
1 1996 ISP Encyclopediaan8020_02

Introduction

There are many advantages in using In-System Pro-
grammable® ispLSI devices. In board level designs, as
well as during manufacturing, the flexibility of hardware
reconfiguration can lead to many innovative system
designs. Once configured, the ispLSI devices’ non-
volatile E2CMOS® cells will retain their configuration
even when the power is turned off. The guaranteed
10,000 programming cycles and 20 year data retention
of the ispLSI device will allow the user to reliably
reconfigure the device as often as required.

This application note highlights the advantages of de-
signing with ispLSI devices and how they can lead to
innovative design ideas which translate to ease of use
and instant updates without board layout changes. The
flexibility of design is illustrated with the use of the
Dynamic Random Access Memory (DRAM) controller.
This example shows a typical microprocessor and
memory interface with the memory controller controlling
the DRAM access and refresh timing requirements. The
use of pLSI® and ispLSI Development System (pDS®)
Software is also illustrated in this application note. The
Lattice Design File (.ldf) listing file generated by the
software is also attached at the end of this section.

Memory Controller Logic Overview

When interfacing the microprocessor to the DRAM, the
control signal and timing requirements of both the pro-
cessor and the DRAM must be satisfied. In order to
satisfy these requirements, the external timing controller
must take the processor address, data and control sig-
nals and translate them into the control signals for the
DRAM. At the same time, the DRAM timing controller
must take into account the refresh requirements of the
DRAM.

Figure 1 shows the block diagram of the DRAM timing
controller that is implemented in the ispLSI 1032. The
state machine and address multiplexer blocks are used
to control the memory access request of the processor
and supply the DRAM with the necessary address and
control signals. DRAM refresh requirements are con-
trolled by the refresh timer block, refresh address counter
block and the address multiplexer block.

Any access request from the processor is processed by
the state machine based on the processor control signals
such as Read/Write (R/W), Memory/IO access (M/IO),
Address Latch Enable (ALE) and the microprocessor
address signals. The Ready (RDY) signal is used to

ispLSI Configurable
Memory Controller

®

Figure 1. DRAM Timing Controller Block Diagram

Refresh

Timer

State

Machine

Refresh Complete (RFC)

Refresh

Access

SYSCLK

RESET

R/W
M/IO
ALE
RDY

2

Microprocessor

Address

22 20

ACC/REF

ROW/COL

Address

Multiplexer

Refresh

Address

Counter

RAS0–RAS3

W

RAM

ADDRESS

10

CAS0–CAS3

10

4

4

2 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

inform the processor the status of the requested data. In
other words, it is used to acknowledge the processor that

the memory is ready to respond to the processor. The
address multiplexer generates the row and column ad-
dresses necessary for the memory access cycle. The
appropriate Row Address Strobe (RAS), Column Ad-
dress Strobe (CAS), and Write (W) signals are also
generated by the state machine based on the processor
inputs. To arbitrate between the memory access request
and the refresh request, the state machine also gener-
ates the status signal called Access. The purpose of this
signal is to keep track of an access cycle when the
refresh sequence is in progress. This status signal is
then used to determine whether or not to begin an access
sequence after the refresh sequence. As part of the
access/refresh arbitration, the state machine also issues
an Access/Refresh (ACC/REF) signal to the address
multiplexer logic block. Based on this signal the address
multiplexer block routes the appropriate access or re-
fresh address on to the external DRAM address bus.

As for all DRAMs, memory refresh must be completed
within a specified time. This process is completely
controlled by the DRAM timing controller. The refresh
timer block generates the internal refresh request signal
according to the system clock speed and the DRAM
refresh rate requirements. When the state machine
detects this refresh request signal, the refresh sequence
for the DRAM is generated as soon as time permits. This
means that the refresh sequence is generated right after
the refresh request or if the timing controller is in the
middle of a memory access cycle the refresh sequence
is generated right after the memory access cycle is
complete. During the refresh sequence, the row address
and all the RAS signal must be activated to perform the
basic RAS-only refresh. The row addresses are supplied
by the refresh address counter logic block. This logic
block keeps track of the rows that are being refreshed
and it gets incremented every time a refresh sequence is
performed. All the RAS signal are activated for refresh
by the state machine.

With the basic understanding of the DRAM timing control
logic complete, the next section will discuss the imple-
mentation of the logic in an ispLSI device and how to take
advantage of the ISP™ features to make the system
design, manufacturing and field updates easy and
flexible.

Taking Advantage of ISP Features

Implementing a basic DRAM timing control logic in the
ispLSI 1032 takes up approximately 65% of the total logic

available in the device. (It is with this in mind that the
features needed for a specific design can be added to
these basic logic blocks). With ISP capability, many
features can be added to accommodate the ever-chang-
ing requirements of the system, microprocessor speeds,
availability of DRAMs, and the memory configurations.
Moreover, the changes are made only under the software
control. Instead of having different production runs for
various different options, the options are added at the in-
system programming stage.

