EXTRA! Basic
Language Reference

Manual #221117 First Edition: December, 1995

The information in this document is subject to change without notice and should not be
construed as a commitment by Attachmate Corporation. Attachmate Corporation assumes no
responsibility for any errors that may appear in this document. The information disclosed
herein is proprietary to Attachmate Corporation and as such, no part of this publication may
be reproduced, disclosed, stored in a retrieval system or transmitted in any form or by any
means, including electronic, mechanical, photographic, or magnetic, without the prior
written consent of Attachmate Corporation.

0 1985, 1989-1995 Attachmate Corporation
All Rights Reserved. Printed in the U.S.A.

Portions © 1992-95 Microsoft Corporation. All Rights Reserved.

Portions © 1993-95 Softbridge, Inc. All Rights Reserved.

Attachmate, EXTRA! and EXTRA! Personal Client are registered trademarks of Attachmate
Corporation.

Microsoft, Microsoft Press, MS-DOS, and Windows are registered trademarks, and Visual
Basic and Windows NT are trademarks of Microsoft Corporation.

Visio is a trademark of Shapeware Corporation.

U.S. GOVERNMENT RESTRICTED RIGHTS

The Licensed Software and documentation are provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the Government is subject to restrictions as set forth in
subdivision (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Contractor/manufacturer is
Attachmate Corporation, 3617 - 131st Avenue SE, Bellevue, Washington, 98006, U.S.A.

Table of Contents

Related Documentation
Manuals
Online Help

Let Us Know How We're Doing

Chapter 1: Language Overview
About the Editor
Typographic Conventions used in the EXTRA! Basic Language Descriptions
EXTRA! Basic Arguments
EXTRA! Basic Named Arguments
The EXTRA! Basic Line Continuation Character
How EXTRA! Basic Compares to Other Versions of Basic
How EXTRA! Basic Compares to Visual Basic and Word Basic
EXTRA! Basic Data Types
The Variant Data Type
Data Type Conversion
Dynamic Arrays
Creating a Dialog Box Without the Dialog Editor
Dialog Functions and Statements
Error Handling
Trappable Errors
Expressions
Object Handling
Derived Trigonometric Functions

EXTRA! Basic Macro File Formats

xiii
Xiii
Xiii

Xiv

1-3
1-4
1-4
1-5
1-6
1-7
1-9
1-10
1-12
1-13
1-14
1-15
1-16
1-17
1-17
1-20
1-21
1-22
1-23

EXTRA! Basic Language Reference

Chapter 2: Language Summary
Abs (function)
AppActivate (statement)
Asc (function)
Assert (statement)
Atn (function)

Beep (statement)

Begin Dialog...End Dialog (statement)

Button (statement)
ButtonGroup (statement)
Call (statement)
CancelButton (statement)
Caption (statement)
CCur (function)

CDbl (function)

ChDir (statement)
ChbDrive (statement)
CheckBox (statement)
Chr (function)

Cint (function)

CLng (function)

Close (statement)
ComboBox (statement)
Command (function)
Const (statement)

Cos (function)
CreateObject (function)

CSng (function)

iv

Table of Contents

CSir (function)

CStrings (metacommand)
CurDir (function)

CVar (function)

CVDate (function)

Date (function)

Date (statement)
DateSerial (function)
DateValue (function)
Day (function)

Declare (statement)
Deftype (statements)
Dialog (function)

Dialog (statement)

Dim (statement)

Dir (function)
DigControlID (function)
DigEnable (function)
DigEnable (statement)
DigFocus (function)
DigFocus (statement)
DiglListBoxArray (function)
DiglListBoxArray (statement)
DigSetPicture (statement)
DigText (function)

DigText (statement)
DigValue (function)
DigValue (statement)

DigVisible (function)

2-52
2-53
2-55
2-56
2-57
2-59
2-60
2-62
2-64
2-66
2-67
2-71
2-73
2-75
2-77
2-79
2-82
2-85
2-87
2-89
2-91
2-93
2-95
2-98
2-100
2-103
2-106
2-109
2-112

\'"

EXTRA! Basic Language Reference

DigVisible (statement) 2-114
DoEvents (statement) 2-116
Do While...Loop/Do Until...Loop (statements) 2-117
DropComboBox (statement) 2-119
DroplistBox (statement) 2-122
Environ (function) 2-125
Eof (function) 2-127
Erase (statement) 2-128
Erl (function) 2-130
Err (function) 2-132
Err (statement) 2-134
Error (statement) 2-136
Error (function) 2-138
Exit (statement) 2-140
Exp (function) 2-142
FileAttr (function) 2-144
FileCopy (statement) 2-146
FileDateTime (function) 2-148
FileLen (function) 2-150
Fix (function) 2-151
For ... Next (statement) 2-153
Format (function) 2-156
FreeFile (function) 2-167
Function ... End Function (statement) 2-168
FV (function) 2-171
Get (statement) 2-173
GetAtir (function) 2-176
GetObject (function) 2-179
GetField (function) 2-181

Vi

Table of Contents

Global (statement) 2-182
GoTo (statement) 2-184
GroupBox (statement) 2-186
Hex (function) 2-188
Hour (function) 2-189
If...Then...Else (statement) 2-191
$Include (metacommand) 2-194
Input (function) 2-196
Input (statement) 2-198
InputBox (function) 2-201
InStr (function) 2-203
Int (function) 2-206
IPmt (function) 2-208
IRR (function) 2-210
Is (operator) 2-212
IsDate (function) 2-214
IsEmpty (function) 2-215
IsNull (function) 2-217
IsNumeric (function) 2-219
Kill (statement) 2-221
LBound (function) 2-223
LCase (function) 2-225
Left (function) 2-226
Len (function) 2-228
Let (statement) 2-230
Like (operator) 2-231
Line Input (statement) 2-234
ListBox (statement) 2-236
Loc (function) 2-239

vii

EXTRA! Basic Language Reference

viii

Lock, Unlock (statements)
Lof (function)

Log (function)

LSet (statement)

LTrim (function)

Mid (function)

Mid (statement)

Minute (function)

MkDir (statement)

Month (function)

MsgBox (function)
MsgBox (statement)
Name (statement)

New (reserved word)
NoCStrings (metacommand)
Nothing (reserved word)
Now (function)

NPV (function)

Null (function)

Object (reserved word)
Oct (function)

OkButton (statement)

On Error (statement)

On Goto (statement)
Open (statement)

Option Base (statement)
OptionButton (statement)
Option Compare (statement)

Option Explicit (statement)

2-241
2-244
2-246
2-248
2-250
2-251
2-253
2-255
2-257
2-259
2-261
2-264
2-266
2-268
2-269
2-270
2-272
2-273
2-275
2-277
2-279
2-280
2-282
2-285
2-287
2-289
2-290
2-292
2-294

Table of Contents

OptionGroup (statement) 2-295
PasswordBox (function) 2-296
Picture (statement) 2-298
Pmt (function) 2-300
PPmt (function) 2-302
Print (statement) 2-304
Put (statement) 2-306
PV (function) 2-308
Randomize (statement) 2-310
Rate (function) 2-312
ReDim (statement) 2-314
Rem (statement) 2-317
Reset (statement) 2-318
Resume (statement) 2-320
Right (function) 2-322
RmDir (statement) 2-324
Rnd (function) 2-326
Rset (statement) 2-328
RTrim (function) 2-330
Second (function) 2-332
Seek (function) 2-334
Seek (statement) 2-336
Select Case (statement) 2-338
SendKeys (statement) 2-341
Set (statement) 2-344
SetAttr (statement) 2-346
SetField (function) 2-348
Sgn (function) 2-350
Shell (function) 2-352

ix

EXTRA! Basic Language Reference

Sin (function) 2-354
Space (function) 2-356
Spc (function) 2-357
Sqr (function) 2-359
Static (statement) 2-361
StaticComboBox (statement) 2-363
Stop (statement) 2-366
Str (function) 2-368
StrComp (function) 2-370
String (function) 2-372
Sub...End Sub (statement) 2-373
Tab (function) 2-375
Tan (function) 2-376
Text (statement) 2-378
TexiBox (statement) 2-380
Time (function) 2-382
Time (statement) 2-383
Timer (function) 2-385
TimeSerial (function) 2-387
TimeValue (function) 2-389
Trim (function) 2-391
Type...End Type (statement) 2-392
Typeof (statement) 2-394
UBound (function) 2-395
UCase (function) 2-397
Unlock, Lock (statements) 2-398
Val (function) 2-399
VarType (function) 2-401
Weekday (function) 2-404

Table of Contents

While ... Wend (statement) 2-406

Width (statement) 2-408

With (statement) 2-410

Write (statement) 2-412

Year (function) 2-414
Index

Xi

EXTRA! Basic Language Reference

Related Documentation

In addition to the EXTRA! Basic Language Reference, EXTRA! Personal
Client includes the following documentation:

Manuals

EXTRA! Personal Client User’s Guide, which includes information
about 3270, 5250 and VT file transfer, customizing sessions, printing,
and macros.

OLE Automation Programmer’s Reference, which describes the objects,
methods, and properties of EXTRA! Personal Client. With these, you
can programmatically access the product using OLE Automation.
The manual introduces you to key OLE Automation concepts as they
relate to EXTRA! Personal Client, and serves as a reference to the
product's objects, properties, and methods.

These manuals can be purchased separately or as a set.

Online Help

EXTRA! Personal Client includes a comprehensive set of online help,
including help for the EXTRA! Basic macro language and OLE
Automation. If you use EXTRA! Basic to access the EXTRA! Personal
Client objects, you will find the context-sensitive help in the Macro
Editor especially useful. You can access this help in the following ways:

Display a detailed online Help topic about a particular EXTRA! Basic
or OLE Automation element. Highlight the function, statement, or
call in the Editor workspace and press F1. The Help Index is
displayed pointing to the highest-level entry pertaining to the
highlighted language item or object. Choose an appropriate sub-
entry, if desired, and then choose the Display button.

_Or-

From the Macro Editor Functions and Objects browser, highlight an
EXTRA! Basic or OLE Automation element and choose the question
mark button.

Click the Help button that is located in each Macro Editor dialog
box,

Activate “What’s This” mode by selecting an item in a Macro Editor
dialog box and then clicking the right mouse button, or

xiii

EXTRA! Basic Language Reference

e Click on the Help Mode toolbar button, then click on an element in
the Macro Editor user interface.

Let Us Know How We're Doing

Please fill out the Customer Documentation Feedback Card that comes
with your EXTRA! Personal Client software package to let us know what
you think about the documentation. Your comments are valuable to us.

Xiv

CHAPTER

Language Overview 1

EXTRA! Basic Language Reference

Overview: EXTRA! Basic Language

1-2

f you’ve worked with macros or done some Basic programming

before, much of the material here will be familiar to you. If you
haven’t had any experience with macros or programming in Basic, you
may find it helpful to consult a book on fundamental programming
skills or get help from your system administrator.

You can create a macro by recording a series of actions in EXTRA!
Personal Client, writing it from scratch using the EXTRA! Basic Language,
or by recording some parts and writing others. Recording is best for
simple macros, while more complex macros typically use macro
instructions that cannot be recorded.

Note: Each EXTRA! Basic statement, function, and OLE automation call
online Help topic includes an example. To copy the example code into
your macro code, choose the Copy button in the example window, then
position the cursor in the Editor workspace and choose Paste from the
Edit menu. Then rework the example as needed.

Whether you record a macro or use the Macro Editor to create a macro,
it’s important that the commands you use are carefully worded and
punctuated. Each command must conform to specific rules, or syntax. If
the syntax is incorrect, your macro won’t compile.

The list below will help you understand the syntax that EXTRA! Basic
uses for its macros:

= A function line always starts with a variable assignment. Everything
that follows the function name is enclosed in parentheses.

= You can include text strings, numbers, and other required or
optional parameters within the parentheses. Separate each item with
acomma.

= Text strings are surrounded by quotation marks. For example, “This
is a text string.** Notice that the period within the quotation marks is
part of the string.

= Comments begin with an apostrophe (‘) or the letters REM, and end
at the end of the line. You can start a comment at the beginning of a
line or place it at the end, but you can’t embed a comment within a
function line. Once a comment begins, the rest of the function line is
ignored when the macro is running.

Language Overview

About the Editor

EXTRAI! Personal Client provides the Macro Editor to write and edit
macros. The Macro Editor is an editing environment in which you can
type your own commands, or insert function, statement, or object
templates by choosing from a Functions and Obijects list. Refer to the
EXTRAI! Personal Client User’s Guide for details about using the Macro
Editor.

One of the nice things about using the templates provided by the Macro
Editor is that they already contain the correct syntax. All you have to do
is supply actual variable names or strings as required.

Using the Macro Editor, you can also debug your macro by:
= Printing your macro source code or viewing it in the Macro Editor.

= Inserting a breakpoint by clicking on the sidebar directly opposite a
function or statement. (Breakpoints can be toggled on or off during
the debugging process.)

= Single-stepping through your macro code.
= Watching specific variable values as your macro runs.

= Compiling your macro and checking for syntax errors.

Tip: To display a detailed online Help topic about a particular EXTRA!
Basic or OLE element, highlight the function, statement, or call in the
Editor workspace and press F1. The Help Index is displayed pointing to
the highest-level entry pertaining to the highlighted language item or
object. Choose an appropriate sub-entry, if desired, and then choose the
Display button.

To start the Macro Editor

1. Choose the Macro Editor icon from the EXTRA! Personal Client
program group in the Program Manager or the EXTRA! Personal
Client folder in the Windows 95 Explorer.

Choose Macro from the Tools menu of EXTRA! Personal Client.
The Macro dialog box appears.

2. To edit an existing macro, highlight the desired macro filename and
choose the Edit button.

1-3

EXTRA! Basic Language Reference

To create a new macro, enter the name of the new macro in the
Macro name text field and choose the Edit button.

The Macro Editor is displayed.

To exit the Macro Editor
1. Make sure you have saved your macro.

2. Choose Exit from the File menu.

Typographic Conventions used in the EXTRA! Basic
Language Descriptions

EXTRA! Basic uses the following typographic conventions:

To represent Syntax is
Statements and functions Boldface; initial letter uppercase:
Abs

Len(variable)

Arguments to statements or Italic letters:

functions
variable, rate, prompt$

Optional arguments and/or Italicized arguments and/or
characters characters in brackets:

[,caption$], [type$], [$]

Required choice for an argument List within braces, with OR
from a list of choices operator (|) separating choices:

{Goto label | Resume Next | Goto
0}

EXTRA! Basic Arguments

Arguments to subroutines and functions are listed after the subroutine
or function and may or may not be enclosed in parentheses. Whether
you use parentheses depends on how you want to pass the argument to
the subroutine or function (that is, by value or by reference).

1-4

Language Overview

If an argument is passed by value, it means that the variable used for
that argument retains its value when the subroutine or function returns
to the caller. If an argument is passed by reference, it means that the
variable’s value may be (and probably will be) changed for the calling
procedure. For example, suppose you set the value of a variable, X, to 5
and pass x as an argument to a subroutine, named mysub. If you pass x
by value to mysub, the value of x is still 5 after mysub returns. If you
pass x by reference to mysub, however, x could be 5 or any other value
resulting from the actions of mysub.

To pass an argument by value, use one of the following syntax options:

Call mysub((x))
mysub(x)

Call mysub(x byVal)
mysub x byVal
y=myfunction((x))
Call myfunction((x))

To pass an argument by reference, use one of the following options:

Call mysub(x)

mysub x

y=myfunction(x)

Call myfunction(x)
Externally-declared subroutines and functions (such as DLL functions)
can be declared to take byVal arguments in their declaration. In that
case, those arguments are always passed byVal.

EXTRA! Basic Named Arguments

When you call a subroutine or function that takes arguments, you
usually supply values for those arguments by listing them in the order
shown in the syntax. For example, suppose you define a function this
way:

myfunction(id , action , value)

From the above syntax, you know that the function called myfunction
requires three arguments: id, action, and value. When you call this
function, you supply those arguments in the order shown. If the function
contains just a few arguments, it is fairly easy to remember the order of
each of the arguments. However, if a function has several arguments,
and you want to be sure the values you supply are assigned to the
correct arguments, use named arguments.

Named arguments are arguments identified by name rather than by
position in the syntax. To use a named argument, use the following
syntax:

namedarg := value

1-5

EXTRA! Basic Language Reference

1-6

Using this syntax for myfunction:

myfunction id:=1, action:="get", value:=0
A further advantage of named arguments is that you don’t need to
remember the original order as they were listed in the syntax, so the
following function call is also correct:

myfunction action:="get", value:=0, id:=1
With named arguments, order is not important.

The other significant advantage to named arguments is when you call
functions or subroutines that have a mix of required and optional
arguments. Ordinarily, you need to use commas as placeholders in the
syntax for the optional arguments that you do not use. With named
arguments, however, you can specify just the arguments you want to use
and their values and disregard their order in the syntax. For example, if
myfunction is defined as:

myfunction(id , action , value , Optional counter)
you can use named arguments as follows:

myfunction id:="1", action:="get", value:="0"
or,

myfunction value:="0", counter:="10",
action:="get", id:="1"

Note: Although you can shift the order of named arguments, you cannot
omit required arguments.

All EXTRA! Basic functions and statements accept named arguments.
The argument names are listed in their syntax for the statement and
function.

The EXTRA! Basic Line Continuation Character

Long statements can be continued across more than one line by typing a
space followed by an underscore character at the end of a line and
continuing the statement on the next line. (You can add a comment after
the underscore.) For example:

Dim trMonth As Integer _ ‘month of transaction
tryear As Integer ‘year of transaction

Language Overview

How EXTRA! Basic Compares to Other Versions of Basic

If you are familiar with older versions of Basic (those that predate
Windows), you will notice that EXTRA! Basic includes many new
features and changes from the language you have learned. EXTRA! Basic
more closely resembles other higher level languages popular today, such
as C++ and Pascal.

Line Numbers and Labels

Older versions of Basic require numbers at the beginning of every line.
More recent versions do not support these line numbers; in fact, they
will generate error messages. In place of line numbers, EXTRA! Basic
calls functions and subroutines by name.

If you want to reference a line of code, you can use a label. A label can be
any combination of text and numbers. Usually, it is a single word
followed by a colon, placed at the beginning of a line of code.

Subroutines and Language Modularity

EXTRA! Basic is a modular language; code is divided into subroutines
and functions. The subroutines and functions you write use the EXTRA!
Basic statements and functions to perform actions.

In EXTRA! Basic, the first subroutine must be named “main’‘; it cannot
take any arguments or contain any parentheses. To define it, you use the
Sub...End Sub statements, as follows:

Sub Main
‘body of code here
End Sub
The Main subroutine can then call other subroutines or functions
included in an EXTRA! Basic file.
Global Variables
The placement of variable declarations determines their scope as follows:

Local: Dimensioned within a subroutine or function. The variable is
accessible only to the subroutine or function that dimensioned it.

Module: Dimensioned outside any subroutine or function. The variable
is accessible to any subroutine or function in the same macro.

Global: Dimensioned outside any subroutine or function using the
Global statement. The variable is accessible to any subroutine or function
in any module (macro).

1-7

EXTRA! Basic Language Reference

Data Types

Modern Basic is now a typed language. In addition to the standard data
types -- numeric, string, array, and record -- EXTRA! Basic includes
variants and objects.

Variables that are defined as variants can store any type of data. For
example, the same variable can hold integers one time, and then, later in
a procedure, it can hold strings.

Obijects give you the ability to manipulate complex data supplied by an
application, such as windows, forms, or OLE objects.

Dialog Box Handling

EXTRA! Basic contains extensive dialog box support to give you great
flexibility in creating and running your own customized dialog boxes.
You define a dialog box with dialog control statements between the
Begin Dialog...End Dialog statements, and then display it using the
Dialog statement (or function).

EXTRA! Basic stores information about the selections the user makes in
the dialog box. When the dialog box is closed, you can view this
information.

EXTRA! Basic also includes statements and functions to display other
types of boxes: message boxes notify the user of an event; password
boxes do not echo the user’s keystrokes on the screen; and input boxes
prompt for a single line of input.

Financial Functions

EXTRA! Basic includes a list of financial functions, to calculate, for
example, loan payments, internal rates of return, or future values based
on cash flows.

Date and Time Functions

The date and time functions have been expanded to make it easier to
compare a file’s date to today’s date, set the current date and time, time
events, and perform scheduling functions (such as finding the date for
next Tuesday).

Object Handling

Windows includes OLE Object Handling, the ability to link and embed
objects from one application into another. An object is the end product of
a software application, such as a document from a word processing
application. An offshoot of that ability is the Object data type which

Language Overview

permits your EXTRA! Basic code to access another software application
through its objects and change those objects.

Environment Control

EXTRA! Basic includes the ability to call another software application
(AppActivate), and send the application keystrokes (SendKeys). Other
environment control features include the ability to run an executable
program (Shell), temporarily suspend processing to allow the operating
system to process messages (DoEvents), and return values in the
operating system environment table (Environ$).

How EXTRA! Basic Compares to Visual Basic and Word Basic

There are several versions of Basic with which you may be familiar: the
most common are Microsoft’s Visual Basic and Word Basic. EXTRA!
Basic shares a substantial common core of functions and statements with
these versions; however, each one has unique capabilities.

Functions and Statements Unique to EXTRA! Basic

EXTRA! Basic offers the following statements and functions not found in
the standard version of VB: $CStrings, $Include, $SNoCStrings, Assert,
GetField$, SetField$, and With.

Control-Based Objects

EXTRA! Basic does not include a VB form of control-based objects. As a
result, a VB property like “‘BorderStyle’ is not an intrinsic part of
EXTRAL! Basic. This does not mean that you cannot define an EXTRA!
Basic object that has BorderStyle as a property. You will probably define
many objects that are instrinsic to your application in the process of
integration.

Dialog Box Capabilities and VBA

VB does not have a syntax to create or run dialog boxes. EXTRA! Basic
has a set of functions and statements to enable the use of dialog boxes
(similar to those in Word).

Microsoft offers a modified version of VB in some of its products, such
as Excel. Called Visual Basic for Applications (VBA), this version does
provide dialog box handling statements and functions.

1-9

EXTRA! Basic Language Reference

Differences Between EXTRA! Basic and Word Basic

Word Basic is a version of Visual Basic that is included in Microsoft
Word. Word Basic supports dialog boxes, but it does not support objects.

Dialog Box Capabilities

The dialog box capabilities in EXTRA! Basic and Word are very similar.
Word does offer some statements and functions that EXTRA! Basic does
not, such as DIgFilePreview. As well, EXTRA! Basic offers some features
that Word does not: Button, ButtonGroup, Caption, DropComboBox,
and StaticComboBox.

Button vs. PushButton
Button is the original EXTRAI! Basic syntax; PushButton is the Word
Basic syntax. The two are interchangeable, and EXTRA! Basic supports
both.

Dialog Box Units
The measurement units used in the two dialog box syntaxes are
different. EXTRA! Basic supports both methods.

User Input Mechanisms

There are slight differences in some of the mechanisms for user input:

EXTRA! Basic Word Basic
StaticComboBox or ComboBox (Word Basic supports
ComboBox (in EXTRA! Basic, only this syntax)

these are interchangeable)

DropComboBox N/A

EXTRA! Basic Data Types

EXTRA! Basic is a strongly-typed language. Variables can be declared
implicitly on first reference by using a type character; if no type
character is present, the default type of Variant is assumed.
Alternatively, the type of a variable can be declared explicitly with the
Dim statement. In either case, the variable can only contain data of the
declared type. Variables of user-defined type must be explicitly
declared. EXTRA! Basic supports standard Basic numeric, string, record,
and array data. EXTRA! Basic also supports Dialog Box Records and
Obijects (defined by the application).

1-10

Language Overview

Arrays

Arrays are created by specifying one or more subscripts at declaration or
Redim time. Subscripts specify the beginning and ending index for each
dimension. If only an ending index is specified, the beginning index
depends on the Option Base setting. Array elements are referenced by
enclosing the proper number of index values in parentheses after the
array name, for example, arrayname(i,j,k).

Numbers

The five numeric types are:

Type From To

Integer -32,768 32,767

Long -2,147,483,648 2,147,483,647

Single -3.402823e+38 -1.401298e-45,
0.0,
1.401298e-45 3.402823466e+38

Double -1.797693134 -4.94065645841247d-308,
862315d+308
0.0,
2.2250738585072014 1.797693134862315d+308
d-308

Currency -922,337,203, 922,337,203,685,477.5807
685,477.5808

Numeric values are always signed.

EXTRAI! Basic has no true Boolean variables. EXTRA! Basic considers 0
to be FALSE and any other numeric value to be TRUE. Only numeric
values can be used as Booleans. Comparison operator expressions
always return 0 for FALSE and -1 for TRUE.

Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by simply using the decimal
representation. To represent an octal value, precede the constant with
“&0O™ or “&0’* (for example, &0177). To represent a hexadecimal value,
precede the constant with “&H’* or “&h’ (for example, &H8001).

EXTRA! Basic Language Reference

Records

A record, or record variable, is a data structure containing one or more
elements, each of which has a value. Before declaring a record variable, a
Type must be defined. Once the Type is defined, the variable can be
declared to be of that type. The variable name should not have a type
character suffix. Record elements are referenced using dot notation, for
example, varname.elementname. Records can contain elements that are
themselves records.

Dialog box records look like any other user-defined data type. Elements
are referenced using the same recname.elementname syntax. The
difference is that each element is tied to an element of a dialog box. Some
dialog boxes are defined by the application, others by the user.

Strings

Basic strings can be either fixed or dynamic. Fixed strings have a length
specified when they are defined, and the length cannot be changed.
Fixed strings cannot be of 0 length. Dynamic strings have no specified
length. Any string can vary in length from 0 to 32,767 characters. There
are no restrictions on the characters that can be included in a string. For
example, the character whose ANSI value is 0 can be embedded in
strings.

The Variant Data Type

The variant data type may be used to define variables that contain any
type of data. A tag is stored with the variant data to identify the type of
data that it currently contains. You can examine the tag by using the
VarType function.

A variant may contain a value of any of the following types:

Type/Name Size of Data Range

0 (Empty) 0 N/A

1 Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9

4 Single 4 bytes (float) -3.402E38 to -1.401E-45 (negative)

1.401E-45 to 3.402E38 (positive)

Language Overview

Type/Name Size of Data Range

5 Double 8 bytes -1.797E308 to -4.94E-324 (negative)
(double)

4.94E-324 to 1.797E308 (positive)

6 Currency 8 bytes (fixed) -9.223E14 to 9.223E14

7 Date 8 bytes Jan 1st, 100 to Dec 31st, 9999
(double)

8 String 0 to ~64kbytes 0 to ~64k characters

9 Object N/A N/A

Any newly-defined Variant defaults to type Empty, to signify that it
contains no initialized data. An Empty Variant converts to zero when
used in a numeric expression, or an empty string in a string expression.
You can test whether a variant is uninitialized (empty) with the ISEmpty
function.

Null variants have no associated data and serve only to represent invalid
or ambiguous results. You can test whether a variant contains a null
value with the IsNull function. Null is not the same as Empty, which
indicates that a variant has not yet been initialized.

Data Type Conversion

EXTRA! Basic will automatically convert data between any two numeric
types. When converting from a larger type to a smaller type (for
example, Long to Integer), a runtime numeric overflow may occur. This
indicates that the number of the larger type is too large for the target
data type. Loss of precision is not a runtime error (for example, when
converting from Double to Single, or from either float type to either
integer type).

EXTRAI! Basic will also automatically convert between fixed strings and
dynamic strings. When converting a fixed string to dynamic, a dynamic
string that has the same length and content as the fixed string will be
created. When converting from a dynamic string to a fixed string, some
adjustment may be required. If the dynamic string is shorter than the
fixed string, the resulting fixed string will be extended with spaces. If the
dynamic string is longer than the fixed string, the resulting fixed string

EXTRA! Basic Language Reference

will be a truncated version of the dynamic string. No runtime errors are
caused by string conversions.

EXTRA! Basic will automatically convert between any data type and a
variant. EXTRA! Basic will convert variant strings to numbers, when
required. A type mismatch error will occur if the variant string does not
contain a valid representation of the required number.

No other implicit conversions are supported. In particular, EXTRA! Basic
will not automatically convert between numeric and string data. Use the
functions Val and Str$ for such conversions.

Dynamic Arrays

Dynamic arrays differ from fixed arrays in that you do not specify a
subscript range for the array elements when you dimension the array.
Instead, the subscript range is set using the Redim statement. With
dynamic arrays, you can set the size of the array elements based on other
conditions in your procedure. For example, you may want to use an
array to store a set of values entered by the user, but you don’t know in
advance how many values the user has. In this case, dimension the array
without specifying a subscript range and then execute a ReDim
statement each time the user enters a new value. Or, you might want to
prompt for the number of values a user has and execute one ReDim
statement to set the size of the array before prompting for the values.

If you use ReDim to change the size of an array, and want to preserve
the contents of the array at the same time, be sure to include the Preserve
argument to the ReDim statement.

If you Dim a dynamic array before using it, the maximum number of
dimensions it can have is 8. To create dynamic arrays with more
dimensions (up to 60), do not Dim the array at all; instead use just the
ReDim statement inside your procedure.

The following procedure uses a dynamic array, varray, to hold cash flow
values entered by the user:

Sub main

Dim aprate as Single

Dim varray() as Double

Dim cflowper as Integer

Dim msgtext

Dim x as Integer

Dim netpv as Double

cflowper=InputBox(“Enter number of _
cash flow periods*)

ReDim varray(cflowper)

For x= 1 to cflowper
varray(x)=InputBox(“Enter cash flow _

Language Overview

amount for period #" & x & ")
Next x
aprate=InputBox(“Enter discount rate: ‘)
If aprate>1 then

aprate=aprate/100
End If
netpv=NPV/(aprate,varray())
msgtext="The net present value is:
msgtext=msgtext & Format(netpv, “Currency")
MsgBox msgtext

End Sub

Creating a Dialog Box Without the Dialog Editor

Most, if not all, of the time you will want to use the Dialog Editor to
design and generate code for your macro dialog boxes. Using the
language alone, however, it is possible to code a dialog box without the
Dialog Editor. This section gives you the basic procedure you will need
to follow:

1: Define a dialog box.

The Begin Dialog... End Dialog statements define a dialog box. The last
parameter to the Begin Dialog statement is the name of a function,
prefixed by a period (.). This function handles interactions between the
dialog box and the user.

The Begin Dialog statement supplies three parameters to your function:
an identifier (a dialog control ID), the action taken on the control, and a
value with additional action information. Your function should have
these three arguments as input parameters.

2: Write a dialog box function.

This function defines dialog box behavior. For example, your function
could disable a check box, based on a user action. The body of the
function uses the “Dlg’*-prefixed EXTRA! Basic statements and functions
to define dialog box actions.

Define the function itself using the Function...End Function statement or
declare it using the Declare statement before using the Begin Dialog
statement. Enter the name of the function as the last argument to Begin
Dialog. The function receives three parameters from Begin Dialog and
returns a value. Return a non-zero value to leave the dialog box open
after the user clicks a command button (such as Help).

3: Display the dialog box.

Use the Dialog function (or statement) to display a dialog box. The
argument to Dialog is a variable name that you previously dimensioned

1-15

EXTRA! Basic Language Reference

as a dialog box record. The name of the dialog box record comes from
the Begin Dialog... End Dialog statement. The return values for the
Dialog function determine which key was pressed: -1 for OK, 0 for
Cancel, >0 for a command button. If you use the Dialog statement, it
returns an error if the user presses Cancel, which you can then trap with
the On Error statement.

Dialog Functions and Statements

The function you create uses "*Dlg’* dialog functions and statements to
manipulate the active dialog box. This is the only function that can use
these functions and statements. The "*DIg’* functions and statements are:

DIlgControlld Function: Returns the numeric ID of a dialog control.
DlgEnable Function: Tells whether a control is enabled or disabled.
DlgEnable Statement: Enables or disables a dialog control.

DlgFocus Function: Returns the ID of the dialog control with input
focus.

DlgFocus Statement: Sets focus to a dialog control.

DlgListBoxArray Function: Returns the contents of a list box or combo
box.

DlgListBoxArray Statement: Sets the contents of a list box or combo
box.

DIgText Function: Returns the text associated with a dialog control.
DlgText Statement: Sets the text associated with a dialog control.
DlgValue Function: Returns the value associated with a dialog control.
DlgValue Statement: Sets the value associated with a dialog control.
DlgVisible Function: Tells whether a control is visibled or disabled.
DlgVisible Statement: Shows or hides a dialog control.

Most of these functions and statements take a control ID as their first
argument. For example, if a checkbox was defined with the following
statement:

CheckBox 20, 30, 50, 15, _
“My check box", . Checkl

then DIgEnable “Checkl™, 1 enables the checkbox, and
DlgValue(*‘Check1’*) returns 1 if the checkbox is currently selected, O if
not. Note that the IDs are case-sensitive and do not include the period

Language Overview

that appears before the ID. Dialog functions and statements can also
work with numeric IDs. Numeric IDs depend on the order in which
dialog controls are defined.

For example, if the checkbox above is the first control defined in the
dialog record, then DIgValue(0) would be equivalent to
DlgValue(**Checkl’). (The control numbering begins from 0, and the
Caption control does not count.) Find the numeric ID using the
DigControlID function.

Note that for some controls (such as buttons and texts) the last argument
in the control definition, ID, is optional. If it is not specified, the text of
the control becomes its ID. For example, the Cancel button can be
referred as *‘Cancel’* if its ID was not specified in the CancelButton
statement.

Error Handling

EXTRA! Basic contains three error handling statements and functions for
trapping errors in your program: Err, Error, and On Error. EXTRA! Basic
returns a code for many of the possible runtime errors you may
encounter.

In addition to the errors trapped by EXTRA! Basic, you may want to
create your own set of codes for trapping errors specific to your
program. You would do this if, for example, your program establishes
rules for file input and the user does not follow the rules. You can trigger
an error and respond appropriately using the same statements and
functions you would use for EXTRA! Basic-returned error codes.

Regardless of the error trapped, you have one of two methods to handle
errors; one is to put error-handling code directly before a line of code
where an error may occur (such as after a File Open statement), and the
other is to label a separate section of the procedure just for error
handling, and force a jump to that label if any error occurs. The On Error
statement handles both options.

Trappable Errors

The following table lists the runtime errors that EXTRA! Basic returns.
These errors can be trapped by On Error. The Err function can be used to
query the error code, and the Error function can be used to query the
error text.

EXTRA! Basic Language Reference

Code Error Description

5 Illegal function call

6 Overflow

7 Out of memory

9 Subscript out of range
10 Duplicate definition
11 Division by zero

13 Type Mismatch

14 Out of string space

19 No Resume

20 Resume without error
28 Out of stack space

35 Sub or Function not defined
48 Error in loading DLL
52 Bad file name or number
53 File not found

54 Bad file mode

55 File already open

58 File already exists

61 Disk full

62 Input past end of file
63 Bad record number
64 Bad file name

68 Device unavailable

Language Overview

Code Error Description

70 Permission denied

71 Disk not ready

74 Can’t rename with different drive
75 Path/File access error

76 Path not found

91 Obiject variable set to Nothing

93 Invalid pattern

94 Illegal use of NULL

102 Command failed

429 Obiject creation failed

438 No such property or method

439 Argument type mismatch

440 Object error

901 Input buffer would be larger than 64K
902 Operating system error

903 External procedure not found

904 Global variable type mismatch
905 User-defined type mismatch

906 External procedure interface mismatch
907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

EXTRA! Basic Language Reference

Expressions

An expression is a collection of two or more terms that perform a
mathematical or logical operation. The terms are usually either variables
or functions that are combined with an operator to evaluate to a string or
numeric result. Use expressions to perform calculations, manipulate
variables, or concatenate strings.

Expressions are evaluated according to precedence order. Use
parentheses to override the default precedence order.

The precedence order (from high to low) for the operators is: numeric
operators, string operators, comparison operators, and then logical
operators.

Numeric Operators

n Exponentiation
-t Unary minus and plus
*/ Numeric multiplication or division. For

division, the result is a Double.

\ Integer division. The operands can be
Integer or Long.

Mod Modulus or Remainder. The operands can
be Integer or Long.

-+ Numeric addition and subtraction.
String Operators

& String concatenation

+ String concatenation

Comparison Operators (Numeric and String)

> Greater than
< Less than
= Equal to

1-20

Language Overview

<= Less than or equal to
>= Greater than or equal to
<> Not equal to

For numbers, the operands are widened to the least common type
(Integer is preferred over Long, which is preferred over Single, which is
preferred over Double). For Strings, the comparison is case-sensitive,
and based on the collating sequence used by the language specified by
the user using the Windows Control Panel. The result is 0 for FALSE and

-1 for TRUE.

Logical Operator Operand

Not (Unary Not) Operand can be Integer or Long. The
operation is performed bitwise (one’s
complement).

And Operands can be Integer or Long. The
operation is performed bitwise.

Or (Inclusive Or) Operands can be Integer or Long. The
operation is performed bitwise.

Xor (Exclusive Or) Operands can be Integer or Long. The
operation is performed bitwise.

Eqv (Equivalence) Operands can be Integer or Long. The
operation is performed bitwise. (A Eqv
B) is the same as (Not (A Xor B)).

Imp (Implication) Operands can be Integer or Long. The

operation is performed bitwise. (A Imp
B) is the same as ((Not A) OR B).

Object Handling

In EXTRA! Basic, you can access an object and use the originating
software application to change properties and methods of that object.
Before you can use an object in a procedure, however, you must access
the software application associated with the object by assigning it to an
object variable. Next, you attach an object name (with or without
properties and methods) to the variable to manipulate the object.

1-21

EXTRA! Basic Language Reference

1-22

Derived Trigonometric Functions

A number of trigonometric functions may be written in Basic using the

built-in functions.

The following table lists several of these functions:

Function Computed By

Secant Sec(x) = 1/Cos(x)

CoSecant CoSec(x) = 1/Sin(x)

CoTangent CoTan(x) = 1/Tan(x)

ArcSine ArcSin(x) = Atn(x/Sqgr(-x*x+1))

ArcCosine ArcCos(x) =
Atn(-x/Sqgr(-x*x+1))+1.5708

ArcSecant ArcSec(x) =
Atn(x/Sgr(x*x-1))+Sgn(x-1)*1.5708

ArcCoSecant ArcCoSec(x) =
Atn(x/Sqgr(x*x-1))+(Sgn(x)-1)*1.5708

ArcCoTangent ArcTan(x) = Atn(x)+1.5708

Hyperbolic Sine
Hyperbolic Cosine

Hyperbolic Tangent

Hyperbolic Secant
Hyperbolic CoSecant

Hyperbolic Cotangent

Hyperbolic ArcSine
Hyperbolic ArcCosine

Hyperbolic ArcTangent

HSin(x) = (Exp(x)-Exp(-x))/2
HCos(x) = (Exp(X)+Exp(-x))/2

HTan(x) =
(Exp(x)-Exp(-x))/ (Exp(X)+EXp(-X))

HSec(x) = 2/(Exp(X)+Exp(-x))
HCoSec(x) = 2/ (Exp(X)-Exp(-x))

HCotan(x) =
(Exp(X)+Exp(-x))/ (Exp(x)-Exp(-X))

HArcSin(x) = Log(x+Sqr(x*x+1))
HArcCos(x) = Log(x+Sqr(x*x-1))

HArcTan(x) = Log((1+x)/(1-x))/2

Language Overview

Function Computed By
Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/X)

Hyperbolic HArcCoSec(x) =

ArcCoSecant Log((Sgn(x)*Sqr(x*x+1)+1)/x)
Hyperbolic HArcCoTan(x) = Log((x+1)/(x-1))/2
ArcCoTangent

EXTRA! Basic Macro File Formats

The EXTRA! Basic Macro Editor can save files in three formats, and
distinguishes these formats by filename extension;

= EXTRAI! Basic Macro files (.EBM)
e EXTRAI! Basic Header files (.EBH)
= ANSI Text files (. TXT)

EXTRA! Basic Macro files are saved in binary form, and can be saved
compiled or uncompiled. The Macro Editor is required to display these
files in a “‘readable’ (that is, source code) format.

EXTRA! Basic Header files are ““include’ files that contain variables or
function definitions that supplement another macro. The header file is
compiled when the main macro is compiled. The ‘$Include statement is
used in a main macro to include the header.

Text files are normal ANSI text files. These files may be created and
saved as in any other text editor. This format is included as a
convenience.

A fourth file format is shown in the File Open dialog box of the Macro
Editor. This is the .EWM format which is used by 3.x and higher versions
of EXTRA\! for Windows Macros. When these macros are opened in the
EXTRA! Personal Client Macro Editor, they are automatically converted
to .EBM formats. The original .EWM file is not altered, so after loading,
editing, and saving an old .EWM macro in the Macro Editor the you will
see both an .EBM and a .EWM file with the same name in your macro
directory.

1-23

CHAPTER

Language Summary 2

Abs (function) — Return absolute value

Abs (function) — Return absolute value

rc %= Abs(numeric-expression)

Returns the absolute value (unsigned magnitude) of the specified
numeric expression.

Parameter Description
rc% The return value.
numeric- An expression of any numeric data type
expression
Comments

The data type of the return value is the same as the data type of the

numeric-expression parameter. This includes variant expressions that will
return a result of the same vartype as input except vartype 8 (String) will

be returned as vartype 5 (Double) and vartype 0 (empty) will be
returned as vartype 3 (Long).

If numeric-expression results in a Null, Abs returns a Null.

Abs (function) Example

This example finds the approximate value for a cube root. It uses Abs to

determine the absolute difference between two numbers.

Randomize
Precision# = .0000001#
Value# = Val(InputBox$("Enter a value: ")) ' Prompt for input.
Value# = 100.0*Rnd(1) + 1.0
X1# = 0#: X2# = Value# ' Make first two guesses.
' Loop until difference between guesses is less
‘ than required precision.
Do Until Abs (X1# - X2#) < Precision#
X#t = (X1# + X2#) | 24#
If X# * X# * X# - Value# < 0# Then ' Adjust guesses.
X1# = X#
Else

X2# = X#

2-2

Abs (function) — Return absolute value

End If
Loop
Msg$ = "The cube root of " + LTrim$(Str$(Value#)) + " is "
Msg$ = Msg$ + LTrim$(Str$(X#))

MsgBox Msg$ ' Display message.

2-3

AppActivate (statement) — Activates an application window

AppActivate (statement) — Activates an application
window

AppActivate string-expression

Activates an application window.

Parameter Description
string- The name (from the title bar) of the
expression application you want to activate. Both the

title bar and string-expression must be
spelled identically. However, the
comparison is not case sensitive.

Comments

AppActivate changes the focus to the specified window but will not
automatically maximize an application if it is currently minimized.
AppActivate can be used in combination with the SendKeys statement
to send keystrokes to another application.

Note: If there is more than one application window named string-
expression, EXTRA! Basic chooses randomly from the pool of matching
windows.

AppActivate (statement) Example

This example opens the Windows bitmap file ARCADE.BMP in
Paintbrush. (Paintbrush must already be open before running this
example. It must also not be minimized.)

Sub main
MsgBox "Opening C:\WINDOWS\ARCADE.BMP in Paintbrush.”
AppActivate "Paintbrush - (Untitled)"
SendKeys "%FOC:\WINDOWS\ARCADE.BMP{Enter}",1
MsgBox "File opened.”

End Sub

2-4

Asc (function) — Return ANSI code

Asc (function) — Return ANSI code

rc %= Asc(string-expression $)

Returns an integer corresponding to the ANSI code of the first character
in the specified string or string expression.

Parameter Description
rc% The return value.
string- A string whose first character is evaluated

expression$

Comments

If string-expression$ is Null, EXTRA! generates an error.

Asc (function) Example

This example asks the user for a letter and returns its ASCII value.

Sub main
Dim userchar
userchar=InputBox("Type a letter:")
MsgBox "The ASC value for " & userchar & " is: " & Asc(userchar)

End Sub

Assert (statement) — Trigger error if condition is false

Assert (statement) — Trigger error if condition is false

Assert condition

Triggers an error if the specified condition parameter is false.

Parameter Description
condition Any expression that evaluates to True or
False
Comments

Provides verification that a procedure is performing in the expected
manner and notification if it is not.

An assertion error cannot be trapped by the On Error statement.

Atn (function) — Returns arctangent of number

Atn (function) — Returns arctangent of number

rc %= Atn(numeric-expression)

Evaluates the ratio of two sides of a right triangle and returns the
corresponding angle in radians.

Parameter Description

rc The return value.

numeric- Any numeric data type that describes the
expression ratio of the side opposite and the side

adjacent to a right triangle.

The following table shows how the return parameter is converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

Comments

Sub Main

To convert radians to degrees, multiply radians by 180/Pi (or
57.2957795130824) where Pi equals 3.141593.

To convert degrees to radians, multiply degrees by Pi/Z180 (or
.0174532925199433) where Pi equals 3.141593.

Note: The arctangent of a numeric expression is the inverse of the
tangent. Do not confuse cotangent (the simple inverse of a tangent) with
arctangent.

Atn (function) ExampleThe example uses Atn to calculate Pi. By
definition, Atn(1) is 45 degrees; 180 degrees equals Pi radians.

Dim Msg$, Pi ' Declare variables.

2-7

Atn (function) — Returns arctangent of number

Pi=4~* Atn (1) ' Calculate Pi.
Msg$ = "Pi is equal to " + STR$(Pi)

MsgBox Msg$ ' Display results.

2-8

Beep (statement) — Generate a beep

Beep (statement) — Generate a beep

Beep
Produces a single short beeping tone through the computer’s speaker.

Comments

Your computer’s hardware dictates the frequency and duration of the
beep produced by the Beep statement.

Beep (statement) Example

This example uses Beep to sound a tone in the computer speaker if
Answer is less than 1 or greater than 3.

x$ = "Enter a value from 1 to 3." ' Set prompt message.
Default$ = "1" ' Set default value.
Do
Answer$ = InputBox$(x$,"BeepDemo"”, Default$)
' Get user input.
If Len(Answer$) >0 Then ' Check for null.
Value% = Val(Answer$) ' Convert to number.
If Value% >= 1 And Value% <= 3 Then
' Check range.

