
1 1996 ISP Encyclopediaan8024_02

PCI Bus
Implementation

Introduction

The Peripheral Component Interconnect (PCI) local bus
was designed as a high-bandwidth bus that provides a
data path between the CPU and multiple high-perfor-
mance peripherals. Proposed as a total system solution,
PCI provides interconnects to networks, disk drives,
video and other high speed peripherals. Processor inde-
pendence allows the PCI bus to be optimized for I/O
functions and enables concurrent operation of the local
bus with the processor/memory subsystem. A 32-bit
synchronous bus that provides data throughput of 132
Mbytes/sec, the PCI bus is expandable up to a 64-bit data
path which doubles the throughput. On account of its
futuristic processor independent orientation, PCI allows
manufacturers to significantly trim development costs by
not having to completely redesign every product cycle.

This ties in elegantly with Lattice Semiconductor’s ispLSI®

(In-System Programmable™ Large Scale Integration)
family, designed to implement high-integration functions,
such as controllers, while delivering superior perfor-
mance and the flexibility of In-System Programmability™
(ISP™). The basic PCI-compliant Master/Target state
machines can be implemented in the ispLSI device, while
the remaining glue logic can be modeled around a given
peripheral/processor. The options become enormous,
when one has the ability to change the functionality of
devices already soldered on the board. ISP continues to

emerge as the design methodology of choice by provid-
ing reconfigurable systems with diagnostic capabilities,
field upgradability and simplification of manufacturing
flow.

PCI flexibility brings with it new design challenges for the
system designer. This application note presents a Mas-
ter/Target-PCI interface design implemented in an ispLSI
device. The attached source code contains the basic
PCI- compliant state machines and is intended to be used
as a guideline on which a PCI bridge design for a specific
interface can be based. The benefits of ispLSI as applied
to the PCI bus, and AC/DC and timing specifications are
reviewed.

PCI/Lattice ispLSI Interface

The following section presents the PCI interface based
on the PCI Local Bus Specifications, Revision 2.1. A
concise overview of the PCI bus and ispLSI architecture
and the relevant electrical and timing characteristics are
discussed. The Lattice Semiconductor Data Book and
the PCI Specification should be consulted to obtain more
detailed information.

PCI Overview

The PCI bus is a non-proprietary local bus solution,
providing increased performance for Graphical User In-

Figure 1. PCI System Block Diagram

Portions of this document were reprinted with the permission of the PCI Special Interest Group. Copyright 1992, 1993 PCI Special Interest Group.

Motion VideoAudioBridge/

Memory

Controller

Processor

Base I/O

Functions

Exp bus

Xface

DRAM

Cache

LAN SCSI
Graphics

PCI Local Bus

ISA/EISA - MicroChannel

PCI Bus Implementation

2 1996 ISP Encyclopedia

terfaces and other high bandwidth functions such as
SCSI, full motion video, LANs etc.. The PCI component
and the add-in card interface is processor independent,
enabling an efficient transition to future processor gen-
erations and use with multiple processor architectures.
Processor independence allows the bus to be optimized
for I/O functions, enabling concurrent operation of the
bus with the processor/memory subsystem. Figure 1
shows a typical PCI system.

The processor/memory subsystem is connected to PCI
through a bridge, which provides a low latency path for
the agent to directly access the PCI devices mapped onto
the processor address space. The PCI specifications
defines both a Master and Target bridge implementation.
Both can be implemented in one device, however each
has to have an independent controller state machine.
Figure 2 shows the pins required on a PCI controller in
order to handle addressing, arbitration, interface control
and other system functions. A minimum of 47 pins are
needed for a Target only device and 49 pins for a Master.

The PCI interface consists of two different types of buses
and control signals which govern the timing of data
transfer on the address/data bus by the insertion of wait
states. The larger of the two buses is the multiplexed
Address/Data (AD) bus. The transfer of data onto the AD
bus is not required to be the full width of the bus. The
width of the data transfer is indicated by control informa-
tions present at the time of the bus transaction. The
second bus is the Command/Byte Enable (C/BE) bus.
The C/BE bus contains information about the activity that
is to occur (i.e. read/write and memory or I/O access)
during the address phase of the bus transaction, and
contains the byte enables during the data phase of the
bus transaction. Byte lane swapping is not allowed on the
PCI bus since all devices must connect to 32 address/
data bits. Furthermore, automatic bus sizing is not
supported and the byte enables determine which bytes
carry meaningful data. The PCI bus interface requires
that every active member connected to the PCI bus be

AD[63::32]

C/BE[7::4]

PAR64

REQ64#

ACK64#

PCI
COMPLIANT

DEVICE

LOCK#

INTA#

INTB#
INTC#

INTD#

AD[31::00]

C/BE[3::0]#

PAR

SBO#

SDONE

TDI

TDO

TCK

TMS

TRST#

64-Bit Extension

Interface Control

Interrupts

Cache Support

JTAG (IEEE 1149.1)

Optional Pins

FRAME#

TRDY#

IRDY#

STOP#

PERR#

SERR#

DEVSEL#

IDSEL#

REQ#

GNT#

CLK#

RST#

Address and Data

Interface Control

Error Reporting

Arbitration

(masters only)

System

Required Pins

Figure 2. PCI Pin List

O3

O2

O1

O0

To

Global

Routing

Pool and

Output

Routing

Pool

M

U

X

M

U

X

M

U

X

D Q

M

U

X

AND Array

Product Term

Sharing Array

Reconfigurable

Registers

D, J-K and T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3

4

4

7

3 PT's and

Exclusive OR

4 PT Bypass

7 + 4 PT's

Single PT

15
16
17
18
19

14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

D Q

D Q

D Q

Inputs From

Global Routing Pool

Dedicated

Inputs

MUX

Control

Functions

CLK 0
CLK 1
CLK 2

PT Clock

Output

Enable

Output

Enable

PT Reset

RESET

MUX

Figure 3. Mixed Mode Generic Logic Block

PCI Bus Implementation

3 1996 ISP Encyclopedia

synchronized to a system clock. This allows information
to be transferred between the active agents with wait
states, inserted by Master or Target, to match the timing
requirements of either party involved in bus activity. The
wait states are inserted through the use of the signals
IRDY and TRDY. The signal FRAME indicates that a
Master is currently active on the bus and that all other bus
Masters are not to become active on the bus until the
current activity is completed.

