

VT6304 1394.A 4 PORT PHYSICAL LAYER CHIP

DATA SHEET (Preliminary)

DATE : June 1, 1999

VIA TECHNOLOGIES, INC.

PRELIMINARY RELEASE

Please contact Via Technologies for the latest documentation.

Copyright Notice:

Copyright © 1998, Via Technologies Incorporated. Printed in Taiwan. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of Via Technologies Incorporated. The VT6101/VT6102 may only be used to identify products of Via Technologies.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of Via Technologies. Via Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, Via Technologies assumes no responsibility for any errors in this document. Furthermore, Via Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

5020 Brandin Court Fremont, CA 94538 USA

Tel:(510) 683-3300Fax:(510) 683-3301

8th Floor, No. 533 Chung-Cheng Rd., Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 218-5452 Fax: (886-2) 218-5453

Onlines Services:

BBS: 886-2-2186408 FTP: <u>FTP.VIA.COM.TW</u> HTTP: <u>WWW.VIA.COM.TW</u>

VT6304 IEEE 1394A FOUR PORT CABLE TRANSCEIVER/ARBITER FEATURES

- Supports Provisions of IEEE 1394-1995 Standard for High Performance Serial Bus and the P1394a Supplement 2.0.
- Full P1394a Supplement Support includes:
 - Arbitrated short reset,
 - Connection Debounce,
 - Multispeed Concatenation,
 - Ack Accelerated Arbitration,
 - Fly-By Concatenation,
 - Programmable Port Disable, Suspend, Resume,
 - PHY IDs Do Not Increment Past 63
- Provides Four 1394a Fully Compliant Cable Ports at 100/200/400 Megabits per Second (Mbit/s)
- Single 3.3 V power supply
- Logic Performs Bus Initialization and Arbitration Functions
- Encode and Decode Functions Included for Data-Strobe Bit-Level Encoding
- Incoming Data Resynchronized to Local Clock.
- Data Interface to Link-Layer Controller Provided Through 2/4/8 Parallel Lines at 49.152 MHz
- 24.576 MHZ Crystal Oscillator and PLL Provide TX/RX Data at 100/200/400 Mbps and Link-Layer Controller Clock at 49.152 MHZ.
- Cable Power Presence Monitoring.
- Programable Node Power Class Information for System Power Management
- Embedded Bus Holder Isolation to Link Layer Controller Interface
- Optional On-chip Resistors to Reduce Component Counts for Electrical Isolation to Link Layer Controller Interface
- Fully Compliant P1394a 2.0 PHY Map
- Separate TPBIAS for Each Port
- Fully Interoperable with IEEE Std1394-1995 Devices
- Cable Ports Monitor Line Conditions for Active Connection to Remote Node
- Low Power Design for Battery-Powered Applications includes: User Controlled Power-Down via PD, Automatic Device Power-Down during All Ports Suspended and Link Interface Disabled, Link Interface Power-Down via Inactive LPS, Automatic Inactive Ports Powered-Down, and Automatic Inactive Logic Power-Down
- Self Power Up Reset and Pinless PLL to Reduce Component Counts on System
- Low Cost 100-Pin PQFP package

