
1 1996 ISP Encyclopedia

Introduction

This section describes how to program Lattice Semicon-
ductor Corporation’s (LSC) ISP™ devices once the
JEDEC standard fuse map file has been generated. It is
divided into two subsections. The first subsection “Get-
ting Started Fast” is intended to give the reader enough
ISP hardware information to easily implement LSC’s ISP
solutions using the LSC ISP tools, which are briefly
described at the end of this section. The second subsec-
tion “ISP Expert” gives more details on low-level,
device-specific programming algorithms. Since these
algorithms are transparently handled by LSC’s program-
ming tools, the second subsection is intended for those
readers who want a thorough understanding of the pro-
gramming procedures, which would be required for any
custom implementation of ISP.

Subsection I — Getting Started Fast

In-System Programming (ISP) Interface

LSC ISP State Machine
TAP Controller State Machine
ISP Device Programming Configurations

Hardware Considerations
Hardware Programming Tools
ISP Programming Software
ISP Programming Times

User-Programmable ID Registers

Subsection II — ISP Expert

ispLSI® Programming Details

Boundary Scan (ispLSI 3000 & 6000 Families)
ispGDS™ Programming Details
ispGAL® Programming Details
ISP Daisy Chain Details

In-System Programming (ISP) Interface

Lattice’s ISP devices utilize nonvolatile E2CMOS® tech-
nology and require only 3.3V or 5V, TTL-level
programming signals. An integrated state machine con-
trols the sequence of programming operations such as
identifying the ISP device, shifting in the appropriate data
and commands, and controlling internal signals to pro-
gram and erase the E2 Cells in the device. Programming
consists of serially shifting the logic implementation stored
in a JEDEC file into the device along with appropriate
address and commands, programming the data into the
E2CMOS logic elements, and shifting the data from the
logic array out for device programming verification.

The ISP programming interface to Lattice Semiconductor
ISP devices is controlled by either the LSC proprietary
ISP programming interface or the IEEE Std 1149.1-1990
boundary-scan Test Access Port (TAP). The LSC ISP
programming interface controls an integrated three-state
programming state machine while the boundary-scan
TAP controls programming through an IEEE1149.1 speci-
fied state machine called the TAP controller. Lattice

ISP Architecture
and Programming

Figure 1. Multiple ISP Device Programming Interface

ispLSI

1032

ispLSI

2032

ispGDS

22

SDO
SDI

MODE
SCLK

ispEN

5-wire ISP

Programming

Interface

ispGAL

22V10

archprgm_02

2 1996 ISP Encyclopedia

ISP Architecture and Programming

Semiconductor’s ispGDS, ispGAL22V10B,
ispGAL22V10C, ispLSI 1000/E families, ispLSI 2000
family, ispLSI 3000 family, and ispLSI 6000 family are all
programmed through the LSC ISP programming inter-
face. ispLSI 2000LV family devices are programmed
exclusively through the boundary-scan TAP controller.

The basic elements of the LSC ISP programming inter-
face are the mode control (MODE), serial data in (SDI),
serial data out (SDO), and serial clock (SCLK) signals
(Figure 1). The internal three-state state machine, which
determines whether the device is in the normal operation
state or the programming states, is controlled by the four
ISP programming pins. MODE and SDI furnish control
inputs to the state machine, SDI and SDO make up the
programming data inputs and outputs to and from the
internal shift register, and SCLK provides the clock.
ispLSI devices use a fifth programming pin, ispEN, to
multiplex the functions of the SDI, SDO, SCLK, and
MODE pins between ISP functions during programming
and user defined logic functions during normal PLD
operations.

The TAP controller interface as specified in the IEEE Std
1149.1-1990 document must include the Test Mode
Select (TMS), Test Data In (TDI), Test Data Out (TDO),
and Test Clock (TCK) signals. These signals perform
similar duty for state machine control as the LSC ISP
connections MODE, SDI, SDO, and SCLK respectively.
However, the TAP controller state machine is exclusively
controlled by the TMS signal, and TDI is only used for
shifting in data and instructions. ispLSI devices use a fifth
pin, ispEN to multiplex the functions of the TDI, TDO,
TCK and TMS pins between TAPcontroller functions and
either user-defined logic functions or other programming
functions. An optional Test Reset (TRST) pin is used to
asynchronously reset the TAP controller.

LSC ISP State Machine

LSC ISP State Machine Programming Pins

The programming pins used to program Lattice Semicon-
ductor devices that use the LSC ISP state machine are
each described in detail in this section. Figure 2 shows
the ispLSI 1032 84-Pin PLCC device pinout.

The Serial Data In (SDI) pin performs two different
functions. First, it acts as the data input to the serial shift
register built inside each ISP device. Second, it functions
as one of the two control pins for the programming state
machine. Because of this dual role, the function of SDI is
controlled by the MODE pin. When MODE is low, SDI
becomes the serial input to the shift register, and when

Figure 2. ispLSI 1032 84-Pin PLCC Pinout Diagram

I/O 38

I/O 37

I/O 36

I/O 35

I/O 34

I/O 33

I/O 32

IN 4

Y1

VCC

GND

Y2

Y3

IN 3/SCLK*

I/O 31

I/O 30

I/O 29

I/O 28

I/O 27

I/O 26

I/O 25

I/O 57

I/O 58

I/O 59

I/O 60

I/O 61

I/O 62

I/O 63

IN 7

Y0

VCC

GND

*ispEN/NC

RESET

*SDI/IN 0

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O
 5

6

I/O
 5

5

I/O
 5

4

I/O
 5

3

I/O
 5

2

I/O
 5

1

I/O
 5

0

I/O
 4

9

I/O
 4

8

IN
 6

G
N

D

IN
 5

I/O
 4

7

I/O
 4

6

I/O
 4

5

I/O
 4

4

I/O
 4

3

I/O
 4

2

I/O
 4

1

I/O
 4

0

I/O
 3

9

I/O
 7

I/O
 8

I/O
 9

I/O
 1

0

I/O
 1

1

I/O
 1

2

I/O
 1

3

I/O
 1

4

I/O
 1

5

*M
O

D
E

/IN
 1

G
N

D

*S
D

O
/IN

 2

I/O
 1

6

I/O
 1

7

I/O
 1

8

I/O
 1

9

I/O
 2

0

I/O
 2

1

I/O
 2

2

I/O
 2

3

I/O
 2

4

11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

ispLSI 1032

MODE is high, SDI becomes a control signal for the
programming state machine. Internally, the SDI signal is
multiplexed to various shift registers in the device. The
different shift instructions of the state machine determine
which of these shift registers receives input from SDI.

The MODE signal, combined with the SDI signal, controls
the programming state machine, as described in theww
which follows.

The Serial Clock (SCLK) pin provides the serial shift
register with a clock. SCLK is used to clock the internal
serial shift registers and clock the ISP state machine
between states. State changes and shifting data in are
performed on low-to-high transitions. When MODE is
high, SCLK controls the programming state machine,
and when MODE is low, SCLK acts as a shift register
clock to shift data in or out or to start an operation. When
shifting data out, the data is available and valid on SDO
only after a subsequent high-to-low transition of SCLK.

The Serial Data Out (SDO) pin is connected to the output
of the internal serial shift registers. As previously stated,
the selection of which shift register to output is deter-
mined by the ISP state machine’s shift instruction. When
MODE is driven high, SDO connects directly to SDI,
bypassing the device’s shift registers.

The ispEN pin, only utilized on the ispLSI devices, deter-
mines which mode the device is in, namely ISP
programming mode or normal mode (normal device
operation mode). When ispEN is driven low on an LSC

ISP Architecture and Programming

3 1996 ISP Encyclopedia

Figure 3. LSC ISP Programming State Machine

machine needs only seven clocks to read out eight bits of
device ID. The default state for the control signals is
MODE high and SDI low. State transition to the Com-
mand Shift State occurs when both MODE and SDI are
high while the ISP state machine gets a clock transition.
As with most shift registers, the Least Significant Bit
(LSB) of the ID gets shifted out from SDO first.

Command Shift State

This state is strictly used for shifting instructions into the
state machine. The entire LSC ISP state machine in-
struction sets for the ispLSI, ispGDS, and ispGAL devices
are listed in the ISP Expert section. When MODE is low
and SDI is “don’t care” in the Command Shift State, SCLK
shifts the instruction into the state machine. Once the
instruction is shifted into the state machine, the state
machine must transition to the Execute State to perform
the instruction. Driving both MODE and SDI high and
applying the clock transfers the state machine from the
Command Shift State to the Execute State. If needed, the
state machine can move from the Command Shift State
to the Idle/ID State by driving MODE high and SDI low.

Execute State

In the Execute State, the state machine executes instruc-
tions that are loaded into the device in the Command Shift
State. For some instructions, the state machine requires
more than one clock to execute the command. An ex-
ample of this multiple clock requirement is the address or
data shift instruction. The number of clock pulses re-
quired for these instructions depends on the device shift
register sizes. When executing instructions such as Pro-
gram, Verify, or Bulk Erase, the necessary timing
requirements must be followed to make sure that the
commands are executed properly. For specific timing
information refer to the appropriate data sheets.

ISP state machine-programmable device, the device I/O
pins are put into a high impedance state (by internal
active pull-up resistors equivalent to 100KΩ) and the
device enters the programming mode.

LSC ISP State Machine Operation

The programming state machine controls which mode
the device is in, and provides the means to read and write
data to the device (Figure 3). The three states defined in
the LSC ISP state machine diagram are the IDLE State,
SHIFT State, and EXECUTE State. Instruction codes,
which are shifted into the device in the SHIFT state,
control which instruction is to be executed in the EX-
ECUTE state. In the SHIFT and EXECUTE states, all the
I/O pins are 3-stated. To transition between states, MODE
is held high, SDI is set to the appropriate level, and SCLK
is clocked. The ispGAL22V10B/C and ispGDS devices,
unlike ispLSI devices which employ an ispEN input pin,
rely on the state machine to put the device I/O pins in a
high impedance state. The IDLE state puts the ispGAL
and ispGDS devices into normal mode, and the remain-
ing two states put the devices into ISP programming
mode, which places the device I/O pins in the high
impedance state.

Idle/ID State

The Idle/ID state is the first state activated when the
device is powered-up or the ispEN pin is driven low. The
state machine is in the Idle/ID state when the user needs
to read the device identification (each ISP device type is
assigned a unique identification code—see the ISP Ex-
pert section). The eight-bit device identification is loaded
into the shift register by driving MODE high, SDI low, and
clocking the ISP state machine with SCLK. Once the ID
is loaded, it is read out serially by driving MODE low.
Notice that when the device ID is read serially, SDI can
either be high or low (a logical “don’t care”) and the state

Shift State

(Load

Commands)

Execute State

(Execute

 Command)

Idle State

(Normal

Operation)

Load

ID

HL

HH HH

Shift

ID

LX

Load

Command

LX

Execute

Command

LX

HH

HL

HL

Note:

Control signals: MODE, SDI

4 1996 ISP Encyclopedia

ISP Architecture and Programming

To execute a command, MODE is driven low and SDI is
“don’t care.” For multiple clock instructions, the control
signals must remain in the same state throughout the
duration of the execution. MODE high and SDI high will
take the state machine back to the Command Shift State
and MODE high and SDI low will take the state machine
to the Idle/ID State.

TAP Controller State Machine

TAP Controller State Machine Programming
Pins

The programming pins used to interface to the TAP
controller are described in detail in this section. Figure 4
shows the ispLSI 2032LV device pinout.

The TDI pin is the input pin to load instructions and data
into the device. Internally, the TDI pin is multiplexed to
different shift registers in the device. The instructions
loaded determine which internal shift register will receive
input from the TDI pin.

The TMS pin is used to control the state of the TAP
controller. The signal present on TMS is sampled on the
rising edge of TCK.

The TDO pin is the output of the serial shift register. Data
from internal registers will be available at TDO on the
falling edge of TCK. The instruction loaded into the TAP
controller selects which shift register will be active.

The TCK pin is used to clock the internal serial shift
registers and the TAP controller state machine. State

changes and shifting data in are performed on the rising
edge of TCK, while data is clocked out on the falling edge
of TCK.

The ispEN pin multiplexes functionality of programming
pins for ispLSI devices. For the ispLSI 2000LV family,
when ispEN is driven low, the TAP controller pins are
enabled and the TAP controller may be accessed. For
the ispLSI 3000 and ispLSI 6000 families, when the
ispEN pin is low, the LSC ISP state machine is active.
While the ispEN pin is high, the TAP controller is active.
With the exception of the ispLSI 3256, all of the ispLSI
3000 and ispLSI 6000 families of devices have the ability
to be programmed through either the LSC ISP state
machine or the TAP controller state machine. The ispLSI
3256 is programmed through the LSC ISP state machine
only.

TAP Controller State Machine Operation

The boundary scan TAP controller is the IEEE 1149.1
specified state machine. Four control pins are used to
load and unload data, TMS, TDI, TDO, and TCK. For a
detailed description and specifications for each state
consult the IEEE Standard Test Access Port and Bound-
ary-Scan Architecture document. A diagram of the Tap
Controller is shown in Figure 5.

While the test access port and boundary-scan architec-
ture was developed to standardize system testing, the
TAP controller can be used for in-system programming.
The TAP controller is used for programming by loading
instructions in the Shift-IR state, loading address infor-
mation and programming data in the Shift-DR state, and

I/O 18

I/O 17

I/O 16

TMS*/NC

RESET/Y1

VCC

TCK*/Y2

I/O 15

I/O 14

I/O 13

I/O 12

I/O 28

I/O 29

I/O 30

I/O 31

Y0

VCC

*ispEN/NC

*TDI/IN 0

I/O 0

I/O 1

I/O 2

I/O
 2

7

I/O
 2

6

I/O
 2

5

I/O
 2

4

G
O

E
 0

G
N

D

I/O
 2

3

I/O
 2

2

I/O
 2

1

I/O
 2

0

I/O
 1

9

I/O
 3

I/O
 4

I/O
 5

I/O
 6

I/O
 7

G
N

D

*T
D

O
/IN

 1

I/O
 8

I/O
 9

I/O
 1

0

I/O
 1

1

7

8

9

10

12

11

13

14

15

16

17

39

38

37

36

35

34

33

32

31

30

29

6

18

5

19

4

20

3

21

2

22

1

23

44

24

43

25

42

26

41

27

40

28

* Pins have dual function capability for ispLSI 2032LV only (except pin 13,

 which is ispEN only).

ispLSI 2032LV

pLSI 2032LV

Top View

0123B3/2000

I/O 18

I/O 17

I/O 16

TMS

RESET*/Y1

VCC

TCK*/Y2

I/O 15

I/O 14

I/O 13

I/O 12

I/O 28

I/O 29

I/O 30

I/O 31

Y0

VCC

ispEN

*TDI/IN 0

I/O 0

I/O 1

I/O 2

I/O
 2

7

I/O
 2

6

I/O
 2

5

I/O
 2

4

G
O

E
 0

G
N

D

I/O
 2

3

I/O
 2

2

I/O
 2

1

I/O
 2

0

I/O
 1

9

I/O
 3

I/O
 4

I/O
 5

I/O
 6

I/O
 7

G
N

D

*T
D

O
/IN

 1

I/O
 8

I/O
 9

I/O
 1

0

I/O
 1

1

ispLSI 2032LV

Top View

1

2

3

4

6

5

7

8

9

10

11

33

32

31

30

29

28

27

26

25

24

23

44

12

43

13

42

14

41

15

40

16

39

17

38

18

37

19

36

20

35

21

34

22

0851-2032

* Pins have dual function capability.