Lattice ispLSI Architectural Overview

Lattice’s ispLSI high-density PLDs are ideally suited to
high-speed controller, state machine intensive applica-
tions. This section provides a broad overview of the
architecture. Relevant features will be discussed in
further detail as they relate to this application note. In
addition to in-system reprogrammability, characteristics
such as wide input gating (18 input/20 product terms per
register), hardware XOR gates on each register, low
skew (less than 2 ns), input clamping capability and high
speed make the ispLSI device ideal for complex state
machine implementation. The ispLSI devices contain
programmable logic, registers, I/O pins, multiple clocks,
a Global Routing Pool and Output Routing Pool. The
basic unit of logic is the Generic Logic Block (GLB).
Figure 3 shows a simplified logic diagram of the ispLSI
GLB.

The Lattice ispLSI devices are programmable, in-circuit,
on a powered board. This simplifies the design flow by
eliminating the time consuming simulation process. The
design can be tested in the final system by downloading
the JEDEC file directly into the part. This is especially
useful in surface mount environments where the parts

cannot be removed from the board for programming. Test
points are brought out to unused I/O pins during the
debug cycle, and eliminated for standard operation. A
designer can complete the design in steps by creating
smaller modules of the design, testing them as stand-
alone circuits, and then combining them once they are all
working correctly. In addition to being a design tool, in-
system programming also offers production advantages.
Field service upgrades can be performed by simply
reprogramming the boards, and options added by pro-
gramming them into the logic. If several boards are
similar in function, but have different logic, a single
printed circuit board can be designed, and the specific
function programmed into the logic just before the board
is shipped. This reduces both production and inventory
costs.

The only requirements of the system are that it must have
a stable 5-volt power supply and a connection point for
the ispDOWNLOAD™ cable. The standard interface
used on the ispLSI prototype boards is a common eight-
pin telephone connector. This connector is selected
because it is small, reliable and inexpensive. Five pins on
the ispLSI 1032 device are dedicated to programming
when the part is used in the ISP mode. They are:

ispEN In-System Programming Enable
MODE ISP Mode Control
SCLK Shift Clock
SDI Serial Data In
SDO Serial Data Out

The algorithm used to program the part is straightfor-
ward. The MODE, SCLK and SDI pins are used to control
a state machine internal to the ispLSI device. The device

HL LX LX LX

HH HH

HL HH

HL

Idle/ID State Command Shift State Execute State

Load ID Shift ID
Load

Command
Execute

 Command

Figure 4. ISP Programming State Machine

NOTE: Control Signals MODE, SDI

PCI Bus Implementation

4 1996 ISP Encyclopedia

is controlled by serially shifting in a series of commands
and data streams. The state diagram for that operation is
shown in Figure 4.

PCI Electrical Specifications

The PCI specification provides for both 5V and 3.3V
signaling environments, but all components in a PCI
design must use the same signaling environment. The
PCI bus is a CMOS bus, i.e., steady state currents are
minimal (after transients have died out), with most of the
current spent on pull-up resistors. PCI is based on
reflective wave signaling, rather than incident wave,
which implies that the bus drivers have to switch the bus
halfway to the required high or low voltage. The fact that
the bus is unterminated, causes the reflected wave at the
unterminated end of the transmission line to add to the
incident wave to achieve the required voltage level. (See
Figure 5). The bus driver is actually in the middle of its
switching range during this propagation time, which lasts
up to 10ns, or one-third the bus cycle frequency of
33MHz. The PCI bus drivers are specified in terms of the
AC switching characteristics or V/I curves. Figure 6
shows the V/I curves of the PCI bus under a 5V signaling
environment.

The PCI specification dictates that pins used for ex-
tended data path (64-bit) such as high order AD lines, C/
BE lines and PAR64 (64-bit extension parity, see Figure
2) have pullups in order to prevent oscillation or high
power drain through the input buffer. Some signals have
to be pulled up in order to have stable values when no
agent is driving the bus. In addition, the inputs are
required to be clamped to ground. According to the PCI
Local Bus specification, clamps to 5V are optional, but
may be needed to protect 3.3V devices. When using dual
power rails, parasitic diodes exist from one supply to
another. These diode paths can become forward biased,
if one of the power rails goes out of specification for an
instant. The diode clamps to the power rail and to the
output devices must be able to withstand short circuit
current until the drivers can be tristated.

It should be noted that PCI-compliant devices that di-
rectly drive the bus have extremely high output drive
capability (greater than 48mA). This high drive is required
to overcome incident wave effects that may occur within
the design and not so much from a DC drive perspective.
Hence, the ispLSI devices may be used in conjuction with
external buffers (GAL®16VP8 or GAL20VP8) or with

Figure 6. V/I Curve for 5V Signaling (From PCI Specification)

Figure 5. Measurement of Tprop (From PCI Specification)

PCI Bus Implementation

5 1996 ISP Encyclopedia

Vik (V)

Iik
 (

m
A

)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

-2
.0

0

-1
.9

0

-1
.8

0

-1
.7

0

-1
.6

0

-1
.5

0

-1
.4

0

-1
.3

0

-1
.2

0

-1
.1

0

-1
.0

0

-0
.9

0

-0
.8

0

-0
.7

0

-0
.6

0

-0
.5

0

-0
.4

0

-0
.3

0

-0
.2

0

-0
.1

0

0
.0

0

series termination applied. In many cases, the loading
conditions are such that no external buffering or termina-
tion is needed. This must be determined by the system
designer.

Lattice ispLSI Electrical Specifications

The Lattice ispLSI families have programmable pull-up
resistors that may be used instead of the external resis-
tors, saving real estate. The ispLSI devices have an input
clamp that turns on at approximately -1.7v, -18mA (see
Figure 7). These clamps exist on each of the dedicated
inputs and I/Os. In addition, the ispLSI devices are
capable of operating under conditions of “excessive”
overshoot or undershoot. Figure 8 depicts the results
when a 16-volt peak-to-peak pulse is injected into the
input or I/O pin.

Finally, with respect to input capacitance, the PCI spec-
ification stipulates that the input capacitance should not
exceed 10 pF for an input pin and 12 pF for the clock and
I/O pin. The ispLSI devices have input capacitance of
eight pF on input pins and 10 pF on I/O and clock pins.

PCI Timing Requirements

The PCI specification provides strict timing requirements
in terms of setup time (7ns minimum). The Lattice ispLSI
1032-80 device has a minimum set up time of 7ns on the
inputs.

Please refer to the PCI specifications and the Lattice
Semiconductor Data Book for detailed specifications of
the PCI bus and Lattice ispLSI devices.

