
.

Aegis
A Project Change Supervisor

HOWTO

Peter Miller
pmiller@opensource.org.au

Howto Aegis

.

This document describes Aegis version 4.25
and was prepared 25 July 2016.

This document describing the Aegis program, and the Aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

Page 2 (./lib/en/howto/introductio.so) Peter Miller

Aegis Howto

1. Intr oduction

This manual contains a series of brief lessons or
“How To” guides for using Aegis. Each is
arranged to cover two pages, so that when the
manual lies open on the desk, the whole subject is
easily visible in front of you.

When printing this manual, it is essential to print
it double sided, or the “subject at once” effect will
not occur.

The table of contents will be printed last. Insert it
(there should be two pages, on one sheet of paper)
before this page.

1.1. AssumedKnowledge

Many of these sections are written for use by
beginners, so there is a fairly low lev el of
assumed knowledge. However, you may want to
have The Aegis User Guide, and The Aegis Refer-
ence Manualvery close by, as all of the material
conveyed here is available in a more expended or
detailed form on those manuals.

1.2. Howto Install Aegis

The description of how to build, test and install
Aegis may be found in the Reference Manual,
under the headingThe BUILDING File, which
reproduces theBUILDING file included in the
Aegis source distribution.

If you installed Aegis using a RedHat or Debian
package, this will not be at all relevant to you,
simply ignore it.

1.3. Howto Contribute

If you would like to see other “How To” subjects,
please drop me an e-mail. Better yet, write one
and e-mail it to me.

Peter Miller (./lib/en/howto/main.ms) Page 3

Howto Aegis

2. CheatSheet

This page is a quick reference into the common
Aegis commands.

• Usually, “mancommand_name” can be used to
get more details on a particular command.

• See also the official Aegis quick reference in
the User Guide, page 88.

• The “−p name” option is used to specify the
project name.

• The “−c number” option is used to specify the
change number.

• The “−l ” (or “−List ”) option can often be
used to list subjects for the given command (eg.
change numbers or projects) or simply to list
rather than edit (e.g.a file or change attributes).

2.1. CommonCommands

ae_p project-name.branch-number
Set current project number for all fol-
lowing Aegis commands.The ae_p
command with no arguments will
‘unset’ this forced default.

ae_c number
Set current change number for all fol-
lowing Aegis commands.The ae_c
command with no arguments will
‘unset’ this forced default.

aecd [−bl]
Change directory [change to baseline].

aeb Aegis build − used by developers,
reviewers and/ or integrators.

aet Run tests − used by developers.

aed Difference of change files with baseline.

aedless
View difference files generated with
aed .

ael cd
List change details.

aeca [−l]
Edit [list] change attributes.

tkaenc
Create a new change (seeaenc(1) for
details), using a GUI interface. This
makes it a damn sight easier to type in
the description field.

tkaeca
Edit change attributes (seeaeca(1) for
details), using a GUI interface. This
makes it a damn sight easier to edit the

description field.

ael ll
List all of the lists (there are a lot).

ael c List all of the changes for a project
(branch).

ael cf
List all of the files in a change.

aeuconf(5)
This is a man page documenting the
˜/.aegisrc file format.

2.2. Developer Commands

Procedure:ael cd → aedb → do stuff → aeb
→ aet → aed → aedless [→ aeclean] →
aede

aedb[u]
Develop begin [undo].

aede[u]
Develop end [undo].

aeclean
This will remove all files in the develop-
ment directory which are not in the change
as new files or copied files. This may
delete files that you want, so be careful.

The aeclean(1) command uses Aegis’ knowledge
of what issupposedto be in the change.You are
meant to tell Aegis about all source files you cre-
ate in a development directory. If you have for-
gotten to do this, it is highly likely that the inte-
gration would fail in any case.

If you are importing files from elsewhere, use
“aenf .” and all of the files in the directory tree
below dot (the current directory) will be added to
the change (make sure there are no object files
when you do this).

aecp
Prepares a file in the project for editing
within the change;i.e. copy file into change
from baseline. Remove symlink if neces-
sary, etc.

aecpu
Reverse the effects of the above.

aecpu −unch
Will check all files in your change to see if
any hav enot been modified, and perform an
aecpuon them. This will stop an unneces-
sary version number increment for files that
have not changed. (And also improves test
correlations.)

Page 4 (./lib/en/howto/cheat.so) Peter Miller

Aegis Howto

aem Merge out-of-date files. See the
−Only-merge option of the aed(1) com-
mand.

aenf[u]
Create/ add a new file [undo].

aemv
Rename (move) files.

aerm[u]
This tells Aegis the file is to be removed
from the baseline when the change is inte-
grated. Oraermu to undo thisbefore the
change is finished.

2.3. Reviewer Commands

Procedure:ael cd → aecd → aedless →
view output, review source files→ aerpass

Remember: the point of reviews is to find prob-
lems, not be a rubber stamp.You are expected to
fail some reviews.

aerpass
Review pass.

aerpu
Review pass undo.

aerfail
Review fail.

2.4. Integrator Commands

Procedure:aeib → aeb → aet → aed →
aeipass

There is anaeintegratq(1) script distributed with
Aegis to do this procedure automatically.

aeib[u]
Integrate begin [undo].

aeipass
Integrate pass.

aeifail
Integrate fail.

2.5. Project Administrator Commands

This includes all of the commands that don’t fit
the categories above.

aenc[u]
Create a new change [undo].Seeaecattr(5)
for description of file format, or use
tkaenc(1) instead.

aend andaerd
New dev eloper; remove dev eloper.

aenrv andaerrv
New reviewer; remover reviewer.

aeni andaeri
New integrator; remove integrator.

aena andaera
New (project) administrator; remove
administrator.

aepa [-l]
Edit [list] project attributes (seeaepattr(5)
for file format).

aeca [-l]
Edit [list] change attributes (seeaecattr(5)
for file format).

tkaeca
Edit change attributes using a GUI.This
makes it much easier to type in the descrip-
tion field.

Peter Miller (./lib/en/howto/main.ms) Page 5

Howto Aegis

3. How to Start Using Aegis

For the first-time user, Aegis can appear to be
very daunting. It has a huge number of configura-
tion alternatives for each project, and it is difficult
to know where to begin.

It is assumed that you already have Aegis
installed. Ifyou do not, see the section of theRef-
erence ManualcalledThe BUILDING File. This
reproduces theBUILDING file included in the
Aegis source distribution.

3.1. First,Create The Project

You need to create a new project. Follow the
instructions in theHow to Create a New Project
section, and then return here.

3.2. Second,Use a Template Project

The very first time you use Aegis, it will be easi-
est if you download one of the template projects.
This gives you a project which (almost always)
works correctly the first time “out of the box”.

• The template projects can be found on the
Aegis home page:
http://aegis.sourceforge.net/

• If you are a long-time GNU Make user, you
probably want the Make-RCS template, at least
to start with.

• Follow the instructions found on the web page
and you will have a working Aegis project,
complete with self tests.

• From this starting point, create changes (the
tkaenccommand is good for this, as it gives
you a simple GUI) and try modifying the calcu-
lator, or adding more programs to the project.

• The template projects is intended to be gener-
ally useful. Many users have simply retained
this format and inserted their own projects into
it. (Use a change to delete the calculator and
its tests.)

3.3. Second,Copy a Template Project

If this isn’t the very first time, you may wish to
get more adventurous, and try copying the rele-
vant bits out of a working project.Usually, when
sites first try this, the working project will be one
of the template projects from the previous section.

• Create a new project. For this exercise, you
probably want a single user project.

• Create a new change

• Copy the projectconfigfile, and and files refer-
enced by it, such as the new file templates and

the build configuration file (Makefile or
Howto.cook, depending).

• Copy the sources of the existing project into the
development directory. If you have sev eral lev-
els of directories, reproduce this, too.

• Remove files which are not primary sources
(e.g. the generated C sources of you have yacc
input files).

• Using the “aenf .” command (yes, that’s a dot,
meaning “the current directory”) you can tell
Aegis to add all of the source files in the devel-
opment directory to the change set.

• You will probably need to modify your build
method to meet Aegis’ expectations. Rather
than do this immediately, change the
build_command in the projectconfig file to
read “build_command = "exit 0"; ”
and fix it in the next change set.

• Now, build, develop end, review and integrate,
as found in theUser Guideworked example.
(Except, of course, there is only one member of
staff.)

• Create a second change, and copy the project
configuration file (calledaegis.confby default),
and the build configuration file (probably
Makefileor Howto.cook) into the change.

• This would be a good time to read theDepen-
dency Maintenance Tool chapter of the Aegis
User Guide, and alsoRecursive Make Consid-
ered Harmful(see the author’s web site) if you
haven’t already.

• Edit the build configuration, try theaeb com-
mand; it will probably fail. Iterateuntil things
build correctly.

• dev elop end, review and integrate as normal.
Your project is now under Aegis.

Page 6 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

4. How to Recreate Old Versions

It is possible to recreate old versions of your
project. This is done using the delta number
assigned to every completed change.

4.1. aecp

Recreating the sources is usually done to recreate
a bug. To this end, it is also usually done from
within an existing change.Theaecp(1) command
is used to copy histprical file versions into a
change.

The aecp(1) command has some options which
are used to perform the source recreation:

−DELta number
This option tellsaecp(1) to extract an histori-
cal version of the files, rather than the head
revision (the one visable in the baseline).
You need to know the delta number of the
change, assigned at integration time, not the
change number.

−BRanchnumber
If the historical version is on a different
branch than the one the current change is on,
use this option. The branch number is to the
left of the "D" in version strings.

−DELta-From-Change number
This option tellsaecp(1) to extract an histori-
cal version of the files, rather than the head
revision (the one visable in the baseline).
You only need the change number to use this
option.

−DELta-Date " string"
This option tells aecp(1) to extract an his-
torical version of the files, rather than the
head revision (the one visable in the base-
line). You only need the date the change
was integrated to use this option.It under-
stands many forms of written (English)
dates, but try to avoid ambiguous month
numbering (it can be confused by some
European vs. American numeric formats,
use month names instead).

4.2. FindingDelta Numbers

You can find delta numbers in a number of ways:

• The “ael change-details” command will list
change details. If changes are completed, their
delta number will appear at the top of the listing.

• The “ael project-history” command lists all inte-
gration for a project, including their change num-
bers and delta numbers.

• The aeannotate(1) command lists the file
source, annotationg each line with the developer,
the date and the version. To the right of the "D"
in the version is the delta number.

• The #{version} substitution (seeaesub(5) for
more information) is covered in the next section.

In addition, you may need to use the−BRanch
option, if the historical version is on a different
branch than the one the current change is on.The
branch number is to the left of the "D" in version
strings.

4.3. ${version}

Thebuild_commandfield in the projectconfigfile
may be given the ${version} substitution, which
you may use to embed the version string into your
executables. You could, for example, have this
string printed when yoiur program is given the
−versioncommand line option.For example:

% aegis −version
aegis version 4.15.D012
%

Armed with this version string, you can recreate
the sources for the version being executed. The
command

% aecp −change=4.15.D012 .
%

would be issued from inside a suitable change.
This form of theaecp −changeoption combines
the −BRanch and −DELta options into a single
command line option.

