
Barman

Backup and Recovery Manager
for PostgreSQL

version 1.6.0

29 February 2016

Contents

1 Introduction 4

2 Before you start 4
2.1 System requirements . 5

3 Installation 5
3.1 On RedHat/CentOS using RPM packages . 5

3.2 On Debian/Ubuntu using packages . 6

3.3 From sources . 6

4 Getting started 6
4.1 Prerequisites . 6

4.1.1 SSH connection . 6

4.1.2 PostgreSQL connection . 7

4.1.3 Backup directory . 7

4.2 Basic configuration . 8

4.2.1 Global/server options . 8

4.2.2 Configuration files directory . 8

4.2.3 Lock files . 8

4.2.4 Customisation of binary paths . 9

4.2.5 Example of configuration . 9

4.2.6 Initial checks . 9

4.2.7 Continuous WAL archiving . 9

4.3 Listing the servers . 11

4.4 Executing a full backup . 11

4.4.1 Implicit restore point . 11

4.4.2 Immediate Checkpoint . 12

4.5 Viewing the list of backups for a server . 12

4.6 Restoring a whole server . 12

4.6.1 Remote recovery . 13

4.6.2 Relocating one or more tablespaces . 13

4.6.3 Restoring to a given point in time . 13

4.6.4 Limitations of partial WAL files with recovery . 14

4.7 Retry of copy in backup/recovery operations . 14

5 Available commands 15

1

5.1 General commands . 15

5.1.1 List available servers . 15

5.1.2 Maintenance mode . 15

5.2 Server commands . 15

5.2.1 Show the configuration for a given server . 15

5.2.2 Take a base backup . 16

5.2.3 Show available backups for a server . 16

5.2.4 Check a server is properly working . 16

5.2.5 Diagnose a Barman installation . 16

5.2.6 Rebuild the WAL archive . 16

5.2.7 Access WAL archive using get-wal . 17

5.3 Backup commands . 17

5.3.1 Show backup information . 17

5.3.2 Delete a backup . 18

5.3.3 List backup files . 18

6 Main features 18
6.1 Incremental backup . 18

6.2 WAL compression . 19

6.3 Limiting bandwidth usage . 19

6.4 Network Compression . 20

6.5 Backup ID shortcuts . 20

6.6 Minimum redundancy safety . 20

6.7 Retention policies . 20

6.7.1 Scope . 21

6.7.2 How they work . 21

6.7.3 Configuration and syntax . 21

6.8 Concurrent Backup and backup from a standby . 22

6.9 Hook scripts . 23

6.9.1 Backup scripts . 23

6.9.2 WAL archive scripts . 24

6.10 Integration with standby servers . 25

7 Support and sponsor opportunities 25

8 Submitting a bug 25

9 Contributing to Barman 25

10 Authors 26

2

11 Links 26

12 License and Contributions 26

3

Barman (backup and recovery manager) is an administration tool for disaster recovery of PostgreSQL servers
written in Python. Barman can perform remote backups of multiple servers in business critical environments, and
helps DBAs during the recovery phase.

Barman’s most wanted features include: backup catalogues, incremental backup, retention policies, remote recov-
ery, archiving and compression of WAL files and of backups. Barman is written and maintained by PostgreSQL
professionals 2ndQuadrant.

1 Introduction

In a perfect world, there would be no need for a backup. However it is important, especially in business environ-
ments, to be prepared for when the “unexpected” happens. In a database scenario, the unexpected could take any
of the following forms:

• data corruption;
• system failure, including hardware failure;
• human error;
• natural disaster.

In such cases, any ICT manager or DBA should be able to repair the incident and recover the database in the
shortest possible time. We normally refer to this discipline as Disaster recovery.

This guide assumes that you are familiar with theoretical disaster recovery concepts, and you have a grasp of
PostgreSQL fundamentals in terms of physical backup and disaster recovery. If not, we encourage you to read the
PostgreSQL documentation or any of the recommended books on PostgreSQL.

