent of the program. If the RESERVE option is not included
for a particular class of keywords, the keywords in that class can be used as normal
identifiers in the program. If the functionality of the class is needed, the RESERVE
option must be included for that class, and the keywords are then interpreted as
reserved words. ‘

The RESERVE SEMANTIC option must be specified if databases with the clause
VALUE OF DBKIND IS SEMANTIC are declared in the program.

If you use COBOL74 reserved words in a SIM database, the program will not compile. If
you must-use a COBOL74 reserved word, declare it with an internal name and reference
the reserved word as a literal. :

The RESERVE option appears in the SPECIAL-NAMES paragraph of the
CONFIGURATION SECTION of the ENVIRONMENT DIVISION.

8600 0130-010 8-2A

Using the SIM Program Interface

8-2B 8600 0130-010

Using the SIM Program Interface

See Also

For information on the database declaration, refer to “Declaring a Database in SIM,”

later in this section.

General Format

The general format of the RESERVE option is as follows:

SPECIAL-NAMES.

RESERVE WORDS LIST IS {

SEMANTIC
NETWORK

}. .'.CAPABLE] .

Explanation of Format Elements

SEMANTIC

The following words are reserved only in programs that specify RESERVE SEMANTIC
in the SPECIAL-NAMES paragraph:

APPLY

CALLED

CAT

DISCARD
DISTINCT

DIv
DMCATEGORY
DMDBNAME
DMERRORFLAG
DMEXCEPTION

DMEXCEPTIONINFO -

DMFUNCTION
DMLUCNAME

NETWORK

DMMOREEXCEPTIONS
DMRESULT

DMSTATE
DMSTRUCTURENAME
DMSTRUCTURENUM
DMSUBCATEGORY
DMSUBEXCEPTION
DMUPDATECOUNT
DMVERIFYNAME
ENTITYREFERENCE
EQUIV

EXCLUDE

EXCLUDES

EXCLUSIVE
EXISTS
INCLUDE
INVERSE
ISA

LEVEL

MOD
ORDER

ap
RETRIEVE
SOME
TRANSITIVE

The reserved words for programs that specify the NETWORK option are explained in

Volume 1.

8600 0130-010

8-3

Using the SIM Program Interface

Example

The following example uses the RESERVE SEMANTIC option. The internal database
name is equated with the name of the database as specified in ADDS.

ID DIVISION. -

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES. 'RESERVE SEMANTIC.

DATA DIVISION.

DATA-BASE SECTION. :

DB PROJEMP = "ORGANIZATION" VALUE OF DBKIND IS SEMANTIC.
QD PEMPQ OF PROJECT-EMPLOYEE.

QD ASSIQ OF ASSIGNMENT.

Declaring a Database in SIM

A database declaration specifies the name and type of database that you are using in
a query. Database declarations appear in the DATA-BASE SECTION of the DATA

- DIVISION.

You can specify an internal and an external name for the database. You can also declare
the database to be either a SIM or a DMSII database. If multiple SIM databases are
specified, the database name can be used as the final item to resolve qualification
conflicts.

The COBOL74 interface supports the use of both DMSII and SIM databases in the same
program and in separately compiled modules. A program can also have DMSII and SIM
access to a single database. This support enables you to migrate programs with DMSII
databases to SIM databases more easily.

The maximum number of SIM databases that can be declared in a single program is 47,

of which 5 can be open simultaneously. The system can have up to 50 databases open at
one time.

8600 0130-010

Using the SIM Program Interface

General Format

The general format for a database declaration is as follows:

DB data-name-1[= data-name-2]
[GLOBAL] |

[VALUE OF DBKIND IS {

DMSH
SEMANTIC

[VERSION IS integer-1]

[DIRECTORY IS literal-1]
PRODUCTION}J

[STATUS IS {TE ST

Explanation of Format Elements

data-name-1

This format element identifies the internal name of the database.

data-name-2

This format element identifies the name of the database as specified in ADDS.

By default, if no dictionary is spéciﬁed, the system searches for the database in the
ADDS default DATADICTIONARY. If the SIM database is in an ADDS data dictionary

other than the default DATADICTIONARY, you must use the DICTIONARY statement
to identify the name of the dictionary.

GLOBAL
This option declares a database to be global, enabling a éeparately compiled procedure or
program to reference the database declared in your COBOL74 program. The database

reference in the separately compiled procedure or program must match the database
reference in your COBOL74 program exactly.

VALUE OF DBKIND

This option specifies the database management system that is to manage the specified
database. :

8600 0130-010 _ ‘ 4 8-5

'Using the SIM Program Interface

86

DMSII or SEMANTIC
If the DBKIND is SEMANTIC, the RESERVE clause with the SEMANTIC option must

be specified. For more information, refer to “Using the RESERVE Clause” earlier in this
section. DMSII is the default database management system.

VERSION IS integer-1

This option provides the version of the database. Integer-1 must be a numeric literal
with a maximum of 6 digits. The literal must be a valid version number in the dictionary.

DIRECTORY IS literal-1

This o,ptionél literal provides the name of the directory under which the database is
stored. It is valid only when the database is specified as SEMANTIC. It must be a valid

_directory in the dictionary.

STATUS IS PRODUCTION or STATUS IS TEST

You can define the status of the database in the dictionary to be PRODUCTION or
TEST. Use of these options restricts the invocation of entities to those with a particular

- status or subordinate status. The status specified in the database declaration takes

precedence over any program status that is declared using the DICTIONARY compiler
control option. .

Considerations for Use

When binding is applied, a database is bound to any other database having the
same internal name, if the database is either in one of the following locations or in a
combination of both:

e The main program

e Separately compiled procedures or programs when GLOBAL is spec1ﬁed

See Also

e For more information on using the DICTIONARY statement, see “Identlfymg a
Dictionary” in Section 2, “Using the ADDS Program Interface.”

e For more information on database status, see the InfoExec ADDS Operations Guide.

e For more information on the DICTIONARY compiler control option, see “Accessmg
Entities with a Specific Status” in Section 2, “Using the ADDS Program Interface.”

o More information on the RESERVE clause with the SEMANTIC optlon is provided
in “Using the RESERVE Clause,” earlier in this section.

8600 0130-010

Using the SIM Program Interface

Example

The following example shows database declarations with the VALUE OF, VERSION,
DIRECTORY, and STATUS options:

DATA DIVISION.
DATA-BASE SECTION.
DB UNIVERSITY-DATABASE
VALUE OF DBKIND IS SEMANTIC.
DB MY-DATABASE = ACCOUNTING-DATABASE
GLOBAL A
VALUE OF DBKIND IS SEMANTIC.
DB NEW-DATABASE = PAYROLL-DATABASE
VALUE. OF DBKIND IS SEMANTIC
VERSION IS 2
DIRECTORY IS “FRED"
STATUS IS PRODUCTION.
DB PAYROLL-DB.
DB STAT-DB
VALUE OF DBKIND IS DMSII.

Mapping SIM Types into COBOL74

The type and size of COBOL74 items in program variables and query records can differ
from the type and size of their corresponding SIM descriptions. If valid COBOL74 types-
are used, as shown in Table 8-1, the compiler performs type coercion to convert the
COBOL?74 types to valid SIM types for use with the SIM system.

8600 0130-000 8-7

Using the SIM Program Interface

Table 8~1 describes the COBOL74 data types and indicates those that are valid for use
with corresponding SIM types.

Table 8-1. Mapping SIM Types into COBOL74

SIM Type Query Record Types Program Variable Types

integer, Population BINARY BINARY, COMP, DOUBLE, PIC 9(n)
DISPLAY, REAL

Subrole PIC X(n) DISPLAY PIC X(n) DISPLAY

Date, Time DISPLAY PIC X(8) or DISPLAY PIC X(8) or PIC X(10)

' PIC X(10)

Real REAL BINARY, COMP, DOUBLE, PIC 9(n)
DISPLAY, REAL

Number COMP BINARY, COMP, DOUBLE, PIC 9(n)
DISPLAY, REAL

Character PIC X(n) DISPLAY PIC X(n) DISPLAY, BINARY, COMP,
DOUBLE, REAL

Fixed string, Variable PIC X(n) DISPLAY PIC X(n) DISPLAY

string, Symbolic

Kanji character PIC X(n) KANJI PIC X(n) KANJI

Kaniji string PIC X(n) KANJI PIC X(n) KANJI

Boolean PIC 9(n) COMP BINARY, COMP DOUBLE, PIC 9(n)
DISPLAY, REAL

Compound attribute Group Group

Entity reference ENTITYREFERENCE ENTITYREFERENCE

Range Base type Base type

Enumeration Base type Base type

‘Symbolic SIM types (in the SIM Type column of Table 8-1) can be of any PIC X(n)
DISPLAY query record type; however, the preferred representation is PIC X(30).

- Aliteral value must be declared in the database as an allowable value without quotation
marks for the specific SIM item of symbolic type to which it is assigned. For example,
ASSIGN SINGLE TO MSTATUS gives the desired result, but ASSIGN “SINGLE” TO
MSTATUS receives a syntax error.

The entry MOVE “SINGLE” TO TEMP-FIELD followed by ASSIGN TEMP-FIELD

produces the desired result if TEMP-FIELD is declared PIC X(n), where n equals or is
greater than 6.

8-8 | ’ 8600 0130-000

Using the SIM Program I‘nterfac‘e

Example of Assigning a Literal Value as a SIM Item of Symbolic Type

The following example shows the assignment of a literal value as a SIM item of symbolic
type:

ASSIGN SINGLE TO MSTATUS OF PEMPQ.

INCLUDE [MS TO DEGREE-OBTAINED,

0933700 IF GRADE-POINT-AVG NOT < 3.50
EDUCATION OF EMPQ.

The SIM types for date and time (Table 8-1) must use a representation that enableé
the slash or colon dividers to be included in the appropriate form, as shown below. The
MM/DD/YY form is valid only for input to SIM.

Date/Time Form Representation Example

Date MM/DD/YY PIC X(8) DISPLAY 03/22/87
MMW/DD/YYYY PIC X(10) DISPLAY 09/08/1988

Time HH:MM:SS PIC X(8) DISPLAY 14:54:32

Note that to reference a compound attribute, you must explicitly list one or more of its
constituents. If you do not include at least one constituent, the program might compile
but you could get unexpected results.

Example of Referencing a Compound Attribute

The following example shows the listing of individual components of a compound
attribute:

QD EMP-Q.
21 EMP-REC.
g2 E-NAME.
@3 E-LASTNAME PIC X(20).
@3 E-MIDINITIAL PIC X.
@3 E-FIRSTNAME PIC X(15).
@2 E-RESIDENCE.
@3 E-STREET PIC X(30).
23 E-CITY PIC X(29).

Table 8-2 describes all the COBOL74 data types, indicating with Y (yes) those types that
are valid for use with the corresponding SIM types. The types that are labeled N (no)
are not valid for use in any context in SIM. .

8600 0130-000 ' 8-9

Using the SIM Program Interface

The SIM data types are shown horizontally across the top, and the COBOL74 usage is
shown vertically in the left-hand column.

Table 8-2. Valid Corresponding Types

EBCDIC Kanji
’ String/ String/

SIM Type Integer Real BCD Boolean Value Value Cursor EVA
COBOL N N N N . N N Y ‘N
Query
Compu- Y Y Y Y N N N N
tational
REAY Y Y Y Y N N N N
Double
EBCDIC N N N N Y N N N
PICX
EBCDIC Y Y Y Y N N N N
PIC9
ASClI N N N N "N N N N
Kanji N N N N N Y N N
index N N N N N N N N
Event/Lock N N N N N N N N
Contro! N N N N N N N N
Point
Entity- N N N N N N N Y
reference

Legend

BCD Binary-coded decimal

COBOL COBOL74

EYA Entity-valued attribute

Qualifying Attributes

The following information explains the qualification that is needed for single-perspecﬁve
and multiple-perspective queries. .

Qualification for Single-Perspective Queries
In queries with one perspective, all attributes in the target list must connect to the

perspective. If the attributes are immediate attributes of the perspective class, they are
connected to the class by implicit qualification.

8-10 8600 0130-000

Using the SIM Program Interface

Examples

The examples presented in the following text use the following declaration:

QD EMP-Q.
g1 EMP-REC.
@2 E-LASTNAME PIC X(29).
@2 E-SALARY PIC 9(9)V2.

@2 MNGR-LASTNAME - PIC X(29).

Example of Single-Perspective Query by Implicit Qualification

In the following example, LAST-NAME and EMPLOYEE-SALARY are immediate
attributes of the EMPLOYEE class. Thus, they are connected to the EMPLOYEE class
by implicit qualification.

SELECT EMP-Q FROM EMPLOYEE
(E-LASTNAME = LAST-NAME OF NAME,
E-SALARY = EMPLOYEE-SALARY)
WHERE EMPLOYEE-SALARY > 20009.

Example of Qualification of a Single-Perspective Query with the OF Clause

The following example shows that if the attributes are extended attributes of

the perspective class, you qualify them by using the OF clause with the name

of an entity-valued attribute. In the following example, the explicitly declared
perspective class is EMPLOYEE with the immediate attributes LAST-NAME and
EMPLOYEE-SALARY. The extended attribute is also LAST-NAME but it connects to
the MANAGER class through the EMPLOYEE-MANAGER attribute.

SELECT EMP-Q FROM EMPLOYEE
(E-LASTNAME = LAST-NAME OF NAME,
E-SALARY = EMPLOYEE-SALARY,
MNGR-LASTNAME = LAST-NAME OF NAME OF EMPLOYEE-MANAGER)
WHERE EMPLOYEE-SALARY > 20000.

Example of a Qualification Path of a Single-Perspective Query over Several Classes

A qualification path can range over several classes through the use of several OF clauses.
The path can even return to the perspective class. You can also access such circular
paths with transitive closure, which uses the SET statement. In the following example,
the path ranges over the DEPARTMENT class, through the use of the DEPT-TITLE
OF DEPT-ASSIGNED attribute, and over the PROJECT class, through the use of the
SUB-PROJECT-OF OF PROJECT attribute.

DEPT-TITLE OF DEPT-ASSIGNED OF SUB-PROJECT-OF OF PROJECT

See Also

See “SET Statement” in this section for information on accessing circular paths with
transitive closure. :

8600 0130-000 8-11

Using the SIM Program Interface

Qualification for Multiple-Perspective Queries

8-12

In queries with multiple-perspective classes, you designate each perspective class
after the FROM clause. If an attribute is common to two or more classes, you need to
explicitly qualify the attribute with the OF clause. '

Example

The following example uses the following declaration:

QD EMP-Q.

@1 EMP-Q-REC.
82 E-NAME PIC X(28).
g2 STATUS PIC X(18).
@2 MNGR-NAME PIC X(29).
@2 BONUS PIC 9(9).

The example shows the PROJECT-EMPLOYEE and MANAGER classes appearing as
perspectives in the FROM clause. The LAST-NAME attribute is common to both the
PROJECT-EMPLOYEE and the MANAGER classes and is appropriately qualified. The
other attributes are unique to each class and are thus implicitly qualified.

SELECT EMP-Q FROM PROJECT-EMPLOYEE, MANAGER
(E-NAME = LAST-NAME OF NAME OF PROJECT-EMPLOYEE,
STATUS = STATUS,
MNGR-NAME = LAST-NAME OF NAME OF MANAGER,
BONUS = BONUS)
WHERE BONUS = 100.

Considerations for Use

If you are accessing more than one database at a time, you can use a specific

database with the OF clause. For example, assume DEPARTMENT exists in

the PERSONNEL-PROJECT and BRANCH-PROJECT databases. To qualify
DEPARTMENT as belonging to the PERSONNEL-PROJECT database, use the clause
DEPARTMENT OF PERSONNEL-PROJECT.

8600 0130-000

Using the SIM Program Interface

Using the Query Declaration to Declare a Query

A query declaration identifies the query variable and lists the classes and query record
variables used in the query. A query refers to both inquiry and update requests to a SIM
database and consists of three elements:

¢ The query statement

e The query variable

e The query record

The query statement is sent to SIM to instruct the database about the actions to be
performed. Query statements are constructed by the compiler from the SELECT,

MODIFY, START MODIFY, INSERT, START INSERT, and DELETE statements.
(Multiple-statement update assignnients are constructed as query statement fragments.)

The query variable contains information about the state of the query.

The query record is basically a normal COBOL74 record (data area) into which data

is placed when a retrieval query is executed. A query record can be used for multiple
query statements, as long as the structure of the record is compatible with the data to be
retrieved.

The two basic types of queries are

e Retrieval queries

e Update queries

Retrieval queries are always used with the SELECT statement. A retrieval query always
has only one record (at the 01-level) per query. Update queries are used in transaction

state to update entities using the attribute assignment statements (START MODIFY,
START INSERT), and can be used for limited purposes with the SELECT statement.

" Instead of using the SIM program interface, you can submit update and retrieval queries
against a SIM database by using the SIM library entry points. A description of these -
entry points is provided in the A Series InfoExec Semantic Information Manager (SIM)
Object Manipulation Language (OML) Programming Guide.

The CURRENT function can be used with both types of queries.

See Also

e For information on functioné, refer to “Using Functions.”
e For information on the CURRENT function, refer to “Special Constructs.”

e Refer to the InfoExec SIM Programming Guide for information about query
concepts, use of update and retrieval queries, and the use of the CURRENT function
with queries.

8600 0130-010 : 8-13

Using the SIM Program Interface

e For more information about the statements used with queries, refer to “Usihg
Transactions,” “Updating and Deleting Entities,” and “Selecting and Retrieving
Entities.” '

e For information on deactivating a query, refer to “DISCARD Statement.”

General Format

The general format for a query declaration is as follows:

DATA-BASE SECTION.

(@ query-name-1 [GLOBAL] 1

{[Q_F_ data-name-}.] }

-101 data-name-2.
rlevel-number-1 data-name-3

[usage-clause-1]
[picture-clause- 1].
level-number-2 data-name-4
[usage-clause-2]
[picture-clause-2]. 1]

814

Explanation of Format Elements

QD query-name-1

The level indicator QD identifies the beginning of a query declaration and must precede
the name of the query variable. The name of the query variable is identified by
query-name-1.

GLOBAL

This option declares a database to be global, enabling a separately compiled procedure or
program to reference the database declared in your COBOL74 program. The database
reference in the separately compiled procedure or program must match the database
reference in your COBOL74 program exactly.

OF
If the query is used for retrieving data, a query record is required. For updates, or for

CURRENT-only retrieval, the OF option is required. A query record cannot contain a
FILLER item at any level.

8600 0130-010

Using the SIM Program Interface

data-name-1

This format element must identify a database class.

01 data-name-2

The 01 data-name-2 option is the COBOL74 form for the query record, which allocates a
data area for the query. o

fevel-number-1 and level-number-2
These format elements can be any number from 02 to 49. Level-number-1 and

level-number-2 are generally the same number. In the case of components of compound
attributes, level-number-2 is greater than level-number-1 to show nesting.

data-name-3 and data-name-4

These format elements are associated with attributes of the database in the SELECT
statement. Data-name-3 and data-name-4 can be in any COBOL74 identifier format.

picture-clause-1, picture-clause-2, usage-clause-1, and usage-clause-2

These format elements are described in Volume 1. Only the PICTURE and USAGE
clauses are allowed on levels below 01.

Considerations for Use

When binding is applied, a query declaration is bound to any other query declaration
with the same internal name when the query declaration is either in one of the following
places, or in a combination of both: :

e The main program

e Separately compiled procedures or programs when the GLOBAL option is specified
See Also

For more information on records, levels, and level numbers in COBOL74, refer to
Volume 1.

Examples

Example of a Query Declaration with the OF Option
The following example shows a query declaration with the OF option:

QD PROJ-Q OF PROJECT.

8600 0130-000 : 8-15

Using the SIM Program Interface

Example of a Query Declaration with the Same Level Number

The following example shows a query declaration with PEMP-REC as the COBOL74
form for the query record. Two elementary items are declared at the 02 level.

DATA DIVISION.

DATA-BASE SECTION.

QD PEMP-Q.

@1 PEMP-REC.
g2 PEMP-LASTNAME PIC X(20).
@2 PEMP-AGE PIC 9(3) .

Example of a Query Declaration with Compound Attributes
The following example shows a query declaration with more than one level number:
QD MAN-Q.
P1 MAN-Q-REC.
@2 MAN-LASTNAME PIC X(28).
§2 MAN-RES.
@3 MAN-STREET PIC X(20).

P3 MAN-ZIP PIC 9(5) COMP.
@2 MAN-AGE PIC 9(11) BINARY.

Opening and 'Closing a Database

After you declare a database, you can use the OPEN and CLOSE statements to open
and close the database.

OPEN Statement

The OPEN statement opens a database for subsequent access and specifies the access
mode. ¢

General Format

The general format for the OPEN statement is as follows:

QUIR

UPDATE | #2™m

OPEN

imperative-statement-1 '
|: ON EXCEPTION {conditional-statement-l }] .
NEXT SENTENCE

8-16 8600 0130-000

Using the SIM Program Interface

Explanation of Format Elements

INQUIRY

This option enforces read-only access to the database. It is specified when no update
operations are to be performed on the database. The default option is INQUIRY. If this
option is specified, an exception is returned to the following statements:

ABORT-TRANSACTION END-TRANSACTION

APPLY INSERT EXCLUDE

APPLY MODIFY INCLUDE

BEGIN-TRANSACTION INSERT

CANCEL TRANSACTION POINT . MODIFY

DELETE SAVE TRANSACTION POINT
UPDATE

This option enables the program to modify the database. An exception is returned if the
database is already open. If an exception is returned, the state of the database remains

unchanged.

data-name-1

This format element identifies a database.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section. ’

Example
The following example shows the OPEN statement used with the UPDATE option:

OPEN UPDATE PROJEMPDB.

8600 0130-000 8-17

Using the SIM Program interface

CLOSE Statement

The CLOSE statement closes a database when further access is no longer required.

General Format

The general format for the CLOSE statement is as follows:

CLOSE data-name-1

[ON EXCEPTION {conditional—statement—l

imperative-statement-1 }]

NEXT SENTENCE

Explanation of Format Elements

data-name-1

This format element identifies the name of a database.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section. An exception is returned if the database is not open.

Example
The following example shows the use of the CLOSE statement:

CLOSE PROJEMPDB.

Using Transactions

8-18

You usually use two or more query statements as a unit; however, for SIM to treat
two or more statements as a unit, you must group them within a transaction. During
transaction state, you can update the database. '

~ Atransaction consists of a BEGIN-TRANSACTION statement and an

END-TRANSACTION statement that bind a series of statements. When you use
transaction statements, updated data is applied but not actually committed until the
END-TRANSACTION statement is executed. When the ABORT-TRANSACTION
statement is used, all updates that have been applied since the BEGIN-TRANSACTION
statement are backed out and the program is taken out of transaction state. If the
database involved in a transaction is closed before the END-TRANSACTION statement
is executed, the transaction is terminated by the database system and all applied data is
backed out.

8600 0130-000

Using the SIM Program Interface

You can create and cancel intermediate transaction points within the transaction with
the SAVE TRANSACTION POINT and CANCEL TRANSACTION POINT statements.
The advantage of using intermediate transaction points is that you can better control
and correct transactions. Changes made against a database can be undone and the
progress of one or more transactions can be rolled back to a previously consistent

state. For example, if you use the SAVE TRANSACTION POINT statement to create
intermediate points, a CANCEL TRANSACTION POINT statement can be used to
back out data applied since an intermediate point or since the BEGIN-TRANSACTION
statement, without terminating the transaction or leaving transaction state.

Although you can select and retrieve either in or out of transaction state, you can update
the database only in transaction state. The following statements can be executed only in

transaction state:
ABORT-TRANSACTION EXCLUDE
APPLY INSERT INCLUDE
APPLY MODIFY ‘ INSERT
CANCEL TRANSACTION POINT MODIFY
DELETE SAVE TRANSACTION POINT
END-TRANSACTION

A transaction can update only one database. The database to be updated is identified by
the first operation, which can be one of the above update operations or a data retrieval
operation. Updating a database that is different from the one identified causes an
exception condition.

See Also

e For information on updating a database, see “Updating and Deleting Entities” later
in this section.

e Information on selecting and retrieving data is provided in “SELECT Statement”
and \“RETRIEVE Statement” later in this section.

8600 0130-000 : : 8-19

Using the SIM Program Interface

Example
The following example shows the use of transaction statements in a program:

P-1.
BEGIN-TRANSACTION.
DELETE PERSON WHERE FIRST-NAME OF NAME = “John"
AND LAST-NAME OF NAME = "Doe"“.
ON EXCEPTION
ABORT-TRANSACTION
GO TO P-1-EXIT.
SAVE TRANSACTION POINT 1.
MODIFY PERSON
ASSIGN 34 TO AGE
WHERE FIRST-NAME OF NAME = "Mary"
AND LAST-NAME OF NAME = "Jones".
DELETE PERSON WHERE FIRST-NAME OF NAME = "John"
AND LAST-NAME OF NAME = "Smith".
'ON EXCEPTION
CANCEL TRANSACTION POINT.
P-1-EXIT.
EXIT.

The following information explains the statements used to begin, cancel, and

end transaction state. It also describes the statements used to create and cancel
intermediate transaction points. The statements are presented in alphabetical order.

8-20 8600 0130-000

Using the SIM Program Interface

ABORT-TRANSACTION Statement

The ABORT-TRANSACTION statement backs out all data applied since the
BEGIN-TRANSACTION statement and takes the program out of transaction state.

General Format

The general format for an ABORT-TRANSACTION statement is as follows:

ABORT-TRANSACTION [COMS-header-name-1]
imperative-statement-1

[ON EXCEPTION { conditional-statement-1 H .
NEXT SENTENCE

Explanation of Format Elements

COMS-header-name-1

This option specifies the COMS header. This call is made before the exception-handling
procedure is executed.

The COMS-header-name-1 option is used only with COMS. The COMS-header-name-1
option causes the COBOL74 program to call the DCIENTRYPOINT of a Data
Communications Interface (DCI) library when an exception condition is detected.

This program call enables a program interfacing with COMS to support synchronized
transactions and recovery.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section.

See Also

Refer to Section 3, “Using the COMS Program Interface” for more information on
COMS.

8600 0130-000 8-21

~ Using the SIM Program Interface

BEGIN-TRANSACTION Statement

The BEGIN-TRANSACTION statement places a program in transaction state.

General Format

The general format of a BEGIN-TRANSACTION statement is as follows:

BEGIN-TRANSACTION [EXCLUSIVE]
[COMS-header-name-1 [USING identifier-1]]

[ON EXCEPTION {conditional-statement-l

imperative-statement-1 }]

NEXT SENTENCE

8-22

Explanation of Format Elements

EXCLUSIVE

This option is used to perform a long transaction against a SIM database. If you specify
this option, you are assigned to an exclusive transaction state. In this transaction state,
you are guaranteed exclusive access to the database and have exclusive control of all
structures in the database. However, to prevent deadlocks, the program must wait until
all other programs have finished processing before it can gain exclusive access. Because
exclusive access has a high performance cost, it should be used sparingly.

COMS-header-name-1 USING identifier-1

This option is used only with COMS. Identifier-1 spéciﬁes the message area. These
constructs enable a program interfacing with COMS to support transactions and a batch
option when using archival recovery.

COMS-header-name-1 specifies the COMS input header. If the optional
COMS-header-name-1 phrase is used and no exception condition is detected, the call on -

the DCI library is made and the message area specified by identifier-1 is passed to the
DCIENTRYPOINT of the DCI library.

ON EXCEPTION

The ON EXCEPTION option is described under “Héndling SIM Exceptions” later in this
section.

See Also

For more information on recovery, refer to the COMS Programming Guide.

8600 0130-000

Using the SIM Program Interface

CANCEL TRANSACTION POINT Statement
The CANCEL TRANSACTION POINT statement backs out all updates in a transaction

to an intermediate transaction point or to the beginning of the transaction. The program
remains in transaction state after the CANCEL is performed.

General Format

The general format of a CANCEL TRANSACTION POINT statement is as follows:

CANCEL TRANSACTION POINT [arithmetic-expression-1]
imperative-statement-1

ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

Explanation of Format Elements

arithmetic-expression-1

The CANCEL TRANSACTION POINT statement backs out all database changes
made between the current point in the transaction and the point specified by
arithmetic-expression-1.

If arithmetic-expression-1 is not specified, all data updated since the
BEGIN-TRANSACTION statement is backed out.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section. : ‘

. See Also

For details on arithmetic expressions, see “Arithmetic Expressions” later in this section.

8600 0130-000 - &23

Using the SIM Program Interface

END-TRANSACTION Statement

The END-TRANSACTION statement commits all updates applied within a transaction,
and takes a program out of transaction state. -

General Format
The general format of an END-TRANSACTION statemerit is as follows:

END-TRANSACTION [COMS-header-name-1 [USING data-name-1]]

ON EXCEPTION {conditional-statement-l

imperative-statement-1 }]

NEXT SENTENCE

8-24

Explanation of Format Elements

COMS-header-name-1

This option specifies the COMS output header. This call is made before the
exception-handling procedure is executed.

COMS-header-name-1 is used only with COMS. COMS-header-name-1 causes the
COBOQL74 program to call the DCIENTRYPOINT of a DCI library when an exception

condition is detected. This program call enables a program interfacing with COMS to
support synchronized transactions and recovery.

USING data-name-1

The USING option enables the message area indicated by data-name-1 to be passed to
the DCIENTRYPOINT when the call is made on the DCI library.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section.

See Also

Refer to Section 3, “Using the COMS Program Interface,” for more information on
COMS.

8600 0130-000

Using the SIM Program Interface

SAVE TRANSACTION POINT Statement

The SAVE TRANSACTION POINT statement establishes an intermediate transaction
point.

General Format
The general format of a SAVE TRANSACTION POINT statement is as follows:

SAVE TRANSACTION POINT arithmetic-expression-1
imperative-statement-1

{ ON EXCEPTION { conditional-statement-1 }] .
‘NEXT SENTENCE

Explanation of Format Elements

" arithmetic-expression-1
For details on arithmetic expressions, see “Arithmetic Expressions” later in this section.
The SAVE TRANSACTION POINT statement assigns a marker (denoted by

arithmetic-expression-1) to the present execution point in the transaction. SIM requires
that the marker be a positive, nonzero, unique number after it is truncated to an integer.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section.

Declaring an Entity Reference Variable
An entity reference variable is used to contain an explicit reference to a database entity.
Variables that contain entity reference values are called entity reference variables.
These variables can be assigned and compared only with other entity reference variables
that have been declared with ENTITYREFERENCE usage of the same class. Entity
reference values are valid only in the transaction state in which they are retrieved.

To declare an item as an entity reference variable, use the USAGE clause.

See Also

For detailed information about entity reference variables, refer to the InfoExec SIM
Programming Guide.

8600 0130-000 8-25

Using the SIM Program Interface

General Format

The general format of the declaration for the entity reference variable is as follows:

i

level-number-1 data-name-1 ‘
USAGE IS ENTITYREFERENCE OF data-name-2
OCCURS

} integer-1 [TIMES]]

8-26

Explanation of Format Elements

level-numberl

This level number can be any number from 01 to 49.

data-name-1

This format element is associated with the entity-valued attributes of the database.

USAGE IS ENTITYREFERENCE OF

An item with ENTITYREFERENCE usage is compatible only with other items of

the same class having ENTITYREFERENCE usage. The item is not alphabetic,
alphanumeric, or numeric, so it cannot be used in statements that associate it with such
items.

An item with ENTITYREFERENCE usage can be accessed only within transaction state.

data-name-2

This format element identifies a database class.

OCCURS or OC

This option functions in the same way as any COBOL74 OCCURS clause. See Volume 1
for details on the use of this clause.

Example
The following is an example of a declaration for an entity reference variable:

@1 PEMP-1 USAGE ENTITYREFERENCE OF PROJECT-EMPLOYEE.