Figure 4. ispLSI 2032LV 44-Pin PLCC and TQFP Pinout Diagrams

ISP Architecture and Programming

5 1996 ISP Encyclopedia

Figure 5. The TAP Controller

carrying out programming instructions in the Run-Test/
Idle state. To enter the programming mode in ispLSI
boundary-scan TAP ISP devices, the Program Enable
(ProgEN) instruction is loaded three times in succession.
After the first time it is loaded, the functional I/Os enter the
high-impedance state. After the third time it is loaded, the
part enters the programming mode. Once in the pro-
gramming mode, the part is ready for programming
instructions. After loading an instruction and associated
data, the programming pulse is applied. The TAP con-
troller is clocked to the Run-Test/Idle state and the
programming pulse starts on the first rising edge of the
clock with TMS low. The programming pulse is termi-
nated by exiting the Run-Test/Idle state.

ISP Device Programming Configurations

Serial Daisy Chain

Advantages
One of the main advantages of daisy-chained ISP pro-
gramming is the simplified hardware interface. The number
of ISP devices that can be connected to the same serial
interface is limited only by the signal drive capability of the
ISP programming control logic. One serial daisy chain is
capable of providing the necessary programming inter-
face, minimizing the hardware overhead for in-system

programming. Software controls generated from PCs,
microcontrollers, and test equipment can program and
reconfigure ISP devices during various board-level de-
sign, test, and manufacturing stages.

Programming Configuration
As shown previously in Figure 1, all the MODE, SCLK,
and ispEN (if using ispLSI devices) pins of the LSC ISP
devices are connected to the ISP interface, and the first
device’s SDO is connected to the second device’s SDI
and each following SDO to the SDI of the next ISP device.
For boundary-scan TAP ISP programmable devices the
TMS, TCK and ispEN pins are shared and TDO is
connected to TDI of the next device. Figure 6 shows the
serial boundary-scan test access port programming in-
terface. This configuration allows a large string of ISP
devices to be programmed in-system, in a serial daisy
chain.

Parallel

For low-density ISP devices daisy chain programming is
the most common configuration, but for high-density
devices, with multiplexed programming and logic pins
controlled by ispEN, other programming configurations
are also common. ISP devices can be programmed in
one of two parallel configurations. The first parallel con-

1

00

1

1

0

0

1

0

0

0

0

1

0

1

1

0101

1

1

0

1

0

0

111
0

0

1

Update-IR

Exit2-IR

Pause-IR

Exit1-IR

Shift-IR

Capture-IR

Select-IR-Scan

Update-DR

Exit2-DR

Pause-DR

Exit1-DR

Shift-DR

Capture-DR

Select-DR-ScanRun-Test/Idle

Test-Logic-Reset

6 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 6. Serial Boundary-Scan TAP Programming Interface

ispLSI

2032LV

TDO
TDI

TMS
TCK

ispEN

5-wire ISP

Boundary Scan TAP

Programming

Interface

0294B

ispEN

TCK

TMS

TDI TDO

ispEN

TCK

TMS

TDI TDO

ispEN

TCK

TMS

TDI TDO TDI TDO

ispEN

TCK

TMS

ispLSI

2032LV

ispLSI

2032LV

ispLSI

2032LV

figuration, called Dedicated ISP Pins, dedicates all ISP
programming pins to programming. The second parallel
configuration, called Parallel Multiplex, allows the func-
tions of the ISP programming pins to be multiplexed
between acting as programming pins and acting as
inputs for normal logic functions. Both the dedicated ISP
pins and Parallel Multiplex configurations can be used
with parallel combinations of ispLSI 1000 family, ispLSI
2000 family, and ispLSI 2000LV family devices. The
ispLSI 3000 and ispLSI 6000 family devices use ISP pins
for both the LSC ISP state machine interface and the TAP
controller interface and therefore cannot be put in the
dedicated ISP pins or Parallel Multiplex configurations
due to interference with TAP controller operations.

Dedicated ISP Pins
Figure 7 illustrates one configuration for programming
multiple ISP devices, where the ISP programming pins
(MODE, SDI, SDO, and SCLK) are dedicated to pro-
gramming functions. For the boundary-scan TAP interface
the corresponding pins (TMS, TDI, TDO, and TCK) can
be connected in the same configuration. Although this
scheme precludes the use of the ISP programming
control signal pins as separate dedicated inputs for
system logic functions on ispLSI devices, it is the easiest
to implement. Each of the four programming control
signal pins in each ISP device is connected (i.e. SDI of
the ispLSI 1032 is connected to SDI of the ispLSI 1048
and SDI of the ispLSI 1016; MODE of the ispLSI 1032 is
connected to MODE of the ispLSI 1048 and MODE of the
ispLSI 1016; etc.). With this scheme, the ispEN signal for
each ispLSI device is enabled (ispEN low) indepen-

dently, and one device is placed in the programming
mode at a time. With one device in the programming
mode, the other devices will be in normal mode and can
continue to perform normal system logic functions.

Parallel Multiplex
Figure 8 illustrates a multiplexing scheme which allows
the user to control the ISP programming through multiple

Figure 7. Dedicated ISP Pins Configuration

ispLSI

1032

ispLSI

1048

ispLSI

1016

4

5-Pin ISP Interface

Serial Data In

Serial Data Out

ISP-Mode

ISP-Clock

MUX

ISP-Enable

ISP Architecture and Programming

7 1996 ISP Encyclopedia

Figure 8. Parallel Multiplex Configuration

SCLK

2:1

MUX

SDIMODESDO

ispLSI ispEN

System

Input

Signals

2:1

MUX

2:1

MUX

2:1

MUX

SDOMODE SDI SCLK

ispLSI ispEN

2:1

MUX

2:1

MUX

2:1

MUX

is
pE

N
0

is
pE

N
1

System

Input

Signals

M
O

D
E

S
D

I
S

C
LK

S
D

O
independent ispEN signals for the ispLSI devices. The
multiple ispEN signals not only control the ispEN inputs
of the ispLSI devices, but also act as the control signals
for multiplexing the functional and ISP programming
signals. This scheme differs from the previous one in that
the ISP programming signals are not dedicated to pro-
gramming. Instead, the ISP programming signals function
as ISP state machine inputs and outputs for program-
ming mode functions and dedicated inputs (if available)
for normal functional mode. Figure 8 also shows the
difference in controlling these different programming
signals. When multiplexing the programming interface
signals, the input driving the SDO/TDO pin must be put
into high-impedance state during programming to avoid
signal contention. As previously stated, the ISP pro-
gramming pins on the ispGAL and ispGDS devices are
dedicated to ISP programming, so this configuration is
not utilized often for the ispGAL and ispGDS devices. The
concept can be modified to multiplex the MODE pin
instead of the ispEN pin and becomes useful in some
ispGAL and ispGDS applications.

Hardware Considerations

Lattice Semiconductor’s ISP technology makes the use
of programmable logic incredibly simple. Using ISP,
multiple devices can be programmed using a single serial
daisy chain programming loop. However, as with any
high performance semiconductor component, systems
must be designed to insure good signal integrity without
signal conflicts between components. By doing so, reli-
able operation can be obtained over a wide range of

operating conditions. This section discusses some basic
programming hardware issues which should be consid-
ered when implementing a system using ISP.

All ISP programming specifications such as the program-
ming cycle and data retention are guaranteed when
programming ISP devices over the commercial tempera-
ture range (0 to 70° C). It is critical that the programming
and bulk erase pulse width specifications are met by the
programming platform to insure proper in-system pro-
gramming. LSC’s ISP Daisy Chain Download and
ispCODE™ software ensures that these specifications
are met when using a PC programming platform.

When using the ispDOWNLOAD™ cable in a daisy-
chained configuration, Lattice recommends using a
maximum of eight ISP devices in a single chain. This is
to ensure proper programming signal integrity (pulse
width, shape, etc.) at the ISP devices. The recommended
number of devices is based on a typical system board
environment with proper signal terminations and typical
trace lengths. The actual number of devices that can be
programmed in a serial chain may vary according to the
system board environment. When using more than eight
devices, additional buffering of the ISP programming
signals is recommended. Alternatively, multiple program-
ming loops can be employed which are electrically isolated
from one another.

I/O pins on ISP devices may be defined as inputs once
the devices are programmed. As a result, they typically
will be driven by the outputs of other components once

8 1996 ISP Encyclopedia

ISP Architecture and Programming

mounted on the board. Care must be taken to ensure that
I/O pins are not enabled prematurely during program-
ming. To do so when the device is partially programmed
can cause contention with other signal drivers since I/O
pins destined to be configured as inputs may not be 3-
stated yet. This conflict can cause improper device
programming and potential damage (Figure 9).

All ISP devices are shipped from Lattice Semiconductor
with a fuse pattern that will put all I/O pins in the high
impedance state prior to programming. For ispLSI 1000
family and ispLSI 2000 family devices the I/O pins are put
into the high-impedance state by asserting the ispEN pin
low. For the ispLSI 2000LV family of devices the ispEN
pin must be asserted low and one Program Enable
instruction executed to set the I/O pins into the high-
impedance state. To put the I/O pins in the high-impedance
state for the ispLSI 3000 and ispLSI 6000 family devices
either the ispEN pin can be asserted low or one Program
Enable instruction loaded in the TAP controller state
machine (the ProgEN instruction is not supported for the
ispLSI 3256). For the ispGAL and ispGDS devices, the
output 3-state is controlled by the programming state
machine (Shift and Execute states put I/O pins in the
high-impedance state). When implementing custom ISP
programming code, it is important for the ispGAL and
ispGDS that the ISP state machine be kept within the
Shift and Execute states until the completion of program-
ming. This procedure keeps the partially programmed

SDI

MODE

SCLK

SDI

MODE

SCLK

SDI

MODE

SCLK

SDI

MODE

SCLK

SDO SDO SDO

SDO

Signals from

Programming

Controller

(System Processor)

ispGAL

Device

ispGAL

Device

ispGAL

Device

Serial Data Path

Parallel Control Path

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

Input
Input

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

Input
Input

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

Input
Input

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

I/O Programmed

as an Input

Other

Component

(Memory,

MPU, etc.)

Output

Figure 9. ISP Serial Daisy Chain

device or devices from conflicting with other components
on the board.

ISP programming signal default states must be main-
tained during normal device operation. The ispEN pin on
the ispLSI devices has an internal pull-up to place the
devices in normal functional mode when the pin is not
driven externally. The ispGAL22V10B and ispGDS de-
vices’ MODE or SDI signals must be tied low through a
1.2KΩ pull-down resistor during normal functional mode.
It is not acceptable to let these pins float during normal
operation. However, the ispGAL22V10C devices pro-
vide an internal pull-down on SDI to maintain socket
compatibility with the standard 22V10 in the PLCC pack-
age. In addition, it is recommended that the
ispDOWNLOAD cable have its ispEN signal tied to a
decoupling capacitor (.01µF) to ground on the system
board.

Hardware Programming Tools

isp Engineering Kit

Lattice Semiconductor provides a PC-based (Model 100)
isp Engineering Kit. The isp Engineering Kit functions as
a stand-alone device programmer for prototyping.

isp Engineering Kit Model 100
The isp Engineering Kit Model 100 provides designers
with a quick and inexpensive means of evaluating and

ISP Architecture and Programming

9 1996 ISP Encyclopedia

Figure 10. ispEngineering Kit Model 100

prototyping new designs using LSC ispLSI devices. This
kit is designed for engineering purposes only and is not
intended for production use. The kit programs devices
from the parallel printer port of a host PC using the LSC
pDS® or pDS+™ PC-based designs tools. By connecting
a system cable (included) from the host PC to the isp
Engineering Kit, or connecting from the host PC to the
target device on the system board, a JEDEC file can be
easily downloaded into the ispLSI device(s) (Figure 10).

ispDOWNLOAD Cable

The ispDOWNLOAD cable is designed to facilitate in-
system programming of all LSC ISP devices on a printed
circuit board directly from the parallel port of a PC. After
completion of the logic design and creation of a JEDEC
file by a logic compiler such as the pDS, pDS+ Fitter or
ispGDS Compiler software, Lattice’s ISP Daisy Chain
Download software programs devices on the end-prod-
uct PC board by generating programming signals directly
from the parallel port of a PC which then pass through the
ispDOWNLOAD cable to the device. With this cable and

a connector on the PC board, no additional components
are required to program a device (Figure 11).

ISP Synario System

The ISP Synario System is designed to make Lattice’s
innovative in-system programmable device technology
available in a single, complete package. The ISP Synario
System contains all the software, hardware, device
samples and information required for ISP design.

The ISP Synario System is based on the popular Synario
Entry tool from Data I/O and a version of LSC’s pDS+
Synario Fitter supporting ispLSI and pLSI devices up to
1024/2096 device densities. Designs may be entered via
Synario Schematic Capture or using ABEL-HDL. Func-
tional Simulation, Project Navigator and the LSC Fitter
are included, along with the ispGDS Compiler, ispCODE,
ISP Daisy Chain Download software and ispDOWNLOAD
cables. Device samples include the ispLSI 2032,
ispGAL22V10B and an ispGDS 14 device. In addition,
the ISP Synario System includes GAL compiler support
for all LSC GAL devices.

RJ-45 connector

eight positions AMP connector .100" center-spacing,

eight positions

Front View

AMP Connector

pinout

Note: capacitor recommended

 on system board

Vcc

SDO/TDO

SDI/TDI

ispEN
plug

MODE/TMS

GND

SCLK/TCK

.01µf

capacitor

RJ-45 connector eight positions

Programming Module

Socket Adapter

(purchased seperately)

• Power Supply Converter (9VDC)

• 25-pin Parallel Port Adapter

• 6' Universal Programming Module Cable

• 6' System Download Cable with

 Modular AMP Connector

Place adapter

on parallel port

behind security

key

25
-p

in
 p

ar
al

le
l

po
rt

 a
da

pt
er

Power Supply Converter

110VAC/9VDC @200 mA

DC Power Plug

Universal Programming

Module

Base Unit

isp Engineering Kit

RJ-45 connector

eight positions

2.1 mm

5.5 mm
Positive or Negative +/-

• Sample Device

0813A

10 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 11. ispDOWNLOAD Cable

560pF

100 ohm
SCLK/TCK

74HC367
DB25 Parallel Port

Connector Pins

Pin 10 SDOUT/TDO

SDIN/TDI

isp Interface

ispEN

RESET

 Pin 2

 Pin 3

 Pin 4

 Pin 5

 Pin 6

 Pin 8

 Pin 12
Port Sense

 Pin 15 - Vcc Sense
 Pin 20 - GND

10K

10K

DI6

DO0

DO1

DO2

DO3

DO4

DO6

DI5

DI3
GND

560pF

100 ohm

Vcc

Vcc
MODE/TMS

560pF

100 ohm

560pF

100 ohm

560pF

100 ohm

8 – VCC

7 – SDO/TDO
6 – SDI/TDI

5 – ispEN
4 – NO CONNECT

3 – MODE/TMS
2 – GND

1 – SCLK/TCK

8 7 6 5 4 3 2 1

ISP Programming Software

Introduction

Once the JEDEC file has been generated for a given
design, the design information must be downloaded into
the proper device. The download method depends on the
hardware available and the design stage. For example,
you might program the system with ISP devices during
prototyping using a PC. Then, when the system goes to
full production, you can use ATE for programming. Fi-
nally, if field upgrades are necessary, you can use the
system’s embedded microprocessor to reprogram the
ISP devices. Table 1 summarizes the download methods
supported by Lattice.

ispCODE

ispCODE is C-source code that facilitates in-system
programming of LSC ISP devices on UNIX systems,
PCs, testers and embedded systems. The ispCODE
software supplies specific routines, with extensively com-
mented code, for incorporation into user application
programs. This software is available from Lattice Semi-
conductor. For a more thorough description of ispCODE,
refer to the ispCODE data sheet in the 1996 Lattice
Semiconductor Data Book.