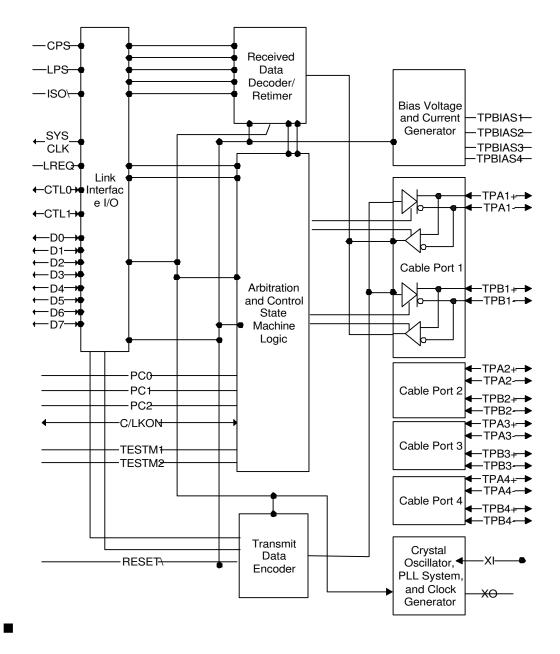
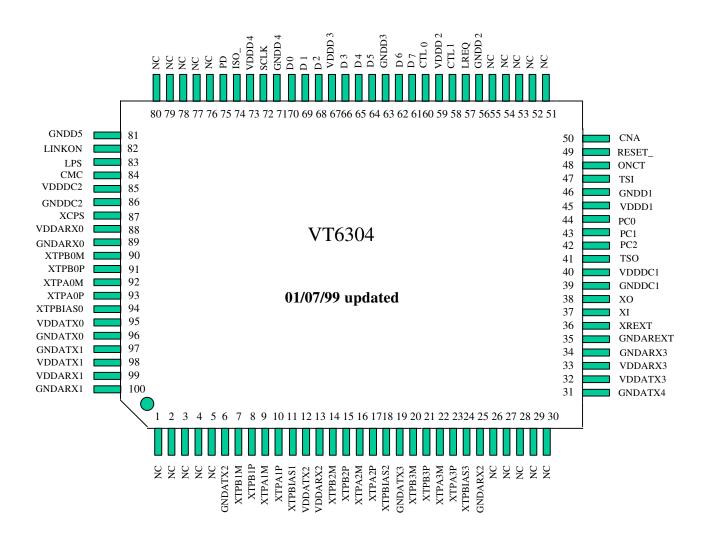



Figure 1: Functional Block of VT6304

Pin Diagram

PIN DESCRIPTIONS

No.	Name	Туре	Description				
Link-PHY	Interface						
82	LINKON	0	Link on. Indicates the reception of a link-on packet or port event occurs by asserting a 6.114 MHZ signal.				
83	LPS	Ι	Link power status. LPS is connected to either the VDD supplying the LINK or to a pulsed output that is active when the LINK is powered for the purpose of monitoring the LINK power status.				
57	LREQ	Ι	Link request. LREQ is an input from the LINK that requests the PHY to perform some service.				
74	ISO_	Ι	Link interface isolation control input. This terminal controls the operation of output differentiation logic on the CTL[0-1] and D[0-7] signals. If an optional isolation barrier is implemented between the VT6304 and LLC the ISO_ pin should be tied low to enable the differentiation logic. If no isolation barrier is implemented, the ISO_ should be tied high to disable differentiation logics.				
60, 58	CTL[0-1]	I/O	Control I/O. the CTLn terminals are bidirectional communications control signals between the PHY and LINK.				
70, 69, 68, 66, 65, 64, 62, 61	D[0-7]	I/O	Data I/O. The D terminals are bidirectional and pass data between the PHY and LINK.				
72	SCLK	0	System clock. SCLK provides a 49.152 MHZ clock signal, which is synchronized with the data transfers to the LINK.				
Analog In	nterface						
93, 10, 17, 22	XTPA[0-3]P	I/O	Twisted-pair cable A differential positive signal pins.				
92, 9, 16, 22	XTPA[0-3]M	I/O	Twisted-pair cable A differential negative signal pins.				
91, 8, 15, 21	XTPB[0-3]P	I/O	Twisted-pair cable B differential positive signal pins.				
90, 7, 14, 20	XTPB[0-3]M	I/O	Twisted-pair cable B differential negative signal pins.				
94, 11, 18, 23	XTPBIAS[0- 3]	I/O	Twisted-pair bias voltage supply. Provide 1.85V (typical) nominal bias for proper operation of the twisted-pair cable drivers and receivers, and for signaling to the remote nodes that the cable connections is active. Hi-impedance during chip reset or power down. Can be disabled via remote packets or software defined in P1394a Draft 2.0. Each of these pin must be decoupled with a 1-uF capacitor to ground.				
Misc.							
87	XCPS	Ι	CPS : Cable power status. CPS is normally connected to the cable power through a 11 Kohm/1 KOhm volatge divider. This circuit drivers an internal comparator that detects the presence of cable power.				