4.4. OutOf Date

Once you have recreated your sources and rebuilt
your project, and presumably fixed the bug you
were hunting, there are a couple more steps.

• The first is to remove unchanged sources.Do
this with the

% aecpu −unchanged
%

command. Thisremoves from your change all
files which were not changed by this change.
This cuts down on the clutter and makes the next
step much easier.

• The next step is to merge the files. Because you
are working with historical versions of the files,
Aegis will think they are out-of-date and want
you to merge them.Do this is the usual way
(using the aem(1) command). Remember that
Aegis will stash a backup copy with a “,B” suffix
before merging.

Peter Miller (./lib/en/howto/recreate.so) Page 7

Howto Aegis

You may find the following command

% ael cf | grep ’(’
%

useful for finding out-of-date files.

• Once Aegis thinks all the files are up-to-date
you then need to rebuild and retest before com-
pleting development.

Page 8 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

5. How to Create a New Project

Before you can do anything else with Aegis, you
need a project to do it to.The advantage of this is
that each project is administered and configured
independently.

If this is your first time using Aegis, you probably
want a single-user project.You can change the
number of users later, if you ever want to add
more staff to the project.

You need to select the name with some care, as
changing the project name later is tedious.
Adding aliases, however, is simple.

5.1. SingleUser Project

A single suer project is one where all of the dif-
ferent staff roles are filled by the same person,
and a number of interlocks are disabled, as you
will see in a moment.

Unfortunately, there is no Tcl/Tk GUI for this,
yet, which makes this documentation bigger then
it needs to be.

Don’t do anything yet! Read through all of the
steps first.

• You may want to read theaenpr(1) man page
for more information.

• The command “aenpr name−version −” will
create the project with no branches. This will
automatically make you (that is, the executing
user) the project administrator and the project
owner. Theumaskis remembered, too.

• The root of the project directory will be in your
home directory, named after the project name.
If you want something else, use theaenpr
−directory option.

• The default group at the time of execution
determines the file group of the project.Make
sure the account created for the project has the
correct group. (Even if you don’t understand
this, your system administrator should.)

• The umaskat the time of execution determines
the group access to the project.Even if you
usually work with a restrictive umask, set it to
the right one for the project before running this
aenprcommand.

• For additional security, it is often veryuseful to
create a UNIX user for each project.You may
need to consult your system administrator for
assistance with this. It is usual to name the
user and the project the same thing, to avoid
confusion. Login as this user to execute the
initial project creation commands; once

completed no one will ever login to this
account again.

• Add the staff to the project: the “aena
your-normal-login ” command adds your
normal account as a project administrator. You
need this if you are using a special project
account, so that your normal self can adminis-
ter the project.

• At this point, log out of the special project
account. Askthe system administrator to per-
manently disable it.

• Add the rest of the staff: the “aend
your-login ” command makes you a devel-
oper, the “aenrv your-login ” command
makes you a reviewer and the “aeni
your-login ” command makes you an inte-
grator.

• You need to edit the project attributes next.
The “aepa −edit” command does this.You
will be placed into a text editor, and will see
something similar to this:

description = "The \" example\" project";
developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = false;
umask = 022;

Ignore any extra stuff, you should not change it
at the moment.To get a single user project,
edit the field to read

developer_may_review = true;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

Be extra careful to preserve the semicolons!
You may also want to change the description at
this time, too. Don’t forget the closing dou-
ble-quoteandsemicolon.

• Create the first branch now. They inherit all
staff and attributes at creation time, which is
why we worked on the trunk project first.The
command “aenbr name 1” f ollowed by fol-
lowed by “aenbr name.1 0” will give you a
branch calledname.1.0 for use wherever Aegis
wants a project name.(See the branching
chapter of the User Guide for more informa-
tion.)

5.2. Two User Project

Everything is done as above, except you want to
project attributes to look like this:

Peter Miller (./lib/en/howto/new_project.so) Page 9

Howto Aegis

developer_may_review = false;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

This says that developers can’t review their own
work.

You will need to add the other person to the
developer, reviewer and integrator roles, too.

Converting a single user project to a two person
project is simply editing the project attributes to
look like this later. Remember:each branch
inherited its attributes when it was created − you
need to edit the ancestor branches’ project
attributes too.

5.3. Multi User Project

Everything is done as above, except you want to
project attributes to look like this:

developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = true;

This says that developers can’t review their own
work, and reviewers can’t integrate their own
reviews. This ensures the maximum number of
eyes validate each change.

You will need to add the other staff to the appro-
priate developer, reviewer and integrator roles.
Staff need to always be permitted all roles: it is
common for junior staff, for example,not to be
authorized as reviewers.

Converting a single user project to a multi-person
project is simply editing the project attributes to
look like this later. Remember:each branch
inherited its attributes when it was created − you
need to edit the ancestor branches’ project
attributes too.

5.4. Warning

The /usr/local/com/aegis/statefile contains point-
ers to "system" projects.Pointers. Users may
add their own project pointers (to their own
projects) by putting a search path into the
AEGIS_PATH environment variable. Thesystem
part is always automatically appended byAegis.
The default, already set by the/usr/local/lib/-
aegis/cshrcfile, is $HOME/lib/aegis. Do not cre-
ate this directory, Aegisis finicky and wants to do
this itself.

Where projects reside is completely flexi-
ble, be they system projects or user projects.
They are not kept under the/usr/local/com/aegis

directory, this directory only contains pointers.

5.4.1. Creating Projects

When you create a new project, thefirst element
of the AEGIS_PATH is used as the place to
remember the projectpointer. This means the
project will not show up in the global project list
if you have set AEGIS_PATH to include private
projects.

There are two ways to make sure that you are cre-
ating a global project. Either “unset
AEGIS_PATH” i mmediately before using the
“aenpr” command, or use the “−library
/usr/local/com/aegis” option of the aenpr com-
mand.

5.4.2. Web Visibility

If you have a Web server, you may like to install
the Aegis web interface. You do this by copying
the aeget program from/usr/local/bin/aeget into
your web server’s cgi-bin directory. There is a
aeget.instalhelper script, if you don’t know where
your web server’scgi-bindirectory is.

You may prefer to use a symbolic link, as this will
be more stable across Aegis upgrades.However,
this requires a correspondingfollow-symlinksset-
ting in your web server’s configuration file. (Use
theaeget.instal −soption.)

If you have a Web server, and aeget was
installed, you can use a wrapper script to set the
AEGIS_PATH environment variable, if you want
it to be able to see more projects than just the
global projects.

5.5. ChangingThe Project Owner

Typically, when folks try Aegis for the first time,
they don’t worry about having a separate user for
their projects. However, once things are ticking
along, it is less and less attractive to toss it all and
start again cleanly. So, now you need to change
the project owner from the user who started the
Aegis evaluation to the unique project user
account.

1. You need to beroot to perform this procedure.

2. Createthe user account. It doesn’t need to
work to login, so the password can be dis-
abled. You probably want to arrange to have
this user’s email forwarded somewhere sensi-
ble (maybe see the Distributed Development
chapter of the User Guide).

3. The owner of the project is taken from the
owner of the project directory tree, so this is

Page 10 (./lib/en/howto/new_project.so) Peter Miller

Aegis Howto

what needs to be changed.Go to the root of
the project tree − the directory which appears
in the “ael projects” l isting. This isn’t the
trunk baseline, but the directory above it (you
will see info, historyandbaselinesub-directo-
ries).

4. Usethe command

chown −R username.

to change the ownership of this directory, and
all files and sub-directories below it. Insert
the username of the account you created in
step 2. (You need thedot on the end of the
command, its not mere punctuation.)

There is no need to change the owner of
any active changes, or any other change attributes.

Peter Miller (./lib/en/howto/main.ms) Page 11

Howto Aegis

6. How to Move a Project

By "move a project", you may wish to change the
project’s name but leave the project files in the
same location, or you may wish to change a
projects directory location and leave it with the
same name. This section covers both.

There are two ways to move a project. Oneis
from within Aegis, and one is from outside Aegis.
Each section below covers both methods.

6.1. Relocatinga Project

This section deals with moving a project’s files
from one file system location to another.

6.1.1. From within Aegis

This works best when you are moving a project
from one machine to another. It is a very good
idea if there are no active changes onanybranch.

Step 1: You need to know where in the file system
the project currently resides.Take a look in the
projects list (ael p) and see the directory reported
for the trunk of the project.Ignore any active
branches.

Step 2: Usually, when you remove a project,
Aegis deleted all of the project files.However the
aermpr −keep option tells Aegis to remove the
project name, but keep all of the project files.

Step 3: Move the files to their new location, you
needall of the files below the directory tree you
found in step 1. This may be a simple file move,
or may involve copying the files to tape, and then
unpacking on a new machine. Rememberto
make sure the file ownerships are set the way you
want (usually, this means "preserved exactly").

Step 4: Tell Aegis where the project is.To do
this, use the −dir and −keep options of the
aenpr(1) command.

6.1.2. From outside Aegis

This works best of the project is staying on the
same machine, or the same NFS network.

Step 1: You need to know where in the file system
the project currently resides.Take a look in the
projects list (ael p) and see the directory reported
for the trunk of the project.Ignore any active
branches.

Step 2: Move the files to the new location.

Step 3: Edit the /usr/local/com/state file and edit
the path appropriately to tell Aegis where you
moved the files to. You will need to be root for
this step.

6.2. Renaminga Project

This section deals with changing a project’s name
without moving is files.

6.2.1. From within Aegis

Step 1: You need to know where in the file system
the project currently resides.Take a look in the
projects list (ael p) and see the directory reported
for the trunk of the project.Ignore any active
branches.

Step 2: Usually, when you remove a project,
Aegis deletes all of the project files.However the
aermpr −keep option tells Aegis to remove the
project name, but keep all of the project files.
(Theaenbru −keepcommand is the equivalent for
branches.)

Step 3: Tell Aegis where the project is, using the
new name. To do this, use the −dir and −keep
options of theaenpr(1) command.

6.2.2. From outside Aegis

Step 1: Edit the /usr/local/com/state file and edit
the name appropriately to tell Aegis the new name
of the project. You will need to be root for this
step.

6.2.3. Project Aliases

You may need some transition time for your
developers. Eitherbefore or after you rename the
project, you may want to consider adding a
project alias (seeaenpa(1) for more information)
so that the project has "both" names for a while.

Page 12 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 13

Howto Aegis

7. Working in Teams

Aegis supports teamwork in two basic ways: local
development and distributed development. Local
development breaks down into a single machine,
and networked machines on a common LAN.By
building the description a little at a time, this sec-
tion will show how each of these modes of devel-
opment are related in the model used by Aegis.

7.1. Local

7.1.1. SingleUser, Single Machine

The simplest case to understand is the single user.
In such an environment, there is a project and the
user makes changes to this project in the usual
way described in the User Guide and earlier sec-
tions of this How-To.