8600 0130-000

Using the SIM Program Interface

Using Functions and Expressions

This explahation includes the COBOL74 formats for using functions and expressions,
and presents some tables summarizing SIM information for easy reference.

See Also

For a detailed discussion of the use of functions and expressions in SIM, refer to the
InfoExec SIM Programming Guide.

Using Functions
SIM supports the following functions:

e Aggregate functions

e Arithmetic functions

e Special constructs

e String functions

e Symbolic functions

e Time and date functions

Aggregate Functions

Table 8-3 summarizes the aggregate functions available in the COBOL74 program
interface with SIM. Aggregate functions apply a function to a set of entities to produce
a single scalar result. Some of these functions appear in the diagrams for expressions
shown later in this section. ' '

Table 8-3. Aggregate Functions

Function ' Explanation
AVG Average. Calculates the mean of a collection of numeric values.
~ COUNT Can be used with classes or attributes. Can be used to count class entities

or nonnull values, or to indicate null or nonnull attribute values.

MIN Minimum. Can be applied to any path expression that results in a collection
of values with an ordered type.

MAX " Maximum. Can be applied to any path expression that results in a collection
of values from an ordered type.

SUM Yields the arithmetic sum of the collection of numeric values to which it is
applied.

8600 0130-000 : 8-27

Using the SIM Program Interface

Example
The following example shows the use of the AVG aggregate function:

DMFUNCTION AVG (AGE OF PROJECT-TEAM)

Arithmetic Functions

SIM supports the arithmetic functions shown in Table 8-4.

Table 8-4. Arithmetic Functions

Function Explanation

ABS (expression) Absolute value. Returns the absolute value of the argument. The
result is of the same type as the argument.

ROUND (expression) Returns an expression rounded to the nearest integer.

SQRT (expression) Square root. Returns a real number that is the square root of the
argument. The value of the expression must evaluate to a
nonnegative number.

TRUNC (expression) Truncate. Returns the integer portion of the argument.

Special Constructs

Table 8-5 summarizes the special constructs available in the COBOL 74 interface with
SIM. These constructs cannot be categorized as traditional functions. Note that the
introductory word DMFUNCTION does not precede these constructs when they are
used in a program.

The quantifiers ALL, NO, and SOME can be used when specifying entities for selection
to

e Create a new reference variable that ranges over the class or multivalued attribute
(MVA) represented by the identifier
e Apply to the results of a path expression

¢ Embed quantifiers in an extended qualification
You cannot quantify a reference variable created by using the CALLED construct.
For the EQUIV construct, the ordering sequence is the arrangement of members of a

character set according to a predetermined scheme. Different elements can have the
same ordering attribute, for example, the letters a and A.

8-28 ‘ 8600 0130-000

Using the SIM Program Interface

Table 8-5. Special Constructs

Construct Explanation

ALL Indicates that each value of the attribute must meet the condition.

CALLED Assigns a variable to a certain set of entities for reference by the varniable.

CURRENT ~ Refers to an entity specified in a selection expression for an active
retrieval query. _

EQUIV Performs an equivalent comparison by using the ordering sequence

values (OSVs) of characters. This construct is valid only for string
expressions. The syntax for the EQUIV construct is as follows:

EQUIV (string1 Relational Operator clause string2)

INVERSE Accesses the inverse of an entity-valued attribute.

NO Indicates that no value can meet the condition.

SOME Indicates that at least one value must meet the condition.
TRANSITIVE Returns the transitive closure of a cyclical path expression. An END

clause can be used to specify levels of recursion to be included, if a
complete closure is not performed. The TRANSITIVE function can be
used only with the embedded SELECT statement. Additional information
is provided in the InfoExec SIM Programming Guide. A

Examples
The following are examples of special constructs:
CURRENT OF PEMP-Q

EQUIV (LAST-NAME-1 IS GREATER THAN LAST-NAME-2)

TRANSITIVE (SUB-PROJECTS)

8600 0130-000 ' : 8-29

Using the SIM Program Interface

String Functions

String functions can perform either or both of the following:

e Take one or more strings as arguments.
e Produce a string as the function value.

Table 8-6 describes the string functions and their use with SIM.

Table 8-6. String Functions
Function Syntax Explanation
Character CHR (hexnum(, Constructs a string that is a concatenation of the
hexnum...)) EBCDIC characters represented by the

hexadecimal numbers that are its arguments.
This is useful for including nonprintable
characters in a string.

Extract EXT Returns a substring of the string from the

(string,integerl ,integer2)

Length LENGTH (string)

- maximum number of characters the string can

character position indicated by integerl to the
character position indicated by integer2.

Integerl can be any positive integer.
Integer2 must be greater than integerl.

To denote the end of the string, use an asterisk
(*) in place of integer2.

For example,

EXT("Monday",1,3) = "Mon"
EXT("Monday",4,*) = "day"

Returns the number of characters in the string.

For‘example,

LENGTH("December") = 8

if the string is from a fixed-length string, the
value returned is the declared length. For a
variable-length string, the value returned is the

8-30

contain.

continued

8600 0130-000

Using the SIM Program Interface

Table 8-6. String Functions (cont.)

Function Syntax Explanation
Position POS Returns the character position of stringl in
(string1 string2,integer) string2, at or after the character position

indicated by the integer. The value returned is
always relative to the position of the first
character in string2. If the integer is omitted,
the position of the first appearance of stringl is
returned.
For example,
POS("e","December") =2
POS("e","December",3) = 4
POS("e","December”,5) = 7

Repeat RPT (string,intéger) Returns the string repeated the number of times
indicated by the integer.
For example,
RPT("ab",3) =."ababab"

Example

The following example shows the use of the LEN function to find the length of a string:

DMFUNCTION LEN (PROJECT-TITLE OF CURRENT-PROJECT)

Symbolic Functions

Table 8-7 lists the symbolic functions available in SIM for use in a COBOL74 program.
Symbolic functions operate upon SIM symbolic types, which have values that are

identifiers.
Table 8-7. Symbolic Functions
Function . Explanation
PRED ‘Predecessor. This function operates on ordered symbolics and returns
the previous symbolic value.
SUCC Successor. This function operates on ordered symbolics and returns the
successive symbolic value.

8600 0130-000

8-31

Using the SIM Program Interface

Time and Date Functions

Table 8-8 summarizes the time and date functions available in SIM. Some of these
functions appear in the expression formats shown in this section.

See Also

For information on the SIM types for date and time, refer to “Mapping SIM Types into
COBOL74,” earlier in this section.

Table 8-8. Time and Date Functions

Function Explanation

ADD-DAYS Takes the date and a positive or negative increment in days to produce a
new date. A positive increment returns a future date and a negative
increment returns a previous date. The date must be a valid constant
without quotation marks, for example 09/08/88.

ADD-TIME Takes the time and an increment in seconds to produce a new time. A
positive increment returns a future time and a negative increment returns
a previous time. The time must be a valid constant without quotation
marks, for example 14:01:22.

CURRENT-DATE Parameterless function of type DATE that returns the date for today.

CURRENT-TIME Parameteriess function of type TIME that returns the current time of day.

DAY Returns a day of the month, in numeric form 1 through 31.

DAY-OF-WEEK Returns a day of the week, as a string.

ELAPSED-DAYS Returns elapsed days between two dates.

ELAPSED-TIME Returns the difference in seconds between two expressions of time.

HOUR Returns the hour portion of a time expression.

MINUTE Returns the minute portion of a time expression.

MONTH Returns the month po:tioh of a date expression, in numeric form 1
through 12.

MONTH-NAME Returns the name of the month, as a string.

SECOND Returns the seconds portion of a time expression.

YEAR Returns the year, as a 4-digit numeric.

8-32 8600 0130-000

Using the SIM Progra\m Interface

Examples

The following are examples of date and time functions.

Examples of Time Functions

The following are examples of the CURRENT-TIME, HOUR, MINUTE, and SECOND
time functions:

DMFUNCTION CURRENT-TIME

DMFUNCTION HOUR (EST-PERSON-HOURS)

DMFUNCTION MINUTE (EST-PERSON-HOURS)

DMFUNCTION SECOND (EST-PERSON-HOURS)

The following are examples of the ELAPSED-TIME and ADD-TIME time functions:
DMFUNCTION ELAPSED-TI‘ME(STARTING—TIME, QUITTING-TIME)

DMFUNCTION ADD-TIME(EST-PERSON-HOURS,3600)

Examples of Date Functions

The following examples show the CURRENT-DATE, YEAR, MONTH, and DAY date "
functions: .

DMFUNCTION CURRENT-DATE

DMFUNCTION YEAR(EMPLOYEE-HIRE-DATE)

DMFUNCTION MONTH(EMPLOYEE-HIRE-DATE)

DMFUNCTION DAY (EMPLOYEE-HIRE-DATE)

The following are examples of the ELAPSED-DAYS and ADD-DAYS date functions:
DMFUNCTION ELAPSED-DAYS (START-DATE OF PROJECT,END-DATE OF PROJECT)
DMFUNCTION ADD-DAYS(EMPLOYEE-HIRE-DATE,7)

The following examples show the DAY-OF-WEEK and MONTH-NAME date functions:
_ DMFUNCTION DAY-OF-WEEK(EMPLOYEE-HIRE-DATE)

DMFUNCTION MONTH-NAME (EMPLOYEE-HIRE-DATE)

8600 0130-000 ' : 8-33

Using the SIM Program Interface

Using Expressions

Data management (DM) expressions are used within database statements to determine
values or entities. The selection expression is a special kind of DM expression used to
select entities for retrieval and update.

The following expressions are available in the program interface. The formats and
conventions of each expression are explained in the discussion that follows this list.
e Arithmetic expressions

e Conditional expressions

e Selection expressions

e String expressions

e Formats for expressions used with SIM

See Also

e For a detailed explanation of the use of selection expressions with SIM, refer to
InfoExec SIM Programming Guide.

e For general information on conditions and arithmetic expressions, refer to Volume 1.

Arithmetic Expressions
Arithmetic expressions can contain constants, built-in or user-defined functions,
and arithmetic attributes. Only one multivalued attribute (MVA) can be used in an
arithmetic expression.

If either operand of an arithmetic expression is null, the result is null. Note that at least
one space must appear between each operand and operator within an expression.

The following expressions are valid:

Expression Meaning
+ Addition
- ' Subtraction
* Multiplication
/ Division
DIv Integral division
MOD Modulus
** Exponentiation

Conditional Expressmns

Conditional expressions identify conditions that are tested so the program can choose
between two paths of control, depending on the truth value of the condition.

8-34 8600 0130-000

Using the SIM Program Interface

Table 8-9 specifies the valid operators. These operators can be used to test ordered
types. Two type-compatible operands can be compared using IS EQUAL TO or IS NOT
EQUAL TO. Only IS EQUAL TO or IS NOT EQUAL TO can be used with compound
types or any nonordered types (such as Kanji or entity). A compound type can be
compared only to another compound type with the same sequence of components; a
compound type cannot be compared to any COBOL74 type. To compare a compound
type to a COBOL74 group, you must write individual comparisons for the components
and elementary items. Scalar relational operators can be used with multivalued

expressions.
Table 8-9. Conditional Expression Operators

Operator Explanation

AND Logical conjunction.

EXISTS Unary postfix operator that evaluates to TRUE if the
argument is not a nuli value. Can be used with either
immediate or extended data-valued or entity-valued
attributes. :

ISEQUAL TO or = Equal to. Valid with all types.

IS NOT EQUAL TO Not equal to. Valid with all types.

IS GREATER THAN or > Greater than. Valid only with ordered types.

IS LESS THAN or < Less than. Valid only with ordered types.

IS AFTER Equivalent to IS GREATER THAN. Especially
appropriate for types DATE and TIME, and for
user-defined ordered types. Can be used with any
ordered type.

IS BEFORE Equivalent to IS LESS THAN. Especially appropriate
for types DATE and TIME, and for user-defined ordered
types. Can be used with any ordered type.

ISA Tests to discover if an entity plays a particular role in a
class. Evaluates to TRUE only if the entity identified by
the first operand is 2 member of the class identified by
the second operand.

NOT Logical negation or reversal of truth value.

OR Logical inclusive OR.

See Also

For information on the use of operators in the Condition and Rélational Operator
expression clauses used with SIM, see “Expression Formats” later in this section.

For information on the IS IN operator, refer to “String Expressions” later in this

section.

For general information about conditional expressions, refer to Volume 1.

8600 0130-000

8-35

Using the SIM Program Interface

Selection Expressions

A selection expression can be used to identify the set of entities upon which a query is
to operate. It narrows the group of entities in the perspective class and in classes of
interest for the scope of the query. A selection expression can be either global or local.

A global selection expression applies to the whole query. A local selection expression
applies only to specific attributes.

If a local selection expression is applied to a class or an entity-valued attribute, the
expression can contain only attributes that are immediate or extended attributes

of the class to which the WITH clause refers (the class named, or the class that the
entity-valued attribute ranges over). ,

General Format for a Global Selection Expression

The format for a global selection expression is as follows:

WHERE selection-expression-1

Example of a Global Selection Expression

The following example shows the code for a global expression:
SELECT PEMP-Q FROM PROJECT-EMPLOYEE

(NUM-HOURS = EST-PERSON-HOURS OF ASSIGNMENT-RECORD)
WHERE EST-PERSON-HOURS OF ASSIGNMENT-RECORD > 48.

Generﬂ Format for a Local Selection Expression

The format for a local selection expression is as follows:

WITH selection-expression-1

Explanation of Format Element
WITH

This clause can appear only in the target list of a query, or within a built-in function. The
selection expression in the WITH clause affects only the attribute to which it is applied.

8-36 v 8600 0130-000

Using the SIM Program Interface

When you use RETRIEVE statements with statements that contain local selection
expressions, each RETRIEVE statement obtains the next entity in the query and then
compares the values of the entity against the criteria in the local selection expression.

If the values of an entity do not satisfy the local selection expression, a null value is
returned to the program for the attribute with the local selection expression, instead of
the actual value of the attribute. An error exception only occurs when there are no more
entities to be retrieved.

.Example of a Local Selection Expression

The following example shows the use of a local selection expression:

SELECT PEMP-Q FROM PROJECT-EMPLOYEE
(NUM-HOURS = EST-PERSON-HOURS OF ASSIGNMENT-RECORD
WITH EST-PERSON-HOURS OF ASSIGNMENT-RECORD > 48).

String Expressions

Concatenation is supported in SIM. The operator used in COBOL74 for concatenation is
CAT.

Pattern matching occurs when a set of strings is established as a pattern. A string
expression is then matched with the pattern. The string expression can be either a
literal string or a string variable. The pattern must be a literal string consisting of the
literal characters and the special characters shown in Table 8-10. The syntax pattern for
pattern matching is

<string expression> IS IN <pattern>

Table 8-10. Special Characters Used for Pattern Matching in SIM

Character Explanation

Matches any single character.
{} » Denotes any character inside as a match.

Use only with the braces ({}). Denotes a range of matching letters and
numbers. For example, “a..z" denotes a range of characters from "a" to
"z". You cannot use another special character, such as a dash (=), within
this range.

0O . Groups an expression.
| Matches thé pattern on either side of the bar.

" Denotes all characters inside each set as literals, including special
characters. '

continued

8600 0130-010 8-37

Using the SIM Program Interface

‘Table 8-10. Special Characters Used for Pattern Matching in SIM (cont.) |

Character Explanation

* Matches all instances of the expression preceding it. This expression can
consist of a single character, an expression in parentheses, or a set of
characters enclosed in braces or quotation marks.

? Matches zero or more instances of any character. (This character -
performs the same function as _*).

Examples

The following examples use the IS IN épei’ator for pattern matching.

The code in this example returns the value FALSE because the only item generated
from the pattern "123ABC" is "123ABC". The string expression "ABC" is not equal to
"123ABC".

"ABC" IS IN "123ABC"

The code in this example returns the value TRUE because the pattern "123 | ABC"
contains two string items: 123 and ABC. The string expression "ABC" matches the
ABC in the pattern. :

"ABC" IS IN "123|ABC"

This example returns the value TRUE because the pattern "{ABC}*" contains all the
strings that have zero or more concatenations of the literal ABC. Examples of these
concatenations include blank (), ABC, ABCABC, and ABCABCABC.

"ABC" IS IN "{ABC}*"

e The code in this example returns the value TRUE if MY-STRING contains zero or
more concatenations of the literal 123 followed by AB.
 MY-STRING IS IN " {123}*AB"
See Also

For additional information on the string expressnon refer to the InfoExec SIM
Programming Guide.

Expression Formats

Expressions are used to perform the following:

8-38

Specify attributes or limit a set or group for selection.

Select and assigh values.

8600 0130-010

Using the SIM Program Interface

A DM expression begins' with the Expression clause. A selection expression begins with
the Boolean Expression clause. These expressions can be used in combination.

Information on expression formats is presented in three parts: a list that contains each
DM expression clause and its description; a presentation of the general format for each
expression clause; and an explanation of the components of each general format.

The clauses for DM expressions and selection expressions include the following:

Expression

Boolean Expression clause

. Boolean Primary clause

Condition clause
Expression clause

Primary clause
Qualification Term clause

Relational Operator clause

Descriptioh

Selection expression used with Boolean operators AND, NOT,

and OR
Essential part of the Boolean Expression clause

Indication of a relationship to or evaluation of TRUE or
FALSE

DM expression indicator that is a program variable or an
arithmetic result

Essential component of an Expression clause
Designation of the terms to be qualified

Component of a condition that presents the relational
operators for the condition

Transitive Specification clause Control for the level at which an entity search is done in

General Formats

transitive closure

The general format for each expression format follows.

General Format for a Boolean Expression Clause

[NOT] Boolean Primary clause

i

OR } [N_O_T] Boolean Expression clause]

General Format for a Boolean Primary Clause

(TRUE .
FALSE

(Boolean Expression clause)
\ Condition clause

Qualification Term clause [OF Qualiﬁcation Term clause]. .. !
[OF Transitive Specification clause]

8600 0130-010

8-39

Using the SIM Program Interface

General Format for a Condition Clause

EXISTS

, ISA
Expression clause {

Relational Operator clause

L?m : } Expression clause

General Format for an Expression Clause

* T~

*

[{1 }] Primary clause + Expression clause

CAT

General Format for a Primary Clause

((Boolean Expression clause)
ALL Transitive Specification clause
{— } Qualification Term clause

[R—

g_(())ME ([@ Qualification Term clause] .
R [OF Transitive Specification clause]
) CURRENT OF query-name

DMFUNCTION function-name

constant
{Transitive Specification clause

Qualification Term clause [OF Qualification Term clause]. ..
[_@‘_ Transitive Specification clause] ‘

[(Expression clause[, Expression clause] [OF Qualification Term clause]) ..]

|

8-40

8600 0130-010

Using the SIM Program Interface

General Format for the Qualification Term Clause

([INVERSE OF] DB-data-name [WITH Boolean-Expression clause])
[AS DB-data-name] [CALLED DB-data-name]

A

ALL
{E_Q } ([INVERSE OF| DB-data-name [WITH Boolean Expression clause] (’
SOME

| [AS DB-data-name| [CALLED DB-data-name])

General Format for the Relational Operator Clause

((EQUAL TO Y)

AFTER

IS [NOT] mmf >
BEFORE
LESS THAN
\ \ < 7 J

—

General Format for the Transitive Specification Clause

TRANSITIVE

([INVERSE OF] DB-data-name

[OF [INVERSE OF] DB-data-name]...
[END LEVEL literall

)
[OF Qualification Term clause]. ..

8600 0130-000 8-41

Using the SIM Program Interface

Explanation of Elements for Expression Formats
Table 8-11 shows the format elements for each of the expression formats. An expression

format is not explained if it contains self explanatory elements or if it contains only
nested expression formats that require no additional explanation.

Table 8-11. Expression Format Elements

Expression Format

Elements

Explanation of Element

Boolean Expression
clause

NOT, AND, and OR

Boolean Primary
clause

Boolean Expression
clause

These format elements are Boolean
operators.

Boolean Primary
clause

TRUE, FALSE

Qualification Term
clause

Transitive

Specification clause

Boolean Expression
clause

Condition clause

These format elements are Boolean
values.

The qualification term in the Boolean
Primary clause must be a SIM Boolean
item.

Conditioh clause

ISA, IS IN, and
EXISTS

Expression clause

Relational Operator
clause

More information about these operators is
provided in “String Expressions” and
“Conditional Expressions” earlier in this
section.

Expression clause

T +, *o /1 **o CATl
DIV, MOD

Primary clause

Expression clause

More information about these operators is
provided in “Arithmetic Expressions”
earlier in this section.

cohtinued

8600 0130-000

Using the SIM Program Interface

Table 8-11. Expression Format Elements (cont.)

Expression Format Elements Explanation of Element
Primary clause Boolean Expression
clause

ALL, NO, and SOME These special constructs are quantifiers.

Transitive

Specification clause

Qualification Term

clause

CURRENT This special construct can be used to
establish a relationship to an entity
specified in a selection expression for an
active retrieval query. Refer to “Special
Constructs” earlier in this section for
information on the CURRENT special
construct.

DMFUNCTION This expression is forwarded to the

database system for complete evaluation,
so the arguments of the function can
contain references to unretrieved values in
the database. At run time, COBOL74
arithmetic expressions are evaluated to
single values and passed to the database
system by content.

Expression clause

Constant This format element is a number or string,
or a program variabie. If the constant is a
declared variable in the program, the
program variable takes precedence over
any identically qualified SIM attribute and
is used in processing the query. If the
constant is not a declared program
variable, the SIM database attribute is
used. You must qualify the database
attribute to uniquely identify it from the
program variable if you want to assure
correct selection.

However, query record items are not
considered as program variables in
selection and DM expressions and cannot
be used in these expressions.

continued

8600 0130-000 8-43

Using the SIM Program Interface

Table 8-11. Expression Format Elements (cont.)

Expression Format

Elements

Explanation of Element

Qualification Term
clause

INVERSE OF

Boolean Expression
clause
DB-data-name

WITH

CALLED

The INVERSE OF option invokes the
INVERSE function to create a temporary
inverse attribute from one class to another.

This format element can be any identifier
declared in the database.

This option applies the Boolean
Expression clause as a local selection
expression.

This option is used for role conversion. It
qualifies a reference to an entity by role.
The object of AS must be in the same
hierarchy as the subject.

This special construct assigns a variable to
a set of entities for reference by the '
variable.

Relational Operator

IS and relational

This clause presents relational operators

clause operators for a relation condition.
Transitive INVERSE OF The INVERSE OF option invokes the
Specification clause DB-data-name INVERSE function to create a temporary
inverse attribute from one class to another.
END LEVEL The END LEVEL option specifies the level

Qualification Term
clause

at which the search for an entity ends.

8600 0130-000

Using the SIM Program Interface

Selecting and Retrieving Entities

The following statements are used in a program to activate a query and select the
entities, and to retrieve and close the query:

e The SELECT statement is used to associate a selected set of entities with the query.
It also enables you to assign database attributes to query variables you have defined.

Selection expressions can be used within the SELECT statement to specify one,
some, or all entities from a set.

e The SET statement is used to manipulate the levels of an attribute involving a
selection and retrieval in transitive closure.

o The RETRIEVE statement is used to retrieve the query.
¢ The DISCARD statement terminates an activated query.

There are two uses of the SELECT stgtement:

o Within transaction state

When used in transaction state, the SELECT statement locks the selected entities
against access by other users. It enables a protected read of the data. Because
the query is closed automatically with the END-TRANSACTION statement, all
corresponding RETRIEVE statements must be done in transaction state.

e Outside of transaction state

When the SELECT statement is used outside of transaction state, no entities are
locked. Retrieval can then be done either inside or outside of transaction state, but
note that no records are locked. This option enables several users to access the
entities concurrently, but there is the risk of the database changing while the users
are accessing the data. '

If selection is done outside of transaction state and retrieval is inside; the query is
still open when the program leaves transaction state. When a selection is made to an
open query, an implicit discard is done before the SELECT statement is executed,
and an execution time warning is given.

See Also

¢ For more information on selection expressions, refer to “Using Functions and
Expressions” earlier in this section.

e For more information on transaction state, refer to “Using Transactions” earlier in
this section. - .

8600 0130-000 8-45

Using the SIM Program Interface

SELECT Statement

The SELECT statement selects a set of entities from a database and associates it with
the query. '

General Format

The general format of the SELECT statement is as follows:

SELECT query-name-1 FROM data-name-1 [CALLED data-name-2]
[, data-name-3 [CALLED data-name-4]]...

[DISTINCT]

[fmapping-clause- 1]

BINARY
ORDER BY [{%SE—(;E—CEN%)%G}] [{ORDERING }] DM-expression-1
i - COLLATING

BINARY
el g
- COLLATING]

i

[WHERE selection-expression-1]
imperative-statement-1

ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

Explanation of Format Elements

query-name-1

This format element identifies the name of the query.
data-name-1 and data-name-3 7 /
These format elements identify the database classes.
FROM

This clause specifies the perspective through which SIM associates the attributes. The
FROM clause is optional if you have declared the query using the OF phrase to specify a
class. The FROM clause is required when you have declared the query using the 01-level
clause to specify a query record.

846 , 8600 0130-000

Using the SIM Program Interface

CALLED data-name-2 and data-name-4

This option assigns a reference variable to a specific set of entities. Data-name-2 and
data-name-4 are data names that are local to the SELECT statement.

DISTINCT

This option removes any duplicates, and selects only a unique set of data. DISTINCT is
valid only for tabular formatting.

mapping-clause-1
There are several options available for the mapping clause. They are explained in

“Explanation of Mapping Clause Format Options,” which follows this discussion of the
SELECT statement.

ORDER BY

This option is used to sort output before it is returned.

ASCENDING and DESCENDING

These options are used in ordering output in the ORDER BY phrase. ASCENDING is
the default. If more than one sort key is indicated, the leftmost is the most significant
for ordering.

BINARY, ORDERING and COLLATING

These options select the sequence for the retrieved data that is sorted in the ORDER

BY option. The BINARY option is the default for the ASERIESNATIVE ccsversion and
double-octet strings. The COLLATING option is the default for eight-bit strings that are
not native to A Series systems.

The ordering sequence is the arrangement of members of a character set according to a
predetermined scheme. Different elements can have the same ordering attribute.

The collating sequence is the arrangement of members of a character set according to
the ordering sequence values (OSVs) and the priority sequence values (PSVs). Elements

occupy different code positions. Elements that have the same OSV are differentiated by
the PSV assigned to the code position.

DM-expression-1 and DM-expression-2

These format elements must be of a type that is ordered and must result in a single
value unless tabular formatting is requested.

8600 0130-000 ' 8-47

-Using the SIM Program Interface

WHERE selection-expression-1

This option is used for a global selection expression that applies to the entire query.

ON EXCEPTION

The ON EXCEPTION option is described in “Handling SIM Exceptions” later in this
section.

See Also

For information on declaring a query, see “Using the Query Declaration to Declare a
Query”

Explanation of Mapping Clause Format Options

The following mapping clause options are used to select entities for retrieval with
different types of formatting:

e For tabular formatting, do not use embedded SELECT clauses. The compiler
requests tabular format if no embedded SELECT clauses are specified; otherwise,
the compiler requests hybrid selection.

o For hybrid selection, which combines structured with tabular formats, use the
Attribute Map clause for items to be displayed in a table, and use embedded
SELECT clauses for items to be displayed in a structure.

e For structured formatting, use embedded SELECT clauses. Structured formatting
is a subset of hybrid selection. :

When the Attribute Map clause is used with the subset embedded SELECT clause, all
attributes must be listed before any embedded SELECT clauses.

You do not have to specify attributes in the order in which they were declared, except
when factoring for qualification. For an example of factoring, refer to the examples later
in this section.

8-48 8600 0130-000

Using the SIM Program Interface

General Format of the Mapping Clause

The general format for the Mapping clause is as follows:

embedded-select-clause-1

{attribute-mapclause-l }
attribute-map-clause-2 , embedded-select-clause-2

General Format of the Attribute Map Clause

The format of the Attribute Map clause is as follows:

data-name-5 [= DM-expression-3]
Qualification Term clause }

(attribute-map-clause-5) OF {Transitive Specification clause

General Format of an Embedded SELECT clause

The format for an embedded SELECT clause is as follows:

SELECT query-name-2
Qualification Term clause[OF Qualification Term clause]
FROM { [OF Transitive Specification clause]. .. }
Transitive Specification clause
[(mapping-statement-2)]

8600 0130-000

Explanation of Format Elements

data-name-5

If data-name-5 appears without DM-expression-3, the name must be a COBOL item
name declared in the query declaration; the name must also be a database identifier
that is one of the following: a data-valued attribute (single-valued or multivalued), an
entity-valued attribute, or a database transitive specification. The compiler retrieves
each matching attribute in the COBOL item. If the matching attribute is the name of a
COBOL group item, it is also a compound attribute name. In this case, there must be a
component attribute within the compound with the same name as each corresponding

Using the SIM Program Interface

8-50

elementary item within the group. The compiler maps all of the matching components
into the elementary items.

Tf data-name-5 appears with DM-expression-3, data-name-5 must then be a COBOL
item name declared in the query declaration and DM-expression-3 must be a
DM-expression which can be a single attribute. If data-name-5 is a group item name,
then DM-expression-3 must be a database compound attribute with the same name.
Similarly, each elementary item in the group must have a corresponding component
within the compound that has the same name. These matching components are
retrieved into the elementary items. In all other cases, the name in DM-expression-3
does not have to match data-name-5. If DM-expression-3 contains a component of a
compound attribute, the component must be qualified with the name of the compound
attribute.

DM-expression-3

DM-expression-3 must be a data management expression that could, possibly, be the
name of a single attribute. :

When the name of an elementary item in the query declaration does not appear in an
Attribute Map clause, the compiler assumes an implicit Attribute Map clause without
DM-expression-3. For each elementary item, the class must contain an attribute with a
matching name. The compiler then maps matching attributes in elementary items.
When the compiler maps an attribute into an elementary item, the rules for a COBOL
MOVE statement apply. When a Boolean expression is mapped to its COBOL item, a

false value is represented by 0 (zero) and a true value is represented by a nonzero value
(not necessarily 1). The COBOL item should be tested to determine its value.

Qualification Term clause

This format element specifies the Qualification Term clause. The format for this clause
is described in “Expression Formats” earlier in this section.

FROM

This phrase specifies the perspective through which SIM associates the attributes.

Transitive Specification clause

This clause describes the entity search level for transitive closure. The format for this
clause is explained under “Expression Formats” earlier in this section.

query-name-2

This format element identifies the name of the query.

8600 0130-000

Using the SIM Program Interface

See Also

e For information on the use of the embedded SELECT clause with the TRANSITIVE
function, refer to the InfoExec SIM Programming Guide.

e See Volume 1 for an explanation of the rules for the COBOL MOVE statement.

e See “Using Expressions” earlier in this section for information on DM expressions.

Examples

The following examples show Mapping clause options.

Example of Option Combinations in the Mapping Clause

The following example uses a combination of options shown in the Mapping clause:

MY-AGE = AGE,
MY-NAME = LAST-NAME OF NAME
SELECT Q-2 FROM DEPT-IN
(MY-DEPT = DEPT-TITLE)
SELECT Q-3 FROM CURRENT-PROJECT
(MY-PROJECT = PROJECT-TITLE).

Example of the Attribute Map Clause

The following example uses an Attribute Maf) clause:

MAN-AGE = AGE OF EMPLOYEE-MANAGER,
(PROJECT-TITLE, PROJECT-NO) OF CURRENT-PROJECT.

Example of an Embedded SELECT Clause

The following example uses an embedded SELECT clause:

SELECT Q-2 FROM DEPT-IN
(MY-DEPT = DEPT-TITLE)

SELECT Q-3 FROM CURRENT-PROJECT
(MY-PROJECT = PROJECT-TITLE).