Msg$ = "You entered a value in the proper range."

Exit Do ' Exit Do Loop.
Else
Beep ' Beep if not in range.
End If
Else

Msg$ = "You pressed cancel."

Exit Do ' Exit Do Loop.
End If
Loop
MsgBox Msg$ ' Display results.

2-9

Begin Dialog...End Dialog (statement) — Dialog box defintion

Begin Dialog...End Dialog (statement) — Dialog box

defintion
Begin Dialog DialogName [x, y,] dx, dy_
[, caption $][,. dialogfunction 1
' dialog-box-definition-statements
End Dialog

Initiates the dialog-box declaration for a user-defined dialog box.

Parameter Description

DialogName Identifies the current dialog box
definition

X, Y Coordinate location of the dialog box's

upper left corner (relative to the upper
left corner of the parent window's client
area).

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.
Example

If x is omitted, the dialog box is centered
horizontally within the client area. If y is
omitted, the dialog box is centered
vertically within the client area.

dx, dy dx and dy specify the width and height of
the dialog box (relative to the x and y
coordinates). The dx argument is
measured in one-quarter system-font
character-width units. The dy argument is
measured in one-eighth system-font
character-width units.

caption$ caption$ defines the text displayed on the
title bar of the dialog box. If caption$ is
omitted, the default title bar (EXTRA!
Basic Language) will be used.

2-10

Begin Dialog...End Dialog (statement) — Dialog box defintion

Parameter Description
.dialog .dialogfunction is the name of an EXTRA!
function Basic function associated with the dialog

box. The Basic function you reference
must have been defined or declared
before the Begin Dialog statement. Refer
to the dialogfunction section below for

details.
dialog-box- Any of the following: Button,
definition ButtonGroup, CancelButton, Caption,
statements CheckBox, ComboBox, GroupBox,

ListBox, OKButton, OptionButton,
OptionGroup, Text, and TextBox

Comments

Assumes that if only two arguments are supplied, they are the dx
(width) and dy (height) arguments.

Unless the Begin Dialog statement is followed by at least one other
dialog-box definition statement followed by the End Dialog statement,
an error will result. Further, the dialog-box-definition-statement must
include an OkButton, CancelButton, or Button statement. If this
statement is omitted, the dialog box cannot be closed, and the procedure
will halt.

To display the dialog box, create a dialog record variable with the Dim
statement, and then display the dialog box using the Dialog statement.
In the Dim statement, DialogName is used to identify the dialog
definition.

Dialogfunction Parameter Details

Begin Dialog...End Dialog (statement) — Dialog box defintion

Declare the dialogfunction parameter prior to the Begin Dialog statement
as follows:

function dialogfunction%(id$, action%, suppvalue&)
‘function body
end function

where

id$ Identifies the control associated with the
call to the dialog function. This is the
same value that appears in the definition
of the control.

action% An integer value from 1 to 5 identifying

the reason that the dialog box was called.

1 The dialog box has been initialized.
This action value is passed before
the dialog box is displayed.

2 The user has chosen a command
button or otherwise changed the
value of a dialog box control. (If
the user types in a text box or
combobox, EXTRA! Basic returns
an action value of 3, described
next.)

3 Achange has occured in a text
box or combobox. This value is
passed when the control loses the
input focus (i.e., the user presses
the TAB key or chooses another
control).

4 A change in control focus has
occurred. id$ is the value that
identifies the control gaining focus,
and suppvalue& is the value of the
control losing focus. Note that a
dialog function cannot display a
message box or dialog box in
response to an action% value of 4.

Begin Dialog...End Dialog (statement) — Dialog box defintion

suppvalue%

5 The user interface is idle.
Immediately after the dialog box is
initialized (action value 1), the
dialog function is passed an action
value of 5 until another action
occurs. If the dialog box wants to
receive this message continuously
while the dialog box is idle, it
should return a non-zero value. If 0
(zero) is returned, action 5 will be
passed only while the user is
moving the mouse. For this action,
id$ is equal to empty string (***‘)
and suppvalue& is equal to the
number of times action 5 was
passed before.

When action% is 2 or 3, suppvalue&
depends on the type of the control. Refer
to the following table:

Control suppvalue

List box Number of the item
selected (0-based)

Check box 1 if selected, O if
cleared, -1 if gray

Option button Number of the option
button in the option
group (0-based)

Text box Number of characters
in the text box

Combo box Number of the item
selected (0-based) for
action 2, or number of
characters in the
associated text box for
action 3

OK button 1

2-13

Begin Dialog...End Dialog (statement) — Dialog box defintion

Cancel button 2

Push button An internal button
identifier. Not the same
as the id$ parameter of
the button control.

In most cases, the return value of the dialog function is ignored. The
exceptions are the return values from action% 5 (discussed above), and
from action% 2. If action% 2 is called because the user chose the OK
button, Cancel button, or a command button (as indicated by id$), and
the dialog function returns a non-zero value, the dialog box will not be
closed.

Begin Dialog...End Dialog (statement) Example

This example defines and displays a dialog box with each type of item in
it: list box, combo box, buttons, and so on.

Sub main

Dim ComboBox1() as String

Dim ListBox1() as String

Dim DropListBox1() as String

ReDim ListBox1(0)

ReDim ComboBox1(0)

ReDim DropListBox1(3)

ListBox1(0)="C:\"

ComboBox1(0)=Dir("C:*.*")

For x=0to 2

DropListBox1(x)=Chr(65+x) & ":"

Next x

Begin Dialog UserDialog 274, 171, "Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
Text 106, 2, 34, 9, "Directory:", .Text2
ListBox 106, 12, 83, 39, ListBox1(), .ListBox2
Text 106, 52, 42, 8, "Drive:", .Text3

2-14

Begin Dialog...End Dialog (statement) — Dialog box defintion

DropListBox 106, 64, 95, 44, DropListBox1(), .DropListBox1
CheckBox 9, 142, 62, 14, "List .TXT files", .CheckBox1
GroupBox 106, 111, 97, 57, "File Range"
OptionGroup .OptionGroup?2
OptionButton 117, 119, 46, 12, "All pages", .OptionButton3
OptionButton 117, 135, 67, 8, "Range of pages", _
.OptionButton4
Text 123, 146, 20, 10, "From:", .Text6
Text 161, 146, 14, 9, "To:", .Text7
TextBox 177, 146, 13, 12, .TextBox4
TextBox 145, 146, 12, 11, .TextBox5
OKButton 213, 6, 54, 14
CancelButton 214, 26, 54, 14
PushButton 213, 52, 54, 14, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-15

Button (statement) — Define a dialog box button

Button (statement) — Define a dialog box button

2-16

Button x, y, dx, dy, text $ [,. id]
Or‘
PushButton x, y, dx, dy, text $[,. id]

Defines a custom push button other than OK or Cancel. (These buttons
are defined using the OkButton and CancelButton statements.) The
Button statement must be used in conjunction with the ButtonGroup
statement.

Note: Button and PushButton are equivalent.

Parameter Description

X, Y Specifies the position of the button
relative to the upper left corner of the
dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the button is centered
horizontally within the dialog box. Ify is
omitted, the button is centered vertically
within the dialog box.

dx, dy Specifies the width and height of the
button.

dx is measured in one-quarter system-font
character-width units. dy is measured in
one-eighth system-font character-width
units.

A dy value of 14 typically accommodates
system font text.

text$ Supplies the text for the button. If the
width of this string is greater than dx,

Button (statement) — Define a dialog box button

trailing characters are truncated.

Parameter Description

id$ An optional identifier used by the dialog
statements that act on this control.

Comments

The Button statement can only be used between a Begin Dialog and an
End Dialog statement.

Button (statement) Example

This example defines a dialog box with a combination list box and three
buttons.

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "E! Basic Dialog Box"
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
Button 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-17

ButtonGroup (statement) — Define a group of dialog box buttons

ButtonGroup (statement) — Define a group of dialog box
buttons

ButtonGroup .field
Begins the definition of the buttons when custom buttons are used.

Parameter Description
field The name of the dialog record field that
will hold the value for the button selected
by the user
Comments

ButtonGroup creates a dialog-record field that will contain the value for
the user’s selection. If ButtonGroup is used, it must appear before any
Button or PushButton statement. Only one ButtonGroup statement is
allowed within a dialog box definition.

The ButtonGroup statement can only be used between a Begin Dialog
and an End Dialog statement.

If OK and Cancel buttons are used in a dialog with the ButtonGroup
statement, the ButtonGroup variable must be set to -1. If the variable
remains -1, either the OK or Cancel button was pushed. If any other
variable is returned, a custom button was pushed.

ButtonGroup (statement) Example

This example defines a dialog box with a group of three buttons.

Sub main
Begin Dialog UserDialog 34,0,231,140, "E! Basic Dialog Box"
ButtonGroup .bg
PushButton 71,17,88,17, "&Button 0"
PushButton 71,50,88,17, "&Button 1"
PushButton 71,83,88,17, "&Button 2"
End Dialog
Dim mydialog as UserDialog
Dialog mydialog
Msgbox "Button " & mydialog.bg & " was pressed."”
End Sub

Call (statement) — Transfer Control to a Subprogram

Call (statement) — Transfer Control to a Subprogram

Call subprogram-name [(argumentlist)]
-or-

subprogram-name argumentlist
-or-

Call app-dialog (recordName)
-or-

App-dialog { recordName | dotList }

The Call statement is used to transfer control to a subprogram
procedure, dynamic link library (DLL), or application-defined dialog

box.

Parameter Description

subprogram- A subprogram written in Basic or a

name dynamic link library (DLL) containing C
procedures. (The C procedures must be
described in a Declare statement or be
implicit in the application.)

argumentlist Any arguments required by the

subprogram. The arguments can be either
variables or expressions.

For subprograms written in Basic, where
arguments are passed by reference: if you
pass a variable to a procedure that will in
turn modify the variable's corresponding
formal parameter, you can enclose the
variable in parentheses to keep the formal
parameter from being modified. The
parentheses prompt Basic to pass a copy
of the variable. Note that this method is
less efficient, and should not be used
unless necessary.

Call (statement) — Transfer Control to a Subprogram

2-20

Parameter Description

app-dialog Functions associated with application-
defined dialog boxes can be invoked
using the third or fourth syntax variation
shown above. In the third variation, the
name inside the parentheses must be a
variable previously declared (refer to the
Dim statement description) as an
application-defined dialog record. In the
fourth variation, the dialog box name can
be followed by either a dialog record
variable or a comma-separated list of
dialog box field settings. For example:

SearchFind .SearchFor = "abc",
.Forward =1

When calling an external DLL procedure,
arguments can be passed by value rather
than by reference. This is specified either
in the Declare statement, the Call itself,
or both (using the ByVal keyword). If
ByVal is specified in the declaration, the
ByVal keyword is optional in the Call. If
ByVal is present in the declaration, it
must precede the value. If ByVal is not
present, it is illegal in the Call unless the
datatype specified in the declaration was
Any. Specifying ByVal places the
parameter's actual value on the stack
instead of a far reference to the value.

recordName The name of the dialog record variable.
dotList A comma-separated list of dialog field
settings.
Comments

The Call keyword is not required when calling a procedure. Note that if
you use the Call keyword to call a procedure that requires parameters,
the parameter list must be enclosed in parentheses. If you do not use the
Call keyword, do not enclose the parameter list in parentheses.

Call (statement) — Transfer Control to a Subprogram

Call (statement) Example

This example shows two ways to call the MessageBeep procedure in
USER.EXE, a Microsoft Windows DLL.

Declare Sub MessageBeep Lib "User" (ByVal N As Integer)

Sub Main
Msg$ = "This demonstration uses the Call statement to call "
Msg$ = Msg$ + "a procedure in a dynamic-link library. "
Msg$ = Msg$ + "Choose OK to call the MessageBeep procedure in "
Msg$ = Msg$ + "USER.EXE using both forms of Call syntax."
MsgBox Msg$ ' Display message.
Call MessageBeep(0) ' Call Windows procedure.
For 1% = 1 to 50:
MessageBeep 0 ' Second Call; Insert short delay.
Next 1%

End Sub

2-21

CancelButton (statement) — Define a cancel bution dialog box control

CancelButton (statement) — Define a cancel button
dialog box conftrol

CancelButton x, y, dx, dy[,. id]
Determines the position and size of a Cancel button.

Parameter Description

X, Y Specifies the position of the Cancel button
relative to the upper left corner of the
dialog box.

X is measured in units one-quarter the
average width of the system font. The y
argument is measured in units one-eighth
the height of the system font.

If x is omitted, the Cancel button is
centered horizontally within the client
area. If y is omitted, the button is centered
vertically within the client area.

dx, dy Specifies the width and height of the
button.

dx is measured in one-quarter system-font
character-width units. The dy argument is
measured in one-eighth system-font
character-width units.

A dy value of 14 typically accommodates
system font text.

id$ An optional identifier used by the dialog
statements that act on this control.

Comments

The CancelButton statement can only be used between a Begin Dialog
and an End Dialog statement.

If the Dialog statement was used to start the dialog and the CancelButton
is selected, the dialog box is removed and the “Command failed’* error
(102) is triggered. If the dialog was started by the Dialog function, the
function will return 0 and the error will not occur.

2-22

CancelButton (statement) — Define a cancel button dialog box control

CancelButton (statement) Example

This example defines a dialog box with a combination list box and three
buttons.

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "E! Basic Dialog Box"
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-23

Caption (statement) — Assign a title to a dialog box

Caption (statement) — Assign a title to a dialog box

Caption text $
Defines title text of your dialog box.

Parameter Description

text$ Supplies the title text for the dialog box
defined in the Begin Dialog structure.

Comments

The Caption statement can only be used between a Begin Dialog and an
End Dialog statement.

If you do not specify a Caption for your dialog box, the default title
“EXTRA! Basic Language’* is used.

Caption (statement) Example

This example defines a dialog box with a combination list box and three
buttons. The Caption statement changes the dialog box title to
“Example -Caption Statement’.
Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94
Caption "Example-Caption Statement”
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog

Dim mydialog as UserDialog

2-24

Caption (statement) — Assign a title o a dialog box

On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-25

CCur (function) — Return a value as currency

CcCur (function) — Return a value as currency

rc %= CCur(expression)

Returns a value in the form of currency.

Parameter Description

rc% The return value.

expression Any valid string or numeric expression.
Comments

If you attempt to convert a numeric expression that is not within the
acceptable range, an Overflow Error will occur. Strings that cannot be
converted to currency will result in a Type Mismatch error and variants
containing Nulls will result in an Illegal Use of Null error.

CCur (function) Example

This example converts a yearly payment on a loan to a currency value
with four decimal places. A subsequent Format statement formats the
value to two decimal places before displaying it in a message box.

Sub main
Dim aprate, totalpay,loanpv
Dim loanfv, due, monthlypay
Dim yearlypay, msgtext
loanpv=InputBox("Enter the loan amount: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
aprate=aprate/12
totalpay=InputBox("Enter the total number of pay periods: ")
loanfv=0
Rem Assume payments are made at end of month
due=0

monthlypay=Pmt(aprate,totalpay,-loanpv,loanfv,due)

2-26

CCaur (function) — Return a value as currency

yearlypay=CCur(monthlypay*12)
msgtext= "The yearly payment is: " & Format(yearlypay, "Currency")
MsgBox msgtext

End Sub

2-27

CDbl (function) — Convert to double precision

CDbl (function) — Convert to double precision

2-28

rc = CDbl(numeric-expression)

Converts the specified numeric expression to a double-precision floating

point value.
Parameter Description
rc The return value.
numeric- Any numeric data type.
expression

Comments

CDbl generates the same result as assigning numeric-expression to a
Double variable. CDDbl can be used to force double-precision accuracy in
an expression that would ordinarily result in a currency value or an
integer or single-precision number.

CDbl (function) Example

The CDbl function converts a Currency value to a Double.

Dim CurrVal as Double, CurrPercent, Msg$, Percent

'Declare variables.

Percent = 8.2 'Set tax rate.

Msg$ = "Enter a currency value."

CurrVal = Val(InputBox$(Msg$)) ' Get user input.

CurrPercent = CDblI((CurrVal) * Percent * .01) ' Calculate value.
Msg$ = STR$(Percent) + "% of $" + STR$(CurrVal) + ".00"

Msg$ = Msg$ + " is $" + STR$(CurrPercent)

Msg$ = Msg$ + " expressed as a double-precision number."

MsgBox Msg$ ' Display results.

ChDir (statement) — Change the default directory

ChDir (statement) — Change the default directory

ChDir

pathname $

Changes the default directory for the specified drive.

Parameter

pathname$

Comments

Description

A string expression identifying the new
default directory. The syntax for pathname$
is:

[drive :][\]directory [\ directory]

and must contain fewer than 128
characters.

If the drive parameter is omitted, ChDir
changes the default directory on the
current drive.

ChDir does not change the default drive. To change the default drive,
use the ChDrive statement.

2-29

ChDir (statement) — Change the default directory

ChDir (statement) Example

This example uses ChDir to change the default directory on the current

drive.
NL$ = Chr$(13) + Chr$(10) ' Define newline.
CurPath$ = CurDir$ ' Get current path.

ChDir "\"

Msg$ = "The current directory has been changed to "
Msg$ = Msg$ + CurDir$ + NL$ + NL$ + "Press OK to change back "

Msg$ = Msg$ + "to your previous default directory."

Answer% = MsgBox(Msg$) ' Get user response.
ChDir CurPath$ ' Change back to user default.
Msg$ = "Directory changed back to " + CurPath$ +"."
MsgBox Msg$

2-30

ChbDrive (statement) — Change the default drive

ChbDrive (statement) — Change the default drive

ChDrive drivename $

Changes the default drive.

Parameter Description

drivename$ A string expression designating the new
default drive. This drive must exist, and
must be within the range specified in the
CONFIG.SYS file. If a Null parameter (*
**) is supplied, the default drive remains
the same. If the drivename$ parameter is a
string, ChDrive uses the first letter only.
If the parameter is omitted, an error
message is generated.

Comments
To change the current directory on a drive, use the ChDir statement.

ChDrive is not case sensitive.

ChDrive (statement) Example

This example changes the currently logged drive to the new drive
indicated by the letter entered by the user.

On Error Resume Next

NL$ = Chr$(13) + Chr$(10) ' Define newline.
CurPath$ = CurDir$ ' Get current path.
If Err = 68 Then "In case current
Drive$ = "invalid." " drive is invalid
Err=0 'reset error to 0.
Else
Drive$ = Left$(CurPath$, 2) ' Get drive letter.
End If

Msg$ = "Your currently logged drive is " + Drive$ + NL$ + NL$
Msg$ = Msg$ + "Enter the letter of another drive to make it the "
Msg$ = Msg$ + "logged drive."

2-31

ChbDrive (statement) — Change the default drive

NewDrive$ = InputBox$(Msg$) ' Prompt for new drive.

HasColon% = InStr(1, NewDrive$, ":")' Check for colon.

" If there is no colon, append one to NewDrive$.

If Not HasColon% Then NewDrive$ = Left$(NewDrive$, 1) + ™"

ChDrive NewDrive$ ' Change drive.

Select Case Err

Case 68 ' Device unavailable error.
Msg$ = "That drive is not available. No drive change"
Msg$ = Msg$ + "was made."

Case 71 ' Disk not ready error.
Msg$ = "Close the door on your drive and try again."

Case 5 "lllegal function call.
Msg$ = "You probably didn't enter a drive letter."
Msg$ = Msg$ + "No change was made."

Case Else

Msg$ = "Drive changed to " + UCase$(NewDrive$)

End Select
ChDrive Drive$ ' Change back.
MsgBox Msg$ ' Display results.

2-32

CheckBox (statement) — Define a dialog check box

CheckBox (statement) — Define a dialog check box

CheckBox x, y, dx, dy, text $, .field

Displays one or more options that can be toggled on or off, independent
of the other options in the group.

Parameter

X,y

dx, dy

Description

Specifies the position of the check box
relative to the upper left corner of the
dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the check box is centered
horizontally within the client area. If y is
omitted, the check box is centered
vertically within the client area.

The combined width of the check box and
the text$ field. Because proportional
spacing is used, the width will vary with
the characters used. To approximate the
width, multiply the number of characters
in the text$ parameter (including blanks
and punctuation) by 4 and add 12.

dy is the height of the text$ parameter. A
dy value of 12 is standard, and should
cover typical default fonts. If larger fonts
are used, the value should be increased.
As the dy number grows, the check box
and the accompanying text will move
downward within the dialog box.

2-33

CheckBox (statement) — Define a dialog check box

2-34

Parameter Description

text$ Contains the text that is displayed to the
right of the check box. If the width of this
string is greater than dx, trailing
characters will be truncated. To indicate
an accelerator key in text$, precede the
accelerator key character with an
ampersand (&).

field The name of the dialog-record field that
will hold the current check box setting
value. If the check box is selected, field is
set to 1. If the check box is not selected,
field is set to 0. If the check box is
dimmed, field is set to -1. If field is set to
any value other than -1, 0, or 1, the Macro
Editor will treat it as though it is set to 1.

Comments

The CheckBox statement can only be used between a Begin Dialog and
an End Dialog statement.

CheckBox (statement) Example

This example defines a dialog box with a combination list box, a check
box, and three buttons.

Sub main

Dim ComboBox1() as String

ReDim ComboBox1(0)

ComboBox1(0)=Dir("C:*.*")

Begin Dialog UserDialog 166, 76, "E! Basic Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
CheckBox 10, 39, 62, 14, "List .TXT files", .CheckBox1
OKButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl

End Dialog

CheckBox (statement) — Define a dialog check box

Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-35

Chr (function) — Return an ANSI character

Chr (function) — Return an ANSI character

rc $ = Chr[$] (code %)
Returns the one-character string corresponding to the specified ANSI

code.
Parameter Description
rc$ The return value.
code% An integer between 0 and 255 (inclusive)
corresponding to an ANSI character.
Comments

Applications designed to run under Microsoft Windows use the ANSI
character set. Note that ANSI character codes 0 through 31 are the same
as the standard, nonprintable ASCII codes.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If the dollar sign is omitted, Chr
returns a variant of vartype 8 (String).

Chr (function) Example

The example uses the Chr function to create a variable that will insert a
newline character as well as a variable containing letters from A through
Z. Each time the line containing Chr is executed within the For...Next
loop, another letter is appended to the Msg variable.

NL$ = Chr$(13)+ Chr$(10) ' Define newline.
For1%=1t02 ' Set 2 iterations.

For J% = Asc("A") To Asc("Z") 'From A through Z.

Msg$ = Msg$ + Chr$(J%) ' Create a string.
Next J%
Msg$ = Msg$ + NL$ "Insert newline.
Next 1%

MsgBox Msg$

2-36

Cint (function) — Convert to an integer

Cint (function) — Convert to an infeger

rc %= CiInt(numeric-expression)

Converts a numeric expression to an integer by rounding down if the
decimal value is less than 0.5, and rounding up if the value is greater

than 0.5.
Parameter Description
rc% The return value.
numeric- Any numeric data type.
expression

Comments

After rounding, the result number must be within the range of -32,767 to
32,767 (inclusive), or an error will occur.

ClInt generates the same result as assigning numeric-expression to an
Integer variable. You can also use the Int and Fix functions to convert a
numeric expression to an integer, however they perform truncation to
acheive a whole number instead of rounding.

ClInt can be used to force single-precision accuracy in an expression that
would ordinarily result in a currency value or a single- or double-
precision number.

Strings that cannot be converted to an integer will result in a Type
Mismatch error. Variants containing Nulls will result in an Illegal Use of
Null error.

Cint (function) Example

The example converts an angle in radians to an angle in degrees and
minutes. The Cint function is used to convert a double-precision value to
an integer value.

Sub Main

Dim Degs, Mins, Pi, Msg$ ' Declare variables.

Dim Rads, Rads2Degs, WholeDegs, WholeMins As Double
Dim RadVal As String

Pi=4* Atn(1) ' Calculate Pi.

2-37

Cint (function) — Convert to an integer

Rads2Degs = 180 / Pi ' Calculate conversion factor.

Msg = "Please enter an angle in radians."

RadsVal$ = InputBox$(Msg)

Rads = Val(RadVal) ' Get angle in radians.

Degs = Rads * Rads2Degs ' Convert radians to degrees.
Mins = Degs - Int(Degs) ' Get fractional part.

WholeMins = Cint (Mins * 60) ' Convert to between 0 and 60.
WholeDegs = Int(Degs) ' Get whole number part.

If WholeMins = 60 Then ' 60 minutes = 1 degree.

WholeDegs = WholeDegs + 1
WholeMins =0
End If

Msg$ = "Angle =" + Str$(WholeDegs) + " degrees, "
Msg$ = Msg$ + Str$(WholeMins) + " minutes."

MsgBox Msg$ ' Display results.

End Sub

2-38

CLng (function) — Convert to a Long integer

CLng (function) — Convert to a Long integer

Dim rc As Long
rc = CLng(numeric-expression)

Converts a numeric expression to a Long 4-byte integer by rounding
down if the decimal value is less than 0.5, and rounding up if the value
is greater than 0.5.

Parameter Description
rc The return value.
numeric- Any numeric data type.
expression

Comments

After rounding, the resulting number must be within the range of -
2,147,483,648 to 2,147,483,647, or an error will occur.

CLng generates the same result as assigning numeric-expression to a Long
variable.

CLng can be used to force Long integer arithmetic in an expression that
would ordinarily result in a currency value or a single- or double-
precision number.

Strings that cannot be converted to an integer will result in a Type
Mismatch error. Variants containing Nulls will result in an Illegal Use of
Null error.

CLng (function) Example

The example uses the CLng function to convert double-precision
numbers to long integers. It also demonstrates how CLng rounds
numbers when converting. Note that 25427.45 is rounded down to
25427, whereas 25427.55 is rounded up to 25428.

NL$ = Chr (13) + Chr (10) ' Define newline.

Msg$ = "25427.45 rounds to "

Msg$ = Msg$ + STR$ (CLng(25427.45))

Msg$ = Msg$ + NL$ + "25427.55 rounds to "

Msg$ = Msg$ + STR$ (CLng(24527.55))

MsgBox Msg$ ' Display results.

2-39

Close (statement) — Close a file

Close (statement) — Close a file

2-40

Close [[#] filenumber % [,[#] filenumber %...]]

Closes a file, concluding input/output to that file.

Parameter Description

filenumber% An integer expression corresponding to a
file number assigned in a previous Open
statement. If this parameter is omitted, all
open files are closed. Once a Close
statement is executed, the association of
that file with filenumber% ends, and the
file can be reopened with the same or
different file number.

Comments

When Close is issued, the final output buffer is written to the operating
system buffer for that file. Close frees all buffer space associated with
the closed file. Use the Reset statement to flush these operating system
buffers to disk.

Close (statement) Example

This example uses the Close statement to close a file.

TestString$ = "The quick brown fox" ' Create test string.
For1%=1To5
FNum% = FreeFile ' Determine next file number.
FName$ = "FILEIOX" + LTrim$(Str$(FNum%)) + ".DAT"

Open FName$ For Output As FNum% ' Open file.

Print #1%, TestString$ ' Write string to file.
Next 1%
Close ' Close all files.

Msg$ = "Several test files have been created on your disk."
Msg$ = Msg$ + "Choose OK to remove the test files."
MsgBox Msg$

Kill "FILEIOX?.DAT" ' Remove test file from disk.

ComboBox (statement) — Define a combination text and list box

ComboBox (statement) — Define a combination text

and list box

ComboBox x, y, dx, dy, text $, .field

_Or-

ComboBox X, y, dx, dy, stringarray $, .field

Creates a combination static text box (or edit box) and list box. For
example, the File Open dialog box in typical Microsoft applications is a

combo-box.

Parameter

X,y

dx, dy

Description

Specifies the position of the combination
box relative to the upper left corner of the
client area.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the combination box is
centered horizontally within the client
area. If y is omitted, the box is centered
vertically within the client area.

The sum of the width of the combination
box and the text$ parameter. Because
proportional spacing is used, the width
will vary with the characters used. To
approximate the width, multiply the
number of characters in the text$
parameter (including blanks and
punctuation) by 4 and add 12.

dy is the height of the text$ parameter. A
dy value of 12 is standard, and should
cover typical default fonts. If larger fonts
are used, the value should be increased.
As the dy number grows, the combination
box and the accompanying text will move

2-41

ComboBox (statement) — Define a combination text and list box

2-42

downward within the dialog box.

Parameter Description

text$ A string containing the selections for the
combobox. This string must be defined,
using a Dim statement, before the Begin
Dialog statement is executed. The
arguments in the text$ string are entered
as follows:

dimname = ““listchoice’ + Chr$(9) =
“listchoice’™ + Chr$(9) + ““listchoice’™ +

Chr$(9)...
stringarray An array of dynamic strings.
field The name of the dialog-record field that

will hold the text string entered in the text
box or chosen from the list box. The user's
selection is recorded in the field
designated by the .field argument when
the OK button (or any button other than
Cancel) is selected. The .field argument is
also used by the dialog statements that act
on this control.

Comments

The ComboBox statement can only be used between a Begin Dialog and
an End Dialog statement.

ComboBox (statement) Example

This example defines a dialog box with a combination list and text box
and three buttons.

Sub main
Dim ComboBox1() as String
ReDim ComboBox1(0)
ComboBox1(0)=Dir("C:*.*")
Begin Dialog UserDialog 166, 142, "E! Basic Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1

ComboBox (statement) — Define a combination text and list box

OKButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

2-43

Command (function) — Returns a command line as a String

Command (function) — Returns a command line as a

2-44

String
rc= Command $]
Returns a string containing the command line specified when the MAIN
subprogram was invoked.
Parameter Description
rc The return value.
Comments

The dollar sign ($) is optional. If $ is specified, the return type is String. If
omitted, the function will return a variant of vartype 8 (String).

After the MAIN subprogram returns, further calls to the Command
function will yield an empty string.

Command (function) Example

This example uses Command to display the arguments on the command

line.
NL$ = Chr$(13) + Chr$(10) ' Define newline.
If Comman& ="" Then " If no Commands,

Msg$ = "There is currently no command-line string."
Else ' put Command$ into message.

Msg$ = "The command line string is: "

Msg$ = Msg$ + NL$ + NL$ + ™" + Comman& + "
End If
MsgBox Msg$ ' Display message.

Const (statement) — Declare a symbolic constant

Const (statement) — Declare a symbolic constant

[Global] Const constantName = expression
[[constantName = expression]...

Declares a symbolic constant for use in an EXTRA! Basic macro.

Parameter Description
constant Supplies the name of a symbolic constant
Name plus a suffix specifying the constant's

type (%, &, !, #, @, or $). Example

If no data type is specified, the type is
derived from expression. A string will
always result in a string constant,
however, numeric expressions are
evaluated and the constant is assigned the
simplest type.

expression The expression that is assigned to the
constant. This expression can consist of
literals (for example, 1.5), other declared
constants, and any arithmetic or logical
operator except the exponentiation
operator(”). expression can also be a single
literal string like “Invalid input. Try
again.”* Const-declared symbolic
constants cannot consist of concatenated
strings, user-defined functions, or any of
the built-in Macro Editor functions.

Comments

If a constant is declared in a Sub or Function procedure, it is considered
local to that procedure. A constant declared in the Declarations section
of a module is defined throughout the module in which it is declared.
Constants declared outside a procedure with the Global reserved word
can be used by all procedures in all modules.

Note: If Global is specified, the constant is validated at module load
time. If the constant has already been added to the run-time global area,
the constant's type and value are compared to the previous definition,
and the load will fail if a mismatch is found. This is an effective way to
detect version mismatches between modules.

2-45

Const (statement) — Declare a symbolic constant

Const (statement) Example

This example uses Const to define the symbolic constant PI.

Const Pl =3.141592654 ' Define constant.

Msg$ = "Enter the radius of a circle in centimeters."

Radius# = Val(InputBox$(Msg$)) ' Get user input.
Radius# = Rnd(1)
Circum# = 2 * P| * Radius# ' Calculate circumference.

Area# = Pl * (Radius# " 2) ' Calculate area.

Msg$ = "The circumference of the circle is "

Msg$ = Msg$ + LTrim$(Str$(Circum#)) + " cm. Its area is "
Msg$ = Msg$ + LTrim$(Str$(Area#)) + " cm."

MsgBox Msg$ ' Display message.

2-46

Cos (function) — Return the Cosine of an Angle

Cos (function) — Return the Cosine of an Angle

rc %= Cos(angle)

Returns the cosine of an angle.

Parameter Description
rc% The return value.
angle The angle, specified in radians. Can be

either positive or negative.

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision Integer

! Single Single-precision floating
point

& Long Double-precision Integer

Double Double-precision floating
point

Comments

The Cos function takes an angle and returns the ratio of the side adjacent
to the angle divided by the length of the hypotenuse of the triangle. The
return value will be between -1 and 1.

To convert radians to degrees, multiply radians by 180/Pi (or
57.2957795130824) where Pi equals 3.141593.

Cos (function) Example

This example uses Cos to calculate the cosine of an angle with a user-
specified number of degrees.

Pi# = 4 * Atn(1#) ' Calculate Pi.

Msg$ = "Enter an angle in degrees."

2-47

Cos (function) — Return the Cosine of an Angle

2-48

Degrees# = Val(InputBox$(Msg$)) ' Get user input.
Degrees# = 45
Radians# = Degrees# * (Pi# / 180) ' Convert to radians.

Msg$ = "The cosine of a " + LTrim$(Str$(Degrees#))
Msg$ = Msg$ + " degree angle is "

Msg$ = Msg$ + LTrim$(Str$(Cos(Radians#))) + "."
MsgBox Msg$ ' Display results.

CreateObject (function) — Create an OLE automation object

CreateObject (function) — Create an OLE automation
object

CreateObject(class)

Creates a new OLE Automation object. You can use CreateObject to run
an instance of EXTRA! Personal Client. The objects that you can access in
EXTRAI! Personal Client are referred to as the EXTRA! Personal Client
Objects.

Parameter Description

class A string indicating the name of the application used
to create the object and the type of object. To specify
the class, use the following syntax:

“AppName.ObjectType’

Note that you must insert a period (.) between
AppName and ObjectType.

AppName For EXTRA! Personal Client, the
AppName is EXTRA.

ObjectType For EXTRA! Personal Client, the
only ObjectType that can be
created is System.

Comments

If EXTRA! Personal Client is not already running, CreateObject starts the
program; otherwise, CreateObject uses the existing instance of the
program.

To access an object returned by CreateObject, use the Set statement to
assign an object reference to a variable. In the example below, an object
variable called extra is declared. Then, with the Set statement, the
EXTRA! System object, returned by CreateObject, is assigned to the
variable extra.

Dim extra As Object
Set extra = CreateObject ("Extra.System")

In addition to starting EXTRA! Personal Client, CreateObiject starts any
application that supports OLE Automation. Such applications include
Microsoft Excel 5.0 or later and Microsoft Project 4.0 or later. For

2-49

CreateObject (function) — Create an OLE automation object

information on accessing an application’s OLE Automation objects, see
the documentation for that application.

CreateObiject (function) Example

This example starts an instance of EXTRA! Personal Client, if one is not
already running.

Sub Main()
Dim extra As Object
Set extra = CreateObject("Extra.System")
MsgBox extra.name+" is now running."

End Sub

2-50

CSng (function) — Convert to single precision

CSng (function) — Convert to single precision

rc! = CSng(numeric-expression)

Converts a numeric-expression to single-precision floating point.

Parameter Description

rc! The return value.

numeric- Any numeric data type. The CSng
expression function will round the resulting value, if

necessary, before converting it.

Comments

numeric-expression must have a value within the range allowed for the
Single data type, or an error will occur.

CSng generates the same result as assigning the numeric-expression to a
Single variable.

Strings that cannot be converted to an integer will result in a Type
Mismatch error. Variants containing nulls will result in an Illlegal Use of
Null error.

CSng (function) Example

The example uses the CSng function to convert double-precision
numbers to single-precision. It also demonstrates how CSng rounds
numbers when converting. Note that 75.3421115 is rounded down to
75.34211, whereas 75.3421155 is rounded up to 75.34212.

Sub Main
Dim Msg$, NL$ ' Declare variables.
NL$ = Chr$(13) + Chr$(10) ' Define newline.

Msg$ = "75.3421115 rounds to" + Str$(CSng(75.3421115))
Msg$ = Msg$ + "." + NL$ + "75.3421555 rounds to"

Msg$ = Msg$ + Str$(CSng(75.3421555)) + "."

MsgBox Msg$ ' Display results.

End Sub

2-51

CStr (function) — Converts to a string

CStr (function) — Converts o a string

rc= CStr(expression)

Converts a value to a string.

Parameter Description
rc The return value.
expression The value to be converted. This function

accepts any type of expression.

CSir (function) Example

This example converts a variable from a value to a string and displays
the result. Variant type 5 is Double and type 8 is String.

Sub main
Dim varl
Dim msgtext as String
varl=InputBox("Enter a number:")
varl=varl+10
msgtext="Your number + 10 is: " & varl & Chr(10)
msgtext=msgtext & "which makes its Variant type: " & Vartype(varl)
MsgBox msgtext
varl=CStr(varl)
msgtext="After conversion to a string," & Chr(10)
msgtext=msgtext & "the Variant type is: " & Vartype(varl)
MsgBox msgtext

End Sub

2-52

Cstrings (metacommand) — Treat backslash as an escape

CStrings (metacommand) — Treat backslash as an
escape
'$CSTRINGS [SAVE| RESTORE
Instructs the compiler to treat a backslash character within a string (\) as
an escape character (based on the C language protocol).
Comments

The supported special characters are:

Special

Character Corresponding Switch
Newline \n

(Linefeed)

Horizontal Tab \t

Vertical Tab \v

Backspace \b
Carriage \r
Return

Formfeed \f
Backslash \\

Apostrophe \'

Quotation \'

Mark

Null Character \0

Using the $CStrings metacommand makes the instruction:
"Hello\r World"

equivalent to
"Hello" + Chr $(13) + "World"

In addition, any character can be presented as a three-digit octal or
hexadecimal code:

2-53

Cstrings (metacommand) — Treat backslash as an escape

Octal Code \ddd
Hexadecimal Code \xddd

For both hexadecimal and octal, fewer than three characters can be used
to specify the code, provided the subsequent character is not a valid
hexadecimal or octal character.

The SAVE option causes the current CStrings setting to be saved before
CStrings are enabled. The RESTORE option restores a previously saved
setting. SAVE and RESTORE act as a stack and allow the user to change
the setting for a range of the macro without impacting the rest of the
macro.

CStrings (metacommand) Example

This example displays two lines, the first time using the C-language
characters ‘“\n’* for a carriage return and line feed.

Sub main
'$CStrings
MsgBox "This is line 1\n This is line 2 (using C Strings)"
'$NoCStrings
MsgBox "This is line 1" +Chr$(13)+Chr$(10)+ _
"This is line 2 (using Chr)"
End Sub

2-54

CurDir (function) — Return current directory

CurDir (function) — Return current directory

rc %= CurDir [$][(drivename $)]
Returns the current default path for the specified drive.

Parameter Description
rc% The return value.
drivename$ A string expression identifying the drive

whose default directory path will be
returned. This drive must exist, and must
be within the range specified in the
CONFIG.SYS file. If a Null argument (** *“)
is supplied, or if no drivename is indicated,
the default directory path of the default
drive is returned.

Comments

The dollar sign ($) in the function name is optional. If $ is specified, the
return type is String. If omitted the function returns a variant of vartype
8 (String).

CurDir is not case sensitive.

To change the current drive, use ChDrive. To change the current
directory, use ChDir.

CurDir (function) Example

This example uses CurDir to return the name of the current directory.
NL$ = Chr$(13) + Chr$(10) ' Define newline.
Msg$ = "The current directory is: "

Msg$ = Msg$ + NL$ + CurDir$ ' Get current directory.

MsgBox Msg$ ' Display message.

2-55

CVar (function) — Converts to a variant

CVar (function) — Converts fo a variant

rc = CVar(expression)

Converts a value to a variant.

Parameter Description
rc The return value.
expression The value to be converted. This function

accepts any type of expression.

Comments

CVar generates the same result as if you were to assign the expression to
a variant variable.

CVar (function) Example

This example converts a string variable to a variant variable.

Sub main
Dim answer as Single
answer=100.5
MsgBox "Answer' is DIM'ed as Single with the value: " & answer
answer=CVar(answer)
answer=Fix(answer)
MsgBox "Answer' is now a variant of type: " & VarType(answer)

End Sub

2-56

CVDate (function) — Converts to a variant date

CVDate (function) — Converts to a variant date

rc = CVDate(expression)

Converts a value to a variant date.

Parameter Description
rc The return value.
expression The value to be converted. This function

accepts any type of string or numeric
expression that can be interpreted as a
date.

Comments

The CVDate functions returns a variant of vartype 7 (date) that
represents a date from January 1, 100 (-657434) through December 31,
9999 (2958465). A value of 2, for example, is returned if expression is
*January 1, 1900’

Note: Any fractional portion of expression will be interpreted as a time of
day, beginning with midnight.

CVDate (function) Example

This example displays the date for one week from the date entered by
the user.

Sub main
Dim strl as String
Dim nextweek
Dim msgtext
i strl=InputBox$("Enter a date:")
answer=IsDate(strl)
If answer=-1 then
strl=CVDate(strl)
nextweek=DateValue(strl)+7
msgtext="One week from the date entered is:

msgtext=msgtext & "Format(nextweek,"dddddd")

2-57

CVDate (function) — Converts to a variant date

MsgBox msgtext
Else
MsgBox “Invalid date or format. Try again.”
Goto |
End If
End Sub

2-58

Date (function) — Return current date

Date (function) — Return current date

rc % = Date [9]

Returns a string containing the current system date.

Parameter Description
rc% The return value.
Comments

The Date function returns a 10-character string. The form of the string is
mm-dd-yyyy, where mm is the month (01-12), dd is the day (01-31), and
yyyy is the year (1980-2099).

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If the dollar sign is omitted, a variant
of vartype 8 (String) is returned.

Date (function) Example

This example displays the date for one week from the today’s date (the
current date on the computer).
Sub main
Dim nextweek
nextweek=CVar(Date)+7
MsgBox "One week from today is: " & Format(nextweek,"ddddd")
End Sub

2-59

Date (statement) — Set the current system date

Date (statement) — Set the current system date

Date [$] = expression

Sets the current system date.

Parameter Description

expression When this function is used with the dollar
sign ($), expression must evaluate to a
string of one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

where mm indicates a month (01-12), dd
indicates a day (01-31), and yy or yyyy
indicates a year (1980-2099).

If the dollar sign is omitted, expression can
be a string containing a valid date, a
variant of vartype 7 (Date), or a variant of
vartype 8 (String).

Comments

If expression is not already a variant of vartype 7 (Date), Date attempts to
convert it to a valid date from January 1, 1980 through December 31,
2099.

Date uses the Short Date format chosen in the International section of the
Windows Control Panel to recognize the day, month, and year if a string
contains three numbers delimited by valid date separators. In addition,
Date recognizes month names in either full or abbreviated form.

2-60

Date (statement) — Set the current system date

Date (statement) Example
This example changes the system date to a date entered by the user.
Sub main

Dim userdate

Dim answer

: userdate=InputBox("Enter a date for the system clock:")
If userdate="" then
Exit Sub
End If
answer=IsDate(userdate)
If answer=-1 then
Date=userdate
Else
MsgBox "Invalid date or format. Try again.”
Goto |
End If
End Sub

2-61

DateSerial (function) — Returns a serial date value

DateSerial (function) — Returns a serial date value

rc = DateSerial(year % month % day %)

Returns the serial date equivalent to the specified date.

Parameter Description
rc The return value.
year% A number between 100 and 9999,

inclusive, or a numeric expression that
evaluates to a number between 100 and
9999, inclusive. Values between 0 and 99,
inclusive, are interpreted as the years
1900 through 1999, inclusive. For all other
years, use the four-digit number (i.e.,
1800).

month% A number between 1 and 12, inclusive, or
a numeric expression that evaluates to a
number between 1 and 12, inclusive.

day% A number between 1 and 31, inclusive, or
a numeric expression that evaluates to a
number between 1 and 31, inclusive.

Comments

The DateSerial function returns a variant of vartype 7 (date) that
represents a date from January 1, 100 (-657434) through December 31,
9999 (2958465). A value of 2, for example, represents January 1, 1900.
Negative numbers are interpreted as dates prior to December 30, 1899.

DateSerial (function) Example

This example finds the day of the week New Year’s day will be for the
year 2000.

Sub main
Dim newyearsday
Dim daynumber
Dim msgtext

Dim newday as Variant

2-62

DateSerial (function) — Returns a serial date value

Const newyear=2000
Const newmonth=1
Let newday=1
newyearsday=DateSerial(newyear,newmonth,newday)
daynumber=Weekday(newyearsday)
msgtext="New Year's day 2000 fallsona" & _
Format(daynumber, "dddd")
MsgBox msgtext
End Sub

2-63

DateValue (function) — Returns a date value

DateValue (function) — Returns a date value

rc = DateValue(string-expression $)

Returns a date value for the specified string.

Parameter Description

rc The return value.

string- A string representing a date from January

expression$ 1, 100 through December 31, 9999,
inclusive.

Valid string-expression$ arguments
include:

01/01/95
01/01/1995
Jan 1, 1995
January 1, 1995

Comments

DateValue interprets the order for month, day, and year according to
the Short Date settings in the International section of the Microsoft
Windows Control Panel. DateValue can also interpret dates that contain
month names (either complete or abbreviated).

The DateValue function returns a variant of vartype 7 (date) that
represents a date from January 1, 100 (-657434) through December 31,
9999 (2958465). A value of 2, for example, represents January 1, 1900.
Negative numbers are interpreted as dates prior to December 30, 1899.

DateValue (function) Example

This example displays the date for one week from the date entered by
the user.
Sub main
Dim strl as String
Dim nextweek
Dim msgtext

i strl=InputBox$("Enter a date:")

2-64

DateValue (function) — Returns a date value

answer=IsDate(strl)

If answer=-1 then
str1=CVDate(strl)
nextweek=DateValue(strl)+7
msgtext="One week from your date is: " & Format(nextweek,"dddddd")
MsgBox msgtext

Else
MsgBox "Invalid date or format. Try again.”
Goto |

End If

End Sub

2-65

Day (function) — Return the day of the month as an integer

Day (function) — Return the day of the month as an
integer
rc = Day(expression)

Returns an integer (between 1 and 31, inclusive) representing the day of

the month.

