Testing? What testing?

Peter Miller
Platypus Technology

ABSTRACT

This paper presents a simplistic yetyeoful model of what a test is. When you intend to
test your softare, you hee o design your software to be tabte. This paper will
examine attributes of software implied by this mod8lome examples of automated

testing will be gien.

1. What isatest?

The core thesis of this paper is the fdésat a test
consists of three things: a system in a defined
state, a defined transaction, and a confirmation
that the system awugs in a cefined state.

initial
state

transactio

This is an werly simplistic statement, but remains
remarkable usefulThe "system" under test could
be a simple object, a collection of interrelated
objects, a whole application, or a distried
multi-layer client-server system.Equally, the
transaction could be a single byte of input, a
single edge of a state transition diagram, or a
series of transactions lumped together as a single
event being considered.

Confirming that the system under test hasvedlri

in a particular state can be done in magysv
Some states are clearly visable, sometimeg the
are aailable hut not useful, and some internal
states are not for user consumption and are much
harder to access and therefore harder to confirm.

1. There is a gming body of knowledge called
"Transaction Based testing" or sometimegatiBaction
Based Verification".

Testing? Whatesting?

Peteviller

initial
state

Please note that this issanplistic definition of a
test. Itdoes not ceer all forms of testing (such as
tests of usability maintainability portability,
robustness and so on which neakip te other
zillion software sub-characteristics listed in 1SO
9126) and it is no substitute for a well thought out
test plan. It does, hwever, provide some
language for talking about functional testing.

2. Manual testing isno testing

Humans are really bad at boring, repetitiasks.

If your test plan is based on the idea that your
staf will faithfully execute a long list of printed
instructions, at least once per release, then your
testing is probably not effegg.

For example, map manual test plans contain long
sequences of things the operator is required to do,
often with information on the screen to be
confirmed as correct. This is alery well for
successful testsubwhat happens when orel§?
Usually these test scripts eer lage numbers of
behaiors. Theres thus a motiation to complete
the rest of the script, rather than stop, anceta

Page 1

do the start of the script aim when the softare
has been fixed.

There are tw themes here: (a) testersvhab
look "productie” or they might not get paid, and
(b) redoing the first bit again and again is boring.

Let’s look at that definition again, rephrasing what
our manual test scripts are dointiJsually, these
test scripts start from a defined state, and define a
transaction and a confirmations of the destination
state, then the me transaction and confirmation,
ad nauseum." Now, what happens when one of
those confirmationsafls? Well, we knav it's in

the wrong state, so ging on to &ecute the rest of
the script, we are no longer fulfilling the initial
portion of our three-part definition: we arem

the defined state that the transaction is to be
applied to. After the firstdilure, the rest of the
results areno information.

For effectve testing, then, you need something
that is ery good at accurately repeating the same
script over and over again, and reporting ery
promptly when something goes wrong.
Computers are ery good at boring, repetitious
tasks. Thg don't complain when you ask them to
run the same stupid scripts tens werethousands
of times. And if the script breaks, tlyestop. For
effectve testing, then, you need automated
testing. Letthe humanswrite the tests, and let the
computergun the tests.

3. Software Attributes

Automated testing requires the ability to
automatically get the system under test into a

Testing? Whatesting?

Peteviller

defined state, the ability to automatically apply
one or more transaction, and the ability to
automatically confirm the current state (either
read-and-compare, or write-and-diff, usually).

Some things are easy to test, e.g.
cat > test.in
cat > test.sed
cat > expect ed- out put
sed-clone -f test.sed test.in \
> test.out
di ff expected-output test.out

But some things require some specific changes to
get the three propertie€.g. a virtual machine
simulator needs the ability to setgigters and
stack,etc, and later to dump them do thean be
confirmed. Thismay be obseableeg. as some
interesting opcodes only present in the simujator
and not the real machine, maybe to get the
simulator to exit with a success/fail indicator.

3.1 Initial State

The system under test needs a way to be placed in
a well defined initial stateThis is something that
most programs are reasonably good ¥¥ord
processors can load a file, image processing
systems can load an image, databases can be
created and populated with test sets,

It was mentioned alke that transactions can
actually be a series of transactiorSometimes,
getting the system under test into a defined state
requires starting from the drflt state and
applying a series of kmen-to-work transactions.
Provided that you camet the system under test
into a defined state automaticaliycan be tested
automatically.

3.2 Transactions

Automating transactions can often be the hardest
part of automated testingUsually, this means
automating the simulation of inputhis could be
user input, or a network connection, or a haw
simulation for an embedded application.

3.2.1 Command Line

The design of UNIX makes the testing of
command line programs reblatly simple,
because you can redirect input from a filghis
means that you donéctually need to change your
software (or not much, anyway).