Even in this environment, it is often the case that
a single user will be working on more than one
thing at once.You could have a large new feature
being added, and a series of bug fixes happening
in parallel during the course of this development.
Or some-one may interrupt you with a more
important feature they need to be added.Aegis
allows you to simply and rapidly create as many
or as few independent changes (and development
directories) as required.

By using independent work areas, things which
are not yet completed cannot be confused with
immediate bug fixes. Thereis no risk of untested
code "contaminating" a bug fix, as would be the
case in one large work area.

7.1.2. Multi User, Single Machine

Having multiple developers working on the same
project is very little different than having one
developer. There are simple many changes all
being worked on in parallel. Each has its own
independent work area. Each is independently
validated before it may be integrated.

One significant difference with multiple develop-
ers is that you now hav eenough people to do real
code reviews. Thiscan make a huge difference to
code quality.

7.1.3. Multi User, Multi Machine

Aegis assumes that when working on a LAN, you
will use a networked file system, of some sort.
NFS is adequate for this task, and commonly
available. Byusing NFS, there is very little dif-
ference between the single-machine case and the
multi-machine case.

There are some system administration constraints
imposed by this, however: it is assumed that each
machine is apparently "the same", in terms of
environment.

7.1.3.1. GeneralRequirements

You need some sort of network file system (e.g.
NFS, AFS, DFS), but it needs working locks (i.e.
not CODA at present). I’ll assume the ubiquitous
NFS for now.

• You need exactly the same/etc/passwdand
/etc/groupfile on every machine. This gives a
uniform environment, with uniform security.
(It also gets the UIDs right, which NFS needs.)
Keeping /etc/passwdand /etc/group in sync
across more than about 3 machines can be time
consuming and error prone if done manually −
so don’t. UseNIS or similar − do sys admin
once, automatically takes effect everywhere.

• All of the machines see the same file systems
with the same path names as all the others.
(Actually, you only need worry about the ones
Aegis is interested in.)Again, you can try to
keep all those/etc/fstabfiles in sync manually,
but you are better off using NIS (or NIS+) and
the automounter or amd.

• All of the machines need their clocks synchro-
nized. Otherwisetools which use time stamps
(obviouslymake(1), but also a few others) will
get confused.NTP or XNTP make this simple
and automatic.In a pinch, you can userdate(1)
from cron every 15 minutes.

• Many sites are worried about the security of
NFS. Usually, you need to take the root pass-
word away from workstation users; once the
environment is uniform across all of them, the
need for it usually disappears.It also means
they can’t abuse NFS, and they can’t run packet
sniffers, either. By using netgroups (I’mnot
talking about the/etc/groupsfile) you can fur-
ther restrict who NFS will talk to. By using
NIS+ and NFSv3 you can quash the last couple
of security issues, but unless you have military
contracts, it’s rarely worth it.

Fortunately, NFS and NIS readily available, both
for proprietary systems and open source systems.
Large sites use these techniques successfully and
securely − and they don’t have O(nˆ2) or even
O(n) sys admin issues, they get most sys admin
tasks down toO(1).

But, but, but! Many sites arevery concerned
about being able to work when the server(s) are

Page 14 (./lib/en/howto/team_work.so) Peter Miller

Aegis Howto

down. I agree, however I suggest sweet talking
your sys admin, not bashing NFS or NIS or
Aegis. It is possible to get very high availability
from modern systems (and even ancient PCs,
using Linux or BSD).

The fact is, working in a team requires interac-
tion. Lotsof interaction. It is an illusion that you
can work independently indefinitely. In the ulti-
mate siege mentality, you need a full and com-
plete private copy of everything in order to pull
this off; but expect the other team member to
carefully inspect everything you produce this way.

7.1.3.2. Aegis-specificRequirements

There are a couple of things required, once you
have the above up and running.

• All of the Aegis distribution can be installed
locally for performance, if that’s what you
need. (Except,see the next item.) Or, you can
install it all on an NFS mounted disk, which
guarantees everyone is always running exactly
the same software revision which can some-
times be important (shortens upgrade times,
too.)

• Except the${prefix}/com/aegisdirectory, which
must be the one NFS disk mounted by every
single machine identically, and must be read
write. I.e. unique to the whole network (well,
all machines using Aegis). This is where the
pointer to the projects are kept, and this is
where the database locks are kept. If this direc-
tory isn’t common to every machine, the Aegis
database will quickly become corrupted.

• The project directory tree must be on an NFS
disk which all machines see, and must be the
same absolute path on all machines. This is so
that the absolute paths in ${pre-
fix}/com/aegis/statemean something.

• The development directories need to be on NFS
disks every machine can see.Usually, this
means a common home directory disk, or a
common development directory disk. This can
still be a disk local to the workstation, but they
must all be exported, and all must appear in the
automount maps. This is because Aegis
assumes that every workstation has a uniform
view of the entire system (so reviews can
review your development directory, and inte-
grators can pick up the new files from your
development directory).

Large software shops have used these techniques
without difficulty.

7.1.4. Known Problems

There is a known problem with the HP/UX NFS
clients. If you see persistent "no locks available"
error messages when/usr/local/lib is NFS
mounted, try making the/usr/local/lib/lockfilefile
world writable.

chmod 666 /usr/local/lib/lockfile

There is the possibility of a denial of service
attack in this mode (which is why the default is
0600) but since you are presently denied service
anyway, it’s academic.

7.2. Distributed

The distributed functionality of Aegis is designed
to be able to operate through corporate firewalls.
Corporate firewall administrators, however, take a
very dim view of adding holes to the for propri-
etary protocols.Aegis, as a result, requires none.
Instead it uses existing protocols such as e-mail,
FTP and HTTP. It will even work with "sneaker
net" (hand carried media).

The other aspect of Aegis, which you have proba-
bly noticed already, is that it is very keen on secu-
rity. Security of the "availability, integrity and
confidentiality" kind.

Incoming change sets are subject to the same
scrutiny as a change set produced locally. It is
dropped into a work area, built and tested, before
being presented for review. Just like any local
change set would be.

7.2.1. Multiple Single-User Sites

In the case of an Open Source project maintainer,
this is essential, because incoming contributions
are of varying quality, or may interact in unfortu-
nate ways with other received change sets.This
careful integration checking is essential.Imaging
the chaos which could ensure if change sets were
unconditionally dropped into the baseline.
(Deliberate malice or sabotage, of course, also
being a grim possibility.)

The careful reader will by now be squirming.
"How", they wonder, "can the maintainer examine
ev ery change every developer makes. Surelyit
doesn’t scale?"

Indeed, it would not. Aegis provides a mecha-
nism for aggregating changes into "super
changes". Theselarger changes can then be
shipped around. (See the Branching chapter in
the User Guide for more information.)

Peter Miller (./lib/en/howto/team_work.so) Page 15

Howto Aegis

In the reverse direction, from the maintainer out
to the developer, dev elopers in an Open Source
project probably aren’t going to want to see each
and every change set made to the project.Again,
they can use an aggregation (e.g. grab the latest
snapshot when each release is announced) to
re-sync in larger chunks, less often. The chances
of an intersection are fairly low (otherwise some-
one is duplicating effort) so the merge is usually
quite simple.

7.2.2. Multiple Multi-User Sites

Most distributed large-scale corporate operations
are actually similar to Open Source projects,
though they usually have more staff. There is
usually a "senior" site, and the other sites make
their contributions, which are scrutinized care-
fully before being promoted to full acceptance.

Again, aggregations become essential to the sys-
tem integration phase of a product.There may
ev en be a hierarchy of concentrators along the
way.

Junior corporate sites can sync periodically with
the senior site, too, rather than double handle (or
worse) every change set.

7.2.3. Telecommuting

One of the most desired cases is that of telecom-
muting. How do remote worker, who may never
make it into the office, develop projects using
Aegis?

There are many way to do this, but the simplest is
to have a central cite ("the office") with satellite
developers.

7.2.3.1. Officeto Developer

The office makes available a web interface to
Aegis. Fromthis, it is possible to download indi-
vidual changes, branch updates, or whole
projects. All of this is already present in the
Aegis distribution.

However, many corporate sites are not going to
want to make all of their intimate development
details to comprehensively available on the web.
For such sites, I would suggest either a direct
"behind the firewall" dial-in, or some virtual pri-
vate networking software (which means users can
use a local ISP, and still be treated "as if" they
were behind the firewall).

If a VPN won’t fly (due to company security poli-
cies), then selected encrypted updates could be
posted "outside", or perhaps an procmail "change

set service" could be arranged.

7.2.3.2. Developer to Office

It is unlikely (though possible) that you would
have a web server on the developer’s machine −
usually you aren’t connected, to the office pulling
changes sets back is probably not viable.

The simplest mechanism is for the satellite devel-
oper to configure their Aegis project so that the
trunk tracks the office version. Oncea week (or
more often if you get notified something signifi-
cant has happened) pull down the latest version of
"the office" as a change set and apply it.This
way, the trunk tracks the official version.

The developer works in a sub-branch, with
aeipass configured to e-mail branch integrations
(but not individual change sets) back to the office.
In this way, a work package can be encapsulated
in a branch, and sent when finished.You also
have the ability to manually send the branch at
any earlier state, and it still encapsulates the set of
changes you have made to date.

Page 16 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 17

Howto Aegis

8. How to use Aegis with Python

This section describes how to use Aegis to super-
vise the development of Python programs.Some
of the remarks in this section may also be helpful
to people who use Aegis to supervise develop-
ment in other non-compiled languages.

This section is contributed courtesy of Tangible
Business Software, www.tbs.co.za .
Python-specific questions relating to this section
may be sent to Pieter Nagel at
<pnagel@tbs.co.za> .

8.1. HandlingAegis search paths

8.1.1. TheAegis model vs. the Python model

Aegis’ view of a project is that it consists of a
hierarchy of project baselines. Each baseline con-
sists of only those files that were modified as part
of that (sub)project, plus all files that were built
by the DMT (see the section of theUser Guide
called The Dependency Maintenance Tool).
Aegis expects the DMT to be able to collect the
entire project into one piece by searching up this
baseline search path for all needed files.

This works fine when using statically compiled
languages such as C.The build process "projects"
source files from various Aegis baselines onto one
or more executables. Whenthese are run they do
not need to search through the Aegis search path
for parts of themselves; they are already com-
plete.

Python programs, however, are never compiled
and linked into a single executable. Onecould
say that a Python program is re-linked each time
it is run. This means that the Python program will
need to be able to find its components at run-time.
More importantly, it will need to avoid importing
the old versions of files from the baseline when
newer versions are present in the development or
integration directories.

8.1.2. Thesolution

The simplest (and only recommended) way to
marry Aegis and Python is to configure Aegis to
keep all of the project’s files visible in a the devel-
opment and integration directories, at all times.
That way Aegis’ search path becomes irrelevant
to Python.

Use Aegis version 3.23 or later, and set the fol-
lowing in the projectconfigfile:

create_symlinks_before_build
= t rue;

remove_symlinks_after_integration_build
= f alse;

The second directive is not available in earlier
versions of Aegis.