Controller Logic Implementation

This section describes the implementation of the Master
and Target state machines. Simulation waveforms are
provided for the read cycle in Appendix A. The equations
are for illustrative purposes only, and may have to be
modified to support the actual design requirements.
Lattice is not responsible for conflicts between the design
and the specification. The PCI protocol has priority if any
conflict arises in the equations.

Master State Machine

The PCI Master performs the following functions:
1. Data reads and writes on the PCI bus along with

address stepping
2. Initiate a time-out if cycle is not decoded by any target

(no subtractive decoding)
3. Initiate a PCI bus latency time-out
4. Responds to the system reset
5. Generate parity error

Figure 7b. ispLSI Vol vs. Iol

Figure 7a. ispLSI Input Clamp Characteristics

Figure 7c. ispLSI Voh vs. Ioh

Ioh (mA)

V
o

h
 (V

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

1
0

2
0

3
0

4
0

5
0

6
0

Voh
(Vcc=5.
0,Rm.
Temp.)

Voh
(Vcc=4.
75,
Rm.
Temp.)

Voh
(5V 70-
C)

Voh
(5V 0-
C)

PCI(L) PCI(H)

Iol (mA)

V
ol

 in
 (V

)

0

0.2

0.4

0.6

0.8

1

1.2

0

1
0

2
0

3
0

4
0

5
0

6
0

Vol
(Vcc=5.0,
Rm.
Temp.)

Vol
(Vcc=4.7
5, Rm.
Temp.)

Vol (5V
70-C)

Vol (5V 0-
C)

PCI(L) PCI(H)

PCI Bus Implementation

6 1996 ISP Encyclopedia

6. Can address memory or I/O space
7. PCI bus locked cycles

The Master state machine supports several options as
specified in the PCI protocol. The bus interface consists
of two parts. First, the Master Sequencer state machine
which actually performs the bus operation. The second
part, the backend (processor), initiates the transaction
and provides the address, data, command, byte enables
and the length of the transfer. It is responsible for the
address if the transaction is retried. The backend can
request a locked transfer or terminate a transfer. Each
state of the sequencer machine will be discussed, with
viable options. There are seven valid states of the se-
quencer machine:

IDLE is when the Master waits for a request from the
backend to do a bus operation. The only possible option
in this state is the ‘step’ option. This is extremely useful
in stepping through a bus cycle, in the initial prototype
stages of the product cycle. It can be removed if address
stepping is not desired.

ADDR state is reached when the transaction is initiated
by the processor. It is used to drive the address onto the
bus, in this implementation it enables the address buffers
and drives the commands on the bus.

DATA state is reached unconditionally from the ADDR
state and the data is transferred in this state.

DATA1 state is reached from the DATA state only if more
than one data phase is needed. This state is needed for
the parity generation. The parity for the address lines
needs to be generated in the clock after the address
phase. Similarly, the data parity is generated in the next
clock.

TURN_AR is where the Master deserts signals in prepa-
ration of tri-stating them. If back-to-back transitions are
not required the path to the ADDR state may be removed.
A turnaround cycle is required on all signals that may be
driven by more than one agent in order to avoid conten-
tion when one agent stops driving the bus and another
starts driving it.

S_TAR is reached when the current Target requests the
Master to stop the transaction.

Figure 8. ispLSI Overshoot/Undershoot Characteristics

Parity

Circuit

PCI Bus

Back-end/Target

ispLSI Device

Master

State

Machine

Timeout

Counter

Devsel

Counter

Lock

State

Machine

Buffer

Control

Target

State

Machine

Figure 9. Controller Block Diagram

-250.000 ns 250.000 ns0.00000 s

Ch. 1 = 5.000 Volts/div
Ch. 2 = 2.000 Volts/div
Timebase = 50.0 ns/div

Ch. 2
(Output)

Ch. 1
(Input)

PCI Bus Implementation

7 1996 ISP Encyclopedia

DR_BUS is used when the PCI bus has been granted to
the current Master and the Master either is not prepared
to start a transaction (for address stepping) or has none
pending.

The following is the state diagram for the Master se-
quencer state machine. The transitions to various states
will be discussed in greater detail following the state
machine.

The attached equations (Appendix A) listing should be
used as reference along with the Master Sequencer
State Machine diagram in order to interpret the following
state machine logic description.

The machine is in IDLE state when there are no requests
for a bus transfer. On a processor PCI transaction re-
quest (generated by decoder, included in design), and
the PCI bus grant from the external arbiter, the state
machine transitions to the ADDR state. The PCI specifi-
cation requires that there be only one central arbiter in the
PCI system. This design assumes that the arbiter is
implemented off board. If the processor is using address
stepping, then the transition is to the DR_BUS state from
the IDLE state.

Once in ADDR state, on the next clock the DATA state is
reached unconditionally. In the ADDR state the appropri-
ate command bus signals are driven. These define the
PCI bus command, for example, 0010 specifies an I/O
read cycle. These are generated from the processor
read/write, IO/memory and data/code signals, which are
used by the i486 to define the processor cycle. FRAME,

which signals the start of a PCI cycle, is generated in the
ADDR state and is held active through the DATA state till
the Target/processor asserts a cycle complete signal.

In the DATA state, data is transferred from the Master to
Target in case of a write, or from the Target to Master in
case of a read. Wait states can be added by the Target
by asserting TRDY or by Master by deasserting IRDY. In
case of a read cycle, a turnaround cycle is required
between the ADDR and DATA phases in order to avoid
contention when one agent stops driving the signal and
another agent starts driving. The turnaround wait state is
asserted by the Target. (See PCI read cycle timing
diagram, Figure 11 and Appendix A.). The DATA and
DATA1 state are identical, the DATA1 state is needed for
parity purposes.

In case of fast back-to-back processor cycles, the ma-
chine remains in the DATA1 state. A flag SA is used to
determine if the current PCI cycle is going to the same
Target as the previous cycle. Flag L_CYC is set when the
current cycle is a write and the previous cycle was also a
write. These flags determine the presence of fast back to
back cycles. The state machine transitions to TURN_AR
state if the cycles are not back-to-back, in preparation for
completing the cycle and tri-stating the bus signals. If the
Target asserts a STOP (stop current cycle), the machine
transitions from the DATA1 state to the S_TAR state

The DR_BUS state is needed only if address stepping is
used. In this design, transitions to this state are used for
the Master to park on the PCI bus, while the processor is
stepping though a cycle.