Different System Speed

Designing with a different speed microprocessor re-
quires a different DRAM timing controller. The adjustments
must be made in the state machine and refresh timer
logic of the controller to account for the difference in
speed. Without the capabilities of the ISP features,
different boards with different PLD codes must be built to
work with different processor speeds. By providing a
simple programming circuitry on board to support the isp
programming, the logic adjustments for different speed
processor can be accomplished by in-system program-
ming the different patterns via software control.
Manufacture of these options are made simple and cost
effective by not having to keep an inventory of prepatterned
devices.

DRAM Feature Flexibility

DRAMs have many features from which the system
designer can select. For the same DRAM configuration,
the system designer can select from DRAMs that have
different access schemes such as nibble mode, static
column mode and page mode. Similarly, different memory
refresh schemes can be chosen. The two choices of
refresh schemes include the simple RAS only refresh
and the option to perform hidden refresh with the CAS
before RAS refresh scheme. Most of these various
DRAM options can be supported by programming the
ispLSI devices in-system. Again, the flexibility lies in the
fact that the decision about what function the ispLSI
device will perform on board can be made after the type
of DRAMs used on board have been determined.

Different DRAM Configuration

The ispLSI implementation of the DRAM timing controller
makes the change of memory configuration very simple.
Reprogramming of the address decoding and turning on
the appropriate address strobe signals for different
memory configuration can be done by in-system
reconfiguration of the state machine and the address

3 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

Figure 2. DRAM Timing Controller State Machine

Idle State

ST1,ST0 = 0,0

Refresh

?

Yes

No

Initialize

Refresh State

ST1,ST0 = 0,1

!ALE

and M/IO or

ACCESS

?

Yes

No

Access State

ST1,ST0 = 1,0

through the operation until the sequence is complete.
The purpose of the state variable bits are only to keep
track of the state transitions. Once the state transition
has occurred, the state counter bits take the responsibil-
ity of sequencing through the state.

The three states are divided as idle state, access state
and refresh state. Based on the processor control signal
and the internal refresh request signal, the state transi-
tion occurs from idle state to either access state or refresh
state. If the refresh and access request happen at the
same time, refresh request takes precedence over ac-
cess request. When the refresh request is asserted
during an access cycle, the refresh cycle follows right
after the access cycle. The only other condition between
the access and refresh request that the state machine
needs to arbitrate is when the access request occurs
during the refresh sequence. The access feedback
signal of the state machine is activated when the access
request occurs during the refresh cycle. When the
refresh cycle is complete, the access feedback signal is
used to determine whether or not the access sequence
needs to begin. The timing diagrams in Figures 3 and 4
illustrate the control signal sequence for the access and
refresh cycles, respectively.

In addition to the external DRAM control signals, the state
machine also generates the control signal for the address
multiplexer and the refresh address counter. The ROW/
COL signal directs the address multiplexer to output the
appropriate row and column address during the access
cycle. Furthermore, the address multiplexer accepts the

decoding of the ispLSI device. All of these changes can
be accomplished under software control.

Memory Timing Controller Details

As shown in Figure 1, the memory timing controller
consists of four different logic blocks. The refresh timer,
state machine, refresh address counter and memory
address multiplexer. All Boolean equations for the logic
blocks are developed within the pDS software. The entire
memory timing controller design assumes that all the
processor signals are typical of a commercially available
processor with a clock speed of 25MHz. DRAMs are
arranged in four banks of 1M X 32-bit arrangement. All
timing for the access and refresh sequences are shown
in the timing diagram.

Refresh Timer

The function of the refresh timer is to generate a refresh
request signal every 15.5 µs. This refresh period is
derived from the DRAM refresh requirement of 512 rows
of refresh every 8ms for the 1M X 1 DRAM. Based on the
25MHz system clock frequency, the count value to divide
the clock period to the refresh period is 200. Changing
processor speed will only require a change of count
value. Once the count value expires, the refresh timer
generates an internal refresh signal to inform the state
machine to perform a refresh cycle. When the state
machine completes the refresh cycle, a refresh complete
(RFC) signal is generated for the refresh timer. The
refresh timer then resets the internal counter for the next
refresh period.

ispLSI implementation of the refresh timer takes up three
GLBs (A0-A2) within the device. The system clock is
used to run the 9-bit counter, RFC is the input signal to
this block and REFRESH is the output signal of this logic
block.

State Machine

The state machine can be further divided into four differ-
ent sub-logic blocks. These sub-logic blocks consists of
a RAS generator, CAS generator, four-bit state machine
which is divided into two state variable bits and two
counter bits, and control signal generator. In the ispLSI
1032 implementation, the state machine logic block takes
up nine GLBs.

