
1 1996 ISP Encyclopediaan9007_01

Introduction

The GAL6002 is the most versatile 24-pin PLD available
today. Its FPLA architecture offers buried macrocells,
D/E registers, programmable clocks and dedicated input
pins which can be individually configured as latches or
registers. These features combine to provide the de-
signer with an ideal platform on which to build complex
state machines and other complex logic functions.

This application note provides an example of how a
GAL6002 can be used in a system and shows how
software tools are used to maximize some of the device’s
unique features. The circuit to be described is a 4-to-1
RS-232 serial port multiplexer (Port MUX). The concept
for the circuit arose from the need to replace a mechani-
cal switch used to connect four computers to a high
speed laser printer.

The Port MUX application uses every input and output
pin, as well as all eight State Logic Macrocells. Other than
a single GAL6002, the only ICs needed are RS-232 line
driver/receiver chips and a clock source.

Basic RS-232 Protocol

To understand the operation of the port MUX, it is
necessary to have a basic knowledge of RS-232 commu-
nications protocol.

Though the RS-232 protocol is standardized, its defini-
tion is loose enough to allow liberties to be taken in its
implementation. When the port MUX was designed, the
assumption was made that communication can take
place with only four signals: transmit data, receive data,
printer ready/busy, and computer ready/busy. In RS-232
parlance these signals are called TxD, RxD, DTR, and
DSR, respectively.

An RS-232 link is digital (bistable) in nature, but the
voltages used to represent logic ones and zeros are not
TTL level. Instead, -12VDC represents a logic one and
+12VDC represents a logic zero. Another consideration
is that the idle or deasserted state of an RS-232 signal is
a logic one, although data is transmitted in its “true” form.
A typical single byte transfer can be seen in Figure 1.

A typical RS-232 data transfer between a computer and
a printer would proceed as follows:

1) The printer, being powered-up and ready to accept
data, has its DTR line asserted (logic ‘0’), while its TxD
line is idle (logic ‘1’). The computer, also powered-up but
not yet sending data, is in a similar state: TxD is idle and
DSR is asserted.

2) When the computer is ready to send a byte of data, it
asserts its TxD line for one “bit period.” This is called the
start bit. A “bit period” is dependent on the data transmis-
sion speed (300 baud (bits/sec), 9600 baud, etc.) . After
the start bit, seven or eight bits of data will follow,
optionally followed by a parity bit, and ending with one or
two stop bits (logic ‘1’). Data is transmitted least signifi-
cant bit first.

Note: Asserted = 0 (+12V)

“Idle”= 1 (-12V)

The condition of TxD and DSR after sending a byte of
data is the same as before sending it. From an electrical
perspective, there is no indication whether or not the
computer is going to send another byte.

3) Somewhere in the middle of the transfer, the printer
runs out of paper, or its print buffer fills up, or for some
other reason it must suspend communications. When
this happens, the printer deasserts its DTR line, telling
the computer to stop sending data. When the printer is
again ready to accept data, it will reassert DTR.

As alluded to in #2 above, there is no way to tell when the
computer is finished sending data. In fact, the computer
can be said to have “finished” its transmission after
sending only the first byte of a multi-byte transmission.

 Figure 1. TxD During Single Byte Transfer

1 (-12V)

0 (+12V)

S

T

A

R

T

P

A

R

I

T

Y

S

T

O

P

0 0 0 1 1 0 1 0

ASCII “X”

GAL 6002: 4-to-1 RS232
Port Multiplexer

®

2 1996 ISP Encyclopedia

Each subsequent byte transfer can be viewed as an
entirely new transaction. Extended periods of time may
even elapse between byte transfers if the computer has
to access a disk or is interrupted for some reason.
Remember, RS232 is an asynchronous communications
protocol.