50	CNA	0	CNA is asserted high when none of the PHY ports are connected to another active port. This circuit remains active during the powerdown mode.				
84	CMC	Ι	Programable Contender/Bus Manager Capable. It specifies in the Self-ID packet that the node is capable of being a bu manager.				
44, 43, 42	PC[0-2]	Ι	Power Class. These pins are used to set the three POWER_CLASS bits in the Self-ID packet. They are used to describe the power consumption and source characteristics of the node. PC0, 1, 2 are reflected in the Self-ID packet bits 21, 22, 23, respectively.				
47	TSI	Ι	Single Self ID packet. If port 4 is unused, i.e, the resistors and capacitors for port 4 are not implemented, there is no need to send the 2nd self ID packet, and the system can get benefit by tying this pin to digital VDD to reduce self ID packet exchange time.				
41	TSO	Ι	Test pin. Tied to VT6304 digital VDD ring for normal operations.				
48	ONCT	Ι	On Chip Termination. If the capacitive isolation barrier is implemented between the VT6304 and LLC, tie this pin to VDD will utilize on chip resistors to replace on board 5K Ohms resistors pair for LREQ, CTL[0:1] and D[0:7] at PHY side. The resistors for LPS input at PHY side are also replaced if this pin is tied to VDD. This pin has effects on on-chip terminations only if ISO_ is tied to ground.				
75	PD	Ι	Power Down. A logic High on this pin turns off all internal cicuitry except the connection detect circuits, which outputs the CNA signal.				
49	RESET_	I/NC	Reset (active low). The reset pin is connected to an internal 10K ohm resistor and an external 0.1 uF capacitor is used for internal reset generation at power-on. The pin can be left unconnected to save the external capacitors, and then the reset time after power-on ranges from 0.5 ms to 2 ms. This pin can also be driven by an open-drain type driver.				
38, 37	XI, XO	Crystal	Crystal Oscillator, 3.3V. These pins connect to a 24.576 MHz parallel resonant fundamental mode crystal. The optimum values for the external shnut capacitors are dependent on the specifications of the cystal used. The resulting frequency variation is +/- 100 ppm.				
36, 35	XREXT, GNDARE XT	I/O	Current setting resistor terminals. A resistor of 6.2 KOhm +/- 0.5% is required for internal operating currents generation.				
Power Sup	ply & Ground						
88, 99, 13, 33	VDDARX	supply	Analog receiver power. A combination of high-frequency decoupling capacitors near these pins are suggested. These pins are seperated from digital power for noise prevention.				
89, 100, 25, 24	GNDARX	supply	Analog receiver ground. These pins are tied together to the low- impedance circuit board ground.				

95, 98, 12, 32	VDDATX	supply	Analog transmitter power. A combination of high-frequency decoupling capacitors near these pins are suggested. These
			pins are separated from digital power for noise prevention.
96, 97, 6, 19, 31	GNDATX	supply	Analog transmitter ground. These pins are tied together to the low-impedance circuit board ground.
40, 85	VDDDC	supply	Digital core power. These pin are tied to low-impdance point on the circuit board.
39, 86	GNDDC	supply	Digital core ground. These pins are tied together to the low- impedance circuit board ground.
45, 59, 67, 73	VDDD	supply	Digital IO power. These pin are tied to low-impdance point on the circuit board.
46, 56, 63, 71, 81	GNDD	supply	Digital IO ground. These pins are tied together to the low- impedance circuit board ground.

FUNCTIONAL DESCRIPTIONS

1. General Description

The VT6304 provides three-port physical layer function in a cable-based IEEE 1394-1995 network. Each cable port incorporates two differential line transceivers. The transceivers include circuitry to monitor the line conditions as needed for determining connection status, for initialization and arbitration, and for packet reception and transmission.