Figure 10. Master Sequencer State Machine

IDLE

S_TAR
DR_BUS

TURN_AR

DATA1

ADDR

pbreg*gnt*!frame*step

gnt

!gnt

stop

!gnt

pbreq*gnt*step

pbreq*!gnt*!step

pbreq*gnt*step

pbreq*gnt*step

sa*l_cyc*gnt

trdy*!stop

pbreq*gnt*!step

DATA

stop

trdy*!stop

!gnt

PCI Bus Implementation

8 1996 ISP Encyclopedia

Figure 12. PCI Bus Write Cycle (From PCI Spec.)Figure 11. PCI Bus Read Cycle (From PCI Spec.)

Finally, in the S_TAR state, if grant is valid, the machine
transitions to DR_BUS state.

PCI provides an access mechanism which allows non-
exclusive access to processors in the face of an exclusive
access. This is referred to resource lock. This mecha-
nism is based on locking only the PCI resource to which
the original locked access was Targeted. The LOCK
signal indicates that an exclusive lock is underway. The
Master state machine controls the master lock mecha-
nism. It has only two states, BUSY and FREE. The FREE
state implies that the bus is not locked by any Master or
the current Master has it locked. If another Master owns
the lock, the state transitions to BUSY and stays there till
LOCK and FRAME are deasserted. The LOCK state
machine has not been simulated, since resource locks
are not implemented in the on board Target, however, the
equations are as per the PCI protocol.

The Devsel state machine is used to control the time-out.
DEVSEL is driven by the Target of the current transac-
tion. DEVSEL must be driven within three clocks following
the address phase. That is, a Target must issue a
DEVSEL before any response. If there is no subtractive
decoding in the system, then the Devsel state machine
will reach state SIX and time-out will be generated,
signifying that no Target decoded the address. This will
enable the Master to terminate the transaction.

In addition to the above state machines, the Master
Controller has a five-bit counter, which runs on a 1 MHz
clock. This counter is used to generate the MAS_TO
signal. This provides a 32 microseconds latency for all
PCI transactions. Latency is defined as the time from
when FRAME is asserted to TRDY being asserted.
Typical latencies are relatively short, however worst case
latencies may be quite long and unpredictable. For ex-
ample, latency to a standard expansion adapter (ISA/
EISA) through a bridge is often a function of the adapter
behavior, not PCI behavior. The length of the latency
time-out can be modified In-System as desired for a low
latency system.

Target State Machine

The target located on the PCI bus performs the following
functions:

1. Decodes the PCI bus cycle and provide data during
a read

Figure 13. Master Lock State Machine

FREE BUSY

lock*!own_lock

!lock*!frame

ONE

THREE

SEVENSIX

NULLframe*!stop

frame*!devsel

Figure 14. Devsel State Machine

PCI Bus Implementation

9 1996 ISP Encyclopedia

2. Generates parity on PCI bus
3. Generates target abort to terminate a bus cycle
4. Inserts wait state during a read cycle between ad-

dress and data phase

The PCI specification requires that the Target state
machine be independent of the Master state machine.
The Target interface has a backend that is responsible for
determining when a transaction is terminated. The
location of the Target in the Master backend address
space can be changed In-System. Furthermore, subtrac-
tive decoding can be introduced if desired. This will make
sure that the DEVSEL time-out is never asserted. The
backend can also implement a resource lock. In this
design, resource locks are not included in the target and
zero wait state address decoding is assumed. The proto-
col for the target is fairly simplistic. The Master asserts
the address, on a read cycle, if the target has an address
hit, it initiates its internal state machine and either sup-
plies the data or asserts an abort signal. Following is the
Target state machine state description:

TGT_IDLE: In this state the machine is waiting for a
decode to the target, i.e., the on-board decoder sees a
bus cycle directed to the target. The machine transitions
to TGT_DATA on HIT. This path can be removed if the
Target cannot do single cycle decodes. If STOP is
asserted by the Target, the machine transitions to
BACKOFF. The machine goes to state B_BUSY when it
sees FRAME asserted on the bus, but the HIT signal is
still invalid.

B_BUSY: The Target waits for the current transaction to
complete and the bus to return to idle. This state is useful
for devices that do slow address decode or perform
subtractive decode. In this design , both these are not
supported, hence there is no transition to the TGT_DATA
and BACKOFF states.

TGT_DATA: The Target transfers data in this state. The
machine transitions to BACKOFF if FRAME and STOP
are asserted. In case of read cycle, the target asserts a
wait state after the address is driven on the bus by the
processor. This wait state is asserted by delaying the
assertion of TRDY.

BACKOFF: The target goes to this state after it asserts
STOP and waits for the Master to desert FRAME.

TURN: This state is reached when the transaction is
completed. In preparation for the bus signals to be tri-
stated.

In addition to the above state machine the Target also
contains a trivial command bus state machine. This
machine is responsible for storing the command bus
information during the address phase of the bus cycle.
This is required since the command bus carries the byte
enables during the data phase and the cycle type infor-
mation is lost.

Parity

PCI-compliant devices are required to implement parity
control. PCI bus has two signals, PAR and PERR that
driven by the Master or Target. PAR is used to drive an
even parity, covering AD3..AD0 and C/BE3..C/BE0, dur-
ing address and data phases. To ensure the correct bus
operation is performed, the four command lines are
included in the parity calculation. In this design, parity
generation is supported. The i486 processor drives
DP0..DP3 lines which contain the parity bits for the four
bytes of the processor bus. These bits and the data/
address lines are used to generate PAR. The Lattice
ispLSI device has a hardware eight-input XOR that can
be used for this purpose. The Master drives the PAR onto
the PCI bus during a write cycle. The Target is respon-
sible for driving the PERR signal during the write cycle, if
it has a parity error. During a read cycle, the Master
generates the PERR based on the PCHK signal provided
by the i486 processor. The Master also generates the
PAR signal based on the state of PAR which is asserted
by the Target in the read cycle. The PAR signal is
generated by the Target on a read cycle. This design
does not incorporate this feature, however it can be
implemented quite nicely in an additional ispLSI device,
since all the AD lines and the local processor lines are
needed for generating the PAR bit.

Figure 15. Target State Machine

TGT_IDLE

TGT_DATA

TURN

BACKOFF

B_BUSY

!frame
frame * !hit

!frame

frame * !hit

frame * hit

!frame

frame

!frame
frame * !hit

frame * hit

frame *stop *(!trdy +irdy)

PCI Bus Implementation

10 1996 ISP Encyclopedia

Design Options/Enhancements

The PCI bridge can be designed to include various
options. Some of them are discussed here.