ISP Daisy Chain Download

ISP Daisy Chain Download software supports program-
ming of all LSC ISP devices in a serial daisy chain
programming configuration in a PC environment. Two
varieties of this software exist: one for a Windows envi-
ronment, the other for a DOS environment. This software
is available from Lattice Semiconductor. For a more
thorough description of the ISP Daisy Chain Download
software, refer to the ISP Daisy Chain Download Soft-
ware data sheet in the 1996 Lattice Semiconductor Data
Book.

ispATE™

LSC’s ispATE is a test-vector creation utility that facili-
tates programming of LSC ISP devices on HP, Teradyne
and GenRad testers. ispATE converts a standard JEDEC
file into a programming vector template that can be easily
incorporated into a product’s printed circuit board func-
tional test program.

ISP Architecture and Programming

11 1996 ISP Encyclopedia

Table 1. ISP Programming Platform and Download Methods

To minimize the total programming time of a daisy chain
of ISP devices, a programming method called ispTURBO
Download can be used with Windows/DOS Daisy Chain
Download or ATE to program all the ISP devices in the
chain concurrently. ispTURBO Download allows pro-
gramming of any number of ISP devices in the time it
takes to program only the largest device. For example, a
chain of three devices with programming times of ten,
seven and seven seconds can be programmed with
ispTURBO Download in a total of ten seconds (the time
it takes to program the largest device). Serially, the
programming time would be 24 seconds for all three
devices. This valuable feature of Lattice’s proprietary
UltraMOS E2CMOS technology is not available with
many other ISP CPLD device technologies.

User-Programmable ID Registers

A user-programmable identification can ease problems
associated with document control and device traceabil-
ity. ISP devices that use the LSC ISP state machine for
programming contain a register called the User Elec-
tronic Signature (UES). Lattice ISP devices that program
exclusively through the boundary-scan TAP contain a
32-bit register accessible through the USERCODE in-
struction. The user-programmable ID register is basically
a user’s “notepad” provided in electrically erasable (E2)
cells on each device.

In the course of system development and production, the
proliferation of PLD architectures and patterns can be
significant. To further complicate the record-keeping
process, design changes often occur, especially in the
early stages of product development. The task of main-
taining which pattern goes into what device for which
socket becomes exceedingly difficult. Once a manufac-
turing flow has been set, it becomes important to “label”
each PLD with pertinent manufacturing information, which
is beneficial in the event of a customer problem or return.
A user-programmable ID register was incorporated into

ISP Daisy Chain Download

ispCODE C Source Routines

ispCODE C Source Routines

ispCODE Executed by Microprocessor

ispATE

Standard JEDEC File Download

Programming Platform Download Methods

PC

Workstation

Embedded Processor

ATE

Third-Party Programmer

ISP Programming Times

The ISP programming times can be approximated by the
number of rows that are required to program on a given
device and the programming pulse width. Assuming that
the overhead of shifting data and other miscellaneous
functions are an order of magnitude smaller in time
duration and therefore negligible, the total programming
time ranges can be calculated.

Calculating Programming Times

ISP programming times can be approximated by the
number of rows that are required to program on a given
device and the programming pulse width. Assuming that
the overhead of shifting data and other miscellaneous
functions are several orders of magnitude smaller in time
duration and therefore negligible, the total programming
time ranges can be calculated using this equation:

tpt = asrl * dr * tpwp (minimum)

where:

tpt: total programming time, ISP devices
asrl: address SR length from Table 10 or

ispGDS = 11
ispGAL22V10 = 44

dr: number of data registers,
ispGDS and ispGAL22V10 = 1
all other ISP devices = 2

tpwp: programming pulse width time,
see Tables 7, 9 or 15.

Example ispLSI 1016-90 total programming time:

tpt = 96 * 2 * 40 ms = 7.68 sec

12 1996 ISP Encyclopedia

ISP Architecture and Programming

modified on these two device types, the checksum will
also change. For ispLSI devices, the user-program-
mable ID will not affect the checksum.

User Electronic Signature

The UES is incorporated on all ISP devices that are
programmable through the LSC ISP state machine. The
UES is part of the JEDEC file for ispGAL and ispGDS
devices and is contained in the U-field for ispLSI devices.
Physically the UES is an extra row that is appended to the
programmable array. The size of the UES varies by
device type. Table 2 indicates the various sizes of the
UES.

The UES may be accessed (read or write) through one of
three methods. First, most third-party programmers sup-
port the UES option for the ispGAL and ispGDS devices
through the programmer’s user interface, so program-
ming or verifying the UES is as simple as programming or
verifying any other array. Second, the UES may be
embedded within the JEDEC file or the ISP Daisy Chain
Download software by selecting the UES menu option
from the software for the ispGAL, ispGDS and ispLSI
devices. And third, the UES can be written or read using
Lattice’s ispCODE software. Further information on us-
ing ispCODE software to program the UES can be found
in the ispCODE Software section of the 1996 Lattice
Semiconductor Data Book.

USERCODE

ISP devices programmable exclusively through the TAP
controller (2000V family) contain a 32-bit, boundary-
scan-compliant USERCODE. Loading of the USERCODE
instruction makes the USERCODE available to be shifted
out in the Shift-DR state of the TAP controller. The
USERCODE instruction can be used while the device is
in normal functional operation allowing the device to be
scanned while operating.

ispLSI Programming Details

The following sections describe the programmable state
machine instruction set, timing parameters, device lay-
out, and programming algorithms for ispLSI devices.
Programming steps and specifications for both the LSC
ISP state machine and programming through the bound-
ary-scan TAP controller will be given. The first step in
programming any ISP device is to determine the device
type to be programmed. The ispLSI 1000 family, ispLSI
2000 family, ispLSI 3000 family, and ispLSI 6000 family
devices have an eight-bit device ID read during the Idle/
ID State. The ispLSI 2000LV family devices have a 32-
bit device ID code which can read by clocking in the

Table 2. UES Sizes

ispGAL 22V10

ispGDS

ispLSI 1016/E

ispLSI 1024/E

ispLSI 1032/E

ispLSI 1048/C/E

ispLSI 2032

ispLSI 2064

ispLSI 2096

ispLSI 2128

ispLSI 3160

ispLSI 3192

ispLSI 3256/A/E

ispLSI 6192

UES Size (Bits)

64

32

80

120

160

240

40

80

120

160

160

240

160

160

Device

UES Number Table 2

ISP devices to store such design and manufacturing data
as the manufacturer’s ID, programming date, program-
mer make, pattern code, checksum, PCB location, revision
number, and/or product flow. This assists users with the
complex chore of record maintenance and product flow
control. In practice, the user-programmable ID register
can be used for any of a number of ID functions.

Within the various bits available for data storage, users
may find it helpful to define specific fields to make better
use of the available storage. A field may use only one bit
(or all bits), and can store a wide variety of information.
The possibilities for these fields are endless, and their
definition is completely up to the user.

Even with the device’s security feature enabled, the user-
programmable ID can still be read. With a pattern code
stored in the user-programmable identification register,
the user can always identify which pattern has been used
in a given device. As a second safety feature, when a
device is erased and re-patterned, the user-program-
mable identification is automatically erased. This prevents
any situation in which an old programmable ID might be
associated with a new pattern.

It is the user’s responsibility to update the user-program-
mable ID when reprogramming. It should be noted that
user-programmable identification information will be in-
cluded in the checksum reading for ispGAL and ispGDS
devices. Therefore, when the user-programmable ID is

ISP Architecture and Programming

13 1996 ISP Encyclopedia

Table 3a. ispLSI Device ID Codes (8-Bit) The LSC ISP state machine instruction set is listed in
Table 4. Instructions are loaded in the LSC ISP state
machine Command Shift State and then executed in the
Execute State. Notice that the device identification is
read during the Idle/ID State, and this operation does not
require an instruction.

The TAP controller programming instructions for Lattice’s
boundary-scan devices are listed in Table 5. Instructions
are loaded in the Shift-IR state and executed in the Run-
Test/Idle state by setting TMS low before a low-to-high
transition on TCK and waiting the associated pulse width
time before exiting the Run-Test/Idle state as shown in
Figures 15 and 16.

While it is possible to erase the individual arrays of the
device, it is recommended that the entire device be
erased (UBE) and programmed in one operation. This
Bulk Erase operation should precede every program-
ming cycle as an initialization.

When a device is secured by programming the security
cell (PRGMSC), the on-chip verify and load circuitry is
disabled. The device should be secured as the last
procedure, after all the device verifications have been
completed. The only way to erase the security cell is to
perform a bulk erase (UBE) on the device.

ispLSI 1016

ispLSI 1016E

ispLSI 1024

ispLSI 1024E

ispLSI 1032	

ispLSI 1032E

ispLSI 1048

ispLSI 1048C

ispLSI 1048E

ispLSI 2032

ispLSI 2064

ispLSI 2096

ispLSI 2128

ispLSI 3160

ispLSI 3192

ispLSI 3256/A

ispLSI 3256E

ispLSI 6192

Device MSB LSB

00000001

00001011

00000010

00001100

00000011

00001101

00000100

00000101

00001110

00010101

00010010

00010011

00010100

00100100

00100001

00100010

00100011

00110010
Device ID Codes Table

read-ID code instruction and clocking out the device ID
code through the TAP controller.

Tables 3a and 3b list the device IDs for the ispLSI
devices. The 32-bit device ID codes are read within the
boundary-scan TAP controller while the 8-bit device IDs
are read within the LSC ISP state machine. Notice that
the 3000 family (except the 3256) and 6192 family may
be programmed through either the LSC ISP state ma-
chine or the boundary-scan TAP controller but only
support the LSC ISP 8-bit device ID.

Table 3b. IEEE 1149.1 (JTAG) Device IDCODE (32-Bit)

ispLSI 2032V

ispLSI 2064V

ispLSI 2096V

ispLSI 2128V

Device MSB LSB

00301043 (hex)

00306043 (hex)

00303043 (hex)

00308043 (hex)
Device ID Codes Table 2

14 1996 ISP Encyclopedia

ISP Architecture and Programming

Table 4. LSC ISP Programming State Machine Instruction Set

noitcurtsnI noitarepO noitpircseD

00000 PON .demrofrepnoitarepooN

10000 TFHSDDA .NIDSmorfretsigeRtfihSsserddAehtotnisserddastfihS:tfihSretsigeRsserddA

01000 TFHSATAD .retsigeRtfihSlaireSataDehtfotuorootniatadstfihS:tfihSretsigeRataD

11000 EBU .ecivederitneehtesarE:esarEkluBresU

00001 LLARE .)erutangiScinortcelEresU(SEUehtgnidulcni,ecivederitneehtesarE

00100 EBPRG .ylnoyarraPRGehtsesarekluB:esarEkluBlooPgnituoRlabolG

10100 EBBLG .ylnoyarraBLGehtsesarekluB:esarEkluBkcolBcigoLcireneG

01100 EBHCRA .noitarugifnocO/IdnayarraerutcetihcraehtsesarekluB:esarEkluBerutcetihcrA

11100 HMGRP ehtotnidemmargorpsiretsigeRtfihSataDehtniatadehT:stiBredrOhgiHmargorP
.stibredrohgihs'wordesserdda

00010 LMGRP ehtotnidemmargorpsiretsigeRtfihSataDehtniatadehT:stiBredrOwoLmargorP
.stibredrowols"wordesserdda

10010 CSMGRP .ecivedehtfollecytirucesehtsmargorP:lleCytiruceSmargorP

01010 HDL/REV stibredrohgihs'wordetcelesehtmorfatadehtdaoL:stiBredrOhgiHdaoL/yfireV
.noitacifirevrofretsigeRtfihSataDehtotni

11010 LDL/REV otnistibredrowols'wordetcelesehtmorfatadehtdaoL:stiBredrOwoLdaoL/yfireV
.noitacifirevrofretsigeRtfihSataDeht

01110 URHTWOLF ehtsemocebTUODSdnasretsigertfihslanretniehtllasessapyB:hguorhTwolF
.NIDSsaemas

01001 HDL/EV redrohgihs'wordetcelesehtmorfatadehtdaoL:stiBredrOhgiHdaoL/esarEyfireV
.noitacifirevdesarerofretsigeRtfihSataDehtotnistib

11001 LDL/EV redrowols'wordetcelesehtmorfatadehtdaoL:stiBredrOwoLdaoL/esarEyfireV
.noitacifirevdesarerofretsigeRtfihSataDehtotnistib

11110 SEUGORP .SEUmargorP

10001 SEUREV .SEUyfireV

ISP Architecture and Programming

15 1996 ISP Encyclopedia

.tsnI noitarepO noitpircseD

10000 TFIHSDDA :tfihSretsigeRsserddA .ecivedehtforetsigeRtfihSsserddAehtotniataDtfihS

01000 TFIHSATAD :tfihSretsigeRataD .retsigeRtfihSataDehtfotuorootniatadskcolC

11000 EBU :esarEkluBresU .EDOCRESUehtgnidulcxe,ecivederitneehtsesarE

11100 HGIHMGRP :ataDredrOhgiHmargorP redrohgih,wordesserddaehtotnidemmargorpsiretsigeRtfihSehtniataD
.ylnoatad

00010 WOLGRP :ataDredrOwoLmargorP redrowol,wordesserddaehtotnidemmargorpsiretsigeRtfihSehtniataD
.ylnoatad

10010 CSMGRP :lleCytiruceSmargorP .ecivedehtfolleCytiruceSehtsmargorP

01010 PHGIHDL/REV :ataDredrOhgiHdaoL/yfireV laireSehtotni)ylnoatadredrohgih(wordetcelesehtehtmorfataddaoL
.mhtirogladaoLehtrofdesuoslA.noitacifirevlleCdemmargorProfretsigeRtfihS

11010 PWOLDL/REV :ataDredrOwoLdaoL/yfireV tfihSlaireSehtotni)ylnoatadredrowol(wordetcelesehtmorfataddaoL
.noitacifirevlleCdemmargorProfretsigeR

00001 LLARE :llAesarE .EDOCRESUgnidulcni,ecivederitneehtesarE

01001 EHGIHDL/REV :ataDredrOhgiHdaoL/yfireV tfihSlaireSehtotni)ylnoatadredrohgih(wordetcelesehtmorfataddaoL
.noitacifirevlleCdesarErofretsigeR

11001 EWOLDL/REV :ataDredrOwoLdaoL/yfireV tfihSlaireSehtotni)ylnoatadredrowol(wordetcelesehtmorfataddaoL
.noitacifirevlleCdesarErofretsigeR

10101
NEmgrP

&
SIDmgrP

:elbasiDmargorPdnaelbanEmargorP desuerasnoitcurtsnielbasiDmargorPdnaelbanEmargorPehT
NEmgrPevitucesnoceerht,edomgnimmargorpehtretneoT.edomgnimmargorpehttixednaretneot
ybdewollof,noitcurtsniSIDmgrPehtdaol,edomgnimmargorpehttixeoT.dedaolebtsumsnoitcurtsni