The four-bit state machine is divided into a two-bit state
variable, named ST0 and ST1, and two-bit state counter,
named SCNT0 and SCNT1. The state diagram with its
state transitions are shown in Figure 2. In each of the
access and refresh states, the state counter sequences

4 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

CLK

0 1 2 3 4

ALE

R/W

M/IO

ADDR

DATA

RDY

RAS

CAS

W

ROW/COL

ACC/REF

Figure 3. Access Cycle Timing

Figure 4. Refresh Cycle Timing

CLK

REFRESH

XACC/REF

RAS

RFC

ACCESS

W

0 1 2 3 4

access/refresh (ACC/REF) control signal to either direct
the memory access address from the processor or direct
the refresh row address from the refresh address counter
to the DRAM.

Refresh Address Counter

The refresh address counter keeps track of the rows of
DRAM to be refreshed. This counter is only incremented
on the falling edge of the RAS signal during refresh
sequence. The ispLSI device implementation of this
counter takes three GLBs.

5 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

Memory Address Multiplexer

In access mode, determined by the ACC/REF internal
signal, the memory address multiplexer multiplexes be-
tween the row and column address. Once in the refresh
cycle, the refresh address comes from the refresh ad-
dress counter. It takes three GLBs to implement the
multiplexer in the ispLSI 1032.

Summary

This application note uses the example of a generalized
DRAM timing controller to demonstrate how ISP features
can be used to improve design features and the manu-
facturing process. The software example provides a
starting point for designers implementing state machine
based designs. With the flexibility of ispLSI devices,
innovative design possibilities are limitless.

The following section lists the Lattice Design file with the
Boolean Equations and pinout for the ispLSI 1032.

6 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

Design LDF Listing

//isp_app.ldf generated using Lattice pDS Version 2.50
LDF 1.00.00 DESIGNLDF;
DESIGN DRAM CONTROLLER 1.00;
PROJECTNAMEispAPPLICATIONS;
DESCRIPTION
DRAM CONTROLLER DESIGN FORispAPPLICATION.
IT INCLUDES FOUR MAJOR BLOCKS.
 - REFRESH TIMER
 - REFRESH ROW ADDRESS COUNTER
 - ADDRESS MUX
 - STATE MACHINE;

PART ispLSI 1032-90LJ;

DECLARE
END; //DECLARE

SYM GLB C2 1 ;
 ///// ROW ADDRESS STROBE (RAS1,RAS0) GLB /////
 SIGTYPE IRAS1 REG OUT;
 SIGTYPE IRAS0 REG OUT;
 EQUATIONS
 IRAS1.CLK = ICLK;
 IRAS1 = !ST0 & !IA20 & IRAS1 & !IRESET ///// REDUCED RAS1 /////

 # !ST1 & IA21 & IRAS1 & !IRESET
 # !ST0 & ST1 & SCNT0 & SCNT1 & IA20 & !IA21 & !IRESET
 # ST0 & !ST1 & SCNT0 & SCNT1 & !IRESET
 # !ST0 & !ST1 & IRAS1 & !IRESET
 # ST0 & ST1 & IRAS1 & !IRESET
 # SCNT1 & IRAS1 & !IRESET
 # SCNT0 & IRAS1 & !IRESET;

 IRAS0 = !ST0 & IA20 & IRAS0 & !IRESET ///// REDUCED RAS0 /////
 # !ST1 & IA21 & IRAS0 & !IRESET
 # !ST0 & ST1 & SCNT0 & SCNT1 & !IA20 & !IA21 & !IRESET
 # ST0 & !ST1 & SCNT0 & SCNT1 & !IRESET
 # !ST0 & !ST1 & IRAS0 & !IRESET
 # ST0 & ST1 & IRAS2 & !IRESET
 # SCNT1 & IRAS0 & !IRESET
 # SCNT0 & IRAS0 & !IRESET;

 END
END;

SYM GLB A2 1 ;
 ///// REFRESH TIMER GLB2 /////
 SIGTYPE RQ8 REG OUT;
 SIGTYPE RQ9 REG OUT;
 SIGTYPE REFRESH REG OUT;
 FJK11 (REFRESH,R_RATE,RFC,ICLK); ///// REFRESH REQUEST SIGNAL /////
 EQUATIONS
 RQ8.CLK = ICLK;
 RQ8 = (RQ8 & !RFC)

 $$ (RQ7 & RQ6 & RQ5 & RQ4 & RQ3 & RQ2 & RQ1 & RQ0 & !RFC);
 RQ9 = (RQ9 & !RFC)

 $$ (RQ8 & RQ7 & RQ6 & RQ5 & RQ4 & RQ3 & RQ2 & RQ1 & RQ0 & !RFC);
 R_RATE = RQ7 & RQ6 & !RQ5 & !RQ4 & RQ3 & !RQ2 & !RQ1 & !RQ0;
 END
END;