Example of Tabular Selection

The following example illustrates a tabular selection. Default attributes are obtained
from the query record associated with DEPTQ.

SELECT DEPTQ FROM DEPARTMENT.

8600 0130-000 8-51

Using the SIM Program Interface

The following three examples use the SELECT statement for a query in three distinct
versions of the Mapping clause.

Example of a Hybrid Selection Version

SELECT PEMPQ FROM PROJECT-EMPLOYEE

(PEMP-AGE = AGE,
SELECT PROJQ FROM CURRENT-PROJECT

(P-NO = PROJECT-TITLE,

MAN = LAST-NAME OF NAME OF PROJECT-MANAGER)
) . .
WHERE FIRST-NAME OF NAME = "John" AND
LAST-NAME OF NAME = "Smith".

Example of a Fully Structured Version

SELECT PEMPQ FROM PROJECT-EMPLOYEE
(PEMP-AGE = AGE,
SELECT PROJQ FROM CURRENT-PROJECT
(P-NO = PROJECT-TITLE,
SELECT MANQ FROM PROJECT-MANAGER
(PROG = LAST-NAME OF NAME)
) .

) WHERE FIRST-NAME OF NAME = "John" AND
LAST-NAME OF NAME = "Smith".

Example of a Fully Tabular Version

SELECT PEMPQ FROM PROJECT-EMPLOYEE
(PEMP-AGE = AGE,
P-NO = PROJECT-TITLE OF CURRENT-PROJECT,
MAN = LAST-NAME OF NAME OF PROJECT-MANAGER
OF CURRENT-PROJECT
) WHERE FIRST-NAME OF NAME = “"John" AND
LAST-NAME OF NAME = "Smith".

Example of the CALLED Construct

The following example uses the CALLED construct. For more information, see “Special
Constructs” earlier in this section.

SELECT MANQ FROM MANAGER
(MAN-NAME = LAST-NAME OF NAME,
EMP-NAME1 = LAST-NAME OF NAME OF EMPLOYEES-MANAGING,
EMP-NAME2 = LAST-NAME OF NAME OF EMPLOYEES-MANAGING
CALLED OTHEREMP)
WHERE (AGE OF EMPLOYEES-MANAGING GREATER 24) AND
(AGE OF OTHEREMP LESS 36) AND
(DEPT-TITLE OF DEPT-IN OF EMPLOYEES-MANAGING =
"Accounting") AND : _
(DEPT-TITLE OF DEPT-IN OF OTHEREMP = “Purchasing").

8-52 8600 0130-000

Using the SIM Program Interface

Example of Factoring for Qualification

The following example uses factoring for qualification:

SELECT PROJECTQ FROM PROJECT
(P-NAME = PROJECT-TITLE,
(P-MAN = LAST-NAME OF NAME, P-RANK = MANAGER-TITLE)
OF PROJECT-MANAGER,
(S-NAME = LAST-NAME OF NAME, S-NO = PERSON-1D)
OF STAFF-ASSIGNED OF ASSIGNMENT-HISTORY
WITH RATING > 50

)
WHERE PROJECT-NO = 456.

SET Statement

The SET statement alters the value for the level expected in a retrieval involving
transitive closure. Refer to the InfoExec SIM Programming Guide for detailed
information about transitive closure and about using entities in a tabular or structured
format.

An entity-valued attribute that refers to the class of which it is an attribute is called a

reflexive attribute. You can recursively access a reflexive attribute during a retrieval
query, or use a circular path expression; this form of recursion is called transitive closure.

By default, a retrieval traverses the same level, then ends. The SET statement can be
used to manipulate level changes during traversal. This use of the SET statement is
especially valuable when the attribute is multivalued, with multiple values at each level.

General Format

The general format of the SET statement is as follows:

9)4
SET query-name-1 LEVEL {D OWN}

imperative-statement-1
{conditional-statement- 1 } .
NEXT SENTENCE

[ON EXCEPTION

8600 0130-000 , 8-53

Usiﬁg the SIM Program Interface

Explanation of Format Elements

query-name-1 ¢

This format element designates the base of the query tree.

UP and DOWN

The UP phrase adjusts the level up one level from the base of the query tree. The
DOWN phrase adjusts the level down one level. Set the appropriate level before a
retrieval.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

Example

The following example uses the SET statement to adjust the level up from the base of
the query tree, PQ:

SELECT PQ FROM PROJECT
(PQ-TITLE = PROJECT-TITLE
SELECT SQ FROM TRANSITIVE (SUB-PPROJECTS)
(SQ-TITLE = PROJECT-TITLE)
) .

SET SQ LEVEL UP.
RETRIEVE SQ.

8-54 8600 0130-000

Using the SIM Program Interface

RETRIEVE Statement
The RETRIEVE statement requests information from a database. While the SELECT
statement specifies and selects entities to be used, the RETRIEVE statement actually
makes the entities available to your program.

Information about the options for a retrieval involving transitive closure is provided in
«“SET Statement” earlier in this section.

General Format

The general format for the RETRIEVE statement is as follows:

RETRIEVE query-name-1
imperative-statement-1
[ON EXCEPTION { conditional-statement-1 ” .
s NEXT SENTENCE

Explanation of Format Elements

query-name-1
Query-name-1 designates the name of the query. If query-name-1 is declared with a

query record that contains an entity reference variable, the RETRIEVE statement must
be used within transaction state, or a run-time error occurs.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

See Also

e For more information, refer to “Using the Query Declaration to Declare a Query”
and “Declaring an Entity Reference Variable” earlier in this section.

e TFor information about transaction statements, see “Using Transactions” earlier in
this section.

Example

The following line of code shows the use of the RETRIEVE statement:

RETRIEVE PEMPQ.

8600 0130-000 | 8-55

Using the SIM Program Interface

DISCARD Statement

The DISCARD statement discards, or terminates, a currently active query.

General Format

The general format of the DISCARD statement is as follows:

DISCARD query-name-1

[ON EXCEPTION {conditional—statement-l

imperative-statement-1 }]

NEXT SENTENCE

Explanation of Format Elements

query-name-1

. This format element designates the currently active query.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

Example

The following example shows the use of the DISCARD statement:

DISCARD PROJQ.

Updating and Deleting Entities

The following statements are used to update and delete entities:

8-56

The INSERT statement or clause is used to create an entity in a particular class with
specified attribute assignments, or to create a new role or roles for an entity.

The MODIFY statement or clause is used to update existing entities in a particular
class using the specified attribute assignments.

The Compound clause and the ASSIGN, INCLUDE, and EXCLUDE attribute
assignment statements are used to add, update, or remove values from attributes.

The DELETE statement is used to delete entities in a specified class from the
database.

8600 0130-000

Using the SIM Program Inferface

The statements and their syntax are explained later in this section.

There are two types of updates. You cannot use both types of updates in the same query.
The updates include

e Single-statement update, which is a single statement that is executed when it is
encountered

e Multiple-statement update, which enables you to intersperse attribute assignments
among other program statements or to place assignments in other procedures or
functions

A multiple-statement update uses the verbs START and APPLY before the update verb
INSERT or MODIFY. START indicates the type of selection, if any, and associates a

query name with the statement. APPLY applies all related multiple-statement update
statements after the START statement and before the APPLY statement.

See Also

For more detailed information about the types of updates and their use, refer to the
InfoExec SIM Programming Guide.

INSERT Statement

An INSERT statement creates an entity in the specified class with specific attribute
assignments, or creates a new role or roles for an entity. There are two types of INSERT
statements: single-statement update and multiple-statement update.

Single-Statement Update

General Format

The general format of the single-statement update INSERT statement is as follows:

INSERT data-name-1
[FROM data-name-2 WHERE selection-expression-1]

assign-clause assign-clause
exclude-clause »4 exclude-clause

include-clause include-clause

imperative-statement-1
[ON EXCEPTION { conditional-statement-1 }J .
' NEXT SENTENCE

8600 0130-010 8-57

Using the SIM Program Interface

.8-58

‘Explanation of Format Elements

data-name-1 and FROM data-name-2
These format elements identify classes.

If the FROM clause is used, data-name-1 and data-name-2 must have either of the
following two relationships. If data-name-1 and data-name-2 do not have either of these
two relationships, an INSERT statement cannot be used.

e data-name-1 and data-name-2 must have a common superclass. For example, if
the EMPLOYEE class and the EX EMPLOYEE class both have the superclass
PERSON, you can do either of the following:

— Insert an entity from the EMPLOYEE class into the EX_EMPLOYEE class.
— Insert an entity from the EX EMPLOYEE class into the EMPLOYEE class.

e data-name-1 must be a subclass of data-name-2. For example, if the EMPLOYEE
class is a subclass of the PERSON class then the following is true:

— You can insert an entity from the PERSON class into the EMPLOYEE class.
- You cannot insert an entity from the EMPLOYEE class into the PERSON class.

FROM and WHERE

These options specify an existing entity for which a new role is created.

-

Clauses

The clauses represent the database attribute assignment clauses. Refer to “Attribute
Assignment Statements” later in this section.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

- 8600 0130-010

Using the SIM Program Interface

Examples

The following examples use the INSERT statement.

Example of the INSERT Statement with the ASSIGN and INCLUDE Clauses

The following example shows the INSERT statement with the ASSIGN and INCLUDE
clauses used to represent the database attribute assignment clauses:

INSERT PROJECT-EMPLOYEE
ASSIGN ["John" TO FIRST-NAME, "Doe" TO LAST-NAME]
TO NAME :
ASSIGN 19 TO AGE
INCLUDE PROJECT WITH PROJECT-TITLE = "Payroll"
INTO CURRENT-PROJECT.

Example of the INSERT Statement with FROM and WHERE Options

The following example uses the INSERT statement with the FROM and WHERE
options:

INSERT MANAGER FROM PERSON WHERE
FIRST-NAME OF NAME = "Mary" AND
LAST-NAME OF NAME = "Doe" '
ASSIGN 100@.06 TO BONUS
ASSIGN INTERIM-MANAGER TO TEMP-STATUS.

8600 0130-010 " ' 8-58A

Using the SIM Program Interface

8-58B _ 8600 0130-010

Using the SIM Program Interface

Multiple-Statement Update
In a multiple-statement update, the START INSERT statement describes the type of
selection, if any, and associates a query name with the statement. The APPLY INSERT
statement applies all multiple-statement update INSERT statements between the
START and APPLY statements. An example of both statements is provided at the end
of the description of the APPLY INSERT statement later in this section.

START INSERT Statement

The START INSERT statement causes the database system to prepare for a
multiple-statement update insertion.

General Format

The general format of the START INSERT statement is as follows:

START INSERT query-name-1

[FROM data-name-1 WHERE selection-expression-1]
imperative-statement-1

[ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

Explanation of Format Elements
query-name-1
This format element designates the query name to be associated with the statement.

FROM and WHERE

These options specify an existing entity for which a new role is created.

data-name-1

In general, you can use a subclass in place of a class; however, in a START INSERT
statement using the FROM option, data-name-1 must be a database class.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

8600 0130-000 ' ‘ 8-59

Using the SIM Program Interface

APPLY INSERT Statement

The APPLY INSERT statement causes the database system to perform the
multiple-statement update insertion.

General Format

The general format of the APPLY INSERT statement is as follows:

APPLY INSERT query-name-1
imperative-statement-1) 7 -

ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

Explanation of Format Elements

query-name-1

This format element associates the query name with the statement.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

Example
The following example shows a multiple-statement update:

START INSERT P-Q.
ASSIGN MY-PROJECT-NO TO PROJECT-NO OF P-Q.
ASSIGN MY-PROJECT-TITLE TO PROJECT-TITLE OF P-Q.
INCLUDE PROJECT WITH PROJECT-NO EQUAL SUBPROJ-NUM AND
PROJECT-TITLE EQUAL SUBPROJ-NAME
INTO SUB-PROJECTS OF P-Q.
APPLY INSERT P-Q.

8-60 8600 0130-000

Using the SIM Program Interface

MODIFY Statement

A MODIFY statement causes the update of existing entities in the specified class
through the accompanying attribute assignments. There are two types of MODIFY
statements: single-statement update and multiple-statement update.

Single-Statement Update

General Format

The general format of the single-Statement update MODIFY statement is as follows:

LIMIT = arithmetic-expression-1
MODIFY [g{ NO LIIT

assign-clause assign-clause
{exclude-clause} [, {exclude-clause}] eee
include-clause include-clause
[WHERE selection-expression-1]
imperative-statement-1 }]

[ON EXCEPTION { conditional-statement-1
NEXT SENTENCE

e

Explanation of Format Elements

LIMIT or NO LIMIT

These options limit the number of entities that can be modified. If the limit is exceeded,
an exception is produced, and no entities are updated.

arithmetic-expression-1

For details on arithmetic expressions, see “Arithmetic Expressions” earlier in this
section.

data-name-1

This format element must be a class.

Clauses

The clauses refer to statements used to assign values to attributes. Refer to “Attribute
Assignment Statements” later in this section for more information.

8600 0130-000 , ‘ 8-61

Using the SIM Program Interface

8-62

WHERE selection-expression-1

This option is a global selection expression that applies to the entire query. It is required
for all attributes except class attributes. It is not allowed for class attributes.

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

Examples

The following examples illustrate the use of the MODIFY statement.

Example of the MODIFY Statement with a NO LIMIT Option

The following example uses the MODIFY statement with the NO LIMIT option:

MODIFY (NO LIMIT) PROJECT-EMPLOYEE
ASSIGN EXEMPT TO STATUS
WHERE EMPLOYEE-~HIRE-DATE LESS DATE-LIMIT.

Example of the MODIFY Statement with a LIMIT Option

The following example uses the MODIFY statement with a LIMIT option:

MODIFY (LIMIT = MAN-COUNT) MANAGER
ASSIGN BONUS * 2 TO BONUS
WHERE MANAGER-TITLE = EXECUTIVE.

Example of the MODIFY Statement with a Database Attribute Assignment

The following example uses the MODIFY statement with the INCLUDE, EXCLUDE,
and ASSIGN database attribute assignments. The WHERE option is also used.

MODIFY PROJECT-EMPLOYEE

INCLUDE PROJECT WITH PROJECT-TITLE
“Supplies Inventory" AND
PROJECT-NO = 101
INTO CURRENT-PROJECT

EXCLUDE PROJECT WITH PROJECT-TITLE
PROJECT-NO. = 58
FROM CURRENT-PROJECT

ASSIGN MANAGER WITH CURRENT OF MQ = MANAGER
TO EMPLOYEE-MANAGER

WHERE FIRST-NAME OF NAME
OF PROJECT-EMPLOYEE = "John" AND
LAST-NAME OF NAME OF PROJECT-EMPLOYEE = "Doe".

*0ffice Inventory" AND

8600 0130-000

Using the SIM Program Interface

Multiple-Statement Update

A multiple-statement update uses the START MODIFY and APPLY MODIFY
statements.

START MODIFY Statement

The START MODIFY statement causes the database system to prepare for a
multiple-statement update modification.

General Format

' The general format of the START MODIFY statement is as follows:

START MODIFY [g {%mm9t‘°‘em’°“‘°“'l} ;] query-name-1
[WHERE selection-expression-1]

imperative-statement-1
[ON EXCEPTION { conditional-statement-1 }] .

NEXT SENTENCE

Explanation of Format Elements

LIMIT or NO LIMIT

These options limit the number of entities that can be modified. If the limit is exceeded,
an exception is produced.

arithmetic-expression-1

For details on arithmetic expressions, see “Arithmetic Expressions” earlier in this
section.

query-name-1

This format element associates the query name with the statement.

8600 0130-000 8-63

Using the SIM Program Interface

WHERE selection-expression-1

This clause is a global selection expression that applies to the entire query. It is required
for all attributes except class attributes. It is not allowed for class attributes. -

ON EXCEPTION

This option is described under “Handling SIM Exceptions.”

APPLY MODIFY Statement
The APPLY MODIFY statement causes the database system to perform the
multiple-statement update modification. This update modification includes all

multiple-statement update assignments that have occurred since the START MODIFY
statement.

General Format

The general format of the APPLY MODIFY statement is as follows:

APPLY MODIFY query-name-1
. imperative-statement-1
ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

Explanation of Format Elements

query-name-1

This format element associates the query name with the statement.

ON EXCEPTION

‘This option is described under “Handling SIM Exceptions.”

8-64 8600 0130-000

Using the SIM Program Interface

Examples of the START MODIFY and APPLY MODIFY Statements

The following are examples of the START MODIFY and APPLY MODIFY statements.

Example 1

START MODIFY PEMP-Q WHERE FIRST-NAME OF NAME = "John"
AND LAST-NAME OF NAME = "Smith".

IF DEPT-CHANGE = "YES" THEN
ASSIGN DEPARTMENT WITH DEPT-TITLE = MY-DEPT-NAME

TO DEPT-IN OF PEMP-Q :

ELSE }
ASSIGN SENIOR TO TITLE OF PEMP-Q.

APPLY MODIFY PEMP-Q.

Example 2

START MODIFY MANUPDATE WHERE CURRENT OF MANRETR = MANAGER. -
IF GETTING-A-PROMOTION = "YES" THEN
ASSIGN EMPLOYEE-SALARY * 1.1
TO EMPLOYEE-SALARY OF MANUPDATE
ELSE
ASSIGN EMPLOYEE-SALARY * 1.06
TO EMPLOYEE-SALARY OF MANUPDATE
APPLY MODIFY MANUPDATE.

Attribute Assighment Statements

Attribute assignment statements add or remove values from attributes. Database
attributes are assigned values within a single-statement update INSERT or MODIFY
statement or between multiple-statement update START and APPLY statements. The
ASSIGN, EXCLUDE, and INCLUDE attribute assignment statements are used to
assign database attribute values as follows:

e As clauses in a single-statement update statement

e As statements in a multiple-statement update statement

The following table explains the purposes of the statements or clauses:

Statement or Clause Explanation

ASSIGN . Updates single—valued attributes

EXCLUDE v » Removes values from either single- 6r multivalued attributes
INCLUDE Adds values to multivalued attributes

The Compound clause assigns or adds values to compound attributes. This is an optional
clause that is used with the ASSIGN and INCLUDE statements.

The statements and clauses are presented alphabetically on the following pages.

8600 0130-010 8-65

Using the SIM Program Interface

ASSIGN Clause and Statement

The ASSIGN clause or statement is used to update single-valued database attributes.

General Format of the ASSIGN Clause

The format of the ASSIGN clause is as follows:

ASSIGN {

DM-expression-1

data-name-1
compound-clause—l} 10 data iame

General Format of the ASSIGN Statement

The format of the ASSIGN statement is as follows: -

assign-clause-1 OF query-name-1

8-66

Explanation of Format Elements

DM-expression-1

If DM-expression-1 has the following form and data-name-1 is entity-valued, then
data-name-2 must be the name of a database class:

data-name-2 WITH Boolean-expression-clause-1

compound-clause-1

For an explanation of compound-clause-1, see “Compound Clause” after this discussion
of the ASSIGN statement and clause.

TO data-name-1

This format element must be an immediate single-valued attribute.

assign-clause-1

This format element identifies the assign clause.

8600 0130-010

Using the SIM Program Interface

query-name-1

This format element associates the query name with the statement.

See Also

For information on expressions, refer to “Using Expressions” earlier in this section.

Examples

The following examples show the use of the ASSIGN clause and the ASSIGN statement
with simple attributes:

ASSIGN BDATE TO BIRTHDATE OF PEMP.
ASSIGN CURRENT OF MAN-ERV TO EMPLOYEE-MANAGER OF PEMP.

- The following example uses the ASSIGN clause with a Boolean expression:

ASSIGN MANAGER WITH FIRST-NAME OF NAME = "John" AND
LAST-NAME OF NAME = "Smith"
TO EMPLOYEE-MANAGER OF PEMP.
“Compound Clause

The Compound clause is used to assign or add values to compound attributes. It is used
only with the ASSIGN or INCLUDE attribute assignment statements and clauses.

General Format

The format of the Compound clause is as follows:

EXCLUDE data-name-2
compound-clause-1 TO data-name-3
[{DM-expression—2 TO data-name-4 }]

{DM-expression-l TO data-name-1 }
[

EXCLUDE data-name-5
compound-clause-2 TO data-name-6

|

8600 0130-010 8-67

Using the SIM Program Interface

Explanation of Format Elements

data-name-1 through 6

These format elements are components of compound attributes.

DM-expression-1 and DM-expression-2

For information on expressions, see “Using Expressions” earlier in this section.

EXCLUDE

This phrase excludes a part of the compound attribute. For example, in a compound
attribute consisting of first, middle, and last names, you could exclude middle names.
You can use the EXCLUDE phrase on all data-valued and entity-valued attributes, both
single-valued and multivalued. The phrase cannot be used with an INSERT or START
INSERT statement. '

compound-clause-1 and compound-clause-2

These format elements are compound clauses.

Example of the ASSIGN Statement with a Compound Clause

The following example uses the ASSIGN statement with the Compound clause for
compound attributes:

ASSIGN
["1234 Main" TO STREET, "Santa Ana" TO CITY]
TO CURRENT-RESIDENCE OF PEMPQ.
ASSIGN ,
["23 Broadway" TO STREET, EXCLUDE STATE]
TO CURRENT-RESIDENCE OF MANQ.

Example of the INCLUDE Statement with a Compound Clause

The following example uses the INCLUDE statement with the Compound clause for
compound attributes:

INCLUDE [["Jimmy" TO FIRST-NAME "Jones"
TO LAST-NAME] TO NAME OF CHILD
["Sally" TO FIRST-NAME "Jones"
TO LAST-NAME] TO NAME OF CHILD] INTO
CHILD OF PEMPQ.

8-68 ; 8600 0130-010

Using the SIM Program Interface

EXCLUDE Clause or Statement

The EXCLUDE clause or statement is used to remove values from either single-valued
or multivalued attributes.

General Format of the EXCLUDE Clause

The general format of the EXCLUDE clause is as follows:

EXCLUDE [({LIMIT = anthmetlc-expressmn-l}l]

NO LIMIT
[DM-expression-1] FROM data-name-1

General Format of the EXCLUDE Statement

The general format of the EXCLUDE statement is as follows:

exclude-clause-1 OF query-name-1

'Explanation of Format Elements

LIMIT or NO LIMIT

These options limit the number of entities that can be excluded. If neither of these
options is specified, the default is one. If the limit is exceeded, an exception is produced.

arithmetic-expression-1

For information on arithmetic expressions, see “Arithmetic Expressions” earlier in this
section.

DM-e)'tpression-ll

If DM-expression-1 has the fo]lowihg form and data-name-1 is entity-valued, then
data-name-2 must be the name of an entity-valued attribute (EVA):

data-name-2 WITH Boolean-expression-clause-1

8600 0130-010 8-69

Using the SIM Program Interface

FROM
This phrase specifies the perspective through which SIM associates the attributes. The

omission of the clause containing the DM-expression-1 removes all values from the
attribute for the entity (in other words, the attribute value does not exist).

data-name-1

This format element can be an immediate multivalued or single-valued attribute.

exclude-clause-1

This format element designates the use of the EXCLUDE clause in the statement.

query-name-1

This format element associates the query name with the statement.

See Also

For information on expressions, see “Using Expressions” earlier in this section.

Examples
The following are examples of the EXCLUDE clause and statement.

The following example uses the EXCLUDE clause with DM-expression-1. For each
project employee with a current project of PROJECT-ERV the information about the
current project is removed.

EXCLUDE CURRENT-PROJECT WITH PROJECT = PROJECT-ERV
FROM CURRENT-PROJECT OF PEMPQ. :

The following example shows the removal of information about education from the
record containing the educational qualifications of each employee (PEQ) with a BS
degree:

EXCLUDE (NO LIMIT) EDUCATION WITH DEGREE-OBTAINED = BS
FROM EDUCATION OF PEQ.

8-70 8600 0130-010

Using the SIM Program Interface

INCLUDE Clause or Statement

The INCLUDE clause or statement is used to-add values to multivalued aftributes
(MVAs).

General Format of the INCLUDE Clause

The general format of the INCLUDE clause is as follows:

INCLUDE

{DM-expression—l [DM-expression-2]... }
compound-clause-1 [, compound-clause-2].. .

INTO data-name-1 -

General Format of the INCLUDE Statement

The general format of the INCLUDE statement is as follows:

include-clause-1 OF query-name-1

Explanation of Format Elements

DM-expression-1 and DM-expression-2

If DM-expression-1 and DM-expression-2 have the following form and data-name-1 is
entity-valued, then data-name-2 must be the name of a database class:

data-name-2 WITH Boolean-expression-clause-1

compound-clause-1 and compound-clause-2

For information on compound-ciause-l and compound-clause-2, see “Compound Clause”
earlier in this section. : »

INTO data-name-1

This format element must be an immediate multivalued attribute.

8600 0130-010 ‘ ‘871

Using the SIM Program Interface

include-clause-1

This format element associates the INCLUDE clause with the statement.

OF query-name-1

This format element associates the query name with the statement.

See Also

Expressions are described under “Using Expressions.”

N

Examples
The following examples use the INCLUDE statement.

The following example illustrates the use of the INCLUDE statement with simple
attributes. Each project employee is assigned a current project.

INCLUDE PROJECT WITH PROJECT = CURRENT OF PROJQ
INTO CURRENT-PROJECT OF PEMPQ.

The following example uses the IN CLUDE statement with compound attributes.
Educational qualifications are assigned to each project employee.

INCLUDE [PE-DEGREE TO DEGREE-OBTAINED,
PE-GRAD-DATE TO YEAR-OBTAINED,
PE-GPA TO GPA]
INTO EDUCATION OF PEQ.

DELETE Statement

The DELETE statement causes the entities in the specified class that meet the specified
selection to be deleted from the database.

8-72 | | 8600 0130-010

Using the SIM Program Interface

General Format

The general format of the DELETE statement is as follows:

LIMIT = arithmetic-expression-1
DELETE [g { S Lo
WHERE selection-expression-1 _
imperative-statement-1
[ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

s

Explanation of Format Elements

LIMIT or NO LIMIT
These options indicate the number of entities deleted. With the NO LIMIT option, all

entities designated by selection expressions will be deleted. 1If neither of these options is
specified, the default is one. An exception is produced if the limit is exceeded.

arithmetic-expression-1

Arithmetic expressions are explained in “Arithmetic Expressions” earlier in this section.

data-name-1

This format elemént must be a database class.

WHERE selection-expression-1

This clause is a global selection expression that applies to the entire query..

ON EXCEPTION

This option is described under “Handling SIM Exceptions” later in this section.

Examples
The following are examples of the DELETE statement.

This example shows the DELETE statement with a WHERE clause. The name Fred
Jones is removed from the list of project employees. Note that his name still exists as an
EMPLOYEE and as a PERSON in the database.

DELETE PROJECT-EMPLOYEE WHERE
FIRST-NAME OF NAME = "Fred" AND
LAST-NAME OF NAME = “"Jones".

8600 0130-000 8-73

Using the SIM Program Interface

The following example shows the DELETE statement with a WHERE clause that
contains a CURRENT function. All managers are removed who fit the condition
specified by MANAGER. Note that a deleted manager still exists in the EMPLOYEE and
PERSON classes.

DELETE MANAGER WHERE CURRENT OF MANQ = MANAGER.

The following example shows the DELETE statement with a LIMIT option. The
statement deletes all projects with a project number less than 100. If there are more
than 5 projects with project numbers less than 100, no projects are removed.

DELETE (LIMIT = 5) PROJECT WHERE PROJECT-NO BEFORE 108.

The following example shows the DELETE statement with a NO LIMIT option. The
statement deletes all managers. The names of the managers still exist in the PERSON
and EMPLOYEE classes.

DELETE (NO LIMIT) MANAGER WHERE TRUE.

Processing SIM Exceptions

When data manipulation statements are executed, an exception condition can occur if
the program encounters a fault or does not produce the expected action.

DMSTATE is a database status word that is associated with each COBOL74 program
that accesses a SIM database. The value of DMSTATE indicates whether an exception
has occurred and specifies the nature of the exception. You can also obtain additional or
specific information about exceptions by using the CALL SYSTEM statement.

The following pages explain the DMSTATE database status word, the CALL SYSTEM
statement, and methods for handling exceptions. :

For information on exception category values and mnemonics, refer to the InfoExec SIM
Programming Guide.

DMSTATE Statement

8-74

The value of the DMSTATE database status word is set by the system at the completion
of each data management statement. This value indicates whether an exception has
occurred and the nature of the exception.

If you do not specify a field for the DMSTATE database status word, a value of TRUE is |
returned if an error has occurred.

8600 0130-000

Using the SIM Program Interface

General Format for the DMSTATE Statement

The general format for accessing the DMSTATE database status word follows:

DMEXCEPTION
DMSUBEXCEPTION
DMMOREEXCEPTION
DMUPDATECOUNT

OF DMSTATE

General Format for Accessing the DMEXCEPTION Category Mnemonics

The general format for accessing DMEXCEPTION category mnemonics is as follows:

VALUE category-mnemonic

Explanation of Format Elements

DMEXCEPTION

This option yields a numeric value identifying a majbr error category involved in the
exception.

DMEXCEPTION VALUE category-mnemonic

DMEXCEPTION can be compared to major error category mnemonics with the VALUE
phrase.

DMSUBEXCEPTION

This option yields a numeric value that identifies the subcategory of the major error
category involved in the exception. |

DMMOREEXCEPTION

This option yields a TRUE value if there are multiple errors.

DMUPDATECOUNT

This option yields a numeric value that identifies the number of entities updated. When
no entities are updated, the value of DMUPDATECOUNT is 0 (zero).

8600 0130-000 : 8-75

Using the SIM Program Interface

CALL SYSTEM Statement

‘When an exception occurs, you can obtain text that describes the current exception, as
well as additional information about the specific exception and about multiple exceptions.
To do this, use the system names DMEXCEPTIONMSG, DMNEXTEXCEPTION, and
DMEXCEPTIONINFO in the CALL SYSTEM statement. :

General Format

The general format of the CALL SYSTEM statement is as follows:

CALL SYSTEM {DMNEXTEXCEPTION

DMEXCEPTIONMSG GIVING data-name—l}

DMEXCEPTIONINFO

8-76

Explanation of Format Elements

DMEXCEPTIONMSG

This system name causes the system text associated with the current exception to be
moved into data-name-1.

data-name-1

This format element is the required parameter for the DMEXCEPTIONMSG system
name and must be a PIC X DISPLAY item of at least 156 characters. The message
returned is formatted in two 78-character lines.

DMNEXTEXCEPTION

This system name causes the next exceptionin a multiple error list to become the
current exception.

DMEXCEPTIONINFO

This system name updates the DMEXCEPTIONINFO structure with additional
information concerning the present exception. (The DMEXCEPTIONINFO structure is
built into the program by the compiler.) You access the structure as a group item and
access the subfields of the structure for specific information. For a list of the fields of the
structure and an explanation of the information they contain, refer to the InfoExec SIM
Programming Guide.

8600 0130-000

Using the SIM Program Interface

Example of Exception Handling in SIM

The following example shows code that can be used for handling exceptions:

RETRIEVE MAN-QUERY.
IF DMSTATE
CALL SYSTEM DMEXCEPTIONMSG GIVING OUT-TEXT
DISPLAY OUT-TEXT
CALL SYSTEM DMEXCEPTIONINFO
IF DMMOREEXCEPTIONS OF DMSTATE
CALL SYSTEM DMNEXTEXCEPTION
CALL SYSTEM DMEXCEPTIONMSG GIVING OUT-TEXT
DISPLAY OUT-TEXT. ‘ :

Example of the CALL SYSTEM Statement with the DMEXCEPTIONINFO
Structure :

The following example shows code that can be used to access the DMEXCEPTIONINFO
structure and fields in COBOL74:

MOVE DMEXCEPTIONINFO
TO WS-A.

DISPLAY. DMSTRUCTURENAME
OF DMEXCEPTIONINFO.