.edommargorpehttixelliwecivedehtdnanoitcurtsni)10011(SSAPYBehtgnidaol

01101 EDOCDI

:edoCDIdaeR tib-23eritneehT.retsigeRtfihSataDtib-23ehtotniEDOCDIehtsdaolnoitcurtsnisihT
dedaolsiEDOCDIehT.dedaolrodeifirev,demmargorpsiecivedehterofebdeifirevebdluohsEDOCDI

noitcurtsnIehtnisinoitcurtsniEDOCDIehtfietatsRD-erutpaCehtgnirudretsigeRtfihSataDehtotni
ehtottisivaropu-rewopgniwolloftceffeniyllacitamotuasinoitcurtsniEDOCDIeht,noitiddanI.retsigeR

.deretnesietatsRI-erutpaCehtlitnutceffenisyatstI.etatsteseR-cigoL-tseT

11101 EDOCRESU

:EDOCRESUyfireVroEDOCRESUdaeR sihcihwEDOCRESUtib-23ehtsesseccanoitcurtsnisihT
atadfostib23sedivorpEDOCRESUehT.ecivedehtezingocerotdesuEDOCDItib-23ehtmorftnereffid

tib-23eht,edomlamronehtnI.snoisrevISLpdnaISLpsihtobnielbaliavasidnaresuehtrofegarots
saetatsRI-etadpUehtniKCTfoegdegnisirehtnoretsigeRtfihStib-23ehtotnidedaolsiEDOCRESU

sihtgnisudeifirevsiEDOCRESUeht,edomgnimmargorpehtnI.noitacificeps1.9411EEEIehtnideriuqer
siEDOCRESUtib-23eht,etatseldI/tseT-nuRehtniRIehtotnidedaolnoitcurtsniehthtiW.noitcurtsni

.noitacifirevllecrofretsigeRtfihStib-23ehtnidedaol

10011 SSAPYB

:)noitcurtsnitluafed(SSAPYBretsigeR detcennocsiIDTerehw,edomssapybotnidecalpsiecivedehT
sinoitcurtsnisiht,etatsteseR-cigoL-tseTehtottisivaropu-rewopgniwolloF.retsigerenohtiwODTot

noitcurtsninatahtseriuqer1.9411EEEI.etatsRI-erutpaCehtgnirudretsigeRnoitcurtsnIehtotnidedaol
noitcurtsnItcetedotredroniteseR-cigoL-tseTgniwollofretsigeRnoitcurtsnIehtniebotsah10nignidne

.htgnelretsigeR

01011
mgrP

EDOCRESU
:EDOCRESUmargorP .EDOCRESUtib-23resuehtmargorpotdesU

11111 SSAPYB :SSAPYBretsigeR enohtiwODTotdetcennocsiIDTerehwedomssapybotnidecalpsiecivedehT
.retsiger

Table 5. TAP Controller Instruction Set

16 1996 ISP Encyclopedia

ISP Architecture and Programming

Table 6. Timing Parameters for Programming Through the LSC ISP State Machine

retemaraPgnimiT noitpircseD

t ,NEpsi t SIDpsi
retfaedomPSIehtotnitegotsekattiemitehtseificepS NEpsi otsekattiemiteht,rO.detavitcasi

retfaedomPSIehtmorftuoemoc NEpsi .evitcasemoceb

t us
rehtotsniagaslangistupnifoemitputeseht,rO.KLCSerofebslangislortnocehtfoemitpu-teS

.)elbacilppafi(slangislortnoc

th
pu-tesehtmorfslangistupniemasehtotseilppaoslatI.KLCSretfalangislortnocehtfoemitdloH

.emit

t lklc .wol,htdiweslupkcolcmuminiM

t hklc .hgih,htdiweslupkcolcmuminiM

t vwp
afoegdekcolcgnisirehtmorftnemeriuqeremitmuminimehT.htdiweslupdaerroyfireV

.)31erugiF(egdekcolcgnisirtxenehtotnoitucexenoitcurtsnidaol/yfirev

t pwp
afoegdekcolcgnisirehtmorftnemeriuqeremitmuminimehT.htdiweslupgnimmargorP

.)31erugiF(egdekcolcgnisirtxenehtotnoitucexenoitcurtsnignimmargorp

t web
esareklubafoegdekcolcgnisirehtmorftnemeruqeremitmuminimehT.htdiweslupesarekluB

.)31erugiF(egdekcolcgnisirtxenehtotnoitucexenoitcurtsni

t tsr
erasnoitarepoynaerofebdnapu-rewopretfaespaletsumtsrt.tnemeriuqergnimittesernorewoP

.ecivedehtnodemrofrep

Programming Voltage/Timing Specifications
and Waveforms for the LSC ISP State Machine

For programming through the LSC ISP state machine,
several timing specifications must be met. Table 6 de-
scribes a few of the critical timing parameters as they
apply to programming sequences. Table 7 and Figures

12 and 13 show the voltage/timing specifictions for these
parameters and others for the ispLSI 1000/E, 2000, 3000
and 6000 families of Lattice ISP devices.

ISP Architecture and Programming

17 1996 ISP Encyclopedia

Table 7. ISP Programming Voltage/Timing Specifications (ispLSI 1000/E, 2000, 3000 and 6000 Families)

VCCP

SYMBOL

VT Specs/Table 2

ICCP

VILP

VIHP

IIP

PARAMETER

VOHP

VOLP

Programming Voltage

Programming Supply Current

Input Voltage Low

Input Voltage High

Input Current

Output Voltage High

Output Voltage Low

ispEN = Low

I = -3.2 mAOH

CONDITION MIN. TYP. MAX. UNITS

4.75

–

0.0

2.0

–

2.4

0.0

5.0

50

–

–

100

–

–

5.25

100

0.8

V

200

V

0.5

V

mA

V

V

µA

V

CCP

CCP

I = 5 mAOL V

tr, tf Input Rise and Fall – – 0.1 µs

tispen ispEN to Output 3-State Enabled – – 10 µs

tispdis ispEN to Output 3-State Disabled – – 10 µs

tsu1 Setup Time, isp State Machine 0.1 – – µs

tsu2 Setup Time, Program and Erase Cycle* 200 – – µs

tco Clock to Output – – 0.1 µs

th Hold Time 0.1 – – µs

tclkh, tclkl Clock Pulse Width, High and Low 0.5 – – µs

tpwv Verify Pulse Width 20 – – µs

tpwp Programming Pulse Width 40

80

–

–

100

160

ms

ms

tbew

trst

Bulk Erase Pulse Width

Reset Time from Valid VCCP

200

45

–

–

–

–

ms

µs

Rise Time < 50 µs

1000/E, 2000

3000, 6000 100 – – µs

1000

others

HI - Z

tsu1

tispdis
th

tclkh

trst

tispen

th

th

tsu1 tispen

Valid
VIH

VIL

tco

0181B

tsu1

Don't Care

Undefined State

VOH

VOL

Valid

I/Os used

as Inputs

I/Os used

as Outputs

SCLK

SDO

MODE

SDI

ispEN

VCC

Figure 12. Timing Waveforms for In-System Programming (ispLSI 1000/E, 2000, 3000 and 6000 Families)

18 1996 ISP Encyclopedia

ISP Architecture and Programming

Table 8. Timing Parameters for Programming Through the Boundary-Scan TAP Controller

Programming Voltage/Timing Specifications
and Waveforms for the Boundary Scan TAP
Controller

A few of the critical timing parameters for programming
through the boundary-scan TAP controller are described
in Table 8 and the voltage/timing specifications for these

parameters as well as others are shown in Table 9.
Figures 14 and 17 show the timing waveforms for enter-
ing and exiting the programming mode in the TAP
controller. Figures 15 and 16 show the timing waveforms
for applying the programming pulse.

Figure 13. Program, Verify and Bulk Erase Waveforms (ispLSI 1000/E, 2000, 3000 and 6000 Families)

Execute State (Program, Verify or Bulk Erase Instruction)

tclkh
tsu1

th
tsu1

tpwp, tbew, or tpwv

tclkl 0184

MODE

SDI

SCLK

tsu2

retemaraPgnimiT noitpircseD

t ,Epsi t Dpsi
ehtretfaevitcaemocebotsnipgnimmargorprofsekattiemitehtseificepS NEpsi .detressasinip

retfaetavitcaedotsnipgnimmargorprofsekattiemiteht,rO NEpsi .evitcanisemoceb

t ,NEpsi t SIDpsi
NEgorPehtretfaetatsecnadepmi-hgihehtotnitupebotsnipO/IehtrofsekattiemitehtseificepS

-hgihehtmorfnoitarepolamronotnruterotsnipO/Irofsekattiemiteht,rO.dedaolsinoitcurtsni
.edomgnimmargorpehtgnitixeretfaetatsecnadepmi

t us .KCTerofebslangislortnocehtfoemitpu-teS

th .KCTretfaslangislortnocfoemitdloH

t hklc .hgih,htdiweslupkcolcmuminiM

t lklc .wol,htdiweslupkcolcmuminiM

t vwp
-nuRehtniKCTfoegdegnisirehtmorftnemeriuqeremitmuminimehT.htdiweslupdaerroyfireV

.etatstxenehtotgnikcolcotnoitcurtsnidaerroyfirevagnitucexeelihw,etatseldI/tseT

t tsr
erasnoitarepoynaerofebdnapu-rewopretfaespaletsumtsrt.tnemeriuqergnimittesernorewoP

.ecivedehtnodemrofrep

t pwp
-nuRehtniKCTfoegdegnisirehtmorftnemeriuqeremitmuminimehT.htdiweslupgnimmargorP

.etatstxenehtotgnikcolcotnoitcurtsnignimmargorpagnitucexeelihw,etatseldI/tseT

t web
-nuRehtniKCTfoegdegnisirehtmorftnemeriuqeremitmuminimehT.htdiweslupesarekluB

.etatstxenehtotgnikcolcotnoitcurtsniesareklubagnitucexeelihw,etatseldI/tseT

ISP Architecture and Programming

19 1996 ISP Encyclopedia

Table 9. ISP Programming Voltage/Timing Specifications (ispLSI 2032LV)

VCCP

SYMBOL

ICCP

VILP

VIHP

IIP

PARAMETER

VOHP

VOLP

Programming Voltage

Programming Supply Current

Input Voltage Low

Input Voltage High

Input Current

Output Voltage High

Output Voltage Low

ispEN = Low

I = -3.2 mAOH

CONDITION MIN. TYP. MAX. UNITS

3.0

–

0.0

2.0

–

2.4

0.0

3.3

50

–

–

100

–

–

3.6

100

0.8

V

200

V

0.5

V

mA

V

V

µA

V

CCP

CCP

I = 5 mAOL V

tr, tf Input Rise and Fall – – 0.1 µs

tispE ispEN to Programming Pins Enabled – – 1.0 µs

tispD ispEN to Programming Pins Disabled – – 1.0 µs

tco Clock to Output – – 80 ns

th Hold Time 10 – – ns

tclkh, tclkl Clock Pulse Width, High and Low 100 – – ns

tpwv Verify Pulse Width 30 – – µs

tpwp Programming Pulse Width 80 – – ms

tbew Bulk Erase Pulse Width 200 – – ms

trst Reset Time from Valid V 1 – – µs

CCP

tispEN Program Enable Command to I/O 3-State Enabled – – 10 µs

tispDIS Program Enable Command to I/O 3-State Disabled – – 10 µs

tsu Clock Setup Time 100 – – ns

tsu Program Setup Time 200 – – µs

1

2

tdft TDI to TDO Delay with Flowthru Command – – 100 ns

Table 2 - 0029isp-2032

20 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 14. Timing Waveforms for Entering the Programming Mode (2000V Family)

TDI

VIH

VIL

TCK

VIH

VIL

TDO

VIH

VIL

VCC

VCC

0V

TMS

VIH

VIL

I/O Pins

VIH

VIL

ispEN

VIH

VIL

t rst

tsu1 th

tclkh tclkl

tco

t ispE

isp Programming

pins are enabled

VOH

VOL

Input:

Don't Care

Output:

Defined State

t ispEN

C
lo

ck
 to

 th
e

S
hi

ft_
IR

 s
ta

te
, c

lo
ck

 in
 th

e
in

st
ru

ct
io

n
P

rg
m

E
N

 (
10

10
1)

tw

o
m

or
e

tim
es

.
T

he
 D

ia
gr

am
 s

ta
rt

s
ag

ai
n

in
 th

e
U

pd
at

e-
IR

 s
ta

te
.

State

I/O pins

Tristate

Programming

Mode Entered

Exit1-IR Update-IRExit1-IR Select-DR-Scan Update-IRShift-IR Exit1-IR

C
lo

ck
 to

 th
e

S
hi

ft_
IR

 s
ta

te
, c

lo
ck

 in
 th

e
in

st
ru

ct
io

n
P

rg
m

E
N

 (
10

10
1)

T

he
 d

ia
gr

am
 s

ta
rt

s
ag

ai
n

in
 th

e
S

hi
ft_

IR
 s

ta
te

.

ENT_TIM.AI

Figure 15. Program and Bulk Erase Waveform (2000V Family)

VIH

VIL

TCK
VIH

VIL

TMS

Select-DR-ScanRun-Test/Idle (Execute a program, verify or bulk erase instruction)Update-IRState

tsu1

VIH

VIL
TDI

th t su1 th

t clkh t clkht clkl

t su1 t ht su2
t pwp, t bew, t pwv

ISP Architecture and Programming

21 1996 ISP Encyclopedia

Figure 16. Verify Waveform (2000V Family)

TMS

TCK

State

VIH

VIL

VIH

VIL

t su1 t h

t clkh t clkht clkl

t su1 t h

Update-IR Run-Test/Idle (Execute Verify Instruction)

t pwv t clkh

t su1 t h

Select-DR Scan

Figure 17. Timing Waveforms for Exiting the Programming Mode (2000V Family)

TDI

VIH

VIL

TCK

VIH

VIL

TDO

VIH

VIL

VCC

VCC

0V

TMS

VIH

VIL

I/O Pins

VIH

VIL

ispEN

VIH

VIL

The programming

pins are disabledInput:

Don't Care
Output:

Defined State

S
ta

rt
in

g
in

 th
e

S
el

ec
t-

IR
-S

ca
n

st
at

e
in

 th
e

is
p

pr
og

ra
m

m
in

g
m

od
e.

In
 th

e
S

hi
ft_

IR
 s

ta
te

, c
lo

ck
 in

 th
e

in
st

ru
ct

io
n

P
rg

m
D

IS
 (

10
10

1)
.

t co
VOH

VOL

VOH

VOL

t co t hvdis

t ispD

State

Enable the

I/O pins.

Select-IR

Scan

Capture-IR Shift-IR Shift-IR Exit1-IR Update-IRShift-IR Run-Test/Idle Select-DR-

Scan

Select-IR-

Scan

Test-Logic-Reset

t ispdis

22 1996 ISP Encyclopedia

ISP Architecture and Programming

Device Layout

To translate the JEDEC format programming file into the
serial data stream format for programming ispLSI de-
vices, it is necessary to know the physical device layout
and programming architecture. Two main factors deter-
mine how the translation must be implemented: the
length of the address shift register and the length of the
data shift register. The length of the address shift register
indicates how many rows of data are to be programmed
into the device. The length of the data shift register
indicates how many bits are to be programmed in each
row. Both registers operate on a First In First Out (FIFO)
basis, where the Least Significant Bit (LSB) of the data or
address is shifted in first and the Most Significant Bit
(MSB) of the data or address is shifted in last. For the
data shift register, the low order bits and the high order
bits are separately shifted in.