If you keep your Python files in a subdirectory of
your project, such assrc/python, you will need
that directory’s relative in your PYTHONPATH
whenever Aegis executes your code for testing,
i.e. by setting

test_command="\
PYTHONPATH=$$PYTHONPATH:src/python \
python ...";

in your project configuration file (example split
across multiple lines for formatting only).

It may seem strange to you that we are not substi-
tuting the Aegis Search_Path variable into
PYTHONPATH at all − it does at first seem to be
the solution that is called for. The reason why we
don’t is very simple:it does not work. It is worth
stressing the following rule:

Never i nject any absolute path of any Aegis
baseline into the Python search path.

8.1.3. Why setting PYTHONPATH to the
Aegis search path will not work

The reason why PYTHONPATH does not work as
Aegis expects is due to the way Python searches
for packages. For a full explanation of what
packages are, you can seeSection 6.4of the
Python Tutorial, but the crucial point is that a
Python package consists of a directory with an
__init__.py file in which the other files in that
directory which should be treated as part of that
package are listed.

When Python imports anything from a package,
Python first searches for the__init__.pyfile and
remembers the absolute path of the directory
where it found it. It will thereafter search for all
other parts of the package within the same direc-
tory. Without the create_symlinks_before_build
andremove_symlinks_after_integration_buildset-
tings enabled, all the needed files are not guaran-
teed tobe present in one directory at all times,
however; they will most likely be spread out over
the entire Aegis search path.

The result is that if you were to try and use the
approach of setting thePYTHONPATH to the
Aegis search path, package import will mysteri-
ously fail under (at least) two conditions:

Page 18 (./lib/en/howto/python.so) Peter Miller

Aegis Howto

• Whenever you modify a file in a package with-
out modifying the accompanying __init__.py,
Python will find the__init__.pyfile in the base-
line and import theold files from there.

• Whenever you modify the __init__.py and
leave some other file in the package unmodi-
fied, Aegis will find the__init__.py in the
development/integration directory but fail to
find the unmodified files there.

8.2. Thebuild step

Python programs do not need to be built, com-
piled, or linked before they can be run, but Aegis
requires a build step as part of the development
cycle.

One perfectly valid option is to explicitly declare
the build step to be a no-op, by setting

build_command = "true";

in the project configuration file.true(1) is a Unix
command which is guaranteed to always succeed.

In practice, however, there often are housekeeping
chores that can be done as part of the build
process, so you can just as well go ahead and cre-
ate a Makefile, Cook recipe, or script that per-
forms these tasks and make that your build step.

Here are some examples of tasks that can be per-
formed during the build step:

• Setting the executable flag on your main
scripts. Aegis does not store file modes, but it
is often convenient to have one or more of the
Python source files in your project be
executable, so that one does not need to invoke
Python explicitly to run them.

• Delete unwanted Python object files (.pyc and
.pyo files). Thesecould arise when you aerm
and delete a Python script, but forget to delete
the accompanying Python object file(s).Other
files will then mysteriously succeed in import-
ing the removed scripts, where you would
expect them to fail. Your build process could
use aelcf(1) and aelpf(1) to get a list of
’allowed’ scripts, and remove all Python object
files which do not correspond to any of these.

• Auto generate your packages__init__.pyfiles.
Python wants you to declare your intent to have
a directory treated as a package by creating the
__init__.py file (otherwise a stray directory
with a common name like ’string’, ’test’, ’com-
mon’ or ’foo’ could shadow like-named pack-
ages later on in the search path).But since
Aegis is, by definition, an authoritative source

on what is and what is not part of your program
it can just as well declare your intent for you.

8.3. Testing

Testing under Aegis using Python is no different
from any other language, only much more fun.
Python’s run-time type checking makes it much
easier to develop software from loosely-coupled
components. Suchcomponents are much more
suited to unit testing than strongly-coupled com-
ponents are.

If the testing script which Aegis invokes is part of
your project, there is one importantPYTHON-
PA TH-related caveat: when Aegis runs the tests, it
specifies them with an absolute path.When
Python runs any scripts with an absolute path, it
prepends that path to its search path, and the dan-
ger is that the baseline directory (with the old,
unchanged versions of files) is prepended to the
search path when doing regression testing.

The solution is to use code like this to remove the
test’s absolute path from the Python path:

selfdir = os.path.abspath(sys.argv[0])
if selfdir in sys.path:

sys.path.remove(selfdir)

Instead of copying these lines into each new test
file, you may want to centralize that code in a test
harness which imports and runs the tests on
Aegis’ behalf. This harness can also serve as a
central place where you can translate test success
or failure into the exit statuses Aegis expects.

The test harness must take care to import the file
to be tested without needing to add the absolute
path of the file tosys.path. Use imp.find_module
andimp.find_module.

I can strongly recommendPyUnit, the Python
Unit Testing Frameworkby Steve Purcell, avail-
able from http://pyunit.source-
forge.net . It is based on Kent Beck and Erich
Gamma’s JUnit framework for Java, and is
becoming thede-factostandard testing framework
for Python.

One bit of advice when usingPyUnit: like Aegis,
PyUnit also distinguishes between test failures as
opposed to test errors, but I find it best to report
PyUnit test errors as Aegis test failures. Thisis to
ensure that baseline tests fail as Aegis expects
them to. PyUnit will consider a test which raises
anything other than aAssertionError to be an
’error’, but in practice baseline test failures are
often AttributeError exceptions which arise when
the test invokes methods not present in the old

Peter Miller (./lib/en/howto/python.so) Page 19

Howto Aegis

code. Thisis a legitimate way to verify, as Aegis
wants us to, that the test does indeed invoke and
test functionality which is not present the old
code.

8.4. Runningyour programs

Of course you will at some stage want to run the
program(s) you are developing.

The simplest approach is to have your program’s
main script be located at the top of your Python
source tree (src/python) in our example. When-
ev er you run that script, Python will automatically
add the directory it was found in to the Python
path, and will find all your other files from there.

You can safely let your shell’s PA TH environment
variable point to that script’s location, since the
shell PA TH and thePYTHONPATH do not mutu-
ally interfere.

Just avoid the temptation to set the absolute path
of that script into yourPYTHONPATH, or other-
wise your development code and baseline code
will interfere with each other. This is not an
Aegis-specific problem, though, since there would
be potential confusion on any system, in any lan-
guage, where two versions of one program are
simultaneously visible from the same search path.

Page 20 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 21

Howto Aegis

9. Howto End A Branch

“OK, I give up. I do not understand the ending of
branches.”

Usually, you end development of a branch the
same way you end development of a simple
change. Inthis example, branchexample.1.42
will be ended:

% aede −p example 1 −c 42
aegis: project "example.1": change
42: file " fubar" in t he baseline
has changed since the last ’aegis
−DIFFerence’ command, you need to
do a merge
%

Oops. Somethingwent wrong. Don’t panic!

I’m going to assume, for the purposes of explana-
tion, that there have been changes in one of the
ancestor branches, and thus require a merge, just
like file fubar, above.

You need to bring filefubarup-to-date. How?
You do it in a change set, like everything else.

At his point you need to do 5 things: (1) create a
new change on example.1.42, (2) copyfubar into
it, (3) mergefubarwith branch "example.1" (4)
end development of the change and integrate it,
and (5) now you can end example.1.42

The −GrandParent option is a special case of the
−BRanch option.You are actually doing a
cross-branch merge, just up-and-down rather than
sideways.

% aem −gp fubar
%

And manually fix any conflicts... naturally.

At this point, have a look at the file listing, it will
show you something you have nev er seen before
− it will show you what it isgoing toset the
branch’s edit_number_origin to for each file, at
aeipass.

% ael cf
Type Action Edit File Name
−−−−−− −−−−−− −−−−−−− −−−−−−−−−−−
source modify 1.3 aerect/rect.c

{cross 1.2}

Now finish the change as usual...aeb, aed, aede,
aerpass, aeib, ..., aeipassnothing special here.

One small tip: merge file files one at a time. It
makes keeping track of where you are up to much
easier.

Now you can end development of the branch,
because all of the files are up-to-date.

In some cases, Aegis has detected a logical con-
flict where you, the human, know there is none.
Remember that theaemcommand saves the old
version of the file with a,B suffix (‘B’ for
backup). Ifyou have a file like this, just use

% mv fubar,B fubar
%

to discard everything from the ancestor branch,
and use the current branch.

Page 22 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 23

Howto Aegis

10. How to Become an Aegis Developer

This section describes how to become an Aegis
developer, and gives some procedures, some ideas
of areas which need work, and some general
guidelines.

Please note: if these instructions have a problem,
let someone know! If you are having a problem,
so is the next guy.Pleasesend all problem
reports to Peter Miller <pmiller@open-
source.org.au>

10.1. Required Software

There are a number of pieces of software you will
need to work on Aegis.

• It will probably come as no surprise that Aegis
is developed using Aegis (never trust a skinny
chef) so the first thing you need is to install
Aegis and become familiar with using it.You
will need Aegis 4.25 or later.

• You will need a C++ compiler. If your com-
piler is installed in an uncommon directory or
has an uncommon name, you can set the appro-
priate attribute by editing the
aegis.conf.d/site.conffile.

• You will need to install Cook, in order to build
things. Version 2.8 or later, preferably you
should track the latest release.
http://miller.emu.id.au/pmiller/cook/

• GNU Autoconf 2.53 or later.
http://ftp.gnu.org/pub/gnu/autoconf/
If your tools are installed in an uncommon
directory or have an uncommon name, you can
set the appropriate attribute by editing the
aegis.conf.d/site.conffile.

• GNU Automake.
http://ftp.gnu.org/pub/gnu/automake/

• You will need to install FHist, for the history
tool.
http://fhist.sourceforge.net/

• You will need to installtardy, for manipulating
tarballs.
http://miller.emu.id.au/pmiller/software/tardy/

• You will need to installptx(1), for the permuted
indexes in the documentation. This is now part
of GNU coreutils.
http://ftp.gnu.org/pub/gnu/coreutils/

• You need psutils for thepsselectutility, to
manipulate the documentation files, mostly to
put the tables of contents at the start, rather
than at the end as GNU Groff generates them.
http://www.dcs.ed.ac.uk/home/ajcd/psutils/

• You will need the developer libraries for therx
library (if you installed from the tarball, you
have these, but if you installed from RPM, you
need the −devel package as well).
http://ftp.gnu.org/pub/gnu/rx/

• You will need the developer libraries for the
zlib library (if you installed from the tarball,
you have these, but if you installed from RPM,
you need the −devel package as well).
http://www.gzip.org/zlib/

• You will need the developer libraries for the
libcurl library (if you installed from the tarball,
you have these, but if you installed from RPM,
you need the −devel package as well).
http://curl.haxx.se/

• You need UUID generation capability. This
requirement may be satisfied in several differ-
ent ways depending of your development plat-
form.
First, on GNU/Linux you could skip this
requirement provided that your kernel has sup-
port for /procfilesystem. Pleasenote: in order
to work /procmust be mounted and
/proc/sys/kernel/random/uuidmust be present.
Second, you could install the developer
libraries for thee2fsprogs package (if you
installed from the tarball, you have these, but if
you installed from RPM you need the −devel
package as well).
http://e2fsprogs.sourceforge.net/
Third, you could install the UUID library from
OSSP:
http://www.ossp.org/pkg/lib/uuid/
Fourth, if your platform has support for an API
compliant with DCE 1.1, Aegis also supports
the DCE API.