Parameter Description

rc The return value. This will be a variant of
vartype 2 (Integer). If the value of
expression is null, a variant of vartype 1
(null) is returned.

expresssion A date value from -657434 (January 1,
100) through 2958465 (December 31,
9999). A value of 2, for example,
represents January 1, 1900.

Comments

If expression contains a decimal point, numbers to the right of the
decimal point will be interpreted as a time value. A negative expression
is interpreted as a date prior to December 30, 1899.

Day (function) Example

This example finds the month (1-12) and day (1-31) values for this
Thursday.

Sub main
Dim x, today, msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5
X=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x) & "/" & _
Day(Today+x)
MsgBox msgtext
End Sub

2-66

Declare (statement) — Provide a forward declaration of a procedure

Declare (statement) — Provide a forward declaration of
a procedure

Declare Sub name[libSpecification 1[(parameter [As
type Il ... 1)]

-Or-
Declare Function name| libSpecification]

[(parameter [As type 1)]1[As functype]

The Declare statement has two uses—forward declaration of a
procedure whose definition is located in the current module, and
declaration of a procedure located in an external Windows DLL or
external Basic module.

Parameter Description

name Indicates the Sub or Function being
declared.

libSpecifi Supplies the Dynamic Link Library (DLL)

cation that contains name.

Use the following format if libSpecification
is located in a Dynamic Link Library
(DLL) named libName:

Lib libName [Alias
["]ordinal ["]]

-Or-
Lib libName [Alias aliasname]

The ordinal parameter specifies the
ordinal number of the procedure within
the external DLL. If ordinal is not
supplied, the DLL function is accessed by
name, causing the module to load more
slowly. Use the ordinal parameter
whenever possible.

2-67

Declare (statement) — Provide a forward declaration of a procedure

2-68

Parameter

parameter

Description

Supplies a comma-separated list of
parameter names. The data type of a
particular parameter can be specified
using a type declaration character or the
As clause. Record parameters are
declared using the As clause and a type
that has previously been defined using
the Type statement. Array parameters are
indicated by empty parentheses after the
parameter. Array dimensions are not
specified in the Declare statement.

External DLL procedures are called with
the PASCAL calling convention (the
actual arguments are pushed on the stack
from left to right). By default, the actual
arguments are passed by far reference.
For external DLL procedures, there are
two additional keywords, ByVal and
Any, that can be used in the parameter
list.

When ByVal is used, it must be specified
before the parameter it modifies. When
applied to numeric data types, ByVal
indicates that the parameter is passed by
value, not by reference. When applied to
string parameters, ByVal indicates that
the string is passed by far pointer to the
string data. By default, strings are passed
by far pointer to a string descriptor.

Declare (statement) — Provide a forward declaration of a procedure

Parameter Description

type Any can be used as a type specification,
and permits a call to the procedure to
pass a value of any data type. When Any
is used, type checking of the actual
argument used in calls to the procedure is
disabled (although other arguments not
declared as type Any are type-safe). The
actual argument is passed by far
reference, unless ByVal is specified, in
which case the actual value is placed on
the stack (or a pointer to the string, in the
case of string data). ByVal can also be
used in the call. The external DLL
procedure must determine the type and
size of the passed value.

Comments

A forward declaration is needed only when a procedure in the current
module is referenced before it is used (in which case, Lib and Alias
clauses are not used).

A Sub procedure does not return a value. A Function procedure does
return a value, and can be used in an expression. Function names must
end with a type declaration character specifying the return value of the
function.

When an empty string (*“ *) is passed ByVal to an external procedure,
the external procedure will receive a valid (non-Null) pointertoa 0
character. To send a Null pointer, declare the procedure argument as

ByVal As Any
and call the procedure with the argument:
0&

2-69

Declare (statement) — Provide a forward declaration of a procedure

Declare (statement) Example

The example uses the Declare statement to declare a reference to an
external function (GetProfileString) in the Windows Kernel DLL.

Declare Function GetProfileString Lib "Kernel" (ByVal Sname$, _
ByVal Kname$, ByVal Def$, ByVal Ret$, ByVal Size%) As Integer
' Declare statement above must appear on one line in actual macro

' source code.

Sub Main
NL$ = Chr$(13) + Chr$(10) ' Define newline,

SName$ = "Intl" ' WIN.INI section name,
KName$ = "Country" " WIN.INI country code.
Ret$ = String$(255, 0) " Initialize return string.

' Call Windows Kernel.DLL
Success% = GetProfileString(SName$, KName$, "', Ret$, 255)

If Success% Then ' Evaluate results.

Msg$ = "Your WIN.INI currently shows " + NL$ + NL$
Msg$ = Msg$ + " + KName$ + " ="
Msg$ = Msg$ + RTrim$(Ret$)
Else
Msg$ = "There is no country code in your WIN.INI file."
End If

MsgBox Msg$ ' Display message.

End Sub

2-70

Deftype (statements) — Declare a default data type

Deftype (statements) — Declare a default data type

DefCur varTypeLetters
Defint varTypeLetters
DefLng varTypelLetters
DefSng varTypeLetters
DefDbl varTypeLetters
DefStr varTypeLetters
DefVar varTypelLetters

Specifies the default data type of any variable that begins with the letter
or letters specified in varTypeLetters.

Parameter Description
varType A comma-separated list or range of
Letters letters. A letter range should be specified

using the syntax:
beginletter - endletter

beginletter and endletter specify the range
of variables for which a default data type
will be assigned.

Comments
The parameter varTypeLetters is not case sensitive.

The Deftype statement only affects the module in which it is specified. It
must precede any variable definition within the module.

The letter range a-z is considered a special case. It indicates all alpha
characters, including any international characters from the extended
portion of the ANSI character set (128-255). Once the range a-z has been
specified, you cannot redefine any subranges using any of the Deftype
statements. Similarly, once a range has been specified, an error will
occur if you redefine any of the letters in that range using the Deftype
statement. You can always explicitly define the data type of any variable,
defined or not, using the Dim or Global statement or a type declaration
character.

Note: A type-declaration character (%, &, !, #, or $) always takes
precedence over a Deftype statement. Deftype statements do not affect
elements of user-defined types.

2-71

Deftype (statements) — Declare a default data type

Deftype (statements) Example

This example uses the Deftype statements to set the default data types of
variables in two ranges. Variables beginning with the letters A-K will be
Integer; variables beginning with L-Z will be String.

Defint A-K
DefStr L-Z

Sub Main

NL = Chr$(13) + Chr$(10) ' Define newline.
IntVal = 2.3455

Msg = "Notice that none of the string variables in this demo have "
Msg = Msg + "the $ type-declaration character appended to their "
Msg = Msg + "names." + NL + NL + "The DefStr statement defines "
Msg = Msg + "the default for variables starting with letters 'L" "

Msg = Msg + "through 'Z' to be of the string data type."

MsgBox Msg

Msg = "Notice that the variable 'IntVal' has been defined as an "
Msg = Msg + "integer. Even though it is assigned a real value, it "

Msg = Msg + "behaves as an integer, i.e., IntVal ="
Msg = Msg + LTrim$(Str$(IntVal)) + " instead of 2.3455."

MsgBox Msg ' Display message.
End Sub

2-72

Dialog (function) — Displays a dialog box and returns user button selection

Dialog (function) — Displays a dialog box and returns
user button selection

rc = Dialog(recordName)

Displays a dialog box and returns a value corresponding to the button
the user selected.

Parameter Description

rc The return value. The Dialog function
returns -1 if the user selects the OK
button; 0 if the user selects the Cancel
button; and a number greater than 0 if the
user selects a command button. (1
corresponds to the first command button,
2 to the second, and so forth.)

recordName The record containing information about
the controls provided in the dialog box.

Comments

The dialog box recordName record must have been declared using the
Dim statement.

The Dialog function does not return until the dialog box is closed.

Dialog (function) Example

This example creates a dialog box with a drop down combo box in it and
three buttons: OK, Cancel, and Help. The Dialog function used here
enables the subroutine to trap when the user clicks on any of these
buttons.

Sub main

Dim cchoices as String

cchoices="All"+Chr$(9)+"Nothing"

Begin Dialog UserDialog 180, 95, “E! Basic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13

2-73

Dialog (function) — Displays a dialog box and returns user button selection

CancelButton 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Pushl
End Dialog
Dim mydialogbox As UserDialog
answer= Dialog(mydialogbox)
Select Case answer
Case -1
MsgBox "You pressed OK"
Case 0
MsgBox "You pressed Cancel"
Case 1
MsgBox "You pressed Help"
End Select
End Sub

2-74

Dialog (statement) — Display a dialog box

Dialog (statement) — Display a dialog box

Dialog recordName
Displays a dialog box. The data for the controls of the dialog box come
from the dialog box record recordName.
Parameter Description

recordName The record containing information about
the controls provided in the dialog box.

Comments

You must first declare the dialog box dialogName using the Dim
statement. If the user exits the dialog box by pressing the Cancel button,
a run-time error will be triggered. This error can be trapped using On
Error.

Dialog (statement) Example

Sub main

This example defines and displays a dialog box defined as UserDialog
and named mydialogbox. If the user presses the Cancel button, an error
code of 102 is returned and is trapped by the If...Then statement listed
after the Dialog statement.

Dim cchoices as String

On Error Resume Next

cchoices="All"+Chr$(9)+"Nothing"

Begin Dialog UserDialog 180, 95, "E! Basic Dialog Box"

ButtonGroup .ButtonGroupl

Text 9, 3, 69, 13, "Filename:", .Textl

ComboBox 9, 17, 111, 41, cchoices, .ComboBox1

OKButton 131, 8, 42, 13

CancelButton 131, 27, 42, 13

End Dialog

Dim mydialogbox As UserDialog

Dialog mydialogbox

If Err=102 then

2-75

Dialog (statement) — Display a dialog box

MsgBox "You pressed Cancel."
Else
MsgBox "You pressed OK."
End If
End Sub

2-76

Dim (statement) — Declare a variable for use in an EXTRA! Basic program

Dim (statement) — Declare a variable for use in an
EXTRA! Basic program

Dim [Shared] variableName [As [New]type] _
[, variableName [As[New] type 1] ...

Declares variables for use in an EXTRAL! Basic program.

Parameter Description

variable Indicates the name of the variable you
Name want to declare.

type The available data types are: number,

string, and record.

Comments

If the As clause is not used, specify the variable type using a type
character as a suffix to variableName. The two different type-specification
methods can be intermixed in a single Dim statement (although not for
the same variable).

The Shared keyword is included for backward compatibility with older
versions of EXTRA! Basic. It is not allowed in Dim statements within a
procedure.

EXTRAI! Basic automatically declares a variable on first use without
explicit declaration with the Dim statement. If an unDimmed variable is
supplied with a type suffix, it is automatically declared to be a local
variable of that type. If no type suffix is specified, the variable is
automatically declared to be a local variable of type Double.

It is considered good programming practice to actually declare all
variables. It is also recommended that you place all procedure-level Dim
statements at the beginning of the procedure.

Dim (statement) Example
This example shows a Dim statement for each of the possible data types.
Rem Must define a record type before you can declare a record variable
Type Testrecord

Custno As Integer

Custname As String

2-77

Dim (statement) — Declare a variable for use in an EXTRA! Basic program

End Type

Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()

' ...(code here)...

End Sub

2-78

Dir (function) — Return a filename

Dir (function) — Return a filename

rc %=

Dir [$] [(filespec $ [, attrib 9A)]

Returns the first filename that matches the specified pattern.

Parameter

rc%

filespec$

attrib%

Comments

Description

The return value.

A string expression identifying a path or
filename. This argument may include a
drive specification. It may also include
the wildcard characters ““?’* and *****.

An integer expression specifying the
filenames that will make up the list to be
evaluated.

Valid attrib% values are:

0 returns normal files

2 returns normal and hidden files
4 returns normal and system files
8 returns the volume label

16 returns directory names

These values can be combined by adding.
For example, to list hidden and system
files, in addition to normal files, set
attrib% to 6 (2 + 4 = 6).

The default value for attrib% is 0.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If it is omitted, the function will
return a variant of vartype 8 (String).

Dir returns the first filename that matches the filespec$ parameter. To
retrieve additional filenames that match filespec$, call the Dir function
again, omitting the filespec$ parameter. If no file is found, an empty
string (** *‘) is returned; subsequent calls to the Dir function must include
the filespec$ parameter.

2-79

Dir (function) — Return a filename

Dir (function) Example

This example uses Dir to determine all the files based on the extension
selected by the user. If no extension is chosen, the default is all files in
the current directory are listed.

NL$ = Chr$(13) + Chr$(10): TB$ = Chr$(9) ' Define newline, tab.

Msg$ = "Enter a file specification." + NL$ + "(example = C:*.sys)"

Filespec$ = InputBox$(Msg$) ' Get filename.
Match$ = Dir$ (Filespec$) ' Find first match.
If Len(Match$) Then ' If match found,
Do
MatchNum% = MatchNum% + 1 ' increment match count.

Msg2$ = Msg2$ + NL$ + TB$ + Match$ ' Make a list.
If Len(Msg2$) >= 180 Then ' Handle list too long
Match$ = "And more - - -" ' for MsgBox.
Msg2$ = Msg2$ + NL$ + TB$ + Match$

Exit Do ' Quit Do Loop.
End If
Match$ = Dir$ ' Find next match.
Loop Until Len(Match$) = 0 ' Continue.
If MatchNum©% > 1 Then ' More than one file.

Msg1$ = "The files that match your file specification are:"

Else ' One match only.
Msg1l$ = "The file that matches your file specification is:"
End If

Msg$ = Msgl$ + Msg2$ ' Put message together.

2-80

Dir (function) — Return a filename

Else
Msg$ = "The file you specified could not be found."
End If

MsgBox Msg$ ' Display message

2-81

DigControlID (function) — Translate a string ID into a numeric ID

DigControlID (function) — Translate a string ID into @
numeric |D

rc= DlgControllD(Id $)

Takes a string dialog box control ID and returns the numeric value for
that control.

Parameter Description

rc The return value.

1d$ The string ID associated with the control.
Comments

Numeric IDs correspond to the position of a control within the dialog
box definition. The first control is assigned ID 0 (zero), the second is
assigned ID 1, and so forth.

DigControlID (function) Example

This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Dim filetypes as String

Dim exestr$()

Dim button as Integer

Dim x as Integer

Dim directory as String

filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"

Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"

2-82

DigControlID (function) — Translate a string ID into a numeric ID

TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)
DIgText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
x=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If
DigListBoxArray 2,exestr$()
End Sub

2-83

DigControlID (function) — Translate a string ID into a numeric ID

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
stri$="*.exe" 'dialog box initialized
ListFiles str1$
Case 2 ‘button or control value changed
If DIgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Stri$="+*"
Else
str1$="*exe"
End If
ListFiles str1$
End If
Case 3 ‘text or combo box changed
str1$=DIgText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 ‘idle
End Select

End Function

2-84

DigEnable (function) — Determine whether or not a dialog is enabled

DigEnable (function) — Determine whether or not a
dialog is enabled

rc = DlgEnable(Id)
Determines whether or not a dialog box is enabled.

Parameter Description

rc The return value. The DIgEnable function
returns -1 if the dialog control identified
by Id is enabled, or 0 if it is enabled.

id The dialog box control. This must be a
numeric argument. If you want to convert
a string argument to the correct id, use
DlgControlID.

DigEnable (function) Example

This example displays a dialog box with one check box, labeled Show
More, and a group box, labeled More, with two option buttons, Option 1
and Option 2. It uses the DIgEnable function to enable the More group
box and its options if the Show More check box is selected.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgEnable example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 13, 6, 75, 19, "Show more", .CheckBox1
GroupBox 16, 28, 94, 50, "More"
OptionGroup .OptionGroupl
OptionButton 23, 40, 56, 12, "Option 1", .OptionButton1
OptionButton 24, 58, 61, 13, "Option 2", .OptionButton2

2-85

DigEnable (function) — Determine whether or not a dialog is enabled

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DigEnable 3,0
DlgEnable 4,0
DigEnable 5,0
Case 2 'button or control value changed
If DIgControlID(identifier$) = 2 Then
If DIgEnable (3)=0 then
DigEnable 3,1
DigEnable 4,1
DigEnable 5,1
Else
DigEnable 3,0
DigEnable 4,0
DIgEnable 5,0
End If
End If
End Select

End Function

2-86

DigEnable (statement) — Enable or disable a dialog box

DigEnable (statement) — Enable or disable a dialog box

mode]

Enables the dialog control identified by id if mode is 1, and disables it if

The dialog box control. This must be a

numeric argument. Use DIgControlID to
get the numeric id based on it’s string

DigEnable Id [,
mode is 0.
Parameter Description
id
identifier.
mode

A numeric expression equaling 1 or 0 as

shown in the following chart:

Value Action

1

Enables the dialog control

indicated by id.

0

Disables the dialog control

indicated by id.

If mode is omitted, the DIgEnable
statement toggles the state of the dialog
control identified by the id parameter.

DigEnable (statement) Example

This example displays a dialog box with two check boxes, one labeled
Either, the other labeled Or. If the user clicks on Either, the Or option is
filled with gray shading. Likewise, if Or is selected, Either has gray
shading. This example uses the DIgEnable statement to toggle the state

of the buttons.

Declare Function FileDIgFunction(identifier$, action,
Sub Main

Dim button as integer

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Begin Dialog newdlg 186, 92,"DIgEnable example

suppvalue)

", .FileDIgFunction

2-87

DigEnable (statement) — Enable or disable a dialog box

OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 34, 25, 75, 19, "Either", .CheckBox1
CheckBox 34, 43, 73, 25, "Or", .CheckBox2
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 2 'button or control value changed
If DIgControlld(identifier$) = 2 Then
DigEnable 3
Else
DigEnable 2
End If
End Select

End Function

2-88

DigFocus (function) — Return id of control with focus

DIgFocus (function) — Return id of control with focus

rc = DlgFocus$()

Returns the id of the dialog box control that currently has input focus. A
control has focus when it is active and responds to keyboard input.

Parameter Description

rc The return value.

DigFocus (function) Example

This example displays a dialog box with a check box, labeled Checkl,
and a text box, labeled Text Box 1, in it. When the box is initialized, the
focus is set to the text box. As soon as the user clicks the check box, the
focus goes to the OK button.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
TextBox 15, 37, 82, 12, .TextBox1
Text 15, 23, 57, 10, "Text Box 1"
CheckBox 15, 6, 75, 11, "Checkl", .CheckBox1
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action

Case 1

2-89

DigFocus (function) — Return id of control with focus

DlgFocus 2
Case 2 ‘'user changed control or clicked a button
If DIgFocus() <> "OKButton" then
DIgFocus 0
End If
End Select

End Function

2-90

DigFocus (statement) — Set focus to specified control

DIgFocus (statement) — Set focus to specified control

DlgFocus id

Sets the focus to the dialog box control identified by the id parameter.

Parameter Description

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

DIgFocus (statement) Example

This example displays a dialog box with a check box, labeled Checkl,
and a text box, labeled Text Box 1, in it. When the box is initialized, the
focus is set to the text box. As soon as the user clicks the check box, the
focus goes to the OK button.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
TextBox 15, 37, 82, 12, .TextBox1
Text 15, 23, 57, 10, "Text Box 1"
CheckBox 15, 6, 75, 11, "Checkl", .CheckBox1
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)

2-91

DigFocus (statement) — Set focus to specified control

Select Case action

Case 1
DlgFocus 2

Case 2 'user changed control or clicked a button
If DIgFocus() <> "OKButton" then

DlgFocus 0

End If

End Select

End Function

2-92

DiglListBoxArray (function) — Return the number of elements in a list or combo box

DiglistBoxArray (function) — Return the number of
elements in a list or combo box

rc = DlgListBoxArray (id [, array $])

Returns the number of elements in the specified list box or combo box.
The DlgListBoxArray function fills the array with the list box or combo

box entries.

Parameter Description

rc The return value.

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

array$ A one-dimensional array of dynamic
strings.

Comments

Provided array$ is dynamic, its size will be altered to accommodate the
number of strings in the control. If array$ is not dynamic, and is not large
enough to accommodate all of the strings in the control, an error occurs.
If array$ is omitted, the function returns the number of entries in the
control.

DiglListBoxArray (function) Example

This example displays a dialog box with a check box, labeled ““Display
List’*, and an empty list box. If the user clicks the check box, the list box
is filled with the contents of the array called ‘““myarray’*. The DIgListBox
Array function makes sure the list box is empty.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main

Dim button as integer

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Begin Dialog newdlg 186, 92, "DlgListBoxArray Example”, _

2-93

DiglListBoxArray (function) — Return the number of elements in a list or combo box

.FileDIgFunction

'$CStrings Save
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
ListBox 19, 26, 74, 59, ", .ListBox1
CheckBox 12, 4, 86, 13, "Display List", .CheckBox1
'$CStrings Restore

End Dialog

Dim dig As newdlg

button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Dim myarray$(3)
Dim msgtext as Variant
Dim x as Integer
Forx=0to 2
myarray$(x)=Chr$(x+65)
Next x
Select Case action
Case 1
Case 2 ‘'user changed control or clicked a button
If DIgControlID(identifier$)=3 then
If DlgListBoxArray(2)=0 then
DigListBoxArray 2, myarray$()
End If
End Select

End Function

2-94

DiglListBoxArray (statement) — Fill the specified list or combo box with array elements

DiglistBoxArray (statement) — Fill the specified list or
combo box with array elements

DigListBoxArray id, array $

Fills the list box or combo box identified by the id parameter with the
strings from the array identified by the array$ parameter.

Parameter Description

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

array$ A one-dimensional array of dynamic
strings.

DiglListBoxArray (statement) Example

This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Dim filetypes as String

Dim exestr$()

Dim button as Integer

Dim x as Integer

Dim directory as String

filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"

Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"

2-95

DiglListBoxArray (statement) — Fill the specified list or combo box with array elements

TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)
DIgText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If
DigListBoxArray 2,exestr$()
End Sub

2-96

DiglListBoxArray (statement) — Fill the specified list or combo box with array elements

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
stri$="*.exe" 'dialog box initialized
ListFiles str1$
Case 2 ‘button or control value changed
If DIgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Stri$="+*"
Else
str1$="*exe"
End If
ListFiles str1$
End If
Case 3 ‘text or combo box changed
str1$=DIgText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 'idle
End Select

End Function

2-97

DigSetPicture (statement) — Change the picture in a picture control

DigSetPicture (statement) — Change the picture in a
picture control

DlgSetPicture id, filename $, type

Changes the picture currently displayed in a picture control to a
different picture.

Parameter Description

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

filename$ The name of a bitmap file (.BMP)
containing the new picture. (If type is 3,
this parameter is ignored.)

type Indicated the type of the bitmap as shown
in the chart below:

Value Action

0 Use bitmap contained in
filename$

3 Copy bitmap from Windows
Clipboard

Comments

If the picture is not available (either the file filename$ does not exist or it
does not contain a bitmap, or there is no bitmap in the Clipboard), the
picture control will display the picture frame and the text “‘(missing
picture).”” To trigger a runtime error instead, add 16 to the type value
(that is, a type value of either 16 or 19).

DigSetPicture (statement) Example

This example displays a picture in a dialog box and changes the picture
if the user clicks the check box labeled ‘“Change Picture.’

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main

Dim button as integer

2-98

DigSetPicture (statement) — Change the picture in a picture control

Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgSetPicture Example”, _
.FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
Picture 43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 ‘'user changed control or clicked a button
If DIgControlID(identifier$)=3 then
If suppvalue=1 then
DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
Else
DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
End If
End If
End Select

End Function

2-99

DigText (function) — Return the text associated with a dialog box control

DigText (function) — Return the text associated with a

2-100

dialog box conftrol

rc= DigText$(id)

Returns the text associated with the control identified by the id

parameter.

Parameter Description

rc The return value.

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

Comments

If the control is a text box or a combo box, DIgText$ returns the text that

appears in the text box. If the control is a list box, the function returns the
item that is currently selected. If the control is a command button, option
button, option group, or check box, the function returns its label.

DigText (function) Example

This example displays a dialog box similar to File Open. It uses DIgText
to determine which group of files to display.

Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()
Dim button as Integer
Dim x as Integer

Dim directory as String

DigText (function) — Return the text associated with a dialog box control

filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction

'$CStrings Save

Text 8, 6, 60, 11, "&Filename:"

TextBox 8, 17, 76, 13, .TextBox1

ListBox 9, 36, 75, 61, exestr$(), .ListBox1

Text 8, 108, 61, 9, "List Files of &Type:"

DropListBox 7, 120, 78, 30, filetypes, .DropListBox1

Text 98, 7, 43, 10, "&Directories:"

Text 98, 20, 46, 8, "c:\\windows"

ListBox 99, 34, 66, 66, ", .ListBox2

Text 98, 108, 44, 8, "Dri&ves:"

DropListBox 98, 120, 68, 12, ", .DropListBox2

OKButton 177, 6, 50, 14

CancelButton 177, 24, 50, 14

PushButton 177, 42, 50, 14, "&Help"

'$CStrings Restore
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)

End Sub
Sub ListFiles(str1$)

DigText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then

Do

exestr$(x)=LCase$(directory)

X=Xx+1

Redim Preserve exestr$(x)

directory=Dir

Loop Until directory=""

2-101

DigText (function) — Return the text associated with a dialog box control

End If
DigListBoxArray 2,exestr$()
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
str1$="*.exe" 'dialog box initialized
ListFiles str1$
Case 2 ‘button or control value changed
If DIgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Strig="**"
Else
stri$="*.exe"
End If
ListFiles str1$
End If
Case 3 ‘text or combo box changed
str1$=DIgText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 ‘idle
End Select

End Function

2-102

DigText (statement) — Change the text associated with a control

DigText (statement) — Change the text associated with
a control

DigText$ id, text $
Changes the text associated with the control identified by the id

parameter.

Parameter Description

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

text$ A string or string expression.

Comments

If the control identified by the id parameter is a text box or combo box,
DlgText sets the text that apprears to text$. If the control is a command
button, option button, option group, or check box, the DIgText statement
sets text$ to the control’s label.

The DIgText statement does not change the identifier (id) associated
with the control.

DigText (statement) Example

This example displays a dialog box similar to File Open. It uses the
DlgText statement to display the list of files in the Filename list box.

Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()

Dim button as Integer

2-103

DigText (statement) — Change the text associated with a control

Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub
Sub ListFiles(str1$)
DIgText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1

Redim Preserve exestr$(x)

2-104

DigText (statement) — Change the text associated with a control

directory=Dir

Loop Until directory=""
End If

DigListBoxArray 2,exestr$()

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
stri$="*.exe" ‘dialog box initialized

ListFiles str1$

Case 2 ‘button or control value changed

If DIgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Stri$="**"
Else
str1$="*.exe"
End If
ListFiles str1$
End If
Case 3 ‘text or combo box changed
str1$=DIgText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 ‘idle
End Select

End Function

2-105

DigValue (function) — Return value of a control state

DigValue (function) — Return value of a control state

rc = DlgValue(id)

Returns the numeric value associated with the current state of the
specified control.

Parameter Description
rc The return value.
id The dialog box control. This must be a

numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

Comments

Refer to the following chart:

For control A DlgValue
type return value of Means
Checkbox 1 Checkbox is selected
0 Checkbox is cleared
-1 Checkbox is filled with
gray shading
Option group 0 First option button is
selected
1 Second option button is
selected
2... Third option button is
selected and so forth
List box 0 First item is selected
Combo box
1 Second item is selected
2... Third item is selected

and so forth

2-106

DigValue (function) — Return value of a control state

If id names a text box, command button, or option button control, an
error occurs.

DigValue (function) Example

This example changes the picture in the dialog box if the check box is
selected, and changes the picture to its original bitmap if the checkbox is
turned off.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgSetPicture Example”, _
.FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
Picture 43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 ‘'user changed control or clicked a button
If DIgControlID(identifier$)=3 then
If DIlgValue(3)=1 then
DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
Else
DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
End If

2-107

DigValue (function) — Return value of a control state

End If
End Select

End Function

2-108

DigValue (statement) — Change the value of a control

DigValue (statement) — Change the value of a control

DlgValue

id, value %

Changes the state value associated with the specified control.

Parameter
id

value

Comments

For control type
Checkbox

Option group

List box
Combo box

Description

The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string

identifier.

The integer value indicating the state to
which you want to set the control. Refer

to the chart below.

Set value% to
1

To
Select the checkbox

Clear the checkbox

Fill the checkbox with
gray shading

Select the first option
button

Select the second option
button

Select the third option
button and so forth

Select the first item

Select the second item

Select the third item and
so forth

If id names a text box, command button, or option button control, an

error occurs.

2-109

DigValue (statement) — Change the value of a control

DigValue (statement) Example

This example displays a dialog box with a checkbox, labeled Change
Option, and a group box with two option buttons, labeled Option 1 and
Option 2. When the user clicks the Change Option button, Option 2 is
selected.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgValue Example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Change Option", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 'user changed control or clicked a button
If DIgControlID(identifier$)=2 then
If DIgValue(2)=1 then
DlgValue 4,1
Else

DlgValue 4,0

2-110

DigValue (statement) — Change the value of a control

End If
End If
End Select

End Function

2-111

DigVisible (function) — Determine whether a control is visible or hidden

DigVisible (function) — Determine whether a control is
visible or hidden
rc = DlgVisible(id)
Returns -1 if the specified dialog control is visible and 0 if it is hidden.

Parameter Description
rc The return value.
id The dialog box control. This must be a

numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

DigVisible (function) Example

This example displays Option 2 in the Group box if the user clicks the
check box labeled ““Show Option 2’ If the user clicks the box again,
Option 2 is hidden.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgVisible Example”, _
.FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog

2-112

DigVisible (function) — Determine whether a control is visible or hidden

Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgVisible 6,0
Case 2 ‘'user changed control or clicked a button
If DIgControlID(identifier$)=2 then
If DlgVisible(6)<>1 then
DlgVisible 6
End If
End If
End Select

End Function

2-113

DigVisible (statement) — Change a control from visible to hidden or hidden to visible

DigVisible (statement) — Change a conftrol from visible
to hidden or hidden to visible

DlgVisible id [, modd
Changes the specified control to be either visible or hidden.

Parameter Description

id The dialog box control. This must be a
numeric argument. Use DIgControlID to
get the numeric id based on its string
identifier.

mode A value or numeric expression that equals
1 if you want the control to be visible or 0
if you want the control to be hidden. Omit
mode to toggle the control to hidden if it is
currently visible or visible if it is currently
hidden.

DigVisible (statement) Example

This example displays Option 2 in the Group box if the user clicks the
check box. labeled **Show Option 2’*. If the user clicks the box again,
Option 2 is hidden.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgVisible Example", _
.FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"

2-114

DigVisible (statement) — Change a control from visible to hidden or hidden to visible

OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgVisible 6,0
Case 2 ‘'user changed control or clicked a button
If DIgControlID(identifier$)=2 then
If DIgVisible(6)<>1 then
DlgVisible 6
End If
End If
End Select

End Function

2-115

DoEvents (statement) — Yield to Windows

DoEvents (statement) — Yield to Windows

DoEvents
Yields execution to Windows for processing operating system events.

Comments

DoEvents does not return until Windows has finished processing all
events in the queue and all keys sent by SendKeys statement.

DoEvents should not be used if other tasks can interact with the running
program in unforeseen ways. Since EXTRA! Basic yields control to the
operating system at regular intervals, DoEvents should only be used to
force EXTRA! Basic to allow other applications to run at a known point
in the program.

DoEvents (statement) Example

This example activates the Windows Terminal application, dials the
number and then allows the operating system to process events.

Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Terminal.exe",1)
SendKeys "%PD" & phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext
DoEvents

End Sub

2-116

Do While...Lo

op/Do Until...Loop (statements) — Repetitive action control

Do While...Loop/Do Until...Loop (statements) — Repetitive
action conftrol

Or

Tests for

Do [{ While | Until
[statementblock
[ExitDo]
[statementblock
Loop

} condition

]
]

]

Do
[statementblock
[Exit Do
[statementblock
Loop [{ While |

]

]

Until } condition

]
the specified condition after executing a block of statements

and repeats the loop if the condition remains true.

Parameter Description
condition Any Boolean expression that EXTRA!
Basic can determine to be true (non zero)
or false (zero).
statement Contains the program lines that are
block repeated as long as a While condition is
true or until an Until condition is false.
Comments
The first version of the syntax above may not execute the loop if the

condition is false. The second version of the syntax will always execute
the loop at least once.

When an
statemen

Exit Do statement is executed, control is transferred to the
t that follows the Loop statement. When used within a nested

loop, an Exit Do statement moves control out of the immediate loop.

Do While...Loop/Do Until...Loop (statements) Example

The example creates an infinite Do...Loop that can be exited only if the
user enters a number in a range.

Sub Main
Dim Reply$
Do

' Declare variable.

2-117

Do While...Loop/Do Until...Loop (statements) — Repetitive action control

Reply$ = InputBox$("Enter a number greater than 1/ less than 9.")
If (Val(Reply) > 1) And (Val(Reply) <9) Then ' Check range.
Exit Do " Exit Do Loop.
End If
Loop
End Sub

2-118

DropComboBox (statement) — Create combination drop-down list box and text box

DropComboBox (statement) — Create combination

drop-down list box and text box

DropComboBox x, y, dx, dy, text $, . field

_Or-

DropComboBox x, y, dx, dy, stringarray $() ,

Creates a combination static text box (or edit box) and drop-down list

box.

Parameter

X,y

dx, dy

Description

Specifies the position of the drop-down
combo box relative to the upper left
corner of the client area.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the drop-down combo box
is centered horizontally within the client
area. If y is omitted, the box is centered
vertically within the client area.

The sum of the width of the drop-down
combo box and the text$ parameter.
Because proportional spacing is used, the
width will vary with the characters used.
To approximate the width, multiply the
number of characters in the text$
parameter (including blanks and
punctuation) by 4 and add 12.

dy is the height of the text$ parameter. A
dy value of 12 is standard, and should
cover typical default fonts. If larger fonts
are used, the value should be increased.
As the dy number grows, the drop-down
combo box and the accompanying text
will move downward within the dialog
box.

2-119

DropComboBox (statement) — Create combination drop-down list box and text box

Parameter Description

text$ A string containing the selections for the
drop-down combo box. This string must
be defined, using a Dim statement, before
the Begin Dialog statement is executed.
The arguments in the text$ string are
entered as follows:

dimname = ““listchoice™ + Chr$(9) =
“listchoice™ + Chr$(9) + “‘listchoice’™ +

Chr$(9)...
stringarray An array of dynamic strings.
field The name of the dialog-record field that

will hold the text string entered in the text
box or chosen from the drop-down combo
box. The user's selection is recorded in the
field designated by the .field argument
when the OK button (or any button other
than Cancel) is selected. The .field
argument is also used by the dialog
statements that act on this control.

Comments

The DropComboBox statement can only be used between a Begin
Dialog and an End Dialog statement.

DropComboBox (statement) Example

This example defines a dialog box with a drop combo box and the OK
and Cancel buttons.

Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "E! Basic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl

2-120

DropComboBox (statement) — Create combination drop-down list box and text box

DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then
MsgBox "You pressed Cancel."
Else
MsgBox "You pressed OK."
End If
End Sub

2-121

DroplistBox (statement) — Create a drop-down list box

DroplistBox (statement) — Create a drop-down list box

DropListBox x, y, dx, dy, text $, . field

2-122

Or

DropListBox x, y, dx, dy, stringarray $() , . field

Creates a drop-down list of choices from which users can select.

Parameter

X,y

dx, dy

Description

x and y specify the position of the drop-
down list box relative to the upper left
corner of the dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the drop-down list box is
centered horizontally within the client
area. If y is omitted, the drop-down list
box is centered vertically within the client
area.

The combined width of the drop-down
list box and the text$ field. Because
proportional spacing is used, the width
will vary with the characters used. To
approximate the width, multiply the
number of characters in the text$
parameter (including blanks and
punctuation) by 4 and add 12.

The dy argument is the height of the text$
parameter. A dy value of 12 is standard,
and should cover typical default fonts. If
larger fonts are used, the value should be
increased. As the dy number grows, the
drop-down list box and the
accompanying text will move downward
within the dialog box.

DroplistBox (statement) — Create a drop-down list box

Parameter Description

text$ A string containing the selections for the
drop-down list box. This string must be
defined using a Dim statement, before the
Begin Dialog statement is executed.

stringarray An array of dynamic strings.

field The .field parameter is the name of the
dialog-record field that will hold the
drop-down list box selection. When the
user selects OK (or selects the customized
button created using the Button
statement), a number representing the
selection's position in the text$ string is
recorded in the .field field. listchoice
numbers begin at 0. If no item is selected,
field is set to -1.

Comments

The DropListBox statement can only be used between a Begin Dialog
and an End Dialog statement.

Note: Unlike a ListBox, a DropListBox may overlap other controls or fall
outside the dialog box dimensions when dropped down.

DroplistBox (statement) Example

This example defines a dialog box with a drop list box and the OK and
Cancel buttons.
Sub main
Dim DropListBox1() as String
ReDim DropListBox1(3)
For x=0to 2
DropListBox1(x)=Chr(65+x) & ":"
Next x
Begin Dialog UserDialog 186, 62, "E! Basic Dialog Box"
Text 8, 4, 42, 8, "Drive:", .Text3

2-123

DroplistBox (statement) — Create a drop-down list box

DropListBox 8, 16, 95, 44, DropListBox1(), .DropListBox1
OKButton 124, 6, 54, 14
CancelButton 124, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

2-124

Environ (function) — Return an environment string

Environ (function) — Return an environment string

rc %=

Or

rc %=

Returns a string from the operating system's environment table.

Parameter

rc%

environment-
string$

n%

Comments

Environ [$] (environment-string $)

Environ$(n%)

Description

The return value. The returned value will
be in the form: Keyword = value

The name of a keyword in the operating
system environment variable table. The
value associated with the keyword is
returned. If this argument is not entered
in uppercase, Environ$ will return a Null
string.

n% represents the nth string in the
operating system environment variable
table. n% may be any numeric expression,
however it will be rounded to a whole
number by Environ$ before being
evaluated.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified the return type is String. If it is omitted, the Environ function
will return a variant of vartype 8 (String).

A Null string will be returned if the specified argument cannot be found.

Environ (function) Example

This example uses Environ to supply the entry number and length of the
PATH statement from the environment-string table.

Indx% =1
Do

EnvString$ = Environ$(Indx%)

' Initialize Index to 1.

' Get environment variable.

If Left$(EnvString$, 5) = "PATH="Then ' Check if PATH.

2-125

Environ (function) — Return an environment string

2-126

PathLen% = Len(Environ$ ("PATH")) 'Get length.
Msg$ = "Your PATH statement is entry number "

Msg$ = Msg$ + LTrim$(Str$(Indx%))

Msg$ = Msg$ + " in the environment-string table. "

Msg$ = Msg$ + "Your PATH statement uses "

Msg$ = Msg$ + LTrim$(Str$(PathLen%)) + " characters."

Exit Do
Else
Indx% = Indx% + 1 'Not PATH entry,
' so increment.
End If

Loop Until EnvString$ ="
If PathLen% Then
Print Msg$ ' Display message.
Else
MsgBox "No PATH statement exists."
Print Msg$
End If

Eof (function) — Create end-of-file condition

Eof (function) — Create end-of-file condition

rc %= Eof (filenumber %

Returns a value indicating whether the end of a file has been reached.

Parameter Description
rc% The return value.
filenumber% An integer or integer expression

corresponding to a file number assigned
in a previous Open statement.

Comments

The Eof Function returns a (-1) if the end-of-file condition is true for the
specified file.

Eof (function) Example

This example uses the Eof function to detect the end of a sequential file.

Dim FileNum, Handle, Mode$, Msg$ ' Declare variables.
FileNum = FreeFile ' Get available file number.
Open "TESTFILE" For Append As FileNum ' Create sample data file.
Handle = FileAttr (FileNum,2) ' Get file handle.
Select Case FileAttr (FileNum,1) ' Determine mode.
Case 1: Mode = "Input"
Case 2 : Mode = "Output”
Case 8 : Mode = "Append"
End Select

Close FileNum ' Close file.

Msg$ = "The file using DOS file handle " + STR$(Handle)
Msg$ = Msg$ + " was opened as an " + Mode + " file."
MsgBox Msg$ ' Display message.

Kill "TESTFILE" ' Delete zero-length file.

2-127

Erase (statement) — Reinitialize a fixed array or free a dynamic array

Erase (statement) — Reinitialize a fixed array or free a
dynamic array

Erase arrayl [, array2]..

Reinitializes the contents of a fixed array and deallocates or frees the
storage associated with a dynamic array.
Parameter Description

array The name of the array (or arrays) to be
erased. Refer to the chart below for details
about how Erase affects fixed array
elements.

Comments

A fixed array of Produces this Erase effect

numeric Each element is set to zero

elements

variable length Each string is set to a length of zero
strings

fixed length Each string is zero-filled

strings

variant Each element is set to Empty

elements

user-defined Members of each element are cleared as if
element types the members were array elements (e.g.,

numeric elements are set to zero)

object Each elements is set to the special value
elements Nothing

Dynamic array consideration; After using the Erase function to
deallocate storage space for a dynamic array, your macro must redeclare
the array with the ReDim statement.

Erase (statement) Example

This example prompts for a list of item numbers to put into an array and
clears array if the user wants to start over.

2-128

Erase (statement) — Reinitialize a fixed array or free a dynamic array

Sub main
Dim msgtext
Dim inum(100) as Integer
Dim x, count
Dim newline
newline=Chr(10)
x=1
count=x
inum(x)=0
Do
inum(x)=InputBox("Enter item #" & x & " (99=start over;0=end):")
If inum(x)=99 then
Erase inum()
x=0
Elself inum(x)=0 then
Exit Do
End If
X=x+1
Loop
count=x-1
msgtext="You entered the following numbers:" & newline
For x=1 to count
msgtext=msgtext & inum(x) & newline
Next x
MsgBox msgtext

End Sub

2-129

Erl (function) — Return line number location of an error

Erl (function) — Return line number location of an error

rc %= Erl

Returns the line number where an error occurred.

Parameter Description
rc% The return value.
Comments

Use Erl in an error-handling routine to investigate trapped errors and
outline corrective action. Using the Resume or On Error statements will
reset the Erl value to zero (0).

Note: An On Error GoTo error handler that calls another procedure may
inadvertantly reset the Erl value to zero. To make sure that the Erl value
does not get reset, you should assign it to a variable.

The value of Erl can be set indirectly through the Error statement.

If your procedure does not have line numbers, or if an error occurs
before your procedure is executed, Erl returns a zero.

Erl (function) Example

Sub main

This example prints the error number using the Err function and the line
number using the Erl statement if an error occurs during an attempt to
open a file. Line numbers are automatically assigned, starting with 1,
which is the Sub main statement.

Dim msgtext, userfile

On Error GoTo Debugger

msgtext="Enter the filename to use:"

userfile=InputBox$(msgtext)

Open userfile For Input As #1

MsgBox "File opened for input.”

....etc....

Close #1

done:

2-130

Erl (function) — Return line number location of an error

Exit Sub
Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext
Resume done

End Sub

2-131

Err (function) — Return error code

Err (function) — Return error code

rc %= Err

Returns the run-time error code for the last error.

Parameter Description
rc% The return value.
Comments

Use Err in an error-handling routine to return an integer run-time error
code identifying an error. Using the Resume or On Error statements will
reset the Err value to zero (0).

Note: An On Error GoTo error handler that calls another procedure may
inadvertantly reset the Err value to zero. To make sure that the Err value
does not get reset, you should assign it to a variable.

The value returned by the Err function can be set directly using the Err
statement. The value of Err can be set indirectly through the Error
statement.

Err (function) Example

This example prints the error number using the Err function and the line
number using the Erl statement if an error occurs during an attempt to
open a file. Line numbers are automatically assigned, starting with 1,
which is the Sub main statement.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
....etc....
Close #1

done:

2-132

Err (function) — Return error code

Exit Sub
Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext
Resume done

End Sub

2-133

Err (statement) — Transfer application error information

Err (statement) — Transfer application error information

2-134

Err = n%

Sends application-specific error information from one procedure to
another.

Parameter Description

n% Must be a 0 (indicating that no run-time
error has been trapped) or an integer
expression indicating a run-time error
code (with a value between 1 and 32,767
inclusive).

Comments

Set Err to a nonzero integer value corresponding to an application-
specific error code. To determine which codes are not used by EXTRA!
Basic (and therefore available for use by your application) use the Error$
function and/or the Error statement (or work backwards from error
code 32,767).

Using the Resume or On Error statements will reset the Err value to zero

(0).

Err (statement) Example

Sub main

This example generates an error code of 10000 and displays an error
message if a user does not enter a customer name when prompted for it.
It uses the Err statement to clear any previous error codes before running
the loop the first time and it also clears the error to allow the user to try
again.

Dim custname as String

On Error Resume Next

Do
Err=0

custname=InputBox$("Enter customer name:")

Error 10000

Else

Err (statement) — Transfer application error information

Exit Do
End If
Select Case Err

Case 10000

MsgBox "You must enter a customer name."

Case Else
MsgBox "Undetermined error. Try again.”
End Select
Loop Until custhname<>""
MsgBox "The name is: " & custhname

End Sub

2-135

Error (statement) — Simulate an error condition

Error (statement) — Simulate an error condition

2-136

Error errorcode %

Simulates the occurrence of an EXTRA! Basic or user-defined error.

Parameter Description

errorcode% Represents a specific error code and must
be an integer between 1 and 32,767. If an
errorcode% is an EXTRA! Basic error code,
the Error statement will simulate an
occurrence of that error and set Err to the
value of errorcode%.

Comments

User-defined error codes should use values greater than those used for
standard EXTRA! Basic error codes. To determine which codes are not
used by EXTRA! Basic (and therefore available for use by your
application) use the Error$ function and/or the Error statement (or work
backwards from error code 32,767).