Professional training on this topic is another effective way of learning these concepts. At any time of the year you
can find many courses available all over the world, delivered by PostgreSQL companies such as 2ndQuadrant.

For now, you should be aware that any PostgreSQL physical/binary backup (not to be confused with the logical
backups produced by the pg dump utility) is composed of:

• a base backup;
• one or more WAL files (usually collected through continuous archiving).

PostgreSQL offers the core primitives that allow DBAs to setup a really robust Disaster Recovery environment.
However, it becomes complicated to manage multiple backups, from one or more PostgreSQL servers. Restoring
a given backup is another task that any PostgreSQL DBA would love to see more automated and user friendly.

With these goals in mind, 2ndQuadrant started the development of Barman for PostgreSQL. Barman is an acronym
for “Backup and Recovery Manager”. Currently Barman works only on Linux and Unix operating systems.

2 Before you start

The first step is to decide the architecture of your backup. In a simple scenario, you have one PostgreSQL
instance (server) running on a host. You want your data continuously backed up to another server, called the
backup server.

Barman allows you to launch PostgreSQL backups directly from the backup server, using SSH connections. Fur-
thermore, it allows you to centralise your backups in case you have more than one PostgreSQL server to manage.

During this guide, we will assume that:

• there is one PostgreSQL instance on a host (called pg for simplicity)

4

• there is one backup server on another host (called backup)
• communication via SSH between the two servers is enabled
• the PostgreSQL server can be reached from the backup server as the postgres operating system user (or

another user with PostgreSQL database superuser privileges, typically configured via ident authentication)

It is important to note that, for disaster recovery, these two servers must not share any physical resource except for
the network. You can use Barman in geographical redundancy scenarios for better disaster recovery outcomes.

2.1 System requirements

• Linux/Unix
• Python 2.6 or 2.7
• Python modules:

– argcomplete
– argh >= 0.21.2
– psycopg2
– python-dateutil < 2.0 (since version 2.0 requires python3)
– distribute (optional)

• PostgreSQL >= 8.3
• rsync >= 3.0.4

Important: PostgreSQL’s Point-In-Time-Recovery requires the same major version of the source-
PostgreSQL server to be installed on the backup server.

Important: Users of RedHat Enterprise Linux, CentOS and Scientific Linux are required to install
the Extra Packages Enterprise Linux (EPEL) repository.

Note: Version 1.2.3 of Barman has been refactored for Python 3 support. Please consider it as
experimental now and report any bug through the ticketing system on SourceForge or mailing list.

3 Installation

Important: The recommended way to install Barman is by using the available packages for your
GNU/Linux distribution.

3.1 On RedHat/CentOS using RPM packages

Barman can be installed on RHEL7, RHEL6 and RHEL5 Linux systems using RPM packages. It is required to
install the Extra Packages Enterprise Linux (EPEL) repository beforehand.

RPM packages for Barman are available via Yum through the PostgreSQL Global Development Group RPM
repository. You need to follow the instructions for your distribution (RedHat, CentOS, Fedora, etc.) and architec-
ture as detailed at yum.postgresql.org.

Then, as root simply type:

yum install barman

2ndQuadrant also maintains RPM packages for Barman and distributes them through Sourceforge.net.

5

http://fedoraproject.org/wiki/EPEL
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
https://sourceforge.net/projects/pgbarman/files/

3.2 On Debian/Ubuntu using packages

Barman can be installed on Debian and Ubuntu Linux systems using packages.

It is directly available in the official repository for Debian Sid (unstable) and Ubuntu 14.04 (Trusty Tahr).

However, the recommended method for installing Barman on Debian and Ubuntu is through the PostgreSQL
Community APT repository. Instructions can be found in the APT section of the PostgreSQL Wiki.

Note: Thanks to the direct involvement of Barman developers in the PostgreSQL Community APT
repository project, you will have access to the most updated versions of Barman.