Data bits to be transmitted through the cable ports are received from the Link on 2/4/8 data lines (D[0:7]), and are latched internally in the VT6304 in synchronization with the 49.152-MHZ system clock. These bits are combined serially, encoded, and transmitted at 98.304, 196.608 or 393.216 Mbits/S as the outbound data-strobe information stream. During transmission, the encoded data transmitted differential on the TPB cable pair(s), and the encoded strobe information is transmitted differentially on the TPA cable pair(s).

During packet reception the TPA and TPB transmitters of the receiving cable port are disabled, and the receivers for that port are enabled. The encoded data information is received on the TPA cable pair, and the encoded Strobe information is received on the TPB cable pair. The received data-strobe information is decoded to recover the receive clock signal and the serial data bits. The serial data bits are split into two or four parallel transmitted (repeated) out of the other active (connected) cable ports.

Both the TPA and TPB cable interfaces incorporate differential comparators to monitor the line states during initialization and arbitration. The output of these comparators are used by the internal logic to determine the arbitration status. The TPA channel monitors the incoming cable common-mode voltage. The value of this common mode voltage is used during arbitration to set the speed of the next packet transmission. In addition, the TPB channel monitors the incoming cable common-mode voltage for the presence of the remotely supplied twisted-pair bias voltage. The presence or absence of this common-mode voltage is used as an indication of cable connection status. The cable connection status signal is internally debounced in the VT6304 on a cable disconnect-to-connect. The debounced cable connection status signal initiates a bus reset. On a cable disconnect-to-connect a debounce delay is incorporated. There is no delay on a cable disconnect.

2. Network Interface

VT6304 REGISTERS

Definitions and usage for each of the registers listed below are provided on this and the following pages:

3. PHY REGISTER MAP FOR THE CABLE ENVIRONMENT

address	0	1	2	3	4	5	6	7		
0000b			Physi	cal_ID			R	PS		
0001b	RHB	RHB IBR Gap_count								
0010b		Extended(7)	reserved		Total	_ports			
0011b		Max_speed	1	reserved		De	lay			
0100b	Link_acti ve	Contender		Jitter		Pwr_class				
0101b	Resume_i nt	ISBR	Loop	Pwr_fail	Timeout	Port_even t	Enab_acc el	Enab_mul ti		
0110b		•		Rese	erved					
0111b		Page_select	t	reserve		Port_	select			
1000b		Register0(page_select)								
1111b				Register7(J	bage_select)				

3.1. PHY REGISTER FIELDS FOR THE CABLE ENVIRONMENT

	size	type	default	description			
Physical_ID	6	r	-	The address of this node determined during self-identification. A value of 63			
				indicates a malconfigured bus; the link shall not transmit any packets.			
R	1	r	-	When set to one, indicate that this node is the root.			
PS	1	r	-	Cable Power status.			
RHB	1	rw	0	Root hold-off bit. When set to one, instructs the PHY to attempt to become			
				the root during the next tree identify process.			
IBR	1	rw	0	Initiate bus reset. When set to one, instructs the PHY to initiate a bus reset			
				immediately (without arbitration). This bit causes assertion of the reset state			
				for 166 us and is self-clearing.			
Gap_count	6	rw	3F	Used to configure the arbitration timer setting in order to optimize gap times			
				according to the topology of the bus. IEEE 1394-1995 4.3.6			
Extended	3	r	7	constant value of seven			
Total_ports	5	r	3	the number of ports implemented by this PHY			
Max_speed	3	r	010	Indicates the maximum speed this PHY supports;			
				000 - 98.304 Mbit/s			
				001 - 98.304 and 196.608 Mbit/s			
				010 and 393.216 Mbit/s			
				011 and 786.43 Mbit/s			
				100 - nd 1,572.864 Mbit/s			
				101 - nd 3,145.728 Mbit/s			
				all other values are reserved for future definition			