If an Error statement is executed, but no error-handling routine is
enabled, EXTRA! Basic produces an error message and halts program
execution. If an Error statement specifies an error code not used by
EXTRA! Basic, the message

User-defined error

is displayed.

Error (statement) Example

Sub main

This example generates an error code of 10000 and displays an error
message if a user does not enter a customer name when prompted for it.
It uses the Err statement to clear any previous error codes before running
the loop the first time and it also clears the error to allow the user to try
again.

Dim custname as String

On Error Resume Next

Do
Err=0

Error (statement) — Simulate an error condition

custname=InputBox$("Enter customer name:")

If custname="" then
Error 10000
Else
Exit Do
End If
Select Case Err
Case 10000
MsgBox "You must enter a customer name."
Case Else
MsgBox "Undetermined error. Try again."”
End Select
Loop Until custname<>""
MsgBox "The name is: " & custhame

End Sub

2-137

Error (function) — Return error message

Error (function) — Return error message

rc$= Error [$] [(errorcode %))

Returns the error message that corresponds to the specified error code.

Parameter Description
rc% The return value.
errorcode% Represents a specific error code and must

be an integer between 1 and 32,767.

Comments

If this argument is omitted, EXTRA! Basic returns the error message for
the run-time error that occurred most recently.

If no error message matches the error code, “ ** is returned.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If it is omitted, Error will return a
variant of vartype 8 (String).

Error (function) Example

This example prints the error number, using the Err function, and the
text of the error, using the Error$ function, if an error occurs during an
attempt to open a file.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
...etc....
Close #1

done:
Exit Sub

Debugger:

2-138

Error (function) — Return error message

msgtext="Error " & Err & ": " & Error$
MsgBox msgtext
Resume done

End Sub

2-139

Exit (statement) — Transfer control to the next statement

Exit (statement) — Transfer control to the next statement

Exit {Do | For | Function | Sub}
Transfers control of the program execution to the next statement block.

Statement Description

Exit Do Provides an exit from a Do...Loop
statement by transferring control to the
statement following the Loop statement.
If Exit Do is used within a nested
Do...Loop statement, control returns to
the loop that is one nested level above the
loop in which it occurs.

Exit For Provides an exit from a For...Next
statement by transferring control to the
statement following the Next statement. If
Exit For is used within a nested For...Next
statement, control returns to the loop that
is one nested level above the loop in
which it occurs.

Exit Function Exits immediately. Program execution
continues with the statement following
the Exit Function call.

Exit Sub Exits immediately. Program execution
continues with the statement following
the Exit Sub procedure call.

Exit (statement) Example

This example uses the On Error statement to trap run-time errors. If
there is an error, the program execution continues at the label
“Debugger’*. The example uses the Exit statement to skip over the
debugging code when there is no error.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger

msgtext="Enter the filename to use:"

2-140

Exit (statement) — Transfer control to the next statement

userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "“File opened for input.”
'...etc....
Close #1
done:
Exit Sub
Debugger:
msgtext="Error " & Err & ": " & Error$
MsgBox msgtext
Resume done

End Sub

2-141

Exp (function) — Return the antilogarithm

Exp (function) — Return the antilogarithm

rc %= Exp(numeric-expression)

Returns the value e (the base of natural logarithms) raised to the numeric-
expression power.

Parameter Description

rc% The return value.

numeric- Any numeric data type. The Exp function
expression will round the resulting value, if

necessary, before converting it.

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision Integer

Double Double-precision floating
point

Comments

An overflow error will occur if numeric-expression exceeds
709.782712893. The value of the constant e is approximately 2.718282.

Exp (function) Example

This example estimates the value of a factorial of a number entered by
the user. A factorial (notated with an exclamation mark, !) is the product
of a number and each integer between it and the number 1. For example,
5 factorial, or 5!, is the product of 5¥4*3*2*1, or the value 120.

Sub main
Dim x as Single
Dim msgtext, Pl

Dim factorial as Double

2-142

Exp (function) — Return the antilogarithm

PI1=3.14159

: x=InputBox("Enter an integer between 1 and 88:)
If x<=0 then
Exit Sub
Elself x>88 then
MsgBox "The number you entered is too large. Try again.”
Goto i
End If
factorial=Sqr(2*PI*x)*(X"X/Exp(X))
msgtext="The estimated factorial is: " & Format(factorial, "Scientific")
MsgBox msgtext

End Sub

2-143

FileAttr (function) — Return a file attribute

FileAttr (function) — Return a file attribute

2-144

rc %= FileAttr(filenumber % attribute %)

Returns information about an open file. Depending on the attribute
chosen, this information is either the file mode or the operating system

handle.

Parameter Description

rc% The return value.

filenumber% An integer or integer expression
corresponding to a file number assigned
in a previous Open statement.

attribute% An integer or integer expression that
evaluates to either one (1) or two (2). Set
attribute% to 1 to return one of the
following file modes:
Return Mode Description
1 Input
2 Output
8 Append

Comments

If attribute% is set to 2, FileAttr returns the operating system handle for
the file.

FileAttr (function) Example

The example uses FileAttr to report the file handle and mode of an open

file.
Dim FileNum, Handle, Mode$, Msg$ ' Declare variables.
FileNum = FreeFile ' Get available file number.

Open "TESTFILE" For Append As FileNum ' Create sample data file.
Handle = FileAttr (FileNum,2) ' Get file handle.
Select Case FileAttr (FileNum,1) ' Determine mode.

Case 1 : Mode = "Input”

Case 2 : Mode = "Output"

FileAttr (function) — Return a file attribute

Case 8 : Mode = "Append"
End Select

Close FileNum ' Close file.

Msg$ = "The file using DOS file handle " + STR$(Handle)
Msg$ = Msg$ + " was opened as an " + Mode + " file."
MsgBox Msg$ ' Display message.

Kill "TESTFILE" ' Delete zero-length file.

2-145

FileCopy (statement) — Copies a source file to a new or existing file

FileCopy (statement) — Copies a source file o a new or
existing file

FileCopy sourcefile $, destfile $

Copies the contents of a file to a new or existing file. This command will
overwrite existing files.

Parameter Description

sourcefile$ A string or string expression pointing to
the file to be copied. Sourcefile$ cannot
contain wildcard characters. Drive and
path information may be included.

destfile$ A string or string expression pointing to
the file to which sourcefile is to be copied.
Destfile$ cannot contain wildcard
characters. Drive and path information
may be included.

Comments

Sourcefile cannot be copied if it is opened by EXTRA! Basic for anything
other than Read-only access.

FileCopy (statement) Example

This example copies one file to another. Both filenames are specified by
the user.

Sub main
Dim oldfile, newfile
On Error Resume Next
oldfile= InputBox("Copy which file?")
newfile= InputBox("Copy to?")
FileCopy oldfile,newfile
If Err<>0 then

msgtext="Error during copy. Rerun program."

2-146

FileCopy (statement) — Copies a source file to a new or existing file

Else

msgtext="Copy successful."
End If
MsgBox msgtext

End Sub

2-147

FileDateTime (function) — Return date/time a file was modified last

FileDateTime (function) — Return date/time a file was
modified last

rc = FileDateTime(filename $)

Returns a string indicating the date and time the specified file was
created or last saved.

Parameter Description
rc The return value.
filename$ A string or string expression pointing to

the file you want to check. Filename$
cannot contain wildcard characters. Drive
and path information may be included.

FileDateTime (function) Example

This example writes data to a file if it hasn’t been saved within the last 2
minutes.

Sub main

Dim tempfile

Dim filetime, curtime

Dim msgtext

Dim acctno(100) as Single

Dim x, |

tempfile="C:\TEMPO01"

Open tempfile For Output As #1

filetime=FileDateTime(tempfile)

x=1

=1

acctno(x)=0

Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")

If acctno(x)=99 then

2-148

FileDateTime (function) — Return date/time a file was modified last

For I=1to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I=1 to x
Write #1, acctno(l)
Next |
End If
X=x+1
Loop
Close #1
x=1
msgtext="Contents of CATEMPO0O01 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"
End Sub

2-149

FileLen (function) — Return the length of a file (in bytes)

FileLen (function) — Return the length of a file (in bytes)

rc= FileLen(filename $)

Returns a Long integer indicating the length (in bytes) of the specified

file.

Parameter Description

rc The return value.

filename$ A string or string expression pointing to
the file you want to check. Filename$
cannot contain wildcard characters. Drive
and path information may be included.

Comments

If filename$ is open when this function is called, FileLen returns the
length of the file before it was opened.

FileLen (function) Example

This example returns the length of a file.

Sub main
Dim length as Long
Dim userfile as String
Dim msgtext
On Error Resume Next
msgtext="Enter a filename:"
userfile=InputBox(msgtext)
length=FileLen(userfile)
If Err<>0 then
msgtext="Error occurred. Rerun program."
Else
msgtext="The length of " & userfile & " is: " & length
End If
MsgBox msgtext

End Sub

2-150

Fix (function) — Return integer portion of a number

Fix (function) — Return integer portion of a number

rc %= Fix (numeric-expression)

Returns the integer portion of a numeric expression.

Parameter Description

rc% The return value. This return value type
will be the same type as numeric-
expression. If numeric-expression is a
variant, however, of vartype 8 (String)
that can be converted to a number, or
vartype 7 (Date), rc will be a variant of
vartype 5 (Double).

numeric- Any numeric data type.
expression

Comments

For both positive and negative numeric-expression parameters, Fix
removes the fractional portion of the expression and returns the integer
portion only. For example,

Fix (6.2)
returns 6; and
Fix (-6.2)

returns -6.

Important: For negative numeric expressions, Int returns the first
negative integer less than or equal to numeric-expression, and Fix returns
the first negative integer greater than or equal to numeric-expression. For
example, Int converts -5.6 to -6 and Fix converts -5.6 to -5.

If the numeric expression evaluates to a Null, Fix returns a Null.

Fix (function) Example

The example illustrates the difference between Int and Fix.

Dim Msg$, NL$, TB$ ' Declare variables.
NL$ = Chr$(13) + Chr$(10):

2-151

Fix (function) — Return integer portion of a number

TB$ = Chr$(9) ' Define newline, tab.

Msg$ =" Int (-99.8) returns" + TB$ + STR$(Int (-99.8))

Msg$ = Msg$ + TB$ + " Fix (-99.8) returns" + TB$ + STR$(Fix (-99.8))
Msg$ = Msg$ + NL$ + " Int (-99.2) returns" + TB$ + STR$(Int (-99.2))
Msg$ = Msg$ + TBS + " Fix (-99.2) returns" + TB$ + STR$(Fix (-99.2))
MsgBox Msg ' Display message.

2-152

For ... Next (statement) — Repeat a group of instructions x number of times

For ... Next (statement) — Repeat a group of instructions
X number of times

For counter = start To end [Step increment |
[statementblock]
[Exit For]
[statementblock]

Next [counter]

Repeats the statement block the specified number of times.

Parameter Description

counter A numeric variable used as the loop
counter. counter cannot be an element of
an array or record.

start The initial value of counter.

end The final value of counter.

increment The amount by which the counter is
changed each time through the loop. (The
defaultis 1.)

statement The group of EXTRA! functions,

block statements, or methods to be executed.

Comments

The start and end values must be consistent with increment. If end is
greater than start, increment must be positive. If end is less than start,
increment must be negative. Provided the signs of start, end, and
increment are the same, and end does not equal start, the For...Next loop
is entered. If not, the loop is skipped entirely.

The program lines following the For statement are executed until the
Next statement is encountered. At this point, the Step amount is added
to the counter and compared with end. If the beginning and ending
values are the same, the loop executes once, regardless of the Step value.
Otherwise, the Step value controls the loop as follows:

2-153

For ... Next (statement) — Repeat a group of instructions x number of times

2-154

Step Value Produces this Loop Execution

Positive If counter is less than or equal to end, the
Step value is added to counter. Control
returns to the statement following the For
statement and the process is repeated. If
counter is greater than end, the loop is
exited and execution resumes with the
statement following the Next statement.

Negative The loop repeats until counter is less than
end.
Zero The loop repeats indefinitely.

For...Next loops can be nested within one another. Each nested loop,
however, should be assigned a unique counter variable name. The Exit
For statement can be used as an alternative exit from a For...Next loop.

If the counter variable is omitted, the Next statement will match the most
recent For statement. If a Next statement occurs prior to its
corresponding For statement, EXTRA! Basic will return an error
message.

Multiple, consecutive Next statements can be merged together. If so, the
innermost counter must appear first and the outermost counter last.

For ... Next (statement) Example

This example calculates the factorial of a number. A factorial (notated
with an exclamation mark, !) is the product of a number and each integer
between it and the number 1. For example, 5 factorial, or 5!, is the
product of 5*4*3*2*1, or the value 120. In this example, the For...Next
statement is used to determine the integers between x and 1, multiply
those numbers by x, and produce x!.

Sub main
Dim number as Integer
Dim factorial as Double
Dim msgtext
number=InputBox("Enter an integer between 1 and 170:")
If number<=0 then

Exit Sub

For ... Next (statement) — Repeat a group of instructions x number of times

End If
factorial=1
For x=number to 2 step -1
factorial=factorial*x
Next x
Rem If number<= 35, then its factorial is small enough
Rem to be stored as a single-precision number
If number<35 then
factorial=CSng(factorial)
End If
msgtext="The factorial of " & number & " is: " & factorial
MsgBox msgtext
End Sub

2-155

Format (function) — Convert the value of expression to a fmt-defined string

Format (function) — Convert the value of expression 1o a

2-156

fmt-defined string

rc= Format [$] (expression [, fmt])

Converts the value of expression to a string based on the fmt specified.

Parameter Description
rc The return value.
expression The value to be formatted. Expression can

be a number, variant, or string.

fmt Any string expression. Refer to the charts
below for details.

Formatting Numbers

A numeric value can be formatted as either a number, a date, or a time.
If the fmt argument is omitted or Null, the number will be converted to a
string without any special formatting.

An expression

of type Is displayed as

General The number without a thousands
separator.

Fixed The number with at least one digit to the

left and at least two digits to the right of
the decimal separator.

Standard The number with a thousands separator
and two digits to the right of the decimal
separator.

Scientific The number using standard scientific
notation.

Currency The number using a currency symbol as

selected in the International section of the
Control Panel. The thousands separator is
displayed as are two degits to the right of
the decimal separator. Negative values
are enclosed in parentheses.

Format (function) — Convert the value of expression to a fmt-defined string

An expression
of type Is displayed as

Percent The number multiplied by 100 and
displayed with a percent sign appended
to the right. Also displays two digits to
the right of the decimal separator.

True/False 0 for false; any other number for true.
Yes/No 0 for no; any other number for true.
On/Off 0 for off; any other number for on.

User-defined numeric formatting rules:

A simple numeric fmt consists of digit placeholders and, an optional
decimal separator. The valid digit placeholders are 0 and #. 0 forces the
corresponding digit to appear in the output; while a # causes the digit to
appear in the output if it is significant (in the middle of the number or
non-zero). For example:

Formatted with

This expression this fmt Produces
1234.56 # 1235
1234.56 #.## 1234.56
1234.56 # 1234.6
1234.56 HiHHHH 1234.56
1234.56 00000.000 01234.560
0.12345 #4# 12
0.12345 0.## 0.12

A comma between digit placeholders causes a comma to be placed
between every three digits to the left of the decimal separator. For
example:

2-157

Format (function) — Convert the value of expression to a fmt-defined string

2-158

Formatted with

This expression this fmt Produces
1234567.8901 #,4 A 1,234,567.89
1234567.8901 # 4 A 1,234,567.8901

Note that while period (.) and comma (,) are always used as the decimal
and thousands separators in fmt, the output string will contain the
decimal and thousands placeholders selected in the international
settings for your PC.

Numbers may be scaled (divided) either by inserting one or more
commas before the decimal separator or by including a percent sign in
the fmt specification. Each comma preceding the decimal separator (or
after all digits, if no decimal separator is supplied) will scale the number
by 1000. The commas will not appear in the output string. A percent sign
will cause the number to be multiplied by 100. The percent sign will
appear in the output string in the same position as it appears in fmt. For
example:

Formatted with

This expression this fmt Produces
1234567.8901 #, H# 1234.57
1234567.8901 #,, HiHH 1.2346
1234567.8901 #H, HHE 1,234.57
0.1234 #0.00% 12.34%

Characters can be inserted into the output string by including them in
the fmt specification. The following placeholders will be automatically
inserted in the output string in a location matching their position in the
fmt specification:

- + $ () space Y 4

Any set of placeholder characters may be inserted by enclosing them in
guotation marks. Any single placeholder character may be inserted by
preceding it with a backslash (\).

Format (function) — Convert the value of expression to a fmt-defined string

Formatted with

This expression this fmt Produces
1234567.89 $#,0.00 $1,234,567.89
1234567.89 “TOTAL: $##.00 TOTAL:
$1,234,567.89
1234 \=\>##\<\= =>1,234<=

You may want to use the EXTRA! Basic $CSTRINGS metacommand or
the Chr function to embed quotation marks in a format specification. The
character code for a quotation mark is 34.

You can format numbers in scientific notation by including one of the
following exponent strings in the fmt specification:

E- E+ e- e+

The exponent string should be preceded with one or more digit
placeholders. The number of digit placeholders following the exponent
string determines the number of exponent digits in the result. Fmt
specifications containing an uppercase E will result in an uppercase E in
the output. Those containing a lowercase e will result in a lowercase e in
the output. A minus sign following the E will cause negative exponents
in the output to be preceded by a minus sign. A plus sign in fmt results
in a sign preceding the exponent in the output.

Formatted with

This expression this fmt Produces
1234567.89 Hi# ##E-00 123.46E04
1234567.89 HHt e+ 123.46e+4
0.12345 0.00E-00 1.23E-01

A numeric fmt can have up to four sections, separated by semicolons. If
you use only one section, it applies to all values. If you use two sections,
the first section applies to positive values and zeros, the second to
negative values. If you use three sections, the first applies to positive
values, the second to negative values, and the third to zeros. If you
include semicolons with nothing between them, the undefined section is
printed using the format of the first section. The fourth section applies to
Null values. If it is omitted and the input expression results in a Null
value, Format$ will return an empty string.

2-159

Format (function) — Convert the value of expression to a fmt-defined string

2-160

This expression Formatted with this fmt Produces

1234567.89 #,0.00;(#,0.00);*Zero’;*N 1,234,567.89
A

-1234567.89 #,0.00;(#,0.00);*Zero’*;* N (1,234,567.89)
A!I

0.0 #,0.00;(#,0.00);*Zero’*;"*N Zero
AR

0.0 #,0.00;(#,0.00);;* NA™ 0.00

Null #,0.00;(#,0.00);*Zero’*;"*N NA
A!i

Null “The value is: ““ 0.00

Formatting Date Times

Both numeric values and variants may be formatted as dates. When
formatting numeric values as dates, the value is interpreted according
the standard EXTRA! Basic date encoding scheme. The base date,
December 30, 1899, is represented as zero, and other dates are
represented as the number of days from the base date.

As with numeric formats, there is a number of predefined formats for

formatting dates and times:

A date expression
of type Is displayed as

General A date and time, if the number has both
integer and real parts (e.g., 11/8/93
1:23:45 PM); as a date, if the number has
only an integer part; as time, if the
number has only a fractional part.

Long Date A Long Date. Long Date is defined in the
International section of the Control Panel.
Medium Date A Short Date, but with the month

abbreviated (e.g., 08-Nov-93). Short Date
is defined in the International section of
the Control Panel.

Format (function) — Convert the value of expression to a fmt-defined string

A date expression
of type Is displayed as

Short Date A Short Date. Short Date is defined in the
International section of the Control Panel.

Long Time A Long Time. Long Time is defined in the
International section of the Control Panel
and includes hours, minutes, and
seconds.

Medium Time Hours in 12-hour format, with the
AM/PM designator; no seconds.

Short Time Hours in 24-hour format, with the
AM/PM designator; no seconds.

Refer to the following chart for a description of the placeholders you can
use to create user-defined date and time formats:

This date or time

placeholder

character Produces

C The date time as if the fmt was: ‘““ddddd
ttttt’*. See the definitions below.

ddddd The date including the day, month, and
year based on the PC’s current Short Date
setting. The default Short Date setting for
the United States is m/d/yy.

dddddd The date including the day, month, and
year based on the PC’s current Long Date
setting. The default Long Date setting for
the United States is mmmm dd, yyyy.

tttt The time including the hour, minute, and

second based on the PC’s current time
settings. The default time format is
h:mm:ss AM/PM.

Finer control over the output is available by including fmt placeholders
that deal with the individual components of the date and time.

2-161

Format (function) — Convert the value of expression to a fmt-defined string

2-162

This date or time
placeholder
character

d

dd

ddd

dddd

mm

mmm

mmmm

Produces

The day of the month as a one- or two-
digit number (1-31).

The day of the month as a two-digit
number (01-31).

The day of the week as a three-letter
abbreviation (Sun-Sat).

The day of the week without abbreviation
(Sunday-Saturday).

The day of the week as a number (where
Sunday =1 and Saturday = 7).

The week of the year as a number (1-53).

The month of the year or the minute of
the hour as a one- or two-digit number.
The number of minutes will be output if
the preceding placeholder character is an
hour; otherwise, the month will be
output.

The month or the year or the minute of
the hour as a two-digit number. The
number of minutes will be output if the
preceding placeholder character is an
hour; otherwise, the month will be
output.

The month of the year as a three-letter
abbreviation (e.g., Jan through Dec).

The month of the year without
abbreviation (e.g., January through
December).

The quarter of the year as a number (1
through 4).

Format (function) — Convert the value of expression to a fmt-defined string

This date or time
placeholder
character

y

yy

yyyy

hh

nn

SS

Produces

The day of the year as a number (1
through 366).

The year as a two-digit number (00
through 99).

The year as a four-digit number (100
through 9999).

The hour as a one- or two-digit number (0
through 23).

The hour as a two-digit number (00
through 23).

The minute as a one- or two-digit number
(0 through 59).

The minute as a two-digit number (00
through 59).

The second as a one- or two-digit number
(0 through 59).

The second as a two-digit number (00
through 59).

By default, times will be displayed using a military (24-hour) clock.
Several placeholder characters are provided in date/time fmt
specifications to change this default. They all cause a 12-hour clock to be
used. Refer to the following chart for details:

2-163

Format (function) — Convert the value of expression to a fmt-defined string

This time

indicator Produces

AM/PM An uppercase AM for any hour before
noon; an uppercase PM for any hour
between noon and 11:59 PM.

am/pm A lowercase am for any hour before noon;
a lowercase pm for any hour between
noon and 11:59 PM.

A/P An uppercase A for any hour before
noon; an uppercase P for any hour
between noon and 11:59 PM.

a/p A lowercase a for any hour before noon; a
lowercase p for any hour between noon
and 11:59 PM.

AMPM The contents of the 1159 string (s1159) in

-or- the WINL.INI file with any hour before

ampm noon; the contents of the 2359 string

(s2359) with any hour between noon and
11:59 PM. Note, ampm and AMPM are
equivalent.

Any set of placeholders may be inserted into the output by enclosing
them in quotation marks. Any single placeholder can be inserted by
preceding it with a backslash, (\). See Number Formatting, above, for
more details.

Formatting Strings

Strings are formatted by examining the fmt specification and transferring
one placeholder character at a time from the input expression to the
output string.

Refer to the following chart:

2-164

Format (function) — Convert the value of expression to a fmt-defined string

This fmt
placeholder
character

@

Does this

Displays a character or a space. If there is
a character in the string you want to
format in the position where the @
appears in the fmt string, display it;
otherwise, display a space in that
position.

Displays a character or nothing. If there is
a character in the string you want to
format in the position where the &
appears in the fmt string, display it;
otherwise, display nothing.

Forces output characters to be displayed
in lowercase.

Forces output characters to be displayed
in uppercase.

Causes characters to be transferred from
right to left instead of the default, left to
right.

Note: A fmt specification for strings can have one or two sections
separated by a semicolon. If you use one section, the format applies to all
string data. If you use two sections, the first section applies to string
data, the second to Null values and zero-length strings.

2-165

Format (function) — Convert the value of expression to a fmt-defined string

Format (function) Example

This example calculates the square root of 2 as a double-precision
floating point value and displays it in scientific notation.

Sub main
Dim value
Dim msgtext
value=CDbl(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")

MsgBox msgtext

End Sub

2-166

FreeFile (function) — Return an available file number

FreefFile (function) — Return an available file number

rc %= FreeFile

Returns the next valid, unused file number.

Parameter Description
rc% The return value.
Comments

Use the FreeFile function to return the next available file number. The
value returned can be used in a subsequent Open statement.

FreeFile (function) Example

This example opens a file and assigns to it the next file number available.

Sub main

Dim filenumber

Dim filename as String

filenumber=FreeFile

filename=InputBox("Enter a file to open: ")

On Error Resume Next

Open filename For Input As filenumber

If Err<>0 then
MsgBox "Error loading file. Re-run program."
Exit Sub

End If

MsgBox "File " & filename & " opened as number: " & filenumber

Close #filenumber

MsgBox "File now closed."

End Sub

2-167

Function ... End Function (statement) — Declare a function

Function ... End Function (statement) — Declare a

function
[Static][Private] Function name [(parameter
[As type]..)]
[As type]

[statementblock]
name= expression
End Function
Declares the name, arguments, and code that form a function procedure.
The purpose of a function is to produce and return a single value of a
specified type.

Parameter Description

Static Specifies that all variables declared within
the function will retain their values as
long as the program is running,
regardless of the way the variables are
declared.

Private Specifies that the function will not be
accessible to functions and subprograms
from other modules. Only procedures
defined in the same module will have
access to a Private function.

name The name of the function. name must be
unique and may contain a type-
declaration character. name’s type
determines the type of the value returned.
The return type can also be declared by
the As type statement or through a
Deftype (Str) statement.

2-168

Function ... End Function (statement) — Declare a function

Parameter

parameter

type

statement
block

expression

Comments

Description

Names a variable that will be passed (by
reference) to the function when it is
called. Multiple parameters must be
separated by commas. The data type of a
parameter can be indicated using a type
character or the As clause. Record
parameters are declared using an As
clause and a type that has previously
been defined using the Type statement.
Array parameters are indicated by empty
parentheses after parameter. The array
dimensions are not specified in the
Function statement. Array dimensions
are defined with an array declaration in
the calling procedure. All references to an
arrayed parameter within the body of the
function must specify the same number of
dimensions.

Declares the data type of the value
returned by the function procedure. Legal
data types are: Integer, Long, Single,
Double, or String.

A group of EXTRA! Basic statements that
form the body of the function procedure.

The code or expression that will result in
the function's desired return value. The
function name is assigned to this return
value. If you do not assign expression to
name, name is set to zero (0) ifitisa
numeric return value, or a null string if it
is a string return value.

Recursion is supported (that is, a function can call itself). Be careful to
avoid stack overflow if you design a recursive function.

When calling the function, you do not need to specify the type
declaration character.

2-169

Function ... End Function (statement) — Declare a function

2-170

The function returns to the caller when the End Function statement is
reached or when an Exit Function statement is executed.

EXTRAL! Basic procedures use the call-by-reference convention. This
means that if a procedure assigns a value to a parameter, it will modify
the variable passed by the caller. This feature should be used with great
care.

Use the Sub ... End Sub statement to define a procedure with no return
value.

Function ... End Function (statement) Example

This example declares a function that is later called by the main
subprogram. The function sets its return value to 1.

Declare Function EB-exfunction()
Sub main
Dimy as Integer
Call EB-exfunction
y=EB-exfunction
MsgBox “The value returned by the function is: " & y

End Sub

Function EB-exfunction()
EB-exfunction=1

End Function

FV (function) — Return future value of an annuity

FV (function) — Return future value of an annuity

rc= FV(rate , nper, pmt, pv, due)

Returns the future value of a constant periodic stream of cash flows (as
in an annuity or a loan). The given interest rate is assumed to be constant
for the life of the annuity or loan.

Parameter Description
rc The return value.
rate The interest rate per period. If payments

are on a monthly schedule, rate would be
.0075 for an annual percentage rate (APR)
of 9% (0.9 / 12 = 0.0075).

nper The total number of payment periods.
nper for a 3-year car loan, for example,
would be 36 (3 * 12 = 36).

pmt The constant payment per period.

pv The present value or the inital lump sum
amount paid (as in the case of an annuity)
or received (as in the case of a car loan).

due 0 if payments are due at the end of each
payment period; 1 if they are due at the
beginning of the period.

FV (function) Example

This example finds the future value of an annuity, based on terms
specified by the user.

Sub main
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext

annuitypv=InputBox("Enter present value of the annuity: ")

2-171

FV (function) — Return future value of an annuity

aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100

End If

periods=InputBox("Enter the total number of pay periods: ")

payment=InputBox("Enter the initial amount paid to you: ")
Rem Assume payments are made at end of month

due=0

futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)

msgtext= "The future value is: " & Format(futurevalue, "Currency")

MsgBox msgtext

End Sub

2-172

Get (statement) — Read data from a disk file and copy it into a variable

Get (statement) — Read data from a disk file and copy it
into a variable

Get[#] filenumber %[recordnumber &), variable

Reads from a record from a file opened in Random or Binary mode and
writes that data to a variable.

Parameter Description

filenumber% An integer or integer expression
identifying the open file from which you
want to read. This is the same filenumber%
that is used in the Open statement to

open the file.
record A Long expression containing the number
number& of the record (for Random mode) or the

offset of the byte (for Binary mode) at
which to start reading. Recordnumber is
in the range 1 to 2,147,483,647. If
recordnumber is omitted, the next record or
byte is read. Note that the comma
delimiters in the option list are required,
even if no recordnumber is specified.

variable The name of the variable into which Get
will read the file data. Variable can be any
variable except object, application data
type, or array variables (although Single
array elements can be used).

Comments

The following should be taken into consideration when opening a file in
random mode:

= Blocks of data are read from the file in segments equal to the size
specified in the Len clause of the Open statement. If the size of
variable is smaller than the record length, the additional data is
discarded. If the size of variable is larger than the record length, an
error occurs.

2-173

Get (statement) — Read data from a disk file and copy it into a variable

2-174

For variable length String variables, Get reads the two bytes of data
that indicate the length of the string, then reads the data into the
variable.

For variant variables, Get reads the two bytes of data that indicate
the type of the variant, then it reads the body of the variant into the
variable. Note that variants containing strings contain two bytes of
type information followed by two bytes of length information,
followed by the body of the string.

User defined types are read as if each member were read separately,
except that no padding occurs between elements.

Files opened in binary mode behave similarly to those opened in
random mode, except for the following:

Get reads variables from the disk without record padding.

Variable length strings that are not part of user-defined types are not
preceded by the two-byte string length. Instead, the number of bytes
read into a string variable is equal to the length of the existing string
variable.

Refer to the Open statement description for details.

Get (statement) Example

This example opens a file for Random access, gets its contents, and closes
the file again. The second subprogram, CREATEFILE, creates the
CA\TEMPO001 file used by the main subprogram.

Call createfile

newline=Chr(10)

Do Until recno=11

Declare Sub createfile()

Dim acctno as String*3

Dim recno as Long

Dim msgtext as String

Open "CATEMPOO01" For Random As #1 Len=3

msgtext="The account numbers are:" & newline

Get #1,recno,acctno

Get (statement) — Read data from a disk file and copy it into a variable

msgtext=msgtext & acctno
recno=recno+1
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"
End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C\TEMPOO01" for Output as #1
For x=1to 10
Write #1, x
Next x
Close #1
End Sub

2-175

GetAtir (function) — Return the attributes of a file, directory, or volume

GetAtir (function) — Return the attributes of a file,
directory, or volume

rc= GetAttr(filename $)

Returns the attributes of the specified file, directory, or volume label.

Parameter Description

rc The return value. Refer to the chart below
for valid return values and their
meanings:

Value Meaning

0 Normal file

1 Read-only file
Hidden file
System file
Volume label
Directory
Archive - file has
changed since last
backup.

WKk ooA~N

N O

filename$ A string or string expression that
indicates the name of the file whose
attributes are to be returned. Filename
cannot contain wildcards.

Comments

You can determine which attributes have been set by performing a bit-
wise And comparison of the GetAttr return value and the value of the
attribute you want to check. (Refer to the chart above.) For example:

rc = GetAttr(stats.xls) And somesymbolicconstantnameTBS

If rc is not equal to zero, the attribute is set. If rc is equal to zero, the
attribute is not set.

Note that file attribute symbolic constants are supplied in the EXTRA!
Basic file. Include this file using the $Include metacommand to reference
them in your macro.

2-176

GetAtir (function) — Return the attributes of a file, directory, or volume

GetAtir (function) Example

This example tests the attributes for a file and if it is hidden, changes it to

a non-hidden file.

Sub main

Dim filename as String

Dim attribs, saveattribs as Integer

Dim answer as Integer

Dim archno as Integer

Dim msgtext as String

archno=32

On Error Resume Next

msgtext="Enter name of a file:"

filename=InputBox(msgtext)

attribs=GetAttr(filename)

If Err<>0 then
MsgBox “Error in filename. Re-run Program."
Exit Sub

End If

saveattribs=attribs

If attribs>= archno then
attribs=attribs-archno

End If

Select Case attribs

Case 2,3,6,7

msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"

answer=Msgbox(msgtext,308)

If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub

End If

MsgBox "Hidden file not changed.”

2-177

GetAtir (function) — Return the attributes of a file, directory, or volume

Case Else
MsgBox "File was not hidden."
End Select
End Sub

2-178

GetObject (function) — Return an OLE object

GetObject (function) — Return an OLE object

GetObject(" FileName ", [class])

Retrieves an OLE Automation object from a file.

Parameter

filename

class

Comments

Description

The name of the file that contains the object you want
to retrieve. For EXTRA! Personal Client, specify a
session file. A display session includes an .EDP
extension; a printer session includes an EPP
extension.

If you specify an empty string, then class is required.

An optional string indicating the name of the
application that provides the object, and the type of
object. To specify the class, use the following syntax:

“AppName.ObjectType’

Note that you must insert a period (.) between
AppName and ObjectType.

AppName For EXTRA! Personal Client, the
AppName is EXTRA.

ObjectType For EXTRA! Personal Client, the
ObjectType is Session.

GetObiject starts the specified session, even if EXTRA! Personal Client has
not previously been started.

To access the object returned by GetObject, use the Set statement to
assign an object reference to a variable. In the example below, an object
variable called Sesl is declared. Then, with the Set statement, a Session
object, returned from a file with GetObiject, is assigned to the variable

Sesl.

Dim Sesl As Object
Set Sesl = GetObject("c:\program
files\e!pc\sessions\Session1.EDP")

You can also use GetObiject to retrieve a currently active session. As
shown below, you must specify an empty string (** *) for the FileName

2-179

GetObject (function) — Return an OLE object

parameter, as well the application name and object type. Note that this
statement will result in an error if a Session object has not previously

been retrieved.
Set ActiveSession = GetObject(","Extra.Session")

In addition to starting EXTRA! Personal Client, GetObiject retrieves objects
from any OLE Automation application that stores object in files. Such
applications include Microsoft Excel 5.0 or higher and Microsoft Project
4.0 or higher. For information on retrieving an application’s OLE
Automation objects, see the documentation for that application.

GetObject (function) Example

This example retrieves a Session object from the file Normal .EDP.

Sub Main()
Dim Sess As Object

Set Sess = GetObject("C:\Program _
Files\E!pc\Sessions\Normal.EDP")

MsgBox Sess.Name

End Sub

2-180

GetField (function) — Return a substring

GetField (function) — Return a substring

rc $ = GetField$(string $, fieldnumber % _
separatorchars $)

Returns a substring from a source string.

Parameter Description
rc$ The return value.
string$ The source string from which a field

needs to be extracted.

field The designation for which field to extract.
number%
separator The delimiter character in the string that
chars$ separates the fields.

Comments

The source string$ is considered to be divided into fields by separator
characters. Multiple separator characters may be specified. The fields are
numbered starting with one.

If fieldnumber% is greater than the number of fields in the string, an
empty string is returned.

GetField (function) Example

This example finds the third value in a string, delimited by plus signs
(+).
Sub main
Dim teststring,retvalue
Dim msgtext
teststring="9+8+7+6+5"
retvalue=GetField(teststring,3,"+")
MsgBox "The third field in: " & teststring & " is: " & retvalue
End Sub

2-181

Global (statement) — Declare global variables

Global (statement) — Declare global variables

Global variableName [As type |[, variableName
[As type] ...

Declare global variables.

Parameter Description
variable Indicates the name of the global variable
Name you want to declare.
type Declares the data type of the global
variable.
Comments

Global data is shared across all loaded modules. If an attempt is made to
load a module that has a doubly-defined global variable with different
data types, the module load will fail.

If the As clause is not used, the type of the global variable may be
specified by using a type character as a suffix to the variableName. The
two different type-specification methods can be intermixed in a single
Global statement (although not for the same variable).

Regardless of which mechanism you use to declare a global variable,
you may choose to use or omit the type declaration character when
referring to the variable in the rest of your program. The type suffix is
not considered part of the variable name.

Global (statement) Example

This example contains two subroutines that share the variables TOTAL
and ACCTNO, and the record GRECORD.

Type acctrecord
acctno As Integer

End Type

Global acctno as Integer
Global total as Integer
Global grecord as acctrecord

Declare Sub createfile

2-182

Global (statement) — Declare global variables

Sub main
Dim msgtext
Dim newline as String
newline=Chr$(10)
Call createfile

Open "CA\TEMPOO01" For Input as #1

msgtext="The new account numbers are: " & newline

For x=1 to total

Input #1, grecord.acctno

msgtext=msgtext & newline & grecord.acctno

Next x

MsgBox msgtext

Close #1

Kill "C:\TEMPO0O1"
End Sub

Sub createfile
Dim x
x=1
grecord.acctno=1
Open "CA\TEMPO0O01" For Output as #1

Do While grecord.acctno<>0

grecord.acctno=InputBox("Enter O or new account #" & x & ":")

If grecord.acctno<>0 then
Print #1, grecord.acctno
X=Xx+1

End If

Loop

total=x-1

Close #1
End Sub

2-183

GoTlo (statement) — Transfer program control

GoTlo (statement) — Transfer program control

GoTo label
Sends control to a line label.

Parameter Description

label A label has the same format as any other
EXTRA! Basic name. That is, it must begin
with an alphabetic character, end with a
colon, and be 40 characters, or fewer, in
length. label must also be unique to the
current module. Line labels are not case-
sensitive. Reserved words are not valid
labels.

Comments

GoTo cannot be used to transfer control out of the current function or
sub function.

Line numbers are not supported in the GoTo statement.

GoTo (statement) Example

This example shows a subroutine that illustrates the GoTo statement
syntax.

Sub Main

' Subroutines begin here
GetUserlnput: ' Start of first subroutine.
Userlnput$ = InputBox$("Type something ")
StrLen% = Len(Userlnput$)
If StrLen% Then
Msg$ = "You entered """ + Userlnput$ + "™."
Else
Msg$ = "You entered nothing or chose Cancel."

End If

GoTo AllDone: " End of Sub label.

2-184

GoTlo (statement) — Transfer program control

Showlnput: ' Start of second subroutine.
Msg$ = "You entered """ + Userlnput$ + "™." ' Display message.

AllDone: " End of sub label.

MsgBox "You branched around the subroutine ShowlInput.”
'Display message.

End Sub

2-185

GroupBox (statement) — Create a group box

GroupBox (statement) — Create a group box

GroupBox x, y, dx, dy, text $ [,. id]
Creates an area within a dialog box that groups a set of similar items.

Parameter Description

X, Y Specifies the position of the group box
relative to the upper left corner of the
dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If X is omitted, the group box is centered
horizontally within the client area. If y is
omitted, the group box is centered
vertically within the client area.

dx, dy Specifies the width and height of the
group box.

dx is measured in one-quarter system-font
character-width units.

dy is measured in one-eighth system-font
character-width units.

A dy value of 14 typically accommodates
system font text.

text$ Supplies the title for the group box. If the
width of this string is greater than dx,
trailing characters are truncated. If text$ is
an empty string (** *“), the top border of
the group box will be a solid line.

.id An optional identifier used by the dialog
statements that act on this control.

2-186

GroupBox (statement) — Create a group box

Comments

The GroupBox statement can only be used between a Begin Dialog and
an End Dialog statement.

GroupBox (statement) Example

This example creates a dialog box with two group boxes.

Sub main
Begin Dialog UserDialog 242, 146, "Print Dialog Box"
'$CStrings Save
GroupBox 115, 14, 85, 57, "Page Range"
OptionGroup .OptionGroup2
OptionButton 123, 30, 46, 12, "All Pages", .OptionButtonl
OptionButton 123, 50, 67, 8, "Current Page", .OptionButton2
GroupBox 14, 12, 85, 76, "Include”
CheckBox 26, 17, 54, 25, "Pictures", .CheckBox1
CheckBox 26, 36, 54, 25, "Links", .CheckBox2
CheckBox 26, 58, 63, 25, "Header/Footer", .CheckBox3
PushButton 34, 115, 54, 14, "Print"
PushButton 136, 115, 54, 14, "Cancel"
'$CStrings Restore
End Dialog
Dim mydialog as UserDialog
Dialog mydialog
End Sub

2-187

Hex (function) — Return a number in hexadecimal

Hex (function) — Return a number in hexadecimal

2-188

rc $ = Hex[$] (numeric-expression)

Returns the hexadecimal representation of a numeric-expression.

Parameter Description
rc$ The return value.
numeric- Any numeric data type.
expression

Comments

If the numeric expression is an integer, the return string will contain up
to four hexadecimal digits; otherwise, the expression will be converted
to a Long integer, and the return string will contain up to eight
hexadecimal digits.

The dollar sign ($) in the function name is optional. If the dollar sign is
included, the return type is String. If the dollar sign is omitted, Hex will
return a variant of vartype 8 (String).

Hex (function) Example

The example uses Hex to return the hexadecimal representation of a
decimal number.

Msg$ = "Enter a number. "

Num% = Val(InputBox$(Msg$)) ' Get user input.

Msg$ = LTrim$(Str$(Num%)) + " decimal is &H"
Msg$ = Msg$ + Hex$(Num%) + " in hexadecimal notation."

MsgBox Msg$ ' Display results.

Hour (function) — Return the hour of day portion of a date/time value

Hour (function) — Return the hour of day portion of a
date/time value

rc = Hour(expression)

Returns an integer that represents the hour of the day derived from the
supplied string or numeric expression.

Parameter Description

rc The return value (an integer between 0
and 23).

expression Any type of expression (numeric or

string) that represents a date from
January 1, 100 (-657434) through
December 31, 9999 (2958465). A value of
2, for example, represents January 1, 1900.
Numbers to the left of the decimal point
are interpreted as a date; numbers to the
right are interpreted as time values.
Negative numbers are interpreted as
dates prior to December 30, 1899.

Comments

If expression is Null, Hour returns a Null.

Hour (function) Example

This example extracts just the time (hour, minute, and second) from a
file's last modification date and time.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec

Dim msgtext as String

: msgtext="Enter a filename:"

filename=InputBox(msgtext)

2-189

Hour (function) — Return the hour of day portion of a date/time value

Exit Sub
End If
On Error Resume Next
ftime=FileDateTime(filename)
If Err<>0 then
MsgBox “Error in file name. Try again."
Goto i
End If
hr=Hour(ftime)
min=Minute(ftime)
sec=Second(ftime)
Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

2-190

If...Then...Else (statement) — Allow conditional execution of an instruction block

If...Then...Else (statement) — Allow conditional execution
of an instruction block

If condition Then thenstatement [Else elsestatement]
-Or-

If condition Then
statementblock
[Elself expression Then
statementblock 1]...
[Else
statementblock]
End If
Allows you to organize an alternative action into a separate block of
code. The resulting action depends on the logical value of one or more

conditions supplied in the structure.

Parameter Description

condition A numeric or string expression that
evaluates to a Boolean value.

then The statement that is executed when

statement condition is true. thenstatement can be one
(for single-line syntax, shown above) or
more (multiple-line syntax) EXTRA! Basic
statements or a GoTo statement pointing
to a valid program label.

else The statement that is executed when

statement condition is false. elsestatement can be one
(single-line syntax, shown above) or more
(multiple-line syntax) EXTRA! Basic
statements or a GoTo statement pointing
to a valid program label.

statement Consists of one or more EXTRA! Basic

block statements, separated with colons. These
statements are executed if the enclosing
If, Else, or Elself statement is true.

Comments

First EXTRA! Basic tests the condition expression. If the result of the
expression is true, the statements following Then are executed. If the

2-191

If...Then...Else (statement) — Allow conditional execution of an instruction block

2-192

result is false, EXTRA! Basic evaluates each Elself condition until it finds
one that evaluates to true. Then, the statements immediately following
the associated Then are executed. If none of the Elself conditions are
true, the statements following the Else are executed. After a Then or
Else statement has been executed, control returns to the statement
following End If.

In the single-line version of the If statement, the thenstatement and
else_statement can be any valid single statement. Multiple statements
separated by colons (:) are not allowed. When multiple statements are
required in either the Then or Else clauses, use the multiple-line version
of the If statement syntax.

In the multiple-line version, the statementblock(s) can be separated by
colons () or located on subsequent, consecutive lines.

If...Then...Else (statement) Example

The example illustrates the various forms of the If...Then...Else syntax.

Msg$ = "Enter a number greater than 0 and less than 100,000:"

X& = Val(InputBox$(Msg$))
If X& >0 And X& < 100000 Then ' Check range of input.

' Exit loop if in range.

Msg$ = " ERROR: Out of Range! "

MsgBox Msg$ ' Display error message.

' Determine number of digits in number input by the user.

Then
' 1 digit

X& <100 Then

' 2 digits

X& <1000 Then

' 3 digits

X& < 10000 Then

If...Then...Else (statement) — Allow conditional execution of an instruction block

Y% =4 ' 4 digits
Else

Y% =5 ' 5 digits
End If

' Single-line form of the If...Then structure for singular

" or plural digits

If Y%>1 Then Unit$="digits." Else unit$ =" digit."
Msg$ = "The number you entered has " + LTrim$(Str$(Y%)) + Unit$

MsgBox Msg$ ' Display message.