Installing Barman is as simple as typing, as root user:

apt-get install barman

3.3 From sources

WARNING: Manual installation of Barman from sources should only be performed by expert GNU/Linux
users. Installing Barman this way requires system administration activities such as dependencies man-
agement, barman user creation, configuration of the barman.conf file, cron setup for the barman
cron command, log management, etc.

Create a system user called barman on the backup server. As barman user, download the sources and uncompress
them.

For a system-wide installation, type:

barman@backup$./setup.py build
run this command with root privileges or through sudo

barman@backup# ./setup.py install

For a local installation, type:

barman@backup$./setup.py install --user

Important: The --user option works only with python-distribute

barman will be installed in your user directory (make sure that your PATH environment variable is set properly).

4 Getting started

4.1 Prerequisites

4.1.1 SSH connection

Barman needs a bidirectional SSH connection between the barman user on the backup server and the postgres
user. SSH must be configured such that there is no password prompt presented when connecting.

As the barman user on the backup server, generate an SSH key with an empty password, and append the public
key to the authorized keys file of the postgres user on the pg server.

The barman user on the backup server should then be able to perform the following operation without typing a
password:

6

http://apt.postgresql.org/
http://apt.postgresql.org/
https://wiki.postgresql.org/wiki/Apt

barman@backup$ ssh postgres@pg

The procedure must be repeated with sides swapped in order to allow the postgres user on the pg server to
connect to the backup server as the barman user without typing a password:

postgres@pg$ ssh barman@backup

For further information, refer to OpenSSH documentation.

4.1.2 PostgreSQL connection

You need to make sure that the backup server allows connection to the PostgreSQL server on pg as superuser
(postgres).

You can choose your favourite client authentication method among those offered by PostgreSQL. More informa-
tion can be found in the PostgreSQL Documentation.

barman@backup$ psql -c ’SELECT version()’ -U postgres -h pg

Note: As of version 1.1.2, Barman honours the application name connection option for Post-
greSQL servers 9.0 or higher.

Streaming connection As of version 1.6.0 Barman enables the connection to a PostgreSQL server using its
native streaming replication protocol. In order to set up a streaming connection, you need to:

• Properly configure PostgreSQL to accept streaming replication connections from the Barman server. We
encourage users to read the PostgreSQL documentation, in particular:

– Role attributes
– The pg hba.conf file
– Setting up standby servers using streaming replication

• Set the streaming conninfo parameter in the Barman server configuration accordingly.

IMPORTANT: Setting up streaming replication is not a task that is strictly related to Barman con-
figuration. Please refer to PostgreSQL documentation, mailing lists, and books for this activity.

4.1.3 Backup directory

Barman needs a main backup directory to store all the backups. Even though you can define a separate folder
for each server you want to back up and for each type of resource (backup or WAL segments, for instance), we
suggest that you adhere to the default rules and stick with the conventions that Barman chooses for you.

You will see that the configuration file (as explained below) defines a barman home variable, which is the directory
where Barman will store all your backups by default. We choose /var/lib/barman as home directory for
Barman:

barman@backup$ sudo mkdir /var/lib/barman
barman@backup$ sudo chown barman:barman /var/lib/barman

Important: We assume that you have enough space, and that you have already thought about redun-
dancy and safety of your disks.

7

http://www.postgresql.org/docs/current/static/client-authentication.html
http://www.postgresql.org/docs/current/static/protocol-replication.html
http://www.postgresql.org/docs/current/static/role-attributes.html
http://www.postgresql.org/docs/current/static/role-attributes.html
http://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION

4.2 Basic configuration

In the docs directory you will find a minimal configuration file. Use it as a template, and copy it to /etc/barman.conf,
or to ˜/.barman.conf. In general, the former applies to all the users on the backup server, while the latter applies
only to the barman user; for the purpose of this tutorial there is no difference in using one or the other.

From version 1.2.1, you can use /etc/barman/barman.conf as default system configuration file.

The configuration file follows the standard INI format, and is split in:

• a section for general configuration (identified by the barman label)
• a section for each PostgreSQL server to be backed up (identified by the server label, e.g. main or pg)1

4.2.1 Global/server options

Every option in the configuration file has a scope:

• global
• server
• global/server

Global options can be present in the general section (identified by barman). Server options can only be specified
in a server section.