Handling SIM Exceptions
. Any of the following methods can be used in a program to handle exceptions:

e Specifying the ON EXCEPTION option with the statement.
e Calling the DMERROR Use procedure.

e Using neither of the above. In this case, the prb‘gram terminates if there is an
exception.

The ON EXCEPTION option and the DMERROR Use procedure are described in the
following paragraphs. For general information on the USE statement, refer to Volume 1.

8600 0130-010 8-77

Using the SIM Program Interface

ON EXCEPTION Option

The ON EXCEPTION option can be placed after particular data management
statements to handle exceptions. These statements include the following:

ABORT.TRANSACTION ~INSERT
APPLY INSERT MODIFY

APPLY MODIFY OPEN
BEGIN-TRANSACTION RETRIEVE

CANCEL TRANSACTION POINT SAVE TRANSACTION POINT
CLOSE SELECT

DELETE SET

DISCARD START INSERT
END-TRANSACTION START MODIFY

General Format

The general format of the ON EXCEPTION option is as follows:

imperative-statement-1
ON EXCEPTION { conditional-statement-1 }] .
NEXT SENTENCE

Explanation of Format Elements

imperative-statement-1, conditional-statement-1, or NEXT SENTENCE

These format elements are executed if an exception occurs. Refer to Volume 1 for
information about these statements.

Example

The following is an example of the ON EXCEPTION option:

RETRIEVE DEPT-Q
ON EXCEPTION
GO TO PARA-EXIT.

8-78 : : 8600 0130-010

Using the SIM Program Interface

DMERROR Use Procedure

The DECLARATIVES portion of the PROCEDURE DIVISION provides the ability to
specify a DMERROR Use procedure.

The DMERROR Use procedure is called each time an exception occurs during the
execution of a data management statement, unless an ON EXCEPTION option is
associated with the statement. Control is returned from the DMERROR Use procedure
to the statement following the data management statement that encountered the
exception.

The DMERROR Use procedure can appear by itself or in any order with other Use
procedures in the DECLARATIVES SECTION. Only one DMERROR Use procedure
can be declared in a COBOL74 program. The DMERROR Use procedure cannot contain
GO TO statements that reference labels outside the procedure.

If both a DMERROR Use procedure and an ON EXCEPTION option are used, the
ON EXCEPTION option takes precedence, and the DMERROR Use procedure is not
executed.

Example

The following example shows the declaration of the DMERROR Use procedure:

DECLARATIVES.

DMERR-SECT SECTION.
USE ON DMERROR.

DMERR~-PARA.
IF DMEXCEPTION OF DMSTATE = VALUE DMCOMPLETE
THEN ...

END DECLARATIVES.

SIM Sample Programs

Included are three sample programs that exemplify features of the SIM program
interface. The programs reflect an organization in which projects have been assigned to
various employees.

SIM Program to Update Project Assignments for Employees

In the sample program in Example 8-1, you can add or drop a project for employees
in the database. If you choose to drop a project, the program completes all related
assignments by recalculating the ratings of project employees. The program then
updates the overall ratings for those employees.

The code in this sample program shows how to use single-statement and

multiple-statement updates, tabular retrieval, and the AVERAGE and CURRENT
functions.

8600 0130-000 8-79

Using the SIM Program Interface

8-80

@0016p ID DIVISION.

900200 ENVIRONMENT DIVISION.

900300 CONFIGURATION SECTION.

PPP4PP SPECIAL-NAMES. RESERVE SEMANTIC.
000500 DATA DIVISION.

990600 DATA-BASE SECTION.

000609 DB
900709 QD
900888 QD
009999 91
001000
901190

PROJEMPDB = "ORGANIZATION" VALUE OF DBKIND IS SEMANTIC.
PEMP-Q OF PROJECT-EMPLOYEE.

ASSI-Q.

ASSI-Q-REC.

@2 ASSI-START-DATE PIC X(19).

001200 WORKING-STORAGE SECTION.

201300 01
901400
ge1500
001600 91
001709 01
001800 91
001999

PROJECT-INDICATOR PIC X(4).

88 PROJ-ADD VALUE "ADD".
88 PROJ-DROP VALUE "DROP".
PROJ-NUM PIC 9(11) BINARY.
SS-NUM PIC 9(11) BINARY.
INPUT-RATING PIC 9Vv9.

0p2000 PROCEDURE DIVISION.
902100 BEGIN.

002200 OPEN UPDATE PROJEMPDB.

002300

BO24QQ*FH**xFkkkdkk bodalalabuiaialolabaiaiaiataabolel bodadalalaladedadabniaiaie tabuiedadaieiadoboiniaiaialaiobcininiabnialalole
§02500* Input the project indicator, project number, and social *
932688* security number. *
BO27G@**H > *kkkkk Fdeddkddoiokiokiokkok beadebobiieiodeiotofuioiiaiaialalaioiaiaiaiiaiatiaialaloiniaialalalale
0092800 BEGIN-TRANSACTION.

2802900 START MODIFY PEMP-Q WHERE PERSON-ID EQUAL SS-NUM.

003000 IF PROJ-ADD THEN

0903100 INCLUDE PROJECT WITH PROJECT-NO EQUAL PROJ-NUM

003209 INTO CURRENT PROJECT OF PEMP-Q

903300 ELSE

203400 IF PROJ-DROP THEN

203500 SELECT ASSI-Q FROM ASSIGNMENT

903600 (ASSI-START-DATE = START-DATE)

903709 WHERE ‘

903800 PERSON-ID OF STAFF-ASSIGNED = SS-NUM AND

203909 PROJECT-NO OF PROJECT-OF = PROJ-NUM AND

094000 NOT RATING EXISTS

204100 PERFORM PROCESS-AN-ASSIGNMENT THRU

004200 PROCESS-AN-ASSIGNMENT-EXIT UNTIL DMSTATE
004320 ASSIGN DMFUNCTION AVG (RATING OF ASSIGNMENT-RECORD)
004400 TO OVERALL-RATING OF PEMP-Q

- 994500 EXCLUDE CURRENT-PROJECT WITH PROJECT-NO EQUAL PROJ-NUM
2094600 FROM CURRENT-PROJECT OF PEMP-Q.

09094790 APPLY MODIFY PEMP-Q.

004800 END-TRANSACTION.

08064909 CLOSE PROJEMPDB.

005000 STOP RUN.

vExample 8-1. Updating Project Assignments for Employees

8600 0130-000

Using the SIM Program Interface

0905100
905200 PROCESS~AN-ASSIGNMENT.
0895300 RETRIEVE ASSI-Q

205400 ON EXCEPTION GO TO PROCESS-AN-ASSIGNMENT-EXIT.

9895500
ﬂgSsgg**
905700* Display the start date and enter the input rating. *

ﬂﬁ Sazg**

905990 MODIFY ASSIGNMENT

206000 ASSIGN INPUT-RATING TO RATING
206100 WHERE ASSIGNMENT EQUAL CURRENT OF ASSI-Q.
006200

906300 PROCESS-AN-ASSIGNMENT-EXIT.
206409 EXIT.

Example 8-1. Updating Project Assignments for Employees (cont.)

SIM Program to Archive Assignments

Example 8-2 shows a sample program that cleans up the database by removing
assignments that were completed at least five years ago. The assignments are stored on
tape.

The sample program shows hybrid retrieval including program formats, and extended
attributes in both tabular and structured form. '

200160 ID DIVISION.

200209 ENVIRONMENT DIVISION.

209303 CONFIGURATION SECTION.

900400 SPECIAL-NAMES. RESERVE SEMANTIC.

200509 DATA DIVISION.

000600 DATA-BASE SECTION.

pop709 DB PROJEMPDB= "ORGANIZATION" VALUE OF DBKIND IS SEMANTIC.
200800

000908 QD PEQ.

001000 @1 PEQ-REC.

001109 92 PEQ-NAME PIC X(20).
001209 @2 PERSON-ID PIC 9(11) BINARY.
001300 92 DEPT ' ' PIC X(20).

001420 QD AQ.
291500 AQ-REC.

0201690 92 AQ-START-DATE PIC X(18).

09017090 92 AQ-END-DATE PIC X(18).

0601800 @2 AQ-EST-PERSON-HOURS PIC 9V9.

201900 g2 AQ-RATING PIC 9(2)v9.

002090 WORKING-STORAGE SECTION. ‘

0021909 61 DEADLINE PIC X(8) VALUE "91/01/85".
002209 91 OUT-TEXT PIC X(156).

002300

002400 PROCEDURE DIVISION.
902508 BEGIN.

Example 8-2. Archiving Project Assignments

8600 0130-000 - 8-81

Using the SIM Program Interface

882

9092600 OPEN UPDATE PROJEMPDB.

902700 BEGIN-TRANSACTION.

902800 SELECT PEQ FROM PROJECT-EMPLOYEE

[[1 V3111 tatdadaiaiaiaialaiaiaiiniaialalabuiaiaiaiaininiaialalaialale bafalaieiodtoiuiieiaialaioialaiaininiaioialaiolainiaialoluiaiaiale
903080* PERSON-ID does not need to be specified in the mapping list *
@03100* because the name of field is the same as the name of the *
003200* immediate attribute. *
LT REY. et S L Lt Lt bt bbbt bbb b dbetlalaladiaiadaiabiaiaioinialolaialoiniaile
903490 (PEQ-NAME = LAST-NAME OF NAME,

903500

R it e e bbb bbbt iioiaiaiaiolalabuiaiaiiaialuiaiainialalalalalale
@03700* DEPT is retrieved in tabular form with the rest of the *
003800* 1|m\ed1 ate attributes. *
[X110 i iaiaiaiaialalalaiubiaiadabobaiaialalaiaininialalole badabadoabiideteiabobadalobdaiaioiaiaiaiaiaininisialaiaialainialalaiale
004000 DEPT '= DEPT-TITLE OF DEPT-IN,

204100 SELECT AQ FROM ASSIGNMENT- RECORD

11,1 ¥4, Iadakalaiabaialabalaiabainkoialel badadalaiaiaiaiobaialaletaiaiaialaininialaioialdlalole badalalaiabeininialeinlaiaininbalalabaindede
904309* The ass1gnment attributes are retrleved as a substructure of *
g84490* PROJECT-EMPLOYEE.) *
(111810 iedabebbabeiadaidoabuiniaialalaiaialaialalalainiaialolaloialaloloinialalale Fdedededdek ok koo ok
904600 (AQ-START-DATE = START-DATE,

294709 AQ-END-DATE = END-DATE,

904800 AQ-EST-PERSON-HOURS = EST-PERSON-HOURS,

924900 AQ-RATING = RATING)) :
205000 WHERE SOME (END-DATE OF ASSIGNMENT-RECORD) BEFORE DEADLINE.
905100 PERFORM DO-EMPLOYEE THRU DO-EMPLOYEE-EXIT UNTIL DMSTATE.
095209 END-TRANSACTION.

805399 CLOSE PROJEMPDB.

005400 STOP RUN.

995500

005609 DO-EMPLOYEE.

0957089 RETRIEVE PEQ

02095800 ON EXCEPTION

905900 GO TO DO-EMPLOYEE-EXIT.

DPOEPPY***F*Fdkkddkdkk LAt L bbb bbb i isisdaiiaialaiaiaiainiaieiaialaininialaiaialolaioalolaieie
006182* Write the employee information on tape. *
11 (7.01 " peladalaiaialadobiaiaiatelaidainialaiulalaboiolaiobuinialaiuioltinialaiaialaiaialaiainialabelel tababaluidlaidadodeiaiaalodaiaie
096309 PERFORM DO-ASSIGNMENT THRU DO-ASSIGNMENT-EXIT UNTIL DMSTATE.
006400

9665980 DO-EMPLOYEE-EXIT.

0966020 EXIT.

0967909

#96860 DO-ASSIGNMENT.

09086990 RETRIEVE AQ

007000 ON EXCEPTION

007100 1F DMEXCEPTION OF DMSTATE NOT = VALUE DMCOMPLETE THEN
007200 CALL SYSTEM DMEXCEPTIONMSG GIVING OUT-TEXT

007300 DISPLAY OUT-TEXT

007400 GO TO DO-ASSIGNMENT-EXIT

297590 ELSE

207609 GO TO DO-ASSIGNMENT-EXIT.

Example 8-2. Archiving Project Assignments (cont.) .

8600 0130-000

Using the SIM Program Interface

LT L ekttt bbdabbdbobiobeiuiteieiidebisiaiaiaiaiuiaiainiaialaialaioialoiaininiaiaialololaiolalaisiaiiiiaioln
g07800* Write the assignment information to tape. *
LT el bbb buialllaialaiuisiaiaiaiaiaiaiaininiaitiniaialaiaiaiaisialainiaiale fabebdaiadaboioisialalabcdalaiaialel
0980009 DELETE ASSIGNMENT WHERE ASSIGNMENT EQUAL CURRENT OF AQ.
008100

908208 DO~-ASSIGNMENT-EXIT.

29098300 EXIT.

Example 8-2. Archiving Project Assignments {cont.)

SIM Program to List Subprojects

The sample program in Example 8-3 lists the subprojects for a specific project. Ifa
subproject includes additional subprojects, those are also included in the list.

The sample program shows how to use transitive closure and the related SET
statements.

@20108 ID DIVISION.

#0208 ENVIRONMENT DIVISION.

200308 CONFIGURATION SECTION. _
@0640% SPECIAL-NAMES. RESERVE SEMANTIC.
#00500 DATA DIVISION.

@00609 DATA-BASE SECTION.

@@6700 DB PROJEMPDB = "ORGANIZATION" VALUE OF DBKIND IS SEMANTIC.
990808 QD PQ.

@00909 01 PQ-REC.

001000 g2 PQ-TITLE PIC X(30).
291166 QD SQ.

@01200 61 SQ-REC.

901300 g2 SQ-TITLE PIC X(30).
#01488 WORKING-STORAGE SECTION.

@91508 61 MASTER-PROJECT PIC X(38).

0991609 @1 KOUNTER PIC 9{11) BINARY VALUE 8.

061700 61 DONE-STATUS PIC X(3).

0061800 88 NOT-DONE VALUE “NO".

001990 88 ALL-DONE VALUE "YES".

0802000

202100 PROCEDURE DIVISION.

002200 MAIN.

0902309 OPEN PROJEMPDB.

(1, YLU o eaalabaabeiaiaiaiaiateiaialaialalabuinialalalolel baiainkcioialiaiabaleiaiuiniaaiiolalaiol fabuinialnioleleielciciuisiale
0@2500* Enter the MASTER-PROJECT. *
[0 717 iaadaiadeddabuddddedofabeladedaiialobuiniaiadaioiniaiainiainialaiainolnialaialnialaloiniabioltiohniaialalainiuinininabiale
002700 SELECT PQ FROM PROJECT

002800 (PQ-TITLE = PROJECT-TITLE

202990 SELECT SQ FROM TRANSITIVE(SUB-PROJECTS)

003009 (SQ-TITLE = PROJECT-TITLE))

293160 WHERE PROJECT-TITLE OF PROJECT EQUAL MASTER-PROJECT.

003200 RETRIEVE PQ

003300 ON EXCEPTION

Example 8-3. . Listing Subprojects

8600 0130-000 8-83

Using the SIM Program Interface

903400 DISPLAY "NO SUCH PROJECT"

0083500 GO TO MAIN-END.

003609 MOVE "NO" TO DONE-STATUS.

003790 PERFORM GET-SUBPROJECT UNTIL ALL-DONE.

0993800

993999 MAIN-END.

004000 CLOSE PROJEMPDB.

- 994109 STOP RUN.

294200 :

904300 GET-SUBPROJECT.

994490 RETRIEVE SQ.
gﬁ4Sgg**
©@04600* Display SQ-TITLE. : ‘ *
004700* Check the next level of subprojects. *
ﬂﬂ485ﬁ**
204900 SET SQ LEVEL UP.

9050090 ADD 1 TO KOUNTER.

9051909 RETRIEVE $SQ

095200 ON EXCEPTION

005300 IF DMEXCEPTION OF DMSTATE = VALUE DMCOMPLETE THEN
095400 PERFORM BACK-UP-LEVEL UNTIL ALL-DONE OR NOT DMSTATE
9085500 GO TO GET-SUBPROJECT-EXIT

205600 ELSE

0057900 MOVE "YES" TO DONE-STATUS

02058900 GO TO GET-SUBPROJECT-EXIT.

205900

006809 GET-SUBPROJECT-EXIT.
206100 EXIT.
006200 BACK-UP-LEVEL,

066BQE**

206499* Check the previous level for more subprojects. *
ggssgg**
0996699 SET SQ LEVEL DOWN. ‘

096700 SUBTRACT 1 FROM KOUNTER.

096809 IF KOUNTER EQUAL @ THEN

gﬁsgﬁz**

907098* A1l subprojects are exhausted. *
gz?15@**
087200 MOVE "YES" TO DONE-STATUS

0973909 ELSE

087409 RETRIEVE SQ

9975080 ON EXCEPTION

02087699 IF DMEXCEPTION OF DMSTATE NOT = VALUE DMCOMPLETE

0877909 THEN MOVE "YES" TO DONE-STATUS.
Example 8-3. Listing Subprojects (cont.)

884 : 8600 0130-000

Appendix A
Reserved Words

The following is a list of the COBOL74 reserved words in alphabetical order. For general
information about COBOL74 reserved words, see Volume 1.

A
ABORT-TRANSACTION ACCEPT ACCESS
ADD ADVANCING AFTER
ALARM ALL ALLOW
ALPHABETIC ALSO ALTER
ALTERNATE AND ARE
AREA AREAS ASCENDING
ASSIGN AT ATTACH
AUDIT AUTHOR

B
BEFORE BEGIN-TRANSACTION BEGINNING
BINARY BLANK BLOCK
BOTTOM BY

c
CALL " CANCEL CAUSE
cD CF CH
CHANGE CHARACTER . CHARACTERS
CLOCK-UNITS CLOSE CMP
COBOL CODE CODE-SET
COLLATING COLUMN COMMA
COMMANDKEYS COMMUNICATION COMP
COMPUTATIONAL COMPUTE CONFIGURATION
CONTAINS CONTENT CONTINUE
CONTROL CONTROL-POINT CONTROLS
COPY COPY-NUMBER CORR
CORRESPONDING COUNT cP
CREATE CRUNCH CURRENCY
CURRENT

8600 0130-000

Reserved Words

A-2

DATA
DATE-COMPILED
DB i
DEBUG-ITEM
DEBUG-SUB-1
DEBUGGING
DELETE
DEPENDING
DETACH
DISABLE
DISPLAY
DMERROR
DMTERMINATE
DS

EGI

ENABLE
END-TRANSACTION
EOP

ESI

EXCEPTION
EXTEND

FALSE
FILE

FINAL
FOOTING
FORM-KEY
FUNCTION

GENERATE
GREATER

HEADING
HIGH-VALUES

D

DATA-BASE
DATE-WRITTEN
DE
DEBUG-LINE
DEBUG-SUB-2
DECIMAL-POINT
DELIMITED
DESCENDING
DETAIL
DISALLOW
DIVIDE
DMSTATUS
DOUBLE
DUPLICATES

E

ELSE

END

ENDING
EQUAL

EVENT
EXECUTE
EXTERNAL

F

FD
FILE-CONTROL
FIND

FOR

FREE

G
GIVING
GROUP
H
HERE

DATE

DAY
DEBUG-CONTENTS
DEBUG-NAME
DEBUG-SUB-3
DECLARATIVES
DELIMITER
DESTINATION
DICTIONARY
DISK

DIVISION
DMSTRUCTURE
DOWN
DYNAMIC

EMI
END-OF-PAGE
ENVIRONMENT
ERROR '
EVERY

EXIT

FIELD
FILLER
FIRST
FORM
FROM

GO

HIGH-VALUE

8600 0130-000

Reserved Words

-0
IDENTIFICATION
INDEX

INITIAL

INPUT

INSERT
INTERRUPT
INVOKE

Just

LABEL
LEADING

LESS

LINAGE
LINE-COUNTER
LOCAL

LOCKED
LOWER-BOUND

MEMORY
MID-TRANSACTION
MOVE

NATIVE
NO

NOT
NUMERIC

OBJECT-COMPUTER
ODT-INPUT-PRESENT
OFFSET

OPEN
ORGANIZATION

OWN

8600 0130-000

|
|-O-CONTROL
IF

INDEXED
INITIALIZE
INPUT-OUTPUT
INSPECT
INTO

IS

3K
JUSTIFIED

L

-LAST

LEFT

LMIT
LINAGE-COUNTER
LINES
LOCAL-STORAGE
LOW-VALUE
LOWER-BOUNDS
M

MERGE

MODE

MULTIPLE

N

NEGATIVE
NO-AUDIT

NULL

o

oc

OF
OMITTED
OPTIONAL
OUTPUT

D

IN

INDICATE
INITIATE
INQUIRY
INSTALLATION
INVALID

KEY

LD

LENGTH
LIMITS

LINE
LINKAGE
LOCK
LOW-VALUES

MESSAGE
MODULES
MULTIPLY

NEXT

NONE-
NUMBER

OCCURS

. OFF

ON
OR
OVERFLOW

A-3

Reserved Words

PAGE
PERFORM

- PIC

POINT
POSITION
PRIOR
PROCEED
PROGRAM-ID

QUEUE

RANDOM
READ-OK
RECEIVE
RECORDS
REEL
REFERENCES
REMAINDER
RENAMES
REPORTING
RESERVE
REVERSED
RF

RIGHT

SAME
SEARCH

. SECURITY
SEGMENT-LIMIT
SENTENCE
SEQUENTIAL
SINGLE
SORT-MERGE
SPACE . .
STACK
START

P
PAGE-COUNTER
PF
PICTURE
POINTER
POSITIVE
PROCEDURE
PROCESS
PURGE

Q

QUOTE

R

RD
READ-WRITE
RECEIVED
RECREATE
REF
RELATIVE
REMOVAL
REPLACING
REPORTS
RESET
REWIND
RH
ROUNDED
s

SAVE
SECTION
SEEK
SELECT
SEPARATE
SET

SIZE
SOURCE
SPACES
STANDARD
STATUS

PC

PH

PLUS

PORT
PRINTING
PROCEDURES
PROGRAM

QUOTES

READ
REAL
RECORD
REDEFINES

- REFERENCE

RELEASE
REMOVE
REPORT
RERUN
RETURN
REWRITE
RIBBON
RUN

SD
SECURE
SEGMENT
SEND
SEQUENCE
SIGN
SORT

SOURCE-COMPUTER

SPECIAL-NAMES
STANDARD-1
STOP

8600 0130-000

Reserved Words

continued

STORE
SUB-QUEUE-2
SUM

SYNCHRONIZED

“TABLE
TALLYING

B

TEXT
THROUGH
TIMER
TODAYS-DATE
TRACTORS
TRANSPORT

UNIT

UNTIL
UPON
USING

VA
VARYING

WAIT
WITH

WRITE

ZERO

8600 0130-000

]

STRING
SUB-QUEUE-3
SYMBOLIC
SYSTEM

T

TAG-KEY

TAPE
TERMINAL
THAN

 THRU

TIMES

-TODAYS-NAME

TRAILING
TRUE

)
UNLOCK
UP
USAGE

v

VALUE
VIA

w

WHEN
WORDS
WRITE-OK
z

ZEROES

SUB-QUEUE-1
SUBTRACT
SYNC
SYSTEMERROR

TAG-SEARCH
TASK
TERMINATE
THEN

TIME

TO

TOP
TRANSACTION
TYPE

UNSTRING
UPDATE
USE

VALUES

WHERE
WORKING-STORAGE

ZEROS

A-5

8600 0130-000

Appendix B
User-Defined Words

A user-defined word is a COBOL74 word that must be supplied by the user to satisfy the
format of a clause or statement. Each character of a user-defined word is selected from
the set of characters A through Z, 0 through 9, and the hyphen (-). The hyphen cannot
appear as the first or last character of a word.

A list of the words that you can define is shown below. For detailed information about
user-defined words, refer to Volume 1.

alphabet-name . cd-name
COMS-header-name condition-name
data-name ‘ family-name
file-name formlibrary-name
form-name group-list-name
index-name level-number
library-name mnemonic-name

paragraph-name

program-name

record-name report-name
routine-name section-name
segment-number text-name

8600 0130-000

B-1

B-2

8600 0130-000

Glossary

The glossary contains terms that appear in this volume and are important in understanding
the program interfaces. For definitions of general Unisys Standard COBOL74 terms, refer to
Volume 1. For definitions of product-specific terms, refer to the product programming guides.

A

access mode
The manner in which records are to be operated on within a file. The two possible access
modes are random and sequential. :

Accessroutines »
In Data Management System II (DMSID), routines that perform all physical and logical
management of a database and allow many users to access the database concurrently.
Each data management statement that a user language program executes invokes
a portion of the Accessroutines to perform all file management functions that the
statement requires. .

active query '
In database management, a query that the system can process. All queries activated
within transaction state are deactivated at the end of transaction state.

address
(1) The identification of a location in storage (memory). (2) A sequence of bits,
a character, or a group of characters that identifies a network station or a group
of stations, a user, or an application. (3) The location of a device in the system
configuration. (4) The identification of the Jocation of a disk sector.

ADDS
‘ See Advanced Data Dictionary System.

Advanced Data Dictionary System (ADDS)
A software product that allows for the centralized definition, storage, and retrieval of
data descriptions.

agenda
In the Communications Management System (COMS), an entity used for message
routing that consists of a processing-item list and a destination. An agenda can be
applied to messages that are received or sent by application programs.

aggregate functions :
The functions applied to a set of entities to produce a single scalar result.

- ALGOL .
Algorithmic language. A structured, high-level programming language that provides

the basis for the stack architecture of the Unisys A Series systems. ALGOL was the
first block-structured language developed in the 1960s and served as a basis for such

8600 0130-000 ‘ Glossary-1

Glossary

languages as Pascal and Ada. It is still used extensively on A Series systems, pnmarily
for systems programming. .

alias identifier
An alternative label or name. For instance, a data item or entity name is invoked and
given an alias identifier that is used to refer to the item or entity throughout the rest
of the program. An alias identifier is useful when, for example, an entity name in a
program is imported from a system or a language that has different restrictions on name
formation.

alphanumeric character
Any character in the computer’s character set.

ancestor
; (1) The parent of a particular task, or the parent of any ancestor of the task. (2) In
embedded data sets in the Data Management System II (DMSII) environment, the
owner of a record, the owner of the owner, and so forth.

apply |
‘In the Semantic Information Manager (SIM), to update data in the database. The
changed data is not made permanent until an END-TRANSACTION statement is
executed.

arithmetic expression
An expression containing any of the following: a numeric variable, a numeric elementary
item, a numeric literal, identifiers and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic expressnon
enclosed in parentheses.

arithmetic operator
A single character or a fixed 2-character combination belonging to the following set:
+ (addition), — (subtraction), * (multiplication), / (division), or ** (exponentiation).

ascending key
A key that has values on which data are ordered, starting with the lowest value of the
key up to the highest value of the key, in accordance with the rules for comparing data
items.

attribute
(1) The information that describes a characteristic of an entity. (2) In the Semantic
Information Manager (SIM), a characteristic of the entities of a class or of the class itself.
A SIM attribute can be either data-valued or entity-valued.

audited database
In Data Management System II (DMSTI) and in the InfoExec environment, a database
that stores a record of changes (called the audit trail), which can be used for database
recovery if a hardware or software failure occurs.

automatic subset

In Data Management System II (DMSII), a subset declared with a condition that
specifies which members of the data set are to be included in the subset. Entries are

Glossary-2 8600 0130-000

Glossary

automatically inserted into or removed from the subset when records are added to or
deleted from the data set.

B

back out ,
In Data Management System II (DMSII), to undo changes made against a database and
to roll back the progress of one or more transactions to a previously consistent state.

batch mode
(1) An execution mode in which a group of commands or other input is transmitted
and processed by the computer with no user interaction. (2) In the Communications
Management System (COMS), an execution mode in which a program running under
COMS can do batch-type updates to a database shared by other transaction processors.
(3) Contrast with interactive mode.

BCD
See binary-coded decimal.
BDMSCOBOL74
See Burroughs Data Management System COBOL74.
binary
A characteristic or condition for which there are two alternatives. A binary number
- system uses a base of 2 and the digits 0 and 1.
binary-coded decimal (BCD)
The decimal notation in which the decimal digits are represented by a binary numeral.
Binder |
A program that enables separately compiled subprograms to be joined with a host object
code file to produce a single object code file.
binding
(1) The process of combining one or more separately compiled subprogram object code
files with a host object code file to produce a single object code file. This process is
performed by the Binder program. (2) The process by which distinct occurrences of a
name in a query are made to refer to the same instance of a reference variable during
execution of the query.
bit
The most basic unit of computer information. The word bitis a contraction of binary
digit. Abit can have one of two values: binary 0 (sometimes referred to as OFF) and
binary 1 (sometimes referred to as ON).
block

(1) A group of physically adjacent records that can be transferred to or from a physical
device as a group. (2) A program, or a part of a program, that is treated by the processor
as a discrete unit. Examples are a procedure in ALGOL, a procedure or function in
Pascal, a subroutine or function in FORTRAN, or a complete COBOL program.

8600 0130-000 Glossary-3

Glossary

BNA
The network architecture used on A Series, B 1000, and V Series systems as well as
CP9500 and CP 2000 communications processors to connect multiple, independent,
compatiblé computer systems into a network for distributed processing and resource
sharing.

Boolean

Pertaining to variables, data items, and attributes having a value of TRUE or FALSE.

Burroughs Data Management System COBOL74 (BDMSCOBOL74)
A Unisys language based on COBOL74 that contains extensions for accessing Data
‘Management System I (DMSII) databases. -

byte
On Unisys A Series systems, a measurable group of 8 consecutive bits having a single
usage. In data communications, a byte is also referred to as a character or an octet.

C

CANDE
' See Command and Edit.

character
(1) The actual or coded representation of a digit, letter, or special symbol in display form.
(2) In data communications, 8 contiguous bits (1 byte).

character position '
The amount of physical storage required to store a single standard data format character
whose usage is described as DISPLAY. Further characteristics of the physical storage are
defined by the implementor.

checksum :
In Data Management System II (DMSII), a value used to detect certain classes of /O
errors. A checksum is computed for each database file block by applying an equivalence
operator to each word in the block. When the block is physically written, the checksum
value is stored in a checksum word appended to the end of the block. When the block
is read, the checksum is recomputed and the result is compared to the stored value. A
checksum error occurs if the two values are not equal.

class
In the Semantic Information Manager (SIM), a collection of entities of the same basic
type. :
class attribute . .
In the Semantic Information Manager (SIM), an attribute that describesaclassas a
whole, rather than one that describes the entities of a class.
clause - J

An ordered set of consecutive éharacter-stﬁngs that specifies an attribute of an entry.

Glossary—4 8600 0130-000

Glossary

COBOL74 .
A version of the COBOL language that is compatible with the American National
Standard X3.23-1974.

CODASYL
See Conference for Data Systems Language.

column
A character position in a print line. The column numbers are incremented by 1, starting
from 1 at the leftmost character position of the print line and extending to the rightmost
position of the print line. '

Command and Edit (CANDE)
A time-sharing message control system (MCS) that enables a user to create and edit
files, and to develop, test, and execute programs, interactively.

commit
In a Semantic Information Manager (SIM), to record a transaction permanently ina
database and make the results visible to the other users of the database. This action
generally occurs with an END-TRANSACTION statement.

communication device
A mechanism (hardware, or hardware and software) capable of sending data to a queue
and/or receiving data from a queue. This mechanism can be a computer or a peripheral
device. One or more programs containing communication description entries and
. residing within the same computer define one or more of these mechanisms.