7 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM GLB A1 1 ;
 ///// REFRESH TIMER GLB1 /////
 SIGTYPE RQ4 REG OUT;
 SIGTYPE RQ5 REG OUT;
 SIGTYPE RQ6 REG OUT;
 SIGTYPE RQ7 REG OUT;
 EQUATIONS
 RQ4.CLK = ICLK;
 RQ4 = (RQ4 & !RFC)

 $$ (RQ3 & RQ2 & RQ1 & RQ0 & !RFC);
 RQ5 = (RQ5 & !RFC)

 $$ (RQ4 & RQ3 & RQ2 & RQ1 & RQ0 & !RFC);
 RQ6 = (RQ6 & !RFC)

 $$ (RQ5 & RQ4 & RQ3 & RQ2 & RQ1 & RQ0 & !RFC
 RQ7 = (RQ7 & !RFC)

 $$ (RQ6 & RQ5 & RQ4 & RQ3 & RQ2 & RQ1 & RQ0 & !RFC);
 END
END;

SYM GLB A0 1 ;
 ////// REFRESH TIMER GLB0 /////
 SIGTYPE RQ0 REG OUT;
 SIGTYPE RQ1 REG OUT;
 SIGTYPE RQ2 REG OUT;
 SIGTYPE RQ3 REG OUT;
 EQUATIONS
 RQ0.CLK = ICLK;
 RQ0 = !RQ0 & !RFC;
 RQ1 = (RQ1 & !RFC)

 $$ (RQ0 & !RFC);
 RQ2 = (RQ2 & !RFC)

 $$ (RQ1 & RQ0 & !RFC);
 RQ3 = (RQ3 & !RFC)

 $$ (RQ2 & RQ1 & RQ0 & !RFC);
 END
END;

SYM GLB D0 1 ;
 ///// ADDRESS MUX GLB0 /////
 SIGTYPE IRAM0 ASYNC OUT;
 SIGTYPE IRAM1 ASYNC OUT;
 SIGTYPE IRAM2 ASYNC OUT;
 SIGTYPE IRAM3 ASYNC OUT;
 EQUATIONS
 IRAM0 = ROW_COL & ACC_REF & IA0 ///// ROW SELECT /////

 # !ROW_COL & ACC_REF & IA10 ///// COLUMN SELECT /////
 # !ACC_REF & RCNTR0; ///// REFRESH ADDR SELECT /////

 IRAM1 = ROW_COL & ACC_REF & IA1
 # !ROW_COL & ACC_REF & IA11
 # !ACC_REF & RCNTR1;

 IRAM2 = ROW_COL & ACC_REF & IA2
 # !ROW_COL & ACC_REF & IA12
 # !ACC_REF & RCNTR2;

 IRAM3 = ROW_COL & ACC_REF & IA3
 # !ROW_COL & ACC_REF & IA13
 # !ACC_REF & RCNTR3;

 END
END;

8 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM GLB D1 1 ;
 ///// ADDRESS MUX GLB1 /////
 SIGTYPE IRAM4 ASYNC OUT;
 SIGTYPE IRAM5 ASYNC OUT;
 SIGTYPE IRAM6 ASYNC OUT;
 SIGTYPE IRAM7 ASYNC OUT;
 EQUATIONS
 IRAM4 = ROW_COL & ACC_REF & IA4 ///// ROW SELECT /////

 # !ROW_COL & ACC_REF & IA14 ///// COLUMN SELECT /////
 # !ACC_REF & RCNTR4; ///// REFRESH ADDR SELECT /////

 IRAM5 = ROW_COL & ACC_REF & IA5
 # !ROW_COL & ACC_REF & IA15
 # !ACC_REF & RCNTR5;

 IRAM6 = ROW_COL & ACC_REF & IA6
 # !ROW_COL & ACC_REF & IA16
 # !ACC_REF & RCNTR6;

 IRAM7 = ROW_COL & ACC_REF & IA7
 # !ROW_COL & ACC_REF & IA17
 # !ACC_REF & RCNTR7;

 END
END;

SYM GLB D2 1 ;
 ///// ADDRESS MUX GLB2 /////
 SIGTYPE IRAM8 ASYNC OUT;
 SIGTYPE IRAM9 ASYNC OUT;
 EQUATIONS
 IRAM8 = ROW_COL & ACC_REF & IA8 ///// ROW SELECT /////

 # !ROW_COL & ACC_REF & IA18 ///// COLUMN SELECT /////
 # !ACC_REF & RCNTR8; ///// REFRESH ADDR SELECT /////

 IRAM9 = ROW_COL & ACC_REF & IA9
 # !ROW_COL & ACC_REF & IA19
 # !ACC_REF & RCNTR9;

 END
END;

SYM GLB D5 1 ;
////// REFRESH ROW COUNTER GLB0 /////
 SIGTYPE RCNTR0 REG OUT;
 SIGTYPE RCNTR1 REG OUT;
 SIGTYPE RCNTR2 REG OUT;
 SIGTYPE RCNTR3 REG OUT;
 EQUATIONS
 RCNTR0.PTCLK = !IRAS0; ///// USE RAS AS THE COUNTER CLOCK ////
 RCNTR0 = !RCNTR0 & !ACC_REF ///// COUNT DURING REFRESH /////