Each ispLSI device has a predefined number of address
rows and data bits needed to access its E2CMOS cells
during programming. The data bits span the columns of
the E2 array. From this information, the number of pro-
gramming cells (or fuses) are determined. Table 10
highlights the address and data shift register (SR) sizes
for currently available ispLSI devices. The JEDEC file for
these ispLSI devices will reflect the number of cells
(fuses) seen in Table 10. The total number of cells
becomes critical if the programming patterns are to be
stored in an on-board memory storage of limited capacity
such as EPROM or PROM.

The L-fields in the JEDEC programming file indicate the
link or fuse numbers of the device. The first cell of the
device is indicated by cell number L00000. L-fields of
subsequent lines are optional. From this reference cell
location, all other cell locations are determined by rela-
tive position. A zero (0) in the cell location indicates that
the E2 cell in that particular location is programmed (or
has a logic connection intact). A one (1) in the cell
location indicates that the cell is erased (equivalent to an
open connection). The logic compiler software automati-
cally generates this JEDEC standard programming file
after the design has been fit into the device.

Timing

When programming ispLSI devices, there are several
critical timing parameters that must be met to ensure
proper programming. The two most critical parameters
are the programming pulse width (tpwp) and the bulk
erase pulse width (tbew). These pulse widths determine
the programming and erasing times of the E2 cells. The
preceding section detailed these critical program and
erase timing specifications.

Fuse Map to Device Conversion

While the ISP Daisy Chain Download or ispCODE soft-
ware takes care of this detail, it is important to understand
how the JEDEC fuse map is mapped onto the physical
ispLSI device during programming. The physical layout
of the fuse pattern begins with Address Row 0 and ends

ispLSI 1016/E

ispLSI 1024/E

ispLSI 1032/E

ispLSI 1048/C/E

ispLSI 2032/V

ispLSI 2064/V (84/100-Pin)

ispLSI 2064V (44-Pin)

ispLSI 2096/V

ispLSI 2128/V (160/176-Pin)

ispLSI 2128V (84/100-Pin)

ispLSI 3160

ispLSI 3192

ispLSI 3256/A

ispLSI 3256E

ispLSI 6192

Address SR Length

96/110

102/122

108/134

120/155/158

102

118

110

134

150

134

200

216

180

248

180

Data SR Length/Address

160/160

240/240

320/320

480/480/480

80

160

80

240

320

160

400

480

676

640

600

Total Number of Cells

15,360/17,600

24,480/29,280

34,560/42,880

57,600/74,400/75,840

8,160

18,880

17,600

32,160

48,000

42,880

80,000

103,680

121,680

158,720

108,000

Device

ispLSI Address Table

Table 10. ispLSI Address, Data Shift Register and Total Cell Summary

ISP Architecture and Programming

23 1996 ISP Encyclopedia

Table 11. Summary of ispLSI Data Shift Register Bits

ispLSI 1016/E

ispLSI 1024/E

ispLSI 1032/E

ispLSI 1048/C/E

ispLSI 2032/V

ispLSI 2064/V

ispLSI 2096/V

ispLSI 2128/V

ispLSI 3160

ispLSI 3192

ispLSI 3256/A

ispLSI 3256E

ispLSI 6192

High Order Data

SR LSB

0

0

0

0

0

0

0

0

0

0

0

0

0

High Order Data

SR MSB

79

119

159

239

39

79

119

159

399

239

337

639

299

Low Order Data

SR LSB

80

120

160

240

40

80

120

160

–

240

338

–

300

Device

Low Order Data

SR MSB

159

239

319

479

79

159

239

319

–

479

675

–

599

Data SR Size

(Bits)

160

240

320

480

80

160

240

320

400

480

676

640

600
ispLSI DSR Bits Table

with the maximum Address Row N and is determined by
the length of the Address SR as described in Table 10.
Spanning the Address Rows are the outputs of the High-
Order Data SR and Low-Order Data SR, as described in
Table 11. Programming fuses on a given row are
enabled by a “1” within the Address Shift Register for the
appropriate row and the use of state machine instructions
that selectively operate on the High-Order Data SR or the
Low-Order Data SR. For example, the PRGMH instruc-
tion in the LSC ISP state machine instruction set programs
the High-Order data bits within the device for the selected
Address Row and the PRGML instruction programs the
Low-Order data bits (Table 4 lists the LSC ISP state
machine instructions). The starting cell (L00000) of the
JEDEC fuse map shifts into the device at the physical
location corresponding to Address Row 0, High-Order
Data SR bit 0 (Figure 30). The “n” and “m” in the figure
refer to the Address SR length and the Data SR length
respectively, of the device. Table 10 lists the size of the
Address and Data shift registers for all ispLSI devices. A
series of sequential shifts eventually results in the last
cell location (Total # of Cells - 1) of the JEDEC fuse map
shifting into Address Row (n-1), Low-Order Data SR bit
(m-1) on the actual device.

The ispCODE Software routines make use of a bit packed
data format, called ispSTREAM™, to transfer data be-
tween the JEDEC fuse map and the physical device
locations. The binary ispSTREAM format uses one bit to
represent the state of each of the programmable cells,
instead of the byte value used in an ASCII JEDEC file.
Considering the additional characters present in a JE-
DEC file, this adds up to a space savings of more than a
factor of eight. In addition, the ispSTREAM does not

require any parsing; the bits are simply read from the file
and shifted into the device. As only 1922 bytes are
required to store the pattern for an ispLSI 1016 device,
multiple patterns can be stored in a small amount of
memory. The JEDEC fuse map can be translated into
ispSTREAM format using the dld2isp.exe program.

Algorithms

Command Stream
The first step in programming is to determine the device
type to be programmed. At this point it is important to be
aware of the hardware configuration that is being used.
Serial daisy chain and parallel programming configura-
tions are listed earlier in this section.

For simple serial daisy chains with all devices program-
mable with the LSC ISP state machine the device IDs can
be read once the ISP programming mode is enabled
(ispEN low) by keeping SDI to a known level (either high
or low), the ID shift can be terminated when a sequence
of eight ones or eight zeros is read. From the device IDs
received the serial bit stream for programming can be
arranged.

For software that must recognize both LSC ISP state
machine programmable and TAP controller program-
mable ispLSI devices, the algorithm must start by
determining which type of devices are present. After
enabling the programming mode (ispEN low) the soft-
ware checks for the presence of LSC ISP devices by
setting MODE/TMS and SDI/TDI low. If LSC ISP devices
are present the SDO/TDO signal will eventually show
eight 0’s in a row and the intervening bits are read as the

24 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 18. ispLSI Device to Fuse Map Translation

[(m/2)-1] ... High Order Shift Register ...0

(m-1) ... Low Order Shift Register ... (m/2)

DATA

SDI

(n-1)

.

.

.

Row Addr. In (SDI)

.

.

.

0

SDO

SDO

E CMOS Cell Array2

A
dd

re
ss

 S
hi

ft
R

eg
is

te
r

Fuse# 0Fuse# [(m/2)-1]Fuse# (m/2)Fuse# (m-1)

High-Order SRLow-Order SR

DATA

device IDs. To check for the presence of boundary-scan
TAP ISP devices the ispEN signal is driven high and the
devices are clocked to the Shift-IR state and the IDCODE
instruction loaded. After moving to the Shift-DR state
subsequent clocking will shift out the 32-bit device IDs for
the boundary-scan devices. Figure 19 shows the 32-bit
ID register present in all TAP controller programmable
ispLSI devices.

The devices present are identified by the device IDs read
by the programming software. The correct programming
sequence can then be followed for the device. Below are
typical sequences for programming LSC ISP state ma-
chine ispLSI devices and ispLSI devices programmable
through the TAP programming interface.

ISP Architecture and Programming

25 1996 ISP Encyclopedia

Typical LSC ISP Programming Sequence

1) Power up

2) Read ID code

3) ADDSHFT command shift

4) Execute ADDSHFT command

5) Shift address

6) DATASHFT command shift

7) Execute DATASHFT command

8) Shift high order data

9) PRGMH command shift

10) Execute PRGMH

11) DATASHFT command shift

12) Execute DATASHFT command

13) Shift low order data

14) PRGML command shift

15) Execute PRGML

Figure 19. BSCAN 32-Bit ID Registers and 32-Bit USERCODE

16) Repeat from 1) until all rows are programmed

17) Program UES

18) Optional: Program security bit

19) Power down

Typical TAP programming sequence

1) Power Up the device

2) Verify the 32 bit IDCODE: Clock-in the instruc-
tion Read IDCODE (10110), Clock-out and verify
the 32 bit IDCODE, then Clock back to the Shift-
IR state.

3) Enter the Programming Mode: Load and ex-
ecute the Program Enable (PrgmEN) (10101)
instruction three times. Upon loading the PrgmEN
instruction and clocking to the Update-IR state,
the third time the device enters the programming
mode. Then Clock to the Shift-IR state.

4) Initialize the Address (Load all Zeros): Clock-
in the instruction Address Reg. Shift (00001);
use the correct setup and hold times. Then Clock
back to the Shift-IR state.

5) Bulk Erase the device: Clock-in the Bulk Erase
All (10000) instruction. Execute the Erase
Command, using TBEW and TSU2. Then Clock
back to the Shift-IR state.

26 1996 ISP Encyclopedia

ISP Architecture and Programming

6) Initialize the Address (select the last row):
Clock-in the instruction Address Shift (00001)
and then Clock back to the Shift-IR state.

7) PROGRAM LOOP: Program High Order and
Low Order data, Increment Address and Check
Address.

8) VERIFY LOOP: Initialize the Address, Verify
High and Low Order data, using Lvt & Hvt instruc-
tions.

9) PROGRAM USERCODE data: Using instruc-
tion Program USERCODE (11010). If JEDEC
file contains USERCODE data (U-field binary
data only) clock-in USERCODE data. If there is
no U-Field data clock in all 0s.

10) Verify USERCODE data: Using the instruction
Verify USERCODE (10111).

11) OPTIONAL: Program the security cell: Using
the instruction PRGMSC (01001). Use TPWP,
and TSU2, then finish clocking back to the Shift-
IR state.

12) Power Down.

Note: The number of clock pulses required to read data
is one less than the length of the shift register. This is
because the first bit is always available on TDO. Correct
setup and hold times must be implemented.

Boundary Scan (ispLSI 3000 & 6000 Families)

The Lattice Semiconductor ispLSI 3000 and 6000 fami-
lies of devices support the IEEE 1149.1 boundary-scan
specifications. The following sections explain in detail
how to interface to the devices through the Test Access
Port (TAP), how the boundary scan registers are imple-
mented within the devices, and the boundary-scan
instructions that are supported by the ispLSI and pLSI
3000 and 6000 families.

Test Access Port (TAP)

The boundary-scan test access port is accessed through
six interface signals: TDI, TDO, TCK, BSCAN, TMS,
TRST. These interface signals have two functions in the
case of the ispLSI 3000 and 6000 families; they serve as
both the boundary-scan interface and in-system pro-
gramming interface signals. For the pLSI 3000 and 6000
families, the six interface signals are only used for the
boundary scan TAP interface. Table 12 describes the
interface signals.

The abovementioned six signals are dedicated for bound-
ary-scan use for the pLSI devices. As ISP programming
is accomplished through the same pins, five of the six
signals have both boundary-scan interface and ISP func-
tions on the ispLSI devices. TRST is the only signal that
does not have a dual function. It is used only to reset the
TAP controller state machine. The sequencing of test
routines are governed by the TAP controller state ma-
chine. The state machine uses the TMS and TCK signals
as its inputs to sequence the states. Figure 5 is the

Table 12. ispLSI and pLSI 3000 and 6000 Family Boundary-Scan Interface Signals

ISLp ISLpsi noitpircseDnoitcnuFniP

NACSB /NACSB NEpsi
langiswolevitcaelihwnoitcnufnacS-yradnuoBehtstcelesnipsihtnolangishgihevitcA

ehtsevirdnipsihtnopulluplanretnI.secivedISLpsiehtnonoitcnufPSIehtstceles
.nevirdtonsiniplanretxeehtnehwhgihlangis

KCT KLCS/KCT .noitcnufPSIehtehtrofkcolClaireSdnanacS-yradnuoBrofnoitcnufkcolCtseT

SMT EDOM/SMT .noitcnufPSIehtroflortnocEDOMdnanacS-yradnuoBroftceleSedoMtseT

IDT IDS/IDT
snoitcnuF.noitcnufPSIehtroftupnIataDlaireSdnanacS-yradnuoBroftupnIataDtseT

.secafretnihtobrofniptupniatadlairesasa

TSRT TSRT
-tseTehtotrellortnocPATehtezilaitiniotlangissuonorhcnysanasitupnIteseRtseT

.etatsteseR-cigoL

ODT ODS/ODT
.noitcnufPSIehtroftuptuOataDlaireSdnanacS-yradnuoBroftuptuOataDtseT

.secafretnihtobrofniptuptuoatadlairesasasnoitcnuF

ISP Architecture and Programming

27 1996 ISP Encyclopedia

Figure 20. TAP Controller Timing Diagram

TCK

TMS or
TDI

TDO

tsu th

tco

IEEE1149.1 specified state machine. The condition for
the state transition is the state of the TMS input condition
before TCK within a given state. The timing diagram is
shown in Figure 20.

The TAP controller state machine includes the Test-
Logic-Reset state to reset the controller and the Run-Test
states. Two main components of the TAP controller are
Data Register (DR) control states and Instruction Regis-
ter (IR) control states. Both of these register control
states are organized in a similar manner. The user can
capture the registers, shift the register string, or update
the registers. Capturing the DRs simply loads the DR with
the data from the corresponding functional input, output,
or I/O pins. The IR capture, on the other hand, loads the
IRs with the previously executed instruction bits. Shift
register states serially shift the DR and IR. In the case of
DR shift, the data is shifted according to the order of the

inputs, outputs, and I/Os defined in the boundary-scan
section of each device data sheet. The IRs are shifted out
from the least significant bit first. During update register
states, the DRs update the latches to drive the external
pins and the IRs update the instruction bits with the
instruction that is to be executed.

Boundary-Scan Registers

In order to support boundary-scan test, three types of
data registers are defined for the ispLSI and pLSI devices
— I/O cell registers, input cell registers and output cell
registers (6000 family only). The main purpose of these
registers is to capture test data from the appropriate
signals and shift data to either drive the test pins or
examine captured test data.

Figure 21. Boundary Scan I/O Cell

D Q
M
U
X

D Q

D Q

D Q

D Q
M
U
X

M
U
X

M
U
X

M
U
X

GLB
OE

GLB
OUTPUT I/O Pin

EXTEST

Update DR

SCANOUT (to next cell)

Clock DR

SCANIN
(from
previous
cell)

Shift DR

28 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 22. Boundary Scan Input Cell

D Q
M
U
X

INPUT

SCANIN
(from previous
cell)

Shift DR Clock DR

SCANOUT
(to next cell)

Figure 23. Bypass Register

D Q
Shift DR

Clock DR

To TDOFrom TDI
&

Figure 21 describes the register for the I/O cell. The I/O
cell, by definition, must have three components: one
register component drives the output enable (OE) signal,
the second component drives the output data, and the
third captures the input data. These components make
up the three registers that are part of the shift register
string for each of the I/O pins. Only parts of the I/O cell
registers will have valid data when I/O pins are configured
as input-only or output-only, thus the test routines must
be able to monitor the appropriate register bits. The
update registers are used mainly to store data that is to
be driven onto the I/O pins. The multiplexer controls are
driven by the signal from the TAP controller at appropri-
ate states.