Communications Management System (COMS)
A general message control system (MCS) that controls online environments on A Series
systems. COMS can support the processing of multiprogram transactions, single-station
remote files, and multistation remote files.

compile time
The time during which a compiler analyzes program text and generates an object code
file.

compiler
A computer program that translates instructions written in a source language, such as
COBOL or ALGOL, into machine-executable object code.

compound attribute
In the Semantic Information Manager (SIM), a data-valued attribute that consists
of elements, called components, that can be accessed individually. The attribute
PHONE_NUMBER, for example, can be a compound attribute that contains the
components AREA_CODE, PREFIX, and SUFFIX.

COMS
See Communications Management System.

8600 0130-000 Glossary-5

Glossary

COMS header
In Communications Management System (COMS), the part of the communication
structure that contains routing and descriptive information about the message. There is
an input header for input messages and an output header for output messages.

COMS interface _
In a program interface for the Communications Management System (COMS), the
interface that directs input and output and provides an optional conversation area for
descriptive information.

concatenation ‘
The linking of strings or items.

condition
(1) A status for which a truth value can be determined at execution time. The term
condition (condition-1, condition-2, and so forth) implies a conditional expression
consisting of either a simple condition optionally enclosed in parentheses or a combined
condition consisting of a combination of simple conditions, logical operators, and
parentheses, for which a truth value can be determined. (2) An expression used to limit
the attribute values that are to appear in a report, or to limit the values that are to be

updated. .

Conference for Data Systems Language (CODASYL)
A committee composed of Department of Defense representatives, and computer users
and manufacturers, who define standards in hardware and software tools for database

management.

control file
In Data Management System I1 (DMSII), a file containing data file coordination
information, audit control information, and dynamic database parameter values.

control item
(1) In Data Management System II (DMSII), a count item, population item, or
record-type item. (2) In the transaction processing system (TPS), a system-defined
item contained in a transaction record. A control item is maintained by TPS and is
read-only in all programs written in Burroughs Data Management System COBOL
(BDMSCOBOL), Burroughs Data Management System COBOL74 (BDMSCOBOL74),
and Burroughs Data Management System ALGOL (BDMSALGOL). The initial value of
a control item is assigned when a transaction record is created.

conversation area
In Communications Management System (COMS), the user data space in the header of
amessage. The conversation area is user defined and can contain information passed
by a program or processing item. When used with a direct-window interface, this area
contains the telephone number to be dialed.

count item

In Data Management System II (DMSII), a control item that contains a
system-maintained count of the number of counted links that refer to a record.

Glossary-6 8600 0130-000

Glossary

current record
(1) The record that is available in the record area associated with a file. (2) In Data
Management System II (DMSII), the actual data set record that a program is currently
referencing. Each data set has a current record, which is contained in the user work
area.

current record area
See user work area.

current record pointer
A conceptual entity used to select the next record.

D

DASDL
See Data and Structure Definition Language.

Data and Structure Definition Language (DASDL)
In Data Management System II (DMSII), the language used to describe a database
logically and physically, and to specify criteria to ensure the integrity of data stored in
the database. DASDL is the source language that is input to the DASDL compiler, which
creates or updates the database description file from the input.

data communications interface (DCI) library
A library that serves as the direct programmatic interface to the Communications
Management System (COMS). Application programs must communicate with COMS
through the DCI library to use agendas, processing items, routing by trancode, and
synchronized recovery.

data dictionary
A repository of information about the definition, structure, and usage of data. The data
dictionary does not contain the actual data.

data item
(1) In Data Management System I1 (DMSII), a field in a database record or transaction
format that contains a particular type of information. (2) In COBOL, a character or a set
of contiguous characters (excluding, in either case, literals) defined as a unit of data by
the COBOL program.
data management '
The operating system function of placing and retrieving data in storage and protecting its
security and integrity.

Data Management System I1 (DMSII)
A specialized system software package used to describe a database and maintain the
relationships among the data elements in the database.

data set

In Data Management System II (DMSII), a collection of related data records stored in
a file on a random-access storage device. A data set is similar to a conventional file. It

8600 0130-000 Glossary-7

Glossary

contains data items and has logical and physical properties similar to files. However,
unlike conventional files, data sets can contain other data sets, sets, and subsets.

data type
An interpretation applied to a string of bits. Data types can be classified as structured
or scalar. Structured data types are collections of individual data items of the same or
different data types, such as arrays and records. Scalar data types include real, integer,
double precision, complex, logical (also called Boolean), character, pointer, and label.
Most programming languages provide a declaration statement or a standard convention
to indicate the data type of a variable.

data-description entry
An entry in the DATA DIVISION that is composed of a level number followed by a
data-name, if required, and a set of data clauses, as required.

data-valued attribute (DVA) .
In the Semantic Information Manager (SIM), an attribute that contains data values for
the entities of a class. See also entity-valued attribute.

database (DB)
An integrated, centralized system of data files and program utilities designed to support
an application. The data sets and associated index structures are defined by a single
description. Ideally, all the permanent data pertinent to a particular application resides
in a single database. The database is considered a global entity that several applications
can access and update concurrently.

database equation
In Data Management System IT (DMSII), the equation that refers to three operations:
the specification of database titles during compilation, the run-time manipulation of
database titles, and the creation of a Work Flow Language (WFL) task equation that
overrides compiled-in titles by implicitly assigning a value to the DATABASE task
attribute.

database management system (DBMS)
The software used to store, retrieve, update, report on, and protect data in a database.

database status
In Data Management System II (DMSID), the description of the success or failure of the
most recent DMSII statement. The database status can access the DMSTATUS and
DMSTRUCTURE statements. See also major category and subcategory.

DB
See database.
DBMS
See database management system.
DCI library ‘

See data communications interface (DCI) library.

Glossary-8 ' 8600 0130-000

Glossary

DCIENTRYPOINT
An entry point of the data communications interface' (DCI) library. A compiler
automatically generates code calling this entry point whenever an application program
executes an ENABLE, RECEIVE, or SEND statement.

deadlock '
In data management, a situation in which two or more programs have locked records and
are also attempting to lock records held by each other.

declaration
A programming language construct used to identify an object, such as a type or variable
to the compiler. A declaration can be used to associate a data type with the object so that
the object can be used in a program.

default value .
The value automatically given to a variable when no other value has been assigned.

descending key
A key that has values on which data are ordered, starting with the highest value of the
key down to the lowest value of the key, in accordance with the rules for comparing data
items.

description file
In Data Management System IT (DMSII), the file produced by the Data and Structure
Definition Language (DASDL) or Transaction Formatting Language (TFL) compiler
that contains information used when compiling all tailored software and all DMSII
user-language programs for a particular database or transaction base.

designator
In Communication Management System (COMS), a binary number that is part of
an internal code used in the table structure. By using designators in programs that
run under COMS, the programmer can control messages symbolically rather than by
communicating directly with entities in the data communications environment.

destination .
(1) A device to which output is sent. (2) In COBOL, the symbolic identification of the
receiver of a transmission from a queue.

direct window
In the Communications Management System (COMS), a type of window that enables
the user to route messages directly to COMS, while using all the COMS capabilities for

preprocessing and postprocessing of messages.

directory
A list of file names organized into a hierarchy according to similarities in their names. -
File names are grouped in a directory if their first name constants (and associated
usercodes) are identical. These groups are divided into subdirectories consisting of those
file names whose first two name constants are identical, and so on.

8600 0130-000 Glossary-9

Glossary

discontinue :
(1) To terminate a referenced task. (2) To cause a process to terminate abnormally. A
process can be discontinued by operator commands, by statements in related processes,

or by the system software.
disjoint |
In Data Management System II (DMSII), pertaining to a data set, set, or subset when it
is not contained in another data set. Contrast with embedded.
DM
See data management.
DMSII _
See Data Management System II.
DVA
See data-valued attribute.

E

EBCDIC
Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most mainframe

systems.
EGI
See end-of-group indicator.
elementary item
A data item described as not being further logically subdivided.
embedded
In Data Management System II (DMSII), pertaining to a data set, set, or subset
contained within another data set. A record of an embedded structure must be accessed
through the master data set in which it is embedded. Contrast with disjoint.
EMI .
See end-of-message indicator.
enabled
Referring to a station that is being polled (invited to transmit in a certain order) and that
can communicate with the system.
end of job (EOJ)
(1) The termination of processing of a job. (2) In the Communications Management
System (COMS), the control code that signals the receiver that a job has completed.
end of task (EOT)

The termination of processing of a task.

Glossary-10 ' 8600 0130-000

Glossary

end-of-group indicator (EGI)
An option indicator that specifies the end of a group of data in a data communications

message.

end-of-message indicator (EMI) v
An option indicator that specifies the end of a data communications message.

end-of-segment indicator (ESI)
In data communications, an option indicator that specifies the end of a segment of data in

a message.

entity :
(1) An item about which information is stored. An entity can be tangible or intangible,
and is further defined by attributes, which are the characteristics of the entity. (2) In
the Communications Management System (COMS), a category of items within the
configuration file. (3) Any object defined in the Advanced Data Dictionary System
(ADDS). To ADDS, an entity can be a Screen Design Facility (SDF) field, form, or
formlibrary; an attribute or class in a Semantic Information Manager (SIM) database;
a data set, group, or item in a Data Management System II (DMSII) database; or

the entire SIM or DMSII database. Note that the definitions that are stored in
ADDS-objects and their relationships-are themselves known as entities. (4) In the
Screen Design Facility (SDF), a field, form, or formlibrary about which information is .
stored.

entity reference variable :
In Semantic Information Manager (SIM) programs, a variable that refers exphcxtly to an
entity.

entity-valued attribute (EVA)
In the Semantic Information Manager (SIM), an attribute that links an entity to one or
more other entities of the same or another class. Entity-valued attributes establish
relationships between entities. See also data-valued attribute.

entry point

A procedure or function that is a library object.
EOJ

See end of job.
EOT

See end of task.
ESI

See end-of-segment indicator.
EVA

See entity-valued attribute.
exception

In data management, an error result returned to an application program by the data
management software explaining the reason a requested database operation was not
performed.

8600 0130-000 Glossary-11

Glossary

expmsioh
A combination of operands and operators that results in the generation of one or more
values. '

extended attribute
In the Semantic Information Manager (SIM), an attribute referenced by means of an
entity-valued attribute (EVA). An extended attribute of one class can be an immediate
attribute of another class. :

extension ,
A change in a language that enables it to perform an activity not previously supported by
the language.

FD
See File Description (FD) entry.

field
(1) An area on a screen or form in which data is displayed or entered. The delimiters of
the field can be visible or invisible to the terminal operator. (2) A consecutive group of
bits within a word or a component of a record that represents a logical piece of data.

file ‘
A named group of related records.

file attribute
An element that describes a characteristic of a file and provides information the system
needs to handle the file. Examples of file attributes are the file title, record size, number
of areas, and date of creation. For disk files, permanent file attribute values are stored in
the disk file header.

File Description (FD) entry ‘
An entry in the FILE SECTION of the DATA DIVISION that is composed of th
level-indicator FD, a file-name, and a set of file clauses as required. :

form .
(1) A special screen containing prompts requesting information and empty form fields
in which the requested information can be entered. (2) In the Screen Design Facility
(SDF) and SDF Plus, an entity consisting of form attributes, a form image, associated
" fields, and field attributes. In SDF Plus, a form also contains processing logic. (3) In the
Advanced Data Dictionary System (ADDS), the form image and related field attributes
that the programmer formats and creates for applications.

form key
In the Screen Design Facility (SDF), a unique binary number that the compiler assigns
to an SDF form. The form key is used when SDF is run with the Communications

Management System (COMS).

Glossary-12 ' 8600 0130-000

Glossary

form record
In the Screen Design Facility Plus (SDF Plus), an element of a form record library that
represents records of data. Form records describe the format of messages used to
output data from, or input data to, an SDF Plus form. Syronym for message type.

form record hbrary
In the Screen Design Facility Plus (SDF Plus), a collection of form records and
transaction types, and the interrelationship between them.

form record number
In the Screen Design Facility Plus (SDF Plus), the unique number by which SDF Plus
internally references a form record. Synonym for message type number.

format
The specific arrangement of a set of data.

formlibrary
In the Screen Design Facility (SDF), an entity that contains one or more forms after
generation and is invoked by an application program to format a form image and process
the form for use in the program.

function :
(1) An assigned purpose, activity, or significance. (2) A subroutine that returns a value.

G

global data item
In Data Management System II (DMSII), a data item, group item, or population item
that is not a part of any data set. Global data items generally contain information such
as control totals, hash totals, and populations that apply to to the entire database.

global selection expression
An expression that applies to the entire query.

group item
In Data Management System II (DMSII), a collection of data items that can be viewed as
a single data item.

H

halt/load
A system-initialization procedure that temporarily halts the system and loads the master
control program (MCP) from a disk to main memory.

header

A sequence of characters preceding the text of a message, containing routmg or other
communications-related information.

8600 0130-000 Glossary-13

Glossary

hybrid selection

In Semantic Information Manager (SIM) application programs, the process of requesting
information using a combination of tabular selection and structured selection.

D .
See identifier.

I-O-CONTROL ' -
The name of an ENVIRONMENT DIVISION paragraph in which the following are
specified: object program requirements for specific 1/0 techniques, rerun points, sharing
of same areas by several data files, and multiple file storage on a single I/O device.

I/0
Input/output. An operation in which the system reads data from or writes data to a file
on a peripheral device such as a disk drive.

identifier (ID)
(1) A data-name followed by the required combination of qualifiers, subscripts, and
indexes necessary to make unique reference to a data item. (2) One node of a file name.

immediate attribute
In the Semantic Information Manager (SIM), an attribute that is directly associated with
a particular class.

indexed file
A file whose records are accessed by a key, which is a field in each record. An entry
containing the key value and physical address of each record is stored in an index
associated with the file. The index entries are ordered by key value. Access to an
indexed file is either sequential or random.

InfoExec
Information Executive. The name of a family of Unisys products that define, maintain,
retrieve, and update databases.

initial value
In the transaction processing system (TPS), the value assigned to an item in a newly
created transaction record. An initial value can be declared for each item in the
Transaction Formatting Language (TFL) declaration for the item; otherwise, TFL
assigns the item a default initial value.

input procedure _
In sorting, a group of statements executed before each record is released to be sorted.

integer

(1) A whole number. (2) In COBOL, a numeric literal or a numeric data item that does
not include any character positions to the right of the assumed decimal point.

Glossary-14 | 8600 0130-000

Glossary

interactive mode
An execution mode in which each command or item of data is validated and executed at
the time it is entered at a terminal or workstation, allowing the user to see immediate
results and correct errors as they are made. Contrast with batch mode.

interface
(1) A common boundary at which independent systems or diverse groups interact. (2) To
interact or coordinate smoothly. (3) A set of conventions for passing information.

InterPro .
- Interactive Productivity. A family of Unisys software facilities used to create new
products and enhance existing products.

K

key
(1) A field used to locate or identify a record in an indexed file. (2) In COBOL, a data
item that identifies the location of a record, or a group of data items that identifies the
ordering of data.

key condition
In a selection expression, a condition that specifies the values used to locate specific
records in a data set that is referenced by a specific set or subset. See also selection
expression.

keyword
In programming languages, a reserved word that must be present when the format in
which the word appears is used in a source program.

L

language interface
(1) The means of allowing a programming language to interact. (2) The protocols and
extensions developed for a programming language and implemented in the compiler.

level-indicator
Two alphabetic characters (DB, CD, FD, LD, QD, RD, and SD) that identify a specific
type of file or a position in a hierarchy.

library
A collection of one or more named routines or library objects that are stored in a file and
can be accessed by other programs.

line
A row of text in a printout.

line number

An integer that denotes the vertical position of a report line on a page.

8600 0130-000 _ Glossary-15

Glossary

2

link
In Communications Management System (COMS), to join the application program to
COMS.

link item ‘
In Data Management System II (DMSID), a field that enables one data set record to refer
to another.

literal

A character string whose value is implied by the ordered set of characters that compose
the string.

local selection expression
In Semantic Information Manager (SIM) programs, a selection expression that applies
only to a specific entity-valued attribute (EVA).

lock
To prevent access to particular data in the database by other users when one user is
accessing it.

logical database
In Data Management System II (DMSII), a collection of structures declared in the Data
and Structure Definition Language (DASDL) that provide a view of the database,
enforce structure-level security, and achieve data independence. Whena logical database
is declared in DASDL, the data sets, sets, subsets, and remaps to be included in it are
listed.

logical operator
An operator that corresponds to the logical (Boolean) operation of AND, OR, or NOT.

logical station number (LSN)
A unique number assigned to each stationina network and each pseudostation allocated
by a message control system (MCS). Each station has an LSN assigned according to the
order in which the stations are defined. ’

LSN
See logical station number.

M

major category
In Data Management System II (DMSID), a numeric value that occurs at the end of each
data management statement to identify the type of error.

manual subset : B
In Data Management System I (DMSII), a subset that has no condition specifying which
data set records are to be included in the subset. The user must add and delete manual
,subset entries, using the INSERT and REMOVE statements.

Glossary—16 8600 0130-000

Glossary

mapping 4
(1) A transformation from one set to another set. (2) A correspondence. (3) A
description of the way in which different record types of a database are associated with

one another.
master
In Data Management System II (DMSII), a data set or record that contains one or more
embedded data sets or records. In DMSII, synonym for parent, and owner.
master record
See master.
MCS :
See message control system.
member .
In Data Management System IT (DMSII), a record of a data set.
message

(1) Any combination of characters and symbols designed to communicate information
from an originator to one or more destinations. (2) In data communications,

any information-containing data unit, in an ordered format, sent by means of a
communications process to a named network entity or interface. A message contains the
information (text portion) and controls for routing and handling (header portion). (3) In
COBOL, data associated with an end-of-message indicator or an end-of-group indicator.

message area
In the Communications Management System (COMS), an area of the communication
structure in which the message is contained.

message control system (MCS)
A program that controls the flow of messages between terminals, application programs,
and the operating system. MCS functions can include message routing, access control,
audit and recovery, system management, and message formatting.

message count
The number of complete messages in the designated message queue.

message key
In the Screen Design Facility (SDF), an alphanumeric transaction code that identifies the
form for processing in an application program.

message segment
A subdivision of a message. A segment is normally associated with an end-of-segment
" “indicator.

message type
Synonym for form record.

message type number
Synonym for form record number.

8600 0130-000 Glossary-17

Glossary

MFI
See module function index.

mnemonic
(1) An abbreviation or acronym that is used to assist the human memory. @A
programmer-supplied word associated with a specific function name. (3) A character or
group of characters intended to serve as a mnemonic.

module function index (MFI)
An integer value that represents transaction code or group of transaction codes that are
used to route forms or or messages.

multiple-statement update :
In Semantic Information Manager (SIM) application programs, an update query in which
attribute statements are interspersed among other program statements. An update
query can also be a single-statement update.

multivalued attribute (MVA)
In the Semantic Information Manager (SIM), an attribute that assumes several values
for each entity. Contrast with single-valued attribute.

MVA
See multivalued attribute.

N

network support processor (NSP)
A data communications subsystem processor that controls the interface between a host
system and the data communications peripherals. The NSP executes the code generated
by the Network Definition Language I (NDLII) compiler for line control and editor
procedures. An NSP can also control line support processors (LSPs).

next executable statement
' The statement to which control is transferred after execution of the current statement is
complete. '

nonnumeric literal :
) A character string bounded by quotation marks ("). The string can include any character
in the character set of the computer. To represent a single quotation mark character
within a nonnumeric literal, two contiguous quotation marks must be used.

NSP
*See network support processor.

null value A
The value contained in an item that does not contain valid information.

numeric literal
A literal composed of one or more numeric characters that can also contain either a
decimal point, an algebraic sign, or both. The decimal point must not be the rightmost
character. The algebraic sign, if present, must be the leftmost character.

Glossary-18 8600 0130-000

Glossary

0

object time
In COBOL, the time during which an object program is executed. Synonym for run time,
execution time.

operational sign
An algebraic sign, associated with a numeric data item or a numeric literal, that indicates
whether the value is positive or negative.

ordered
Pertaining to an item maintained in a user-specified sequence.

P

partitioned structure
(1) In Data And Structure Definition Language (DASDL), a structure that can be
declared and assigned one or more structure numbers corresponding to a data set,
set, or subset. (2) In Data Management System IT (DMSII), the structure used for
the structure number function, DMSTRUCTURE, to analyze the results of exception
conditions.

path
In Data Management System II (DMSII), a specific location within the logical ordering of
a data set, set, subset, or access.

pattern matching
A string expression that generates a set of strings from a regular expression. A string
expression can be tested for membership in the set by using an operator.

perspective class
The class from which a query is directed. Any additional classes that are involved in the
query are viewed in relation to the perspective class.

phrase
An ordered set of one or more consecutive COBOL character-strings that forms a
portion of a COBOL procedural statement or of a COBOL clause.

population
For disjoint data sets in Data Management System II (DMSII), the number of records
in the data set. For embedded data sets, the population is the number of records in the
- embedded data set owned by the current master.

postprocessing '
The processing done to a message by processing items after an application program
sends out the message.

preprocessing

The processing that the Agenda Processor performs on a message before an application
program receives the message.

8600 0130-000 ' - ‘ Glossary—19

Glossary

procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically
successive sections, within the PROCEDURE DIVISION.

processing item
A procedure, contained in a processing-item library, used for processing a message.

processing-item library
In the Communications Management System (COMS), a user-written ALGOL library
containing a set of procedures called processing items. A processing-item library can
be called only by the COMS Agenda Processor library to preprocess and postprocess
messages as they are received and sent by programs.

product interface
The protocols that exist within a product to allow it to interact with other, specific

products or programming languages.

program interface :
The means used by a programming language to manipulate a product or products and
produce the desired output. Such means can include protocols and extensions or syntax
specifically developed and implemented for the activity and language.

program record description
A record description of the fields in a form. Nonimage fields exist in the program record
without appearing on the form image. The program record description also can include
fields used to programmatically control the display of the form image.

program tracking
See tracking.

programmatic control
In the Screen Design Facility (SDF), an option to generate extra data items, or flags, into
a program record description. These data items can be set in the program or by the
formlibrary to manipulate the form.

protected read
In Data Management System II (DMSII) and Semantic Information Manager (SIM),
data protected from changes by other users during a transaction.

Q

qualification
(1) In Data Management System IT (DMSII), the specification of the data set that
owns an item. Qualification is usually used when several data sets contain an item
with the same name. (2) In the Semantic Information Manager (SIM), the process of
particularizing an attribute to a specific class, or aclass toa specific database.

qualifier

Any of the following items: a data-name usedina reference together with another
data-name at a lower level in the same hierarchy; a section-name used in a reference

Glossary-20 8600 0130-000

Glossary

together with a paragraph-name specified in that section; or a library-name used ina
reference together with a text-name associated with that library.

quantifier ‘
A Boolean operator that limits the variables of a condition, such as ALL, SOME, or NO.

query
A request to a database to retrieve, insert, update, or delete data.

query record :
In the COBOL74 program interface for the Semantic Information Manager (SIM), a
normal record (data-item) into which data is placed when a retrieval query is executed.

query record description
In Semantic Information Manager (SIM) application programs, that part of the query
declaration that contains the names and descriptions of variables to be associated with
database attributes.

query statement
In Semantic Information Manager (SIM) application programs, a basic programming
statement that updates or retrieves entities.

query variable
In Semantic Information Manager (SIM) application programs, a variable that
represents the query statement.

queue .
A data structure used for storing objects; the objects are removed in the same order they
are stored.

RDS
See restart data set.

read
The process of acquiring or interpreting data from an outside medium.

read-only access
The access to data that allows the data to be read but not changed.

record
(1) A group of logically related items of data in a file that are treated as a unit. (2) The
data read from or written to a file in one execution of a read or write statement ina
program.

record area

A storage area allocated for the purpose of processing the record described in a
record-description entry in the FILE SECTION.

8600 0130-000 Glossary-21

Glossary

record collection ,
In the Advanced Data Dictionary System (ADDS), a unique structure that consists of
record structures and items that are grouped together under one name and invoked in
COBOL74 and Pascal programs.

recovery
(1) In data management, a procedure that is initiated following a hardware, software,
or operations failure while the database is in update mode. Recovery backs out any
partially completed transactions by applying audit-trail images to the database to restore
it to a consistent state. In addition, recovery passes restart information to the programs
accessing the database. (2) In the Communications Management System (COMS),
_reconstruction of a database after a system failure.

recursive retrieval
In the Semantic Information Manager (SIM), recursive access to a reflexive attribute or
a circular path expression during a retrieval query. Synonym for transitive function.

reflexive attribute
In the Semantic Information Manager (SIM), an entity-valued attribute (EVA) that
refers to another entity in the same class. For example, SPOUSE can be a reflexive
attribute of the class Person.

relation condition : :
A proposition, for which a truth value can be determined, in which the value of an
arithmetic expression or data item has a specific relationship to the value of another
arithmetic expression or data item.

relationdl operator
A reserved word, a relational character, a group of consecutive reserved words, or a
group of consecutive reserved words and relational characters used in the construction of -
a relation condition.

relationship v
An association between entities or data structure components.

remap
In Data Management System II (DMSII), a logical data set that redefines a physical data
set by omitting, reordering, or renaming the items.

remote file ‘
A file with the KIND attribute specified as REMOTE. A remote file enables object
programs to communicate interactively with a terminal.

reserved word
A word that has special meaning within a programming language and that generally
cannot be redefined or redeclared by the programmer.

restart

To return to a particular point in a program and resume operation from that point.

Glossary—22 ‘ 8600 0130-000

Glossary

restart data set (RDS) :
In Data Management System I (DMSII), a data set containing restart records that
application programs can access to recover database information after a system failure.

restart record
In Data Management System II (DMSII), a record containing user-defined information
that enables a user program to restart in response to a particular condition.

retrieval query '
A query used to select and retrieve data from a database.

rollback .
The recovery of a database or transaction base to a consistent state at an earlier point in
time.

run time
The time during which an object code file or user interface system (UIS) is executed.
Synonym for execution time and, in COBOL, object time.

run unit
A set of one or more object programs that functions, at object time, as a unit to provide
problem solutions.

S

scalar
(1) A quantity specified by a number on an appropriate scale. (2) A device that yields an
output equal to the input multiplied by a constant.

Screen Design Facility (SDF)
The InterPro product used for creating forms for online, transaction-based application
systems. .

Screen Design Facility Plus (SDF Plus)

A Unisys product used for creating user interface systems (UISs) for online,
transaction-based application systems.

SDF
See Screen Design Facility.
SDF Plus '
See Screen Design Facility Plus.
segmented output
The output sent in separate segments or parts. In COBOL74, the use of the WITH
option for the SEND statement can provide either nonsegmented or segmented output.
selecﬁon expression

(1) In Data Management System II (DMSII), the entire complement of selection
criteria used in a FIND, LOCK, or DELETE statement to locate a data set record. The
definition of a selection expression encompasses both the select options (FIRST, NEXT,

8600 0130-000 : Glossary-23

Glossary

LAST and PRIOR), and all the variations for the key conditions. (2) An expression used
to identify the set of entities upon which a query is to operate. The expression can be
either global or local. (3) See also condition.

Semantic Information Manager (SIM)
The basis of the InfoExec environment. SIM is a database management system used
to describe and maintain associations among data by means of subclass-superclass
relationships and linking attributes.

service function
An integer procedure of the Communications Management System (COMS) library that
enables the user to access subroutines that can do the following: translate a designator
to a name that represents a COMS entity; translate a name that represents a COMS
entity to a designator; or obtain additional information about the name or designator
passed to the service function.

set .
In Data Management System II (DMSII), a file of indexes that refers to all the records of
a single data set. Sets are automatically maintained by the system. Sets permit access
to the records of a data set in some logical sequence and are normally used to optimize
. certain types of retrievals of the data set records.
SIM
See Semantic Information Manager.
single-statement update

In Semantic Information Manager (SIM) application programs, an update query with one
statement. An update query can also be a multiple-statement update.

single-valued attribute (SVA)
In the Semantic Information Manager (SIM), an attribute that assumes only one value
for an entity. Contrast with multivalued attribute.

source
The symbolic identification of the originator of a transmission to a queue.

source program
A program coded in a language that must be translated into machine language before
execution. The translator program is usually a compiler.

standard data format :
The concept used to describe the characteristics of data in a DATA DIVISION. The data
characteristics are expressed in a format oriented to the appearance of the dataon a
printed page, rather than a format oriented to the manner in which data are stored
internally in the computer or on a particular external medium.

state
The condition of one or all the units or elements of a computer system.

statement

A syntactically valid combination of words and symbols written in the PROCEDURE
DIVISION and beginning with a verb.

Glossary-24 8600 0130-000

Glossary

status
In the Advanced Data Dictionary System (ADDS), a feature that identifies the
development cycle of entities. ‘ :

string
A connected sequence or group of characters.

structure
(1) In Data Management System I (DMSII), a data set, set, subset, access, or remap.
(2) In the Advanced Data Dictionary System (ADDS), a hierarchy of entities.

subcategory :
In Data Management System II (DMSII), a numeric value that describes the type of
error identified in a major category.

subfile
A logical, hierarchical division of a file.

subformat
See transaction subformat.

subrole
In the Semantic Information Manager (SIM), one of the 12 possible data types available
for a data-valued attribute (DVA). (The others are integer, real, number, Boolean,
symbolic, date, time, character, string, Kanji, and user-defined.) The attribute of type
subrole is used to define subclasses, and it is a read-only attribute. For example, the
class Person can have a subrole attribute called PROFESSION that defines Manager and
Employee as subclasses of the class Person.

subscript
(1) A number that is an index into an array. (2) In COBOL, an integer whose value
identifies a particular element in a table. :

subset

An index structure that is identical to a set, except that the subset need not contain a
record for every record of the data set. A set must index every record in its associated
data set, whereas a subset can index zero, one, several, or all the data set records. A
subset might or might not be automatically maintained by Data Management System II
(DMSID).

support library
A library that is associated with a function name. User programs can access a support
library by way of its function name instead of its object code file title. The operator uses
the SL (support library) system command to link function names with libraries.

SVA
See single-valued attribute.
symbolic functions

In Semantic Information Manager (SIM), functions that operate on SIM symbolic data
types, which define values that are identifiers.

8600 0130-000 Glossary-25

Glossary

synchromzed recovery
In the Communications Management System (COMS), a function that resubmits
incomplete transactions to the database after a transaction-state abort, system crash,
or rollback occurs. This COMS function is called synchronized recovery because it
reprocesses transactions in the same order that they were originally processed by
multiple programs running asynchronously, even if the transactions were conflicting.

syncpoint
In Data Management System II (DMSII), a point in time when no programisina

transaction state.

synonym
- In the Advanced Data Dictionary System (ADDS), a different name that can be given to
an entity to handle differences in host language identifier rules. The synonym retains all
- the primary attributes of the target entity.

syntax .
The rules or grammar of a language.

system library
A library that is part of the system software and is accorded speclal privileges by the
operating system. T'wo examples of system libraries are GENERALSUPPORT and
PRINTSUPPORT.

SYSTEM/BINDER
See Binder.

T

table
A one-dimensional or multidimensional structure in which like data items are stored.
Each data item can be uniquely identified and accessed by means of its location in the
table; identification and access procedures vary according to the language or product.
tabular selection
In Semantic Information Manager (SIM) application programs, the process of requesting
information to produce output in a tablelike form.
TADS
See Test and Debug System.
terminal

(1) An /O device designed to receive or send source data in a network. (2) In COBOL,
the originator of a transmission to a queue or the receiver of a transmission from a
queue.

Test and Debug System (TADS)
A Unisys interactive tool for testing and debugging programs and libraries. TADS
enables the programmer to monitor and control the execution of the software under
testing and examine the data at any given point during program execution.

Glossary-26 ' » 8600 0130-000

Glossary

text
In data communications, the part of a message containing information that has an
ultimate purpose and destination beyond the data communications subsystem.