 # RCNTR0 & ACC_REF; ///// HOLD DURING ACCESS /////
 RCNTR1 = (RCNTR1 & !ACC_REF)

 $$ ((RCNTR0 & !ACC_REF)
 # (RCNTR1 & ACC_REF));

 RCNTR2 = (RCNTR2 & !ACC_REF)
 $$ ((RCNTR1 & RCNTR0 & !ACC_REF)
 # (RCNTR2 & ACC_REF));

 RCNTR3 = (RCNTR3 & !ACC_REF)
 $$ ((RCNTR2 & RCNTR1 & RCNTR0 & !ACC_REF)
 # (RCNTR3 & ACC_REF));

 END
END;

9 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM GLB D6 1 ;
 ////// REFRESH ROW COUNTER GLB1 /////
 SIGTYPE RCNTR4 REG OUT;
 SIGTYPE RCNTR5 REG OUT;
 SIGTYPE RCNTR6 REG OUT;
 SIGTYPE RCNTR7 REG OUT;
 EQUATIONS
 ///// USE RAS AS THE COUNTER CLOCK ////
 RCNTR4.PTCLK = !IRAS0;
 RCNTR4 = (RCNTR4 & !ACC_REF)
 ///// COUNT DURING REFRESH /////

 $$ ((RCNTR3 & RCNTR2 & RCNTR1 & RCNTR0 & !ACC_REF)
 # (RCNTR4 & ACC_REF));

 ///// HOLD DURING ACCESS /////
 RCNTR5 = (RCNTR5 & !ACC_REF)

 $$ ((RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTR0 & !ACC_REF)
 # (RCNTR5 & ACC_REF));

 RCNTR6 = (RCNTR6 & !ACC_REF)
 $$ ((RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTR0 & !ACC_REF)
 # (RCNTR6 & ACC_REF));

 RCNTR7 = (RCNTR7 & !ACC_REF)
 $$ ((RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTR0 &

 !ACC_REF)
 # (RCNTR7 & ACC_REF));

 END
END;

 SYM GLB D7 1 ;
 ////// REFRESH ROW COUNTER GLB2 /////
 SIGTYPE RCNTR8 REG OUT;
 SIGTYPE RCNTR9 REG OUT;
 EQUATIONS
 RCNTR8.PTCLK = !IRAS0; ///// USE RAS AS THE COUNTER CLOCK ////
 RCNTR8 = (RCNTR8 & !ACC_REF)

 $$ ((RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4
 ///// COUNT DURING REFRESH /////

 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTR0 & !ACC_REF) # (RCNTR8 & ACC_REF));
 ///// HOLD DURING ACCESS /////
 RCNTR9 = (RCNTR9 & !ACC_REF)

 $$ ((RCNTR8 & RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 &
 RCNTR1 & RCNTR0 & !ACC_REF)

 # (RCNTR9 & ACC_REF));
 END
END;

SYM GLB C7 1 ;
 ///// STATE BITS GLB /////
 SIGTYPE ST0 REG OUT;
 SIGTYPE ST1 REG OUT;
 FJK11 (ST0,JST0,KST0,ICLK);
 FJK11 (ST1,JST1,KST1,ICLK);
 EQUATIONS
 JST0 = !ST1 & !ST0 & REFRESH; ///// STATE BIT0 SET INPUT /////
 KST0 = !ST1 & ST0 & SCNT1 & SCNT0; ///// STATE BIT0 RESET INPUT ///
//
 JST1 = !ST1 & !ST0 & !REFRESH & !IALE & IMIO_

10 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

 # !ST1 & !ST0 & !REFRESH & ACCESS; ///// STATE BIT1 SET INPUT
/////
 KST1 = ST1 & !ST0 & SCNT1 & SCNT0

 # !ST1 & ST0 & SCNT1 & SCNT0; ///// STATE BIT0 RESET INPUT
/////
 END
END;

SYM GLB C6 1 ;
///// STATE COUNTER BITS GLB /////
 SIGTYPE SCNT0 REG OUT;
 SIGTYPE SCNT1 REG OUT;
 FJK11 (SCNT0,JSCNT0,KSCNT0,ICLK);
 FJK11 (SCNT1,JSCNT1,KSCNT1,ICLK);
 EQUATIONS
 JSCNT0 = !SCNT0 & ST1 & !ST0

 # !SCNT0 & !ST1 & ST0; ///// STATE COUNTER BIT0 SET INPUT /////
 KSCNT0 = SCNT0 & ST1 & !ST0

 # SCNT0 & !ST1 & ST0
 # ST1 & !ST0 & SCNT1 & SCNT0
 # !ST1 & ST0 & SCNT1 & SCNT0; /////STATE COUNTER BIT0 RESET INPUT

/////
 JSCNT1 = !SCNT1 & SCNT0 & ST1 & !ST0

 # !SCNT1 & SCNT0 & !ST1 & ST0; ///// STATE COUNTER BIT1 SET INPUT
////
 KSCNT1 = SCNT1 & SCNT0 & ST1 & !ST0�

 # SCNT1 & SCNT0 & !ST1 & ST0
 # ST1 & !ST0 & SCNT1 & SCNT0
 # !ST1 & ST0 & SCNT1 & SCNT0; ///// STATE COUNTER BIT0 RESET INPUT