1. Cache Support
A system may have some cacheable memory located on
the PCI bus. The PCI specification allows the bridge to
implement a standard interface which supports a snoop-
ing cache coherency mechanism. The support for cache
is optimized for simple, entry-level systems and assumes
a flat address space. PCI provides support for both
Write-through and Write-back caches. The ispLSI de-
vices provide an efficient implementation of a
programmable cache controller on account of their in In-
System Programmability, which makes the design flexible
to support various cache schemes.

2. 64-Bit Data Bus
PCI provides a 64-bit extension to the data bus for agents
with a 64-bit data bus. This requires 39 additional pins:
REQ64, ACK64, PAR64, C/BE4..C/BE7 and AD32..AD63.
Basically the 64-bit bus works the same way as the 32-
bit bus. In this design, the data lines are not driven by the
ispLSI device, which actually drives the control signals to
enable the external buffers. This would make the expan-
sion to 64-bit mode simple. The internal logic can be
modified to support the additional control signals. REQ64
is the pin used by the Master to request a 64 bit-transfer.
This is an extremely attractive option for 64-bit proces-
sors such as Pentium. When implementing this option,
one has to be careful since Double Word swapping is
allowed on the 64-bit data bus.

3. 64-Bit Addressing
PCI supports addressing beyond 4GB by defining a
mechanism to transfer a 64-bit address from the Master
to Target. A 64-bit address can be provided in one clock
if the 64-bit address/data bus is being used. The Dual
Address Cycle mode can be used, for 32-bit systems
where the address is transferred in two clocks. This
option cannot support address stepping on account of
the two clock address transfer.

4. Slow Decoding Targets/Subtractive Decoding
This design assumes that the target can decode the PCI
bus address with no wait state. For slower Targets,
additional transitions can be added into the Target state
machine, namely, transition from B_BUSY state to
TGT_DATA and BACKOFF can be added. In addition,
the path from IDLE to TGT_DATA can be removed if the
Target cannot do single cycle decoding. Additional logic
will depend on the specific Target implementation.

Other design options would be to include interrupt gener-
ation or even implement the entire interrupt controller in
the master interface for PCI as well as local interrupts.
Target Resource lock is another viable option. In a
resource lock, exclusivity of an access is guaranteed by
the target of the access, not by excluding all other
accesses. This allows future processors to hold a hard-
ware lock across several accesses without interfering
with non-exclusive accesses such as video.

Summary

With the popularity of the non-proprietary, high-perfor-
mance and extremely flexible local bus, it is not surprising
that designers are looking to programmable logic to meet
the challenges offered by a PCI interface design. The
Lattice In-System Programmable device family is ideally
suited to such complex state machine-intensive applica-
tions. While the sample design in this application note is
specific enough to cover the required PCI protocol, it is
adaptable and can be molded around any given periph-
eral or processor. In fact, it can even be reconfigured in
the system from one peripheral to another, as long as the
hardware interface is not too rigid. Additional features
can always be added either in more ispLSI devices or
discrete logic on account of the modular layout of the
design.

The source file for the design is included in the following
pages. This design is implemented using ABEL 4.1.3
software with Lattice pDS+™ ABEL Fitter. pLSI® Prop-
erty Statements provide the user direct control over
hardware specific features of the ispLSI and pLSI de-
vices. The simulations were carried out using Viewlogic
ViewSim software. Alternatively, the design can be
implemented quite easily using the Lattice pDS+ Devel-
opment System.

References

1. PCI Local Bus Specification, Rev. 2.1.
2. Lattice Semiconductor Data Book, 1996.
3. Lattice PDS+ Software, User Manual.
4. ABEL Design Software, User Manual.

PCI Bus Implementation

11 1996 ISP Encyclopedia

module pci_master
title 'pci bus master interface for i486 cpu';

"NOTES:
"this design assumes that there is no cacheable memory located
"as a target on the pci bus
"This design is a guideline for implementing PCI bus bridge
"for a 486 cpu interface. This design does not implement a 100%
"PCI compatible bridge, however, the basic state machine is
"implemented and provides a baseline to build a complete PCI
"master interface

"**
"**
" plsi properties
"**
"**

plsi property 'timing_sim pci_mast';
plsi property 'strong_route extended';
plsi property 'try 4';
plsi property 'max_delay 1';

"**
"**
declarations
"**
"**

pci_master device 'isp1032j09';

"**
" inputs
"**
"inputs for processor interface
pa0 pin; "processor address lines
pa1 pin; "processor address lines
pa2 pin; "processor address lines
pa3 pin; "processor address lines
pa4 pin; "processor address lines
pa5 pin; "processor address lines
pa6 pin; "processor address lines
pa7 pin; "processor address lines
pa8 pin; "processor address lines
pa9 pin; "processor address lines
pa10 pin; "processor address lines
pa11 pin; "processor address lines
pa12 pin; "processor address lines
pa13 pin; "processor address lines
pa14 pin; "processor address lines
pa15 pin; "processor address lines
pa16 pin; "processor address lines
pa17 pin; "processor address lines
pa18 pin; "processor address lines
pa19 pin; "processor address lines
pa20 pin; "processor address lines
pa21 pin; "processor address lines
pa22 pin; "processor address lines
pa23 pin; "processor address lines
pa24 pin; "processor address lines
pa25 pin; "processor address lines
pa26 pin; "processor address lines

Design Equations and Simulation Waveform

PCI Bus Implementation

12 1996 ISP Encyclopedia

pa27 pin; "processor address lines
pa28 pin; "processor address lines
pa29 pin; "processor address lines
pa30 pin; "processor address lines
pa31 pin; "processor address lines
pbe0 pin; "processor byte enables
pbe1 pin; "processor byte enables
pbe2 pin; "processor byte enables
pbe3 pin; "processor byte enables
!plock pin; "processor lock pin
!pdata pin; "processor C/D pin
!piom pin; "processor IO/m pin
!pbreq pin; "processor bus request
!pread pin; "processor read/write
dp0,dp1,dp2,dp3 pin; "processor parity pins

step pin; "stepping input for debugging
cclk pin; "clock - 1mhz
pclk pin; "clock for timeout counter