2-193

$Include (metacommand) — Include statements from another file, by reference

$Include (metacommand) — Include statements from

2-194

another file, by reference

'$Include: " filename

Instructs the compiler to copy statements and/or instructions from
another file to the current location in the current file. The statements are
copied in by reference.

Parameter Description

filename The valid path and filename of the remote
file containing the statements and/or
instructions you want to include in the
current file.

Comments

Comments that include metacommands are only recognized when
located at the beginning of a line. For compatibility with other versions
of EXTRA! Basic, you can use apostrophes (') to enclose filename.

To comment an Include statement, use the Rem statement.

A file extension of .EBH is suggested as a convention for EXTRA!
include files. Any other valid file extension may be used.

Include files must be located either in your program directory (for
example, C:\EXTRAWIN) or in your USER directory (for example,
CA\EXTRAWIN\USER). The EXTRA! Basic macro compiler will not
search the DOS path for Include files.

Create a different Include search path by creating a section named
[MACRO] in your EXTRA4W.INI file (located in your USER directory)
and add the following:

IncludePath = path [; path ;..]
where path is the drive and directory you want EXTRA! to search.

Any files used must be saved as text files, including macros.

Include (metacommand) Example

This example includes a file containing the list of global variables, called
GLOBALS.SBH. For this example to work correctly, you must create the
GLOBALS.SBH file with at least the following statement: Dim gtext as
String. The Option Explicit statement is included in this example to

$Include (metacommand) — Include statements from another file, by reference

prevent EXTRA! Basic from automatically dimensioning the variable as a
Variant.

Option Explicit

Sub main
Dim msgtext as String
'$Include . "c:\globals.sbh"
gtext=InputBox("Enter a string for the global variable:")
msgtext="The variable for the string ™
msgtext=msgtext & gtext & " was DIM'ed in GLOBALS.SBH."
MsgBox msgtext

End Sub

2-195

Input (function) — Return characters read from a file

Input (function) — Return characters read from a file

2-196

rc$= Inputd (numchars % [#] filenumber %)

Returns a string containing characters read from the specified sequential
file.

Parameter Description
rcg The return value.
numchars% The number of characters (or bytes) to be

read from the file. numchars% must be
less than 65,535.

filenumber% The file number used in a previous Open
statement or any integer expression that
evaluates to that file number.

Comments

The file pointer is advanced the number of characters read. Unlike the
Input # statement, Input$ returns all of the characters it reads, including
carriage returns, line feeds, commas, quotation marks, and leading
spaces.

Input (function) Example

Sub main

Dim fname

Dim fchar()

This example opens a file and prints its contents to the screen.

Dim x as Integer

Dim msgtext

Dim newline

newline=Chr(10)

On Error Resume Next

fname=InputBox("Enter a filename to print:")

If fname="" then

Exit Sub
End If

Input (function) — Return characters read from a file

Open fname for Input as #1
If Err<>0 then
MsgBox “Error loading file. Re-run program.”
Exit Sub
End If
msgtext="The contents of " & fname & " is: " & newline &newline
Redim fchar(Lof(1))
For x=1 to Lof(1)
fchar(x)=Input(1,#1)
msgtext=msgtext & fchar(x)
Next x
MsgBox msgtext
Close #1
End Sub

2-197

Input (statement) — Assign a line of data to a variable

Input (statement) — Assign a line of data to a variable

2-198

Input [#] filenumber % variable [, variable]...
Or‘
Input [prompt $,] variable [, variable]...

Reads a line of data from a sequential file and assigns each line read to a
variable.

Parameter Description

filenumber% The file number used in a previous Open
statement or any integer expression that
evaluates to that file number.

variable The name of a variable.Any variable type
is allowed except user-defined variables
and array variables.

prompt$ An optional string that can be used to
prompt for keyboard input.

Comments

The Input # statement will read as many lines as there are variables to
fill. However, an attempt to read past an End of File will result in a an
error.

The filenumber% argument is an integer expression identifying the open
file to read from. This is the number used in the Open statement to open
the file. The variable arguments list the variables that are assigned the
values read from the file. The list of variables is separated by commas.

If filenumber% is not specified, the user is prompted for keyboard input
with an empty message box unless prompt$ is specified. Only one
variable can be specified if prompt$ is used.

The Input # statement advances the file pointer to the beginning of the
next line of the file.

Input (statement) — Assign a line of data to a variable

End of Input Characters

When a variable is

numeric: the number is assumed to begin at the first nonspace
character. When a space, a comma, or the end of a line is
encountered, it is assumed to be the end of the number. Blank lines
are read as zero. If the data is not a valid number, the variable is
assigned a value of zero.

string: the character string is assumed to begin at the first nonspace
character. If the first character is a quotation mark (*‘), it is ignored,
and all characters following it (including spaces and commas) up to
the next quotation mark are read into the variable. When the string
is not delimited by quotation marks, the end of a string is assumed
when a comma, a space, or the end of a line is encountered. Blank
lines are read as zero-length strings.

Input (statement) Example

This example prompts a user for an account number, opens a file,
searches for the account number and displays the matching letter for that
number. It uses the Input statement to increase the value of x and at the
same time get the letter associated with each value. The second
subprogram, CREATEFILE, creates the file C:\TEMPO001 used by the
main subprogram.

Declare Sub createfile()

Global x as Integer

Global y(100) as String

Sub main

Dim acctno as Integer

Dim msgtext

Call createfile

: acctno=InputBox("Enter an account number from 1-10:")

If acctno<1 Or acctno>10 then

MsgBox “Invalid account number. Try again."

Goto I:
End if

x=1

2-199

Input (statement) — Assign a line of data to a variable

Open "CA\TEMPOO01" for Input as #1
Do Until x=acctno
Input #1, Xx,y(x)
Loop
msgtext="The letter for account number " & x & " is: " & y(X)
Close #1
MsgBox msgtext
Kill "CATEMPOO1"
End Sub

Sub createfile()
' Put the numbers 1-10 and letters A-J into a file
Dim startletter
Open "CA\TEMPOO01" for Output as #1
startletter=65
For x=1to 10
y(xX)=Chr(startletter)
startletter=startletter+1
Next x
For x=1to 10
Write #1, x,y(x)
Next x
Close #1
End Sub

2-200

InputBox (function) — Display prompt and field for user input

InputBox (function) — Display prompt and field for user

input

rc$=

InputBox [$] (prompt $[title $[,default $ _

[.xpos %ypos A]|)
Displays a dialog box containing a prompt and a field for user input.

Parameter
rc$

prompt$

title$

default$

Xpos%, ypos%

Comments

Description

The return value.

A string expression containing the
prompt that will be displayed next to the
input field. The length of prompt$ is
restricted to approximately 255 characters
depending on the width of the characters
used. Note that a carriage return and a
line-feed character must be included in
prompt$ if it spans multiple lines.

The text that will appear in the dialog
box’s title bar. If this parameter is
omitted, the title bar remains blank.

The string expression that will be shown
in the input field as the default response.
If this parameter is omitted, the field is
initialized with a Null string.

Numeric expressions, specified in dialog
box units, that determine the position of
the input box.

xpos% determines the horizontal distance
between the left edge of the screen and
the left border of the input box.

ypos% determines the horizontal distance
from the top of the screen to the input
box’s upper edge.

If Xxpos% and ypos% are not supplied, the input box is centered roughly
one third of the way down the screen. A horizontal input box unit is one-

2-201

InputBox (function) — Display prompt and field for user input

guarter the average character width in the system font; a vertical dialog
box unit is one-eighth the height of a character in the system font.

When the user presses the ENTER key, or selects the OK button,
InputBox$ returns the text contained in the input box. If the user selects
Cancel, the InputBox$ function returns a Null string.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If the dollar sign is omitted, InputBox
returns a variant of vartype 8 (String).

InputBox (function) Example

This example uses InputBox to prompt for a filename and then prints the
filename using MsgBox.

Sub main
Dim filename
Dim msgtext
msgtext="Enter a filename:"
filename=InputBox$(msgtext)
MsgBox "The file name you entered is: " & filename

End Sub

2-202

InStr (function) — Return a substring

InStr (function) — Return a substring

rc %=

_Or-

rc %=

InStr([position %] string $, substring $)

InStr(position % string $, substring $[,

comparetype 94)

Returns an integer representing the position of the first occurrence of a
substring within a string.

Parameter

rc%

position%

string$

substring$

compare
type%

Description

The return value.

Indicates the offset where the search for
string$ should begin. If position% is not
supplied, the search starts at the
beginning of string$ (that is, position%
equals 1).

The string in which you want to search
for substring$. string$ can be a string
variable, string expression, or string
literal.

The string you want to locate within
string$. substring$ can be a string variable,
string expression, or string literal.

Determines the comparison method used.
If comparetype% is 0, a case-sensitive
comparison is performed based on the
ANSI character set sequence. If
comparetype% is 1, a case-insensitive
comparison is performed based on the
relative order of characters as determined
by the country code setting for your
system. If omitted, the module-level
default (specified with the Option
Compare statement) is used.

2-203

InStr (function) — Return a substring

Comments

InStr will return a zero if any of the following conditions are met:

= position% is greater than the length of the substring

e string$ is a Null string

= substring$ cannot be located

If substring$ is a Null string, position% will be returned. If string$ or
substring$ is a Null variant, Instr returns a Null variant.

InStr (function) Example

This example generates a random string of characters then uses InStr to
find the position of a single character within that string.

Sub main
Dim x as Integer
Dimy
Dim strl as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim position as Integer
Dim msgtext, newline
upper=Asc("z")
lower=Asc("a")
newline=Chr(10)
For x=1to 26

Randomize

randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)

letter=Chr(randomvalue)
strl=strl & letter
‘Need to waste time here for fast processors
For y=1 to 1000
Nexty

2-204

InStr (function) — Return a substring

Next x
str2=InputBox("Enter a letter to find")
position=InStr(strl,str2)
If position then
msgtext="The position of " & str2 & " is: " & position & _
newline
msgtext=msgtext & "in string: " & strl
Else
msgtext="The letter: " & str2 & " was not found in: " & newline
msgtext=msgtext & strl
End If
MsgBox msgtext
End Sub

2-205

Int (function) — Return integer portion of a number

Int (function) — Return integer portion of a number

2-206

rc = Int(numeric-expression)

Returns the integer portion of a numeric expression.

Parameter Description

rc The return value. The return value type
matches the type of the numeric
expression. This includes variant
expressions which will return a result of
the same vartype as the input, with the
following exceptions: vartype 8 (String)
will be returned as vartype 5 (Double)
and vartype 0 (empty) will be returned as

vartype 3 (Long).
numeric- numeric-expression can be of any numeric
expression data type.

Comments

For both positive and negative numeric-expressions, Int removes the
fractional portion of the expression and returns only the integer portion.

Important: For negative numeric expressions, Int returns the first
negative integer less than or equal to numeric-expression, and Fix returns
the first negative integer greater than or equal to numeric-expression. For
example, Int converts -5.6 to -6 and Fix converts -5.6 to -5.

If the numeric expression evaluates to a null, Int returns a null.

Int (function) Example

This example uses Int to generate random numbers in the range between
the ASCII values for lowercase a and z (97 and 122). The values are
converted to letters and displayed as a string.

Sub main
Dim x as Integer
Dimy

Dim strl as String

Int (function) — Return integer portion of a number

Dim letter as String

Dim randomvalue

Dim upper, lower

Dim msgtext, newline

upper=Asc("z")

lower=Asc("a")

newline=Chr(10)

For x=1 to 26
Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
stri=strl & letter

'Need to waste time here for fast processors

For y=1 to 1500
Nexty

Next x

msgtext="The string is:" & newline

msgtext=msgtext & strl

MsgBox msgtext

End Sub

2-207

IPmt (function) — Return the interest portion of an annuity payment

IPmt (function) — Return the interest portion of an
annuity payment

rc= IPmt(rate , per, nper, pv, fv, due)

Returns the interest portion of the payment for a given period of an
annuity. The interest rate is considered to be constant throughout the life

of the loan.

Parameter Description

rc The return value.

rate The interest rate per period. If payments
are on a monthly schedule, rate would be
.0075 for an annual percentage rate (APR)
of 9% (0.9 /7 12 = 0.0075).

per A particular payment period in the range
1 through nper.

nper The total number of payment periods.
nper for a 3-year car loan, for example,
would be 36 (3 * 12 = 36).

pv Present value (in or the initial lump sum
paid (as in an annuity) or received (as in a
loan).

fv The future value of the final lump sum
amount required (as in a savings plan) or
paid (0, in the case of a loan).

due 0 if payments are due at the end of each

payment period; 1 if they are due at the
beginning of the period.

IPmt (function) Example

This example finds the interest portion of a loan payment amount for
payments made in last month of the first year. The loan is for $25,000 to
be paid back over 5 years at 9.5% interest.

Sub main

2-208

IPmt (function) — Return the interest portion of an annuity payment

Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, intpaid
Dim msgtext
aprate=.095
payperiod=12
periods=120
loanpv=25000
loanfv=0
Rem Assume payments are made at end of month
due=0
intpaid=IPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
msgtext="For a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
msgtext=msgtext+ “the interest paid in month 12 is: "
msgtext=msgtext + Format(intpaid, "Currency")
MsgBox msgtext

End Sub

2-209

IRR (function) — Return the internal rate of return

IRR (function) — Return the internal rate of return

rc = |IRR(valuearray () , guess)

Returns the internal rate of return (interest rate) for a stream of periodic

cash flows.

Parameter Description

rc The return value.

valuearray An array containing cash flow values. The
array must contain at least one positive
value (representing a receipt) and one
negative value (representing a payment).

guess A rough estimate of the value returned by
IRR. In general, between 0.1 (10%) and
0.15 (15%) is a reasonable guess.

Comments

All payments and receipts must be present in valuearray in the correct
sequence. The value returned by IRR will vary with a change in the
sequence of cash flows.

IRR is an iterative function. EXTRA! Basic cycles through an IRR
calculation until the result is accurate to within 0.00001 percent. If IRR
does not produce a result after 20 iterations, IRR fails.

IRR (function) Example

This example calculates an internal rate of return (expressed as an
interest rate percentage) for a series of business transactions (income and
costs). The first value entered must be a negative amount, or IRR
generates an “‘lllegal Function Call’* error.

Sub main
Dim cashflows() as Double
Dim guess, count as Integer
Dim i as Integer
Dim intnl as Single
Dim msgtext as String

guess=.15

2-210

IRR (function) — Return the internal rate of return

count=InputBox("How many cash flow amounts do you have?")
ReDim cashflows(count+1)
For i=0 to count-1
cashflows(i)=InputBox("Enter income value for month " & i+1 & _
)
Next i
intnI=IRR(cashflows(),guess)
msgtext="The IRR for your cash flow amounts is: "
msgtext=msgtext & Format(intnl, "Percent")
MsgBox msgtext

End Sub

2-211

Is (operator) — Compares two object expressions

Is (operator) — Compares two object expressions

rc = objectExpression1 Is objectExpression2

Compares two object expressions and returns a value that indicates
whether the expressions refer to the same object.

Parameter Description

rc The return value. -1 (true) if the two
object expressions refer to the same
object. 0 (false), if they do not refer to the
same object.

object An expression that points to a particular
Expression object.
Comments

Also use the Is operator to test whether an object variable has been Set to
Nothing.

Is (operator) Example

This example displays a list of open files in the software application,
Visio. It uses the Is operator to determine whether Visio is available. To
see how this example works, you need to start Visio and open one or
more documents.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String

Dim i as Integer, doccount as Integer

'Initialize Visio
Set visio = GetObject(,"visio.application") ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If

2-212

Is (operator) — Compares two object expressions

'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i)
"access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext

End Sub

2-213

IsDate (function) — Determines whether a value can be interpreted as a date

IsDate (function) — Determines whether a value can be

2-214

interpreted as a date

rc = IsDate(variant)

Evaluates whether a variant argument can be converted to a date.

Parameter Description
rc The return value.
variant Any variant or variant expression of

vartype 7 (date) or vartype 8 (String).

Comments

Valid dates range from January 1, 100 A.D. through December 31, 9999
A.D.

IsDate (function) Example

This example adds a number to today's date value and checks to see if it
is still a valid date (within the range January 1, 100AD through
December 31, 9999AD).

Sub main
Dim curdatevalue
Dim yrs
Dim msgtext
curdatevalue=DateValue(Date$)
yrs=InputBox("Enter a number of years to add to today's date")
yrs=yrs*365
curdatevalue=curdatevalue+yrs
If IsDate(curdatevalue)=-1 then
MsgBox "The new date is: " & Format(CVDate(curdatevalue), _
"dddddd")
Else
MsgBox "The date is not valid."
End If
End Sub

IsEmpty (function) — Indicates whether a variant has been initialized

IsEmpty (function) — Indicates whether a variant has
been initialized

rc = ISEmpty(variant)

Returns a value that indicates whether or not the specified variant
argument has been initialized.

Parameter Description
rc The return value.
variant A variant argument (usually a single

variable name as opposed to a variant
expression).

Comments

IsEmpty returns True (-1) if the variant of vartype 0 (Empty); otherwise
IsEmpty returns False (0). Any newly-defined variant is Empty, by
default, indicating that it is not initialized. Note that Empty differs from
Null in that Null indicates that the variant does not contain any data.

An Empty variant converts to zero when used in a numeric expression.
An Empty variant converts to an Empty String when used in a String
expression.

IsEmpty (function) Example

This example prompts for a series of test scores and uses ISEmpty to
determine whether the maximum allowable limit has been reached.
(IsEmpty determines when to exit the Do...Loop.)

Sub main
Dim arrayvar(10)
Dim x as Integer
Dim tscore as Single
Dim total as Integer
x=1
Do
tscore=InputBox("Enter test score #" & x & ":")

arrayvar(x)=tscore

2-215

IsEmpty (function) — Indicates whether a variant has been initialized

X=x+1
Loop Until ISEmpty(arrayvar(10))<>-1
total=x-1
msgtext="You entered: " & Chr(10)
For x=1 to total
msgtext=msgtext & Chr(10) & arrayvar(x)
Next x
MsgBox msgtext
End Sub

2-216

IsNull (function) — Indicates whether an expression results in a Null

IsNull (function) — Indicates whether an expression
results in a Null

rc= IsNull(variant)

Returns a value that indicates whether or not the specified variant or
variant expression contains or has resulted in a Null value.

Parameter Description

rc The return value.

variant A variant or variant expression.
Comments

IsNull returns True (-1) if the variant contains a Null value. IsNull
returns False (0) if the variant does not contain a Null value.

Note that Null differs from Empty in that Empty indicates that the
variant has not been initialized.

Important: Because of Null propagation, although the following
expressions might appear to potentially return True, they will always
return False simply because they contain a Null:

If variant = Null ...

If variant <> Null ...

Use IsNull to guarantee correct interpretation of a variant expression
containing a Null.

IsNull (function) Example

Sub main

This example asks for ten test score values and calculates the average. If
any score is negative, the value is set to Null, then IsNull is used to
reduce the total count of scores (originally 10) to just those with positive
values before calculating the average.

Dim arrayvar(10)

Dim count as Integer

Dim total as Integer

Dim x as Integer

Dim tscore as Single

2-217

IsNull (function) — Indicates whether an expression results in a Null

count=10
total=0
For x=1 to count
tscore=InputBox("Enter test score #" & x & ":")
If tscore<0 then
arrayvar(x)=Null
Else
arrayvar(x)=tscore
total=total+arrayvar(x)
End If
Next x
Do While x<>0
x=x-1
If IsNull(arrayvar(x))=-1 then
count=count-1
End If
Loop
msgtext="The average (excluding negative values) is: " & Chr(10)
msgtext=msgtext & Format (total/count, "##.##")
MsgBox msgtext
End Sub

2-218

IsNumeric (function) — Indicates whether a variant can be converted to a number

IsNumeric (function) — Indicates whether a variant can
e converted to a number

rc = IsNumeric(variant)

Evaluate whether a variant or the result of a variant expression can be
converted to a numeric data type.

Parameter Description

rc The return value.

variant A variant or variant expression.
Comments

IsNumeric returns True (-1) if the variant or the result of a variant
expression is of vartype 0 (Empty) and 2 through 6 (numeric) or is a
vartype 8 (String) that can be interpreted as a number. If not, IsNumeric
returns False (0).

IsNumeric (function) Example

This example uses IsNumeric to determine whether a user selected an
option (1-3) or typed “Q’* to quit.

Sub main
Dim answer
answer=InputBox("Enter a choice (1-3) or type Q to quit")
If IsNumeric(answer)=-1 then
Select Case answer
Case 1
MsgBox "You chose #1."
Case 2
MsgBox "You chose #2."
Case 3
MsgBox "You chose #3."
End Select

2-219

IsNumeric (function) — Indicates whether a variant can be converted to a number

Else
MsgBox "You typed Q."
End If
End Sub

2-220

Kill (statement) — Delete file(s)

Kill (statement) — Delete file(s)

Kill ~ filespec $
Deletes files from a disk.

Parameter Description
filespec$ A string expression that specifies a valid
DOS file path and filename. filespec$ can
contain wildcards.
Comments

An error is produced if filespec$ specifies an open file.

Kill deletes files only; it does not delete directories. Use the RmDir

statement to delete directories.

Kill (statement) Example

This example uses Kill to remove a file the user specifies.

On Error GoTo Errhandler ' Set up error handler.
Msg$ = "Enter the name of the file you want to delete."”
DelFile$ = UCase$(InputBox$(Msg$)) ' Get filename.
If Len(DelFile$) Then ' Check for entry.
Msg$ = "Are you absolutely sure you want to delete " + DelFile$
Msg$ = Msg$ + " from your disk?"
Ansr% = MsgBox(Msg$, 4) ' Make sure.
If Ansr% =6 Then ' User chose "Yes."
Msg$ = "Deleting " + DelFile$ + " from your disk."
Kill DelFile$ ' Delete file from disk.
Else
Msg$ = DelFile$ + " was not deleted."”
End If
Else
Msg$ = "You didn't enter a file name."
End If
MsgBox Msg$ ' Display message.

2-221

Kill (statement) — Delete file(s)

2-222

Exit Sub

Errhandler:

If Err = 53 Then " Error 53 is "File not Found".
Msg$ = "Sorry, the file you named could not be found."
End If

Resume Next

LBound (function) — Return lowest subscript of a dimensioned array

LBound (function) — Return lowest subscript of a
dimensioned array

rc %= LBound (arrayVariable [, dimension])

Returns the smallest available subscript for the specified dimension of
the specified array.

Parameter Description

rc% The return value.

arrayVariable The name of an array.

dimension An integer indicating which dimension's

lower bound is returned. 1 equals the first
dimension, 2 equals the second, and so
forth. If dimension is not supplied, it is
assumed to be 1.

Comments

For the array shown below, LBound returns the following:
Dim Sales(1 to 3, 4 to 6)

Return Value

Statement
LBound(sales, 1) 1
LBound(sales, 2) 4

Depending on how Option Base has been set, the default lower bound
for any dimension is either 0 or 1. Any integer value is valid as a lower
bound for dimensions set using the To clause in a Dim, Global, or
ReDim statement.

Use LBound in conjunction with UBound to determine the length of an
array.

LBound (function) Example

The example uses the LBound function to determine the lower bounds
for a three-dimensional array.

NL$ = Chr$(13) + Chr$(10): TB$ = Chr$(9) ' Define newline, tab.

2-223

LBound (function) — Return lowest subscript of a dimensioned array

'Generate some random dimensions between 2 and 10 for array size.

Randomize

A% = -Int(9 * Rnd + 2) ' First dimension.
B% = Int(9 * Rnd + 2) ' Second dimension.
C% = Int(9 * Rnd + 2) ' Third dimension.

ReDim Array%(A% to 20, B% to 20 , C% to 20) ' Set dimensions.

Msg$ = "The test array has the following lower bounds: " + NL$

Msg$ = Msg$ + TB$ + "Dimension 1 =" + Str$(LBound (Array%, 1)) + NL$
Msg$ = Msg$ + TB$ + "Dimension 2 =" + Str$(LBound (Array%, 2)) + NL$
Msg$ = Msg$ + TB$ + "Dimension 3 =" + Str$(LBound (Array%, 3))
MsgBox Msg$ ' Display message.

2-224

LCase (function) — Return a string in lowercase

LCase (function) — Return a string in lowercase

rc$= LCase[$] (string $)
Returns a copy of a source string, with all uppercase letters converted to

lowercase.

Parameter Description

rcg The return value.

string$ Any string expression.
Comments

Conversion is based on the country specified in the Windows.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If the dollar sign is omitted, Lcase
will typically return a variant of vartype 8 (String). If the value of string
is Null, a variant of vartype 1 (Null) is returned.

LCase (function) Example

The example uses LCase to return an all-lowercase version of the
argument string.

Uppercase$ = "ONCE UPON A TIME" ' String to convert.

Lowercase$ = LCase$(UpperCase$) 'Convert to lowercase.

Msg$ = "LCase$ converts """ + Uppercase$ +

MsgBox Msg$ ' Display message.

2-225

Left (function) — Return a substring

Left (function) — Return a substring

rc$= Left [$] (string $, length %)

Returns the leftmost length% characters of a source string.

Parameter Description
rc$ The return value.
string$ The source string from which the

substring will be returned.

length% A Long integer expression that indicates
how many characters Left$ should return.
Comments

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If the dollar sign is omitted, Left will
typically return a variant of vartype 8 (String). If the value of string$ is
Null, a variant of vartype 1 (Null) is returned.

If the length of string$ is less than length%, Left returns the entire string.

Left (function) Example

The example uses the Left function to return the first of two words input
by the user.

Msg$ = "Enter two words separated by a space.”

Usrinp$ = InputBox$(Msg$) ' Get user input.
SpcPos% = InStr(1, Usrinp$, " ") ' Find space.
If SpcPos% Then
LeftWord$ = Left$ (Usrinp$, SpcPos% - 1) ' Get left word.

RightWord$ = Right$(Usrinp$, Len(UsrIinp$) - SpcPos%)
' Get right.

Msg$ = "The first word you entered is " + LeftWord$

Msg$ = Msg$ + " + " + " The second word is "™
Msg$ = Msg$ + RightWord$ + "." + "

Else

2-226

Left (function) — Return a substring

Msg$ = "You didn't enter two words."
End If

MsgBox Msg$ ' Display message.

2-227

Len (function) — Return length of string or storage bytes required

Len (function) — Return length of string or storage bytes

2-228

required

rc %= Len (string $)
-Or-
rc %= Len (variable)

Returns the length of the specified string parameter or the number of
bytes required to store a variable.

Parameter Description

rc% The return value.

string$ Any string or string expression.
non-string The name of a variable. This variable can

be of any user-defined or EXTRA! Basic
data types. The data type must be
indicated.

Comments

If Len is passed a string, the length of that string is returned. If Len is
passed a variant variable name, the number of bytes required to store
that variable is returned; otherwise, the length of the built-in or user-
defined data type is returned. If variable is a variant containing a Null
value, Len returns a Null variant.

Len (function) Example

The example shows how Len can be used to return the number of bytes
needed to store each fundamental EXTRA! Basic data type.

Dim A As Integer, B As Long
Dim C As Single, D As Double

NL$ = Chr$(13) + Chr$(10) ' Define newline.

A% =1 ' Integer variable.

B& = A% ' Long integer.

Cl=B& ' Single-precision, floating-point.
D# = C! ' Double-precision, floating-point.

Len (function) — Return length of string or storage bytes required

Msg$ = "Integer values are stored in" + Str$(Len(A%)) + " bytes."

Msg$ = Msg$ + NL$ + "Long integer values are stored in"

Msg$ = Msg$ + Str$(Len(B&)) + " bytes." + NL$

Msg$ = Msg$ + "Single-precision values are stored in"

Msg$ = Msg$ + Str$(Len(C!)) + " bytes." + NL$ + "Double-precision "
Msg$ = Msg$ + "values are stored in" + Str$(Len (D#)) + " bytes."
Msg$ = Msg$ + NL$ + "This message contains "

Msg$ = Msg$ + "more than" + Str$(Len(Msg$)) + " characters."
MsgBox Msg$ ' Display message.

2-229

Let (statement) — Assign a value to a variable

Let (statement) — Assign a value to a variable

[Let] variable = expression

Stores a value in an EXTRA! Basic variable.

Parameter Description
variable The name of the variable that will hold
the value of expression.

expression The value that will be assigned to variable.

Comments
The keyword Let is optional.

In addition to standard string or numeric assignments, you can also use
the Let statement to assign to a record field or to an element of an array.

Standard conversion rules apply when assigning a dissimilar value to a
numeric or string variable.

Let (statement) Example

The example uses statements with and without the Let reserved word to
assign the value of an expression to a variable.

Let Pi#=4*Atn(l) 'Assign with Let keyword.
'Assign Msg$ without Let.
Msg$ = "The area of circle whose radius is 3 inches is: "

Msg$ = Msg$ + Str$(Pi# * (372)) + " inches."
MsgBox Msg$ ' Display message.

2-230

Like (operator) — Indicates whether two strings match

Like (operator) — Indicates whether two strings match

rc = string Like pattern

Used to compare a string or string expression against a supplied pattern
(including wildcard characters).

Parameter Description

rc The return value.

string A string or string expression.

pattern A string or string expression that may

contain one or more of the following
wildcard characters:

This character Matches any

single character

* set of zero or more
characters

single-digit character

[chars] single character in
chars

['chars] single character not in
chars

[schar-echar] single character in the
range schar to echar,
ascending

['schar-echar] single character not in

the range schar to
echar, ascending
[schar-echar single character in the
schar-echar...] ranges schar to echar,
ascending or schar to
echar, ascending
['schar-echar] single character not in
schar-echar...] the range schar to
echar, ascending or
schar to echar,
ascending

2-231

Like (operator) — Indicates whether two strings match

2-232

Comments

The Like operator returns True (-1) if the string or string expression
matches pattern, and False (0) if it does not. If either string or pattern is a
Null, the result of the Like operation is also Null.

Case sensitivity and sorting order are determined by the Option
Compare statement. (Option Compare Binary results in a Like
operation that is case sensitive. Option Compare Text results in a Like
operation that is not case sensitive.) If no Option Compare statement is
found, EXTRA\! Basic defaults to a case sensitive comparison (equivalent
to Option Compare Binary).

chars pattern rules:

= The special wildcard characters bracket ([), question mark (?),
number sign (#), and asterisk (*) can be used as a pattern char, if
enclosed in brackets. For example:

rc = "rev199?.xIs" Like rev199[?].xls

= To match a hyphen in chars, place it either at the beginning of the
chars (after the exclamation point, if used) or at the end of chars. For
example:

rc = socsec-no Like [-0000-1000]

e @, o, A, and & are special single characters that, in certain
languages, represent two characters. The Like operator considers
these special characters equivalent to O and E, o and e, A and E, and
a and e, respectively. Therefore, an occurrence of /& in a string and
AE in an expression will return True (provided the language
specified in the WIN.INI file uses this special character).

Like (operator) Example

This example tests whether a letter is lowercase.

Sub main
Dim userstr as String
Dim revalue as Integer
Dim msgtext as String
Dim pattern
pattern="[a-z]"
userstr=InputBox$("Enter a letter:")

retvalue=userstr LIKE pattern

Like (operator) — Indicates whether two strings match

If retvalue=-1 then

msgtext="The letter " & userstr & " is lowercase."

Else

msgtext="Not a lowercase letter."
End If
Msgbox msgtext

End Sub

2-233

Line Input (statement) — Read a line into a variable

Line Input (statement) — Read a line into a variable

2-234

Line Input [#] filenumber % variable $

Or

Line Input [prompt $,] variable $

Reads a line from a sequential file into a string variable, or takes input

from a message box.

Parameter

filenumber%

variable$

prompt$

Comments

If neither filenumber% nor prompt$ is supplied, prompt$ is assumed and

Description

The file number used in a previous Open
statement or any integer expression that
evaluates to that file number. The #
preceding the filenumber parameter is
required.

The name of the variable that will receive
the line of text from the file.

The prompt$ parameter is a string
expression containing the prompt that
will be displayed next to the input field.
The length of prompt$ is restricted to
approximately 255 characters depending
on the width of the characters used.
Carriage return and line-feed characters
must be included in prompt$ if it spans
multiple lines.

an empty message box requests user input.

Line Input (statement) Example

The example uses the Line Input # statement to read and display the first

line in the CONFIG.SYS file.

NL$ = Chr$(13) + Chr$(10)

' Define newline.

Msg$ = "Which drive does your operating system boot from ?"

Drive$ = UCase$(Left$(InputBox$(Msg$), 1)) ' Get user input.

Line Input (statement) — Read a line into a variable

If Drive$ = "C" or Drive$ = "A" Then
FileName$ = Drive$ + "\CONFIG.SYS"
If Dir$(FileName$) <> "" Then ' Check if file exists.

Open FileName$ For Input As #1 "If it does, open it.

Line Input #1, TextLine$ ' Get complete line.

Close #1 ' Close file.
Msg$ = "The first line of your CONFIG.SYS file is:"
Msg$ = Msg$ + NL$ + TextLine$ + "."
Else 'No CONFIG.SYS.
Msg$ = "Could not find a CONFIG.SYS file on drive "
Msg$ = Msg$ + UCase$(Drive$) + ™"
End If
Else
Msg$ = "You did not provide a valid boot drive. Systems "
Msg$ = Msg$ + "normally boot from either A: or C: drive."
End If

MsgBox Msg$ ' Display message.

2-235

ListBox (statement) — Create a list of user choices

ListBox (statement) — Create a list of user choices

ListBox x, y, dx, dy, text $, .field
ListBox X, y, dx, dy, stringarray $() , .field
Creates a list of choices from which users can select.

Parameter Description

X, Y x and y specify the position of the list box
relative to the upper left corner of the
dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the list box is centered
horizontally within the client area. If y is
omitted, the list box is centered vertically
within the client area.

dx, dy The combined width of the list box and
the text$ field. Because proportional
spacing is used, the width will vary with
the characters used. To approximate the
width, multiply the number of characters
in the text$ parameter (including blanks
and punctuation) by 4 and add 12.

The dy argument is the height of the text$
parameter. A dy value of 12 is standard,
and should cover typical default fonts. If
larger fonts are used, the value should be
increased. As the dy number grows, the
list box and the accompanying text will
move downward within the dialog box.

text$ A string containing the selections for the
list box. This string must be defined using
a Dim statement, before the Begin Dialog
statement is executed.

2-236

ListBox (statement) — Create a list of user choices

Parameter Description

string An array of dynamic strings that will be
array$() used to populate the list box.

field The .field parameter is the name of the

dialog-record field that will hold the list
box selection. When the user selects OK
(or selects the customized button created
using the Button statement), a number
representing the selection’s position in the
text$ string is recorded in the field field.
listchoice numbers begin at 0. If no item is
selected, .field is set to -1.

Comments

The ListBox statement can only be used between a Begin Dialog and an
End Dialog statement.

ListBox (statement) Example

This example defines a dialog box with list box and two buttons.

Sub main

Dim ListBox1() as String

ReDim ListBox1(0)

ListBox1(0)="C:\"

Begin Dialog UserDialog 133, 66, 171, 65, "E! Basic Dialog Box"
Text 3, 3, 34, 9, "Directory:", .Text2
ListBox 3, 14, 83, 39, ListBox1(), .ListBox2
OKButton 105, 6, 54, 14
CancelButton 105, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

2-237

ListBox (statement) — Create a list of user choices

If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-238

Loc (function) — Return current record number or offset into specified open file

Loc (function) — Return current record number or offset
into specified open file

rc = Loc(filenumber %)

Returns the current offset within the specified open file.

Parameter

rc

filenumber%

Description

The return value. For files opened in
Random mode, rc is the number of the
last record read or written to. For files
opened in Append, Input, or Output
mode, rc is the current byte offset divided
by 128. For files opened in Binary mode,
rc is the offset of the last byte read or
written to.

An integer or integer expression
identifying the open file to query. This
argument should reference the same
parameter specified in the Open
statement.

Loc (function) Example

This example creates a file of account numbers as entered by the user.
When the user finishes, the example displays the offset in the file of the

last entry made.

Sub main
Dim filepos as Integer
Dim acctno() as Integer
Dim x as Integer

x=0

Open "c:\TEMPO0O01" for Random as #1

Do
X=x+1

Redim Preserve acctno(x)

acctno(x)=InputBox("Enter account #" & x & " or 0 to end:")

2-239

Loc (function) — Return current record number or offset into specified open file

If acctno(x)=0 then
Exit Do

End If

Put #1,, acctno(x)
Loop
filepos=Loc(1)
Close #1
MsgBox "The offset is: " & filepos
Kill "CATEMPOO1"

End Sub

2-240

Lock, Unlock (statements) — Controls access to some or all of an open file

Lock, Unlock (statements) — Controls access to some or
all of an open file

Lock [#] filenumber %,{ record |[start & [To end&]}]

Unlock [#] filenumber 9%,{ record |[start & [To
end&l}]

In a networked environment, controls access by other processes to some
or all of the records or bytes in an open file.

Parameter Description

filenumber An integer or integer expression
identifying the open file. This argument
should reference the same parameter
specified in the Open statement.

record The number of the block or record you
want to lock or unlock (1 to 2,147,483,647,
inclusive).

start A Long integer indicating the first byte or

record you want to lock or unlock.

end A Long integer indicating the last byte or
record you want to lock or unlock.

Comments

Important: The arguments passed to Lock and Unlock must match
exactly. Also, locked open files must be unlocked before closing or
unpredictable results may occur.

For files opened in Random mode, start and end are record numbers. For
files opened in Binary mode, start and end are byte offsets. For Input,
Output, and Append modes, start and end are ignored and the whole file
is locked or unlocked.

If an end argument is supplied without a start argument, all records or
bytes from record or offset 1 to end are locked or unlocked. If a start
argument is supplied without an end argument, only the record or byte
at the location indicated by start is locked or unlocked.

2-241

Lock, Unlock (statements) — Controls access to some or all of an open file

The number sign (#) in the Lock and Unlock statements is optional.

Lock, Unlock (statements) Example

This example locks a file that is shared by others on a network, if the file
is already in use. The second subprogram, CREATEFILE, creates the file
used by the main subprogram.

Declare Sub createfile
Sub main
Dim btngrp, icongrp
Dim defgrp
Dim answer
Dim noaccess as Integer
Dim msgabort
Dim msgstop as Integer
Dim acctname as String
noaccess=70
msgstop=16
Call createfile
On Error Resume Next
btngrp=1
icongrp=64
defgrp=0
answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
If answer=1 then
Open "C\TEMPOO1" for Input as #1
If Err=noaccess then
msgabort=MsgBox("File Locked",msgstop,"Aborted")
Else
Lock #1
Line Input #1, acctname
MsgBox "The first account name is: " & acctname
Unlock #1
End If
Close #1

2-242

Lock, Unlock (statements) — Controls access to some or all of an open file

End If
Kill "C\TEMP0O01"
End Sub

Sub createfile()
Rem Put the letters A-J into the file
Dim x as Integer
Open "C\TEMPOO01" for Output as #1
For x=1to 10
Write #1, Chr(x+64)
Next x
Close #1
End Sub

2-243

Lof (function) — Return the length of an open file

Lof (function) — Return the length of an open file

rc %= Lof (filenumber %)

Returns the length of the file specified by filenumber%.

Parameter Description
rc% The return value.
filenumber% The file number used in a previous Open

statement or any integer expression that
evaluates to that file number.
Comments

The value returned by Lof is in bytes.

Lof (function) Example

The example uses LOF to determine the size of an open disk file.

NL$ = Chr$(13) + Chr$(10) ' Define newline.

'Make sample data file.

Open "LOFDATAX" For Output As #1 ' Open file for output.

For 1% = 0 To 200 ' Generate random values.
Print #1, Int((500 - 100 + 1) * Rnd + 100)

Next 1%

2-244

Close #1

' Close file.

Open "LOFDATAX" For Input As #1 ' Open file just created.

FileLength% = LOK1)

Close #1

' Get length of file.

' Close file.

Lof (function) — Return the length of an open file

Msg$ = "The length of the LOFDATAX file just created is "
Msg$ = Msg$ + LTrim$(Str$(FileLength%)) + " bytes." + NL$ + NL$
Msg$ = Msg$ + "Choose OK to remove the sample data file."

MsgBox Msg$ ' Display message.

Kill "LOFDATAX" ' Delete file from disk.

2-245

Log (function) — Return the logarithm of a number

Log (function) — Return the logarithm of a number

rc %= Log(numeric-expression)

Returns the natural logarithm of a numeric expression.

Parameter Description

rc% The return value.

numeric- numeric-expression can be of any numeric
expression data type. numeric-expression must result

in a value greater than 0.

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

Comments

An Overflow error will occur if numeric-expression exceeds
709.782712893. The value of the constant e is approximately 2.718282.

Log (function) Example

This example uses the Log function to determine which number is
larger: 9991000 (999 to the 1000 power) or 1000999 (1000 to the 999
power). Note that you can't use the exponent (©) operator for numbers
this large.

Sub main
Dim x
Dimy
x=999

2-246

Log (function) — Return the logarithm of a number

y=1000
a=y*(Log(x))
b=x*(Log(y))
If a>b then
MsgBox "99971000 is greater than 1000"999"
Else
MsgBox "10007999 is greater than 9991000"
End If
End Sub

2-247

LSet (statement) — Left align string, assign one user-defined type variable to another

LSet (statement) — Left align string, assign one user-

2-248

defined type variable to another

LSet string $ = string-expression

LSet variablel = variable2

The first form of LSet left-aligns a string within a string variable. The
second form copies a variable of user-defined type to another variable of
a different user-defined type.

Parameter Description

string The name of a string variable.

string- The string that is to be left-aligned within
expression string.

variablel The destination user-defined variable.
variable2 The source user-defined variable.

Comments

Form 1 of LSet:

If string is shorter than string-expression, LSet copies the leftmost
characters of string-expression into string. The number of characters
copied is equal to the length of string; extraneous characters are
truncated. If string is longer than string-expression, all characters in string-
expression are copied into string from left to right and extra string
characters are replaced with spaces.

Form 2 of LSet:

The number of characters copied is equal to the length of the shorter of
variablel and variable2.

General:

LSet cannot be used to assign variables of different user-defined types if
either contains a variant or variable-length string.

LSet (statement) — Left align string, assign one user-defined type variable to another

LSet (statement) Example

This example puts a user’s last name into the variable LASTNAME. If
the name is longer than the size of LASTNAME, the user’s name is
truncated.

Sub main
Dim lastname as String
Dim strlast as String*8
lastname=InputBox("Enter your last name")
Lset strlast=lastname
msgtext="Your last name is: " &strlast
MsgBox msgtext

End Sub

2-249

LTrim (function) — Remove leading spaces

LTrim (function) — Remove leading spaces

2-250

rc$= LTrim [$] (string $)
Returns a copy of a source string, with all leading space characters

removed.

Parameter Description

rcg The return value.

string$ Any string expression.
Comments

The dollar sign (3$) in the function name is optional. If specified, the
return type is String. If the dollar sign is omitted, the function will
typically return a variant of vartype 8 (String). If the value of string is
null, a variant of vartype 1 (Null) is returned.

LTrim (function) Example

The example uses LTrim and RTrim, to strip leading and trailing spaces
from a string variable. Stripping of both leading and trailing spaces can
be done more efficiently using the Trim function.

Dim Msg$, NL$, TestStr$, TestStrl$ ' Declare variables.

NL = Chr(10) ' Define newline.

TestStr =" Test String "

TestStrl = LTrim (RTrim(TestStr)) ' Strip spaces left and right.

Msg = "The original TestStr """ + TestStr + "™ was "

Msg = Msg + STR$(Len(TestStr)) + " characters long. There were two "
Msg = Msg + "leading spaces and two trailing spaces." + NL + NL
Msg = Msg + "The TestStr returned after stripping the spaces "

Msg = Msg + "is """ + TestStrl + """ and it contains only "

Msg = Msg + STR$(Len(TestStrl)) + " characters."

MsgBox Msg ' Display message.

Mid (function) — Return a portion of a string

Mid (function) — Return a portion of a string

rc$= Mid$ (string $, position %, length A)

Returns a substring of a specified length from a source string, starting
with the character at the specified position.

Parameter Description
rcg The return value.
string$ The string variable containing the

substring you want to extract.

position% The offset into the string$ where the
substring begins.
length% The number of characters in the
substring.
Comments

If the length% argument is omitted, or if there are fewer characters in a
string than specified in length%, Mid$ will return all the characters from
position% to the end of the string. If position% is larger than the number
of characters in the indicated string, Mid$ returns a Null string.

A value of 1 for position% indicates the first character in a string.
To modify a portion of a string value, refer to the Mid statement.

The dollar sign ($) in the function name is optional. If the dollar sign is
specified, the return type is String. If the dollar sign is omitted, Mid will
return a variant of vartype 8 (String). If the value of string$ is Null, a
variant of vartype 1 (Null) is returned.

Mid (function) Example

The example uses the Mid function to return the middle word from a
variable containing three words.

Title$ = "Mid$ Function Demo"

'Return the word 'Function’ from Title$.

SpcPos1% = InStr(1, Title$, Chr$(32)) ' Find 1st space.

2-251

Mid (function) — Return a portion of a string

2-252

SpcPos2% = InStr(SpcPos1% + 1, Title$, Chr$(32)) ' Find 2nd space.
WordLen% = (SpcP0s2% - SpcPos1%) - 1 ' Calculate word

' length.
MidWord$ = Mid$ (Title$, SpcPos1% + 1, WordLen%)

Msg$ = "The word in the middle of Title$ is " + Midword$ + """

MsgBox Msg$, 0, Title$ ' Display message.

Mid (statement) — Replace a portion of a string

Mid (statement) — Replace a portion of a string

Mid (string $, position %, length %) = subst-string $
Replaces the specified substring in a string with a substitute string.

Parameter Description
string$ The string variable you want to modify.
position% The offset into string$ where you want the

replacement text to begin.

length% The number of characters to replace.
subst- The string or string expression that
string$ replaces the portion of string$ beginning

at position%.

Comments

If the length% argument is omitted, or if there are fewer characters in
string$ than specified in length%, Mid will replace all the characters from
position% to the end of the string. If position% is larger than the number
of characters in string$, Mid appends subst-string% to string$.