/////
 END
END;

SYM GLB C5 1 ;
 ///// CONTROL SIGNALS GLB0 /////
 SIGTYPE RFC REG OUT;
 SIGTYPE ACC_REF REG OUT;
 FJK11 (RFC,JRFC,KRFC,ICLK);
 FJK11 (ACC_REF,JACC_REF,KACC_REF,ICLK);
 EQUATIONS
 JRFC = !ST1 & ST0 & SCNT1 & !SCNT0; ///// REFRESH COMPLETE SET
INPUT /////
 KRFC = !ST1 & ST0 & SCNT1 & SCNT0; ///// REFRESH COMPLETE RESET INPUT //
///
 JACC_REF = !ST1 & ST0 & SCNT1 & SCNT0

 # IRESET; ///// ACCESS/REFRESH SET INPUT ////
/
 KACC_REF = !ST1 & !ST0 & REFRESH & !IRESET;/////ACCESS/REFRESH RESET INPUT
/////
 END
END;

SYM GLB C1 1 ;
///// ROW ADDRESS STROBE (RAS3,RAS2) GLB /////
 SIGTYPE IRAS3 REG OUT;
 SIGTYPE IRAS2 REG OUT;
 EQUATIONS
 IRAS3 = !ST0 & !IA20 & IRAS3 & !IRESET ///// REDUCED RAS3 /////

 # !ST1 & !IA21 & IRAS3 & !IRESET
 # !ST0 & ST1 & SCNT0 & SCNT1 & IA20 & IA21 & !IRESET
 # ST0 & !ST1 & SCNT0 & SCNT1 & !IRESET

11 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

 # !ST0 & !ST1 & IRAS3 & !IRESET
 # ST0 & ST1 & IRAS3 & !IRESET
 # SCNT1 & IRAS3 & !IRESET
 # SCNT0 & IRAS3 & !IRESET;

 IRAS3.CLK = ICLK;

 IRAS2 = !ST0 & IA20 & IRAS2 & !IRESET ///// REDUCED RAS2 /////
 # !ST1 & !IA21 & IRAS2 & !IRESET
 # !ST0 & ST1 & SCNT0 & SCNT1 & !IA20 & IA21 & !IRESET
 # ST0 & !ST1 & SCNT0 & SCNT1 & !IRESET
 # !ST0 & !ST1 & IRAS2 & !IRESET
 # ST0 & ST1 & IRAS2 & !IRESET
 # SCNT1 & IRAS2 & !IRESET
 # SCNT0 & IRAS2 & !IRESET;

 IRAS2.CLK = ICLK;

 END
END;
SYM GLB B7 1 ;
 ///// COLUMN ADDRESS STROBE (CAS0,CAS1) GLB0 /////
 SIGTYPE ICAS0 REG OUT;
 SIGTYPE ICAS1 REG OUT;
 FJK11 (ICAS0,JCAS0,KCAS0,ICLK);
 FJK11 (ICAS1,JCAS1,KCAS1,ICLK);
 EQUATIONS
 ///// CAS0 SET INPUT /////
 JCAS0 = ST1 & !ST0 & !IA1 & !IA0 & SCNT1 & SCNT0

 # IRESET;
 /////CAS0 RESET INPUT /////
 KCAS0 = ST1 & !ST0 & !IA1 & !IA0 & !SCNT1 & SCNT0 & !IRESET;
 ///// CAS1 SET INPUT /////
 JCAS1 = ST1 & !ST0 & !IA1 & IA0 & SCNT1 & SCNT0

 # IRESET;
 /////CAS1 RESET INPUT /////
 KCAS1 = ST1 & !ST0 & !IA1 & IA0 & !SCNT1 & SCNT0 & !IRESET;
 END
END;

SYM GLB B6 1 ;
 ///// COLUMN ADDRESS STROBE (CAS2,CAS3) GLB1 /////
 SIGTYPE ICAS2 REG OUT;
 SIGTYPE ICAS3 REG OUT;
 FJK11 (ICAS2,JCAS2,KCAS2,ICLK);
 FJK11 (ICAS3,JCAS3,KCAS3,ICLK);
 EQUATIONS
 JCAS2 = ST1 & !ST0 & IA1 & !IA0 & !SCNT1 & SCNT0 ///// CAS2 SET INPUT
/////

 # IRESET;
 ///// CAS2 RESET INPUT /////
 KCAS2 = ST1 & !ST0 & IA1 & !IA0 & SCNT1 & SCNT0 & !IRESET;
 JCAS3 = ST1 & !ST0 & IA1 & IA0 & !SCNT1 & SCNT0///// CAS3 SET INPUT /////