Delay	4	R	0	Worse case repeater delay, expressed as 144+(delay*20)ns.
Link_active	1	rw	1	Link enabled. Default value of one subsequent to a power reset. Otherwise
				cleared or set by software to control the value of the L bit transmitted in the
				self-ID packet. The transmitted L bit shall be the logical AND of this bit and
				the LPS signal.
Contender	1	rw	Pin	Contender. Cleared or set by software to control the value of the C bit
			C/LKO	transmitted in the self-ID packet.
			Ν	
Pwr_class	3	rw	Pin PC0-	Power class. Controls the value of the pwr field transmitted in the self-ID packet.
			PC2	
				000 - Node does not need power and does not repeat power
				001 - Node is self-powered and provides a minimum of 15 W to the bus
				010 - Node is self-powered and provides a minimum of 30 W to the bus.
				011 - Node is self-powered and provides a minimum of 45 W to the bus
				100 - Node may be powered from the bus and is using up to 1 W.
				101 - Node is powered from the bus and is using up to 1 W. An
				additional 2 W is needed to enable the link and higher layers.
				110 - Node is powered form the bus and is using up to 1 W. An
				additional 5 W is needed to enable the link and higher layers.
				111 - Node is powered from the bus and is using up to 1 W. An
				additional 9 W is needed to enable the link and higher layers.
Jitter	3	R	0	The difference between the fastest and slowest repeater data delay, expressed as (jitter+1)*20ns
Resume_int	1	Rw	0	Resume interrupt enable. When set to one, the PHY shall set port_event to one if resume operations commence for any port.
ISBR	1	rw	0	Initiate short (arbitrated) bus reset. A write of one to this bit instructs the
ISDK	1	1 W	0	PHY to arbitrate and issue a short bus reset. This bit is self-clearing.
Loop	1	rw	0	Loop detect. A write of one to this bit clears it to zero.
Pwr_fail	1	rw	0	Cable power failure detect. Set to one when the PS bit changes from one to
r wi_iaii	1	1 W	0	zero. A write of one to this bit clears it to zero.
Timeout	1	P33 7	0	Arbitration state machine timeout. A write of one to this bit clears it to zero.
Port_event	1	rw	0	Port event detect. The PHY sets this bit to one if any of connected, Bias,
Fort_event	1	rw	0	Disabled or Fault change for a port whose Int_enable bit is one. The PHY
				also sets this bit to one if resume operations commence for any port and
				Resume_int is one. A write of one to this bit clears it to zero.
Ench accol	1	**** 7	0	Enable arbitration acceleration. When set to one, the PHY shall use the
Enab_accel	1	rw	0	
Ench realt	1		0	enhancements specification in P1394A.
Enab_multi	1	rw	0	Enable multi-speed packet concatenation. When set to one, the Link shall
Daga sal	2		000	signal the speed of all packets to the PHY.
Page_select	3	rw	000	Selects which of eight possible PHY register pages are accessible through
	4		0000	the window at PHY register address 1000b through 1111b, inclusive.
Port_select	4	rw	0000	If the page selected by Page_select presents per port information, this field
				selects which port's registers are accessible through the window at PHY

register addressed 1000b through 1111b, inclusive.

3.2. PHY REGISTER PAGE0: PORT STATUS PAGE

The port Status page is used to access configuration and status information for each of the PHY's port. The port is selected by writing zero to Page_select and the desired port number to Port_select in the PHY register at address 0111.

	0	1	2	3	4	5	6	7
1000b	AS	AStat BS		Stat	Child	connected	Bias	Disabled
1001b	Ne	Negotiated_speed			Fault			
1010b								
1011b								
1100b								
1101b								
1110b								
1111b								

	Size	Туре	default	Description		
Astat	2	r	-	TPA line State for the port 00 = invalid 01 =1 10 =0 11 =z		
Bstat	2	r	-	(same encoding as Astat)		
Child	1	r	-	If equal to one, the port is a child, else a parent. The meaning of this bit is undefined from the time a bus reset is detected until the PHY transitions to state T1:Child Handshake during the tree identify process(see 4.4.2.2 in IEEE Std 1394-1995)		
Conncted	1	r	0	If equal to one, the port is connected, else disconnected. The value reported by this bit is filtered by hysteresis logic to reduce multiple status changes caused by contact scrape when a connector is inserted or removed.		
Bias	1	r	-	If equal to one, bias voltage is detected(possible connection). The value reported by this bit is filtered by hysteresis logic to reduce multiple status changes caused by contact scrape when a connector is inserted or removed.		
Disabled	1	ſW	0	When set to one, the port shall be disabled. The value of this bit subsequent to a power reset is implementation-dependent, but should be a strappable option.		
Negotiated_sp eed	3	r	-	Indicated the maximum speed negotiated between this PHY port and its immediately connected port; the encoding is 000 – 98.304Mbit/s 001 - and 196.608 Mbit/s		