A value of 1 for position% indicates the first character in a string.

Mid (statement) Example

This example uses the Mid statement to replace the last name in a user-
entered string with asterisks(*).

Sub main
Dim username as String
Dim position as Integer
Dim count as Integer
Dim uname as String
Dim replacement as String
username=InputBox("Enter your full name:")
uname=username
replacement="*"

Do

2-253

Mid (statement) — Replace a portion of a string

position=InStr(username," ")
If position=0 then
Exit Do

End If
username=Mid(username,position+1)
count=count+position

Loop

For x=1 to Len(username)
count=count+1
Mid(uname,count)=replacement

Next x

MsgBox "Your name now is: " & uname

End Sub

2-254

Minute (function) — Return the minute portion of a date/time value

Minute (function) — Return the minute portion of a
date/time value

rc = Minute(expression)

Returns an integer that represents the minute of the day derived from
the supplied string or numeric expression.

Parameter Description

rc The return value (an integer between 0
and 59, inclusive).

expression Any type of expression (numeric or
string) that represents a date from
January 1, 100 (-657434) through
December 31, 9999 (2958465). A value of
2, for example, represents January 1, 1900.
Numbers to the left of the decimal point
are interpreted as a date; numbers to the
right are interpreted as time values.
Negative numbers are interpreted as
dates prior to December 30, 1899.

Comments

If expression is Null, Minute returns a Null.

Minute (function) Example

This example extracts just the time (hour, minute, and second) from a
file’s last modification date and time.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec

Dim msgtext as String

: msgtext="Enter a filename:"
filename=InputBox(msgtext)

If filename="" then

2-255

Minute (function) — Return the minute portion of a date/time value

Exit Sub
End If
On Error Resume Next
ftime=FileDateTime(filename)
If Err<>0 then
MsgBox “Error in file name. Try again."
Goto I:
End If
hr=Hour(ftime)
min=Minute(ftime)
sec=Second(ftime)
Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

2-256

MKkDir (statement) — Create a new directory

MkDir (statement) — Create a new directory

MkDir pathname $

Creates a new directory.

Parameter Description

pathname$ A string expression identifying the new
directory name. The syntax for pathname$
is:

[drive
directory |\ directory
[\ directory... 1l

The drive argument is optional. If omitted,
MKkDir makes a new directory on the
current drive. The directory argument is a
directory name.

pathname$ is limited to 128 characters.

Comments

MKDir is equivalent to the mkdir operating system command, however,
MKDir cannot be abbreviated.

MkDir (statement) Example

This example uses the MkDir statement to create a \TMP subdirectory
off the root directory of the currently logged drive.

On Error Resume Next ' Set up error handling.

CurDrv$ = Left$(CurDir$, 2) ' Get current drive letter.
TmpPath$ = UCase$(CurDrv$ + "\tmp") ' Make path specification.
TmpPath$ = UCase$(CurDrv$ + "__GG__") ' Make path specification.

MkDir TmpPath$ ' Make new directory.
If Err =75 Then ' Check if directory existed.
Msg$ = TmpPath$ + " directory already existed."

Else

2-257

MKkDir (statement) — Create a new directory

2-258

Msg$ = TmpPath$ + " directory created.”
End If

Msg$ = Msg$ + " Do you want it removed ?"
Answer% = MsgBox(Msg$, 4) ' Display message and get

If Answer% <> 7 Then RmDir TmpPath$ ' user response.

RmDir TmpPath$

Month (function) — Return month from a date/time value

Month (function) — Return month from a date/time
value

rc = Month(expression)

Returns an integer that represents the month of the year derived from
the supplied string or numeric expression.

Parameter Description

rc The return value (an integer between 1
and 12, inclusive).

expression Any type of expression (numeric or
string) that represents a date from
January 1, 100 (-657434) through
December 31, 9999 (2958465). A value of
2, for example, represents January 1, 1900.
Numbers to the left of the decimal point
are interpreted as a date; numbers to the
right are interpreted as time values.
Negative numbers are interpreted as
dates prior to December 30, 1899.

Comments
The return value is a variant of vartype 2 (Integer).

If expression is Null, Month returns a Null.

Month (function) Example

This example finds the month (1-12) and day (1-31) values for this
Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5
X=x+1

Loop

2-259

Month (function) — Return month from a date/time value

msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext
End Sub

2-260

MsgBox (function) — Display a message that solicits user input

MsgBox (function) — Display a message that solicits user

input

rc %= MsgBox(message$| .type %, caption $]])

Displays a message in a dialog box and waits for the user to choose a
button. This function returns an integer value indicating which button
the user selected.

This function can also be used as a Statement.

Parameter Description
rc% The return value.
message$ The message that is displayed in the dialog box.

message$ must be no more than 1024 characters
long. A message string greater than 255 characters
without intervening spaces will be truncated after
the 255th character.

type% Determines which icons, buttons, and button
defaults will be displayed in the dialog box.

This parameter is the sum of the desired buttons,
icons, and defaults as follows:

(Choose at least one value from each group.)

Buttons Value
OK only 0

OK, Cancel 1
Abort, Retry, Ignore 2

Yes, No, Cancel 3

Yes, No 4
Retry, Cancel 5
Icons Value
Critical Message (Stop sign) 16
Warning Query (Question mark) 32
Warning Message (Exclamation) 48
Information Message (lower-case i) 64

2-261

MsgBox (function) — Display a message that solicits user input

2-262

Parameter

type%
(continued)

caption$

Comments

Description

Button Defaults Value
First button 0
Second button 256
Third button 512

If type%o is omitted, a single OK button will be
displayed

The string expression that will appear in the dialog
box’s title bar.

Once the user has selected a button, the MsgBox function returns a value
indicating the user’s choice.

The return values for the MsgBox function are:

Value
1

2

Button Pressed
OK

Cancel
Abort
Retry
Ignore
Yes

No

MsgBox (function) Example

This example displays one of each type of message box.

Sub main
Dim btngrp as Integer
Dim icongrp as Integer

Dim defgrp as Integer

MsgBox (function) — Display a message that solicits user input

Dim msgtext as String
icongrp=16
defgrp=0
btngrp=0
Do Until btngrp=6
Select Case btngrp
Case 1,4,5
defgrp=0
Case 2
defgrp=256
Case 3
defgrp=512
End Select

msgtext=""Icon group =" & icongrp & Chr(10)

msgtext=msgtext + " Button group =" & btngrp & Chr(10)
msgtext=msgtext + " Default group =" & defgrp & Chr(10)

msgtext=msgtext + Chr(10) + " Continue?"

answer=MsgBox(msgtext, btngrp+icongrp+defgrp)

Select Case answer
Case 2,3,7
Exit Do
End Select
If icongrp<>64 then
icongrp=icongrp+16
End If
btngrp=btngrp+1
Loop
End Sub

2-263

MsgBox (statement) — Display a message that solicits user input

MsgBox (statement) — Display a message that solicits
user input

MsgBox message$|[, [type Y[, caption $]])

Displays a message in a dialog box and waits for the user to choose a
button. This function does not return a value indicating which button the
user selected. Use the MsgBox function if you need to capture the user

response.

Parameter Description

message$ The message that is displayed in the dialog box.
message$ must be no more than 1024 characters
long. A message string greater than 255 characters
without intervening spaces will be truncated after
the 255th character.

type% Determines which icons, buttons, and button

defaults will be displayed in the dialog box.

This parameter is the sum of the desired buttons,
icons, and defaults as follows:

(Choose at least one value from each group.)

Buttons Value
OK only 0

OK, Cancel 1
Abort, Retry, Ignore 2

Yes, No, Cancel 3

Yes, No 4
Retry, Cancel 5
Icons Value
Critical Message (Stop sign) 16
Warning Query (Question mark) 32
Warning Message (Exclamation) 48
Information Message (lower-case i) 64

2-264

MsgBox (statement) — Display a message that solicits user input

Parameter Description
Button Defaults Value
First button 0
Second button 256
Third button 512
caption$ The string expression that will appear in the

dialog box’s title bar.

MsgBox (statement) Example

Sub main

This example finds the future value of an annuity, whose terms are
defined by the user. It uses the MsgBox statement to display the result.

Dim aprate, periods

Dim payment, annuitypv

Dim due, futurevalue

Dim msgtext

annuitypv=InputBox("Enter present value of the annuity: ")

aprate=InputBox("Enter the annual percentage rate: ")

If aprate >1 then

aprate=aprate/100

End If

periods=InputBox("Enter the total number of pay periods: ")

payment=InputBox("Enter the initial amount paid to you: ")

Rem Assume payments are made at end of month

due=0

futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)

msgtext="The future value is: " & Format(futurevalue, "Currency")

MsgBox

End Sub

msgtext

2-265

Name (statement) — Rename a file

Name (statement) — Rename a file

2-266

Name oldfilename $ As newfilename $

Renames a file. Can also be used to move a file from one directory to

another.

Parameter Description

oldfilename$ A string expression that designates the
name of the file that you want to rename.
oldfilename$ may contain a path.

newfile A string expression that designates the

name$ new filename. newfilename$ may contain a
path.

Comments

If oldfilename$ is currently open, EXTRA! Basic generates an error
message. If the file newfilename$ already exists, EXTRA! Basic will
generate an error message.

The Name statement does not produce a copy of the original file--after
the Name statement has been executed only one file will exist and it will
be named newfilename$.

Name (statement) Example

The example moves a file from one directory to another and renames it
at the same time.

NL$ = Chr$(13) + Chr$(10) ' Define newline.

FNamel$ = "NMSTMTX.DAT" ' Define filenames.
FName2$ = "NMSTMTY.DAT"

TestDir$ = "\TEST.DIR" ' Test directory name.
Open FNamel$ For Output As #1 ' Create a test file.
Print #1, "test data" ' Put something in file.
Close #1

MKDir TestDir$ ' Make test directory.

Name (statement) — Rename a file

NameFNamel$ As TestDir$ + "\" + FName2$ ' Move and rename.

Msg$ = "A new file, " + FNamel$ + " has been created "
Msg$ = Msg$ + "in " + CurDir$ + ". Once created, it was "
Msg$ = Msg$ + "moved to " + TestDir$ + " and renamed "
Msg$ = Msg$ + FName2$ + "." + NL$ + NL$

Msg$ = Msg$ + "Choose OK to remove the test data file and "

Msg$ = Msg$ + "directory.”

MsgBox Msg$ ' Display message.
Kill TestDir$ + "\" + FName2$ ' Remove file from disk.
RmDir TestDir$ ' Remove test directory.

2-267

New (reserved word) — Create a new instance of an object

New (reserved word) — Create a new instance of an
object

Set objectVar = New className
or
Dim objectvVar As New className

Creates and initializes a new object of the specified class.

Parameter Description

objectVar The name of the variable that references
the object you want to instantiate.

Comments

Using the first syntax shown above (the Set statement), New creates and
initializes a new object of the named class.

Using the second syntax shown above (the Dim statement), New marks
the object variable so that a new object will be created and initialized
when the object variable referenced for the first time. If the object
variable is not referenced, no new object will be created.

Note: An object variable that was declared with New will allocate a
second object if the variable is Set to Nothing and referenced
subsequently.

2-268

NoCStrings (metacommand) — Treat backslash as a normal character

NoCSstrings (metacommand) — Treat backslash as a
normal character

'$NOCSTRINGS [SAVE]

Instructs the compiler to treat a backslash inside a string as a normal
character. This is the default.

Parameter Description

SAVE This option saves the current CStrings
setting before CStrings are disabled. The
CSTRINGS RESTORE command will
restore a setting saved previously. SAVE
and RESTORE function as a stack and
allow you to change the CStrings setting
for a range of the macro without
impacting the rest of the macro.

Comments

Use the $CStrings metacommand to instruct the compiler to treat a
backslash as an escape character.

NoCStrings (metacommand) Example

This example displays two lines, the first time using the C-language
characters ‘“\n’* for a carriage return and line feed.

Sub main
'$CStrings
MsgBox "This is line 1\n This is line 2 (using C Strings)"
'$NoCStrings
MsgBox "This is line 1" +Chr$(13)+Chr$(10)+ _
"This is line 2 (using Chr)"
End Sub

2-269

Nothing (reserved word) — Set the value of an object variable to nothing

Nothing (reserved word) — Set the value of an object
variable to nothing

Set variableName = Nothing

Assigns the value Nothing to an object variable freeing memory and
system resources when it is no longer being used.

Parameter Description
variable An object variable name.
Name

Comments

Using the Set statement to assign the value Nothing to an object variable
is equivalent to the following:

= The value of an object the first time it is declared (using the Dim
statement)

= The value of a new instantiation of an object (using the Dim
statement and the New keyword)

Note that local object variables are automatically set to Nothing at the
end of the procedure; global or static object variables are not.

Nothing (reserved word) Example

This example displays a list of open files in the software application
Visio. It uses the Nothing function to determine whether Visio is
available. To see how this example works, you need to start Visio and
open one or more documents.
Sub main

Dim visio as Object

Dim doc as Object

Dim msgtext as String

Dim i as Integer, doccount as Integer
'Initialize Visio

Set visio = GetObject(,"visio.application") ' find Visio

If (visio Is Nothing) then

2-270

Nothing (reserved word) — Set the value of an object variable to nothing

Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i)
" access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext
End Sub

2-271

Now (function) — Return the current date and time

Now (function) — Return the current date and time

2-272

rc= Now()

Returns the current date and time derived from the system clock
settings.

Parameter Description
rc The return value.
Comments

The Now function returns a variant of vartype 7 (Date) (stored as a
double-precision number). Valid dates range from January 1, 100 (-
657434) through December 31, 9999 (2958465). A value of 2, for example,
is returned if the system date is set to ““‘January 1, 1900"‘. Numbers to the
left of the decimal point represent time; numbers to the right represent
the date.

Now (function) Example

Sub main

This example finds the month (1-12) and day (1-31) values for this
Thursday.

Dim x, today

Dim msgtext

Today=DateValue(Now)

Let x=0

Do While Weekday(Today+x)<> 5

X=x+1

Loop

msgtext="This Thursday is: " &Month(Today+x)&"/"&Day(Today+x)

MsgBox msgtext

End Sub

NPV (function) — Return net present value

NPV (function) — Return net present value

rc= NPV(rate , valuearray ())

Returns the net present value of an investment based on a variable
stream of periodic future cash flows and a constant interest rate (also
referred to as the discount rate).

Parameter Description
rc The return value.
rate Discount rate per period in decimal

notation. If the discount rate is 12% per
period, for example, the rate parameter is
0.12.

valuearray() An array containing the cash flow values.
A positive value is interpreted as a receipt
and a negative value is interpreted as a
payment. The array must contain at least
on positive value and one negative value.

Comments

Note: All payments and receipts must be included in valuearray in the
correct sequence. The NPV return value will vary changes in the
sequence of cash flows.

Because NPV calculation is based on future cash flows, if the first cash
flow occurs at the beginning of the first period, its value must not be
included in valuearray. Instead it should be added to the result returned
by NPV.

Payments (negative values) supplied in valuearray must be due at the
end of the period.

NPV (function) Example

This example finds the net present value of an investment, given a range
of cash flows by the user.

Sub main

Dim aprate as Single

2-273

NPV (function) — Return net present value

Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods")
ReDim varray(cflowper)
For x= 1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #"
&X&™")
Next x
aprate=InputBox("Enter discount rate: ")
If aprate>1 then
aprate=aprate/100
End If
netpv=NPV (aprate,varray())
MsgBox “The net present value is: " & Format(netpv, "Currency")

End Sub

2-274

Null (function) — Return a variant set to Null

Null (function) — Return a variant set to Null

variableName = Null

Explicitly sets a variant value to null.

Parameter Description

variableName The name of the variable you want to set
to the null value.

Comments

Note that variants are initialized to the Empty value, by default.

Null (function) Example

This example asks for ten test score values and calculates the average. If
any score is negative, the value is set to Null, then IsNull is used to
reduce the total count of scores (originally 10) to just those with positive
values before calculating the average.

Sub main
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count=10
total=0
For x=1 to count
tscore=InputBox("Enter test score #" & x & ":")
If tscore<0 then
arrayvar(x)=Null
Else
arrayvar(x)=tscore
total=total+arrayvar(x)
End If
Next x

Do While x<>0

2-275

Null (function) — Return a variant set to Null

X=x-1
If IsNull(arrayvar(x))=-1 then
count=count-1

End If
Loop
msgtext="The average (excluding negative values) is: " & Chr(10)
msgtext=msgtext & Format (total/count, "##.4##")
MsgBox msgtext

End Sub

2-276

Object (reserved word) — Declare an OLE2 object

Object (reserved word) — Declare an OLE2 object

Dim variableName As Object

Object is a class that provides access to OLE2 automation objects.

Parameter Description

variable The name of the variable you want to

Name declare as belonging to the class Object.
Comments

To create a new Obiject, first dimension a variable, and then Set the

variable to the return value of CreateObject or GetObject as shown
below:

Dimole2 As Object
Set ole2 = CreateObject ("spoly.cpoly")
ole2.reset

Object (reserved word) Example

This example displays a list of open files in the software application
Visio. It uses the Object class to declare the variables used for accessing
Visio and its document files and methods.
Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String

Dim i as Integer, doccount as Integer

'Initialize Visio
Set visio = GetObject(,"visio.application") ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
‘Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio

If doccount=0 then

2-277

Object (reserved word) — Declare an OLE2 object

msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
Fori =1 to doccount
Set doc = visio.documents(i)
" access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext

End Sub

2-278

Oct (function) — Return the octal value of a number

Oct (function) — Return the octal value of a number

rc $ = Oct$(numeric-expression)

Returns an octal representation of a numeric-expression as a string.

Parameter Description
rc$ The return value.
numeric- Any numeric data type. The result of
expression numeric-expression is rounded to the
nearest whole number before being
evaluated.
Comments

If the numeric expression is an integer, the string will contain up to six
octal digits; otherwise, the expression will be converted to a Long
integer, and the string will contain up to 11 octal digits.

Oct (function) Example

This example prints the octal values for the numbers from 1 to 15.

Sub main
Dim x,y
Dim msgtext
Dim nofspaces
msgtext="Octal numbers from 1 to 15:" & Chr(10)
For x=1to 15
nofspaces=10
y=0ct(x)
If Len(x)=2 then
nofspaces=nofspaces-2
End If
msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y
Next x
MsgBox msgtext
End Sub

2-279

OkButton (statement) — Specify position and size of an OK button

OkButton (statement) — Specify position and size of an
OK button

OkButton x, y, dx, dy [.id]
Determines the position and size of an OK button.

Parameter Description

X,y x and y specify the position of the OK
button relative to the upper left corner of
the dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the OK button is centered
horizontally within the client area. If y is
omitted, the list box is centered vertically
within the client area.

dx, dy dx and dy set the width and height of the
button. A dy value of 14 typically
accommodates text in the system font.

.id An optional identifier used by the dialog
statements that act on this control.

Comments

The OkButton statement can only be used between a Begin Dialog and
an End Dialog statement.

OkButton (statement) Example

This example defines a dialog box with a dropcombo box and the OK
and Cancel buttons.

Sub main
Dim cchoices as String

On Error Resume Next

2-280

OkButton (statement) — Specify position and size of an OK button

cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "E! Basic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then
MsgBox "You pressed Cancel."
Else
MsgBox "You pressed OK."
End If
End Sub

2-281

On Error (statement) — Activate an error-handling routine

On Error (statement) — Activate an error-handling

2-282

routine

On [Local] Error { GoTo label [Resume Next] GoToO }

Activates the specified error-handling routine. Control is passed to this
routine in the event of a run-time error.

Parameter Description
label The line label of the error-handling
routine.
Comments

On Error can also be used to disable an error-handling routine.

Unless an On Error statement is used to control error handling, any run-
time error will be fatal (that is, EXTRA! Basic will terminate the
execution of the program).

The On Error statement uses the following reserved words:

Reserved

Word Definition

Local Used to ensure compatibility with other
variants of EXTRA! Basic. It is allowed in
error-handling routines only at the
procedure level.

GoTo Enables the error-handling routine that

begins at the specified label. If the
designated label cannot be found in the
same procedure as the On Error
statement, EXTRA! Basic will generate an
error message.

Resume Next Passes control to the statement
immediately following the statement in
which the error occurred.

GoTo 0 Disables any error handler that has been
enabled.

The error handler remains active from the time the run-time error has
been trapped until a Resume statement is executed within the error

On Error (statement) — Activate an error-handling routine

handler. After an error has been handled, program execution resumes in
the current procedure at the statement indicated in the Resume
statement.

If another error occurs while the error handler is active, EXTRA! Basic
searches for an error handler within the calling procedure (and then in
the calling procedure’s calling procedure, if none can be found). When
an error handler is found, the current procedure terminates, and the
error handler is activated. If EXTRA! Basic cannot find an inactive error
handler, a fatal error occurs. This fatal error can be traced back to the
original error location.

When control is passed back to a calling procedure, that procedure
becomes the current procedure.

An error occurs if an End Sub or End Function statement is executed
while an error handler is active. The Exit Sub or Exit Function statement
can be used to end the error condition and exit the current procedure.

Use the Err and Error$ function to retrieve the run-time error code and
error message.

On Error (statement) Example

This example uses the On Error statement to set up error handling in a
procedure.

On Error GoTo ErrorHandler ' Set up error handler.
Msg$ = "This demo attempts to open a file that does not exist on a "
Msg$ = Msg$ + "drive that may not exist. When the operation fails, "
Msg$ = Msg$ + "the ErrorHandler routine will display a message box "
Msg$ = Msg$ + "that indicates what error occurred."

MsgBox Msg$ ' Display opening message.
'Generate random drive letter.
Try-again:

Randomize

Drive$ = Chr$(Int((26) * Rnd + 1) + 64)
If Drive$ = "A" or Drive$ = "B" then goto Try-again

Open Drive$ + "\TEST\X.DAT" For Input As #1 ' Try to open file.

2-283

On Error (statement) — Activate an error-handling routine

2-284

Close #1
Exit Sub

ErrorHandler:

Select Case Err

Case 53: Msg$ ="

' Close the file.
' Exit before entering
" error handler.

' Error handler line label.

ERROR 53: That file doesn't exist.”

Case 68: Msg$ = "ERROR 68: Drive " + Drive$ + " not available.”

Case 76: Msg$ = "ERROR 76: That path doesn't exist."

Case Else: Msg$ = "ERROR " + Str$(Err) + " occurred.”

End Select

MsgBox Msg$
Print Msg$

Resume Next

' Display error message.

' Resume procedure.

On Goto (statement) — Branch to a macro line label

On Goto (statement) — Branch fo a macro line label

On numeric-expression GoTo branchlist

Branch to the line with the specified label.

Parameter

numeric-
expression

branchlist

Comments

Description

A numeric expression that evaluates to a
number (rounded to the nearest integer)
between 0 and 255 (inclusive). If numeric-
expression evaluates to 1, control branches
to the first label in branchlist. If numeric-
expression evaluates to 2, control branches
to the second label in branchlist, and so
forth.

A comma separated list of line labels or
line numbers.

If numeric-expression evaluates to 0 or to a number greater than the
number of labels or line numbers in branchlist, macro control jumps to
the next statement. If numeric-expression evaluates to a number less than
0 or greater than 255, an “lllegal function call’* error is issued.

On Goto (statement) Example

This example sets the current system time to the user’s entry. If the entry
cannot be converted to a valid time value, this subroutine sets the
variable to Null. It then checks the variable and if it is Null, uses the
On...Goto statement to ask again.

Sub main

Dim answer as Integer

answer=InputBox("Enter a choice (1-3) or 0 to quit")

On answer Goto c1, c2, c3

MsgBox("You typed 0.")
Exit Sub

cl: MsgBox("You picked choice 1.")

Exit Sub

2-285

On Goto (statement) — Branch to a macro line label

c2: MsgBox("You picked choice 2.")
Exit Sub

c3: MsgBox("You picked choice 3.")
Exit Sub

End Sub

2-286

Open (statement) — Opens a file or a device

Open (statement) — Opens a file or a device

Open filename $ [For modg [Access access] [lock | _
As [#] filenumber %[Len = reclen]

Enables 1/0 to a file or a device.

Parameter Description

filename$ A string or string expression that names
the file or device you want to open.
filename$ can include a path, if necessary.

mode Mode must be one of the following
reserved words:

Reserved Word Description

Append Indicates sequential
output mode. Append
sets the file pointer to
the end of the file so
that subsequent Print
or Write
statements, in effect,
are appended to

filename$.
Input Indicates sequential
input mode.
Output Indicates sequential

output mode.

filenumber% An integer expression that evaluates to
between 1 and 255, inclusive. When an
Open statement is executed, filenumber%
is assigned to filename$ and remains
assigned until filename$ is closed. Use the
FreeFile function to return the next
available filenumber.

Comments

A file must be opened before any input/output operation can be
performed on it.

2-287

Open (statement) — Opens a file or a device

Open (statement) Example

This example uses the Open statement to open a file for output.

TestString$ = "The quick brown fox" ' Create test string.
Forl% =1To5
FNum% = FreeFile ' Determine next file number.
FName$ = "FILEIOX" + LTrim$(Str$(FNum%)) + ".DAT"
Open FName$ For Output As FNum% ' Open file.

Print #1%, TestString$ ' Write string to file.
Next 1%
Close ' Close all files.

Msg$ = "Several test files have been created on your disk. "
Msg$ = Msg$ + "Choose OK to remove the test files."
MsgBox Msg$

Kill "FILEIOX?.DAT" ' Remove test file from disk.

2-288

Option Base (statement) — Specify default lower bound for array Subscripts

Option Base (statement) — Specify default lower bound
for array Subscripts

Option Base lowerBound %

Specifies the default lower bound for array subscripts. This statement is
not required in order to declare the dimensions of an array.

Parameter Description
lower lowerBound% must be either 0 or 1.
Bound%

Comments

If the Option Base statement is not specified, the default lower bound
for array subscripts will be 0.

The Option Base statement must appear in the Declarations section of a
module, and must precede any use of any declared arrays. Only one
Option Base statement is permitted per module.

Option Base (statement) Example

This example specifies the lower bound to be used for array A is set to 1.
If no Option Base statement is specified, the default lower bound for
array subscripts will be 0. The Option Base statement is not allowed
inside a procedure, and must precede any use of arrays in the module.

Option Base 1 ' Stays in Declarations section.
Sub Main

NL$ = Chr$(13) + Chr$(10) ' Define newline.

ReDim A(20) ' Create an array.

Msg$ = "The lower bound of the A array is" + Str$(LBound(A)) + "."
Msg$ = Msg$ + NL$ + "The upper bound is" + Str$(UBound(A)) + "."
MsgBox Msg$ ' Display message.

End Sub

2-289

OptionButton (statement) — Define option buttons

OptionButton (statement) — Define option buttons

OptionButton X, y, dx, dy, text $[,. id]

Defines the position and text associated with an option button. There
must be at least two OptionButton statements and they must be used in
conjunction with the OptionGroup statement.

Parameter Description

X,y x and y specify the position of the option
button relative to the upper left corner of
the dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the option button is
centered horizontally within the client
area. If y is omitted, the option button is
centered vertically within the client area.

dx, dy The width of the option button. The dy
argument is the height of the text$
parameter.

text$ Contains the text that will be displayed to

the right of the option button. To indicate
an accelerator key in text$, precede the
accelerator key character with an
ampersand (&).

Comments

The OptionButton statement can only be used between a Begin Dialog
and an End Dialog statement.

2-290

OptionButton (statement) — Define option buttons

OptionButton (statement) Example

This example creates a dialog box with a group box with two option
buttons: ““All pages’ and ‘“Range of pages’.

Sub main
Begin Dialog UserDialog 183, 70, "E! Basic Dialog Box"
GroupBox 5, 4, 97, 57, "File Range"
OptionGroup .OptionGroup2
OptionButton 16, 12, 46, 12, "All pages", .OptionButton3
OptionButton 16, 28, 67, 8, "Range of pages", _
.OptionButton4
Text 22, 39, 20, 10, "From:", .Text6
Text 60, 39, 14, 9, "To:", .Text7
TextBox 76, 39, 13, 12, .TextBox4
TextBox 44, 39, 12, 11, .TextBox5
OKButton 125, 6, 54, 14
CancelButton 125, 26, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-291

Option Compare (statement) — Specify the default string comparison method

Option Compare (statement) — Specify the default string
comparison method

Option Compare { Binary | Text}
Specifies the default method of string comparison.

Parameter Description

Binary Perform string comparisons based on the
ANSI character set.

Text Perform string comparisons based on the
relative order of characters determined by
the country code specified in the
International section of the Windows
WINL.INI file.

Comments

Binary comparisons are case sensitive; text comparisons are case-
insensitive.

If your macro does not specify an Option Compare statement, Binary
string comparisons will be performed, by default.

Option Compare (statement) Example

This example compares two strings: “MARIA SMITH’* and “maria
smith’*. When Option Compare is Text, the strings are considered the
same. If Option Compare is Binary, they will not be the same. Binary is
the default. To see the difference, run the example once, then run it
again, commenting out the Option Compare statement.

Option Compare Text
Sub main
Dim strgl as String
Dim strg2 as String
Dim retvalue as Integer
strg1="MARIA SMITH"

strg2="maria smith"

retvalue=StrComp(strgl,strg2)

2-292

Option Compare (statement) — Specify the default string comparison method

If retvalue=0 then
MsgBox "The strings are identical”
Else
MsgBox "The strings are not identical"
Exit Sub
End If
End Sub

2-293

Option Explicit (statement) — Force all variables to be declared explicitly

Option Explicit (statement) — Force all variables to be
declared explicitly

Option Explicit

Specifies that all variables must be declared explicitly. Without an
OptionExplicit statement, any variables that do not appear in a Dim,
Global, ReDim, or Static statement will be implicitly declared as a
variant data type (unless a data type symbol or a DefType statement is
provided).

Comments

If an OptionExplicit statement is included in your macro and you
attempt to use an undeclared variable name, EXTRA! Basic returns a
“Variable not declared’ error message.

Option Explicit (statement) Example

This example specifies that all variables must be explicitly declared, thus
preventing any mistyped variable names.

Option Explicit
Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
"...(code here)...

End Sub

2-294

OptionGroup (statement) — Name user selection variable

OptionGroup (statement) — Name user selection
variable

OptionGroup .field

Used in conjunction with OptionButton statements to set up a series of
related options. The OptionGroup statement also establishes the dialog-
record field that will contain the user's selection.

Parameter Description

field The name of the variable that will hold
the result of the user's selection. field is set
to 0 when the choice associated with the
first OptionButton statement is selected,
or a value of 1 when the choice associated
with the second OptionButton statement
is chosen, and so forth.

Comments

The OptionGroup statement can only be used between a Begin Dialog
and an End Dialog statement.

2-295

PasswordBox (function) — Return a password entered by the user

PasswordBox (function) — Return a password entered by
the user
rc = PasswordBox [$] (prompt $[,[title $][[default $]_
[xpos% yposAl])
Returns a password entered by the user.

Parameter Description
rc The return value.
prompt$ A string expression (up to approximately

255 characters long depending on the
width of the font) containing the text to be
displayed in the dialog box. Multiple-line
prompts must contain carriage return and
line feed characters.

title$ A string expression containing the
caption that will appear in the dialog
box's title bar. If title is not specified, the
title bar will be blank.

default$ A string expression containing the text to
which the edit box will be initialized. If
default is not specified, the edit box will be
blank.

Xpos%o, ypos%o Numeric expressions, specified in dialog
box units, that determine the position of
the password box.

xpos% determines the horizontal distance
between the left edge of the screen and
the left border of the input box.

ypos% determines the horizontal distance
from the top of the screen to the input
box's upper edge.

If one or both of these arguments are
omitted, the password box is centered
roughly one third of the way down the
screen.

2-296

PasswordBox (function) — Return a password entered by the user

Comments

When the user presses Enter or selects the OK button, PasswordBox
returns the text that the user entered in the text box. If the user selects the
Cancel button, PasswordBox returns a Null string.

PasswordBox (function) Example

This example asks the user for a password.

Sub main
Dim retvalue
Dim a
retvalue=PasswordBox("Enter your login password",Password)
If retvalue<>"" then
MsgBox "Verifying password"
(continue code here)
Else
MsgBox "Login cancelled"
End If
End Sub

2-297

Picture (statement) — Define a picture control

Picture (statement) — Define a picture control

Picture x, y, dx, dy, filename $, type [,. id]
Defines a picture control in a custom dialog box.

Parameter Description
X, Y, x and y determine the position of the
dx, dy picture relative to the upper left corner of

the dialog box. dx and dy set the width
and height of the picture. The picture will
be scaled equally in both directions and
centered if the dimensions of the picture
(x and y) are not proportional to the
height and width (dx and dy).

filename$ Specifies the name of the bitmap file
(.BMP) containing the picture. Note that if
type is 3 (indicating that the picture
should be copied from the Clipboard),
filename is ignored.

type Specifies the bitmap type. Valid type
values are 0, 3, 16, and 19. A type of 0
indicates that the bitmap should be taken
from filename. A type of 3 indicates that
the bitmap should be copied from the
Clipboard.

.id An optional identifier used by the dialog
statements that act on this picture control.

Comments

The Picture statement can only be used within a Begin Dialog...End
Dialog statement.

If the picture is not available (if filetname does not exist or does not
contain a bitmap, or if there is no bitmap in the Clipboard), the picture
control will display the picture frame and the text ‘“Missing Picture.”* To
trigger a run-time error instead, add 16 to the value of type.

2-298

Picture (statement) — Define a picture control

Picture (statement) Example

This example defines a dialog box with a picture, and the OK and Cancel
buttons.

Sub main
Begin Dialog UserDialog 148, 73, "E! Basic Dialog Box"
Picture 8, 7, 46, 46, "C:\WINDOWS\ARCADE.BMP", 0
OKButton 80, 10, 54, 14
CancelButton 80, 30, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-299

Pmt (function) — Return a constant periodic payment

Pmt (function) — Return a constant periodic payment

rc= Pmt (rate , nper, pv, fv, due)

Returns a constant periodic payment amount for a series of constant cash
payments made over a period of time (an annuity; a loan or investment).

Parameter Description
rc The return value.
rate The interest rate per period. If payments

are on a monthly schedule, rate would be
.0075 for an annual percentage rate (APR)
of 9% (0.9 /7 12 = 0.0075). rate is assumed

to be constant over the life of the annuity.

nper The total number of payment periods.
nper for a 3-year car loan, for example,
would be 36 (3 * 12 = 36).

pv The present value of the initial lump sum
amount paid (as in an annuity) or
received (as in a loan).

fv The future value of the final lump sum
amount required (as in a savings plan) or
paid (0, in the case of a loan).

due 0 if payments are due at the end of each
payment period; 1 if they are due at the
beginning of the period.

Comments

rate and nper must be calculated using the same payment period unit of
measurement (e.g., months or days).

For all arguments, negative values indicate cash paid out (as in a savings
account deposit) and positive values indicate cash received (as in a
dividend check).

2-300

Pmt (function) — Return a constant periodic payment

Pmt (function) Example

This example finds the monthly payment on a given loan.

Sub main
Dim aprate, totalpay
Dim loanpv, loanfv
Dim due, monthlypay
Dim yearlypay, msgtext
loanpv=InputBox("Enter the loan amount: ")
aprate=InputBox("Enter the loan rate percent: ")
If aprate >1 then
aprate=aprate/100
End If
totalpay=InputBox("Enter the total number of monthly payments: ")
loanfv=0
'Assume payments are made at end of month
due=0
monthlypay=Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
msgtext="The monthly payment is: " & Format(monthlypay, _
"Currency")
MsgBox msgtext

End Sub

2-301

PPmt (function) — Return the principal portion of a payment value

PPmt (function) — Return the principal portion of a
payment value

rc= PPmt(rate , per, nper, pv, fv, due)

Returns the principal portion of the payment for a given period of an
annuity (a loan or investment).

Parameter Description
rc The return value.
rate The interest rate per period. If payments

are on a monthly schedule, rate would be
.0075 for an annual percentage rate (APR)
of 9% (0.9 / 12 = 0.0075). rate is assumed

to be constant over the life of the annuity.

per The number of the particular payment
period for which you want to determine
the principal. per must be in the range 1
through nper.

nper The total number of payment periods.
nper for a 3-year car loan, for example,
would be 36 (3 * 12 = 36).

pv The present value of the initial lump sum
amount paid (as in an annuity) or
received (as in a loan).

fv The future value of the final lump sum
amount required (as in a savings plan) or
paid (0, in the case of a loan).

due 0 if payments are due at the end of each
payment period; 1 if they are due at the
beginning of the period.
Comments

rate and nper must be calculated using the same payment period unit of
measurement (e.g., months or days).

2-302

PPmt (function) — Return the principal portion of a payment value

For all arguments, negative values indicate cash paid out (as in a savings
account deposit) and positive values indicate cash received (as in a

dividend check).

PPmt (function) Example

This example finds the principal portion of a loan payment amount for
payments made in last month of the first year. The loan is for $25,000 to

be paid back over 5 years at 9.5% interest.

Sub main
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, principal
Dim msgtext
aprate=9.5/100
payperiod=12
periods=120
loanpv=25000
loanfv=0
Rem Assume payments are made at end of month
due=0
principal=PPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
msgtext="Given a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
msgtext=msgtext & " the principal paid in month 12 is: "
MsgBox msgtext & Format(principal, "Currency")

End Sub

2-303

Print (statement) — Write data to a file

Print (statement) — Write data to a file

Print [# filenumber %] expressionlist ;1.1

Outputs data to the sequential file indicated by filenumber%.

Parameter Description
The file number used in a previous Open
filenumber% statement or any integer expression that

evaluates to that file number. filenumber%
is optional. If it is omitted, the Print #
statement outputs data to the screen in a
message box.

expression Contains the values that are printed.

list expressionlist can contain numeric or
string expressions. Expressions are
separated by either a semi-colon (}) or a
comma (,). A semi-colon indicates that the
next value should appear immediately
after the preceding one without an
intervening space. A comma indicates
that the next value should be positioned
at the next print zone. Print zones begin
every 14 spaces. If neither separator is
specified, a Carriage Return and Line
Feed will be generated and the next Print
statement will print on the next line, or
display in the next message box.

Comments

If expressionlist is omitted, a blank line is written to the file. At the
minimum, a comma must be included.

Note that monospaced text screen characters printed to a graphical
environment using proportionally spaced characters may lose some
degree of readability.

The Print statement supports only elementary EXTRA! Basic data types.
See the Input statement description for more information on parsing this
statement.

2-304

Print (statement) — Write data to a file

Print (statement) Example

This example uses the Print # statement to write data to a test file.

Dim FileData$, Msg$, NL$ ' Declare variables.
NL = Chr(10) ' Define newline.
Open "TESTFILE" For Output As #1 ' Open to write file.

Print #1, "This is a test of the Print # statement.”
Print #1, ' Print blank line to file.
Print #1, "Zone 1", "Zone 2" ' Print in two print zones.
Print #1, "With no space between" ; "." ' Print two strings
' together.
Close #1 ' Close file.

Open "TESTFILE" for Input As #1 ' Open to read file.
Do While Not EOF(1)

Line Input #1, FileData ' Read a line of data.
Msg = Msg + FileData + NL ' Construct message.
Loop
Close #1 ' Close file.
MsgBox Msg ' Display message.
Kill "TESTFILE" ' Remove file from disk.

2-305

Put (statement) — Write from a variable to an open file

Put (statement) — Write from a variable to an open file

Put [#] filenumber %[recordnumber &], variable

Writes a variable to a file opened in Binary or Random mode.

Parameter Description

filenumber% An integer or integer expression that
evaluates to the number of an open file.

record A Long expression containing the number

number& of the record (for Random mode) or the
offset of the byte (for Binary mode) at
which to begin writing.

variable The name of the variable from which the
corresponding Get statement copied file
data. Note that an array variable cannot
be specified; however, an element within
an array can.

Comments
For files opened in Random mode, the following rules apply:

= Data is written to the file in blocks equal to the size specified in the
Len clause of the Open statement. If the size of variable is smaller
than the record length, the record is padded to the correct record
size. If the size of variable is larger than the record length, an error
occurs.

= For variable length String variables, Put writes two bytes of data that
indicate the length of the string, then writes the string data.

= For Variant variables, Put writes two bytes of data that indicate the
type of the Variant, then it writes the body of the Variant into the
variable. Note that String Variants contain two bytes of type
information, followed by two bytes of length, followed by the body
of the string.

= User-defined types are written as if each member is written
separately, however, no padding occurs between elements.

For files opened in Binary mode, the following rules apply:

= Putwrites variables to the disk without record padding.

2-306

Put (statement) — Write from a variable to an open file

= Variable length strings that are not part of user-defined types are not
preceded by the two-byte string length.

Put (statement) Example

This example opens a file for Random access, puts the values 1-10 in it,
prints the contents, and closes the file again.

Sub main
' Put the numbers 1-10 into a file
Dim x, y
Open "CA\TEMPOO01" as #1
For x=1to 10
Put #1,x, X
Next x
msgtext="The contents of the file is:" & Chr(10)
For x=1to 10
Get #1,x, y
msgtext=msgtext & y & Chr(10)
Next x
Close #1
MsgBox msgtext
Kill "CA\TEMPOO1"
End Sub

2-307

PV (function) — Return present value

PV (function) — Return present value

2-308

rc= PV (rate , nper, pmt, fv,h due)

Returns the present value of a constant periodic stream of cash flows

(annuity).

Parameter Description

rc The return value.

rate The interest rate per period. If payments
are on a monthly schedule, rate would be
.0075 for an annual percentage rate (APR)
of 9% (0.9 /7 12 = 0.0075). rate is assumed
to be constant over the life of the annuity.

nper The total number of payment periods.
nper for a 3-year car loan, for example,
would be 36 (3 * 12 = 36).

pmt The constant periodic payment per
period.

fv The future value of the final lump sum
amount required (as in a savings plan) or
paid (0, in the case of a loan).

due 0 if payments are due at the end of each
payment period; 1 if they are due at the
beginning of the period.

Comments

rate and nper must be calculated using the same payment period unit of
measurement (e.g., months or days).

For all arguments, negative values indicate cash paid out (as in a savings
account deposit) and positive values indicate cash received (as in a
dividend check).

PV (function) — Return present value

PV (function) Example

This example finds the present value of a 10-year $25,000 annuity that
will pay $1,000 a year at 9.5%.

Sub main
Dim aprate, periods
Dim payment, annuityfv
Dim due, presentvalue
Dim msgtext
aprate=9.5
periods=120
payment=1000
annuityfv=25000
Rem Assume payments are made at end of month
due=0
presentvalue=PV(aprate/12,periods,-payment, annuityfv,due)
msgtext= "The present value for a 10-year $25,000 annuity @ 9.5%"
msgtext=msgtext & " with a periodic payment of $1,000 is: "
msgtext=msgtext & Format(presentvalue, "Currency")
MsgBox msgtext

End Sub

2-309

Randomize (statement) — Initialize the random number generator

Randomize (statement) — Inifialize the random number
generator

2-310

Randomize [numeric-expression %

Seeds the random number generator.

Parameter Description
numeric- An integer value between
expression% -32768 and 32767 and can be of any

numeric data type.

Comments

If numeric-expression% is omitted, EXTRA! Basic uses the Timer function
to initialize the random number generator.

If the Randomize statement is not used prior to the Rnd function, or if
Randomize is executed multiple times with the same numeric-
expression%, the Rnd funtion will return the same sequence of random
numbers each time the program is run. To generate different random
numbers each time you run a particular program, place a Randomize
statement at the beginning of the program and omit the numeric-
expression% parameter.

Randomize (statement) Example

Sub main

This example generates a random string of characters using the
Randomize statement and Rnd function. The second For...Next loop is
to slow down processing in the first For...Next loop so that Randomize
can be seeded with a new value each time from the Timer function.

Dim x as Integer

Dimy

Dim strl as String

Dim str2 as String

Dim letter as

String

Dim randomvalue

Dim upper, lower

Dim msgtext

Randomize (statement) — Initialize the random number generator

upper=Asc("z")
lower=Asc("a")
newline=Chr(10)
For x=1to 26
Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter
Fory =1 to 1500
Nexty
Next x
msgtext=strl
MsgBox msgtext

End Sub

2-311

Rate (function) — Return interest rate per period

Rate (function) — Return interest rate per period

2-312

rc= Rate(nper, pmt, pv, fv, due, guess)

Returns the interest rate per period for an annuity.

Parameter Description
rc The return value.
nper The total number of payment periods.

nper for a 3-year car loan, for example,
would be 36 (3 * 12 = 36).

pmt The constant periodic payment per
period.
pv The present value of the initial lump sum

amount paid (as in an annuity) or
received (as in a loan).

fv The future value of the final lump sum
amount required (as in a savings plan) or
paid (0, in the case of a loan).

due 0 if payments are due at the end of each
payment period; 1 if they are due at the
beginning of the period.

guess A ballpark estimate of the value that will
be returned by Rate. In general, between
0.1 (10%) and 0.15 (15%) is a reasonable
guess.

Comments

For all arguments, negative values indicate cash paid out (as in a savings
account deposit) and positive values indicate cash received (as in a
dividend check).

Rate is an iterative function. EXTRA! Basic cycles through a Rate
calculation until the result is accurate to within 0.00001 percent. If Rate
does not produce a result after 20 iterations, it fails.

Rate (function) — Return interest rate per period

Rate (function) Example

This example finds the interest rate on a 10-year $25,000 annuity, that

pays $100 per month.

Sub main
Dim aprate
Dim periods
Dim payment, annuitypv
Dim annuityfv, due
Dim guess
Dim msgtext as String
periods=120
payment=100
annuitypv=0
annuityfv=25000
guess=.1
Rem Assume payments are made at end of month
due=0
aprate=Rate(periods,-payment,annuitypv,annuityfv, due, guess)
aprate=(aprate*12)
msgtext= "The percentage rate for a 10-year $25,000 annuity "
msgtext=msgtext & "that pays $100/month has "
msgtext=msgtext & "a rate of: " & Format(aprate, "Percent")
MsgBox msgtext

End Sub

2-313

ReDim (statement) — Redefine the subscript range of an array

ReDim (statement) — Redefine the subscript range of an

2-314

ReDim variableName (subscriptRange ...)[As[New
type ...
Declares a dynamic-array variable at the procedure level. Also used to
size or resize a dynamic array that has already been formally declared
using a Global or Dim statement.