TFL
See Transaction Formatting Language.

timestamp
An encoded, 48-bit numerical value for the time and date. Various timestamps are
maintained by the system for each disk file. Timestamps note the time and date a file
was created, last altered, and last accessed.

TPS
See transaction processing system.

tracking
In the Advanced Data Dictionary System (ADDS), a feature of the data dictionary that
enables the data management module (DMM) to keep track of the entities that are used
by application source programs.

trancode
See transaction code.

transaction
(1) The transfer of one message from a terminal or host program to a receiving host
~ program, the processing carried out by the receiving host program, and the return of an
answer to the sender. (2) In data management, a sequence of operations grouped by a..
user program because the operations constitute a single logical change to the database.

transaction base
In the transaction processing system (TPS), the software and files that constitute a TPS
interface to a database.

transaction code (trancode) :
(1) A sequence of characters included in a message that indicates the agenda to apply
to a message during preprocessing or postprocessing. (2) In the Communications
Management System (COMS), a code that can appear in a transaction-initiating message
header, indicating the processing that is to be carried out. This code is used to route the
message to the appropriate host program.

transaction compile-time function
In the transaction processing system (TPS), a function that provides access to certain
properties of transaction record formats that are constant at compile time.

Transaction Formatting Language (TFL)
The Unisys language used to write source files that are compiled to produce description
files for transaction bases.

transaction journal

In the transaction processing system (TPS), a collection of one control file and any
number of data files. The transaction journal stores information about transactions.

8600 0130-000 » v Glossary-27

Glossary

transaction library
In the transaction processing system (TPS), a collection of procedures accessed by
user-written programs to process or tank transactions and to read the transactions back
from a transaction journal. The procedures are accessed through a set of entry points
supplied by the transaction library, which is tailored for a particular transaction base
during compilation.

transaction number
In the Screen Design Facility Plus (SDF Plus), the unique number by which SDF Plus
internally references a transaction type.

transaction point
A point that is explicitly assigned in a program between a begin transaction statement
and an end transaction statement so that the programmer is able to cancel or partially
cancel a transaction that has not yet completed processing.

transaction processing system (TPS)
A Unisys system that provides methods for processing a high volume of transactions,
keeps track of all input transactions that access the database, enables the user to batch
data for later processing, and enables transactions to be processed on a database that
resides on a remote system.

transaction record
In the transaction processing system (TPS), a structured variable that contains
user-defined data items and system-defined control items for individual transactions.
The user-defined items are similar to the data items in a Data Management System II
(DMSII) data set record or a COBOL 01-level variable. A transaction record can be
passed as a parameter to and from a procedure. It can also be read from and written toa
transaction journal.

transaction record format
In the Transaction Formatting Language (TFL), a construct that defines the format of a
single transaction record, including the data items and group items that can be contained
in the record.

transaction state
In Data Management System II (DMSII), the period in a user-language program
between a begin transaction operation and an end transaction operation.

transaction subformat
In the transaction processing system (TPS), the variable part of a transaction record
format.

transaction type : :
In the Screen Design Facility Plus (SDF Plus), a group of records in the dictionary that
describes the format of a transaction. A transaction type contains a pair of message
types: arequest message type and a response message type.

transitive closure
See transitive function.

Glossary-28 8600 0130-000

Glossary

transitive function .
In the Semantic Information Manager (SIM), recursive access to a reflexive attribute
or a circular path expression during a retrieval query. Transitive function is also called -
transitive closure. Synonym for recursive retrieval.

truth value :
The representation of the evaluation results of a condition in terms of one of two values:
TRUE or FALSE. '

two-phase transaction
A transaction in which the first execution phase locks records without freeing any, the
second and final execution phase of the transaction frees records without locking any,
and no records are retrieved without locking them.

U

unordered ‘
Referring to files, data sets, sets, and subsets that are not maintained in a user-specified
order.

update

To delete, insert, or modify information in a database or transaction base.

update library
In the transaction processing system (TPS), a collection of user-written processing
routines that serve as an interface between the transaction library and a Data
Management System II (DMSII) database. These processing routines can be written
in any of the DMSII user languages: Burroughs Data Management System ALGOL
(BDMSALGOL), Burroughs Data Management System COBOL74 (BDMSCOBOL74),
or Burroughs Data Management System COBOL (BDMSCOBOL). The update library is
the only user-written module in TPS that contains the database declaration and all the
code that performs data management statements against the database.

user work area
In Data Management System II (DMSII), a memory area in a user program where data
records are constructed, accessed, or modified. The Accessroutines maintain one user
work area for each data set or remap invoked by a program.

user-defined word
A word that must be supplied by the user to satisfy the format of a clause or statement.

usercode
An identification code used to establish user identity and control security, and to provide
for segregation of files. Usercodes can be applied to every task, job, session, and file on
the system. A valid usercode is identified by an entry in the USERDATAFILE.

8600 0130-000 Glossary—29

Glossary

vV

variable
(1) An object in a program whose value can be changed during program execution. (2) In
the Screen Design Facility Plus (SDF Plus), a component of a form that stores data
entered in the fields of the form image or the return value for a menu or a function key.
A variable is also referred to as a display variable.

variable format
In Data Management System IT (DMSII), a record format that consists of two parts: a
fixed part and a variable-format part. A single record description exists for the fixed
part. The variable-format part can describe several variable parts. An individual record
is constructed by using the fixed part alone, or by joining the fixed part with one of the

variable parts.
verb
A word that expresses an action to be taken by a COBOL compiler or object program.
version
In the Advanced Data Dictionary System (ADDS), an optional entry field that allows
variations of an entity. '
virtual station (VS)
In data communications, a station declared in Network Definition Language II (NDLII)
for both hosts connected to the same line. Terminal data conveyed between hosts during
terminal transfer uses the device address field of a virtual station.
virtual terminal (VT) ‘
(1) See also virtual station. (2) In the Screen Design Facility Plus (SDF Plus), the
standardized presentation of logical terminal characteristics to an application program.
VS
. See virtual station.
vT
See virtual terminal.
WFL :
See Work Flow Language.
window _
In the Communications Management System (COMS) architecture, the concept
that enables a number of program environments to be operated independently and
simultaneously at one station. One of the program environments can be viewed while
the others continue to operate.
word

(1) A unit of computer memory. On A Series systems, a word consists of 48 bits used
for storage plus tag bits used to indicate how the word is interpreted. (2) In COBOL,

Glossary-30 _ /8600 0130-000

Glossary

a character-string of not more than 30 characters that forms a user-defined word, a
system-name, or a reserved word.

Work Flow Language (WFL)
A Unisys language used for constructing jobs that compile or run programs on A Series
systems. WFL includes variables, expressions, and flow-of-control statements that offer
the programmer a wide range of capabilities with regard to task control.

write
(1) The process of transferring information to an output medium. (2) Torecord dataina
storage device or location, or in a register.

0

01-level description entry
A record description that consists of a set of data-description entries that describe the
characteristics of a particular record. Levels indicate the organization of elementary and
group items; records start at level-number 01.

7

77-level description entry
A data-description entry that describes a noncontiguous data item with the
level-number 77.

8600 0130-000 Glossary-31

Glossary—-32 8600 0130-000

Bibliography

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (8600 0296). Unisys Corporation.

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide
(1169901). Unisys Corporation. '

A Series Communications Management System (COMS) Capabilities Manual
(8600 0627). Unisys Corporation.

A Series Communicationvs Management System (COMS) Configuration Guide
(8600 0312). Unisys Corporation.

A Series Communications Management System (COMS) Migration Guide (8600 1567).
Unisys Corporation.

A Series Communications Management System (1 COMS) Operations Guide (8600 0833).
Unisys Corporation.

A Series Communicaﬁ'ons Management System (COMS) Programming Guide
(8600 0650). Unisys Corporation. '

A Series Data Base Data Transfer (DBT) Utility User’s Guide (1180585). Unisys
Corporation.

A Series Data Management Software Installation Guide (8600 1658); Unisys
Corporation.

A Series DMSII Application Program Interfaces Programming Guide (5044225).
Unisys Corporatlon

A Series DMSII Data and Structure Definition Language (DASDL) Programming
Reference Manual (8600 0213). Unisys Corporation.

A Series DMSII Interpretive Interface Programming Reference Manual (8600 0155).
Unisys Corporation.

A Series DMSII Transaction Processing System (TPS) Programming Guide (1164043).
Unisys Corporation. '

A Series DMSII Utilities Operations Guide (8600 0759). Unisys Corporation.

A Series InfoExec Advanced Data Dictionary System (ADDS) Operations Guide
(8600 0197). Unisys Corporation.

A Series InfoExec Capabilities Manual (8600 0254). Unisys Corporation.

8600 0130-010 Bibliography-1

Bibliography

A Series InfoExec Interactive Query Facility (IQF) Operations Guide (8600 0767).
Unisys Corporation.

A Series InfoExec Semantic Information Manager (SIM) Object Manipulation
Language (OML) Programming Guide (8600 0163). Unisys Corporation.

A Series InfoExec Semantic Information Manager (SIM) Programming Guide
(8600 1666): Unisys Corporation.

A Series InfoExec Semantic Information Manager (SIM) Technical Overview .
(8600 1674). Unisys Corporation.

A Series Screen Design Facility (SDF) Capabzlztzes Manual (1180437). Unisys
Corporation.

A Series Screen Design Facility (SDF) Operdtions and Programming Guide (1185295).
Unisys Corporation.

A Series Screen Design Faczlzty Plus (SDF Plus) Capabilities Manual (8600 0270).
Unisys Corporation.

A Series Screen Design Facility Plus (SDF Plus) Installation and Operatzons Guide
"~ (8600 0262). Umsys Corporation.

A Series Screen Design Facility Plus (SDF Plus) Technical Overview (8600 0072).
Unisys Corporation.

A Series System Software Utilities Operations Reference Manual (8600 0460). Unisys
Corporation.

A Series Systems Functional Quverview (8600 0353). Unisys Corporation.

A Series Task Attributes Programming Reference Manual (8600 0502). Unisys
Corporation.

A Series Work Flow Language (WFL) Programming Reference Manual (8600 1047).
Unisys Corporation.

Workstations InfoExec Workstation Query Facility (WQF) Operations Guide (1185279).
Unisys Corporation.

Bibliography—2 . ~ 8600 0130-010

Index

A

ABORT-TRANSACTION statement
in DMSII, 1-3, 4-25
with COMS, 3-2
in SIM, 1-7, 8-21
ABS function
in SIM, 8-28
ACCEPT MESSAGE COUNT statement
' in COMS, 1-2, 3-16
in DCIENTRYPOINT parameters, 3-13
ACCEPT statement
using DCI library
for specifying device type, 3-13
ACCESSDATABASE entry point
for TPS update library, 5-24
Accessroutines
in DMSII databases, 4-16
in TPS "
BEGIN-TRANSACTION statement,
5-28 '
END-TRANSACTION statement, 5-30
MID-TRANSACTION statement, 5-30
acronyms used in this manual, vii
ADD-DAY function
in SIM, 8-32
ADD-TIME function
in SIM, 8-32
ADDS, (See Advanced Data Dictionary
‘ System (ADDS))
Advanced Data Dictionary System (ADDS),
2-1
and SDE 6-1
accessing formlibraries with, 2-1
INVOKE ALL option in, 2-12
invoking formlibraries with, 2-13
sample program for, 2-20
and SDF Plus, 7-1
INVOKE ALL option in, 2-11, 2-12
invoking formlibraries with, 2-13
and SIM, 8-2
assigning alias identifiers in, 2-5
data descriptions in, 2-12

8600 0130-010

DICTIONARY compiler control option, 2-2
DIRECTORY clause, 2-13
in DICTIONARY statement, 2-3
DIRECTORY option in DICTIONARY
statement, 2-7
entities with specific status, 2-2
_extensions of (list), 1-2
FROM DICTIONARY clause, 2-12
in SELECT statement, 2-8
in InfoExec environment, 2-1
INVOKE ALL option, 2-11
INVOKE clause
in data alias, 2-5
in file alias, 2-5
in SELECT statement, 2-8
invoking . '
entities with status in, 2-2
formlibraries with, 2-13
obtaining entity from dictionary, 2-12
options for, 2-1
PRODUCTION status in, 2-2 -
program samples, 2-15
PROGRAM-DIRECTORY option, 2-7
PROGRAM-NAME option, 2-7
PROGRAM-VERSION option, 2-7
RELEASE statement, 2-10
RETURN statement, 2-10
SD file description entry in, 2-10
search rules in, 2-3
VERSION option ,
in DICTIONARY statement, 2—
in SELECT statement, 2-8
ADVANCING options
in COMS for SEND statement, 3-24
AFTER ADVANCING phrase
in COMS
for SEND statement (format 2), 3-21
AFTER in Relational Operator clause
in SIM, 844

Index—1

Index

AFTER option
in COMS for SEND statement, 3-25
AGENDA COBOL74 field name
_input header in COMS, 3-7
 output header in COMS, 3-9
Agenda Designator field name
input header in COMS, 3-7
output header in COMS, 3-9
aggregate functions
in SIM, 8-27
ALGOL shell
writing processing items in COMS with,
3-2
alias identifiers
in ADDS, 2-5
ALL clause
in DMSII
for database declaration, 4-6
ALL special construct
in SIM, 8-28 ‘
for Primary clause, 8-43
for Qualification Term clause, 844
AND operator .
in DMSII
for GENERATE statement, 449
in SIM, 8-35
application program
linking to COMS, 3-11
APPLY INSERT statement ,
in SIM, 1-7, 8-60
APPLY MODIFY statement
in SIM, 1-7, 8-64
arithmetic expressions
in SIM, 8-34
arithmetic functions
in SIM, 8-28
arrays
passing parameters to service functions,
3-32 .
rows in TPS transaction records, 5-7
AS qualifier
in SIM Qualification Term clause, 8-44
ASCENDING phrase
in SIM for SELECT statement, 8-46
ASSIGN clause
in SIM, 1-7, 8-66
ASSIGN statement
in DMSII, 1-3, 4-26
disadvantages of links, 4-27
with DM attributes, 4-21
in SIM, 1-7, 8-66
AT option ,

Index—2

in DMSII
for selection expressions, 4~19
attribute assignment
in SIM, 8-65
ASSIGN clause or statement, 8-66
Compound clause, 8-67
EXCLUDE clause or statement, 8-69
INCLUDE clause or statement, 8-71
Attribute Map clause
in SIM for SELECT statement, 8-49
ATTRIBUTE TITLE phrase
in DMSII database equation, 4-16
attributes
adding and removing values in SIM, 8-65
audience for this manual, vi
AUDIT clause
in DMSII
for BEGIN-TRANSACTION statement,
4-29
for END-TRANSACTION statement,
T 442
AVG function
in SIM, 8-27

B

BEFORE ADVANCING phrase
in COMS
for SEND statement (format 2), 3-21
BEFORE in Relational Operator clause
in SIM, 8-44
BEFORE option
in COMS for SEND statement, 3-25
BEGIN-TRANSACTION ABORT statement
in DCIENTRYPOINT parameters, 3-13
BEGIN-TRANSACTION statement
in DMSII, 1-3, 4-29
with COMS, 3-2
in SIM, 1-7, 8-22
in TPS, 1-5, 5-28
BEGIN-TRANSACTION WITH TEXT
statement)
in DCIENTRYPOINT parameters, 3-13
BEGINNING phrase
in DMSII
for SET statement, 4-66 .
BINARY option
in TPS
passing parameters to ALGOL library,
5-21
Boolean expression

8600 0130-010

Index

in SIM, 8-42
Boolean Primary clause
in SIM, 842
BYFUNCTION mnemonic value
in COMS
linking an application program example,
3-11
BYINITIATOR mnemonic value
in COMS
initializing an interface example, 3-13
linking an appllication program example,
3-12

c

CALL statement
in COMS, 3-29
with VALUE parameter, 1-2, 3-31
in TPS
invoking transaction Use procedures,
5-25 :
_passing parameters with COBOL74
construct, 5-22
with bound procedure, 5-5
CALL SYSTEM statement
in DMSII, 441
in SIM, 1-7, 8-76
CALLED special construct
in SIM, 8-29
for Qualification Term clause, 844
for SELECT statement, 8-46
CANCEL TRANSACTION POINT statement
in DMSII, 1-3, 4-32
in SIM, 1-7, 8-23
carriage control
in COMS, 3-25
Casual Output field name
output header in COMS, 3-9
CASUALOUTPUT COBOL74 field name
output header in COMS, 3-9
CAT operator
in SIM, 8-37
category-mnemonic
in DMSII
with DMSTATUS word, 4-72
CHANGE ATTRIBUTE statement
in COMS, 3-11
CHANGE statement
in DMSII database TITLE attributes, 4-16
CHR function '
in SIM, 8-30

8600 0130-010

CLOSE statement
in DMSII, 1-3, 4-33
syntax used with COMS, 4-34
in SIM, 1-7, 8-18
CLOSETRBASE entry point
parameters in TPS, 5-23
COBOL74
constructs used in passing parameters,
5-21 ‘
exception handling in DMSII, 4-71
items mapped to in COMS, 3-6
program interfaces, 1-1
syntax notation, vii
Unisys standard, v
user-defined words (list), B-1
coercion
for COBOL74 mapping of SIM types, 8-9
combined conditions
in DMSII for IF statement, 452
comments .
in TFL descriptive information in TPS, 5-2
communication module
DCI library, 3-13
communication statements, using, 3-16
communication structure
in COMS, 3-2
- constructs used in, 3-16
declaring the message area, 3-3
specifying the interface, 3-3
Communications Management System
(COMS)
ACCEPT MESSAGE COUNT statement,
3-16
AFTER ADVANCING phrase
in SEND statement (format 2), 3-21
and DMSIT, 3-2
ABORT-TRANSACTION statement in,
4-25 ‘
BEGIN-TRANSACTION statement in,
4-29
DMTERMINATE statement in, 4—41
END-TRANSACTION statement in,
4-42
and SDF, 6-1
FORM-KEY function, 6-10, 6-11
steps for using forms, 6-17
with direct windows, 6-17
and SDF Plus, 7-1
with direct windows, 7-25
and SIM
ABORT-TRANSACTION statement in,
8-21

Index-3

Index

END-TRANSACTION statement in,
8-24
transactions with, 8-21
BEFORE ADVANCING phrase
in SEND statement (format 2), 8-21
Boolean items in, 3-6
calling service functions in, 3-29
carriage control in, 3-25
communication constructs used in, 3-16
converting
a designator to a designator name in,
3-39
a name variable in, 3-36
a timestamp in, 3-33
data structure, with no connection, 3-40
declaring headers for, 3—4
designator and integer values in, 3—7
designators in, 3-6, 3-27
DISABLE statement, 3-17

DMSII database update, sample program,

3-44

ENABLE statement, 3-18

key values, examples of, 3-19
end-of-group indicator (EGI) option

in SEND statement (format 2), 3-21
end-of-message indicator (EMI) option

in SEND statement (format 2), 3-21
extensions of (list), 1-2
FROM phrase

in SEND statement (format 1), 3-21-

in SEND statement (format 2), 3-21
functions of, 3-1
getting a designator array in, 3-34
initializing a program interface example,
' 3-12
input header fields (list), 3-7, 3-8
input header fields in, 3-8, 3-7
input header tasks, 3-7 ’
INPUT phrase

in DISABLE statement, 3-17

in ENABLE statement, 3-18
KEY value

in DISABLE statement, 3—-17

in ENABLE statement, 3-18
linking program to, 3-11
MESSAGE phrase in RECEIVE

statement, 3-19

messages

delivery confirmation, 3-10

receiving, 3-11

releasing, 3-21

sending, 3-11

Index—4

using output header fields, 3-8
NO DATA option in RECEIVE statement
3-19

‘obtaining

a specific designator, 3-35
a specific integer, 3-38
an array of integers, 3-37
an EBCDIC string, 3-41
output headers, 3-8
fields and types (table), 3-9
fields in, 3-6
OUTPUT phrase
in DISABLE statement, 3-17
in ENABLE statement, 3-18
passing mnemonics for a numeric result i m,
3-30
program interface, 3-1
RECEIVE statement, 3~19
releasing messages, 3-21
representing a structure test, 3-44
sample programs with a DMSII database,
3-44
segmenting options in, 3-23
SEND statement, 3-21
SPECIAL-NAMES paragraph in, 3—23
service function
mnemonics in (table), 3-27
names of (list), 3-26
parameters in, 3-32
station designator, adding to a table, 3—42
station index values, initializing table for,
342
transferring data with the RECEIVE
statement in, 3-19
updating input headers of, 3-16 -
using
in RECEIVE statement, 3-20
using a service function in, 3-7, 3-8
using an ALGOL shell with, 3-2
using DCI library
for specifying device type, 3-13
using the VT flag bit in, 3-10
WITH DATA option in RECEIVE
statement, 3-19

compile-time functions

in TPS, 1-5, 5-18
in TPS (table), 5-19

Compound clause

in SIM, 1-7, 8-67

COMPUTE statement

in DMSII, 1-3, 4-35

8600 0130-010

Index

COMS, (See Communications Management
System (COMS))
COMS headers
as the COMS interface, 3-3
declaring, 1-2, 3—4
fields of input header, 3-7
fields of input header (list), 3-7, 3-8
fields of output header, 3-8
fields of output header (table), 3-9
using with SDF Plus, 7-25
COMS input headers
fields and types (list), 3-7, 3-8
using with SDF Plus, 7-25
COMS interface, declaring, 3—4
COMS output headers
field names (table), 3-9
using with SDF Plus, 7-25
VTFLAG field, 3-10
COMSSUPPORT function name
in COMS
linking an application program example,
3-11
concatenation
supported in SIM, 8-37
Condition clause
in SIM, 842
conditional expressions
in SIM, 8-34
CONFIRMFLAG COBOL74 field name
in COMS, 3-9
CONFIRMKEY COBOL74 field name
in COMS, 3-9
constant
in Primary clause in SIM, 843
control items
inquiring about in TPS, 5-17
conventions used in this manua], vi
conversation area
in COMS header declaration, 3—4
using SDF interface with COMS, 6-10
CONVERSATION AREA option
in COMS header declaration, 3-5
CONVERT TIMESTAMP service function
parameters in COMS, 3-33 :
count attribute
in DMSII, 4-20
Count field
in DMSII, 4-20
COUNT function
~ in SIM, 8-27
CP 2000 station
in COMS delivery confirmation, 3-10

© 8600 0130-010

CREATE statement
~ in DMSII, 1-8, 4-36
in TPS .
initializing a transaction record, 1-5
initializing transaction record formats,
59
CREATETRUSER entry point
parameters in TPS, 5-23
CURRENT function
in SIM
used with queries, 8-13
CURRENT option
in DMSII
for REMOVE statement, 4-62
CURRENT special construct :
- in SIM, 8-29
in Primary clause, 843
CURRENT-DATE function
in SIM, 8-32
date type repréesentation, 8-9
CURRENT-TIME function
in SIM, 8-32
time type representation, 8-9
cursor positioning
in SDF, 6-13

D

DASDL, (See Data and Structure Definition -
Language (DASDL))
data alias
using the INVOKE clause in, 2-5
Data and Structure Definition Language
(DASDL))
in DMSII
data sets, 4~10
link items, 4-19
naming, 4-2
in TPS, sample program for, 5-32
data communications interface (DCI) library
example of library object, 3-15
in COMS .
linking program, 3-11
in DMSTI
for BEGIN-TRANSACTION statement,
4-29
for END-TRANSACTION statement,
442
parameters for, 3-13
DATA DIVISION of a program
invoking files and records from, 2-11

Index-5

Index

data items
qualifying in DMSII, 44
qualifying in TPS, 5-16
data management (DM) attributes, 4-20
count attribute in, 4-20
in DMSII, 1-8, 4-20
population attribute in, 4-22
record type attribute in, 4-21
data management (DM) expressions
formats in SIM, 8-39
data management statements
in DMSII, 4-25
Data Management System IT (DMSII), 4-1
accessing an established database, 4-57
Accessroutines, 5-28
used with TPS, 5-28, 5-29, 5-30
ALL clause
in database declaratlon 4-6
and COMS
ABORT-TRANSACTION statement,
4-25 .
BEGIN-TRANSACTION statement,
4-29 _
'DMTERMINATE statement, 4—41
END-TRANSACTION statement, 4—42
statements used with, 3-2
AND operator in GENERATE statement,
4-49
ASSIGN data management statement,
4-26
effect on Count field, 4-21
assigning a Boolean value, 4-35
AT and WHERE clauses in, 4-19
ATTRIBUTE TITLE phrase
in database equation, 4-16
AUDIT clause
in BEGIN-TRAN SACTION statement,
4-29
in END-TRANSACTION statement,
442
BEGIN-TRANSACTION statement, 4-29
BEGINNING phrase in SET statement,
4-66
CANCEL TRANSACTION POINT
statement, 4-32
category-mnemonic value specification,
4-72
changing current record path or value,
4-66
CLOSE data management statement, 4-33
closing a database, 4-33

“Index—6

COMPUTE data management statement,
4-35

count data management attribute in, 4-20

Count field in, 4-20

CREATE data management statement
4-36

creating a subset in one operation, 4-48

' CURRENT phrase in REMOVE

statement, 4-62
DASDL link items, 4-19
data management (DM) attributes in, 4-20
data management statements for, 4-25
data set referencing, 4-8
data set structure number determmatlon
4-72
database
data and the object code, 4-24, 4-25
equation operation in, 4-16
sections and the compiler, 4-6
status word for, 471
DATADICTINFO compiler option, 4-24
DELETE data management statement,
4-39
deleting a record, 4-39
DMERROR attribute for DMSTATUS
format, 4-71
DMERROR Use procedure in, 4-73
DMERRORTYPE attribute for
DMSTATUS format, 4-71
DMRESULT attribute for DMSTATUS
format, 4-71
DMSTATUS word, 4-72
DMSTRUCTURE attribute for
DMSTATUS format, 4-71
DMSTRUCTURE function, 472
DMTERMINATE statement, 4-41
ELSE statement with IF statement, 4-52
END-TRANSACTION statement, 442
ENDING phrase in SET statement, 4-66
establishing record relat10nsh1ps in, 4-26
exception handling
examples of, 4-34
_exception categories, 4-71
for ABORT-TRANSACTION statement,
4-25
for ASSIGN statement, 4-27
for BEGIN-TRANSACTION statement,
4-30
for CANCEL TRANSACTION POINT
statement, 4-32
for CLOSE statement, 4~34 ‘
for CREATE statement, 4-37

8600 0130-010

Index

for DEADLOCK statement, 4-55
for DELETE statement, 4—40
for END-TRANSACTION statement,
4-43
for FIND statement, 4-46
for FREE statement, 448
for GENERATE statement, 4-50
for INSERT statement, 4-54
for LOCK statement, 4-57
for MODIFY statement, 4-57
for OPEN statement, 4-59
for RECREATE statement, 4-60
for REMOVE statement, 4-63
for SAVE TRANSACTION POINT
statement, 4-64
for SECURE statement, 4-65
for SET statement, 4-67
for STORE statement, 4-70
with DMERROR procedure, 474
with DMSTATUS word, 4-71
extensions of (list), 1-3
FALSE clause for COMPUTE statement,
4-35
FIND data management statement, 445
FIND KEY OF clause in FIND statement,
4-45
FIRST option
for selection expression, 4-18
FREE data management statement, 4—47
GENERATE data management statement,
4-48
GLOBAL clause .
in database declaration, 4-6
IF data management statement, 4-52
INDEPENDENTTRANS option
and FREE statements, 4-47
in record locking, 4-55
initializing a user work area, 4-36, 4-59
INQUIRY phrase in OPEN statement,
4-58 -
INSERT data management statement,
4-53
INVOKE clause
in data set references, 4-8
INVOKE option, 4-9
invoking data sets, 46
key condition option in, 4-19
LAST option :
" for selection expréssion, 4-18
LOCK/MODIFY data management
‘statements, 4-55

8600 0130-010

minus (-) operator in GENERATE
statement, 4-49
modifying an audited area, 4-30
MOVE CORRESPONDING statement,
44
name qualification in, 4-2
naming database components with
DASDL, 4-2
naming database items, 4-2
NEXT option in, 4-19
NEXT SENTENCE option
in ABORT-TRANSACTION statement,
4-25 :
in ASSIGN statement, 4-26
in BEGIN-TRANSACTION statement,
4-29
in CANCEL TRANSACTION POINT
statement, 4-32
in CLOSE statement, 4-33
in CREATE statement, 4-36
in DELETE statement, 4-39
in END-TRANSACTION statement,
4-42 ‘
in FIND statement, 4—45
in FREE statement, 4-47
in GENERATE statement, 449
in INSERT statement, 4-53
in LOCK/MODIFY statement, 4-56
in ON EXCEPTION option, 4-75
in OPEN statement, 4-58
in RECREATE statement, 4-60
in REMOVE statement, 4-62
in SAVE TRANSACTION POINT
statement, 4-64
in SECURE statement, 4-65
in SET statement, 4-66
in STORE statement, 4-69
NO-AUDIT clause
in BEGIN-TRANSACTION statement,
4-29
in END-TRANSACTION statement,
4-42
NOT option in IF statement, 4-52
NOTFOUND exception in, 4-19
NULL clause
in ASSIGN statement, 4-26
NULL phrase
in GENERATE statement, 449
in IF statement, 4-52
in SET statement, 4-66
ON EXCEPTION data management
statement, 4-25 -

Index—7

Index

ON EXCEPTION option, 4-75
in ASSIGN statement, 4-26
in CLOSE statement, 4-34
OPEN data management statement, 4-57
operating system, role in constructing a
database, 4-8
OR operator in GENERATE statement,
4-49
~ partitioned structure numbers in, 4-72
placing a program in transaction state,
4-29
plus (+) operator in GENERATE
statement, 449
population DM attribute in, 4-22
PRIOR option
for selection expression, 4-18
processing exceptions, 4-71
program interface for, 4-1
program removal from transaction state,
4-42
qualifying set and data set names, 4-2
record inserting into a manual subset, 4-53
record locking
against modification, 4-55
and removing, 4-61
record type attribute in, 4-21
Record Type field in, 4-20
RECREATE data management statement,
4-59
remaps, declaring in DASDL, 4-10
REMOVE data management statement,
4-61
removing current record from a subset,
4-62
sample program with COMS, 3-45
SAVE TRANSACTION POINT data
management statement, 4-64
SECURE data management statement,
4-64
selection expressions in, 4-18
set referencing in, 4-9
SET statement, 4-66
specifying the database access mode, 4-57
stopping record updates by other
programs, 4-64
STORE data management statement, 4-68
storing a record into a data set, 468
structure name of population in, 4-20
STRUCTURE phrase
in FREE statement, 4-47
in LOCK/MODIFY statement, 4-56
in SECURE statement, 4-85

Index-8

synchronizing transaction and recovery
with COMS, 4-25
syncpoint
using in END-TRANSACTION
statement, 442
terminating the program, 4-41
testing for a NULL value, 4-52
TITLE attribute
in DMSII, 4-16
TPS interface sample program for, 5-32
transaction point record for audit, 4-64
transaction updates, 4-25
discarding, 4-32
transferring a record to user work area,
4-45
TRUE clause for COMPUTE statement,
4-35
unlocking the current record, 4-47
unlocking the current structure, 447
UPDATE phrase in OPEN statement,
4-58
uses (list), 4-1
USING clause in data set references, 4-8
using DASDL to invoke data sets,
examples of, 4-10
using database items, 4-2
USING option, 4-9
~ using variable-format records, 44
VALUE OF TITLE clause
in database declaration, 4-6
VIA option
for selection expression, 4-18
data only flag
in SDF, 6-13
data set
in DMSII
invoking, 4-8
qualifying names, 4-2
data set reference entry
in DMSII, 1-3, 4-7, 4-8
data types
corresponding to COBOL74, 8-9
in COMS, 3-6
in SIM, 8-7
DATA-BASE SECTION
in DMSII, 44
data-description entry
in ADDS, 1-2, 2-12
for DIRECTORY clause, 2-3
for VERSION clause, 2-3
in SDF, 1-5,6-3
in SDF Plus, 1-6, 7-5

8600 0130-010

Index

database
in DMSII
and Accessroutines, 4-16
declaring, 1-3, 4-6
equation operation, 4-16
identifying database components, 4-2
referencing items from, 44
titles of operation, 4-16
using items of, 4-2
using the name of logical database in
SECURE statement, 4-65
in SIM
closing, 8-18
declaring, 1-7, 8-4
deleting entities from, 8-72
opening, 8-16
updating only in transaction state, 8-19
in TPS
opening for subsequent access, 5-27
database declaration
in DMSII, 1-3, 4-6
in SIM, 1-7, 84
database equations
in DMSII, 4-16
database items
in DMSII, 4-2
DATADICTINFO compiler option
in DMSII, 4-24
date ‘
in SIM
type representation, 8-8, 8-9
DAY function
in SIM, 8-32
DAY-OF-WEEK function
in SIM, 8-32
DB, (See database)
DCl library, (See data communications
interface (DCI) library)
DCIENTRYPOINT library object
advancing parameters in, 3-14
device type parameter in, 3-14
EGI option parameter in, 3-14
EMI option parameter in, 3-14
ESI option parameter in, 3-14
for the DCI library, 3-13
value specifying functions for, 3-13
DCILIBRARY option
naming convention with VALUE
parameter, 3-29
DEADLOCK exception
in DMSII, 4-55

declaring

8600 0130-010

a DMSII database, 4-6
a message area in COMS, 3-3
an interface in COMS, 3-3
COMS headers, 3—4
DELETE statement
in DMSII, 1-3, 4-39
in SIM, 1-7, 8-72
Delivery Confirmation Flag field
output header in COMS, 3-9
delivery confirmation in COMS, 3-9
requesting, 3-10 .