3.3. PHY REGISTER PORT STATUS PAGE FIELDS

				010 - and 393.216 Mbit/s
Int_Enable	1	rw	0	Enable port event interrupts. When set to one, the PHY shall set
				Port_event to one if any of Connected, Bias, Disabled or Fault (for this
				port) change state.
Fault	1	Rw	0	Set to one if an error is detected during a suspend or resume operation.
				A write of one to this bit clears it to zero.

3.4. PHY REGISTER PAGE 1: VENDOR IDENTIFICATION PAGE

The Vendor Identification page is used to identify the PHY's vendor and compliance level. The page is selected by writing one to Page_select in the PHY register at address 0111.

	0	1	2	3	4	5	6	7				
1000b		Compliance_level										
1001b		Reserved										
1010b		Vendor_ID										
1011b												
1100b												
1101b		Product_ID										
1110b												
1111b												

3.5. PHY REGISTER VENDOR IDENTIFICATION PAGE FIELDS

	Size	Туре	Description
Compliance_le	8	R	Standard to which the PHY implementation complies:
vel			0 = not specified
			1 = IEEE P1394a
			All other values reserved for future standardization. The default is
			"1".
Vendor_ID	24	R	The company ID or Organizationally Unique Identifier (OUI) of the
			manufacturer of the PHY. The most significant byte of Vendor_ID
			appears at PHY register location 1010 and the least significant at
			1100. The default value is "00 40 63".
Product_ID	24	R	The meaning of this number is determined by the company or
			organization that has been granted Vendor_ID. The most significant
			byte of Product_ID appears at PHY register location 1101 and the
			least significant at 1111. The default value is "30 60 00".

3.6. PHY REGISTER PAGE 7: VENDOR-DEPENDENT PAGE

The vendor-dependent page provides registers set aside for use by the PHY's vendor. The page is selected by writing seven to Page_select in the PHY register at address 0111. **Don't access the registers "used for test"**.

address	0	1	2	3	4	5	6	7
1000b				used f	or test			

1001b	used for test			
1010b	used for test			
1011b		used for test		
1100b	used for test			
1101b	used for test			
1110b	Link_Speed	Reserved		
1111b	used for test			

3.7. PHY REGISTER VENDOR DEPENDENT PAGE FIELDS

	Size	Туре	Description				
Link_Speed	2	RW	Link speed. This field indicates the top speed capability of the				
			attached LLC. Encoding is as follows :				
			This field has the effect on the self-ID packets as well as the PHY				
			speed capability which is exchanged between peer PHY during self-ID				
			state. This field is set to 10b (S400) by hardware reset and is				
			unchanged by bus-reset.				
Vendor_ID	24	R	The company ID or Organizationally Unique Identifier (OUI) of the				
			manufacturer of the PHY. The most significant byte of Vendor_ID				
			appears at PHY register location 1010 and the least significant at				
			1100. The default value is "00 e0 4c".				
Product_ID	24	R	The meaning of this number is determined by the company or				
			organization that has been granted Vendor_ID. The most significant				
			byte of Product_ID appears at PHY register location 1101 and the				
			least significant at 1111. The default value is "88 01 00".				