Parameter Description

variable The name of the variable you want to

Name declare.

subscript The dimensions of the array.

Range subscriptRange uses the following format:
[startSubscript To]
endSubscript

where startSubscript is the lower bound
and endSubscript is the upper bound of
the array variable's subscripts. If
startSubscript is not specified, it is set to
zero (0). Use the Option Base statement
to change this default.

type The data type of the variable. (type must
be one of the following reserved words:
Any, Integer, Long, Single, Double, or
String.)

Comments

Memory for the dynamic array will be reallocated to support the
specified dimensions, and the array elements will be reinitialized.
ReDim cannot be used at the module level; it must be used inside a
procedure.

A dynamic array is normally created by using Dim to declare an array
without a specified subscriptRange. The maximum number of array
dimensions you can specify with ReDim for a dynamic array created in
this fashion is eight. If you need more than eight dimensions, use the
ReDim statement to declare a local array that has not previously been
declared using Dim or Global. In this case, the maximum number of

ReDim (statement) — Redefine the subscript range of an array

dimensions is 60. (The amount of memory used by a numeric array is
calculated by multiplying the number of elements in the array by the
number of bytes required by the data type of the array.) If you specify a
subscript that is greater than the maximum or smaller than the
minimum, or if the size of the array exceeds the allowable limit, EXTRA!
generates an error message.

If the As clause is not used, the type of the variable can be specified
using a type character suffix. The two different type-specification
methods can be intermixed in a single ReDim statement (although not
for the same variable).

Note that you can use the ReDim statement repeatedly to change the
number of elements in an array. However, it cannot be used to change the
number of dimensions in an array once the array has been given
dimensions. ReDim can be used to change the upper and lower bounds
of the dimensions of the array. (Use LBound and UBound to determine
the current bounds of an array variable’s dimensions.) Similarly, you
cannot use ReDim to change an array’s data type.

Note: Try to avoid using ReDim on an array in a procedure that has
already received a reference to an element in that array; the result is
unpredictable.

ReDim (statement) Example

This example uses the ReDim statement to dynamically resize an array
while a procedure is running.

Dim TestArray() As Integer ' Declare dynamic array.

Dim Size As Integer ' Declare integer variable.

Randomize

Size = Int(100 * Rnd + 1) ' Generate random number.

ReDim TestArray(Size) ' Make array have Size% elements.

For 1% = 1 to Size " Index for number of elements.
TestArray(1%) = Rnd ' Put number in each element.

Next 1%

ReDim TestArray(Size * 10) ' Make array 10 times larger.

For 1% = 1 to Size * 10 " Index for number of elements.

2-315

ReDim (statement) — Redefine the subscript range of an array

TestArray(1%) = Rnd ' Put number in each element.
Next 1%
ReDim TestArray(Size) ' Shrink array to original size.
For 1% = 1 to Size " Index for number of elements.
TestArray(1%) = Rnd ' Put number in each element.
Next 1%

Msg$ = "This demo created a dynamic array of" + Str$(Size)

Msg$ = Msg$ + " elements and filled each with a random number. "

Msg$ = Msg$ + "It then resized the array to" + Str$(Size * 10)

Msg$ = Msg$ + " elements, again filling each with a random number. "
Msg$ = Msg$ + "Finally, it restored the array back to"

Msg$ = Msg$ + Str$(Size) + " elements."

MsgBox Msg$ ' Display message.

2-316

Rem (statement) — Add a comment

Rem (statement) — Add a comment

Rem comments

Inserts a comment in an EXTRA! Basic program.

Parameter Description

comments Any explanatory text that documents
how the code that precedes or follows the
Rem statement works. Spaces and other
punctuation are permitted

Comments
Everything from Rem to the end of the line is ignored.

If Rem does not start in column one, it must be separated from any
preceding executable statements on the same line by a colon.

An apostrophe (') can also be used to initiate a comment.
Metacommands ($CStrings, for example) must be preceded by the
apostrophe comment form. If the apostrophe form is used and the
comment is preceded by executable statements on the same line, a colon
separator is not required.

Using line numbers or line labels, you can direct program control from a
GoTo or GoSub statement to a line containing a Rem statement.
Execution will continue with the first executable statement following the
Rem statement.

Rem (statement) Example

This example illustrates the various forms of the Rem statement syntax.
RemThis is the first form of the syntax.
' This is the second form of the syntax.

Msg$ = "Hello" :Rem Comment after a statement; separated with colon.

MsgBox Msg$ ' Comment after a statement with no colon.

2-317

Reset (statement) — Close all open disk files

Reset (statement) — Close all open disk files

Reset

Closes all open disk files, and writes any data still remaining in the
operating system buffers to disk.

Reset (statement) Example

This example creates a file, puts the numbers 1-10 in it, then attempts to
Get past the end of the file. The On Error statement traps the error and
execution goes to the Debugger code which uses Reset to close the file
before exiting.

Sub main
' Put the numbers 1-10 into a file
Dim x as Integer
Dimy as Integer
On Error Goto Debugger
Open "C\TEMPOO01" as #1 Len=2
For x=1to 10
Put #1,x, X
Next x
Close #1
msgtext="The contents of the file is:" & Chr(10)
Open "CA\TEMPOO01" as #1 Len=2
For x=1to 10
Get #1,x, y
msgtext=msgtext & Chr(10) & y
Next x
MsgBox msgtext
done:
Close #1
Kill "CATEMPOO1"
Exit Sub

2-318

Reset (statement) — Close all open disk files

Debugger:
MsgBox “Error " & Err & " occurred. Closing open file."
Reset
Resume done

End Sub

2-319

Resume (statement) — Resume program execution

Resume (statement) — Resume program execution

2-320

Resume Next
-or-

Resume label
-or-

Resume[0]

Resumes program execution at the conclusion of an error-handling
routine.

Parameter Description

label A program line label. A label has the
same format as any other EXTRA! Basic
name. That is, it must begin with an
alphabetic character, end with a colon,
and be 40 characters, or fewer, in length.
label must also be unique to the current
module. Line labels are not case-sensitive.
Reserved words are not valid labels.

Comments

When the Resume Next statement is used, control is passed to the
statement immediately following the statement in which the error
occurred.

When the Resume label statement is used, control is passed to the
statement immediately following the specified label.

When the Resume [0] statement is used, control is passed to the
statement in which the error occurred.

Note that the location of the error handling routine determines where
execution will resume NOT the location of the error itself. If an error is
trapped in the same procedure as the error handler, program execution
will resume with the statement that caused the error. If an error is
located in a different procedure, program control reverts to the
statement that last called out the procedure containing the error handler.

An error will occur if you use a Resume statement outside an error-
handling routine. An error will also occur if the end of the procedure is
encountered before a Resume statement in an active error-handling
routine—the EXTRA! Basic compiler interprets this as a logical error.

Resume (statement) — Resume program execution

However, if an Exit Sub or Exit function statement is encountered while
an error handler is active, no error occurs because it is considered a

deliberate redirection of program flow.

Resume (statement) Example

This example prints an error message if an error occurs during an
attempt to open a file. The Resume statement jumps back into the
program code at the label, done. From here, the program exits.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
...etc....
Close #1

done:
Exit Sub

Debugger:

msgtext="Error number " & Err & " occurred at line: " & Erl

MsgBox msgtext
Resume done

End Sub

2-321

Right (function) — Return a substring

Right (function) — Return a substring

rc$= Right [$] (string $, length %)

Returns a string of a specified length copied from the end of a source
string. Right$ counts backwards length$ characters from the last
character in string$.

Parameter Description
rc$ The return value.
string$ The source string from which the

substring will be returned.

length% A Long integer or Long integer
expression that indicates how many
characters Right$ should return.

Comments

If the length of string$ is less than length%, Right$ returns the entire
string.

Right (function) Example

This example checks for the extension .BMP in a filename entered by a
user and activates the Paintbrush application if the file is found. Note
this uses the Option Compare statement to accept either uppercase or
lowercase letters for the filename extension.

Option Compare Text
Sub main
Dim filename as String
Dim x
filename=InputBox("Enter a .BMP file and path:)
extension=Right(filename,3)
If extension="BMP" then
x=Shell("PBRUSH.EXE",1)
Sendkeys "%FO" & filename & "{Enter}", 1

2-322

Right (function) — Return a substring

Else
MsgBox “File not found or extension not .BMP."
End If
End Sub

2-323

RmDir (statement) — Remove a directory

RmDir (statement) — Remove a directory

RmDir pathname $

Removes a directory.

Parameter Description

pathname$ A string expression identifying the
directory you want to remove. The syntax
for pathname$ is:

[drive
directory |\ directory
[\ directory... 1l

The drive argument is optional. If omitted,
RmDir searches the current drive for the
specified directory. The directory
argument is a directory name.

pathname$ must contain fewer than 128
characters.
Comments

The directory you want to remove must not contain any user-created
subdirectories or files.

RmbDir (statement) Example

The example uses the RmDir statement to remove a previously created
directory at the user's request.

On Error Resume Next ' Set up error handling.
CurDrv$ = Left$(CurDir$, 2) ' Get current drive letter.
TmpPath$ = CurDrv$ +"__G_G__" ' Make path specification.
MkDir TmpPath$ ' Make new directory.

If Err\ 75 Then ' Check if directory existed.

Msg$ = TmpPath$ + " directory already existed."

Else

2-324

RmDir (statement) — Remove a directory

Msg$ =" Do you want it removed? "
Answer% = MsgBox(Msg$, 4) ' Display message and get

If Answer$ <> 7 Then RmDir TmpPath$ ' user response.

RmDir TmpPath$

2-325

Rnd (function) — Return a random number

Rnd (function) — Return a random number

Rnd [(number!)]

Returns a single precision random number between 0 and 1.

Parameter Description

number! Any valid number or numeric expression. The
value of number! determines the Rnd return value
as follows:

If number!'s value is The return value is

less than zero (0) the same each time
the Rnd function runs
using that same
number!

greater than zero (0) the next random
number in the
sequence

equal to zero (0) the previously
generated random
number

omitted the next random
number in the
sequence. In the
Absence of a previous
random number, the
random number seed
is determined by the
Randomize statement
and/or the Timer
function.

Comments

The same sequence of random numbers is generated whenever the
program is run using the same number!, unless number! is reinitialized
using the Randomize statement.

Use the following formula to generate random numbers that fall within a
given range:

Int ((upperbound - lowerbound +1)* Rnd +
lowerbound)

2-326

Rnd (function) — Return a random number

where upperbound is the highest number in the range and lowerbound is
the lowest number in the range. The possible random numbers produced
include upperbound and lowerbound.

Rnd (function) Example

This example uses the Rnd function to simulate rolling a pair of dice by
generating random values from 1 to 6. Each time this program is run,
Randomize uses the Timer function to generate a new random-number
sequence. The timer function is automatically used with the Randomize
statement to generate a seed for the Rnd function.

Randomize ' Seed random number generator.
Dicel% = Int(6 * Rnd +1) ' Generate first die value.
Dice2% = Int(6 * Rnd + 1) ' Generate second die value.

Msg$ = "You rolled a " + LTrim$(Str$(Dice1%))

Msg$ = Msg$ + " and a " + LTrim$(Str$(Dice2%))
Msg$ = Msg$ + " for a total of "

Msg$ = Msg$ + LTrim$(Str$(Dicel% + Dice2%)) + "."

MsgBox Msg$ ' Display message.

2-327

Rset (statement) — Right-align a string expression

Rset (statement) — Right-align a string expression

Rset string $ = string-expression

Right-aligns a string expression within a string.

Parameter Description
string$ The name of a string variable.
string- The string expression within string that is
expression to be right-aligned.
Comments

If string is longer than string-expression, only the leftmost characters of
string-expression are copied and the remaining characters are truncated.

Rset cannot be used to assign a user-defined variable type to a different
user-defined variable type.

Rset (statement) Example

This example uses Rset to right-align an amount entered by the user in a
field that is 15 characters long. It then pads the extra spaces with
asterisks (*) and adds a dollar sign ($) and decimal places (if necessary).

Sub main
Dim amount as String*15
Dim x
Dim msgtext
Dim replacement
replacement="*"
amount=InputBox("Enter an amount:")
position=InStr(amount,".")
If Right(amount,3)<>".00" then

amount=Rtrim(amount) & “.00"

End If
Rset amount="$" & Rtrim(amount)
length=15-Len(Ltrim(amount))

For x=1 to length

2-328

Rset (statement) — Right-align a string expression

Mid(amount,x)=replacement
Next x
Msgbox "Formatted amount: " & amount

End Sub

2-329

RTrim (function) — Remove trailing spaces

RTrim (function) — Remove trailing spaces

rc$= RTrim[$] (string $)
Returns a copy of a source string, with all trailing space characters

removed.

Parameter Description

rcg The return value.

string$ Any string expression.
Comments

The dollar sign (3$) in the function name is optional. If specified, the
return type is String. If the dollar sign is omitted, the function will
typically return a variant of vartype 8 (String). If the value of string is
null, a variant of vartype 1 (Null) is returned.

RTrim (function) Example

This example asks for an amount and then right-aligns it in a field that is
15 characters long. It uses Rtrim to trim any trailing spaces in the
amount string, if the number entered by the user is less than 15 digits.

Sub main
Dim amount as String*15
Dim x
Dim msgtext
Dim replacement
replacement="X"
amount=InputBox("Enter an amount:")
position=InStr(amount,".")
If position=0 then

amount=Rtrim(amount) & ".00"

End If
Rset amount="$" & Rtrim(amount)

length=15-Len(Ltrim(amount))

2-330

RTrim (function) — Remove trailing spaces

For x=1 to length
Mid(amount,x)=replacement

Next x

Msgbox "Formatted amount: " & amount

End Sub

2-331

Second (function) — Return the seconds portion of a date/time value

Second (function) — Return the seconds portion of a
date/time value

rc = Second(expression)

Returns an integer (between 0 and 59, inclusive) that represents the
second component of a date-time value.

Parameter Description

rc The return value (an integer between 0
and 59, inclusive).

expression Any type of expression (numeric or
string) that represents a date-time value.
Numbers to the left of the decimal point
are interpreted as a date; numbers to the
right are interpreted as time values.

Comments

If expression is Null, Second returns a Null.

Second (function) Example

This example displays the last saved date and time for a file whose name
is entered by the user.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec

Dim msgtext as String

: msgtext="Enter a filename:"
filename=InputBox(msgtext)
If filename=""then

Exit Sub
End If
On Error Resume Next

ftime=FileDateTime(filename)

2-332

Second (function) — Return the seconds portion of a date/time value

If Err<>0 then
MsgBox “Error in file name. Try again."
Goto i
End If
hr=Hour(ftime)
min=Minute(ftime)
sec=Second(ftime)
Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

2-333

Seek (function) — Return current file position

Seek (function) — Return current file position

rc = Seek(filenumber %)

Returns the current file position for the file specified by filenumber%.

Parameter Description
rc The return value.
filenumber% The file number used in a previous Open

statement or any integer expression that
evaluates to that file number.

Comments

Seek returns a value between 1 and 2,147,483,647 inclusive that indicates
the byte at which the next operation will take place. Byte positions are
numbered sequentially beginning with the first byte in the file.

Seek (function) Example

The example uses the Seek statement to find the byte position in a
sequential file.

'$Cstrings
sub main

Const STRLEN% = 20

Dim NameField As String * STRLEN% ' Declare form variable.
Dim NameFields As String

Dim 1%, Max%, Msg$ ' Create sample data file.

Open "TSTFILE" For Output As #1
Length% = Len(NameField) ' Get user input to fill records.
For1=1To3

NameField$ = InputBox$("Enter student name: ")

Write #1, NameField ' Put record on disk.
Next |
Close #1 ' Close data file.

2-334

Seek (function) — Return current file position

Open "TSTFILE" For Input As#1 ' Open data file.

Max = LOF(1) ' Returns number of bytes in
" the file.

NumRecords% = LOF(1) / (STRLEN% + 4)

Counter% =0

For | =1 To Max Step STRLEN% + 4 ' Read file, step STRLEN + 4

" because of 2 quote marks
"and CR/LF.

Counter% = Counter% + 1

Seek 1,1+1 ' Seeks byte position for

' sequential files.

Input #1, NameFields ' Get record.

Msg = "Record #" + " " + STR$(Counter%)

Msg = Msg + " \" " + NameFields

MsgBox Msg ' Display string.
Next |
Close #1 ' Close file.

Msg = "Choose OK to remove the test file."
MsgBox Msg ' Display message.
Kill "TSTFILE" ' Remove file from disk.

2-335

Seek (statement) — Set position for file input/output

Seek (statement) — Set position for file input/output

Seek|[#] filenumber % position &

Sets the position within a file for the next read or write operation.

Parameter Description

filenumber% filenumber% is the file number used in a
previous Open statement or any integer
expression that evaluates to that file
number.

position& position& is a number or numeric
expression that evaluates to the location
at which the next read or write should
occur. The value of position& must be
between 1 and 2,147,483,647, inclusive.

Comments

If position& points past the end of the file, subsequent writes extend the
length of the file. EXTRA! Basic returns an error message if a Seek
specifies a negative or zero position&.

Seek (statement) Example

This example reads the contents of a sequential file line by line (to a
carriage return) and displays the results. The second subprogram,
CREATEFILE, creates the file “C:\TEMP001"* used by the main
subprogram.

Declare Sub createfile
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline
Call createfile
Open "C\TEMPOO1" for Input as #1
x=1

newline=Chr(10)

2-336

Seek (statement) — Set position for file input/output

msgtext= "The test scores are: " & newline
Do Until x=Lof(1)
Line Input #1, testscore
X=xX+1
y=Seek(1)
If y>Lof(1) then
x=Lof(1)
Else
Seek 1y
End If
msgtext=msgtext & newline & testscore
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMPO0O1"
End Sub

Sub createfile()
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "C\TEMPOO1" for Output as #1
For x=10 to 100 step 10
Write #1, x
Next x
Close #1
End Sub

2-337

Select Case (statement) — Execute one of several statement blocks

Select Case (statement) — Execute one of several
statement blocks

Select Case testexpression
[Case expressionlist

[statement-block 1]
[Case expressionlist

[statement-block]]

t Case Else
[statement-block 1]
End Select

Executes one of a series of statement blocks, depending on the value of
an expression.

Parameter Description

test Any numeric or string expression.
expression

expression A comma-delimited list of expressions.
list These expressions can take one of the

following forms:

expression [, expression

_Or-

expression [, expression
[,.--]] To expression |,
expression [,...]]

-Or-
Is comparison-operator
expression [, expression

L.

where comparison-operator is: <, >, =, <=,
>=, or <>,

Note that the type of each expression
must be compatible with the type of
testexpression.

2-338

Select Case (statement) — Execute one of several statement blocks

Parameter Description
statement- Any number of EXTRA! Basic statements
block on one or more lines.

Comments

If testexpression matches the expressionlist associated with a Case clause,
the statementblock following that Case clause is executed up to the next
Case clause (or End Select statement, for the final Case clause). Control
then passes to the statement following End Select. It is important to note
that if testexpression matches more than one Case clause, only the
statements following the first match are executed.

You can specify ranges and multiple expressions for character strings. In
the following example, Case matches strings that are exactly equal to the
string ““Accounts Receivable’, strings that fall between A and L in
alphabetical order, and the value of CurrentRec$:

Case "Accounts Receivable", "A" To "L", CurrentRec $

Select Case statements can also be nested. Remember to supply a
matching End Select statement for each nested Select Case.

Select Case (statement) Example

The example uses Select Case to decide what action to take based on user
input.

Msg$ = "Please enter a letter or number from 0 through 9."

Userlnput$ = InputBox$(Msg$) ' Get user input.

If Val(Userlnput$) =0 Then 'ls it letter or number?

If UserUnput$ =" Then ' Check for cancel button.

Exit Sub

End If

Select

Case Asc(Userlnput$) 'Ifit's a letter,

Case 65 To 90 ' must be uppercase.

Msg$ = "You entered the uppercase letter "

Msg$ = Msg$ + Chr$(Asc(Userinput$)) + .

Case 97 To 122 ' must be lowercase.

Msg$ = "You entered the lower-case letter ™

2-339

Select Case (statement) — Execute one of several statement blocks

Msg$ = Msg$ + Chr$(Asc(Userlinput$)) + "."
Case Else ' must be something else.
Msg$ = "You did not enter a letter or number."
End Select
Else
Select Case Val(Userlnput$) 'If it's a number,
Casel,3,5,7,9 "it's odd.
Msg$ = Userlnput$ + " is an odd number."
Case0, 2,4,6,8 "it's even.
Msg$ = Userlnput$ + " is an even number."
Case Else 'it's out of range.
Msg$ = "You entered a number outside "
Msg$ = Msg$ + "the requested range."
End Select
End If
MsgBox Msg$ ' Display message.

2-340

SendKeys (statement) — Send keystrokes to the active application

SendKeys (statement) — Send keystrokes o the active
application
SendKeys string-expression [[wait]

Sends keystrokes to the active application.

Parameter Description

string- The keystrokes to be sent. For details,
expression refer to the Comments section below.
wait If True, SendKeys does not return until

all keys are processed. If False, SendKeys
does not wait for an application to
process the keys. The default wait value is
False.

Comments

In string-expression, to specify that SHIFT, ALT, or CONTROL keys should
be pressed simultaneously with a character, use appropriate prefix from
the table below:

+ to specify SHIFT
% to specify ALT
n to specify CONTROL

Parentheses may be used to specify that SHIFT, ALT, or CONTROL key
should be pressed with a group of characters. For example, ““%(abc)’ is
equivalent to “%a%b%c’".

Since '+', '%', '™ '(and ") have special meaning to SendKeys, they must
be enclosed in braces. For example string-expression’{%}’‘ specifies a
percent character '%'.

The other characters that need to be enclosed in braces are '~' which
stands for a newline or “Enter’ if used alone, and braces themselves (use
{{} to send '{ and {}} to send '}'). Brackets '[' and ']’ do not have special
meaning in EXTRA! Basic but may have special meaning in other
applications, therefore, they need to be enclosed inside braces as well.

To specify that a key needs to be sent several times, enclose the character
in braces, followed by a space, followed by the number of times the
character is to be sent. For example, use {X 20} to send 20 characters 'X'.

2-341

SendKeys (statement) — Send keystrokes to the active application

2-342

To send a non-printable key, use a special keyword enclosed with

braces:
Key
Backspace
Break
Caps Lock
Clear
Delete
Down Arrow
End

Enter

Esc

Help
Home
Insert

Left Arrow
Num Lock
Page Down
Page Up
Right Arrow
Scroll Lock
Tab

Up Arrow

Keyword
{BACKSPACE} or {BKSP} or {BS}

{BREAK}
{CAPSLOCK}
{CLEAR}
{DELETE} or {DEL}
{DOWN}

{END}

{ENTER}
{ESCAPE} or {ESC}
{HELP}

{HOME}

{INSERT}

{LEFT}
{NUMLOCK}
{PGDN}

{PGUP}

{RIGHT}
{SCROLLLOCK}
{TAB}

{up}

To send one of function keys F1-F15, enclose the name of the key inside
braces. For example, to send F5 use {F5}.

SendKeys (statement) — Send keystrokes to the active application

Note that special keywords can be used in combination with +, %, and .
For example: %{TAB} means Alt-Tab. Also, you can send several special
keys as you would send several normal keys: {UP 25} sends 25 Up
arrows.

SendKeys can send keystrokes only to the currently active application.
Use the AppActivate statement to activate an application.

SendKeys cannot be used to send keys to an application which was not
designed to run under Windows.

SendKeys (statement) Example

This example starts the Windows Terminal application and dials a
phone number entered by the user.

Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Terminal.exe",1)
SendKeys "%PD" & phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext

End Sub

2-343

Set (statement) — Assign an object reference to a variable

Set (statement) — Assign an object reference to @

2-344

variable

Set ObjectVar ={ ObjectExp | Nothing }

Assigns an object reference to a variable. Objects provide programmatic
access to applications that support OLE Automation.

Parameter Description

ObjectVar Name of a variable to which a reference
to an object is assigned.

ObjectExp Expression consisting of the name of an
object, another declared variable of the
same object type, or a function, property,
or method that returns an object.

Nothing Reserved word that discontinues
association of ObjectVar with any specific
object. If no other variables refer to the
object, Nothing releases all the resources
associated with the object.

Comments

Before using the Set statement, you must first declare a variable as an
object with one of the following statements: Dim, Global, or Static.

The Set statement assigns an object reference to a variable, not a copy of
the object. Therefore, more than one object variable can refer to the same
object. Any change to an object affects all variables that reference that
object.

In EXTRAL! Personal Client, the Set statement is typically used to assign a
reference to an object returned by a function, method, and property, as
shown below.

Function

In this example, the GetObject function returns a Session object, and a
reference to the object is assigned to the Sesl variable.
Dim Sesl As Object

Set Sesl = GetObject("c:\program
files\e!pc\sessions\Session1.EDP")

Set (statement) — Assign an object reference to a variable

Method

In this example, the Screen object's Area method returns an Area object.
A reference to the Area object is then assigned to the City variable.

Dim City As Object

Set City = Sesl.Screen.Area(1,1,12,80)

City = "Seattle"

Property

In this example, the System object's ActiveSession property returns the
currently active Session object. A reference to the Session object is then

assigned to the Ses variable.

Dim Ses As Object
Set Ses = SystemObiject.ActiveSession

Set (statement) Example

This example returns two Session objects and uses the Set statement to
assign object references to two variables, sesl and ses2.

Sub Main()
Dim ses1 As Object, ses2 As Object

Set sesl = GetObject("c:\program _

files\e!lpc\sessions\Session1.EDP")

Set ses2 = GetObject("c:\program _

files\elpc\sessions\Session2.EDP")

End Sub

2-345

SetAttr (statement) — Set the attributes for a file

SetAtir (statement) — Set the attributes for a file

SetAttr filename $, attributes %

Sets the attributes for a file.

Parameter Description

filename$ A String expression containing the name
of the file whose attributes are to be
modified. Wildcards are not permitted.

attributes An Integer containing the new attributes
for the file:

Value Meaning

Normal file
Read-only file
Hidden file
System file
2 Archive - file has changed
since last backup

W hr~DNEFL O

Comments

Using the SetAttr statement, you can only modify the attributes of a
read-only file.

SetAttr (statement) Example

This example tests the attributes for a file and if it is hidden, changes it to
a normal (not hidden) file.

Sub main
Dim filename as String
Dim attribs, saveattribs as Integer
Dim answer as Integer
Dim archno as Integer
Dim msgtext as String
archno=32
On Error Resume Next

msgtext="Enter name of a file:"

2-346

SetAtir (statement) — Set the attributes for a file

filename=InputBox(msgtext)
attribs=GetAttr(filename)
If Err<>0 then
MsgBox "Error in filename. Re-run Program."
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"
answer=Msgbox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed.”
Case Else
MsgBox "File was not hidden."
End Select
End Sub

2-347

SetField (function) — Return a string containing a replacement substring

SeftField (function) — Return a string containing a
replacement substring

rc $ = SetField$(string $, field-number %_
field $, separator-chars $)

Returns a string created from a copy of the source string with a substring

replaced.
Parameter Description
rc$ The return value.
string$ The source string
field- The field number to be replaced
number%
field$ The string that replaces field$
separator- The character that separates the two fields
chars$
Comments

The source string is considered to be divided into fields by separator
characters. Multiple separator characters may be specified. The fields are
numbered starting with one.

If field-number is greater than the number of fields in the string, the
returned string will be extended with separator characters to produce a
string with the proper number of fields. If more than one separator
character was specified, the first one will be used as the separator
character.

It is legal for the new field value to be a different size than the old field
value.

SetField (function) Example
This example extracts the last name from a full name entered by the user.

Sub main
Dim username as String

Dim position as Integer

2-348

SetField (function) — Return a string containing a replacement substring

username=InputBox("Enter your full name:")
Do
position=InStr(username,")
If position=0 then
Exit Do
End If
username=SetField(username,1," "," ")
username=Ltrim(username)
Loop
MsgBox "Your last name is: " & username

End Sub

2-349

Sgn (function) — Return the sign of a number

Sgn (function) — Return the sign of a number

rc %= Sgn (numeric-expression)

Returns a value indicating the sign of a numeric expression.

Parameter Description
rc% The return value.
numeric- Any numeric data type.
expression

Comments

The value that the Sgn function returns depends on the sign of the
numeric expression:

Sgn(numeric-expression)
If numeric-expression is: returns;

greater than zero 1
equal to zero 0
less than 0 -1

Sgn (function) Example

This example tests the value of the variable profit and displays 0 for
profit if it is a negative number. The subroutine uses Sgn to determine
whether profit is positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

MsgBox "Yeah! We turned a profit!"

2-350

Sgn (function) — Return the sign of a number

Elself Sgn(profit)=0 then
MsgBox "Okay. We broke even."
Else
MsgBox "Uh, oh. We lost money."
End If
End Sub

2-351

Shell (function) — Run an executable program

Shell (function) — Run an executable program

rc %= Shell(commandstring $, [windowstyle %)

Runs the executable program you specify. When execution begins, Shell
returns a task ID: a unique number that identifies the running program.

Parameter Description

rc% The return value.

command The name of the program you want to
string$ execute. It can be the name of any valid

.COM, .EXE, .BAT, or .PIF file.
Arguments or command line switches can
also be included.

window The style of the window in which the
style% program is to be run. Choose from the
following:

Value Window Style

Normal window with focus
Minimized with focus
Maximized with focus

Normal window without focus
Minimized without focus

~NPkh WD

If windowstyle% is omitted, it defaults to 1.

Comments

If commandstring$ is not a valid executable file name, or if Shell cannot
start the program, an error message is generated.

Shell (function) Example

The example uses Shell to leave the current application and run the
Calculator program included with Microsoft Windows. It uses the two
Windows calls to find and minimize the Program Manager and EXTRA!
Basic. It then returns EXTRA! Basic back to normal after prompting the
user.

Declare Function ShowWindow Lib "User" (ByVal hwnd As Integer,

2-352

Shell (function) — Run an executable program

ByVal nCmdShow As Integer) As Integer
' The Declare statement above must appear on one line in your macro

source code.

Declare Function FindWindow Lib "USER.EXE" (ByVal szClass$, ByVal _

Ipsz As Long) as Integer

' The Declare statement above must appear on one line in your macro

source code.

Dim Hwnd as Integer

Sub Main

Hwnd% = FindWindow("progman",0) ' Find the Program Manager

x% = ShowWindow(Hwnd%,6) ' Minimize Program Manager

Hwnd% = FindWindow("EBFrameClass",0) ' Find EXTRA! Basic

x% = ShowWindow(Hwnd%,6) ' Minimize EXTRA! Basic

hwWndCalc% = Shell ("calc.exe”, 1) ' Shell the calculator.

Msg$ = "Close the calculator. Choose OK to return to EXTRA! Basic."
MsgBox Msg$

x% = ShowWindow(Hwnd%,1) ' Bring EXTRA! Basic back to

' normal size

End Sub

2-353

Sin (function) — Return the sine of an angle

Sin (function) — Return the sine of an angle

2-354

rc #= Sin(angle)

Function returns the sine of an angle.

Parameter Description
rc# The return value.
angle angle is specified in radians, and can be

either positive or negative.

Comments

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

The return value is between -1 and 1.

To convert radians to degrees, multiply radians by 180/Pi (or
57.2957795130824) where Pi equals 3.141593.

Sin (function) Example

The example uses Sin to calculate the sine of an angle with a user-
specified number of degrees.

Msg$ = "Enter an angle in degrees."
Pi# = 4 * Atn(1#) ' Calculate Pi.

Degreest# = Val(InputBox$(Msg$)) ' Get user input.

Radians# = Degrees# * (Pi# / 180) ' Convert to radians.

Sin (function) — Return the sine of an angle

Msg$ = "The sine of a " + Str$(Degrees#) + " degree angle is "
Msg$ = Msg$ + Str$(Sin (Radianst#)) + "."
MsgBox msg$ ' Display results.

2-355

Space (function) — Return a string containing spaces

Space (function) — Refurn a string containing spaces

rc $ = Space[$] (numeric-expression)

Returns a string containing the specified number of spaces.

Parameter Description

rc$ The return value.

numeric- The number of spaces the returned string
expression should contain. numeric-expression can

be of any numeric data type but will be
rounded to the nearest whole number
before being evaluated. numeric-expression
must be between 0 and 32,767.

Space (function) Example

The example uses Space to create a variable containing 10 spaces.

Msg$ = "Enter your first name."

Userlnput$ = InputBox$(Msg$) ' Get user input.

Pad$ = Space $(10) ' Create a 10-space pad string.
Msg$ = "Notice the 10-space pad between the first part of this "
Msg$ = Msg$ + "and your name. " + Pad$ + Userlnput$

MsgBox Msg$ ' Display message.

2-356

Spc (function) — Specify number of spaces to print (within a Print statement)

Spc (function) — Specify number of spaces to print
(within a Print statement)

rc = Spc(numeric-expression)

Specifies the number of spaces to print within a print statement.

Parameter Description
rc The return value.
numeric- Specifies the number of spaces that
expression should be output.
Comments

The Spc function uses the following rules for determining the number of
spaces to output:

If the width of the output line is not set (using the Width statement),
SPC outputs the numeric-expression spaces. Otherwise, it outputs
numeric-expression Mod width spaces, unless the difference between the
width of the line and the current print position is less than numeric-
expression Mod width. In this case, the Spc function skips to the
beginning of the next line and outputs (numeric-expression Mod width) -
(width - current-position) spaces.

Spc (function) Example

This example puts five spaces and the string “ABCD’* to a file. The five
spaces are derived by taking 15 MOD 10, or the remainder of dividing 15
by 10.
Sub main

Dim strl as String

Dim x as String*10

str1="ABCD"

Open "CA\TEMPOO01" For Output As #1

Width #1, 10

Print #1, Spc(15); strl

Close #1

Open "CA\TEMPOO01" as #1 Len=12

2-357

Spc (function) — Specify number of spaces to print (within a Print statement)

Get #1, 1,x
Msgbox "The contents of the file is: " & x
Close #1
Kill "CATEMPOO1"
End Sub

2-358

Sar (function) — Return the square root of a number

Sar (function) — Return the square root of a number

rc # = Sqr(numeric-expression)

Returns the square root of a numeric expression.

Parameter Description

rc# The return value.

numeric- Any numeric data type and must evaluate
expression to greater than 0. The result of numeric-

expression is rounded to the nearest whole
number before being evaluated.

Comments

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

Sqr (function) Example
The example uses Sqgr to calculate the square root of a user-supplied
number.

Msg$ = "Enter a non-negative number."
Number# = Val(InputBox$(Msg$)) ' Get user input.
If Number# < 0 Then

Msg$ = "Cannot determine the square root of a negative number."

2-359

Sqr (function) — Return the square root of a number

Else

Msg$ = "The square root of " + LTrim$(Str$(Number#)) + " is "

Msg$ = Msg$ + Str$(Sqr (Number#)) +"."
End If
MsgBox Msg$ ' Display results.

2-360

Static (statement) — Declare a variable's value as unchanging

Static (statement) — Declare a variable's value as
unchanging

Static variableName [As type][, variableName
[As type]] ...

Used within a procedure to declare variables and allocate storage space.

Parameter Description

variable Indicates the name of the variable you
Name want to declare.

type The available data types are: number,

string, and record.

Comments

Variables declared with the Static statement retain their value as long as
the program is running. The syntax of Static is exactly the same as the
syntax of the Dim statement.

All variables of a procedure can be made static by using the Static
keyword in the procedure definition.

Static (statement) ExampleThis example puts account numbers to a file
using the record variable GRECORD and then prints them again.

Type acctrecord
acctno as Integer

End Type

Sub main
Static grecord as acctrecord
Dim x
Dim total
x=1
grecord.acctno=1
On Error Resume Next
Open "C\TEMPOO01" For Output as #1
Do While grecord.acctno<>0i:

grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")

2-361

Static (statement) — Declare a variable's value as unchanging

If Err<>0 then
MsgBox “Error occurred. Try again.”
Err=0
Goto i
End If
If grecord.acctno<>0 then
Print #1, grecord.acctno
X=x+1
End If
Loop
Close #1
total=x-1
msgtext="The account numbers are: " & Chr(10)
Open "CA\TEMPOO01" For Input as #1
For x=1 to total
Input #1, grecord.acctno
msgtext=msgtext & Chr(10) & grecord.acctno
Next x
MsgBox msgtext
Close #1
Kill "CATEMPOO1"
End Sub

2-362

StaticComboBox (statement) — Create combo box in which listbox is always visible

StaticComboBox (statement) — Create combo box in
which listbox is always visible

StaticComboBox x, y, dx, dy, text $,. field

StaticComboBox x, y, dx, dy, stringarray $(), .

field

Creates a combination of a list of choices and a textbox. The listbox

remains visible.

Parameter

X,y

dx, dy

Description

Specifies the position of the combination
box relative to the upper left corner of the
client area.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the combination box is
centered horizontally within the client
area. If y is omitted, the box is centered
vertically within the client area.

The sum of the width of the combination
box and the text$ parameter. Because
proportional spacing is used, the width
will vary with the characters used. To
approximate the width, multiply the
number of characters in the text$
parameter (including blanks and
punctuation) by 4 and add 12.

dy is the height of the text$ parameter. A
dy value of 12 is standard, and should
cover typical default fonts. If larger fonts
are used, the value should be increased.
As the dy number grows, the combination
box and the accompanying text will move
downward within the dialog box.

2-363

StaticComboBox (statement) — Create combo box in which listbox is always visible

Parameter Description

text$ A string containing the selections for the
combobox. This string must be defined,
using a Dim statement, before the Begin
Dialog statement is executed. The
arguments in the text$ string are entered
as follows:

dimname = ““listchoice™ + Chr$(9) =
“listchoice™ + Chr$(9) + “‘listchoice’™ +

Chr$(9)...
stringarray An array of dynamic strings.
field The name of the dialog-record field that

will hold the text string entered in the text
box or chosen from the list box. The user's
selection is recorded in the field
designated by the .field argument when
the OK button (or any button other than
CANCEL) is selected. The .field argument is
also used by the dialog statements that act
on this control.

Comments

The StaticComboBox statement is equivalent to the ComboBox or
DropComboBox statements, but the listbox of StaticComboBox always
stays visible. All dialog functions and statements that apply to the
ComboBox apply to the StaticComboBox as well.

StaticComboBox (statement) Example

This example defines a dialog box with a static combo box labeled
“Installed Drivers’ and the OK and Cancel buttons.

Sub main
Dim cchoices as String
cchoices="MIDI Mapper"+Chr$(9)+"Timer"
Begin Dialog UserDialog 182, 116, "E! Basic Dialog Box"
StaticComboBox 7, 20, 87, 49, cchoices, .StaticComboBox1
Text 6, 3, 83, 10, "Installed Drivers", .Textl

2-364

StaticComboBox (statement) — Create combo box in which listbox is always visible

OKButton 118, 12, 54, 14
CancelButton 118, 34, 54, 14
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then

MsgBox "You pressed Cancel."

Else
MsgBox "You pressed OK."
End If
End Sub

2-365

Stop (statement) — Halt program execution

Stop (statement) — Halt program execution

2-366

Stop
Halts program execution.

Comments

Stop statements can be placed anywhere in a program to suspend its
execution. While the Stop statement halts program execution, it does not
close files or clear variables.

Stop (statement) Example

For each step through this For...Next loop, Stop suspends execution. To
resume program execution after Stop, choose Continue from the Run
menu.

On Error GoTo ErrorHandler ' Set up error handler.
Restart:

Msg$ = "Enter a number."
Userlnput$ = InputBox$(Msg$) ' Get user input.
TestNum# = Val(Userlnput$) ' Convert to number.
If TestNum# = 0 Then

Goto ErrorHandler

End If

BadInput:

SquareRoot# = Sqr(TestNum#) ' Calculate square root.
Msg$ = "The square root of " + Userlnput$ + " is: "

Msg$ = Msg$ + LTrim$(Str$(SquareRoot#))

MsgBox Msg$ ' Display message.

Exit Sub

Stop (statement) — Halt program execution

ErrorHandler:
Msg$ = "The number you entered was not zero or a "

Msg$ = Msg$ + "positive number."

MsgBox Msg$ ' Display error message.

Print "User entered: " + Userlnput$ + "."

Stop ' Suspend program.

Resume Restart ' Try it again.

2-367

Str (function) — Return the string representation of a number

Str (function) — Return the string representation of a
number

rc $= Str [$] (numeric-expression)

Returns a string representation of the value of a numeric expression.

Parameter Description
rc$ The return value.
numeric- Any numeric data type.
expression

Comments

A leading space indicating the sign of the number is reserved in the
returned value.

Refer to the following table to determine how the numeric-expression
will be evaluated before being cast to a string.

Sign Parameter Type Evaluates To

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

Str (function) Example

The example uses Str to return a string representation of the values
contained in two variables. Note that because the numbers are positive, a
space for the implied plus sign precedes the first string character.

Randomize ' Seed random number generator.
Dicel% = Int(6 * Rnd + 1) ' Generate first die value.
Dice2% = Int(6 * Rnd + 1) ' Generate second die value.

Msg$ = "You rolled a " + LTrim$(Str $(Dicel%))

2-368

Str (function) — Return the string representation of a number

Msg$ = Msg$ + " and a " + LTrim$(Str $(Dice2%))
Msg$ = Msg$ + " for a total of "

Msg$ = Msg$ + LTrim$(Str $(Dicel% + Dice2%)) + "."
MsgBox Msg$ ' Display message.

2-369

StrComp (function) — Compare two strings

StrComp (function) — Compare two strings

rc= StrComp(stringl $, string2 $[, comparetype %)
Compares two strings.

Parameter Description

rc The return value. -1 if the stringl is less
than string2, 0 if the two strings are
identical, 1 if stringl is greater than
string2, and null if either string is Null.

stringl1$, The strings to compare.

string2$

compare Determines method of comparison. If 0, a
type% case sensitive comparison based on the

ANSI character set sequence is
performed. If 1, a case insensitive
comparison is done based upon the
relative order of characters as determined
by the country code setting for your
system. If omitted, the module level
default, as specified with Option
Compare will be used.

Comments

The stringl and string2 arguments are both passed as variants. Therefore,
any type of expression is supported. Numbers will be automatically
converted to strings.

StrComp (function) Example

This example compares a user-entered string to the string “Smith™.

Option Compare Text
Sub main
Dim lastname as String
Dim smith as String
Dim x as Integer

smith="Smith"

2-370

StrComp (function) — Compare two strings

lastname=InputBox("Type your last name")
x=StrComp(lasthame,smith,1)
If x=0 then
MsgBox "You typed 'Smith’ or 'smith"."
Else
MsgBox "You typed: " & lastname & " not 'Smith"."
End If
End Sub

2-371

String (function) — Return a string of repeated characters

String (function) — Retfurn a string of repeated

2-372

characters

rc $= String [$] (numeric-expression, charcode %)

rc $= String [$] (numeric-expression, _
string-expression $)

Returns a string consisting of a repeated character.

Parameter Description

rc$ The return value.

numeric- Any numeric data type and indicates the
expression length of the string. The result of

numeric-expression is rounded to the
nearest whole number before being
evaluated. numeric-expression must be
between 0 and 32,767.

charcode% Any decimal ANSI code. This becomes
the repeated character. charcode% must be
a numeric expression that evaluates to an
integer between 0 and 255, inclusive.

string- A string, the first character of which
expression$ becomes the repeated character.

String (function) Example

The example uses the String function to return a Variant consisting of 10
asterisks. The ANSI code of the asterisk character is 42.

NL$ = Chr$(13) + Chr$(10) ' Define newline.
Msg$ = "This demo generates two strings of 10 asterisks. Both "

Msg$ = Msg$ + "forms of String$ syntax are illustrated. " + NL$

Msg$ = Msg$ + NL$ + "Here is the 1st: " + String $(10, "*") + NL$
Msg$ = Msg$ + "Here is the 2nd: " + String $(10, 42)
MsgBox Msg$ ' Display message.

Sub...End Sub (statement) — Define a subprogram procedure

Sub...End Sub (statement) — Define a subprogram

procedure

[Static][Private] Sub nam¢g (parameter

[As type] ..
[statementblock]

[Exit Sub

)]

ye

]

[statementblock]

End Sub

Defines the name, parameters, and code that form the body of a
subprogram procedure. A call to a subprogram stands alone as a
separate statement. (Refer to the description of the Call statement).

Recursion is supp

Parameter

name

parameter

type

orted.

Description

The name of the subprogram procedure.
Subprogram names follow the same
naming rules and conventions as other
variables but cannot include a type
declaration character. In addition, name
cannot be the same as any other globally
recognized procedure, global variable, or
global constant name in the program
scope.

A comma-separated list of parameter
names. Specify the data type of a
parameter with a type character or by
using the As clause. Record parameters
are declared using an As clause and a type
that has previously been defined using
the Type statement. Array parameters are
indicated by using empty parentheses
after the parameter. The array's
dimensions are not specified in the Sub
statement. All references to an array
parameter within the body of the
subprogram must have a consistent
number of dimensions.

The data type of the corresponding
parameter. type is not necessary if a data
type character is supplied with parameter.

2-373

Sub...End Sub (statement) — Define a subprogram procedure

Parameter Description
statement Any group of EXTRA! Basic statements
block that will be executed when control is

passed to the subprogram.

Comments

Executable code must be contained in either a Sub or Function
procedure. Like a function, a subprogram can accept parameters, execute
a series of statements, and alter the value of its parameters. Sub
procedures cannot be nested within other Sub or Function procedures.

The function returns to the caller when the End Sub statement is reached
or when an Exit Sub statement is executed.

Notes: While subprograms can be recursive, recursion can lead to stack
overflow. Use caution when programming in this manner.

You cannot use GoTo to enter or exit from a Sub procedure.

The MAIN subprogram is unique. In many implementations of Basic,
MAIN will be the first procedure called when the module is executed.
The MAIN subprogram does not take parameters.

Use the Function statement to define a procedure that returns a value.
Sub...End Sub (statement) Example
This example is a subroutine that uses the Sub...End Sub function.