• The GNOME libxml2 library (http://xml-
soft.org/) is used to parse XML, you will
need version 1.8.17 or later. You do not have to
install the rest of GNOME as this library is able
to be used by itself. This package isnot
optional, you need it to successfully build
Aegis.

• You need to install Bison, the GNU replace-
ment for Yacc.
http://ftp.gnu.org/pub/gnu/bison/

• You will need to install Flex, the GNU replace-
ment for Lex.
http://ftp.gnu.org/pub/gnu/non-gnu/flex/

• You need to GNU Gettext (0.16.1 or later) tools
installed. Even though Glibc 2.0 and later
include Gettext, you need the developer tools

Page 24 (./lib/en/howto/developer.so) Peter Miller

Aegis Howto

as well. (You need GNU Gettext even on
Solaris, because the Solaris Gettext implemen-
tation is less than adequate.)
http://ftp.gnu.org/pub/gnu/gettext/

• You need GNU Ghostscript, for the ps2pdf util-
ity, so that you can create PDF documents.
http://ftp.gnu.org/pub/gnu/ghostscript/

• You need auudecodewith a−o option (to redi-
rect the output). It is part of GNU Sharutils.
http://ftp.gnu.org/pub/gnu/sharutils/

• You need to install GNU awk.
http://ftp.gnu.org/pub/gnu/gawk/

• You need actags(1) command with a−L option
(to read file names from standard input).
http://ctags.sourceforge.net/

• You need RCS installed for the automated tests.
http://ftp.gnu.org/pub/gnu/rcs/

• You need to installsudo(8). See
etc/set-uid-root in the distribution for
how to configure the/etc/sudoersfile.
ftp://ftp.sudo.ws/pub/sudo/

• The location box icon is generated usingcon-
vert from ImageMagick, but the build can cope
if you don’t hav eit.
http://www.imagemagick.org/

• The PNG images are optimized by the
pngcrushcommand.
http://pmt.sourceforge.net/pngcrush/

• It is possible to use the dmalloc library for
debugging memory abuses. Bewarned: the
dmalloc library can be instructed to log to a
file, circumventing the Aegis I/O layer, thus it’s
possible to create file owned by root. The
dmalloc library should only ever be used as a
debugging tool, andneverbe used in a produc-
tion build of Aegis.
http://dmalloc.com/
On a Debian system, use theapt-get
install libdmalloc-dev command.
You will need to aecp theetc/Howto.cook
file to alter the build to use the dmalloc library.

• Probably more things I’ve forgotten.

• Some parts of the build need Perl

10.2. Create The Aegis Project

The next thing to do is create an Aegis project to
hold the Aegis source. This is done in the usual
way. I suggest you create branches which match
the current public release,e.g.it is 4.25 at present.

The best-practice technique of having a separate
user account to mind the sources is

recommended. Thefollowing commands should
be run as that user, not your usual login. This pre-
vents a variety of accidents which can happen
when you are browsing the baseline (master
source).

You could use the following command:

% aenpr aegis.4.25
aegis: project "aegis": created
aegis: project "aegis.4.25": created
%

but experienced Aegis users will know that this
means a laborious setting of project attributes. It
is easier to create the top-level project, set the
attributes, and the create the branches, so that they
inherit the attributes on creation.

% aenpr aegis −version −
aegis: project "aegis": created
% aepa −e −p aegis
edits the project attributes for single user,
or you may findtkaepa easier
% aena −p aegis you
aegis: user " you" is n ow a administrator
% aend −p aegis you
aegis: user " you" is n ow a developer
% aenrv −p aegis you
aegis: user " you" is n ow a reviewer
% aeni −p aegis you
aegis: user " you" is n ow an integrator
% aenbr -p aegis 4
aegis: project "aegis.4": created
% aenbr -p aegis.4 25
aegis: project "aegis.4.25": created
%

At this point, the rest of the commands in this
chapter may (should!) be executed as “you,” your
usual login account. When you added your nor-
mal account as an administrator just now, you
authorized yourself to perform the necessary
actions.

You will need about 120MB of free space to build
and integrate Aegis changes, or more, depending
on the changes you make and the size of your
development directories.

The.forwardfile of the “aegis” user needs to be
set to someone appropriate to read mail directed
at the project.

You can now set the “aegis” user’s password field
to “*”. This effectively prevents the “aegis” user
from logging in. Aegis is designed to make this
unnecessary from now on.

10.3. TheDownload

The Aegis project is distributed in the form of an
aedist(1) change set. The file to download is

Peter Miller (./lib/en/howto/developer.so) Page 25

Howto Aegis

calledhttp://aegis.sourceforge.net-
/aegis−4.25.ae and can be grabbed using
your favorite web browser, or wget(1).

The downloaded change set is applied using the
following command

% aedist −receive \
−f aegis−4.25.ae \
−p aegis.4.25

...lots of output...
%

It is a good idea to give the project name on the
command line, oraedistwill try to use the project
name it finds in the change set, and it probably
wont find it if you are using different numbering
to the chief maintainer’s copy.

Theaedistcommand will, in turn, issue a number
of other commands. These are all normal Aegis
commands you could issue yourself, if you were
familiar with Aegis. Itwill, however, stop with a
moderately alarming message:

Warning: This change contains files which
could host a Trojan horse attack.You should
review it before building it or testing it or
completing development. Thischange
remains in thebeing developedstate.

This message comes because in order to build the
project, you are going to have to execute a num-
ber of commands contained in the project
aegis.conffile, and in theetc/Howto.cookfile.
For your own protection,aediststops at this point.
You may want to inspect these two files before
continuing.

I really must get around to signing it with PGP.
This would make the −notrojan option safe,
because you could tell the file is direct from the
chief maintainer, and thus as trustable as you
think the chief maintainer happens to be.

In order to complete development of the change
set, you must first build it...

% ae_p aegis.4.25
% aecd
% aeb
...you will see commands which build the project...
%

Things that can go wrong...

• There are checks to make sure that there is no
white space on the ends of lines. If you use
Emacs, you can add

(add-hook ’write-file-hooks
’delete-trailing-whitespace)

to have this done automagically. The same

checks also verify that the text files are all
printable, and that line lengths are 80 charac-
ters or less. Please don’t disable the checks, it
makes accepting your patches more time con-
suming.

• Each change set has an architecture list associ-
ated with it. Initially you won’t care, but Aegis
does if you see the following error message:

found 1 unlisted architecture, edit the
change attributes to remove it or edit the
project configuration file to add it

You need to use theaeca −ecommand (not the
tkaeca command).You will be placed into an
editor (usuallyvi unless you have used Aegis
before, and know how to configure it differ-
ently). You need to leave just about everything
alone, except for the architecture specification.
Change it from

architecture =
[

"unspecified",
];

to something more meaningful on your
machine. For PC users, this is almost always

architecture =
[

"linux−i386",
];

The alternatives may be found in theconfigin
the current directory (search forarchitec-
ture =). If you can’t see a suitable choice,
you may need to add one; theaepconf(5) man
page has more information. Edit theconfigfile
to contain a suitable entry, and then use the
aeca −ecommand to have the change agree
with it.

• If you don’t hav eCook installed, the build
command (aeb) will fail.

• If you don’t hav eGNU Bison installed, the
build will fail.

• If you don’t hav eGNU Gettext installed, the
error message run-time binaries will not be
built. This isn’t an error, so you can keep
going, but you’ll get the shorter, cryptic form of
the error messages.

• Please note: if these instructions have a prob-
lem, let someone know! If you are having a
problem, so is the next guy.Pleasesend all
problem reports to Peter Miller
<pmiller@opensource.org.au>

Once the change builds, you need to difference it
(this is a little redundant for this first command,

Page 26 (./lib/en/howto/developer.so) Peter Miller

Aegis Howto

but you’ll see how useful it is later).

% aed
...you will see commands which "diff" the project...
%

Things that can go wrong...

• If you don’t hav ethe FHist package installed,
the difference (aed) will fail. Thefcompcom-
mand it is looking for is a whole-file context
difference command (the GNUdiff −c is a
bit too terse for humans).

Now you will need to test the change. This is the
basic test suite for Aegis, it ensures nothing is
broken. Ittakes a while, go grab a cup of coffee.

% aet
...lots of output...
%

The change is now ready to end development.

% aede
aegis: project "aegis.4.25": change 10:

development complete
%

The change set is now ready to be reviewed. Ina
single-person project like this one, you can review
your own work. Obviously this is a conflict of
interest, and larger projects are usually configured
to have Aegis prevent this.

% aerpass −p aegis.4.25 −c 10
aegis: project "aegis.4.25": change 10:

review pass
%

The change is now ready to be integrated. Only
when integration is complete are the files actually
committed to the repository.

% aeib −p aegis.4.25 −c 10
% aeb
...you will see commands which build the project...
−rwsr−xr−x 1 root ... arch/bin/aegis
−rwsr−xr−x 1 root ... arch/bin/aeimport
−rwsr−xr−x 1 root ... arch/bin/aelock
Integrator: please do the following:

sudo .../baseline/etc/set-uid-root arch aegis aeimport aelock
if they aren’t root already. See etc/set-uid-root for
instructions for how to set-up your /etc/sudoers file.

%

This message at the end of the build is where
Aegis is made set-uid-root in the repository. You
want to do this, because you are going to symlink
out of /usr/local/bin(or wherever you installed
Aegis) right into the baseline. In this way, you
will be executing your bleeding-edge version of
Aegis, exercising it before you send it to anyone
else. Hangon a bit, the sending part comes later.

Don’t know how to set these files set-uid-root?
The above message includes the command to do
it:

$ cd blahblah/delta*
$ s udo etc/set-uid-root arch aegis aeimport aelock
$

You will need to substitute the appropriate archi-
tecture name, although it is likely to be “unspici-
fied on a fresh project.

Things that can go wrong...

• If you don’t hav eps2pdfor psselector ptx
installed, it won’t build the documentation (this
isn’t an error, just keep going).

• If you don’t hav etardy(1) install, it won’t build
the tarball (this isn’t an error, just keep going).

• Please note: if these instructions have a prob-
lem, let someone know! If you are having a
problem, so is the next guy.Pleasesend all
problem reports to Peter Miller
<pmiller@opensource.org.au>

If all is OK, continue with the integration...

% aed
...you will see commands which "diff" the project...
% aet && aet −bl
...lots of output...
% cd
% aeipass
...you will see commands committing the files to fhist...
aegis: project "aegis.1.0": change 10:

integrate pass
%

The “cd” command you see is actually important:
you need to be out of the development directory
and integration directory so that they can be
cleaned up (deleted) when the change completes.