4 ELECTRICAL CHARACTERISTICS

4.1 ABSOLUTE MAXIMUM RATINGS

-0.3 V to +3.6 V
-0.3 V to +3.6 V
-0.3 V to VDD+0.3V
-40°C to 125°C
0 to 70°C
250°C
2.0 KV
+/- 25mA
3.0Watt@25 ⁰ C

4.2 **RECOMMENDED OPERATING CONDITIONS**

Supply voltage V _{DD}		3.3 Volts ± 5%
Supply voltage V _{DD}		3.3 Volts ± 5%
Supply Current (IDD)	D0 State	
Supply Current (I _{DD_AUX})	D0 State	
Supply Current (I _{DD_AUX})	D3cold and PME Enable State	
Supply Current (I _{DD_AUX})	D3cold and PME Disable State	
Supply Current (IDD)	Low Power Mode	
Supply Current (I _{DD_AUX})	Low Power Mode	

5.3 DC Electrical characteristics

4.3.1 Link PHY Interface DC Specification

Unless otherwise noted, all test conditions ate as follows:

Table 1. DC Characteristics

Functional O	perating Range ($V_{REF} = 5V \pm 5\%$, $V_{CC} = 3.2$	$3V \pm 0.3V$, $T_{CASE} = 0$	to +85)
Symbol	Parameter	Min	Max	Unit	Notes
V _{IL1}	Input Low Voltage		0.9	V	1
V_{IH1}	Input High Voltage	2.4		V	1
V _{IL2}	Input Low Voltage		1.1	V	1
V _{IH2}	Input High Voltage	2.2		V	1
V _{IL3}	Input Low Voltage		1.1	V	1
V _{IH3}	Input High Voltage	2.2		V	1
V _{IL4}	Input Low Voltage		0.9	V	1
V _{IH4}	Input High Voltage	2.1		V	1
V _{OL1}	Output Low Voltage		0.1Vcc	V	1
V _{OH1}	Output High Voltage	0.9Vcc		V	1
V _{OL2}	Output Low Voltage		0.1Vcc	V	1
V _{OH2}	Output High Voltage	0.9Vcc		V	1
I _{OL1}	Output Low Current	9.0	18.7	mA	1, @ V _{OL1}
I _{OH1}	Output High Current	8.2	16.2	mA	1, @ V _{OH1}
I _{OL2}	Output Low Current	8.5	17.8	mA	1, @ V _{OL2}
I _{OH2}	Output High Current	7.7	15.4	mA	1, @ V _{OH2}
I _{LI1}	Input Leakage Current		50	Α	
I _{LI2}	Hi-Z State Data Line Leakage		50	Α	$(0V < V_{IN} < 3.3 V)$
C _{IN}	Input Capacitance		12	pF	$F_{\rm C} = 1 \rm MHz$
C _{OUT}	Output Capacitance		12	pF	$F_{\rm C} = 1 \rm MHz$
C _{I/O}	I/O Capacitance		12	pF	$F_{\rm C} = 1 \rm{MHz}$

NOTES:

1. Refer to table 2 for the signals associated with this specification.

Table 2. DC Characteristic Signal Association (Sheet 1 of 2)

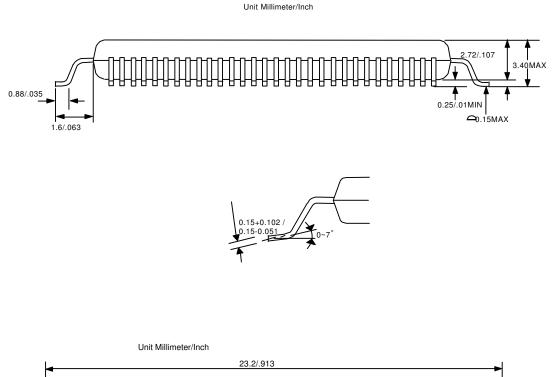
Symbol	Associated Signals
V _{IL1} / V _{IH1}	**** Input Type 1 (1394) ****
	CNA, CTL[0:1], D[0:7], LINKON, LREQ, SCLK
V _{IL2} / V _{IH2}	**** Input Type 2 ****
	CMC, ISO_, ONCT, PC[0:2], TSI, TSO
V _{IL3} / V _{IH3}	**** Input Type 3 ****
	LPS, PD
V _{IL4} / V _{IH4}	**** Input Type 4 ****
	RESET_
V _{OL1} / V _{OH1}	**** Output Type 1 ****
	CNA, CTL[0:1], D[0:7], LINKON, LREQ, SCLK
V _{OL2} / V _{OH2}	**** Output Type 2 ****
	CMC, ISO_, ONCT, PC[0:2], TSI, TSO
I _{OL1} / I _{OH1}	**** Output Type 1 ****
	CNA, CTL[0:1], D[0:7], LINKON, LREQ, SCLK
I _{OL2} / I _{OH2}	**** Output Type 2 ****
	CMC, ISO_, ONCT, PC[0:2], TSI, TSO