Functional Description

The Port MUX has five ports, numbered 0 to 4. Port 0 is
connected to the printer, while ports 1 through 4 are
connected to the computers. The port MUX merely acts
as an intelligent switch; data flows through it unhindered
and unaltered. At any given time, there will always be one
(and only one) computer connected to the printer.

Four signals per port are switched: TxD, RxD, DTR, and
DSR. This arrangement is known to work for connecting
IBM-PC compatible computers to an HP LaserJet. The
RS-232 specification has no lack of ready/busy signals,
so others could be substituted for DTR and DSR if
necessary (CTS and RTS, for example). See Figure 2 for
a block diagram of the port multiplexer.

Since RS-232 signal levels are not compatible with TTL
levels, line driver/receiver circuits are needed for trans-
lation. For this project, Maxim MAX235 Driver/Receiver
chips were used, though others devices will work as well.
Each MAX235 IC has five drivers and five receivers; two
MAX235 ICs are needed to build the Port MUX.

The multiplexer functions by sequentially scanning the
four input ports until data appears at one of them.

Scanning a port involves connecting that port to the
printer and waiting for data to flow. If no data appears
within a predetermined time period, the period of the
system clock (~ .25s), the process is repeated at the next
port. When data does appear at a port, the port MUX
“locks onto” that port and goes into the transmit mode. At
the end of the transmission, the port MUX returns to the
scan mode.

As mentioned in the discussion of RS-232 protocol,
detecting the end of a transmission is non-trivial. To
peripheral devices such as printers, the “end of transmis-
sion” concept is fiction — to them, life is one big data
transmission. The port MUX, on the other hand, must be
able to determine when it is permissible to resume
scanning. It should not return to the scan mode before the
end of a transmission, and at the same time it must not
lock onto a port for an inordinately long time. Both
requirements are met by timing how long the computer’s
TxD line is idle, and returning to the scan mode if TxD is
idle for longer than a predetermined time period (5 -10
seconds is reasonable).

The data routing logic of the port multiplexer is controlled
by two loosely coupled state machines and a status
register. The state machines and the status register use
the State Logic Macrocells (labeled as state bits S0 - S7).
The status register determines the operating mode (scan
or transmit); the first state machine determines the active
port; and the second state machine is used as a timer.

The basis for most state machines is the simple binary
counter, with added logic to allow branching, state skip-
ping, etc. The most efficient way to build a binary counter
in the GAL6002 is to configure the registers to emulate T-
flip flops. This way, only the conditions that should cause
the state bits to change state need to be specified. In the
case of simple up counters, there is only one condition
when all lower order bits are ones. The equations for a 4-
bit up counter are as follows:

BO.D = /BO.Q;
BO.E = l;

Bl.D = /Bl.Q;
Bl.E = BO;

B2.D = /B2.Q;
B2.E = Bl*BO;

B3.D = /B3.Q;
B3.E = B2*Bl*BO;

As you can see, counters of any size can be built using
only two product terms per bit.

Figure 2. Port MUX Block Diagram

Port 1

Port 2

Port 3

Port 4

P

o

r

t

0

TxD

DSR

TxD

DSR

TxD

DSR

TxD

DSR

Port 1

Port 2

Port 3

Port 4

P

o

r

t

0

RxD

DTR

RxD

DTR

RxD

DTR

RxD

DTR

ControllerSelect Clock

RxD

DTR

TxD

DSR

GAL6002: 4-to-1 RS232 Port Multiplexer

3 1996 ISP Encyclopedia

In the following discussions POTx and PODT are TxD
and DTR respectively.

Status Register

Recall that the beginning of a data transfer is signaled by
POTx becoming active for one bit period. By using the
start bit event to asynchronously set a status register, set
= transmit, the operating mode of the port MUX is
determined. Once set, the status bit will remain set until
a time-out occurs.

The status register is implemented using state bit S0,
configured to emulate a T-flip flop with a programmable
clock. With such an arrangement, meeting the specified
state transition conditions doesn’t just allow a transition
at the next clock, but actually causes the transition.