3.2.2 Full Screen

Full-screen programs are often simikaith input
again directed from a file, although you may need

Page 2

to male it tolerant of non-tty input possibly under
the control of a command line optionThe
trickier cases can be handled wattpect.

3.2.3 GUI

On the other hand GUI interfaces are harder
There are some utilities, such HeReplay which
help. Butthey lead us to looking at the problem
differently: where can we inject the input?

We a@n inject it into the X server (or ¥ a ke

X server which exists solely to provide test input).
We @n proxy the X seer, and inject the input
via the proxy.

We @n inject it into the went loop of our
application. This,of course, requires changing
the system under test.

We @n hae dternate input classes, a "real" one
and an "automated" on€lhis, of course, means
that the "real" input class doesmjet tested, Wbt
the rest of the system does, and that may be
enough.

3.2.4 Client Server

Most of the techniques useful for X programs
work for client server systems as welkFake
clients, Bke srwers, proxies, alternag input
classesetc.

3.2.5 Observation

In order to test the system, some aspect ofag w
changed. Auxiliarytest support, more tolerant
input, multiple input sources.

3.3 Verify State

Some programs, such as tkml example gven
above, are relatvely easy to testMany programs
store a significant amount of state when yotesa
to a file, and this may be compared wdtff(1) or
cmp(l). Other systems, hwoever, ae more
challenging.

3.3.1 Full Screen

Many curses(3) programs need a special
command to dump the screen into a text file for
comparison usingiff(1). Itis also possible to use
expect in mary cases.

3.3.2 GUI

Many of the input solutions alsoark for output,
but you will probably need special commands or
options to get screen dumps at sgatenoments,
for comparison.

Wholesale capture and comparison of the output
stream is problematic, usually because of

Testing? Whatesting?

Peteviller

gratuitous differences not relnt to the test.
3.3.3 Client Server

You can use bogus clients, bogus servers, or
clever proxies.

3.3.4 Observation

In order to test the system, some aspect ofag w
changed. Auxiliarytest support, captured output,
multiple output destinations.

4. Discussion

There are some things which arise from
consideration of these ideas.

4.1 No Result

In coming up with a testing game, it is necessary
to remember that tests do not simpégs or fail.

This is further complicated by thevirted sense
of some tests.For example, your deglopment

process may require that aug fix be

accompanied by a test whicéils on the unfied

system, angbasses on the fixed system.

Consider the issues in achieving a necessary
initial state by applying transactions to an initial
state. What happens when one of these
transactions, which are not the transaction under
test,fail? In such a case it canfail, because the
bug fix case will give a flsepositive, but equally

it cant succeed because this renders the test
meaningless.

The solution is to ha a hird result, often called
no result, which when ngaed still meansno
result.

Similar problems can occur with the transaction
and verification stages of the test.

4.2 Negative Testing

Some other examples of gaive testing will be
given (i.e.didn’t arrive in the right state, or iralid
transactions resulting in arvedid state change).

4.3 Watch Me

A useful facility for creating tests is a "watch me"
mode. Thisis a mode or tool or whatnot that
allows the system to record inputs and output for
replay and confirmation (respeady) at a later
time. While this is not one of the necessary
attributes, it is often a useful side effect.

Page 3

4.4 Assert

This simple model of testing\gs a dfferent spin

on the humbleassert statement. Theise of
assert can be thought of aserifying that the
system is in a particular state, or that the
transaction (input) isalid. Thisis not the kinf of
artifact youwant to see in production code; it is
usually compiled out of production code.

45 Traceon Request

Another thing which is often compiled out of
production code is aaviety of tracing macros,
which allov you to see the state ofamous
portions of the system as there executed. You
sometimes see this in production systems, whene
there is little performance impact; it igteemely
useful feature for tech support, as well as testing.

5. Testing? What testing?

| once worked on an image processing system for
which the compan had partial source, and the
inner workings where supplied as a library from
the endor One of the transforms had some
trouble, and | fixed it, but then | wonderedahb
should test it. How mary of us @n confirm
visually that a 2D \lIsh-Hadamard transform has
worked correctly? While the destination state was
visible on the screen, \ghg humans 2 side-by-
side pictures (a "does it look &kthis" manual
test) you will almost certainly get a false posti
E.g. those "find 10 differences" cartoon pictures
on the funnies section of the wmspaper If
humans are so bad at spottigigss differences,
hov can we epect them to find one pak
different in a million? So, | looked for the tool to
compare tw images and tell me fomary pixels
were diferent. There wasn't one. How did the
vendor test their product?

If you have testability as a requirement of your
software, you will write different software than if
testability was not a requirement.

Do all the tools we usevery day hae these three
properties: Can their initial state be loaded
automatically? Canheir transactions be applied
automatically? Cantheir destination state be
confirmed automatically? If gnone of these is
missing (but usually the last one), whategi us
ary confidence that thewere tested at all?

Testing? Whatesting? Petemiiller

Page 4