The function of an input cell register is simpler than that
of an I/O cell. Figure 22 illustrates the single input register
cell. The purpose of the input cell is to capture the input
test data and shift the data out TDO for verification.

Boundary-Scan Instructions

Lattice ispLSI and pLSI devices support the three man-
datory instructions defined by the boundary-scan
definition. The following paragraphs describe each of the
instructions and its instruction code. A shift register of five
bits for the ispLSI and pLSI 3192 and ispLSI and pLSI
6192 and two bits for the ispLSI and pLSI 3256 is defined
within the devices to implement the instruction shift
register.

The SAMPLE/PRELOAD (Instruction Code - 10*/11100)
instruction is used to sample the pins that are to be
tested. During the Capture-DR state, while executing
this instruction, the DRs are loaded with the state of the
pins which can then be examined after shifting the data
through TDO. The PRELOAD part of this instruction is
simply loading the DRs during Shift-DR state with the
desired condition for each of the pins.

The EXTEST (Instruction Code - 00*/00000) instruction
drives the external pins with the previously updated
values from the DR during the Update-DR state.

The BYPASS (Instruction Code - 11*/11111) instruction
is used to bypass any device that is not accessed during
any part of the test. The definition of the BYPASS
instruction allows TDI not to be driven during the Shift-IR
state. In order to shift in the correct instruction code, the
TDI pin has an internal pull-up to drive logic high. A
bypassed boundary-scan device has a single bypass
register as shown in Figure 23.

*3256 only.

ispGDS Programming Details

The following sections describe the state machine in-
struction set, timing parameters, device layout, and
programming algorithms as they apply to ispGDS de-
vices in general. Figure 24 shows the ispGDS22 28-pin
device pinout.

Shift Registers

The ispGDS devices have three shift registers, the de-
vice ID shift register, the Instruction shift register and the
Data shift register. All shift registers operate on a First In
First Out (FIFO) basis, and are chosen by which state the
programming state machine is in.

Figure 24. ispGDS22 28-Pin PLCC Pinout Diagram

MODE

A3

A4

Vcc

A5

A6

A7

2

A
8

A
9

A
10

B
10 B
9

B
8

SDO

S
D

I

A
2

A
1

A
0

B
0

B
1

B
2

B3

B4

B5

GND

B6

B7

S
C

L
K

284 26

5

7

9

11
12 14 16 18

19

21

23

25

ispGDS22

ISP Architecture and Programming

29 1996 ISP Encyclopedia

The device ID shift register is only accessible in the IDLE
state. It is eight bits long, and is only used to shift out the
device ID. The ispGDS device IDs are 70-72 (hex) (Table
13). The Instruction shift register is only accessible in the
SHIFT state. It is five bits long, and is only used to shift the
Instruction Codes into the device. The Device ID and
Instruction shift registers expect the LSB to be shifted in
first. The Data shift register is 24 bits long, and is used to
shift all addresses and data into or out of the device. The
Data shift register is only accessible in the EXECUTE
state when executing a SHIFT_DATA instruction (Table
14).

To program an ispGDS device, data is read from a serial
bit stream and shifted into the shift registers. Twenty-four
bits are read at a time, shifted into the device, and then
a programming operation is performed. The exact se-
quence, and the methods for converting a JEDEC map
into a serial bit stream are explained in the ispGDS
Internal Architecture section.

Timing

Programming the ispGDS devices properly requires that
a number of timing specifications be met. The specifica-

Table 13. ispGDS Device Codes tions relating to programming and erasing the E2CMOS
cells are the most critical. In addition to a minimum pulse
width, there is also a maximum timing specification.
Refer to the ispGDS programming mode timing specifi-
cations in Table 15 for the timing requirements. Timing
diagrams for the programming mode specifications are
shown in Figures 25, 26 and 27.

ispGDS Internal Architecture

This section covers the details of constructing the
ispSTREAM format. Only 49 bytes are required to store
the pattern for an ispGDS device. If you are using the
supplied software tools, a conversion utility (complete
with source code) is included to convert an industry-
standard JEDEC file to ispSTREAM format. All of the
Lattice software routines read and write this ispSTREAM.

The ispGDS devices are composed of two basic archi-
tectural components (Figure 28). The first component
consists of three rows of architectural information, which
contain the three bits that control the function of each
I/O cell. The rows are 24 bits long, providing one bit for
each I/O cell (the ispGDS18 and ispGDS14 do not use all
of the bits). The second component contains the cell data
for the switch matrix area of the device and the User
Electronic Signature (UES) data area. There are two
UES rows of 24 bits each, and 11 switch matrix rows of
24 bits each.

Although the shift register lengths are 24 bits long, it is not
composed entirely of data area. In the architectural
section, two bits are used for addressing. In the matrix/
UES area, six bits are used for addressing. In the switch
matrix area, there are only 11 bits of actual data, and
seven dummy bits which exist only to make the shift

noitcurtsnI noitarepO noitpircseD

00000 PON .demrofrepnoitarepooN

01000 ATAD_TFIHS .retsigeRtfihSataDeht,fotuoro,otniatadskcolC

11000 ESARE_KLUB .ecivederitneehtsesarE

10100 YARRA_ESARE .sworerutcetihcrAehttpecxegnihtyrevesesarE

01100 HCRA_ESARE .ylnosworerutcetihcrAehtsesarE

11100 MARGORP .wordesserddaehtotniatadretsigeRtfihSehtsmargorP

01010 YFIREV .retsigeRtfihSlaireSehtotniwordetcelesehtmorfataddaoL

01110 URHTWOLF .)ODS=IDS(retsigeRtfihSehtselbasiD

Table 14. ispGDS Programming State Machine Instruction Set

Device

ispGDS22

ispGDS18

ispGDS14

Pins

28

24

20

Device ID

0111 0010 (72 hex)

0111 0001 (71 hex)

0111 0000 (70 hex)

ispGDS ID Codes

30 1996 ISP Encyclopedia

ISP Architecture and Programming

Param. Description Min. Max. Unit

trst Time from power-up of device to any progamming operation. 1 — µs

tisp Time from leaving IDLE state to I/O pins tri-state, or entering IDLE state to I/O pins active. — 10 µs

tsu Setup time, from either MODE or SDI to rising edge of SCLK. 100 — ns

th Hold time, from rising edge of SCLK to MODE or SDI changing level. 100 — ns

tco Time from falling edge of SCLK to data out on SDO. ispGAL22V10 — 210 ns

 ispGDS — 150 ns

tclkh Clock pulse width of SCLK while high. 0.5 — µs

tclkl Clock pulse width of SCLK while low. 0.5 — µs

tpwp Time for a programming operation. 40 100 ms

tpwe Time for an erase operation. 200 — ms

tpwv Time for a verify operation. 5 — µs

Table 15. Programming Mode Timing Specifications (ispGAL22V10 and ispGDS Families)

Figure 25. Programming Mode Timing
(ispGDS and ispGAL22V10 Families)

MODE

SDI

SCLK

trst

Vcc

I/O pins

tisp t isp

VALID
HI-Z

Figure 26. Shift Register Timing
(ispGDS and ispGAL22V10 Families)

MODE

SDI

SC LK

th
ts u

SD O

tclkl tclkh

tco

registers the same length. These seven bits are read as
a one, or a logic High on SDO. For the UES, there are 16
bits of actual data in each row and two dummy bits.

ispGDS ispSTREAM Format

To convert the information in a standard JEDEC file into
the ispSTREAM format, add all of the addressing infor-
mation and the placeholding bits (dummy bits). The
objective is to include every bit needed for programming.
For the three architecture rows, simply add the two
address bits.

For the UES and Switch Matrix rows, there are eight bits
to add. The first two bits are always 00, which distin-
guishes this area from the Architectural row. In addition,
there are four bits needed to address the specific row,
and two bits needed as placeholders. In the Switch Matrix
rows, there are also five bits needed for placeholding at
the end of the rows. The various placeholding bits are
built into the device so that all rows appear to be the same
length, thus simplifying programming operations.

The ispSTREAM uses one bit for each programmable
cell. This means that each row includes 24 bits, or three
bytes of storage. With three bytes of storage per row, and
16 rows per device, the ispSTREAM uses only 48 bytes
of storage area. However, there is one extra byte used at
the front of the file to store the device ID code, and a 32-
bit checksum. The ID code is identical to the one that is
hardwired into the device. This ID code ensures that the
ispSTREAM type is the same as the device to be pro-
grammed. For example, if an ispSTREAM is stored in
EPROM, it is stacked end to end. The ID code determines
not only which device type the ispSTREAM belongs with,
but its length, and thus, where the next pattern starts. All

ISP Architecture and Programming

31 1996 ISP Encyclopedia

Figure 27. Program, Verify, and Erase Timing (ispGDS and ispGAL22V10 Families)

tpwp, tpwe,
or tpwv

MODE

SDI

SCLK

th
tsu

Enter EXECUTE state (PROGRAM, VERIFY, or ERASE instruction)

Figure 28. ispGDS Architecture

01

10

11

22 bits of Architecture data

Architecture Control Bit:C0

00

00

00
0 0

00

00

00
0 0

00

00
00

11

11

11
1 1

11

11

11
1 1

11

11
11

0000

0001

0010
0011

0100

0101

0110
0111

1000

1001
1010

00

00 11

1011

1100

11

11111

11111

11111
11111

11111

11111

11111
11111

11111

11111
11111

Switch Matrix Data

UES Data

UES Data

16 bits of UES data

11 bits of Matrix Data

Dummy bi ts

Address bits

Shift Register (24 bits) S D OSD I

Architecture Control Bit:C2

Architecture Control Bit:C1

ispSTREAM formats, regardless of which Lattice In-
System Programmable device they are intended for,
contain this ID code in the first byte. See Figure 29 for
details of the ispSTREAM format, and Figure 30 for the
JEDEC map.

Algorithms

ispGDS device programming is described as a hierarchi-
cal set of algorithms and functions. This section contains
high-level algorithms for erasing, programming, verify-
ing, and loading ispGDS devices. A universal set of
functions is used to make up the algorithms and enable
them to be written in a modular format. The individual
functions are explained in the next section. Note that
most procedures leave the device in the SHIFT state.
These algorithms and functions closely follow the
ispCODE source code library provided by Lattice.

To simplify the algorithms, all operations use an
ispSTREAM format as the data structure from which to
read and write. The ispSTREAM contains the address
information and simplifies the operations considerably.
Working from the ispSTREAM, the device appears as an
array of 16 rows, each 24 bits long.

Program Algorithm
Before programming a device, it must be erased. Cells
can be programmed (set to a JEDEC zero) using the
programming command, but only an Erase procedure
erases a cell (set a cell back to a JEDEC “1” (one)). In the
algorithm in Listing 1, the entire device is erased (Bulk
Erased), and then the entire device is programmed.

Load Algorithm
The load algorithm in Listing 2 is the same for all ispGDS
devices. First, the 13 rows of array data (11 rows for the
array matrix, and two for the UES) are read, and then the
three rows of architectural information are read. After
each row is read, it is stored in an ispSTREAM format.

In order to load each row’s data into the shift register, it
is necessary to load the address of the row into the
appropriate area of the shift register. Because of the
unique way the different areas of the device are ad-
dressed, the simplest way to get the addresses into the
device in the proper order is to use an existing ispSTREAM
to supply those addresses. In other words, the full data for
each row is loaded from the ispSTREAM into the device.
When a VERIFY command is executed, the device’s data
for the same row is then loaded into the shift register to
be shifted out. This method will be used in this algorithm.

When using an existing ispSTREAM to supply the ad-
dresses, the data should not be the same as the expected
data, or a failure to verify may not be detected. To avoid
this possibility, a pattern that contains all “1s” (ones) for
data can be used (and is supplied with the software tools
provided by Lattice Semiconductor). This ispSTREAM
still has the addresses intact, but all programmable cell
data is set to a “1” (one) (erased state).

32 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 29. ispGDS ispSTREAM Format

ispSTREAM
bit # 7

ispSTREAM
bit # 0Dev ice ID

M S B L S B

01

10

11

22 bits of Architecture data

0 0

00

00

00

00

00

00

00

00

00

00

1 1

11

11

11

11

11

11

11

11

11

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

0 0

00 11

1011

1100

1 1

11111

11111

11111

11111

11111

11111

11111

11111

11111

11111

11111

16 bits of UES data

11 bits of Matrix Data

Dummy bi ts

Address bits

JEDEC fuses: 10 0

JEDEC fuses: 21 11
JEDEC fuses: 32 22
JEDEC fuses: 43 33
JEDEC fuses: 54 44
JEDEC fuses: 65 55
JEDEC fuses: 76 66
JEDEC fuses: 87 77
JEDEC fuses: 98 88
JEDEC fuses: 109 99
JEDEC fuses: 120 110

JEDEC fuses: 136 121

JEDEC fuses: 152 137

JEDEC fuses: 174 153
JEDEC fuses: 196 175
JEDEC fuses: 218 197

ispSTREAM
bit # 8

ispSTREAM
bit # 392

000

011

022

033

044

055

066

077

088

099

110

C0=174
C1=196
C3=218

I/O

C0=173
C1=195
C3=217

I/O

C0=172
C1=194
C3=216

I/O

C0=171
C1=193
C3=215

I/O

C0=170
C1=192
C3=214

I/O

C0=169
C1=191
C3=213

I/O

C0=168
C1=190
C3=212

I/O

C0=167
C1=189
C3=211

I/O

C0=166
C1=188
C3=210

I/O

C0=165
C1=187
C3=209

I/O

C0=164
C1=186
C3=208

I/O

C
0=

1
63

C
1=

1
85

C
3=

2
07

I/O

C
0=

1
62

C
1=

1
84

C
3=

2
06

I/O

C
0=

16
1

C
1=

18
3

C
3=

20
5

I/O

C
0=

16
0

C
1=

18
2

C
3=

20
4

I/O

C
0=

15
9

C
1=

18
1

C
3=

20
3

I/O

C
0=

1
58

C
1=

1
80

C
3=

2
02

I/O

C
0=

15
7

C
1=

17
9

C
3=

20
1

I/O

C
0=

15
6

C
1=

17
8

C
3=

20
0

I/O

C
0=

15
5

C
1=

17
7

C
3=

19
9

I/O

C
0=

1
54

C
1=

1
76

C
3=

1
98

I/O

C
0=

1
53

C
1=

1
75

C
3=

1
97

I/O

0 1 2 3 4 5 6 7 8 9 1 0

ispGDS22:
ispGDS18:
ispGDS14:

B10
B8
B6

B 9
B 7
B 5

B 8
B 6
B 4

B 7
B 5

B 6 B 5 B 4
B 4

B 3
B 3
B 3

B 2
B 2
B 2

B 1
B 1
B 1

B 0
B 0
B 0

is
pG

D
S

22
:

is
pG

D
S

18
:

is
pG

D
S

14
:

A
10

A
8

A
6

A
9

A
7

A
5

A
8

A
6

A
4

A
7

A
5

A
3

A
6

A
4

A
5

A
4

A
3

A
3

A
2

A
2

A
2

A
1

A
1

A
1

A
0

A
0

A
0

121, 122 . . .