There are two situations that must cause the status
register to toggle: if it is clear, clear = scan, and data is
flowing, or if it is set and a timeout has occurred. The
equations for the status register are:

SO.D = /SO.Q;
SO.CK = /SO.Q*/POTx +

sO.Q*POTx*PODT*57.Q
*56.Q*55.Q*54.Q*53.Q;

The same function could have been implemented by
“building” a latch from combinational equations, but the
approach taken here is more efficient in terms of product
term usage and is less prone to functional hazards.

Primary State Machine

The primary state machine directly determines the active
port. It is simply a 2-bit counter with a hold function. The
conditions necessary for the counter to increment are
that the status register be clear and that PODT be active.

The primary state machine uses state bits S1 and S2 in
the D/E configuration to emulate T-flip flops. The equa-
tions for S1 and S2 are:

Sl.D = /Sl.Q;
Sl.E = PODT*/SO.Q;

S2.D = /S2.Q;
S2.E = PODT*/SO.Q*Sl.Q;

Timer

The second state machine, a 5-bit counter/timer, will only
count while the status register is set, POTx is idle, and
PODT is active. The counter synchronously resets to
zero if these conditions are not met. Thus, if PODT is

active and POTx is idle on 31 consecutive OCLK edges,
the timer will reach its maximum value, causing the status
register to be cleared and the primary state machine to
continue counting.

The 5-bit timer uses state bits S4 - S7 in the D/E
configuration, again emulating T-flip flops. The equations
for the timer are:

S3.D = /S3.Q*SO.Q*POTx*PODT;
S3.E = 1;

S4.D = /S4.Q*SO.Q*POTx*PODT;
S4.E = S3.Q

+ /SO.Q;

S5.D = /S5.Q*SO.Q*POTx*PODT;
S5.E = S3.Q*S4.Q

+ /SO.Q;

S6.D = /S6.Q*SO.Q*POTx*PODT;
S6.E = S3.Q*S4.Q*S5.Q

+ /SO.Q;

S7.D = /S7.Q*SO.Q*POTx*PODT;
S7.E = S3.Q*S4.Q*S5.Q*S6.Q

+ /SO.Q;

Time-out during a byte transfer, though statistically pos-
sible, is unlikely. If it should occur, however, it is not
harmful. Because a time-out simply clears the status
register and scanning does not resume until the next
OCLK edge, the driving computer still has one OCLK
period to finish the byte transfer, during which time a logic
‘0’ on POTx returns the status register to the transmit
mode. Thus, it is virtually impossible for a byte of data to
be lost.

If the port MUX should time-out and resume scanning
between byte transfers, but before the end of a transmis-
sion, and another computer is waiting to use the printer,
then that computer will be serviced before the first com-
puter is again granted use of the printer. This would
cause the second computer’s data to be inserted into the
middle of the first computers transmission. This situation,
though undesirable, is unavoidable. The good news is
that the probability of this happening is very low.

Conclusion

The Port MUX provides an example of how the flexibility
of the GAL6002 can simplify a complex design. Equally
important, this example shows how various software
tools are used to take advantage of the device’s features.
Since the Port MUX is not a speed-critical application, the
GAL6002’s 15ns tPD is more than adequate.

Though this example is complex, it still does not push the
GAL6002 to its limits. The state machine and data routing

GAL6002: 4-to-1 RS232 Port Multiplexer

4 1996 ISP Encyclopedia

equations use only 33 product terms, leaving over 48% of
the AND array free for expansion. The GAL6002’s FPLA
architecture allowed five product terms to be merged. If
this design were implemented using a standard 24-pin
PLD, it would take at least two devices to accomplish this
task.

GAL6002: 4-to-1 RS232 Port Multiplexer

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	Basic RS-232 Protocol
	Functional Description
	Status Register
	Primary State Machine
	Timer
	Conclusion