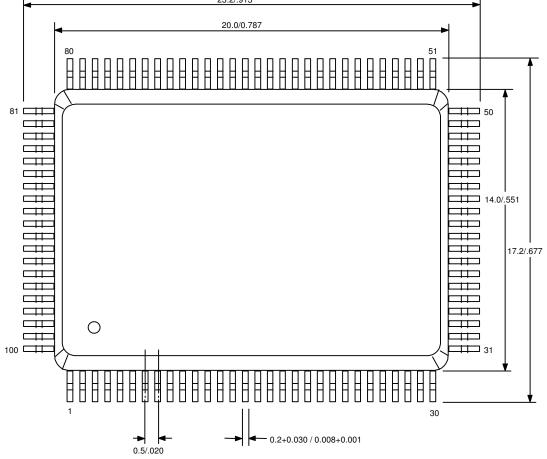
Table 3. DC Current Characteristic

	Functional Operating Range ($V_{REF} = 5V \pm 5\%$, $V_{CC} = 3.3V \pm 0.3V$, $I_{CASE} = 0$ to +85)					
S	ymbol	Parameter	Тур	Max	Unit	Notes
I	_{CC} (3v)	V _{CC} Supply Current	110	155	mA	
I _{CC} (S	SUS) ON	Suspend Well Supply Current – Full On	3	5	mA	
I _{CO}	_C (SUS)	Suspend Well Supply Current – Power On	30	150	Α	
PC	OS/STR	Suspend or Suspend to RAM				
I _{CO}	_C (SUS)	Suspend Well Supply Current – Suspend to Disk or	9	150	А	
ST	TD/Soff	Soft Off				

Functional Operating Range ($V_{REF} = 5V \pm 5\%$, $V_{CC} = 3.3V \pm 0.3V$, $T_{CASE} = 0$ to +85)

4.3.3 Analog Signals DC Specification


Unless otherwise noted, all test conditions ate as follows:


- 1. $T_A = 0$ to $+70^{\circ}C$
- 2. $V_{CC} = 3.3V + -10\%$
- 3. 24.576 Mhz +/- 0.01%
- 4. REXT = 6.2 K + -1%, no load

SYMBOL	PARAMETER	CONDITION	MIN	ТҮР	MAX	UNIT
V _{IL}	Input Low Voltage	OSCIN			1.5	Volt
V _{IH}	Input High Voltage	OSCIN	3.5			Volt
I _{IL}	Input Low Current	V _{IN} =GND. OSCIN			-150	μΑ
I _{IH}	Input High Current	V _{IN} =VCC. OSCIN			150	μΑ
V _{OL}	Output Low Voltage	I _{OL} = -4 mA TPO±			0.4	Volt
		I _{OL} = -20 mA, PLED[3:0]#			1	Volt
V _{OH}	Output High Voltage	I _{OH} = 4 mA TPO±	V _{CC} -1.0			Volt
		I _{OH} = 4 μA PLED[3:2]#	V _{CC} -1.0			Volt
		I _{OH} = 6 μA PLED[1:0]#	2.4			Volt
C _{IN}	Input Capacitance			5		pF
I _{CC}	V _{CC} Supply Current	Transmitting, 100Mbps, 4 portss			170	mA
		Transmitting, 200Mbps, 4 ports			220	mA

Transmitting, 400 Mbps, 4 ports	280	mA
Powerdown Mode	0.1	mA

Package Diminsion

[This page left to blank]