10.4. SupportingSeveral Architectures

Aegis is able to track architectures to make sure
that change sets have been built and tested on all
necessary architectures.You may hav notices that
Aegis is calling your architecture “unspecified”,
you can give it a more descriptive name, too.

The architecture configuration data is described in
thearchitecturefield of theaepconf(1) man page.
It is based on theuname(2) data, see the man page
for how. You will, of course, need a change set to
change it.

Once you have a change set, you need to create
theaegis.conf.d/architecturefile.

Peter Miller (./lib/en/howto/developer.so) Page 27

Howto Aegis

% aenf aegis.conf.d/architecture
% aefa aegis.conf.d/architecture entire-source-hide
% aefa aegis.conf.d/architecture local-source-hide
%

Here are some suggestions for what you may like
to set for your architecture or architectures.

architecture =
[

{
name = "linux-i386";
pattern = "Linux-*-*-i?86";

},
{

name = "linux-x86_64";
pattern = "Linux-*-*-x86_64";

},
{

name = "freebsd-i386";
pattern = "FreeBSD-*-*-i?86";

},
{

name = "sunos-4.1-sparc";
pattern = "SunOS-4.1*-*-sun4*";

},
{

name = "solaris-2.6-sparc";
pattern = "SunOS-5.6*-*-sun4*";

},
{

name = "solaris-2.6-i386";
pattern = "SunOS-5.6*-*-i86pc";

},
{

name = "solaris-7-sparc";
pattern = "SunOS-5.7*-*-sun4*";

},
{

name = "solaris-7-i386";
pattern = "SunOS-5.7*-*-i86pc";

},
{

name = "ppc-Darwin-7.x";
pattern = "Darwin-7.*-Darwin*";

},
];

Remember to only include the architectures from
the above list that you actually have. Having
architectures in this list that you don’t routinely
have access to means that you will not be able to
aede(1) any change sets.

Occasional architectures can be handled, too:

architecture =
[

{
name = "ppc-Darwin-7.x";
pattern = "Darwin-7.*-Darwin*";
mode = optional;

},
];

Again, only do this with architectures you

actually have access to.

If you need to have architecture specific
options to some commands, you can also have
project_specificattributes, too.Note that you
shouldfirst look into having a$pre-
fix/share/config.site or $pre-
fix/etc/config.site file for ./configureto
read. Thisis particularly important if you want to
include/usr/local/include, /usr/local/lib, etc, in
the various compiler flags.

10.5. TheBleeding Edge

As I mentioned above, the next thing to do is cre-
ate symbolic links out of/usr/local/bininto your
Aegis baseline. The reason for doing this is so
that you exercise your Aegis changes by using
Aegis before you send them to anyone else.
(Never trust a skinny chef.)

There is a shell script calledae-symlinksin the
baseline$arch/bin direcdtory. Use it like this:

$ aecd −bl
su
Password:
linux-i486/bin/ae-symlinks aegis.4.25
exit
$

The linux-i486may need to be replaced with the
output of theaesub −bl ’$arch’ command if you
are using something more interesting than a PC.

10.6. Undiscovered Country

If you got this far, your local Aegis project is
ready for use.

It is strongly suggested that you complete the first
change “as is” and perform your own customiza-
tions in later changes, rather than trying to get the
project started and customize it at the same time.

The rest of this file describes how to perform vari-
ous common changes to the example project.

10.7. SendingChanges

First, read the Distributed Development chapter of
the User Guide.

When you have a change set you wish to have the
other Aegis deveopers try, use a simple command
such as:

aedist −send −p aegis.4.25 −c number | \
gpg −−clearsign | \
mail aegis-developers@lists.sourceforge.net

or similar. (Or maybeaepatch(1) instead.) A
suitable subject line would be very helpful.

Page 28 (./lib/en/howto/developer.so) Peter Miller

Aegis Howto

10.8. Guidelines

10.8.1. WhatYou Can Do

Write more documentation. There is a crying
need for documentation of all sorts: better manual
pages, more and better information in the User
Guide, more and better HOWTOs. If you work
out how to do something, and it isn’t in the docu-
mentation, write some documentation and put it
in a change set because other folks have probably
missed it too.

Add more ease-of-use functionality. Stuff which
makes the development process more efficient, or
makes the information in the repository more
accessible.

Extend the GUI. All of the commands which
manipulate the change while in thebeing devel-
opedstate are candidates. Some kind of wrapper
that ties it all together would be good, too. User
preferences, project attributes and creating
projects are candidates, too.

Most new project configuration things belong in
the projectconfigfile. Onlyadd new project
attributes (aepa −e) for things which (a) are catch
22 to change in a change set, or (b) allow a secu-
rity abuse if in a change set (e.g. the notify com-
mands, particularly aede), or (c) allow the reposi-
tory to be damaged. (My thanks to Ralf Fassel
<ralf@akutech.de> 2 Feb 1999 for pointing this
out.)

10.8.2. WhatYou Can’t Do

You can’t change Aegis’ semantics. Developers
around the world, and their managers, rely on
Aegis working just the way it does right now.
You can’t change things that will compromise
their ability to get things done.

Particularly, Aegis has a strong security story.
Av ailability, integrity and confidentiality, and all
that. If you want it more flexible, that’s good, but
you can’t change the defaults and you can’t make
it irretrievably weaker. (You can, as a
non−default make it weaker, within limits.)

Aegis (the executable, not the whole package) is
quite big enough. Don’t add code to
arch/bin/aegis than can be done with the
report generator, or as a separate program like
aesub or aefind . More GUI can be added
using Tk/Tcl − unless you have grander plans and
ev en then itstill shouldn’t be added to the
set-uid-root executable.

10.9. CodingStyle

Please try to emulate the existing coding style.
(Indents recently changed from 8 to 4, not all of
the code has caugh-up yet.) Lines are to be 80
charcters or less wide, limited to the 95 printable
ASCII characters, with no trailing white space.

Probably need a GNU Indent profile for code for-
matting, too.

10.10. Writing Tests

If you have fixed a bug you should write a test to
verify the correct behaviour of Aegis. Because
test file names are generated automatically start-
ing from your repository state, it’s possible that
aetwill create a test with the same name as one in
the P.Miller repository. Because Aegis is not yet
able to detect such situation, if you plan to send
back your work to P.Miller you may want to mod-
ify your aegis.conf adding the following
lines:

new_test_filename =
"test/${zpad $hundred 2}/"
"t${zpad $number 4}${left $type 1}−${left ${user login} 4}.sh";

In this way the possibility of a name collision
should be reduced. Invokeaent:

% aent
aegis: appending log to "aegis.log"
aegis: user "walter", group "projadm"
aegis: rm −f etc/cook/change_filesf etc/cook/project_files
aegis: project "aegis.4.16.2": change 11: file "test/01/t0157a−walt.sh" new test
%

Now you can start to implement the test. Remem-
ber to invoke the programs under test as
$bin/program .

• In order to improve error messages you should
organize your script as a sequence of activity
and use theactivityvariable as sketched below:

#
c reate a new change
#
activity="new change 163"
cat > tmp << ’end’
brief_description = "The first change";
cause = internal_bug;
end
if test $? −ne 0 ; then no_result; fi
$bin/aegis −nc 1 −f tmp −p foo > log 2>&1
if test $? −ne 0 ; then cat log; no_result; fi

If you are reading this document, you probably
don’t need help to understand this code frag-
ment, the only thing to note is that the number
in the string (163) refer to the current line num-
ber and is used when printing a failure mes-
sage. You don’t need to maintain it by hand as

Peter Miller (./lib/en/howto/developer.so) Page 29

Howto Aegis

explained in the following step.

• You can usetest/activity.sh to auto-
matically renumber the activity variables of
your tests:

$ sh test/activity.sh
test/01/t0159a−walt.sh...
test/01/t0160a−walt.sh...
$

If you have not modifiedtest/activ-
ity.sh you should find it as
bl/test/activity.sh or
blbl/test/activity.sh .

10.11. Debugging

Aegis, as any other software, may contain undis-
covered bugs. Ifyou are interested in helping to
fix these bugs, and as a developer you should be
interested, the first thing to do is compiling Aegis
in DEBUG mode. In order to do so you must
modify common/main.h and uncomment the
DEBUG define. (If you use theaecp −read-only
option, Aegis will remind you to uncopy the file
again before develop end, ensuring that you don’t
accidentally integrate this.)

In DEBUG mode the −Trace command line
option is available for most Aegis commands.
This option is followed by the names of the
source files you want to trace, and may be used
more than once.

If you need to add tracing capability to a file, you
must first includetrace.h , modify the code in
order to use the trace facility (look atcom-
mon/trace.h) then build the change withaeb
and run the buggy command with the proper
−Trace option.

On Linux >= 2.4 theaegiscommand, wich is
set-uid-root, is enabled to dump core when
needed. Ifthis does not happen, remember to ver-
ify the ulimit(1) settings; you may need to execute
theulimit −c unlimitedcommand.

10.12. TheTo-Do List

• Add an additonal mode toaedistto query an
aeget server for change set UUIDs and down-
load and apply missing change sets. It needs to
be able to be run bycron(8). Submitted:
PMiller, 1-Jun-2004

10.12.1. aecvsserver

• The aecvsserver needs to be extensively tested
by users. Submitted: PMiller, 1-Jun-2004

• Implement more of the CVS client commands
which can be sent to the server, usually by say-
ing "yes, bwana" and doing nothing. Submit-
ted: PMiller, 1-Jun-2004

• Implement a cvs commit against a project (at
the moment this is not allowed because you
have to use a "module" named after a change
set) which will create a change set apply the
changes and do everything to get to aede. Sub-
mitted: PMiller, 1-Jun-2004

• Is it possible to use the same techinique to
write an SVN server? Submitted:PMiller,
1-Jun-2004

• Is it possible to use the same techinique to
write an arch server? Submitted:PMiller,
1-Jun-2004

• Arch has the concept (if not the implementa-
tion) of an SCM-neutral interchange format.
Implement it. Submitted: PMiller, 23-Jan-2004

10.12.2. GeographicallyDistributed Develop-
ment

• Theaedist −receivecommand needs to be
enhanced to understand file attributes. Submit-
ted: PMiller, 2-Jun-2004

• Theaepatch −receivecommand needs to be
enhanced to understand file attributes. Submit-
ted: PMiller, 2-Jun-2004

• Enhance theaedist −receivecommand to
understand incoming files with UUIDs. Sub-
mitted: PMiller, 1-Jun-2004

• Enhance theaepatch −receivecommand to
understand incoming files with UUIDs. Sub-
mitted: PMiller, 1-Jun-2004

• Add an additonal mode toaedistto query an
aeget server for change set UUIDs and down-
load and apply missing change sets. It needs to
be able to be run bycron(8). Submitted:
PMiller, 1-Jun-2004

• Enhanceaedistto preserve change history
(both send and receive will need work). Don’t
forget backwards compatibility. Submitted:
Jerry Pendergraft, 2003