 # IRESET;
 ///// CAS3 RESET INPUT /////
 KCAS3 = ST1 & !ST0 & IA1 & IA0 & SCNT1 & SCNT0 & !IRESET;
 END
END;

12 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM GLB B5 1 ;
///// CONTROL SIGNALS (ACCESS,WRITE) GLB1 /////
 SIGTYPE ACCESS REG OUT;
 SIGTYPE IWREG REG OUT;
 FJK11 (ACCESS,JACCESS,KACCESS,ICLK);
 FJK11 (IWREG,JWREG,KWREG,ICLK);
 EQUATIONS
 JACCESS = !IALE & IMIO_; ///// MEMORY ACCESS REQUEST SET INPUT ////
/
 KACCESS = ST1 & !ST0 & SCNT1 & SCNT0;/////MEMORY ACCESS REQUEST RESET
INPUT/////
 JWREG = !ACCESS & IRW_ ///// WRITE REGISTER SET INPUT /////

 # ST1 & !ST0 & SCNT1 & SCNT0
 # IRESET;

 KWREG = !ACCESS & !IRW_ & !IRESET; ///// WRITE REGISTER RESET INPUT
/////
 END
END;

SYM GLB B4 1 ;
 ///// CONTROL SIGNALS (ROW/COL,RDY)GLB2 /////
 SIGTYPE ROW_COL REG OUT;
 SIGTYPE IRDY REG OUT;
 FJK11 (ROW_COL,JROW_COL,KROW_COL,ICLK);
 FJK11 (IRDY,JRDY,KRDY,ICLK);
 EQUATIONS
 JROW_COL = ST1 & !ST0 & SCNT1 & SCNT0///// ROW/COL SELECT SET INPUT /////

 # IRESET;
 KROW_COL = ST1 & !ST0 & !SCNT1 & SCNT0 & !IRESET/////ROW/COL SELECT RESET SET
 INPUT/////
 JRDY = ST1 & !ST0 & SCNT1 & !SCNT0; ///// READY SET INPUT /////
 KRDY = ST1 & !ST0 & SCNT1 & SCNT0; ///// READY RESET INPUT /////
 END
END;

SYM IOC IO16 1 ;
 // ADDR 12 I/O CELL W/REG. INPUT //
 XPIN IO XA12;
 ID11 (IA12,XA12,IICLK);
END;

SYM IOC IO15 1 ;
 // ADDR 11 I/O CELL W/REG. INPUT //
 XPIN IO XA11;
 ID11 (IA11,XA11,IICLK);
END;

SYM IOC IO14 1 ;
 // ADDR 10 I/O CELL W/REG. INPUT //
 XPIN IO XA10;
 ID11 (IA10,XA10,IICLK);
END;

SYM IOC IO13 1 ;
 // ADDR 9 I/O CELL W/REG. INPUT //
 XPIN IO XA9;
 ID11 (IA9,XA9,IICLK);
END;

13 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM IOC IO12 1 ;
 // ADDR 8 I/O CELL W/REG. INPUT //
 XPIN IO XA8;
 ID11 (IA8,XA8,IICLK);
END;

SYM IOC IO11 1 ;
 // ADDR 7 I/O CELL W/REG. INPUT //
 XPIN IO XA7;
 ID11 (IA7,XA7,IICLK);
END;
SYM IOC IO10 1 ;
 // ADDR 6 I/O CELL W/REG. INPUT //
 XPIN IO XA6;
 ID11 (IA6,XA6,IICLK);
END;

SYM IOC IO9 1 ;
 // ADDR 5 I/O CELL W/REG. INPUT //
 XPIN IO XA5;
 ID11 (IA5,XA5,IICLK);
END;

SYM IOC IO8 1 ;

 // ADDR 4 I/O CELL W/REG. INPUT //
 XPIN IO XA4;
 ID11 (IA4,XA4,IICLK);
END;

SYM IOC IO7 1 ;
 // ADDR 3 I/O CELL W/REG. INPUT //
 XPIN IO XA3;
 ID11 (IA3,XA3,IICLK);

END;
SYM IOC Y2 1 ;
 // INPUT REGISTER CLOCK (ALE) //
 XPIN CLK XICLK;
 IB11 (IICLK,XICLK);
END;

SYM IOC IO6 1 ;
 // ADDR 2 I/O CELL W/REG. INPUT //
 XPIN IO XA2;
 ID11 (IA2,XA2,IICLK);
END;

SYM IOC IO5 1 ;
 // ADDR 1 I/O CELL W/REG. INPUT //
 XPIN IO XA1;
 ID11 (IA1,XA1,IICLK);
END;

SYM IOC IO4 1 ;
 // ADDR 0 I/O CELL W/REG. INPUT //
 XPIN IO XA0;
 ID11 (IA0,XA0,IICLK);
END;