"master input pins from pci
!gnt pin; "from bus arbiter
!trdy pin; "from target
!stop pin; "from target
!devsel pin; "indicates tgt has been selected
ready pin; "indicates ready to transfer
comp pin;

par pin; "bidirectional parity pin

"slave inputs
term pin; "slave wants to terminate the bus cycle
tar_dly pin;

"**
" outputs
"**
"master output pins and bi directionals

cbe0 pin;
cbe1 pin;
cbe2 pin;
cbe3 pin;
data_en pin; " enables the data buffers on the pCI bus

!frame pin;
!lock pin;
!req pin;
!irdy pin;
addr_en pin;
mas_abort pin; "transaction aborted by master due to timeout

"The following is the output enable for the external buffers
ad_oe pin;

"**
" nodes
"**
mas_to node; "internal timer has expired
pci node; " cpu access is on pci bus from built in address decoder
dev_to node; "devsel timeout on pci bus,ie, DEVSEL was not asserted
sa node ; "last cycle to same tgt as current
L_cyc node; "last cyc was a write, bit set in register
Own_lock node; "master owns lock

PCI Bus Implementation

13 1996 ISP Encyclopedia

tgt_abort node; "target aborts access
tgt1 node;
tgt1r node istype 'buffer,reg_d'; "used to store tgt access info.
ldt pin;
preadr node istype 'buffer,reg_d'; "used to store write/read cycle bit

"target related nodes
hit node;
cmdr3,cmdr2,cmdr1,cmdr0 node;

"**
" Other Definitions *
"**
"defn. of all bus cycles
int_ack = [0,0,0,0];
spec_cyc =[0,0,0,1];
io_read = [0,0,1,0];
io_write = [0,0,1,1];
res1 = [0,1,0,0]; "RESERVED
res2 = [0,1,0,1]; "RESERVED
mem_read = [0,1,1,0];
mem_write = [0,1,1,1];
res3 = [1,0,0,0]; "RESERVED
res4 = [1,0,0,1]; "RESERVED
config_read = [1,0,1,0];
config_write = [1,0,1,1];
mem_wr_mult = [1,1,0,0];
dual_add_cyc = [1,1,0,1];
"for 64 bit addressing only- not supported by this design
mem_read_line = [1,1,1,0];
mem_wr_inval = [1,1,1,1];

cmd = [cbe3..cbe0]; " for convenient definition of cbeX lines used in ist phase
of bus cycle
cmdr = [cmdr3..cmdr0]; "storage for command bus
pbex = [pbe3..pbe0]; "processor byte enables

"***** MASTER MACHINE DEFN. ***************************
"master lock machine
lreg node;
lreg istype 'buffer,reg_d';

"state definitions for lock machine
free = 0;
busy = 1;

"devsel timer machine
d2,d1,d0 node;
dreg = [d2..d0];
dreg istype 'buffer,reg_d';

"state defn. for devsel state machine
null = [0,0,0] ;
one = [0,0,1] ;
three = [0,1,1] ;
seven = [1,1,1] ;
six = [1,1,0] ;

"master sequencer machine
s0,s1,s2 node;
sreg = [s2..s0];
sreg istype 'buffer,reg_d';

"state defn. for master sequencer machine

PCI Bus Implementation

14 1996 ISP Encyclopedia

idle = [0,0,0] ;
addr = [0,0,1] ;
data = [0,1,1];
data1 = [1,0,1]; " for parity purpose
dr_bus = [1,1,1];
turn_ar = [1,1,0];
s_tar = [1,0,0];

"counter defn.
q0,q4,q3,q2,q1 node;
count = [q4..q0];
count istype 'buffer,reg_d';

"****** TARGET MACHINE DEFN.************************************
t2,t1,t0 node;
treg = [t2..t0];
treg istype 'reg_d,buffer';

tgt_idle = [0,0,0];
backoff = [0,0,1];
b_busy = [0,1,0];
tgt_data = [0,1,1];
turn = [1,0,1];

"state machine to clock comand bus for target
c1,c0 node;
creg = [c1,c0];
creg istype 'reg_d, buffer';

no_ack = [0,0];
strobe = [0,1];
hold = [1,1];

"**
" State machines
*
"**
"state diagram for sequencer machine
state_diagram sreg;

state idle: "idle state on the bus
if (pbreq & gnt & !frame & !irdy & !step) "cpu has a pci bus request and ad-
dress strobe
 then addr;

 else if ((!pbreq & gnt) # (pbreq & gnt & step)) & (!frame & !irdy) "park on
bus if stepping
 then dr_bus;

 else idle;

state addr: "master starts a transaction
 goto data; "goto data state on next clock

state data: "master transfers data first data phase
if (frame) # ((!frame & !irdy & !trdy.pin & !stop.pin & !dev_to) & !((cmd==spec_cyc)
& comp))
 then data1;

 else if (!frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc) & sa & L_cyc &
pbreq & gnt)
 then addr; " only if fast back to back cycles are supported

 else if (!frame & trdy.pin & !stop.pin & !(sa & L_cyc & pbreq & gnt) #

PCI Bus Implementation

15 1996 ISP Encyclopedia

(!(cmd==spec_cyc) & comp))
 then turn_ar; "turnaround state if no back-back cycles

 else if (!frame & stop.pin # !frame & dev_to & !trdy.pin)
 then s_tar;

state data1:
if (frame) # ((!frame & !irdy & !trdy.pin & !stop & !dev_to) & !((cmd==spec_cyc) &
comp))
 then data1;

 if (!frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc) & sa & L_cyc &
pbreq & gnt)
 then addr; " only if fast back to back cycles are supported

 else if (!frame & trdy.pin & !stop.pin & !(sa & L_cyc & pbreq & gnt) #
(!(cmd==spec_cyc) & comp))
 then turn_ar; "turnaround state if no back-back cycles

 else if (!frame & stop.pin # !frame & dev_to & !trdy.pin)
 then s_tar;

state turn_ar: " state for houskeeping purposes
if (pbreq & gnt & !step)
 then addr;

 else if (!pbreq & gnt # pbreq & gnt & step)
 then dr_bus;

 else if (!gnt)
 then idle;

 else turn_ar;

state s_tar: " turnaround state when stop is asserted
if (gnt)
 then dr_bus;

 else if (!gnt)
 then idle;

 else s_tar;

state dr_bus: "bus parked or address stepping is used
if (pbreq & gnt & step # !pbreq & gnt)
 then dr_bus;

 else if (pbreq & !gnt & !step)
 then addr;

 else if (!gnt)
 then idle;

 else dr_bus;