User Electronic Signature

. . . 151, 152

Byte 3 Byte 2 By te 1 Byte 0

M
S
B

L
S
B

Figure 30. ispGDS JEDEC Fuse Map

ISP Architecture and Programming

33 1996 ISP Encyclopedia

To program a device:

Call procedure: Get_ID (to check device type)
Call procedure: Change_State (from IDLE to SHIFT state)
(Erase entire device)

Call procedure: Shift_Command, with command: ERASE
Call procedure: Change_State (to EXECUTE State)
Call procedure: Execute_Command (starts operation)
Call procedure: Wait (Erase_Time)
Call procedure: Change_State (to SHIFT state)

Set row_count =0
Loop until row_count = 15
(Program one row on each loop)

Call procedure: Shift_Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_In, with data location in ispSTREAM at (row_count
x 24)
Call procedure: Change_State (to SHIFT state)
Call procedure: Shift_Command, with command: PROGRAM
Call procedure: Change_State (to EXECUTE State)
Call procedure: Execute_Command (starts operation)
Call procedure: Wait (Program_Time)
Call procedure: Change_State (to SHIFT state)

End Loop

Listing 1. ispGDS Programming Algorithm

Verify Algorithm
A row by row verification procedure is used to verify the
ispGDS device. This procedure is basically the same as
the Load algorithm, except that each row is compared
with (instead of stored in) an ispSTREAM as the data is
shifted out of the device. Note that the special pattern
used for verifying is used to load the addresses, as in the
Load algorithm.

ispGDS Procedures

This section describes the procedures that make up the
program, verify, and load algorithms for the ispGDS
family of devices. The procedures are written so that
each algorithm may be written in a high-level modular
format, calling one of the following procedures to actually
change pin levels and handle timing.

Important: Notice that most of the procedures are writ-
ten so that the state machine is left in the Shift State,
ready to perform the next operation. This point is impor-
tant in keeping all the routines compatible.

Goto_IDLE Procedure
The Goto_IDLE procedure resets the programming state
machine to the IDLE state, regardless of which state it is
in. Procedure steps:

set MODE pin High, and SDI pin Low

wait Tsu

bring SCLK pin High

wait Tclkh

bring SCLK pin Low

(END Procedure)

Get_ID Procedure
The 8-bit device ID codes identify the three different
ispGDS devices (Table 13). The ID is read in the IDLE
state by first loading the ID into the shift register and then
clocking the data out. The ID is loaded by holding MODE
high and SDI low and clocking the device. The ID is
clocked out of the device by holding MODE low and
clocking SCLK. Only seven clock cycles are required,
since the first bit is available at SDO after the ID is loaded.

34 1996 ISP Encyclopedia

ISP Architecture and Programming

Listing 2. Load Algorithm

To load a device:

Call procedure: Get_ID (to check device)
Call procedure: Change_State (from IDLE to SHIFT state)
Set row_count =0
Loop until row_count = 15

Call procedure: Shift_Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_In, with data location in Source ispSTREAM at

(row_count x 24)
Call procedure: Change_State (to SHIFT state)
Call procedure: Shift_Command, with command: PROGRAM
Call procedure: Change_State (to EXECUTE State)
Call procedure: Execute_Command (starts operation)
Call procedure: Change_State (to SHIFT state)
Call procedure: Shift_Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_Out, with data location in Target ispSTREAM at
(row_count x 24)
Call procedure: Change_State (to SHIFT state)

End Loop

To verify a device:

Call procedure: Get_ID (to check device type)
Call procedure: Change_State (from IDLE to SHIFT state)
Set row_count =0
Loop until row_count = 15

Call procedure: Shift_Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_In, with data location in Source ispSTREAM at

(row_count x 24)
Call procedure: Change_State (to SHIFT state)
Call procedure: Shift_Command, with command: VERIFY
Call procedure: Change_State (to EXECUTE State)
Call procedure: Execute_Command (starts operation)
Call procedure: Wait (Verify_Time)
Call procedure: Change_State (to SHIFT state)
Call procedure: Shift_Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_Out, with data location a 24 bit temporary buffer
Compare temp row buffer with data location in ispSTREAM to be verified
against, at (row_count x 24) Verify Error if the 24 bits don’t match
Call procedure: Change_State (to SHIFT state)

End Loop

Listing 3. Verify Algorithm

ISP Architecture and Programming

35 1996 ISP Encyclopedia

Procedure steps:

set MODE pin High, and SDI pin Low

wait Tsu

Set SCLK pin High

wait Tclkh

Set SCLK pin Low

set count =0

get value from SDO and store in temp_buffer[0]

set count = 1

loop until count == 7

bring SCLK pin High

wait Twh

bring SCLK pin Low

wait Twl

get value from SDO and store in
temp_buffer[count]

End loop

(Device ID code is now stored in the temp_buffer array)

(END procedure)

Change_State Procedure
The Change_State procedure changes the program-
ming state machine to the next state, according to the
state diagram. Procedure steps:

set MODE pin High, and SDI pin High

wait Tsu

bring SCLK pin High

wait Th

set MODE pin Low, and SDI pin Low

wait Tclkh

bring SCLK pin Low

(END Procedure)

Shift_ Command Procedure
The Shift_Command procedure shifts a five-bit com-
mand into the device’s shift register. The various
commands should be coded so the procedure can use a
mnemonic (such as PROGRAM), and the controlling
software can use the appropriate five-bit sequence for
that command. Procedure steps:

set MODE pin Low

set count =0

loop until count == 4

get next bit of command code (count = bit number)

set SDI pin to bit value

wait Tsu

bring SCLK pin High

wait Tclkh

bring SCLK pin Low

count = count +1

End loop

(END Procedure)

Shift_ Data_In Procedure
The Shift_Data_In procedure explains the steps to clock
a row of data into the device, reading the data from an
ispSTREAM. This procedure shifts in 22 bits of data, and
is used for all 16 rows. Procedure steps:

set MODE pin Low

set count =0

loop until count == 23

get next bit from ispSTREAM (bit number = count x
row_number)

set SDI pin to bit value

wait Tsu

bring SCLK pin High

wait Tclkh

bring SCLK pin Low

End loop

(END Procedure)

36 1996 ISP Encyclopedia

ISP Architecture and Programming

Shift_ Data_Out Procedure
The Shift_Data_In procedure explains the steps to clock
a row of data out of the device and store it in an
ispSTREAM. This procedure shifts out 22 bits of data,
and is used for all 16 rows. Procedure steps:

set MODE pin Low

wait Tsu

set count =0

loop until count == 23

bring SCLK pin High

wait Tclkh

bring SCLK pin Low

get value of SDO pin and store as next bit in
ispSTREAM (bit number = count x row_number)

End loop

(END Procedure)

Execute_Command Procedure
The Execute_Command procedure causes many of the
commands to begin executing after the state machine is
in the EXECUTE state. Procedure steps:

set MODE pin Low, and SDI pin Low

wait Tsu

bring SCLK pin High

wait Twh

bring SCLK pin Low

(END Procedure)

Figure 31. ispGAL22V10 28-Pin PLCC Pinout Diagram

2 28

S
C

L
K

I/C
L

K

II

I

I

I

I

I

I

MODE SDO

S
D

I

G
N

DII I

I/O
/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

V
cc

I/O
/Q

I/O
/Q

I/O
/Q

4 26
25

19
18

21

23

161412
11

9

7

5

ispGAL22V10

Wait Procedure
The Wait procedure waits the indicated time to ensure that
various timing parameters are met. This procedure is likely
to be used when executing the PROGRAM and ERASE
procedures, which need a long delay (tens of milliseconds).
The other timing parameters may be guaranteed by the
system timing. Various timing parameters should be coded
so that a mnemonic may be passed to the procedure.
Procedure steps:

wait the indicated time

(END Procedure)

ispGAL Programming Details

The following sections describe the state machine in-
struction set, timing parameters, and device layout as
they apply to ispGAL devices in general. Figure 31 shows
the ispGAL22V10 28-pin device pinout.

Shift Registers

The ispGAL device has four shift registers: Device ID,
Instruction, Data, and Architecture. All shift registers
operate on a First In-First Out (FIFO) basis, and are
enabled by the programming state machine.

The Device ID shift register is only accessible in the IDLE
state. It is eight bits long, and is only used to shift out the
device ID. For the ispGAL22V10, the ID is defined to be
08 (hex). The Instruction shift register is only accessible
in the SHIFT state. It is five bits long, and is only used to
shift the Instruction Codes into the device. The Data and
Instruction shift registers expect the LSB to be shifted in
first. The Data shift register is 138 bits long, and is used
to shift all addresses and data into or out of the device.
The Data shift register is only accessible in the EX-
ECUTE state when executing a SHIFT_DATA instruction.
The Architecture shift register is 20 bits long and the
Output Logic Macro Cell (OLMC) 1’s S1 architecture bit
is shifted in first and OLMC 10’s S0 architecture bit is
shifted in last. The Architecture shift register is accessed
during the EXECUTE state, when the ARCH_SHIFT
instruction is executed.

To program an ispGAL device, data is read from a serial
bit stream and shifted into the shift registers. The data is
read 138 bits at a time, shifted into the device, and then
programmed into the device through a programming
operation. Table 16 describes the instructions for the
ispGAL state machine. The exact sequence and meth-
ods for converting a JEDEC map into a serial bit stream
are explained in the Internal Architecture section below.

ISP Architecture and Programming

37 1996 ISP Encyclopedia

Table 16. ispGAL Programming State Machine Instruction Set

8-bit ID Shift Register

B7 B6... ... B1 B0SDI SDO

138-bit Address/Data Shift RegisterSDI SDO

132 bits

44
 ro

w
s

6 bits

Row Addr: 0

1

UES (64 bits)

42
43
44

000000

000001

101010
101011
101100

JEDEC Fuse #:
JEDEC Fuse #:

JEDEC Fuse #:
JEDEC Fuse #:
JEDEC Fuse #:

5764,5720,5676 0088,0044,0000
5765,5721,5677 0089,0045,0001

5806,5762,5718 0130,0086,0042
5807,5763,5719 0131,0087,0043
5891,5890 5829,5828

Architecture Shift Register

SDI SDOJEDEC Fuse #: 5826,5827,5824 5811,5808,5809

O
LM

C
10

: S
0

O
LM

C
10

: S
1

O
LM

C
 9

: S
0

.
O

LM
C

2:
 S

1
O

LM
C

1:
 S

0
O

LM
C

1:
 S

1

AND Array (5808 bits)

noitcurtsnI noitarepO noitpircseD

00000 PON .demrofrepnoitarepooN

01000 ATAD_TFIHS .retsigeRtfihSataDeht,fotuoro,otniatadskcolC

11000 ESARE_KLUB .ecivederitneehtsesarE

10100 YARRA_ESARE .sworerutcetihcrAehttpecxegnihtyrevesesarE

01100 HCRA_ESARE .ylnosworerutcetihcrAehtsesarE

11100 MARGORP .wordesserddaehtotniatadretsigeRtfihSehtsmargorP

01010 YFIREV .retsigeRtfihSlaireSehtotniwordetcelesehtmorfataddaoL

10110 DLRPOI .atadnevightiwretsigerO/IehtdaolerP

01110 URHTWOLF .)ODS=IDS(retsigeRtfihSehtselbasiD

00101 TFIHSHCRA
eht,fotuoro,otniatadgnitfihsrofretsigeRtfihSerutcetihcrAehtselbanE

.retsiger

Three components comprise the ispGAL device pro-
gramming architecture (Figure 32): 44, 132-bit rows of
AND array, one 64-bit row of User Electronic Signature
(UES), and one 20-bit row of architecture information.

The AND array section of the physical layout is organized
so that each column of JEDEC fuse numbers shown in

Timing

Programming the ispGAL devices properly requires that
a number of timing specifications be met. Most critical are
the specifications relating to programming and erasing
the E2CMOS cells. In addition to a minimum pulse width,
there is also a maximum specification for these param-
eters. Refer to the ispGAL programming mode timing
specifications for the timing requirements (Table 15),
which are identical to the ispGDS specifications. Dia-
grams for the programming mode specifications are shown
in Figures 25, 26, and 27 of the ispGDS timing section.

Securing an ispGAL Device

The ispGAL devices are not secured by an instruction. To
secure ispGAL devices, row 61 must be programmed in
the same manner that other data rows are programmed.
When programming this security row, the data bits are
“don't care.”

Internal Architecture

This section describes the internal architecture of the
device as it relates to programming and covers construct-
ing the ispSTREAM format. If you are using the supplied
software tools, a conversion utility (complete with source
code) is included to convert an industry-standard JEDEC
file to ispSTREAM format. All of the Lattice Semiconduc-
tor software routines read and write the ispSTREAM
format.

Figure 32. ispGAL Device Shift Register Layout

38 1996 ISP Encyclopedia

ISP Architecture and Programming

the logic diagram of the ispGAL22V10 corresponds to
one row of shift register for the device layout. Each
physical row is 132 bits long. With each row of AND array
data, there is a 6-bit row address associated with it, which
including the row address bits, makes the shift registers
138 bits long. The row address bits must be shifted into
the shift register along with the AND array data. Execut-
ing a PROGRAM command following the combination of
data and row address shift programs the row that is
specified by the shift instruction.

The I/O preload (IOPRLD) is performed in the same order
as the Architecture shift register shown in Figure 32.
Once in I/O Preload, the length of the shift register is
determined by the number of I/Os that are configured as
registered output. The length of the shift register and the
order must be determined before IOPRLD can be ex-
ecuted.

The UES row is unique in that it is only 64 bits long. When
the row address bits are added to the row itself, the total

shift register length required to fully specify the UES row
is 70 bits long. In other words, only 70 bits out of the 132-
bit shift register are used for the UES. The 20-bit
Architecture shift register is selected when the
ARCH_SHIFT instruction is executed. The OLMC 0, S1:
OLMC 0, S0; OLMC 1, S1: OLMC 1, S0: etc. are shifted
in order with the last bit of the shift register being OLMC
10, S0.

Algorithms and Procedures

The ispGAL’s programming algorithm and programming
procedure are very similar to the ispGDS. For the sake of
brevity, please refer to the algorithm and procedures
section in the ispGDS section if you are interested in this
information. If you have further questions, please call the
Lattice Semiconductor Hotline at 1-888-ISP-PLDS.

Table 17. Features of the ISP Device Families

,SDGpsi
LAGpsi
C/B01V22

E/K1ISLpsi
K2ISLpsidna

seilimaF 6523ISLpsi

K3ISLpsi
)6523tpecxe(
K6ISLpsidna

seilimaF
VLK2ISLpsi

ylimaF

rofenihcaMetatSPSICSL
gnimmargorP

seY seY seY seY oN

enihcaMetatSrellortnoCPAT
gnimmargorProf

oN oN oN seY seY

snoitarepOtseTnacS-yradnuoB
PATehthguorhTdetroppuS

rellortnoC

oN oN seY seY oN

slangiSgnimmargorP PSICSL PSICSL PAT/PSICSL PAT/PSICSL PAT

htgneLretsigeRtfihSdnammoC stib5 stib5 stib2/stib5 stib5 stib5

noitcurtsnIURHTWOLF seY seY seY seY seY

NEpsi NEpsi NEpsi NEpsi NEpsi langiS oN seY seY seY seY

tfihSataDdnasserddA
sretsigeR

sserddahtoB
detfihsataddna

enoni
.dnammoc

tfihstnereffiD
rofsnoitcurtsni

dnasserdda
.atad

tfihstnereffiD
rofsnoitcurtsni

dnasserdda
.atad

tfihstnereffiD
rofsnoitcurtsni

dnasserdda
.atad

tfihstnereffiD
rofsnoitcurtsni

dnasserdda
.atad

DIeciveD PSICSLtib-8 PSICSLtib-8 PSICSLtib-8 PSICSLtib-8 NACSBtib-23
DIPAT

ISP Architecture and Programming

39 1996 ISP Encyclopedia

ISP Daisy Chain Details

This section provides a detailed look at the issues asso-
ciated with daisy chain programming. Before examining
the details, the reader should understand the differences
between ISP devices. This section describes those dif-
ferences and the unique programming features of each
ISP device.