• Enhanceaedist −receiveto leave changes in
awaiting developmentor being developedif
that’s the state they were in at the origin. Sub-
mitted: Jerry Pendergraft, May-2004

• Enhanceaepatch −receiveto run tests on
changes which require it. Submitted: PMiller,
1-Jun-2004

Page 30 (./lib/en/howto/devel_to_do.so) Peter Miller

Aegis Howto

• Enhanceaepatchto preserve change history
(both send and receive will need work).
Incoming patches with no meta-data obviously
can’t do this. Don’t forget meta-data back-
wards compatibility. Submitted: PMiller,
1-Jun-2004

• Enhanceaepatch −receiveto leave changes in
being developedif that’s the state they were in
at the origin.Patches with no meta-data stay in
being developed. Submitted: PMiller,
1-Jun-2004

• Enhanceaepatchandaedistto automagically
sign (send) and verify (receive) the contents,
using the (revolting) library from thegpgme
project. Thisstupid library spawns angpg(1)
instance and talks to it; unlike a sensible library
e.g.thezlib project; why on earth couldn’t they
take the common code from gpg and make a
library of that? Submitted: PMiller,
1-Jun-2004

10.12.3. Documentation

• Add a section to the branching chapter of the
User Guide, describing how a dev eloper may
use a branch to temporarily waive the build
command. Aftera series of changes on this
branch, the build command is restored, and the
branch development ended. This allows regu-
lar "non working" commits, without losing any
of the strengths of the Aegis process. Submit-
ted: 7-Mar-2000

• The manual pages need to have an example(s)
section added to make them clearer. This isn’t
just for beginners, infrequently used commands
need examples even for sophisticated Aegis
users. Submitted:Geoff Soutter
<geoff@whitewolf.com.au>, 3 Mar 2000

• Get tkdiff 3-way merge working with Aegis
(seehttp://www.ede.com/free/-
tkdiff/ for code). Submitted: 24-jan-2000

• Add information to the History Tool chapter,
describing how to use CVSup to access the
RCS history tree. Submitted: 28-jan-2000

• the RCS history commands in the aegis user
guide all use the ‘−u’ option for ‘ci’ to check
out a copy after registering/updating a file.
However ‘ci −u’ always does keyword expan-
sion. To avoid this, we have omitted the −u, so
the working file is gone after the ‘ci’.We
check it out again using ‘co’, this time with the
‘−ko’ option to avoid keyword expansion.
Note that the −ko option is always given to the

‘co’ command, never to ‘ci’ or ‘rcs’. Submit-
ted: Ralf Fassel <ralf@akutech.de>, 18 Jan
2000

• * diff ; test $? −le 1→ diff ; test $? −ne 1
means that unchanged files prevent aede!!
(Only fly in the ointment is moving files − need
to cope with this.) Submitted: Gus <gus@get-
systems.com> 28 Jul 1999

• mention in the diff tool part of the User Guide,
that you can mess with diff_command to
exclude with binary files, or file with CR in
them, or lines too long,etc. Submitted:
PMiller, 28-jun-99

• in the branching chapter, hav ea section about
using sub-branches to turn build_command off
(or to ignore exit status), and integrate lots of
teensy tiny bug fixes, and then turn it on again.
In the front, reference the branching chapter in
“how to extend the Aegis process” Can men-
tion extra review steps there, too. Submitted:
choffman@dvcorp.com, 22 Jun 1999

• Document the build_time_adjust_notify_com-
mand in the DMT chapter of the User Guide.
Update the example projects to use it. Update
the config example to use it. Submitted:
PMiller, 4-Apr-99

• Mention binary files in the diff and merge sec-
tion (may provide aebinfil command to help
choose which behavior?) Submitted:PMiller,
31-mar-99

• mention “rcs −ko” in the User Guide and put it
into the examples AND also fhist keywords in
the User Guide and put it into the examples.
and make sure the examples all have
hist_{put,create} the same. Subject: Ralf Fas-
sel <ralf@akutech.de>, 9 Mar 1999

• worked example, “5.2.7 says that the cook file
contains all of the above commands but my
copy doesn’t hav ethem ...” [for config file and
howto.cook file] BUT integration diffs not in
the worked example. Submitted:Michael
McCarty <mmccarty@xinetix.com>,
26-Feb-99

• need discussion (Howto, or maybe the User
Guide) of how to use Aegis when you site has a
mix of Unix and Wintel. Submitted:Paolo
Supino <paolo@schema.co.il>, 4 Feb 1999

• add chapter to User Guide, saying how to con-
fig web interface and how to use it. Submitted:
Graham Wheeler <gram@cdsec.com>, 27 Jan
1999

Peter Miller (./lib/en/howto/devel_to_do.so) Page 31

Howto Aegis

• User Guide: big changes bouncing: how to use
a branch to get smaller reviews and smaller
diffs. Submitted:Ralf Fassel
<ralf@akutech.de>, 27 Jan 1999

• note for User Guide: metrics software form
ftp://ftp.qucis.queensu.ca/pub/software-eng/-
software/Cmetrics/

• correct documentation of file locking in UG:
correct the example around the file locking − it
gives the wrong text of the aede error − and
probably other stuff. also,the wrong person
comes back from aerobics

10.12.4. More Reports

• Add a −REVerse option, so that all of the list-
ings (ael) come out in the reverse order to that
used at present. Submitted: John Darrington
<johnd@ot.com.au>, 20-Jul-2001

• Write anaereportfile to produce MS-Project
views of a project, making sure that the states
of each change are linked, use averages to pre-
dict any incomplete states. And maybe another
to produce HTML pages of the same thing.
Submitted: 15-Jan-2000

• On theaeget(1) web pages, link the file edit
numbers to pages which will retrieve the histor-
ical version. Submitted:Anoop Kulkarni
<anoop@sasi.com>, 22 Dec 1999

• Add a user_change report (just like “ael
user_changes”) which takes a user name, so
you can get a list of changes by user. Make
aeget(1) do this, too. Submitted: Ralf Fassel
<ralf@akutech.de>, 9 Dec 1999

• Add a outstanding_changes report (just like
“ael outstanding_changes”) which takes a user
name, so you can get a list of outstanding
changes by user. Makeaeget(1) do this, too.
Submitted: Ralf Fassel <ralf@akutech.de>, 9
Dec 1999

• Write a report which says when you have to do
to get a change completed Jerry says he has
written most of this. Submitted: jerry.pender-
graft@endocardial.com 3-Nov-99

• ael change_history − write as a report and then
include project history for sub branches. Don’t
forget the web reports, too. Submitted:Jerry
Pendergraft <jerry@endocardial.com>, 30 Aug
1999

• ael outstanding_changes − rewrite as a report
and then include sub branches. Don’t forget
the web reports, too. Submitted: Jerry

Pendergraft <jerry@endocardial.com>, 30 Aug
1999

• ael project_history − rewrite as a report and
then include parents and sub branches. Don’t
forget the web reports, too. Submitted: Jerry
Pendergraft <jerry@endocardial.com>, 30 Aug
1999

• aer file_history − include parents and sub
branches. Don’t forget the web reports, too.
Submitted: Jerry Pendergraft <jerry@endocar-
dial.com> 30 Aug 1999

• Some kind of web report which makes “train
track” diagrams of file branching.

• Some kind of web report which makes “train
track” diagrams of project branching.

• multivariate linear regression: needed as a
report generator function: needed for metrics
analysis

• more blurb in the statistics web pages, so they
are more self-explaining Submitted: Ralf Fassel
<ralf@akutech.de>, 13-Oct-98

• Add anew report like “ael uc” except that it
(optionally) takes a user name as well, to list a
particular user’s changes.

• File Activity Report (web) does not translate
user name and give email link. Should also put
user name under change state, as in change
lists.

10.12.5. Core Enhancements

• Use the per-file attributes to record the encod-
ing of the text (e.g. UTF-8) and the line termi-
nation. Provide a way (via the iconv(3) func-
tion? via recode(1) command?) to change the
encoding. Submitted:PMiller, 23-Jun-2004

• "I hav edetermined that one reason [that aedeu
is used in preference to aerfail] is the reviewer
is afraid they don’t understand the change and
once explained they would not fail it. Now the
fact that the description, comments etc did not
do the job to explain the change is reason
enough to fail it notwithstanding... They are
saying if they had an aerfu command they
would be willing to aerf changes. How difficult
would that be?" Not very difficult at all. Pro-
vided, of course, that nothing has been changed
in the mean time (and Aegis has everything it
needs to check that). Submitted: Jerry Pender-
graft, 23-Jun-2004

• The project_file_roll_forward function needs to
be enhanced to understand file UUIDs.

Page 32 (./lib/en/howto/devel_to_do.so) Peter Miller

Aegis Howto

Submitted: PMiller, 1-Jun-2004

• Now the sources are all being compiled by a
C++ cimpiler, convert the various OO portions
of the code (inout_ty and its derived classes,
output_ty, etc) to true C++. Need a style guide
first, so other developers know how I want it
done. SeeSRecord for examples until this is
done. Submitted:PMiller, 1-Jun-2004

• More doxygen comments in the header files.
Submitted: PMiller, 23-Jan-2004

• Add a "development directory style" configura-
tion option. The current styles are "view path"
and two types of "symlink farm", although this
is well concealed by the code. Need to add a
hard link (arch-ish) / copyfile (cvs-ish) style as
well, but only for source files. The code which
currently maintains the symlinks can be
pressed into doing the extra work fairly easily.
Submitted: PMiller, 1-Jun-2004

• It would be nice to have a way to specify a
timeout for aegis tests. If a single test does not
finish within this time, it should be aborted and
considered ‘No Result’. Then aet should con-
tinue with the next test (as appropriate if −per-
severe was given). A ‘−timeout’ argument to
‘aet’ would do the trick, and also a project con-
fig field. The implementation could be interest-
ing, since signaling the forked aegis child
process might not be enough to stop all pro-
cesses (process groups?). Submitted: Ralf Fas-
sel <ralf@akutech.de>, 24-Jan-2001

• Problem with aepa that doesn’t specify the
default values for all the test features in aeca
(there are three types in aeca and only one in
aepa). Submitted:Mark Veltzer
<mark2776@yahoo.com>, 16 Aug 2001

• Theaedist(1) program should send changes
with no files, or changes in "being developed".
Submitted: Mark Veltzer
<mark2776@yahoo.com>, 16 Aug 2001

• Hav eaemmerge changes properly if another
changed moved the file in the baseline.You
need to do this across the board, not just in
aegis/aed.c Submitted: Ralf Fassel
<ralf@akutech.de>, 25 Feb 2000

• Add progress (%) indicators (aeib was specific
example, but there may be otherse.g.symlink
farms and aecp, even aede for big changes) for
use by the GUI interfaces − and maybe the text
interface too. Submitted: Ralf Fassel
<ralf@akutech.de> 10 Dec 1999

• Extend the create_symlinks_before_build func-
tionality to copy, not just symlink. Because
they would edit the files direct, we then need an
implicit aecpcorne detector. You need to look
for other boundary conditions this is also going
to affect. You need a remove_sym-
links_after_build analogue, too. Submitted:
Darrin Thompson <dthompson@character-
link.net>, 15 Nov 1999