"************** end of master sequencer state machine****************************

"state diagram for LOCK machine
state_diagram lreg;

state free: "bus is locked by current master
if (!lock # lock & Own_lock)
 then free;

PCI Bus Implementation

16 1996 ISP Encyclopedia

 else if (lock & !Own_lock)
 then busy;

state busy: " some other master has the bus locked
if (!lock & !frame)
 then free;

 else if (lock # frame)
 then busy;

"************** end of master lock state machine****************************

state_diagram dreg;

state null: "machine is waiting for frame to be asserted
if (frame & !stop)
 then one;
 else null;

state one:
 goto three;

state three:
 goto seven;

state seven:
if (!devsel & frame)
 then six;
 else null;

state six:
 goto null;
"************** end of devsel state machine**********************

" ************ target state machine *****************************
state_diagram treg;

state tgt_idle: "target state machine is idle
if (!frame.pin)
 then tgt_idle;

 else if (frame.pin & !hit)
 then b_busy;

 else if (frame.pin & hit & (!term # term & ready))
 then tgt_data;

 else if (frame.pin & hit & term & !ready)
 then backoff;

 else tgt_idle;

state b_busy:
if ((frame.pin # irdy.pin) & !hit)
 then b_busy;

 else if (!frame.pin)
 then tgt_idle;

 else b_busy;

state tgt_data:
if (frame.pin & stop & trdy & !irdy.pin # frame.pin & !stop # !frame.pin & !trdy &

PCI Bus Implementation

17 1996 ISP Encyclopedia

!stop)
 then tgt_data;

 else if (frame.pin & stop & (!trdy # irdy.pin))
 then backoff;

 else if (!frame.pin & (stop # trdy))
 then turn;

 else tgt_data;

state backoff:
if (frame.pin)
 then backoff;

 else if (!frame.pin)
 then turn;

state turn:
if (!frame.pin)
 then tgt_idle;

 else if (frame.pin & !hit)
 then b_busy;

 else if (frame.pin & hit & (!term # term & ready))
 then tgt_data;

 else if (frame.pin & hit & (term & !ready))
 then backoff;
"************* end of target state machine**********************

" cmd bus store state machine
state_diagram creg;

state no_ack:
if (!frame.pin)
 then no_ack;

 else if (frame & hit)
 then strobe;

state strobe:
goto hold;

state hold:
if (frame.pin)
 then hold;

 else if (!frame.pin)
 then no_ack;
"**
equations
"**
lreg.c = pclk;
dreg.c = pclk;
sreg.c = pclk;
treg.c = pclk;
creg.c= pclk;

count.c = cclk;
count.re = trdy & gnt; "reset counter when trdy is generated by master

"5 bit counter initiated by asserting frame,runs on a 1Mhz clock

PCI Bus Implementation

18 1996 ISP Encyclopedia

"will generate mas_to signal at end of count
q0.d = q0 $ frame;
q1.d = (q0 & frame) $ q1;
q2.d = (q0 & q1 & frame) $ q2;
q3.d = (q0 & q1 & q2 & frame) $ q3;
q4.d = (q0 & q1 & q3 & q3 & frame) $ q4;
mas_to = (q1 & q2 & q3 & q4 & q0 & frame); "master timed out

pci = (pa31 & pa30 & pa29 & pa28 & pbreq); " decoded pci address space f0000000-
ffffffff

Own_lock = !lock & !frame & !irdy & pbreq & gnt & plock # Own_lock & (frame # lock);

frame = (sreg==addr) # ((sreg==data)#(sreg==data1) & !dev_to & ((!comp & (!mas_to #
gnt) & !stop.pin) # !ready));

lock = !((Own_lock & (sreg==addr)) # tgt_abort # dev_to #
(((sreg==data)#(sreg==data1)) & stop.pin & !trdy.pin & !ldt)
 # (Own_lock & !plock & comp & ((sreg==data)#(sreg==data1)) & !frame &
trdy.pin));

req = (pbreq & !plock # pbreq & plock & (lreg==free)) & !(sreg==s_tar);

irdy = ((sreg==data)#(sreg==data1)) & (ready # dev_to);

dev_to = (dreg==six);

mas_abort = mas_to;

cmd = (int_ack & ((sreg==addr) & pread & piom & pdata)
 # io_read & ((sreg==addr) & pread & piom & !pdata)
 # io_write &((sreg==addr) & !pread & piom & !pdata)
 # mem_read & ((sreg==addr) & pread & !piom & !pdata)
 # mem_write & ((sreg==addr) & !pread & !piom & !pdata)
 # spec_cyc & ((sreg==addr) & !pread & piom & pdata)
 # pbex & (sreg==data)
 # pbex & (sreg==data1)
 # pbex & ((sreg==dr_bus) & step & pbreq));

addr_en = (sreg==addr);

data_en = (sreg==data)#(sreg==data1)#(sreg==dr_bus);

"preadr is used to store the write/read access
preadr.d = pread & gnt;

preadr.clk = pclk;

preadr.ar = (!gnt & !pci);

L_cyc = !pread & preadr.q;

tgt_abort = (stop.pin & !devsel.pin & ((sreg==data)#(sreg==data1)) & !frame & irdy);

"the following equations assume only 1 target device. The access to the device
"is stored for back to back transfers. this can be expanded to include more devices

tgt1 = (pbreq & pa31 & pa30 & pa29 & pa28 & pa27 & pa26 & pa25 & pa24); "FF000000-
FFFFFFFF

tgt1r.d = tgt1;

tgt1r.ar = (!gnt & !pci); "reset the register when there is a non-pci access

PCI Bus Implementation

19 1996 ISP Encyclopedia

tgt1r.c = pclk;

sa = tgt1r.q & tgt1;

"****************************** output enables*****************************

cmd.oe = (sreg==addr) # (sreg==data) # (sreg==dr_bus) # (sreg==data1);

lock.oe = Own_lock & ((sreg==data)#(sreg==data1)) # (lock.oe & (frame # lock));

ad_oe = (sreg==addr) # (sreg==dr_bus) & step & pbreq;