ISP Overview for Daisy Chain

Similarities and Differences Between Devices
For the purpose of cascading, ISP devices can be cat-
egorized into five device groups: the ispGDS and
ispGAL22V10B/C; the ispLSI 1000/E and ispLSI 2000
families; the ispLSI 3256; the ispLSI 3000 (except ispLSI
3256) and ispLSI 6000 families; and the ispLSI 2000LV
family of devices. Table 17 highlights the similarities
between these device groups.

The ispGDS and ispGAL22V10B/C devices use only the
LSC ISP state machine for programming. The I/O’s of
ispGDS and ispGAL22V10B/C devices are put into a high
impedance state when the programming state machine
goes into the Command Shift State. The ispGDS and
ispGAL devices do not use a dedicated ispEN pin for this
function.

The ispLSI 1000/E and ispLSI 2000 families of devices
are programmed exclusively through the LSC ISP state
machine but also use a dedicated ispEN pin to enable the
programming mode: by driving ispEN low, all of the
device I/Os are put into a high-impedance state and the
programming functions for SDI, SDO, MODE, and SCLK
are enabled.

The ispLSI 3256 is programmed through the LSC ISP
state machine but also is boundary-scan compliant for

testing. A dedicated ispEN pin selects between the ISP
state machine and the TAP controller. By driving ispEN
low, all of the device I/Os are put into the high-impedance
state and the programming functions for SDI, SDO,
MODE, and SCLK are enabled. When ispEN is high the
TAP controller is active and the functions for TDI, TDO,
TMS and TCK are enabled.

The ispLSI 3000 (except the ispLSI 3256) and ispLSI
6000 families are programmable through either the LSC
ISP state machine or the boundary-scan TAP controller.
By driving ispEN low, all of the device I/Os are put into the
high-impedance state, the programming functions for
SDI, SDO, MODE, and SCLK are enabled and the device
enters the programming mode. When ispEN is high, the
TAP controller is active and the functions for TDI, TDO,
TMS, and TCK are enabled. With the TAP controller
active, the device I/Os can also be put into the high-
impedance state by loading and executing the Program
Enable (ProgEN) instruction. To put the devices into the
programming mode, the ProgEN instruction is loaded
and executed three times in succession. When the TAP
controller is active, boundary-scan test operations are
available for the ispLSI 3000 and ispLSI 6000 families of
devices.

The ispLSI 2000LV family of devices is programmed
exclusively through the boundary-scan TAP controller. A
dedicated ispEN pin multiplexes the functionality of the
programming pins. When ispEN is held low, the TAP
controller is active and the functions for TDI, TDO, TMS,
and TCK are enabled. The device enters the program-
ming mode after the Program Enable instruction is loaded
and executed three times in succession. Device I/Os go
to the high-impedance state after the first ProgEN in-
struction is loaded.

Figure 33. Configuration for Programming and Boundary-Scan Operations for ispLSI 3000 Family (Except
3256) and ispLSI 6000 Family Devices on the Same Board with ispLSI 2000LV Family Devices.

ispLSI

6192

TDO

TDI

TCK

TMS

ispEN

ispEN/BSCAN

ispLSI

3192

ispLSI

2032LV

40 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 34. Daisy Chain Configuration Supporting Programming Through the LSC ISP State Machine and
Boundary-Scan Operations for ispLSI 3256 Devices with Other Boundary-Scan Devices.

ispLSI

3256

SDO/TDO

SDI/TDI

SCLK/TCK

MODE/TMS

TRST

ispEN/BSCAN

ispLSI

3256

BSCAN

Device

BSCAN

Device

R1

If devices that use the same state machine for program-
ming are put in a serial daisy chain, it is possible to
program multiple ISP devices by operating all the state
machines in parallel. This synchronizes all the devices
within the daisy chain to a known state. However, having
all ISP devices in the same state does not mean that all
devices are executing the same instruction. The ability of
each device in the daisy chain to execute a different
instruction makes it possible to selectively program one
or multiple ISP devices at a time.

The internal device layout is the same for all ispLSI
devices regardless of state machine interface used for
programming. The ispLSI devices have separate ad-
dress and data shift commands. The row(s) are selected
by the address that is shifted-in prior to each program-
ming command. The data can then be shifted with the
data shift instruction. With ispGDS and ispGAL devices,
both address and data are shifted-in with a single shift
command (the address is part of the Data shift register).
When executing commands that only require a row
address, a dummy data stream or no data can be shifted
in place of the data stream.

ISP Programming for Mixed LSC ISP and
Boundary-Scan Systems

This section highlights the hardware interface when LSC
ISP devices are mixed with boundary-scan testable de-
vices and boundary-scan TAP ISP programmable devices
on the same board. Following a few simple procedures
below will result in first time success for programming all
ISP devices. Described here are the most typical con-
figurations for system design based on common ISP and
testability goals.

In general, most of the signals from the LSC ISP interface
can be common with corresponding boundary-scan TAP
ISP interface signals. This usually includes some or all
of SDI and TDI, MODE and TMS, SDO and TDO, and
SCLK and TCK. If a parallel programming configuration
is used, where the boundary-scan and non-boundary-
scan devices are in two separate chains both fed by SDI/
TDI and combining SDO/TDO at the end of the chains,
the ispEN and TRST pins can be used to select which
chain is active. On ispLSI devices the ispEN pin can be
used to select the devices for programming, and when
the devices are de-selected the programming pins are in
the high impedance state and will not affect the program-
ming of active devices. Many boundary-scan devices
include the optional TRST pin which holds the TAP
controller in the Test-Logic-Reset state. For boundary-
scan devices held in the Test-Logic-Reset state, the TDO
pin will be in the high-impedance state and programming
of the non-boundary-scan daisy chain will not be af-
fected. This type of configuration implies that the ISP
programming pins cannot be used for normal mode
functions.

Hardware design considerations for new boards include
whether the hardware designer will be using boundary-
scan test operations or low voltage (3.3V) devices. In a
system using 3.3V ISP devices, the ispDOWNLOAD
cable v2.0 should be used. The cable operates with either
a 3.3V or 5V VCC source. Lattice’s Daisy Chain Down-
load software makes the ISP software interface to 3.3V
and mixed-voltage systems transparent to the user.

Boundary-scan devices, such as the ispLSI 3000 and
6000 families, can be put into a boundary-scan serial
daisy chain for test and programming purposes. The
configuration choice for the devices depends on the

ISP Architecture and Programming

41 1996 ISP Encyclopedia

boundary-scan test operations needed, programming
requirements, and device combinations. For both bound-
ary-scan test operations and programming through the
boundary-scan TAP the ispLSI 3000 family (except the
ispLSI 3256) and the ispLSI 6000 family may be put in any
order in a chain of boundary-scan devices. Boundary-
scan test operations are available for the ispLSI 3256
through the boundary-scan TAP but programming is
done through the LSC ISP state machine. Programming
operations are conducted through the boundary-scan
TAP for the ispLSI 2000LV family as well and they may
also be put in any order in a boundary-scan chain of
devices. A sample boundary-scan chain of devices is
shown in Figure 33. In this configuration the ispEN/
BSCAN pin on the ispLSI 3192 and ispLSI 6192 devices
is pulled up to VCC either with the internal active pull-up
or externally hardwired to VCC. The ispEN pin on the
ispLSI 2032LV is driven high for normal operations and
driven low for boundary-scan programming operations.
The ispDOWNLOAD cable connection to the ispEN/
BSCAN pin of the ispLSI 2032LV takes care of this
operation.

The ispLSI 3256 may also be put into a serial daisy chain
with other boundary-scan devices for test operations.
However, since programming of the ispLSI 3256 is done
through the LSC ISP state machine, if in-system pro-
gramming is required, the daisy chain must be altered to
allow LSC ISP state machine operation independent of
the boundary-scan operations.

Figure 34 shows a possible programming configuration
that allows in-system programming of ispLSI 3256 de-

vices in the same daisy chain as other boundary-scan
devices that only use the TAP controller state machine.
This configuration makes use of the optional boundary-
scan pin TRST that holds the TAP controller state machine
in the Test-Logic-Reset state to split up the chain and
allow LSC ISP state machine operation in the first part of
the chain. When TRST is held low the TDO pin for the
boundary-scan only devices will be in the high-imped-
ance state and the SDO output of the last ispLSI 3256
device in the chain will drive back to the programmer
through resistor R1. This will allow programming through
the LSC ISP state machine with ispEN/BSCAN held low
for the ispLSI 3256 devices in the chain without affecting
the boundary-scan only devices. When TRST and ispEN/
BSCAN are both high boundary-scan test operations will
be available for the entire chain of devices. In this
configuration other ispLSI 3000 and ispLSI 6000 devices
can be put in either part of the chain but must have ispEN/
BSCAN tied to VCC if they are in the BSCAN part of the
chain.

If LSC ISP programmable devices such as the ispLSI
1000/E and ispLSI 2000 families will be put on the same
board as boundary-scan devices, parallel daisy chain
loops are required for successful in-system program-
ming and boundary-scan operations. Figure 35 shows a
sample configuration using parallel programming loops.
This programming configuration again makes use of the
TRST pin to hold the boundary-scan devices in the Test-
Logic-Reset state while programming the LSC ISP loop.
For boundary-scan operations the ispEN pin is pulled
high to de-select the LSC ISP programming loop. The

Figure 35. Parallel Programming Loops for Programming Boundary-Scan and LSC ISP Devices on the Same
Board.

BSCAN

Device

BSCAN

Device

Non-BSCAN

Device

ispLSI

Non-BSCAN

Device

ispLSI

TDO/SDO

TDI/SDI

TCK/SCLK

TMS/MODE

(optional) TRST
ispEN

42 1996 ISP Encyclopedia

ISP Architecture and Programming

Description ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032

Device ID (8-bits) 0000 0011 0000 1000 0111 0010 0001 0101

Command Register 5 bits 5 bits 5 bits 5 bits

Address Shift Register 108 bits n/a n/a 102 bits

Data/Addr. & Data Shift 160 bits (6+132) bits (6+18) bits 40 bits
Register

Table 18. ISP Programming Information

advantage of this configuration is being able to use one
connector for both boundary-scan testing procedures
and LSC ISP programming operations.

The boundary-scan test daisy chain can include any
combination of ispLSI 2000LV family, ispLSI 3000 family,
and ispLSI 6000 family devices for boundary-scan test
operations (Figure 35). If boundary-scan test and pro-
gramming operations are required with ispLSI 3256
devices, a combination of this configuration with Figure
34 should be used. For both the configuration in Figure
34 and Figure 35 an alternative to controlling the TRST
pin is to multiplex the MODE/TMS signal to isolate the two
daisy chains.

ISP Daisy Chain Programming

A specific illustration of multiple device programming in a
daisy chained environment is shown in Figure 1. This
following example shows ISP programming aspects such
as identifying the devices in the daisy chain, shifting
commands, bypassing devices, and executing commands
for a simple serial daisy chain.

All of the programming state machines run in parallel
which keeps the devices synchronized. The program-
ming information for the serial daisy chain in Figure 1 is
summarized in Table 18. Similar details for any ISP
device can be found previously in this section and in the
appropriate device data sheet.

The first procedure of the programming sequence iden-
tifies the devices in the ISP chain. The following procedure
describes one way of reading the device IDs.

Load_ID Procedure

set ispEN = L

set MODE, SDI = H, L

clock SCLK (Load ID)

Continue to Shift_ID Procedure ...

At this point, the 8-bit ID registers are loaded with the
hardwired device IDs. Figure 36 shows the configuration
of the ID shift registers.

After the device ID has been loaded, the following shift ID
procedure sequentially shifts the IDs through to the last
device’s SDO. While the ID is being shifted out, keep SDI
at a known logic level so that the end of the ID stream can
be identified. This is especially important when there are
an unknown number of devices in the ISP daisy chain. By
detecting a sequence of eight zeros or eight ones, the ISP
controller can detect the end of the ID string.

Shift_ID Procedure

... Continued from Load_ID Procedure

set MODE, SDI = L, H

clock SCLK (Shift ID)

if last 8 SDO = H then go to End

else go to Shift_ID

End

Now, all of the devices within the ISP daisy chain and
their order can be properly identified. The next step is to
match the proper JEDEC fuse map file to the appropriate
device. There are several programming options at this
point. To simplify the programming routines however,
this example programs the devices one at a time. In
programming time critical applications, the daisy chained
devices can be programmed in parallel. The parallel
programming routines must keep track of the differences
in the fuse map lengths between different ISP devices.

The following procedures illustrate how to shift com-
mands, shift data, and execute commands to program
the ispGAL22V10. Since the ispGAL22V10 is the second
device in the ISP daisy chain, these procedures also
illustrate how to put the other devices into flow-through
mode. The following procedure shifts the SHIFT_DATA

ISP Architecture and Programming

43 1996 ISP Encyclopedia

command into the ispGAL22V10 and the FLOWTHRU
command into the rest of the ISP devices.

Load_Command Procedure

... Continued from end of Shift_ID Procedure

set MODE, SDI = H, H

clock SCLK (Shift State)

set MODE = L

Loop

set SDI = command stream (Figure 36b)

clock SCLK (Shift Command)

End Loop

End Procedure

Execute_Command Procedure

set MODE, SDI = H, H

Figure 36c. ISP Data Stream

0 Bit SR

ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032

SDI SDO138 Bit SR 0 Bit SR 0 Bit SR

Figure 36a. ID Shift Register Configuration

0000

ispLSI 1032

0011 0000

ispGAL22V10

1000 0111

ispGDS22

0010 0001

ispLSI 2032

0101SDI SDO

Figure 36b. ISP Command Stream

FLOWTHRU

(01110)

ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032

SDI SDOSHIFT_DATA

(00010)

FLOWTHRU

(01110)

FLOWTHRU

(01110)

clock SCLK (Execute State)

set MODE = L

Loop 138 times

set SDI = data stream (Figure 36c)

clock SCLK (Execute SHIFT_DATA Command)

End Loop

set MODE, SDI = H, H

clock SCLK (Shift State)

End Procedure

At the end of the Execute_Command procedure, the
state machine is returned to the Shift State. This readies
the devices for another command shift procedure. For
the ispGAL22V10, the DATA_SHIFT instruction of 138
bits includes the row address and the data associated
with the row. Similar procedures can be used to complete
the programming of the ispGAL22V10.

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	In-System Programming (ISP) Interface
	LSC ISP State Machine
	TAP Controller State Machine
	ISP Device Programming Configurations
	Hardware Considerations
	Hardware Programming Tools
	ISP Programming Software
	ISP Programming Times
	User-Programmable ID Registers
	ispLSI Programming Detials
	Boundary Scan (ispLSI 3000 & 6000 Families)
	ispGDS Programming Detials
	ispGAL Programming Detials
	ISP Daisy Chain Details