SYM IOC IO3 1 ;
 // READY I/O CELL, OUTPUT //
 XPIN IO XRDY;
 OB11 (XRDY,IRDY);
END;

SYM IOC IO2 1 ;
 // ADDRESS LATCH ENABLE I/O CELL /
/
 XPIN IO XALE;
 IB11 (IALE,XALE);
END;

SYM IOC IO1 1 ;
 // MEMORY OR I/O ACCESS //
 XPIN IO XMIO_;
 IB11 (IMIO_,XMIO_);
END;

SYM IOC IO0 1 ;
 // READ WRITE SELECTION //
 XPIN IO XRW_;
 IB11 (IRW_,XRW_);
END;

SYM IOC Y0 1 ;
 // SYSTEM CLOCK INPUT //
 XPIN CLK XSYS_CLK LOCK 20;
 IB11 (ICLK,XSYS_CLK);
END;

SYM IOC IO17 1 ;
 // ADDR 13 I/O CELL W/REG. INPUT /
/
 XPIN IO XA13;
 ID11 (IA13,XA13,IICLK);
END;

SYM IOC IO18 1 ;
 // ADDR 14 I/O CELL W/REG. INPUT /
/
 XPIN IO XA14;
 ID11 (IA14,XA14,IICLK);
END;

SYM IOC IO19 1 ;
 // ADDR 15 I/O CELL W/REG. INPUT /
/
 XPIN IO XA15;
 ID11 (IA15,XA15,IICLK);
END;

SYM IOC IO20 1 ;
 // ADDR 20 I/O CELLW/REG. INPUT //
 XPIN IO XA20;
 ID11 (IA20,XA20,IICLK);
END;

14 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM IOC IO21 1;
 // ADDR 21 I/O CELL W/REG.INPUT //
 XPIN IO XA21
 ID11 (IA21,XA21,IICLK);
END;

SYM IOC IO22 1;
 XPIN IO XRESET;
 IB11 (IRESET, XRESET);
END;

SYM IOC IO23 1 ;
XPIN IO XREFRESH;
IB11 (REFRESH, XREFRESH);

END;

SYM IOC IO24 1 ;
XPIN IO XRAM0;
OB11 (XRAM0, IRAM0);

END;

SYM IOC IO25 1 ;
XPIN IO XRAM1;
OB11 (XRAM1, IRAM1);

END;

SYM IOC IO26 1 ;
XPIN IO XRAM2;
OB11 (XRAM2, IRAM2);

END;

SYM IOC IO27 1 ;
XPIN IO XRAM3;
OB11 (XRAM3, IRAM3);

END;

SYM IOC IO28 1 ;
XPIN IO XRAM4;
OB11 (XRAM4, IRAM4);

END;
SYM IOC IO29 1 ;

XPIN IO XRAM5;
OB11 (XRAM5, IRAM5);

END;

SYM IOC IO30 1 ;
XPIN IO XRAM6;
OB11 (XRAM6, IRAM6);

END;

SYM IOC IO31 1 ;
XPIN IO XRAM7;
OB11 (XRAM7, IRAM7);

END;

SYM IOC IO32 1 ;
XPIN IO XRAM8;
OB11 (XRAM8, IRAM8);

END;

SYM IOC IO33 1 ;
XPIN IO XRAM9;
OB11 (XRAM9, IRAM9);

END;

SYM IOC IO34 1 ;
XPIN IO XST0;
OB11 (XST0, ST0);

END;

SYM IOC IO36 1 ;
XPIN IO XST1;
OB11 (XST1, ST1);

END;

SYM IOC IO38 1 ;
XPIN IO XSCNT0;
OB11 (XSCNT0, SCNT0);

END;

SYM IOC IO40 1 ;
XPIN IO XSCNT1;
OB11 (XSCNT1, SCNT1);

END;

SYM IOC IO41 1 ;
XPIN IO XACCESS;
OB11 (XACCESS, ACCESS);

END;
SYM IOC IO42 1 ;

XPIN IO XIWREG;
OB11 (XIWREG, IWREG);

END;

SYM IOC IO43 1 ;
XPIN IO XROW_COL;
OB11 (XROW_COL, ROW_COL);

END;

15 1996 ISP Encyclopedia

ispLSI Configurable Memory Controller

SYM IOC IO44 1 ;
XPIN IO XIRDY;
OB11 (XIRDY, IRDY);

END;
SYM IOC IO45 1 ;

XPIN IO XRFC;
OB11 (XRFC, RFC);

END;

SYM IOC IO46 1 ;
XPIN IO XACC_REF;
OB11 (XACC_REF, ACC_REF);

END;

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	Memory Controller Logic Overview
	Taking Advantage of ISP Features
	Different System Speed
	DRAM Feature Flexibility
	Different DRAM Configuration
	Refresh Address Counter
	Memory Address Multiplexer
	Summary
	Design LDF Listing