"irdy needs to be asserted when addr or data are the previous states
irdy.oe = (sreg==addr)
 #((sreg==idle) & pbreq & gnt & !frame & !irdy & pci & !step) "asserted
when addr is next state
 #((sreg==turn_ar) & pbreq & gnt & !step) " asserted when addr is
next state
 #((sreg==data) & !frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc)
& sa & L_cyc & pbreq & gnt)
 #((sreg==dr_bus) & pbreq & !gnt & !step) "asserted when addr is
next state
 #(((sreg==data) & frame) # ((!frame & !irdy & !trdy.pin & !stop.pin &
!dev_to) & !((cmd==spec_cyc) & comp)))
 #(((sreg==data1) & frame) # ((!frame & !irdy & !trdy.pin & !stop.pin &
!dev_to) & !((cmd==spec_cyc) & comp)));

"***
" Parity logic
"***
par = ((dp0 $ dp1) $ (dp2 $ dp3));
" # (from slave par circuit);

par.oe = (sreg==data) & (cmd==io_write) # (cmd==mem_write) "for address parity
 # (sreg==data1) & (cmd==io_write) # (cmd==mem_write) "for data parity
 # (treg==tgt_data) & trdy & ((cmdr==io_read) # (cmdr==mem_read)); " for
slave driven par

"******************************** target equations***********************
trdy = !(ready & !tgt_abort & (treg==tgt_data)
 & (((cmdr==io_write) # (cmdr==mem_write))
 # ((cmdr==io_read) # (cmdr==mem_read) & tar_dly)));

stop = !((treg==backoff) # (treg==tgt_data) & (tgt_abort # term)
 & (((cmdr==io_write) # (cmdr==mem_write))
 # ((cmdr==io_read) # (cmdr==mem_read) & tar_dly)));

devsel = !((treg==backoff) # (treg==tgt_data) & !tgt_abort);

"perr = (from parity circuit)

trdy.oe = (treg==backoff) # (treg==tgt_data) # (treg==turn);

stop.oe = (treg==backoff) # (treg==tgt_data) # (treg==turn);

devsel.oe = (treg==backoff) # (treg==tgt_data) # (treg==turn);

"hit = (decode of PCI address lines);

cmdr = cmd & (creg==strobe); "store the command bus info for use

END;

PCI Bus Implementation

20 1996 ISP Encyclopedia

P
C
L
K

P
A
X
X

P
B
E
X

C
B
E
X
X

S
R
E
G

P
B
R
E
Q

R
E
Q

G
N
T

P
C
I

F
R
A
M
E

I
R
D
Y

T
R
D
Y

C
O
M
P

R
E
A
D
Y

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

2
1
0

2
3
0

2
5
0

2
7
0

2
9
0

n
s

X
X

F
F

0
X

X
F

X

X
X

0
6

F
F

0

0
1

3
5

6
0

PCI Bus Read Cycle (Simulation)

PCI Bus Implementation

21 1996 ISP Encyclopedia

**
* *
* Lattice pDS+ Fitter Report *
* *
**

Copyright (c) Lattice Semiconductor Corp. 1992. All Rights Reserved.

 Design Name: pci_mast
 File: pci_mast.doc
 Date/Time: Mon Apr 25 12:13:33 1994
 Targeted Device: pLSI1032-90LJ84
 Software Version: DPM 1.60 12/8/93

Fitter Parameters Used

 AVG_GLB_IN: 16
 EFFORT: 4
 IGNORE_FIXED_PIN: OFF
 MAX_DELAY: 1
 MAX_GLB_IN: 16
 PARAM_FILE: (null)
 PART: pLSI1032-90LJ84
 TIMING_SIM: pci_mast
 TRY: 4
 FAST_ROUTE: OFF
 STRONG_ROUTE: EXTENDED

Process Status

 Design Analysis: complete
 Logic Partitioning: complete
 Place and Route: complete
 Post Route: complete
Fuse File Generation: complete
Merging TMV in JEDEC: incomplete

* *
* Post-Route Report *
* *

Design Name: pci_mast
Targeted Device: pLSI1032-90LJ84
Date/Time: Mon Apr 25 13:09:06 1994

Software Version: 1.00.35

All strategy results:
Strategy 4 - Estimated No. of GLBs : 19
Strategy 4 - Estimated No. of GLB Levels: 3

Final Selected Strategy 4 - Estimated No. of GLBs : 19
Strategy 4 - Estimated No. of GLB Levels: 3

Partitioning:

Total number of GLBs : 31

pDS+ Fitter Report

PCI Bus Implementation

22 1996 ISP Encyclopedia

Total number of Product Terms used : 193
Average number of Product Terms : 6.2
Total number of nets created : 119
Average number of Inputs per GLB : 9.6
Average number of Outputs per GLB : 2.2
Number of I/Os Generated : 46
Number of Dedicated Inputs Generated : 4
Type of Clocks Generated : 2 System Clocks
 : 0 I/O Clocks
 : 0 Product Term Clocks

PCI Bus Implementation

23 1996 ISP Encyclopedia

Post Route Pin Report

Post-Route Pin Report

Pin Number Signal Name Fixed Pin Type

 1 GND Yes Gnd
 3 mas_abort No Output
 5 pa29 No Input
 6 frame No Output
 7 irdy- No Input
 9 devsel- No Input
 10 irdy No Bidi
 11 par No Output
 14 comp No Input
 16 pa28 No Input
 20 pclk Yes Clock
 21 VCC Yes Vcc
 22 GND Yes Gnd
 25 pbe2 No Input
 26 hit No Input
 27 cbe3 No Bidi
 28 cbe2 No Bidi
 29 req No Output
 30 addr_en No Output
 31 term No Input
 32 tar_dly No Input
 33 frame- No Input
 34 pa31 No Input
 35 devsel No Bidi
 37 pa27 No Input
 38 dp0 No Input
 39 data_en No Output
 40 stop No Bidi
 41 pa26 No Input
 42 pbe3 No Input
 43 GND Yes Gnd
 44 pbe1 No Input
 45 cbe0 No Bidi
 46 gnt No Input
 47 pdata No Input
 48 cbe1 No Bidi
 49 trdy- No Input
 50 dp3 No Input
 51 dp2 No Input
 52 dp1 No Input
 54 pread No Input
 55 plock No Input
 56 ad_oe No Output
 64 GND Yes Gnd
 65 VCC Yes Vcc
 66 cclk Yes Clock
 68 pbreq No Input
 69 pbe0 No Input
 70 ready No Input
 71 piom No Input
 72 pa24 No Input
 77 #lock No Bidi
 78 step No Input
 79 pa30 No Input
 81 stop- No Input
 82 pa25 No Input
 83 trdy No Bidi
 84 ldt No Input

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	PCI/Lattice ispLSI Interface
	Controller Logic Implementation
	Design Options/Enhancements
	Summary
	References