Sub main
MsgBox "Hello, World."
End Sub

2-374

Tab (function) — Simulate pressing the Tab key (within a Print statement)

Tab (function) — Simulate pressing the Tab key (within a
Print statement)

rc = Tab(numeric-expression)

Moves the current print position to the column specified by numeric-
expression. The leftmost print position is position number 1.

Parameter Description
rc The return value.
numeric- Specifies the new print position.
expression
Comments

The Tab function can be used only within a Print statement.

If the width of the output line is not set (using the Width statement), the
new print position is equal to numeric-expression. Otherwise, the new
print position is equal to numeric-expression Mod width, unless the
current print position is greater than numeric-expression Mod width. In
this case, Tab skips to the next line and sets print position to numeric-
expression Mod width.

Tab (function) Example

This example prints the octal values for the numbers from 1 to 25. It uses
Tab to put five character spaces between the values.

Sub main
Dim x as Integer
Dimy
For x=1to 25
y=0Oct$(x)
Print x Tab(10) y
Next x

End Sub

2-375

Tan (function) — Return the tangent of an angle

Tan (function) — Return the tfangent of an angle

rc #= Tan (angle)

Takes an angle as input and returns the ratio of two sides of a right
triangle. The ratio is the length of the side opposite the angle divided by
the length of the side adjacent to the angle.

Parameter Description
rc# The return value.
angle Any valid numeric expression measured
in radians. angle can be positive or
negative.
Comments

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

To convert radians to degrees, multiply radians by 180/Pi (or
57.2957795130824) where Pi equals 3.141593.

To convert degrees to radians, multiply degrees by Pi/180 (or
.0174532925199433) where Pi equals 3.141593.

Tan (function) Example

The example uses Tan to calculate the tangent of an angle with a user-
specified number of degrees.

Pi# = 4 * Atn(1#) ' Calculate Pi.

Msg$ = "Enter an angle in degrees."

2-376

Tan (function) — Return the tangent of an angle

Degreest# = Val(InputBox$(Msg$)) ' Get user input.

Radians# = Degrees# * (Pi# / 180) ' Convert to radians.

Msg$ = "The tangent of a " + LTrim$(Str$(Degrees#)) + " degree"

Msg$ = Msg$ + " angle is " + LTrim$(Str$(Tan(Radians#))) +"."

MsgBox Msg$ ' Display results.

2-377

Text (statement) — Display text in a dialog box

Text (statement) — Display text in a dialog box

2-378

Text

X, y, dx, dy, text $,. id]

Sets up line(s) of text in a dialog box.

Parameter

X,y

dx, dy

text$

Description

x and y specify the position of the text
relative to the upper left corner of the
dialog box.

The x argument is measured in units one-
guarter the average width of the system
font. The y argument is measured in units
one-eighth the height of the system font.

If x is omitted, the text is centered
horizontally within the client area. If y is
omitted, the text is centered vertically
within the client area.

dx and dy specify the width and height of
the text.

The dx argument is measured in one-
guarter system-font character-width
units. The dy argument is measured in
one-eighth system-font character-width
units.

A dy value of 14 typically accommodates
system font text.

text$ supplies the text that will appear to
the right of the position designated by the
x and y coordinates. If the width of this
string is greater than dx, trailing
characters are wrapped to the next line
until the height of dx and dy is exceeded
(at which point extra characters are
truncated). To indicate an accelerator key
in text$, precede the accelerator key
character with an ampersand (&).

Text (statement) — Display text in a dialog box

Comments

The Text statement can only be used between a Begin Dialog and an
End Dialog statement.

Text (statement) Example

This example defines a dialog box with a combination list and text box
and three buttons.

Sub main
Dim ComboBox1() as String
ReDim ComboBox1(0)
ComboBox1(0)=Dir("C:*.*")
Begin Dialog UserDialog 166, 142, "E! Basic Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
OKButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-379

TexiBox (statement) — Create an editable text box within a dialog box

TextBox (statement) — Create an editable text box
within a dialog box

2-380

TextBox

[NoEcho] x, y, dx, dy, .field

Creates a box, used within a dialog box, in which the user can enter and

edit text.

Parameter

X,y

dx, dy

field

Description

x and y specify the position of the text box
relative to the upper left corner of the
dialog box.

X is measured in units one-quarter the
average width of the system font.

y is measured in units one-eighth the
height of the system font.

If x is omitted, the text box is centered
horizontally within the client area. If y is
omitted, the text box is centered vertically
within the client area.

dx and dy specify the width and height of
the text box.

dx is measured in one-quarter system-
font character-width units.

dy is measured in one-eighth system-font
character-width units.

A dy value of 14 typically accommodates
system font text.

The name of the dialog-record field that
will hold any text entered in the text box.
When the user chooses the dialog box’s
OK button (or any button other than
CANCEL), the text string entered in the
text box is assigned to the record field.

TexiBox (statement) — Create an editable text box within a dialog box

Comments

The TextBox statement can only be used between a Begin Dialog and an
End Dialog statement.

TextBox (statement) Example

This example creates a dialog box with a group box, and two buttons.

Sub main
Begin Dialog UserDialog 194, 76, "E! Basic Dialog Box"
GroupBox 9, 8, 97, 57, "File Range"
OptionGroup .OptionGroup2
OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
OptionButton 19, 32, 67, 8, "Range of pages", _
.OptionButton4
Text 25, 43, 20, 10, "From:", .Text6
Text 63, 43, 14, 9, "To:", .Text7
TextBox 79, 43, 13, 12, .TextBox4
TextBox 47, 43, 12, 11, .TextBox5
OKButton 135, 6, 54, 14
CancelButton 135, 26, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

2-381

Time (function) — Return current time

Time (function) — Return current time

rc$= Time$

Returns a string containing the current system time.

Parameter Description
rc$ The return value.
Comments

The Time$ function returns an eight-character string. The form of the
string is hh:mm:ss, where hh is the number of hours past midnight, mm is
the number of minutes, and ss is the number of seconds. The hour is
specified using a 24-hour clock, and ranges from 0 to 23.

2-382

Time (statement) — Set the current system time

Time (statement) — Set the current system time

Time[$] = expression

Sets the current system time.

Parameter Description

expression A string of one of the forms listed below,
a valid date string, a Date variant, or a
String variant.

Comments

If the Time$ form is used, expression must evaluate to a string of one of
the following forms:

hh Set the time to hh hours 0 minutes and 0 seconds.
hh:mm Set the time to hh hours mm minutes and 0 seconds.
hh:mm:ss Set the time to hh hours mm minutes and ss seconds.
Time uses a 24-hour clock (e.g., 6:00 pm is 18:00:00).

If the dollar sign ($) is omitted, expression can be a string containing a
valid date, a variant of vartype 7 (Date), or a variant of vartype 8
(String).

If expression is not already a variant of vartype 7 (date), Time attempts to
convert it to a valid time. It recognizes the time separator defined in the
Windows Control Panel. Both 12- and 24-hour clocks are accepted.

Time (statement) Example

This example writes data to a file if it hasn’t been saved within the last 2
minutes.

Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, |
tempfile="C:\TEMP001"
Open tempfile For Output As #1

2-383

Time (statement) — Set the current system time

filetime=FileDateTime(tempfile)
x=1
=1
acctno(x)=0
Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
For I=1to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I=1 to x
Write #1, acctno(l)
Next |
End If
X=x+1
Loop
Close #1
x=1
msgtext="Contents of CATEMPO0O01 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"
End Sub

2-384

Timer (function) — Return seconds since midnight

Timer (function) — Refurn seconds since midnight

rc'= Timer

Returns the number of seconds that have elapsed since midnight.

Parameter Description
rc! The return value.
Comments

The Timer function can be used in conjunction with the Randomize
statement to seed the random number generator (Rnd).

Timer (function) Example

This example uses Timer Function to find a lottery number.

Sub main
Dim msgtext
Dim value(9)
Dim nextvalue
Dim x
Dimy
msgtext="Your Lottery numbers are: "
Forx=1to 8
Do
value(x)=Timer
value(x)=value(x)*100
value(x)=Str(value(x))
value(x)=Val(Right(value(x),2))
Loop Until value(x)>1 and value(x)<36
For y=1 to 1500
Nexty
Next x
Fory=1to 8
Forx=1to 8

If y<>x then

2-385

Timer (function) — Return seconds since midnight

If value(y)=value(x) then
value(x)=value(x)+1
End If
End If
Next x
Nexty
Forx=1to 8
msgtext=msgtext & value(x) & " "
Next x
MsgBox msgtext

End Sub

2-386

TimeSerial (function) — Return a serial time value

TimeSerial (function) — Return a serial time value

rc=

TimeSerial(hour % minute % second %)

Returns the serial time equivalent to the specified date/time value.

Parameter

rc

hour%

minute%

second%

Comments

Description

The return value, a variant of vartype 7
(Date).

An integer or integer expression
indicating the number of hours (0
through 23, inclusive).

An integer or integer expression
indicating the number of minutes (0
through 59, inclusive).

An integer or integer expression
indicating the number of seconds (0
through 50, inlcusive).

The range of numbers for each TimeSerial argument should conform to
the accepted range of values for that unit. You can also specify relative
times for each argument by using a numeric expression representing the
number of hours, minutes, or seconds before or after a certain time.

TimeSerial (function) Example

This example displays the current time using TimeSerial.

Sub main
Dimy
Dim msgtext
Dim nowhr
Dim nowmin
Dim nowsec
nowhr=Hour(Now)
nowmin=Minute(Now)

nowsec=Second(Now)

2-387

TimeSerial (function) — Return a serial time value

y=TimeSerial(nowhr,nowmin,nowsec)
msgtext="The time is: " & y
MsgBox msgtext

End Sub

2-388

TimeValue (function) — Return the time value equivalent to the supplied string

TimeValue (function) — Return the time value equivalent
fo the supplied string

rc = TimeValue(string-expression $)

Returns a time value for the string specified.

Parameter Description

rc The return value.

string- A String representing a time from 0:00:00
expression$ through 23:59:59 (12:00:00 am through

11:59:59 pm). Both 12- and 24-hour clock
times are valid.

TimeValue (function) Example

This example writes a variable to a disk file based on a comparison of its
last saved time and the current time. Note that all the variables used for
the TimeValue function are dimensioned as Double so that calculations
based on their values will work properly.

Sub main
Dim tempfile
Dim ftime
Dim filetime as Double
Dim curtime as Double
Dim minutes as Double
Dim acctno(100) as Integer
Dim x, |
tempfile="C\TEMPO01"
Open tempfile For Output As 1
ftime=FileDateTime(tempfile)
filetime=TimeValue(ftime)
minutes= TimeValue("00:02:00")
x=1

=1

2-389

TimeValue (function) — Return the time value equivalent to the supplied string

acctno(x)=0
Do
curtime= TimeValue(Time)
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
For I=1 to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself filetime+minutes<=curtime then
For I=1 to x
Write #1, acctno(l)
Next |
End If
X=x+1
Loop
Close #1
x=1
msgtext="You entered:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMPO0O1"
End Sub

2-390

Trim (function) — Remove leading and trailing spaces

Trim (function) — Remove leading and trailing spaces

rc=Trim [$] (string)

Returns a copy of a source string, with all leading and trailing space
characters removed.

Parameter Description

rc The return string.

string$ Any string expression.
Comments

The dollar sign (3$) in the function name is optional. If specified, the
return type is String. If the dollar sign is omitted, the function will
typically return a variant of vartype 8 (String). If the value of string is
null, a variant of vartype 1 (Null) is returned.

Trim (function) Example

This example removes leading and trailing spaces from a string entered
by the user.

Sub main
Dim userstr as String
userstr=InputBox("Enter a string with leading/trailing spaces")
MsgBox "The string is: " & Trim(userstr) & " with nothing after."
End Sub

2-391

Type...End Type (statement) — Declare a user-defined type

Type...End Type (statement) — Declare a user-defined

2-392

Type userType
fieldl As typel
field2 As type2

End“'.l'ype
Declares a user-defined type that can then be used in the Dim statement

to declare a record variable. User-defined types are also sometimes
referred to as record types or structure types.

Parameter Description

userType The name of a user-defined data type.
Follow standard variable naming
conventions.

fieldx Name of the field.

typex The data type of fieldx. typex must be one
of the following: String (either dynamic or
fixed), number (Integer, Long, Single, or
Double), or a previously-defined record
type. A field cannot be defined as an
array. However, arrays of records are
permitted.

Comments

The Type statement is not valid within a procedure definition; it can be
used only in the Declarations section of a module. After you have
declared a user-defined type with the Type statement, you can declare a
variable of that type anywhere in your application. Refer to the Dim,
Global, ReDim, or Static descriptions for more information about
declaring a variable of a user-defined type.

To access the fields of a record, use notation of the form:
recordName .fieldName.

To access the fields of an array of records, use notation of the form:
arrayName(index) .fieldName

Line number and line label references are not permitted within a Type
statement.

Type...End Type (statement) — Declare a user-defined type

Type...End Type (statement) Example

This example shows a Type and Dim statement for a record. You must
define a record type before you can declare a record variable. The
subroutine then references a field within the record.

Type Testrecord
Custno As Integer
Custname As String

End Type

Sub main

Dim myrecord As Testrecord

: myrecord.custname=InputBox("Enter a customer name:")
If myrecord.custname=""then
Exit Sub
End If
answer=InputBox("ls the name: " & myrecord.custname &" OK? (Y/N)")
If answer="Y" or answer="y" then
MsgBox "Thank you."
Else
MsgBox “Try again."
Goto i
End If
End Sub

2-393

Typeof (statement) — Perform statements if an object is of a given class

Typeof (statement) — Perform statements if an object is
of a given class

If Typeof objectVariable Is className Then
thenStatement

Returns a value indicating whether an object is of a given class (-1=True,

O=False).

Parameter Description

object The object to test.

Variable

className The class to compare the object to.

then The statement that is executed when

statement objectVariable is of type className.
thenStatement can be one or more
EXTRA! Basic statements or a GoTo
statement pointing to a valid program
label.

Comments

Typeof can only be used in an If statement and cannot be combined with
other Boolean operators. Typeof can only be used exactly as shown in
the syntax above.

To test whether an object belongs to a class, use the following code

structure:
If Typeof objectVariable Is className Then ...
Else
" Rem Perform some action.
End If

2-394

UBound (function) — Return highest subscript of a dimensioned array

UBound (function) — Return highest subscript of a
dimensioned array

rc %= UBound(arrayVariable [,dimension 1)

Returns the largest available subscript for the specified dimension of the
specified array.

Parameter Description

rc% The return value.

arrayVariable arrayVariable is the name of an array.
dimension An integer indicating which dimension’s

upper bound is returned. 1 equals the
first dimension, 2 equals the second, and
so forth. If dimension is not supplied, it is
assumed to be 1.

Comments

The statement:
Dim Sales (1to 3, 4 to 6)
declares a 2 dimensional array.

For the array shown above, UBound returns the following:

Statement Return Value
UBound(sales, 1) 3

UBound(sales, 2) 6

Use UBound in conjunction with LBound to determine the length of an
array.

UBound (function) Example

The example uses the UBound function to determine the upper bounds
for a three-dimensional array.

NL$ = Chr$(13) + Chr$(10): TB$ = Chr$(9) ' Define newline, tab.

'‘Generate some random dimensions between 2 and 10 for array size.

2-395

UBound (function) — Return highest subscript of a dimensioned array

Randomize

A% = Int(9 * Rnd + 2) ' First dimension.

B% = Int(9 * Rnd + 2) ' Second dimension.
C% = Int(9 * Rnd + 2) ' Third dimension.
ReDim Array%(A%, B%, C%) ' Set dimensions.

Msg$ = "The test array has these upper bounds: " + NL$

Msg$ = Msg$ + TB$ + "Dimension 1 =" + Str$(UBound(Array%, 1)) + NL$
Msg$ = Msg$ + TB$ + "Dimension 2 =" + Str$(UBound(Array%, 2)) + NL$
Msg$ = Msg$ + TB$ + "Dimension 3 =" + Str$(UBound(Array%, 3))
MsgBox Msg$ ' Display message.

2-396

UCase (function) — Return a string in uppercase

UCase (function) — Refurn a string in uppercase

rc $ = UCase$(string $)
Returns a copy of a source string, with all lowercase letters converted to

uppercase.
Parameter Description
rcg The return value.
string$ Any string expression.
Comments

Conversion is based on the country specified in the Windows Control
Panel.

UCase (function) Example

The example uses UCase to return an all-uppercase version of the
argument string.

Lowercase$ = "once upon a time" ' String to convert.
Uppercase$ = UCase$(Lowercase$) ' Convert to uppercase.
Msg$ = "UCase$ converts """ + Lowercase$ + """ to "

Msg$ = Msg$ + Uppercase$ +".
MsgBox Msg$ ' Display message.

2-397

Unlock, Lock (statements) — Controls access to some or all of an open file

Unlock, Lock (statements) — Controls access o some or
all of an open file

Lock [#] filenumber %,{ record |[start & _
[To end&]}]

Unlock [#] filenumber 9%,{ record |[start & _

[To end&]}]
In a networked environment, controls access by other processes to some
or all of the records or bytes in an open file.

Parameter Description

filenumber An integer or integer expression
identifying the open file. This argument
should reference the same parameter
specified in the Open statement.

record The number of the block or record you
want to lock or unlock (1 to 2,147,483,647,
inclusive).

start A Long integer indicating the first byte or

record you want to lock or unlock.

end A Long integer indicating the last byte or
record you want to lock or unlock.

Comments

Important: The arguments passed to Lock and Unlock must match
exactly. Also, locked open files must be unlocked before closing or
unpredictable results may occur.

For files opened in Random mode, start and end are record numbers. For
files opened in Binary mode, start and end are byte offsets. For Input,
Output, and Append modes, start and end are ignored and the whole file
is locked or unlocked.

If an end argument is supplied without a start argument, all records or
bytes from record or offset 1 to end are locked or unlocked. If a start
argument is supplied without an end argument, only the record or byte
at the location indicated by start is locked or unlocked.

2-398

Val (function) — Return the numeric value of a string of characters

Val (function) — Return the numeric value of a string of
characters

rc! = Val(string $)

Returns a numeric value corresponding to the first series of numbers
found in the specified string.

Parameter Description
rc! The return value.
string$ The string in which you want to search

for numbers. string$ can be a string
variable, string expression, or string
literal.

Refer to the following table to determine how a returned parameter will
be converted.

Sign Parameter Type Return Type

% Integer Single-precision integer

! Single Single-precision floating
point

& Long Double-precision integer

Double Double-precision floating
point

Comments

The Val function stops processing the string expression when it
encounters the first non-numeric character. The Val function processes
the radix prefixes &O (octal) and &H (hexadecimal). Refer to the
following examples:

String Expression Passed to Val ~ Value Returned

“SS#344-65-9361" 0
“458266-Med. " 458266
“&HFFFB’* 5

2-399

Val (function) — Return the numeric value of a string of characters

If no number is found, Val returns zero (0).

Val (function) Example

The example uses the Val function to determine if the first characters in a
string are a number.

Dim Msg$ ' Declare variables.
Dim Number As Double
Number = Val (InputBox$("Enter a number")) ' Get user input.

Msg$ = "The number you entered is:" + STR$(Number) ' Display number.
MsgBox Msg$ ' Display message.

2-400

VarType (function) — Indicate the type of data stored in a variant

VarType (function) — Indicate the type of data stored in
a variant

rc = VarType(variant)

Returns an ordinal number indicating the type of data that is currently
stored in the specified variant variable.

Parameter Description
rc The return value.
Ordinal Representation
0 (Empty)
1 Null
2 Integer
3 Long
4 Single
5 Double
6 Currency
7 Date
8 String
9 Object
variant The name of the variant variable to check.

VarType (function) Example

This example returns the type of a variant.

Sub main
Dim x
Dim myarray(8)
Dim retval
Dim retstr
myarray(1)=Null
myarray(2)=0
myarray(3)=39000
myarray(4)=CSng(10"20)
myarray(5)=10"300

2-401

VarType (function) — Indicate the type of data stored in a variant

myarray(6)=CCur(10.25)

myarray(7)=Now

myarray(8)="Five"

For x=0to 8
retval=Vartype(myarray(x))
Select Case retval

Case 0
retstr=" (Empty)"
Case 1
retstr=""(Null)"
Case 2
retstr=" (Integer)"
Case 3
retstr=" (Long)"
Case 4
retstr=" (Single)"
Case 5
retstr=" (Double)"
Case 6
retstr=" (Currency)"
Case 7
retstr=" (Date)"
Case 8
retstr=" (String)"
End Select
If retval=1 then
myarray(x)="[null]"
Elself retval=0 then
myarray(x)="[empty]"
End If

2-402

VarType (function) — Indicate the type of data stored in a variant

MsgBox "The variant type for " &myarray(x) & " is: _
" &retval &retstr
Next x

End Sub

2-403

Weekday (function) — Return the day of the week portion of a date/time value

Weekday (function) — Return the day of the week

2-404

portion of a date/time value

rc = Weekday(expression)

Returns the day of the week derived from a supplied date/time value.

Parameter Description

rc The return value (an integer between 1
and 7, inclusive).

expression Any type of expression (numeric or
string) that represents a date from
January 1, 100 (-657434) through
December 31, 9999 (2958465). A value of
2, for example, represents January 1, 1900.
Numbers to the left of the decimal point
are interpreted as a date; numbers to the
right are interpreted as time values.
Negative numbers are interpreted as
dates prior to December 30, 1899.

Comments
The return value is a variant of vartype 2 (Integer).

If expression is Null, Weekday returns a Null.

Weekday (function) Example

This example finds the day of the week on which New Year’s Day will
fall in the year 2000.

Sub main
Dim newyearsday
Dim daynumber
Dim msgtext
Dim newday as Variant
Const newyear=2000
Const newmonth=1
Let newday=1

newyearsday=DateSerial(newyear,newmonth,newday)

Weekday (function) — Return the day of the week portion of a date/time value

daynumber=Weekday(newyearsday)

msgtext="New Year's day 2000 fallsona" & _
Format(daynumber, "dddd")

MsgBox msgtext

End Sub

2-405

While ... Wend (statement) — Execute a series of statements while a condition is true

While ... Wend (statement) — Execute a series of
statements while a condition is frue

While condition
statementblock
Wend
Controls a repetitive action. The condition is tested, and if true, the
statementblock is executed. This process is repeated until condition
becomes false.

Parameter Description

condition Any Boolean expression that EXTRA!
Basic can determine to be true (nonzero)
or false (zero).

statement EXTRA! will repeat the program lines
block contained in the statementblock(s) as long
as condition is true.

Comments

The While statement is included in EXTRA! Basic for compatibility with
older versions of EXTRA! Basic. The Do...Loop statement is a more
general and powerful flow control statement.

Caution: Do not branch into the body of a While...Wend loop. Failing to
execute the While statement may cause run-time errors or transient
program bugs.

While ... Wend (statement) Example

The example uses While...Wend in a sorting routine.

Const FALSE =0, TRUE =-1, MAX =5

NL$ = Chr$(13) + Chr$(10) ' Define newline.
Dim A$(MAX) ' Create an array.

A$(1) = "New York" ' Put data in array in no
A3$(2) = "Paris" ' particular order so it
A$(3) = "Chicago" ' can be sorted.

2-406

While ... Wend (statement) — Execute a series of statements while a condition is tfrue

A$(4) = "London"

A$(5) = "Berlin"

Exchange% = TRUE ' Force first pass through array.

While Exchange% ' Sort until no elements are
Exchange% = FALSE " exchanged.

' Compare array elements by pairs. When two are exchanged,
' force another pass by setting exchange to TRUE.

For 1% = 2 To MAX

If A$(1% - 1) > A$(1%) Then
Exchange% = TRUE ' Make swap.
Temp$ = A$(1%): A$(1%) = A$(1% - 1): A$(1% - 1) = Temp$
End If
Next 1%
Wend

Msg$ = "Sorted order: " + NL$ + NL$ ' Create message that shows

For 1% = 1 To MAX ' sorted order of array
Msg$ = Msg$ + A$(1%) + NL$ ' contents.

Next 1%

MsgBox Msg$ ' Display message.

2-407

Width (statement) — Set output line width for an open file

Width (statement) — Set oufput line width for an open

file
Width filenumber % width

Determines the output line width for the specfied file. The specified file

must be open when the Width statement is executed.

Parameter Description

filenumber% An integer expression identifying an open
file to query for position.

width An integer expression in the range 0 to
255 specifying the number of characters
on a line before a newline is started. A
value of zero (0) indicates there is no line
length limit. The default width for a file is
zero (0).

Comments

filenumber% is the number assigned to the file when it is opened. See the
Open statement for more information.

Width (statement) Example

This example puts five spaces and the string “ABCD’* to a file. The five
spaces are derived by taking 15 MOD 10, or the remainder of dividing 15
by 10.

Sub main
Dim strl as String
Dim x as String*10
str1="ABCD"
Open "CA\TEMPOO01" For Output As #1
Width #1, 10
Print #1, Spc(15); strl
Close #1

2-408

Width (statement) — Set output line width for an open file

Open "C:\TEMPOO01" as #1 Len=12
Get #1, 1,x
Msgbox "The contents of the file is: " & x
Close #1
Kill "CATEMPOO1"
End Sub

2-409

With (statement) — Execute statements on a specified variable

With (statement) — Execute statements on a specified
variable

With variable
statement-block
End With

Executes a series of statements on an object or user-defined type.

Parameter Description
variable An object or user-defined type.
statement- A series of statements to be performed on
block variable.
Comments

With statements can be nested.
For the example .rtf:

With Alex
.88 = 037672947 'Sets Alex.ss
.salary = 60000 'Sets Alex.salary

.dob = #10-08-65# 'Sets Alex.dob
With .address
.street = 15 Chester Str.™ 'Sets Alex.address.street
.apt =28 'Sets Alex.address.apt
.City = “Cambridge’ 'Sets Alex.address.city
.State = “MA’* 'Sets Alex.address.state
End With
Print “Done with **; .name 'Prints “Done with “
Alex.name
End With

With (statement) Example

This example creates a user-defined record type, custrecord and uses the
With statement to fill in values for the record fields, for the record called
“Alex’.

Type custrecord
name as String

ss as String

2-410

With (statement) — Execute statements on a specified variable

salary as Single
dob as Variant
street as String
apt as Variant
city as String
state as String
End Type
Sub main
Dim Alex as custrecord
Dim msgtext
Alex.name="Alex"
With Alex
.5s="037-67-2947"
.salary=60000
.dob=#10-09-65#
.street="15 Chester St."
.apt=28
.city="Cambridge"
.State="MA"
End With
msgtext=Chr(10) & "Name:" & Space(5) & Alex.name & Chr(10)
msgtext=msgtext & "SS#: " & Space(6) & Alex.ss & chr(10)
msgtext=msgtext & "D.0O.B:" & Space(4) & Alex.dob
Msgbox "Done with: " & Chr(10) & msgtext
End Sub

2-411

Write (statement) — Write to a file

Write (statement) — Write to a file

2-412

Write #filenumber %[,expressionlist]

Writes data to a sequential file.

Parameter Description

#file #filenumber% is the file number used in a

number% previous Open statement or any integer
expression that evaluates to that file
number.

expression expressionlist specifies one or more values

list to be written to the file. An expression

must be a string or numeric expression.
Multiple expressions must be separated
by commas. If the expressionlist argument
is omitted, the Write # statement writes a
blank line to the file.

Comments
The file must have been opened in output or append mode.

As the elements of expressionlist are written to the file, Write # inserts
commas between items and places quotation marks around strings.
Write # appends a newline character to filenumber% after it has written
the last character in expressionlist.

Write (statement) Example

The example uses Write # to write two variables to a sequential file.

NL$ = Chr$(13) + Chr$(10) ' Define newline.

' Make a sample data file.
Open "WRIDATX.DAT" For Output As #1 ' Open file for output.
Msg$ = "Enter your name."

UsrName$ = InputBox$(Msg$) ' Get user name.

Msg$ = "Enter your age."
UsrAge$ = InputBox$(Msg$) ' Get user age.

Write (statement) — Write to a file

Write #1, UsrName$, UsrAge$ ' Write data to file.

Close #1 ' Close file.

' Read the sample data file
Open "WRIDATX.DAT" For Input As #1 ' Open file for input.
Input #1, UsrName$, UsrAge$ ' Read data.

Close #1 ' Close file.

Msg$ = "The name ™ + UsrName$ + "'was read from the data file. "
Msg$ = Msg$ + " + UsrAge$ + " + " is the age you gave."

Msg$ = Msg$ + NL$ + NLS$ + "Choose OK to remove test file."

MsgBox Msg$ ' Display message.
Kill "WRIDATX.DAT" ' Remove file from disk.
End Sub

2-413

Year (function) — Return the year component of a date/time value

Year (function) — Return the year component of a
date/time value

rc = Year(expression)

Returns the year derived from the supplied date/time value.

Parameter Description

rc The return value, an integer between 100
and 9999, inclusive.

expression Any type of expression including a string
expression that can be converted to a date
value.
Comments

The return value is a variant of vartype 2 (integer). If the value of
expression is null a variant of vartype 1 (null) is returned.

Year (function) Example

This example returns the current year.

Sub main
Dim nowyear
nowyear=Year(Now)
MsgBox "The current year is: " &nowyear

End Sub

2-414

INDEX

EXTRA! Basic Language Reference

A

Abs function
description, 2-2
example, 2-2

Appactivate statement
description, 2-4
example, 2-4

Asc function
description, 2-5
example, 2-5

Assert statement
description, 2-6

Atn function
description, 2-7
example, 2-7

Beep statement
description, 2-9
example, 2-9

Begin Dialog statement
description, 2-10
example, 2-14

Button statement
description, 2-16
example, 2-17

ButtonGroup statement
description, 2-18
example, 2-18

C

Call statement
description, 2-19
example, 2-21

CancelButton statement
description, 2-22
example, 2-23

Caption statement
description, 2-24
example, 2-24

CCur function
description, 2-26
example, 2-26

CDbl function
description, 2-28
example, 2-28

Index-2

ChDir statement
description, 2-29
example, 2-30

ChDrive statement
description, 2-31
example, 2-31

CheckBox statement
description, 2-33
example, 2-34

Chr function
description, 2-36
example, 2-36

Clnt function
description, 2-37
example, 2-37

CLng function
description, 2-39
example, 2-39

Close statement
description, 2-40
example, 2-40

ComboBox statement
description, 2-41
example, 2-42

Command function
description, 2-44
example, 2-44

Const statement
description, 2-45
example, 2-46

Cos function
description, 2-47
example, 2-47

CreateObject, 2-49

CreateObiject function
example, 2-50

CSng function
description, 2-51
example, 2-51

CStr function
description, 2-52
example, 2-52

CStrings metacommand
description, 2-53
example, 2-54

CurDir function
description, 2-55
example, 2-55

Index

CVar function
description, 2-56
example, 2-56

CVDate function
description, 2-57
example, 2-57

D

Data type conversion, 1-13
Data types, 1-11
Date function
description, 2-59
example, 2-59
Date statement
description, 2-60
example, 2-61
DateSerial function
description, 2-62
example, 2-62
DateValue function
description, 2-64
example, 2-64
Day function
description, 2-66
example, 2-66
Declare statement
description, 2-67
example, 2-70
Deftype statement
description, 2-71
example, 2-72
Dialog boxes

creating with the Dialog Editor, 1-15

Dialog Editor, 1-15
Dialog function
description, 2-73
example, 2-73
Dialog statement
description, 2-75
example, 2-75
Dim statement
description, 2-77
example, 2-77
Dir function
description, 2-79
example, 2-80

DlgControlID function
description, 2-82
example, 2-82

DlgEnable function
description, 2-85
example, 2-85

DlgEnable statement
description, 2-87
example, 2-87

DlgFocus function
description, 2-89
example, 2-89

DlgFocus statement
description, 2-91
example, 2-91

DlgListBoxArray function
description, 2-93
example, 2-93

DlgListBoxArray statement
description, 2-95
example, 2-95

DlgSetPicture statement
description, 2-98
example, 2-98

DIgText function
description, 2-100
example, 2-100

DIgText statement
description, 2-103
example, 2-103

DlgValue function
description, 2-106
example, 2-107

DlgValue statement
description, 2-109
example, 2-110

DlgVisible function
description, 2-112
example, 2-112

DlgVisible statement
description, 2-114
example, 2-114

Do statement
description, 2-117
example, 2-117

DoEvents statement
description, 2-116, 2-394
example, 2-116

Index-3

EXTRA! Basic Language Reference

DropComboBox statement
description, 2-119
example, 2-120

DropListBox statement
description, 2-122
example, 2-123

Dynamic arrays, 1-14

E

Environ function
description, 2-125
example, 2-125

Eof function
description, 2-127
example, 2-127

Erase statement
description, 2-128
example, 2-129

Erl function
description, 2-130
example, 2-130

Err function
description, 2-132
example, 2-132

Err statement
description, 2-134
example, 2-134

Error function
description, 2-138
example, 2-138

Error statement
description, 2-136
example, 2-136

Exit statement
description, 2-140
example, 2-140

Exiting
Macro Editor, 1-4

Exp function
description, 2-142
example, 2-142

Expressions, 1-20

EXTRA! Basic Language
arguments, 1-4
compared with others, 1-7, 1-9
conventions, 1-4
data type conversion, 1-13
data types, 1-11

Index-4

EXTRA! Basic Language, continued
Dlg functions and statements, 1-16

dynamic arrays, 1-14
expressions, 1-20

line continuation character, 1-6

named arguments, 1-5
object handling, 1-22

trigonometric functions, 1-22

variant data type, 1-12

F

FileAttr function
description, 2-144
example, 2-144

FileCopy statement
description, 2-146
example, 2-146

FileDateTime function
description, 2-148
example, 2-148

FileLen function
description, 2-150
example, 2-150

Fix function
description, 2-151
example, 2-151

For statement
description, 2-153
example, 2-154

Format function
description, 2-156
example, 2-166

FreeFile function
description, 2-167
example, 2-167

Function statement
description, 2-168
example, 2-170

Function, CreateObject, 2-49

Functions

Abs, 2-2
Asc, 2-5
Atn, 2-7
CCur, 2-26
CDbl, 2-28
Chr, 2-36
Cint, 2-37
CLng, 2-39

Index

Functions, continued

Command, 2-44
Cos, 2-47

CSng, 2-51
CStr, 2-52
CurDir, 2-55
CVar, 2-56
CVDate, 2-57
Date, 2-59
DateSerial, 2-62
DateValue, 2-64
Day, 2-66
Dialog, 2-73
Dir, 2-79
DlgControlID, 2-82
DlgEnable, 2-85
DlgFocus, 2-89

DlgListBoxArray, 2-93

DlgText, 2-100
DlgValue, 2-106
DlgVisible, 2-112
Environ, 2-125
Eof, 2-127

Erl, 2-130

Err, 2-132

Error, 2-138
Exp, 2-142
FileAttr, 2-144
FileDateTime, 2-148
FileLen, 2-150
Fix, 2-151
Format, 2-156
FreeFile, 2-167
FV, 2-171
GetAttr, 2-176
GetField, 2-181
GetObject, 2-179
Hex, 2-188
Hour, 2-189
Input, 2-196
InputBox, 2-201
InStr, 2-203

Int, 2-206

IPmt, 2-208

IRR, 2-210
IsDate, 2-214
ISEmpty, 2-215
IsNull, 2-217
IsNumeric, 2-219

Functions, continued

LBound, 2-223
LCase, 2-225
Left, 2-226

Len, 2-228

Loc, 2-239

Lof, 2-244

Log, 2-246
LTrim, 2-250
Mid, 2-251
Minute, 2-255
Month, 2-259
MsgBox, 2-261
Now, 2-272
NPV, 2-273
Null, 2-275
Oct, 2-279
PasswordBox, 2-296
Pmt, 2-300
PPmt, 2-302
PV, 2-308

Rate, 2-312
Right, 2-322
Rnd, 2-326
RTrim, 2-330
Second, 2-332
Seek, 2-334
SetField, 2-348
Sgn, 2-350
Shell, 2-352
Sin, 2-354
Space, 2-356
Spc, 2-357

Sgr, 2-359

Str, 2-368
StrComp, 2-370
String, 2-372
Tab, 2-375

Tan, 2-376
Time, 2-382
Timer, 2-385
TimeSerial, 2-387
TimeValue, 2-389
Trim, 2-391
UBound, 2-395
UCase, 2-397
Val, 2-399
VarType, 2-401
Weekday, 2-404

Index-5

EXTRA! Basic Language Reference

Functions, continued
Year, 2-414

FV function
description, 2-171
example, 2-171

G

Get statement
description, 2-173
example, 2-174

GetAttr function
description, 2-176
example, 2-177

GetField function
description, 2-181
example, 2-181

GetObiject function
description, 2-179
example, 2-180

Global statement
description, 2-182
example, 2-182

GoTo statement
description, 2-184
example, 2-184

GroupBox statement
description, 2-186
example, 2-187

H

Header file, 1-23

Hex function
description, 2-188
example, 2-188

Hour function
description, 2-189
example, 2-189

If statement
description, 2-191
example, 2-192

Include metacommand
description, 2-194
example, 2-195

Index-6

Including a header file, 1-23

Input function
description, 2-196
example, 2-196

Input statement
description, 2-198
example, 2-199

InputBox function
description, 2-201
example, 2-202

InStr function
description, 2-203
example, 2-204

Int function
description, 2-206
example, 2-206

IPmt function
description, 2-208
example, 2-208

IRR function
description, 2-210
example, 2-210

Is operator
description, 2-212
example, 2-212

IsDate function
description, 2-214
example, 2-214

IsEmpty function
description, 2-215
example, 2-215

IsNull function
description, 2-217
example, 2-217

IsNumeric function
description, 2-219
example, 2-219

K

Kill statement
description, 2-221
example, 2-221

Index

L

LBound function
description, 2-223
example, 2-223

LCase function
description, 2-225
example, 2-225

Left function
description, 2-226
example, 2-226

Len function
description, 2-228
example, 2-228

Let statement
description, 2-230
example, 2-230

Like operator
description, 2-231
example, 2-232

Line Input statement
description, 2-234
example, 2-234

ListBox statement
description, 2-236
example, 2-237

Loc function
description, 2-239
example, 2-239

Lock statement
description, 2-241
example, 2-242

Lof function
description, 2-244
example, 2-244

Log function
description, 2-246
example, 2-246

LSet statement
description, 2-248
example, 2-249

LTrim function
description, 2-250
example, 2-250

M

Macro Editor

Dialog Editor, 1-15
exiting, 1-4
introduction to, 1-3
starting, 1-3

Macro file formats, 1-23
Macros

arguments, 1-4

conventions, 1-4

data type conversion, 1-13

data types, 1-11

dialog box functions and statements,
overview, 1-16

dynamic arrays, 1-14

editing, 1-3

error handling, 1-17

expressions, 1-20

EXTRA! Basic vs. others, 1-7, 1-9

line continuation character, 1-6

named arguments, 1-5

object handling, 1-22

syntax, 1-2, 1-4, 1-5, 1-6, 1-11, 1-12, 1-14, 1-
20, 1-22

trapping errors, 1-17

trigonometric functions, 1-22

variant data type, 1-12

Metacommands

CStrings, 2-53
Include, 2-194
NoCStrings, 2-269

Mid function

description, 2-251
example, 2-251

Mid statement

description, 2-253
example, 2-253

Minute function

description, 2-255
example, 2-255

MKkDir statement

description, 2-257
example, 2-257

Month function

description, 2-259
example, 2-259

Index-7

EXTRA! Basic Language Reference

MsgBox function
description, 2-261
example, 2-262

MsgBox statement
description, 2-264
example, 2-265

N

Name statement
description, 2-266
example, 2-266

New reserved word
description, 2-268

NoCStrings metacommand
description, 2-269
example, 2-269

Nothing reserved word
description, 2-270
example, 2-270

Now function
description, 2-272
example, 2-272

NPV function
description, 2-273
example, 2-273

Null function
description, 2-275
example, 2-275

O

Object reserved word
description, 2-277
example, 2-277

Objects, 2-49

Oct function
description, 2-279
example, 2-279

OkButton statement
description, 2-280
example, 2-280

OLE Automation Support, 2-49

On Error statement
description, 2-282
example, 2-283

Index-8

On GoTo statement
description, 2-285
example, 2-285

Open statement
description, 2-287
example, 2-288

Operators
Is, 2-212
Like, 2-231

Option Base statement
description, 2-289
example, 2-289

Option Compare statement
description, 2-292
example, 2-292

Option Explicit statement
description, 2-294
example, 2-294

OptionButton statement
description, 2-290
example, 2-291

OptionGroup statement
description, 2-295

P

PasswordBox function
description, 2-296
example, 2-297

Picture statement
description, 2-298
example, 2-299

Pmt function
description, 2-300
example, 2-301

PPmt function
description, 2-302
example, 2-303

Print statement
description, 2-304
example, 2-305

Put statement
description, 2-306
example, 2-307

PV function
description, 2-308
example, 2-309

Index

R

Randomize statement
description, 2-310
example, 2-310

Rate function
description, 2-312
example, 2-313

ReDim statement
description, 2-314
example, 2-315

Rem statement
description, 2-317
example, 2-317

Reserved words
New, 2-268
Nothing, 2-270
Object, 2-277

Reset statement
description, 2-318
example, 2-318

Resume statement
description, 2-320
example, 2-321

Right function
description, 2-322
example, 2-322

RmDir statement
description, 2-324
example, 2-324

Rnd function
description, 2-326
example, 2-327

Rset statement
description, 2-328
example, 2-328

RTrim function
description, 2-330
example, 2-330

S

Second function
description, 2-332
example, 2-332

Seek function
description, 2-334
example, 2-334

Seek statement

description, 2-336
example, 2-336
Select Case statement
description, 2-338
example, 2-339
SendKeys statement
description, 2-341
example, 2-343
Set statement
description, 2-344
example, 2-345
SetAttr statement
description, 2-346
example, 2-346
SetField function
description, 2-348
example, 2-348
Sgn function
description, 2-350
example, 2-350
Shell function
description, 2-352
example, 2-352
Sin function
description, 2-354
example, 2-354
Space function
description, 2-356
example, 2-356
Spc function
description, 2-357
example, 2-357
Sqr function
description, 2-359
example, 2-359
Starting
Macro Editor, 1-3
Statements
Appactivate, 2-4
Assert, 2-6
Beep, 2-9
Begin Dialog, 2-10
Button, 2-16
ButtonGroup, 2-18
Call, 2-19
CancelButton, 2-22
Caption, 2-24
ChDir, 2-29
ChDrive, 2-31

Index-9

EXTRA! Basic Language Reference

Statements, continued
CheckBox, 2-33
Close, 2-40
ComboBox, 2-41
Const, 2-45
Date, 2-60
Declare, 2-67
Deftype, 2-71
Dialog, 2-75
Dim, 2-77
DlgEnable, 2-87
DlgFocus, 2-91
DigListBoxArray, 2-95
DlgSetPicture, 2-98
DlgText, 2-103
DlgValue, 2-109
DlgVisible, 2-114
Do, 2-117
DoEvents, 2-116, 2-394
DropComboBox, 2-119
DropListBox, 2-122
Erase, 2-128
Err, 2-134
Error, 2-136
Exit, 2-140
FileCopy, 2-146
For, 2-153
Function, 2-168
Get, 2-173
Global, 2-182
GoTo, 2-184
GroupBox, 2-186
If, 2-191
Input, 2-198
Kill, 2-221
Let, 2-230
Line Input, 2-234
ListBox, 2-236
Lock, 2-241
LSet, 2-248
Mid, 2-253
MKDir, 2-257
MsgBox, 2-264
Name, 2-266
OkButton, 2-280
On Error, 2-282
On GoTo, 2-285
Open, 2-287
Option Base, 2-289

Index-10

Statements, continued
Option Compare, 2-292
Option Explicit, 2-294
OptionButton, 2-290
OptionGroup, 2-295
Picture, 2-298
Print, 2-304
Put, 2-306
Randomize, 2-310
ReDim, 2-314
Rem, 2-317
Reset, 2-318
Resume, 2-320
RmDir, 2-324
Rset, 2-328
Seek, 2-336
Select Case, 2-338
SendKeys, 2-341
Set, 2-344
SetAttr, 2-346
Static, 2-361
StaticComboBox, 2-363
Stop, 2-366
Sub, 2-373
Text, 2-378
TextBox, 2-380
Time, 2-383
Type, 2-392
Unlock, 2-398
While, 2-406
Width, 2-408
With, 2-410
Write, 2-412

Static statement
description, 2-361
example, 2-361

StaticComboBox statement
description, 2-363
example, 2-364

Stop statement
description, 2-366
example, 2-366

Str function
description, 2-368
example, 2-368

StrComp function
description, 2-370
example, 2-370

Index

String function
description, 2-372
example, 2-372

Sub statement
description, 2-373
example, 2-374

Syntax, macro, 1-2

T

Tab function
description, 2-375
example, 2-375

Tan function
description, 2-376
example, 2-376

Text statement
description, 2-378
example, 2-379

TextBox statement
description, 2-380
example, 2-381

Time function
description, 2-382

Time statement
description, 2-383
example, 2-383

Timer function
description, 2-385
example, 2-385

TimeSerial function
description, 2-387
example, 2-387

TimeValue function
description, 2-389
example, 2-389

Trappable errors, list of, 1-17

Trigonometric functions, 1-22

Trim function
description, 2-391
example, 2-391

Type statement
description, 2-392
example, 2-393

U

UBound function
description, 2-395
example, 2-395

UCase function
description, 2-397
example, 2-397

Unlock statement
description, 2-398

\"

Val function
description, 2-399
example, 2-400

Variant data type, 1-12

VarType function
description, 2-401
example, 2-401

w

Weekday function
description, 2-404
example, 2-404

While statement
description, 2-406
example, 2-406

Width statement
description, 2-408
example, 2-408

With statement
description, 2-410
example, 2-410

Write statement
description, 2-412
example, 2-412

Y

Year function
description, 2-414
example, 2-414

Index-11

	Table of Contents
	Related Documentation
	Chapter 1: Language Overview
	Chapter 2: Language Summary
	Index