Delivery Confirmation Key field

output header in COMS, 3-9
DESCENDING phrase)
in SIM for SELECT statement, 8-46
designators
passing parameters to service functions,
3-32
used in COMS, 3-7, 3-27
DESTCOUNT COBOL74 field name
output header in COMS, 3-9
Destination Count field name
output header in COMS, 3-9
Destination Designator field name
output header in COMS, 3-9
DESTINATIONDESG COBOL74 field name
output header in COMS, 3-9
device type
parameter in DCIENTRYPOINT library
object, 3-14
dictionary
identifying in ADDS, 2-6
identifying in SDF, 6-2
identifying in SDF Plus, 74
DICTIONARY compiler control option
in ADDS, 1-2, 2-2
with SIM, 8-6 »
DICTIONARY statement
in ADDS, 1-2, 2-6
with SIM, 8-2
in SDF, 1-5, 6-2
in SDF Plus, 1-6, 74
DIRECTORY clause
in ADDS, 1-2
for data description, 2-3, 2-13
for DICTIONARY statement, 2-3
for file description, 2-3
DIRECTORY option
in ADDS
for DICTIONARY statement, 2-7
for file selection in SELECT statement,
2-8 :

Index—9

Index

for SELECT statement, 2-8 v DMSUBEXCEPTION option
in SDF Plus, 7-6 in SIM for DMSTATE statement, 8-75
DISABLE statement \ DMTERMINATE statement
in COMS, 1-2, 3-17 in DMSII, 14, 4-41
using DCI library ‘ with COMS, 3-2
for specifying device type, 3-13 DMUPDATECOUNT option
DISCARD statement v in SIM for DMSTATE statement, 8-75
in SIM, 1-7, 8-56 DOWN phrase
DISTINCT option in SIM for SET statement, 8-53
in SIM
' in SELECT statement, 8-46, 8-47
DMCATEGORY attribute E
in DMSII for DMSTATUS format, 4-71
DMERROR Use procedure EBCDIC array
in DMSII, 1-3, 4-74 ‘ in DCIENTRYPOINT library object
for DMSTATUS format, 4-73 parameter length, 3-13
in SIM, 1-7 EGI, (See end-of-group indicator (EGI)
DMERRORTYPE attribute option)
in DMSII for DMSTATUS format, 4-71. ELAPSED-DAYS function
DMEXCEPTION option in SIM, 8-32
in SIM for DMSTATE statement, 8-75 ELAPSED-TIME function
DMEXCEPTIONINFO system name in SIM, 8-32
in SIM for CALL SYSTEM statement, ELSE statement
8-76 in DMSII
DMEXCEPTIONMSG system name : with IF statement, 4-52
in SIM for CALL SYSTEM statement, embedded SELECT clause
8-76 in SIM for SELECT statement, 8-49
DMFUNCTION expression EMI, (See end-of-message indicator (EMI)
in SIM for Primary clause, 8-43 option)
DMMOREEXCEPTION option ENABLE statement
in SIM for DMSTATE statement, 8-75 in COMS, 1-2, 3-18
DMNEXTEXCEPTION system name using the MCS, 3-18
in SIM for CALL SYSTEM statement, using DCI library
8-76 : for specifying device type, 3-13
DMRESULT attribute END LEVEL option
in DMSII for DMSTATUS format, 4-71 in SIM for Transitive Specification clause,
DMSII, (See Data Management System II 8-44
(DMSII), Data Management System end-of-group indicator (EGI) option
11 (DMSID)) in COMS
DMSII TPS, (See transaction processing for SEND statement, 3-21
system (TPS)) parameter in DCIENTRYPOINT library
DMSTATE statement . , object, 3-14 '
. in SIM, 1-7, 8-74 ' end-of-message indicator (EMI) option
DMSTATUS database status word ' in COMS
in DMSII, 14, 4-71 ' for SEND statement (format 2), 3-21
DMSTRUCTURE attribute parameter in DCIENTRYPOINT library
in DMSII object, 3-14
for DMSTATUS format, 4-71. end-of-segment indicator (ESI) option
for processing exceptions, 4-71 in COMS
DMSTRUCTURE function . for SEND statement (format 2), 3-21
in DMSII, 14 _ parameter in DCIENTRYPOINT library
number function, 4-72 object, 3-14

Index—10 | » | 8600 0130-010

Index

END-TRANSACTION ABORT statement
in DCIENTRYPOINT parameters, 3-13
END-TRANSACTION statement
in DMSII, 1-4, 442
with COMS, 3-2
in SIM, 1-7, 8-24
in TPS, 1-5, 5-30
END-TRANSACTION WITH NO TEXT
statement
in DCIENTRYPOINT parameters, 3—-13
END-TRANSACTION WITH TEXT
statement
in DCIENTRYPOINT parameters, 3~13
ENDING phrase
in DMSII
for SET statement, 466
entities
in ADDS
identifying, 2-3
- obtaining from dictionary, 2-12
using the DIRECTORY clause, 2-3

. using the FROM DICTIONARY clause,

2-12 ‘
using the VERSION clause, 2-3
with specific status, 2-2
in SIM
deleting, 8-57, 8-72
retrieving, 8-45
selecting, 845 |
updating, 8-57
entity reference variable
in SIM, 1-7, 8-25
entity-valued attribute
in SIM transitive closure, 8-53
ENTITYREFERENCE variable
in SIM for USAGE clause, 8-26
entry points
in COMS, 3-29
in TPS
use of CALL statement, 5-23
in TPS (table), 5-23
Entry points
in TPS
transaction library, 5-20
EQUAL TO in Relational Operator clause
in SIM, 844
equation operations
in DMSII, 4-16
ESI, (See end-of-segment indicator (ESI)
i option) .
example of DCI library object code, 3-15
examples of COMS application programs

8600 0130-010

application program linking (example 1),
3-11
CALL statement
with service functions, 3-30
with VALUE parameter, 3-31
input and output header declarations, 3-6
interface initialization, 3-13
message area declaration, 3-3
message placement in WORKING-
STORAGE SECTION,
3-21
SEND statements with ESI and EGI
options, 3-26
service functions
CONVERT TIMESTAMP, 3-33
GET _DESIGNATOR_ARRAY
USING_DESIGNATOR,
3-34
GET DESIGNATOR_
USING_DESIGNATOR,
3-35
GET DESIGNATOR_USING_NAME,
3-36 :
GET_INTEGER_ARRAY_
USING_DESIGNATOR,
3-37
GET_INTEGER_USING_
DESIGNATOR, 3-38
GET NAME_USING_DESIGNATOR,
3-39
GET_REAL_ARRAY, 340
GET STRING_USING _
DESIGNATOR, 3-41
TEST _DESIGNATORS, 3—44
with DMSII database, 3-45

examples of DMSII application programs

ASSIGN statement, 4-28
BEGIN-TRANSACTION statement, 4-31
CLOSE statement, 4-34
count attribute, 4-21
CREATE statement, 4-38
data set referencing to invoke disjoint data
sets, 4-12
database equation operations, 4-16
DELETE statement, 441
designating sets as visible or invisible, 4-14
DMERROR Use procedure
and exception handling, 4-76
declarations for, 4-74
DMTERMINATE statement, 441
END-TRANSACTION statement, 4-44
exception handling, 4-76

Index—11

Index

FREE statement, 4-48
GENERATE statement, 4-51
group move of database items, 4-5
host program declarations for using
GLOBAL option, 4-15
INSERT statement, 4-55
invalid index, 4-5 :
LOCK statement with ON EXCEPTION
option, 4-57 ‘
MODIFY statement with ON
EXCEPTION option, 4-57
MOVE CORRESPONDING statement
with database items, 4-5
names requiring qualification, 4-3
NULL phrase with IF statement, 4-53
OPEN statement with INQUIRY phrase,
. 4-59
population attribute, 4-23
procedure to reference a database with
GLOBAL option, 4-15
record type attribute, 4-22
RECREATE statement, 4-61
REMOVE statement, 4-63
SET statement, 4-68
STORE statement, 4-70
valid and invalid name qualification, 4-3
examples of SIM application programs
MODIFY statement, 8-62
exception categories
in DMSI]I, 4-71
in SIM, 8-74
exception handling
processing in SIM, 8-74
exceptions :
in DMSII
categories, 4-71
DMERROR Use procedure, 4-73
ON EXCEPTION option, 4-73
processing, 4-71
using COBOL74 exception handling,
4-71
using DMSTATUS word, 4-71
using DMSTRUCTURE function, 4-71
in SIM
CALL SYSTEM statement, 8-76
DMERROR Use procedure, 8-79
DMSTATE statement, 8-74
methods for handling, 8-77
ON EXCEPTION option, 8-78
processing statements, 8-74
in TPS, 5-27
EXCLUDE clause

Index—12 ,

" in SIM, 1-7, 8-69
EXCLUDE phrase
in SIM Compound clause, 8-68

] EXCLUDE statement

in SIM, 1-7, 8-69
excluding part of a compound attribute
using the EXCLUDE phrase in SIM, 8-68
EXISTS operator
in SIM
Condition clause, 8-42
operator, 8-34, 8-35
expressions in DMSIT
for CREATE statement, 4-37
expressions in SIM, 1-8, 8-39
arithmetic, 8-34
clauses, 8-38
Boolean expression, 842
Boolean Primary, 8-42
condition, 8-42
primary, 8-43
qualification term, 8-44
transitive specification, 8-44
data management (DM), 8-34
for selection, 8-34 -
relational operator clauses, 8-44
EXT function
in SIM, 8-30
extended attributes in SIM queries, 8-10
extensions
in ADDS (list), 1-2
in COMS (list), 1-2, 1-3
in DMSII (list), 1-3
in DMSII TPS (list), 1-5
in SDF (list), 1-5
in SDF Plus (list), 1-6
in SIM (list), 1-7
of each product, 1-2

F

FALSE clause
. in DMSII
for COMPUTE statement, 4-35

FD level indicator

in ADDS, 1-2
field suppress flag

in SDF, 6-13
file alias

using the INVOKE clause, 2-5

- file description

in ADDS

8600 0130-010

Index

FD entry, 1-2, 2-10
for DIRECTORY clause, 2-3
for VERSION clause, 2-3
SD entry, 2-10
FILE SECTION of a program
invoking record descriptions, 2-13
file status update
when reading forms in SDF, 6-6
FIND KEY OF clause
in DMSII
for FIND statement, 4-45
FIND statement
in DMSII, 14, 4-45
FIRST option
in DMSII
for selection expression, 4-18
flag groups flag
in SDF, 6-13
flags
resetting in SDE 6-15
FOR ERROR MESSAGE clause
in SDF Plus :
for WRITE FORM statement (forma:
3), 7-18 ‘
FOR option
in SDF Plus
for WRITE FORM TEXT statement,
7-20
form record library
as an ADDS entity, 2-1
in SDF Plus, 7-2
data-description entry, 7-7
form records, 7-2
record numbers, 7-2
form record number attribute
in SDF Plus, 1-6, 7-22
FORM-KEY function
in SDE 1-5
with COMS, 6-10
formatting
of SIM entities, 848
formlibrary v
as an ADDS entity, 2-1
in ADDS data-description entry, 2-13
in SDF data-description entry, 6-5
formlibrary name
in SDF data-description entry, 64
forms
default
in COMS, 6-18
in SDE, 6-10
FREE statement

8600 0130-010

in DMSII, 14, 447
freeing data set records
constructs (list), 4—47

' FROM DEFAULT FORM option

in SDF
for WRITE statement, 6-10
FROM DEFAULT FORM phrase
in SDF
for READ FORM statement, 6-7
FROM DICTIONARY clause
in ADDS, 1-2
for data-description entry, 2-12
for INVOKE ALL option, 2-13
for SELECT statement, 2-8
in SDF, 1-5, 6-3 ‘
in SDF Plus, 1-6, 7-5
FROM option
in SDF Plus
" for READ FORM statement, 7-11
for WRITE FORM statement (format
2), 7-17
FROM phrase
in COMS for SEND statement
{format 1), 3-21
(format 2), 3-21
in SIM ,
for SELECT statement, 8-46
Function Index field name
input header in COMS, 3-7
Function Status field name
input header in COMS, 3-7
FUNCTIONINDEX COBOL74 field name
input header in COMS, 3-7
FUNCTIONNAME attribute
in COMS
initializing an interface example, 3-13
linking an application program example,
3-11
functions
in SIM, 1-8
aggregate, 8-27
arithmetic, 8-28
string, 8-30
of a DCI library, 3-13 '
FUNCTIONSTATUS COBOL74 field name
input header in COMS, 3-7

G

GENERATE statement
in DMSII, 14, 4-48

Index-13

Index

GET_DESIGNATOR_ARRAY _
- USING_DESIGNATOR service
function
parameters in COMS, 3-34
GET_DESIGNATOR USING
DESIGNATOR service
function

parameters in COMS, 3-35

GET_DESIGNATOR_USING_NAME service .

function
parameters in COMS, 3-36

GET_INTEGER_ARRAY USING
DESIGNATOR service
function

parameters in COMS, 3-37

GET_INTEGER_USING_DESIGNATOR
_ service function

parameters in COMS, 3-38

GET_NAME_USING_DESIGNATOR service
function

. example with CALL statement in COMS,
3-30
parameters in COMS, 3-39
GET_REAL_ARRAY service function
parameters in COMS, 3-40

GET_STRING_USING _DESIGNATOR
service function

parameters in COMS, 3-41
GIVING clause

passing parameters with COBOL74
constructs in TPS, 5-22

GLOBAL clause
in DMSII
for database declaration, 4-6
in SDF Plus, 1-6
in TPS :
transaction Use procedures 5-25
GLOBAL option
in SDF Plus, 7-7
in SIM
for database statement, 84
query declaration, 8-14
in TPS .
transaction base declaration in, 5-5
using to declare record variables, 5-7

GREATER THAN in Relational Operator
clause

in SIM, 844

Index-14 .

H
HANDLESTATISTICS entry point
in TPS parameters, 5-28
headers
declaring in COMS, 3-4
fields of input header, 3-7
fields of output header, 3-8
using in COMS, 1-2
highlight flag
in SDF, 6-14
HOUR function
in SIM, 8-32
hybrid selection
in SIM, 8-48
hyphenation
in COMS
with service function mnemonic names,
3-30
with service function names, 3-27
in TPS
using hyphenated identifier, 5-2

identifier _
in DMSII database components, 4-2
in TPS, 5-2
identifying records in a data set, 4-16
IF statement
in DMSII, 14, 4-52
implicit qualification
in SIM, 8-10
INCLUDE clause
in SIM, 1-8, 8-71
INCLUDE statement
in SIM, 1-8, 8-71
INDEPENDENTTRANS option
in DMSH
and FREE statement, 447
for CREATE statement, 4-36 _
for LOCK/MODIFY statement, 4-55
InfoExec family
using with
SDF Plus, 2-1
SIM, 2-1
initializing a program in COMS, 3-12
INPUT HEADER phrase
in COMS header declaration, 3—4
input headers

8600 0130-010

Index

in COMS, 34, 3-7
fields of (table), 3—7
INPUT TERMINAL phrase
in COMS
for DISABLE statement, 3-17
for ENABLE statement, 3-18
input/output flag
in SDE, 6--14
INQUIRY option
for OPEN statement
in DMSII TPS, 5-28
in SIM, 8-16
INQUIRY phrase
for OPEN statement
in DMSII, 4-58
INSERT statement
in DMSII, 14, 4-53
in SIM, 1-8
multiple-statement update, 8-59
single-statement update, 8-57
INTEGER function
TPS parameter passing to ALGOL library,
5-21 '
integers
using in COMS, 3-7 |
InterPro family
using with SDE v
INTO option
in SDF for READ FORM statement, 6-7
in SDF Plus for READ FORM statement,
7-11
INVERSE function
in SIM
construct, 8-29 . ‘
in Qualification Term clause, 8-44
in Transitive Specification clause, 8-44
INVOKE ALL clause
in ADDS, 1-2
INVOKE ALL option
invoking files and records in ADDS, 2-11
INVOKE clause
in ADDS, 1-2
assigning a data alias, 2-5
assigning a file alias, 2-5
for SELECT statement, 2-8
restricting in SDF formlibrary, 6-5
in DMSII
using in data set references, 4-8
INVOKE option
in DMSIT
for data set reference entry, 4-9
for database declaration, 4-6

8600 0130-010

invoking structures
in a database declaration
explicitly, 4-9
implicitly, 4-9
invoking data sets, 4-8
more than once, 4-6
selectively, 4-6
IS BEFORE operator
in SIM, 8-35
IS GREATER THAN operator
in SIM, 8-35 '
IS IN operator
in SIM
Condition clause, 8—42
for pattern matching, 8-37
IS option ‘
in COMS, 3-5
ISA operator
in SIM, 8-35 ,
Condition clause, 8-42

K

key condition
in DMSII
for selection expressions, 4-19
key.condition option
in DMSII
for selection expressions, 4~19
KEY values
in COMS
for DISABLE statement, 3-17
for ENABLE statement, 3—18
keywords
handling as reserved words in SIM, 8-2A

L

LAST option

in DMSII

for selection expression, 4-18

LENGTH function

in SIM, 8-30
LESS THAN in Relational Operator clause

in SIM, 844
level number

in SDF data-description entry, 6-4
LEVEL phrase

in SIM for SET statement, 8-53

Index—15

Index

Level setting
in SIM, 8-53
LIBACCESS attribute
in COMS
initializing an interface example, 8-13

linking an application program example,

3-11
library attributes

example used in COMS program hnk 3-11

library entry point
parameter passing from numeric item to
ALGOL integer, 5-21
LIMIT option
in SIM
for DELETE statement, 8-73
for MODIFY statement, 8-61
for START MODIFY statement, 8-63
linking messages
from a program to COMS, 8-11
links
) disadvantages of, 4-27
LIST option
in TPS compiler control option, 5—2
LOCK/MODIFY statement
in DMSII, 1-4, 4-55
locking records
in DMSII
with a LOCK/MODIFY statement, 4-55
with a SECURE statement, 4-64
LOGOFFTRUSER parameters
in TPS, 5-23
LOGONTRUSER parameters
in TPS, 5-23
LOW-VALUES figurative constant
using with SDF programmatic flags, 6-15

M
manual, organization of, vii
Mapping clause
in SIM for SELECT statement, 8-49
mapping COMS data types into COBOL74,
3-6
MAXIMUM function
in SIM, 8-27
MCS, (See message control system (MCS))
message area
declaring in COMS, example, 3-3
message control system (MCS)
linking application programs to COMS,
3-11

Index-16

using
in ENABLE statement, 3-18

Message Count field

in COMS ,

. for ACCEPT MESSAGE COUNT
statement, 3-16

Message Count field name

input header in COMS, 3-8
message keys

in SDF for READ FORM statement, 6-6
message length »

using the DCI library, 3-13

- MESSAGE phrase

in COMS for RECEIVE statement, 3-19
MESSAGECOUNT COBOL74 field name
input header in COMS, 3-8
messages
in COMS
receiving, 3-11
sending, 3-11
in SDF Plus
sending, 7-27
MID-TRANSACTION statement
-in TPS, 1-5, 5-29
MINIMUM function
in SIM, 8-27
minus (-) operator
in DMSII
for GENERATE statement, 449
MINUTE function
in SIM, 8-32
mnemonic-name option
in COMS
for SEND statement, 3-25
mnemonics
for passing parameters to service
functions, 3-32
passing to get a numeric result in COMS,
- 3-30
service function (table), 3-27
MODIFY statement
in DMSII, 4-55
in SIM, 1-8
for single-statement update, 8—61
MONTH function
in SIM, 8-32
MONTH-NAME function
in SIM, 8-32
MOVE CORRESPONDING statement
accessing record items in TPS, 5-12
with database items in DMSII, 44

MOVE statement

8600 0130-010

Index

in DMSII
for database TITLE attributes, 4-16
in SDF
for FORM-KEY function, 6-10
for READ FORM statement, 6-7
for WRITE FORM statement, 6-9
in SDF Plus
for READ FORM statement, 7-11
for WRITE FORM statement (format
2), 7-17
in TPS
for assigning record variables, 5~11
multiple perspectives
in SIM, 8-12
multiple-statement update
in SIM
for APPLY INSERT statement, 8-59
for APPLY MODIFY statement, 8-59
for START INSERT statement, 8-59
for START MODIFY statement, 8-59
multivalued attribute (MVA)
adding values to in SIM, 8-71
MVA, (See multivalued attribute (MVA))

N

naming database items, 4-2
network support processor (NSP)
delivery confirmation in COMS, 3-10
Next Input Agenda Designator field name
output header in COMS, 3-9
NEXT option ‘
in DMSIT
for selection expressions, 4-19
NEXT SENTENCE option
in COMS
for RECEIVE statement, 3-20
in DMSII
for ABORT-TRANSACTION statement,
4-25
for ASSIGN statement, 4-26
for BEGIN-TRANSACTION statement,
4-29
for CANCEL TRANSACTION POINT
statement, 4-32 '
for CLOSE statement, 4-33
for CREATE statement, 4-36
for END-TRANSACTION statement,
4-42
for FIND statement, 445
for FREE statement, 4-47

8600 0130-010

for GENERATE statement, 4-49
for INSERT statement, 4-53
for LOCK/MODIFY statement, 4-56
for NEXT TRANSACTION POINT
statement, 4-64
for ON EXCEPTION option, 4-75
for OPEN statement, 4-58
for RECREATE statement, 4-60
for REMOVE statement, 4-62
for SECURE statement, 4-65
for SET statement, 4-66
for STORE statement, 4-69
NEXTINPUTAGENDA COBOL74 field
name
output header in COMS, 3-9
NO DATA option
in COMS for RECEIVE statement, 3-19
no input flag
in SDE, 6-14
NO LIMIT option
inSIM
for DELETE statement, 8-73
for MODIFY statement, 8-61
.for START MODIFY statement, 8-63
NO special construct
in SIM, 8-29
. for Primary clause, 8-43
for Qualification Term clause, 8-44
NO-AUDIT clause
in DMSII
for BEGIN-TRANSACTION statement,
4-29
for END-TRANSACTION statement,
4-42
NOT operator
in SIM, 8-35
NOT option
in DMSII
for IF statement, 4-52
NOTFOUND exception
and DMSII selection expressions, 4-19
NSPE (See network support processor
- (NSP))
NULL clause
in DMSII
for ASSIGN statement, 4-26
NULL option
in DMSII
for CREATE statement, 4-36
NULL phrase
in DMSIT '
for GENERATE statement, 4-49 -

Index-17

Index

for IF statement, 4-52
for SET statement, 4-66

o

OCCURS clause
in TPS .
declaring record variables, 5-7
subscript required, 5-14
OCCURS option
in SIM 4
for USAGE clause, 8-26
OF option
in SIM
for Qualification Term clause, 8-44
for query declaration, 8-14
for Transitive Specification clause, 8-44
OF phrase
in SIM
for Primary clause, 8-43
ON ERROR condition
in SDF
for READ FORM statement, 6-7
for WRITE FORM statement, 6-10
in SDF Plus
for READ FORM statement, 7-11
for WRITE FORM statement (format
1), 7-14 .
for WRITE FORM statement (format
2), 7-17 ’
ON EXCEPTION clause
in DMSII
for BEGIN-TRANSACTION statéement,
4-30
ON EXCEPTION option
in DMSII, 14, 4-75
for ABORT-TRANSACTION statement,
4-25
for ASSIGN statement, 4-26, 4-27
for CANCEL TRANSACTION POINT
statement, 4-32
for CLOSE statement, 4-34
. for CREATE statement, 4-37
for DELETE statement, 4-40
for END-TRANSACTION statement,
4-43
for FIND statement, 4-46
for FREE statement, 448
for GENERATE statement, 4-50
for INSERT statement, 4-54
for LOCK statement, 4-57

Index-18

for MODIFY statement, 4-57
for OPEN statement, 4-59
for RECREATE statement, 4-60
for REMOVE statement, 4-63
for SAVE TRANSACTION POINT,
4-64
for SECURE statement, 4-65
for SET statement, 4-67
for STORE statement, 4-70
in SIM, 8-78 ‘
for ABORT-TRANSACTION statement,
8-21
for APPLY INSERT statement, 8-60
for APPLY MODIFY statement, 8-64
for BEGIN-TRANSACTION statement,
8-22
for CANCEL TRANSACTION POINT
statement, 8-23
for CLOSE statement, 8-18
for DELETE statement, 8-73
for DISCARD statement, 8~-56
for END-TRANSACTION statement,
8-24
for exception handling, 8-78
for INSERT statement, 8-58
for MODIFY statement, 8-62
for OPEN statement, 8-16
for RETRIEVE statement, 8-55
for SAVE TRANSACTION POINT
statement, 8-25
for SELECT statement, 8-46
for SET statement, 8-53
for START INSERT statement, 8-59
for START MODIFY statement, 8-63
in TPS
for BEGIN-TRANSACTION statement,
5-29
for END-TRANSACTION statement,
5-31
for MID-TRANSACTION statement,
5-30
for OPEN statement, 5-28
OPEN statement
in DMSII, 14, 4-57
in SIM, 1-8, 8-16
in TPS
for TRUPDATE option, 5-27
OPENTRBASE parameters
in TPS, 5-23
operating system
using to construct a database, 4-8
operators

8600 0130-010

Index

in SIM conditional expression, 8-35
OR operator
in DMSII
for GENERATE statement, 449
in SIM, 8-35
ORDER BY phrase
in SIM for SELECT statement, 8-46
OUTPUT HEADER phrase
in COMS header declaration, 3—4
output headers
in COMS, 34, 3-8
fields of (table), 3-9
output message in COMS
delivery confirmation in, 3-10
output header field used in, 3-8
OUTPUT TERMINAL phrase
in COMS
for DISABLE statement, 3-17
for ENABLE statement, 3-18
P
page flag
in SDE, 6-14
page specification
using in the COMS SEND statement,
example of, 3-25
parameters
in DCIENTRYPOINT library object, 3-13
in TPS
passing transaction record variables in,
5-11
passing with COBOL74 constructs, 5-21
received by update library, 5-26
partitioned structure
in DMSII, 4-72
- password
in DCIENTRYPOINT hbrary object
parameter length, 3—13
pattern matching
in SIM, 8-37
special characters (table), 8-37
using IS IN operator in, 8-37
peripherals
using symbolic sources and destinations
with, 3-13
perspective
in SIM
multiple, 8-12
single, 8-10
placing program in transaction state, 5-28

8600 0130-010

plus (+) operator

in DMSII

for GENERATE statement, 4-49

population attribute

in DMSII, 4-22

of a DMSII structure, 4-20
POS function

in SIM, 8-31
PREDECESSOR function

in SIM, 8-31
Primary clause

in SIM, 8-43
PRIOR option

in DMSII

for selection expression, 4-18

PROCESSTRANSACTION parameters

in TPS, 523
PROCESSTRFROMTANK parameters

- in TPS, 5-23

PROCESSTRNORESTART parameters

in TPS, 5-23
PRODUCTION status

in ADDS, 2-2

in SIM, 8-6
Program Designator ﬁeld name

input header in COMS, 3-8
program interfaces

as COBOL74 extensions, 1-1

extensions, by product (list), 1-2

general concepts of, 1-1

with combined products, 1-1

with COMS, 3-1
program tracking

in ADDS, 2-6
PROGRAM-DIRECTORY option

for program tracking in ADDS, 2-7

PROGRAM-NAME option

for program tracking in ADDS, 2-7

' PROGRAM-VERSION option

for program tracking in ADDS, 2-7
PROGRAMDESG COBOL74 field name
input header in COMS, 3-8
programmatic controls
in SDF
control information (table), 6-13
flag settings, 6-12, 6-13
flag suffixes (table), 6-13
generating flag groups, 6-15
naming conventions for, 6-12-
resetting flags, 6-15
sample program using, 6-22
PURGETRUSER parameters

Index-19

Index

in TPS, 5-23
purpose of the manual, v

Q

QD, (See query declaration)
qualification
in DMSII
of set and data set names, 4-2
in SIM :
multiple perspective, 8-12
single perspective, 8-10
in TPS
data items, 5-16
requirements for (list), 5-16
Qualification Term clause
in SIM, 8-44
quantifiers
in SIM, 8-28
query
in SIM
and CURRENT function, 8-13
discarding, 8-56
record, 8-13
retrieval and update types, 8-13
retrieving, 8-55
statement, 8-13
updates in, 8-57
variables in, 8-13
query declaration
in SIM, 1-8, 8-13

R

RDS, (See restart data set (RDS))
READ FORM statement
in SDEF, 1-5, 6-5
for default forms, 67
for FROM DEFAULT FORM option,
6-7 : :
~ for INTO option, 6-7
for self-identifying forms, 6-6
for specific forms, 6-7
for USING clause, 6-6, 6-7
sample program for, 6-19
in SDF Plus, 1-6, 7-10
for default form records, 7-11
-for FROM DEFAULT FORM option,
7-11

Index—20

for INTO option, 7-11
for self-identifying reads, 7-11
for specific form records, 7-11
for USING clause, 7-11
sample programs for, 7-12
READTRANSACTION parameters
in TPS, 5-23
RECEIVE statement
in COMS, 1-2, 3-19
in DCIENTRYPOINT parameters, 3—14
in SDE, 6-17
using DCI library
for specifying an end-indicator option,
3-13
for specifying whether to wait for a
message, 3-13
using in COMS, 3-20
record area
in DMSII
setup, 44
record type attribute
in DMSII, 4-21
Record Type field
in DMSII, 4-20
RECREATE statement -
in DMSII, 1-4, 4-59
recursive retrieval
in SIM transitive closure, 8-53
REDEFINES clause
in SDEF, 1-6, 6-3
in SDF Plus, 1-6
REDEFINES option
in SDF
data-description entry, 6-4
used with COMS, 6-17
in SDF Plus, 7-7
reentrant capability
in DMSII Accessroutines, 4-16
referencing database items, 44
reflexive attribute
in SIM transitive closure, 8-53
Relational Operator clause
in SIM, 844
RELEASE statement
in ADDS, 2-10
remaps
in DMSII, 4~-10
REMOVE statement
in DMSII, 14, 4-61
REPOSITORY option ,
effect on a SIM database search, 8-2
RESERVE clause