• os.h is a system header on some systems, so
os.h has to move Sumbitted: Christophe Broult
<broult@info.unicaen.fr> 30 Sep 1999

• aedist −rec needs to preserve (a) copyright
years, (b) test exemptions (subject to permis-
sions), and (c) architecture (if possible). AND
CHANGE NUMBER? Submitted: Ewolt
Wolters <ewolt@pallas-athena.com>, 27 Jul
1999

• Aedist to add project history to end of descrip-
tion when sending change set. Submitted:
Jerry Pendergraft <jerry@endocardial.com>,
Dec-2000

• can we separate change creation from other
administrator permissions? can we make
"everyone" able to create changes? Submitted:
Ewolt Wolters <ewolt@pallas-athena.com>, 28
Jun 1999

• should explicitly mention
CPPFLAGS=−I/usr/local/include; export
CPPFLAGS LDFLAGS=−L/usr/local/lib;
export LDFLAGS in the configuring section.
Submitted: John Huddleston
<jhudd@cody.itc.nrcs.usda.gov>, 19 Mar 1999

• Using file attributes, add coupling between files
to form file groups; this means when you aecp,
you get the whole set of related files. Submit-
ted: PMiller, 18-Feb-99

• The aed command does not promote
aenf→aecp unless the ,D file does not exist.
This is annoying, should always do it. (So
should some other commands.) Subject: Ralf
Fassel <ralf@akutech.de>, 1 Feb 1999

• Add a default_regression_test_exemption
project attribute. Submitted:Ralf Fassel
<ralf@akutech.de>, 31 Jan 1999,
Jerry Pendergraft <jerry@endocardial.com>, 2
Feb 2001.

• Need a clean_exceptions file in the project con-
fig file (list of strings) so can have local RCS
dirs, and do "ci ‘aegis −l cf −ter‘" in the
develop_end_command Submitted: 1-Feb-99

Peter Miller (./lib/en/howto/devel_to_do.so) Page 33

Howto Aegis

• aenpr −dir −keep: allow directory to already
exist if has right owner and is empty? Submit-
ted: Jerry Pendergraft <jerry@endocar-
dial.com>, 22 Jan 1999

• Add a new post_merge_command so can gen-
erate summary of files needing editing. Sub-
ject: Ralf Fassel <ralf@akutech.de>, 21 Dec
1998

• Create a new aepatch command: “aepatch
−send” to create "ordinary" OpenSource source
patches, and “aepatch −receive” to turn patches
into an Aegis change − and not necessarily only
patches generated with aepatch.Yes, intention-
ally similar to aedist.

• integrate difference should look for missing ,D
files (usually impossible) and re-instate them.
Submitted: PMiller, 22-Sep-98

• tests 7, 20, 70 warn symlink.c: In function
‘main’: symlink.c:5: warning: return type of
‘main’ is not ‘int’ Submitted: Bruce Stephen
Adams <brucea@cybernetics.demon.co.uk>,
10 Sep 1998

• change_set_env needs to set LINES and COLS

• commands which accept −branch and/or −trunk
should also accept −grandparent but not all do.
check.

• Add a −no-baseline-lock option to the aeb and
aecp commands.Warn them not to in the man-
ual pages.

• list locks − need to spot the case where *all* of
a set are taken (all 64k) and report sensibly (not
64K lines)

• aemv does not correctly check theto filename.
(specific example = file name length)

• aefind needs a sort option

• aefind needs the rest of the find functionality
added

• * Add a −output option to the aent command
(others?) for scripting support.

• aed − when auto upgrade create to modify,
clear move if set.

• aede needs to make sure that the files (and
directories) are readable (and searchable) by
reviewers.

• make aemv rename files within a change

• aecp −anticipate

• Make the listing more specific for aecp aecpu
aenfu aentu aerm aermu, etc

• add a file copy notification command to the
project config file

• Add pseudo change do can do many integra-
tions at once (this pseudo change would be cre-
ated by aeib and destroyed by aeipass, aeifail or
aeibu).

• Version punctuation: at the moment you gets
dots between the branch numbers. Need more
flexible punctuation: especially, want a hyphen
first, then dots (sometimes).

• * aecp −delta bug
“I’ ve been making good use of the "−delta"
option of aecp lately.
But there has been a complication in its use.
Let’s say a file
was aerm’ed in delta 100. Let’s further say
that we are at delta
175 and are trying to restore the source code as
of delta 75.
If I do a "aecp − delta 75 file.c" I’m told that
file.c is no
longer part of the project.” Should aecp −del
fake aenf for deleted files in earlier deltas?
Submitted: markm@endo.com

• internationalize −interactive

• Enhance aet to allow reviewers to run tests.

• check library state files on project creation
“I was creating a new release from a large
project.
After copying the
baseline and creating hundreds of history files
the aenrls failed
because the library dir I specified wasn’t
writable by aegis and no
state file was created. Couldn’t this be checked
first?” Submitted:Lloyd Fischer
<lloyd@dvcorp.com>

• Add precedence constraints: a list of prerequi-
site changes, which must all be in the “com-
pleted” state before the change may end devel-
opment. Submitted:Christian F. Goetze
<c-goetze@u-aizu.ac.jp>

• If there is a read error when reading the tem-
plate source file during aent, get a stupid error
within error message, and never tells you about
the file

• How about "include" support for the config
file? Thatway one could also cover architec-
ture specific things by “include ${lib-
dir}/${project}.defs” in the config file. Sub-
mitted: Jerry Pendergraft <jerry.pender-
graft@endocardial.com>, 7 Sep 2001

Page 34 (./lib/en/howto/devel_to_do.so) Peter Miller

Aegis Howto

• Add anaetouchcommand, to touch all of the
(non-build) source files in the change. Submit-
ted: 2001

• Hav ethe “aeclean −list” option say what
aeclean would do, rather than list the change
source files. Submitted: 2001

• Hav eaed (aem) *remember* the previous state
when it finds a problem (much like aet does,
now). Submitted:Ralf Fassel
<ralf@akutech.de> 3-Mar-2002

10.12.5.1. More O(1) Scalability

• Need to supplement the
{project,change}_file_find and
{project,change}_file_nth interfaces with
{project,change}_file_name_nth interfaces.
Then, use them as often as possible.

• Need the fstate file to have a manifest field;
access this for file names. Then, store each file
into in a separate file; only access this file is file
state is required.

• The presence or absence of the manifest field in
the top-level fstate file tells you if the old or
new file state usage is present.

10.12.6. GUI

• tkaeca barfs when there are no changes on the
branch. shouldbe more graceful. Submitted:
Ewolt Wolters <ewolt@pallas-athena.com>, 11
Aug 1999

• using tkaegis: project > branch > role > inte-
grate, a window pops up "Error in tcl script,
Error: invalid command name
".mbar.review.menu"". Submitted:Ewolt
Wolters <ewolt@pallas-athena.com> 9 Aug
1999

• user pasted in text (including back slash) into
aeifail edit window. which was accepted, but
broke change state (illegal escape sequence).
Submitted: Michael McCarty <mmc-
carty@xinetix.com>, 10 May 1999

• A new ${architecture_list} substitution to give
all architectures in a command. Submitted:
jerry.pendergraft@endocardial.com, 31 Mar
1999

• hav eaedist −rec accept a −delta option, so you
can tell it where to apply from. Anticipated use
is “−delta 0” meaning start of branch. (also a
−reg option). Submitted:PMiller, 22-mar-99

10.12.7. Releaseand Build and Install

• add debian.deb file, add notification to
<cd@debian.org> for new releases. Submitted:
PMiller, 22-Jun-99

• building documentation needs to talk about libz
some more. particularly, you either need it on
ROOT’s LD_LIBRARY_PATH or you need to
static link it. Submitted: Ralf Fassel
<ralf@akutech.de> 5-Apr-99

• hav econfigure script whine about missing libz
Submitted: PMiller, 7 Apr 99

• hav econfigure script whine about missing reg-
comp Submitted: PMiller, 7 Apr 99

• Sample documentation needs to make the
groupthing obvious. Andalso the umask at
aenpr time! Submitted: Alan Zimmerman
<alanz@electrosolv.co.za>, 5 Apr 1999

• generated makefile CC=cc needs to quote cc in
case has spaces Submitted: Aaron Johnson
<adj@ccltd.com>, 31 Mar 1999

• The BUILDING file needs to mention that you
should install zlib with −−prefix=/usr because
many systems think /usr/local/lib "insecure
directory". Submitted:Fabien Campagne
<campagne@Inka.MSSM.EDU>, 26 Mar 1999

• add piece to BUILDING file saying to get
Apache first. Submitted: Graham Wheeler
<gram@cdsec.com> 27 Jan 1999

10.12.8. Database

• Write an ODBC interface to the database?
Submitted: P. Miller, 16 Aug 2001

• Does it make sense to have an NNTP interface?
Would it be any use? Submitted:P. Miller, 16
Aug 2001

Peter Miller (./lib/en/howto/main.ms) Page 35

Howto Aegis

.

Page 36 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 1

Aegis Howto

Table of Contents

1. Introduction . 3
1.1. Assumed Knowledge . 3
1.2. Howto Install Aegis . 3
1.3. Howto Contribute . 3

2. Cheat Sheet . 4
2.1. Common Commands. 4
2.2. Developer Commands. 4
2.3. Reviewer Commands. 5
2.4. Integrator Commands. 5
2.5. Project Administrator Commands. 5

3. How to Start Using Aegis . 6
3.1. First, Create The Project. 6
3.2. Second, Use a Template Project. 6
3.3. Second, Copy a Template Project 6

4. How to Recreate Old Versions . 7
4.1. aecp. 7
4.2. Finding Delta Numbers . 7
4.3. ${version} . 7
4.4. Out Of Date . 7

5. How to Create a New Project . 9
5.1. Single User Project. 9
5.2. Two User Project . 9
5.3. Multi User Project . 10
5.4. Warning . 10
5.5. Changing The Project Owner. 10

6. How to Move a Project . 12
6.1. Relocating a Project. 12
6.2. Renaming a Project. 12

7. Working in Teams . 14
7.1. Local . 14
7.2. Distributed . 15

8. How to use Aegis with Python . 18
8.1. Handling Aegis search paths. 18
8.2. The build step . 19
8.3. Testing . 19
8.4. Running your programs . 20

9. Howto End A Branch . 22
10. How to Become an Aegis Developer 24

10.1. Required Software . 24
10.2. Create The Aegis Project. 25
10.3. The Download . 25
10.4. Supporting Several Architectures 27
10.5. The Bleeding Edge . 28
10.6. Undiscovered Country . 28
10.7. Sending Changes. 28
10.8. Guidelines . 29
10.9. Coding Style . 29
10.10. Writing Tests . 29
10.11. Debugging . 30
10.12. The To-Do List . 30

Peter Miller (./lib/en/howto/main.ms) Page 1001

Howto Aegis

Page 1002 () Peter Miller