8600 0130-010

Index

in SIM, 1-8
for database statement, 8-6
RESERVE option
in SIM, 8-2A
reserved words, A-1
handling in SIM, 8—2A
resettmg flags
in SDE 6-15
RESTART COBOL74 field name
input header in COMS, 3-8
restart data set (RDS)
DMSII option used in COMS, 345
DMSII TPS option, 5-32
in COMS, 3-45
in DMSII TPS, 5-32
Restart field name
. input header in COMS, 3-8
Retain Transaction Mode field name
output header in COMS, 3-9
RETAINTRANSACTIONMODE COBOL74
field name
output header in COMS, 3—9
RETRIEVE statement
in SIM, 1-8, 8-55
transaction state, 8—45
RETURN statement
in ADDS, 2-10
RETURNLASTADDRESS parameters
in TPS, 5-28
RETURNLASTRESPONSE entry point
in TPS, 5-23
RETURNRESTARTINFO parameters
in TPS, 5-23
ROUND function
in SIM, 8-28
RPT function
in SIM, 8-31
run time
modifying database titles in DMSII during,
4-16

S

SAME RECORD AREA clause
in SDF, 1-6, 6-3
in SDF Plus, 1-6
SAME RECORD AREA option
in SDF
data-description entry, 6—4
~ with COMS, 6-17
in SDF Plus, 7-6

8600 0130-010

sample programs
in ADDS, 2-15
in DMSII TPS, 5-32
in SDF, 6-19
in SDF Plus, 7-28
SAVE TRANSACTION POINT statement
in DMSII, 14, 4-64
in SIM, 1-8, 8-25
SAVEINPUTTR formal procedure
in TPS, 5-30
SAVERESPONSETR formal procedure
in TPS, 5-31

- scope of this manual, v

Screen Design Facility (SDF), 6-1
and ADDS, 6-1
and COMS, 6-1
default form transmittal, 6-18
first word into conversation area, 6-18
for RECEIVE statement, 6-17
for REDEFINES option, 6-17
for SAME RECORD AREA option, 6-17
form key movement, syntax of, 6-18
interface function, 6-10 '
interface guidelines, 6-17
invoking a formlibrary, 6-17
using SDF forms, 6-17
cursor positioning, 6-13
data item characteristics, identifying, 6-3
default values
when reading forms, 6-7
when writing forms, 6-10
dictionary identification, 6-2
DICTIONARY statement, 6-2
error handling when reading forms, 6-7
error recovery when writing forms, 6-10
extensions (list), 1-5
file status update when reading forms, 6-6
flag groups for programmatic control, 6-15
flag setting for programmatic controls,
6-12
for FROM DEFAULT FORM option, 6-10
for FROM DICTIONARY clause, 6-3
FORM-KEY function for COMS interface,
- 6-10
formlibrary data-description entry rules,
6-5
formlibrary name in data-description entry,
64
highlight flag; 6-14
invoking form descriptions in formlibrary,
6-3
level number in data-description entry, 64

Index-21

Index

LOW-VALUES figurative constant with
programmatic flags, 6-15
MOVE statement
when reading forms, 67

when using WRITE FORM statement,

6-9
naming convention for programmatic
control, 6-12
ON ERROR condition, 6-7
program interfaces used with, 6-1
programmatic control
flag information (table), 6-13
flag settings (table), 6-13
flag suffixes (table), 6-13
READ FORM statement, 6-6, 67

reading forms from station to program, 6-5

record moving when reading forms, 6-7
REDEFINES clause, 6-3
REDEFINES option in data-description
entry, 6-4
redefining formlibraries, 6-3
SAME RECORD AREA clause, 6-3
SAME RECORD AREA option in
data-description entry, 64
sample program
for reading forms, 6-19
for using message keys, 6-26
for writing forms, 6-21
USING clause
in READ FORM statement, 6-6
in WRITE FORM statement, 6-9

using programmatic controls and a remote

file, 6-22
WRITE FORM statement, 6-8

writing forms from program to station, 6-8

Screen Design Facility Plus (SDF Plus), 7-1
and ADDS, 7-1
and COMS, 7-1, 7-25
and SIM, 7-1
data-description entry in, 7-5
default form records, 7-11
DEFAULT FORM statement, 7-11
dictionary identification, 7—4
DICTIONARY statement, 7-4
direct windows used with COMS, 7-25
DIRECTORY clause, 7-6
error recovery when writing forms, 7-15,
7-17
error-handling when reading forms, 7-11
extensions (list), 1-6, 7-1
form record library, 7-2
'data description, 7-7

index—22

importing, 7-6

storage directory, 7-6
form record numbers, 7-2

obtaining, 7-22

form records, 7-2

I/O operations for, 7-3
invoking all descriptions of, 7-6
invoking in form library, 7-6
obtaining from library, 7-5
FROM DICTIONARY clause, 7-5
GLOBAL option, 7-7
global remote file
selecting, 7-9
guidelines for COMS interface, 7-26
interface elements, list of, 7-2
invoking data descriptions in, 7-5
MOVE statement, 7-11
MOVE statement, comparison with, 7-17
moving data when writing forms, 7-17
ON-ERROR condition in writing forms,
7-14, 7-17
ON-ERROR option, 7-11
preassigned transaction number return,
7-23
READ FORM statement, 7-10, 7-11
reading forms, 7-10
reading specific form records, 7-11
record default values, writing forms, 7-17
REDEFINES option, 7-7
releasing logical record to remote file,
7-14, 7-16, 7-18
SAME RECORD AREA option, 7-6
sample program for, 7-28
SELECT statement, 7-9
sending and receiving messages with
COMS, 7-26
sending text messages through COMS,
7-27
sending transaction errors, 7-26
SEPARATE RECORD AREA option, 7-6
sharing memory in data descriptions, 7-7
subprogram reference in library, 7-7 '
transaction errors with COMS, 7-26
transaction numbers, 7-3
returning, 7-24
transaction type record, identifying, 7-3
USING clause, 7-10
in WRITE FORM TEXT, 7-20
using the COMS input/output headers,
- 725
using the FORMRECNUM attribute, 7-22

8600 0130-010

Index

using the FROM DICTIONARY option,
-1

using the TRANSNUM attribute, 7-23

VERSION clause, 7-6

WRITE FORM statements, 7-13

WRITE FORM TEXT statement, 7-19

writing forms, 7-13

writing text arrays to a remote file, 7-19

SD, (See sort-merge file description (SD)

entry)

SDF, (See Screen Design Facility (SDF))

SDF Plus, (See Screen Design Facility Plus

(SDF Plus))
search rules
in ADDS, 2-3
SECOND function
in SIM, 8-32
SECURE statement
in DMSII, 14, 4-64
Security Designator field name
input header in COMS, 3-8
SECURITYDESGCOBOL74 field name
input header in COMS, 3-8
SEEKTRANSACTION parameters
in TPS, 5-23
segmented output
using the SEND statement in COMS, 3-23
SELECT statement
in ADDS, 1-2,2-8 -
for INVOKE clause, 2-8

in SDF Plus, 7-9

in SIM, 1-8, 846
Attribute Map clause in, 8-49
embedded SELECT clause in, 849
for transaction state, 8-45
Mapping clause, 8-48
Mapping clause in, 8-49

selection expressions

in DMSII, 14, 4-18
for AT option, 4-19
for WHERE option, 4-19
key condition in, 4-19
in SIM, 8-34
formats, 8-39
global, 8-36
local, 8-36 ,

Semantic Information Manager (SIM)
ABORT-TRANSACTION statement, 8-21
absolute value function, 8-28
adding and removing attribute values,

8-65, ’

8600 0130-010

adding values to multivalued attribute
(MVA), 8-71

addition function, 8-27

aggregate functions (list), 8-27

ALL quantifier, 8-29

altering level of transitive closure, 8-53

and ADDS, 8-2

-and SDF Plus, 7-1

APPLY INSERT statement in updates,
8-60

APPLY MODIFY statement in updates,
8-64

. APPLY statement in multiple-statement

update, 8-57
arithmetic expressions in, 8~34
arithmetic functions in, 8-28
AS option in Qualification Term clause,
844
ASSIGN clause, 8-66
attribute assignment, 8-66, 8-67
attribute assignment statements, 8-65
Attribute Map clause in SELECT
statement, 8-49
backing out updates in transaction, 8-23
BEGIN-TRANSACTION statement, 8-22
Boolean Expression clause, 8—-42
Boolean Primary clause, 8-42
CALL:SYSTEM statement, 8-76
CALLED special construct, 8-29
in Qualification Term clause, 8-44
CANCEL TRANSACTION POINT
statement, 8-23
class or attribute function, 8-27

" CLOSE statement, 8-18

closing a database, 8-18

Compound clause for attributes, 8-67

COMS and END-TRANSACTION

statement, 8-24

condition expressions, 8~42

conditional expressions, 8-34
operators, 8-35

controlling level of entity search, 8-44

CURRENT function, 8-13

CURRENT special construct, 8-29

data management (DM) expressions, 8-34

date and time types, 8-9

date functions, 8-32

declaring a database, 84

declaring a query, 8-13

defining the status of a dictionary, 8——6

DELETE statement, 8-72 '

deleting database entities, 8-72

Index—23

Index

DICTIONARY compiler control option
with ADDS, 8-6 .
DICTIONARY statement with ADDS, 8-2
REPOSITORY option and, 8-2
DISCARD statement, 8-56
DMERROR Use procedure, 8-79
DMSTATE statement, 8-74
embedded SELECT clause, 849
END-TRANSACTION statement, 8-24
entity formatting, 848
entity reference variables, 8-25
entity-valued attribute, 8-53
exception handling
. for ABORT-TRANSACTION statement,
8-21
for APPLY INSERT statement, 8-60
. for APPLY MODIFY statement, 8-64
for BEGIN- TRANSACTION statement,
8-22
for CANCEL TRANSACTION POINT
statement, 8-23
for DELETE statement, 8-73
for END-TRANSACTION statement,
8-24 '
for MODIFY statement, 8-62
for SAVE TRANSACTION POINT
statement, 8-25
for START INSERT statement, 8-59
methods of, 8-77
exceptions
obtaining description of, 8-76
returned with INQUIRY, 8-16
EXCLUDE phrase in Compou.nd clause,
8-68
excluding part of compound attribute, 8-68
Expression clause, 8-39
" expression formats in, 8-38
extending the DECLARATIVES portion,
8-79
extensions (list), 1-7
functions
expressions in, 8-27
functions (list), 8-27
GLOBAL option
in database statement, 8-4
in query declaration, 8-14
handling keywords as reserved words,
8-2A
hybrid retrieval, sample program for, 8-81
hybrid selection, 8-48
identifying entity on which query operates,
8-36

Index—24

"INCLUDE clause, 8-71

INCLUDE statement, 8-71

INSERT statement, 8-57

INVERSE function in Qualification Term
clause, 844 -

INVERSE special construct, 8-29

IS clause in selection expression, 8-36

level indicator in query declaration, 8-15

LIMIT option in updates, 8-61

limiting entities to be deleted from
database, 8-73

mapping clause

‘format options for, 848

“Mapping clause, 8-48

Mapping clause in SELECT statement, v
849

. maximum value calculation, 8~27

mean calculation function, 8-27
minimum value function, 8-27
MODIFY statement in updates, 8-61
multiple-statement updates, 8-57
NO quantifier, 8-29
obtaining the valid d1ct10nary version, 8-6
OF option

in Qualification Term clause, 8-44

in query declaration, 8-14
ON EXCEPTION option, 8-55, 8-78

in CLOSE statement, 8-18

in OPEN statement, 8-16 -
OPEN statement, 8-16
opening and closing a database, 8-16
pattern matching with strings, 8-37
placing program in transaction state, 8-22
Primary clause, 8-43
processing exceptions in, 8-74
PRODUCTION status in, 8-6
program interface, 8-1
program variable types (list), 8-8
Qualification Term clause, 8-44
qualifying multiple-perspective queries,

8-12

qualifying single-perspective queries, 8-10

. quantifiers, using to specify entities, 8-28

query
declaration, 8-13
elements of, 8-13
grouping statements, 8-18
record types (list), 8-8
retrieval and update types, 8-13
statement, 8-13
variable, 8-13
read-only access to database, 8~16

8600 0130-010

Index

recursive retrieval, 8-53
referencing a compound attribute, 8-9
reflexive attribute, 8-53
Relational Operator clause, 844
relational operators, 8-42
removing data from transaction state, 8-21
removing program from transaction state,
8-24
RESERVE clause, 8-6
RESERVE option, 8-2A
RESERVE SEMANTIC option
reserved words used with (list), 8-3
RETRIEVE statement, 8-55
rounding value function, 8-28
sample programs for, 8-79
SAVE TRANSACTION POINT statement,
8-25
SELECT statement in, 8-45
selecting and retrieving entities, 845
selecting entities from database, 846
selection expression, 8-36
SET statement, 8-53
single- and multiple-statement updates,
program for, 8-79 A
single-statement updates, 8-57
single-valued database attributes, 8-66
SOME special construct, 8-29
special characters in pattern matching
* (table), 8-37
special constructs (list), 8-28
specifying database manager, 8-6
specifying external and internal database
. names, 84 :
square root function, 8-28
START INSERT statement in updates,
8-59 _
START MODIFY statement in updates,
8-63
START statement in multiple-statement
update, 8-57
string concatenation in, 8-37
string expressions in, 8-37
-string functions in, 8-30
structured formatting, 848
symbolic functions in, 8-31
symbuolics in SIM type, 8-7
tabular formatting, 8-48
TEST status, 8-6
time functions, 8-32
transaction point
in a transaction, 8-19
intermediate, 8-25

8600 0130-010

transaction state with entity reference
variables, 8-25
transactions, using, 8-18
transitive closure, sample program for,
8-83
TRANSITIVE special construct, 8-29
Transitive Specification clause, 844
truncating function, 8-28
type representation (list), 8-8
types mapped into COBOL,74, 8-7
UPDATE option in OPEN statement, 8-16
updating and deleting entities, 8-56
updating the database, 8-18
USAGE clause with
ENTITYREFERENCE variable, 8-26
USING clause for END-TRANSACTION
statement, 8-24
valid corresponding types (list), 8-9
VALUE OF DBKIND option in database
statement, 8-5
VERSION option, 8-6
WHERE clause
in MODIFY statement, 8-61
in selection expression, 8-36
SEND statement
in COMS, 1-2, 3-21
affecting the MCS, 3-22
SDF FORM-KEY function used with,
6-10 o
in DCIENTRYPOINT parameters, 3-14
using DCI library ‘
for designating an advancing value, 3-13
for specifying advancing control, 3-13
for specifying an end-indicator option,
3-13
SEPARATE RECORD AREA clause
in SDF Plus, 1-6
SEPARATE RECORD AREA option
in SDF Plus, 7-6

~ service functions

~in COMS :
calling by name, 3-29
calling by value, 3-30
hyphenating names, 3-27
passing parameters to, 3-32
translating a designator, 3-7, 3-8
mnemonics used in (table), 3-27
names of (list), 3-26
Set Next Input Agenda field name
output header in COMS, 3-9
set reference
in DMSII, 4-7, 4-9

Index-25

Index

SET statement
in DMSII, 1-4, 4-66
in SIM, 1-8, 8-53
set, qualifying names of, 4-2
SETNEXTINPUTAGENDA COBOL74 field
name
output header in COMS, 3-9
shared lock
in DMSII, 4-64
. SIM, (See Semantic Information Manager
(SIM))
SIM types
mapping into COBOL74 (list), 8-8
single-perspective qualification
in SIM, 8-10
single-statement update
in SIM
for INSERT statement, 8-57
for MODIFY statement, 8-57
SIZE option <
in COMS, 3-5
SOME special construct
' in SIM, 8-29
for Primary clause, 8-43
for Qualification Term clause, 844
sort-merge file description (SD) entry
in ADDS, 2-10
level indicator, 1-2
space file .
aligning COMS messages
in SEND statement, 3-22
space fill ‘
aligning COMS messages
in RECEIVE statement, 3-20
special constructs in SIM, 8-28
SPECIAL-NAMES paragraph
in ADDS -
for identifying dictionary, 2-6
for invoking file attributes, 2-11
in COMS for SEND statement, 3-23
specify flag
in SDF, 6-14
SQRT function
in SIM, 8-28 '
START INSERT statement
in SIM, 1-8, 8-59
START MODIFY statement
in SIM, 1-8, 8-63 :
STATION COBOL74 field name
input header in COMS, 3-8
Station Designator field name
input header in COMS, 3-8

Index-26

STATION_TABLE_ADD parameters
in COMS, 3-42
STATION TABLE INITIALIZE parameters
in COMS, 3-42 ,
STATION TABLE SEARCH parameters
in COMS, 3-42
status
for invoking entities
in ADDS, 2-2
in SIM, 8-6
Status field name
input header in COMS, 3-8
output header in COMS, 3-9
STATUS IS clause
in SIM for database statement, 8-6
Status Value field '
in COMS for SEND statement, 3-21
status word
in DMSII
for exception handling, 4-71
significance in the CLOSE statement, 4-34
STATUSVALUE COBOL74 field name
input header in COMS, 3-8
output header in COMS, 3-9
STORE statement
in DMSII, 14, 4-68
string expressions
in SIM, 8-37
STRING function
TPS parameter passing to ALGOL library,
5-21
string functions -
in SIM, 8-30
structure number
in DMSII, 4-72
STRUCTURE phrase
in DMSII ‘
for FREE statement, 4-47
for LOCK/MODIFY statement, 4-56
for SECURE statement, 4-65
structured formatting’
in SIM, 848
subscript
in TPS
for CREATE statement, 5-9
instructions for using, 5-14
using in record formats, 5~10
SUCCESSOR function
in SIM, 8-31
SUM function
in SIM, 8-27
SWITCHTRFILE parameters,

8600 0130-010

Index

in TPS, 5-23
symbolic functions in SIM, 8-31
SYNC option
in DMSII
for END-TRANSACTION statement,
4-42,5-31
synchronized recovery
in COMS
with DMSII, 4-34
sample program, 3—45
syncpoint '
in DMSII ' :
for END-TRANSACTION statement,
4-42

T

tabular formatting
in SIM, 8-48
TANKTRANSACTION parameters
in TPS, 5-24 .
TANKTRNORESTART parameters
in TPS, 5-24
TB, (See transaction base)
TERMINAL optional word
_in DISABLE statement, 3-17
TEST status
in ADDS, 2-2
in SIM, 8-6
TEST DESIGNATORS parameters,
in COMS, 344
Text Length field name
input header in COMS, 3-8
output header in COMS, 3-9
TEXTLENGTH COBOL74 field name
input header in COMS, 3-8
output header in COMS, 3-9
TFL, (See Transaction Formatting Language
(TFL))
time
in SIM
type representation, 8-8, 8-9
TIME(6) field
in COMS, 3-6, 3-7, 3-33
TIMES field
in SIM for USAGE clause, 8-26
TIMESTAMP COBOL74 field name
input header in COMS, 3-8
Timestamp field name
input header in COMS, 3-8

8600 0130-010

TPS, (See transaction processing system
(TPS))
trancode, (See transaction processing)
transaction ‘
in SIM, 8-18
transaction base
alternate internal names, 5-3
bound programs, 5-5
declarations in, 1-5, 54
global declaration in, 5-5
invoking, 5-3
USING clause in declaration, 5-5
transaction compile-time functions
in TPS, 5-18
transaction errors
with SDF Plus, 7-26
Transaction Formatting Language (TFL)
declaring a transaction base, 5-3
in TPS item interpretation, 5-3
transaction functions
in DCI library, 3-13
transaction library
in TPS '
declaring entry points, 5-5
for CALL statement, 5-5
passing parameters to update library,
5-26 '

. using entry points, 5-20, 5-23
using the INTEGER function, 5-21
using the STRING function, 5-21

transaction numbers
attribute in SDF Plus, 1-6, 7-24
in SDF Plus, 7-3

-transaction points

in SIM, 8-19
transaction processing
routines used in update library, 5-24
using COMS for, 3-1, 3-8
transaction processing system (TPS), 5-28
ACCESSDATABASE entry point in
update library, 5-24
accessing transaction record items, 5-12
Accessroutines
generating compiler calls, 5-29
in program removal, 5-30
in update library, 5-28
alternate internal names in transaction
base, 5-3 :
assigning record variables, 5-11
banking transaction, sample program for,
5-39

Index—27

Index

BEGIN-TRANSACTION statement in
update library, 5-28
CALL statement
in transaction base library entry, 5-5
in Use procedures, 5-25
calling entry points in, 5-23
COBOL74 constructs, passing parameters
‘ with, 5-21 ’
compile-time functions (table), 5-19
compiler call procedure with DMSII, 5-30
CORRESPONDING phrase, special rules
for, 5~12
CREATE statement in record formats, 5-9
DASDL, sample program for, 5-32
declarations in transaction base, 5-4
declaring library entry point in transaction
base, 5-5
declaring Use procedures, 5-25
DMSII interface
library routines, 5-24
recovery synchronization, 5-27
sample program for, 5-32
END-TRANSACTION statement, 5-30
entry point to update library, 5-24
entry points (table), 5-23
exceptions
return in update library, 5-28
when database is open, 5-28, 5-29,
5-30, 5-31
extensions (list), 1-5
GLOBAL option in transaction record, 5~7
GLOBAL statement in Use procedures,
5-25
hyphenated identifiers in, 5-2
inquiring about control items, 5-17
INQUIRY option in update library, 5-28
MID-TRANSACTION statement, 5~29
MOVE CORRESPONDING statement,
5-12
MOVE statement to assign variables, 5-11
OCCURS clause in transaction record, 5-7
ON EXCEPTION option
in update library, 5-28, 5-29, 5-30, 5-31
OPEN statement, 5-27
opening database in update library, 5-27
parameter passing
from ALGOL library, 5-26
to ALGOL library, 5-21
passing display item to string parameter,
5-21
. passing numeric item to integer parameter,
- 5-21

Index-28

passing transaction record variable, 5-11
procedures in update library, 5-25
program types used in, 5-1 '
programming for a DMSII interface, 5-24
qualification of data items, 5-16
RDS, sample program for, 5-32
removing a program from transaction
state, requirements for, 5-30
sample programs for, 5-32
SAVEINPUTTR procedure, 5-30
SAVERESPONSETR procedure, 5-31
subscripts with OCCURS clause, 5-14
SYNC option in END-TRANSACTION
statement, 5-31 '
syncpoint in transaction removal, 5-31
TFL item interpretations (table), 5-2
transaction base declaration in, 5-3
transaction base global declaration in, 5-5
transaction compile-time functions, 5-18
Transaction Formatting Language (TFL),
5-2
transaction library entry points, 5-20

transaction record

creating, 5-7, 5-9
declared in host, 5-8
restrictions, 5-11
transaction state removal procedure, 5-31
transaction use procedures in, 5-25
TRUPDATE option in OPEN statement,
5-27
update library ‘
parameter passing, 5-26
program conventions, 5-24
recovery in, 5-27
sample program for, 5-35
USING clause in transaction base
declaration, 5-5
using subseripts in record formats, 5-10

transaction record control item reference

in TPS, 1-5

transaction record reference entry

in TPS, 1-5

transaction records

accessing items in, 5-12

assigning variables in, 5-11

association with bases and subbases, 5-7
control items for, 5-17

creating, 5-9

declaring variables, 5-7

passing variables as parameters, 5~11
restrictions for use, 5-11

8600 0130-010

Index

special rules in CORRESPONDING
phrase, 5-12
using subscripts in format, 5-10
variable declaration for, 1-5
when declared in host program, 5-8
transaction state
in SIM
creating, 8-18
use of SELECT clause in, 845
valid statements in, 8-19
with entity reference values, 8-25
transaction types
in SDF Plus, 7-3
transaction updating
in DMSII, 4-25
transaction Use procedures
in TPS, 5-25
transitive closure
in SIM, 8-53
TRANSITIVE special construct
in SIM, 8-29
Transitive Specification clause
in SIM, 8-44
. transmission indicator schedule
in COMS
for SEND statement, 3-24
TRANSPARENT COBOL74 field name
input header in COMS, 3-8
output header in COMS, 3-10
Transparent field name
input header in COMS, 3-8
output header in COMS, 3-10
TRUE clause
in DMSII .
for COMPUTE statement, 4-35
TRUNC function
in SIM, 8-28
TRUPDATE option
in TPS for OPEN statement, 1-5, 5-27
TRUSERIDSTRING parameters
in TPS, 5-24
types
in COMS :
items mapped to COBOL74, 3-6
in SIM, 8-8 ‘
items mapped to COBOL74, 8-7

U

P

unindexed descriptor
in DCIENTRYPOINT library object

8600 0130-010

parameter length, 3-13
UP phrase
in SIM for SET statement, 8-53

‘update library

in TPS :
ACCESSDATABASE entry point, 5-24
declaring transaction Use procedures,

5-25

passing parameters, 5-26
programming conventions, 5-24
receiving parameters, 5-26
using, 5-24

sample program for, 5-35

UPDATE option

in SIM

for OPEN statement, 8-16

"UPDATE phrase

in DMSII
for OPEN statement, 4-58
updates .
inSIM
single-statement and
multiple-statement, 8-57
use of START and APPLY in
multiple-statement, 8-57
USAGE clause
in SIM
to declare entity reference variables,
8-26
in TPS
passing parameters to ALGOL library,
5-21
USE statement
in TPS, 1-5, 1-6
to declare Use procedures, 5-25
USER clause
in ADDS, 24
replacing with DIRECTORY clause, 2—4
USER option
in SIM
for database declaration, 8-6
user-defined COBOL74 field name
input header in COMS, 3-8
output header in COMS, 3-10
user-defined Conversation Area field name
input header in COMS, 3-8
output header in COMS, 3-10
user-defined words (list), B-1
USERCODE COBOL74 field name
input header in COMS, 3-8
Usercode Designator field name
input header in COMS, 3-8

Index-29

Index -

USING clause
in data set references, 4-8
in SDF
for READ FORM statement, 6-6
for WRITE FORM statement, 6-9
in SDF Plus
for READ FORM statement, 7-10
for WRITE FORM statement (format
1D, 7-14
for WRITE FORM statement (format
2), 7-16
for WRITE FORM TEXT statement,
7-20 .
in SIM
for END-TRANSACTION statement,
8-24
in TPS _
for passing parameters with COBOL74
constructs, 5-22
for transaction base declaration, 5~5
- USING option
in DMSII ,
for invoking data sets, 4-9
using the SDF Plus Program Interface, 7-1

Vv

- VALUE clause
in COMS
for CALL statement, 1-2
VALUE OF DBKIND option
in SIM for database declaration, 8—4
VALUE OF TITLE clause '
in DMSII
~ for database declaration, 4-6
VALUE parameter
in CALL statement for COMS, 1-2, 3-31
naming convention with DCILIBRARY,
3-29
variable-format records
problem with using in DMSII, 44
variables
passing as parameters in TPS, 5-11
VERSION clause .
- in ADDS, 1-2, 2-3
for data description, 2-3
" for DICTIONARY statement, 2-3
for file description, 2-3
version number
assigning in ADDS, 2-3
VERSION option

Index-30

in ADDS
for DICTIONARY statement, 2-7
for SELECT statement, 2-8 -
in SDF Plus, 7-6
in SIM
for database declaration, 8-6
VIA option
in DMSII
for selection expression, 4-18
virtual terminal name
assigning to a COMS direct window, 3-10
VT, (See virtual terminal name)
VT Flag field name .
input header in COMS, 3-8
output header in COMS, 3-9
VTFLAG COBOL74 field name
input header in COMS, 3-8
- output header in COMS, 3-9

W

WFL, (See Work Flow Language (WFL))
WHERE clause
in SIM
- for DELETE statement, 8-73
for global selection expression, 8-36
- for MODIFY statement, 8-61
for SELECT statement, 8-46
for selection expressions, 8-36
for START MODIFY statement, 8-63
WHERE option
in DMSII
for selection expressions, 4-19
in SIM 4
for MODIFY statement, 8-62
windows in COMS
using the VT flag bit, 3-10
using to send messages, 3-8
using with SDF Plus, 7-25
WITH clause
in SIM
for local selection expression, 8-36
WITH DATA option
in COMS
for RECEIVE statement, 3-19
WITH option
in SIM
for Qualification Term clause, 844
Work Flow Language (WFL) - :
in database equation operations, 4-16
overriding database titles in, 4-16

8600 0130-010

Index

WRITE FORM FOR ERROR MESSAGE
statement
in SDF Plus
sample programs for, 7-19
WRITE FORM statement
in SDE 1-6, 6-8
for DEFAULT FORM option, 6-10
for USING clause, 6-9
in SDF Plus, 1-6
WRITE FORM statement (format 1)
in SDF Plus

for ON ERROR MESSAGE clause, 7-15

for USING clause, 7-14
sample programs for, 7-15
WRITE FORM statement (format 2)
in SDF Plus
for DEFAULT FORM option, 7-17
for FOR ERROR MESSAGE clause,
7-17
for USING clause, 7-16
sample programs for, 7-17
WRITE FORM statement (format 3)
in SDF Plus .
FOR ERROR MESSAGE clause, 7-18
WRITE FORM statements
in SDF Plus, 7-13
WRITE FORM TEXT statement
in SDF Plus, 1-6, 7-19
sample programs for, 7-21

Y

YEAR function
in SIM, 8-32

01-level indicator
in TPS record variable declarations, 5-7

8600 0130-010

Index-31

Index—32 , 8600 0130-010

UNISYS ~ Help Us To Help You

Publication Title

Form Number

Unisys Corporation is interested in your comments and suggestions reguarding this manual. We will use
them to improve the quality of your Product Information. Please check type of suggestion:

O Addition [Deletion [J Revision 3 Error

Comments:

Name g Telephone number
: {)}

Title) Company

Address

City State Zip code

S3LV1S G3LNN
JHL NI
Qv 4l
AYYSSIOAN
3OVLSOd ON

9286-16926 VO ‘OrdiA NOISSIW
avod OWINOQUYAr ScLse
SNOLLYOIT8Nd "NLLY
NOLLVYOJYO0I SASINN

33SSAAV A9 Aivd 38 TIM 39V1SOd

IN‘LIOYI3Q T8 'ON LiN¥3d TIVIN SSYIO LSyl

TIVIN X1d3Y SSANISNG

Fold Here

|
I
I
I
|
|
|
|
|
I
I
|
I
| I
|
]
o
—
|
|
I
I
I
|
I
|
|
!
|
|
|
|
|
|
|
|
-

Cut along dotted line .x

ANV MR KA

86000130-000

Using the SIM Program Interface

END-TRANSACTION Statement

The END-TRANSACTION statement commits all updates applied within a transaction,
and takes a program out of transaction state. -

General Format
The general format of an END-TRANSACTION statemerit is as follows:

END-TRANSACTION [COMS-header-name-1 [USING data-name-1]]

ON EXCEPTION {conditional-statement-l

imperative-statement-1 }]

NEXT SENTENCE

8-24

Explanation of Format Elements

COMS-header-name-1

This option specifies the COMS output header. This call is made before the
exception-handling procedure is executed.

COMS-header-name-1 is used only with COMS. COMS-header-name-1 causes the
COBOQL74 program to call the DCIENTRYPOINT of a DCI library when an exception

condition is detected. This program call enables a program interfacing with COMS to
support synchronized transactions and recovery.

USING data-name-1

The USING option enables the message area indicated by data-name-1 to be passed to
the DCIENTRYPOINT when the call is made on the DCI library.

ON EXCEPTION

The ON EXCEPTION option is described under “Handling SIM Exceptions” later in this
section.

See Also

Refer to Section 3, “Using the COMS Program Interface,” for more information on
COMS.

8600 0130-000