Some options can be defined at global level and overridden at server level, allowing users to specify a generic
behaviour and refine it for one or more servers. For a list of all the available configurations and their scope, please
refer to section 5 of the man page.

man 5 barman

4.2.2 Configuration files directory

As of version 1.1.2, you can now specify a directory for configuration files similarly to other Linux applications,
using the configuration files directory option (empty by default). If the value of configuration files directory
is a directory, Barman will read all the files with .conf extension that exist in that folder. For example, if you
set it to /etc/barman.d, you can specify your PostgreSQL servers placing each section in a separate .conf file
inside the /etc/barman.d folder.

Otherwise, you can use Barman’s standard way of specifying sections within the main configuration file.

4.2.3 Lock files

Since version 1.5.0, Barman allows DBAs to specify a directory for lock files through the barman lock directory
global option.

Lock files are used to coordinate concurrent work at global and server level (for example, cron operations, backup
operations, access to the WAL archive, etc.).

By default (for backward compatibility reasons), barman lock directory is set to barman home.

Important: This change won’t affect users upgrading from a version of Barman older than 1.5.0,
unless you have written applications that depend on the names of the lock files. However, this is not
a typical and common case for Barman and most of users do not fall into this category.

1all and barman are reserved words and cannot be used as server labels.

8

http://docs.pgbarman.org/barman.5.html

Tip: Users are encouraged to use a directory in a volatile partition, such as the one dedicated to
run-time variable data (e.g. /var/run/barman).

4.2.4 Customisation of binary paths

As of version 1.6.0, Barman allows users to specify one or more directories where Barman looks for executable
files, using the global/server option path prefix.

If a path prefix is provided, it must contain a list of one or more directories separated by colon. Barman will
search inside these directories first, then in those specified by the PATH environment variable.

By default the path prefix option is empty.

4.2.5 Example of configuration

Here follows a basic example of PostgreSQL configuration:

[barman]
barman_home = /var/lib/barman

barman_user = barman

log_file = /var/log/barman/barman.log

compression = gzip

reuse_backup = link

minimum_redundancy = 1

[main]
description = "Main PostgreSQL Database"

ssh_command = ssh postgres@pg

conninfo = host=pg user=postgres

For more detailed information, please refer to the distributed barman.conf file.

4.2.6 Initial checks

Once you have created your configuration file (or files), you can now test Barman’s configuration by executing:

barman@backup$ barman show-server main
barman@backup$ barman check main

Write down the incoming wals directory, as printed by the barman show-server main command, because
you will need it to setup continuous WAL archiving.

Important: The barman check main command automatically creates all the directories for the
continuous backup of the main server.

4.2.7 Continuous WAL archiving

Barman requires that continuous WAL archiving via PostgreSQL’s archive command is properly configured on
the master. Edit the postgresql.conf file of the PostgreSQL instance on the pg database and activate the archive
mode:

9

wal_level = ’archive’ # For PostgreSQL >= 9.0

archive_mode = on
archive_command = ’rsync -a %p barman@backup:INCOMING_WALS_DIRECTORY/%f’

Make sure you change the INCOMING WALS DIRECTORY placeholder with the value returned by the barman
show-server main command above.

In case you use Hot Standby, wal level must be set to hot standby.

Restart the PostgreSQL server.

In order to test that continuous archiving is on and properly working, you need to check both the PostgreSQL
server and the backup server (in particular, that WAL files are correctly collected in the destination directory).

Warning: It is currently a requirement that WAL files from PostgreSQL are shipped to the Barman
server. Without archive command being properly set in PostgreSQL to send WAL files to Barman,
full backups cannot be taken.

Important: PostgreSQL 9.5 introduces support for WAL file archiving using archive command
from a standby. This feature is not yet implemented in Barman.

Reducing RPO with WAL streaming From version 1.6.0, Barman improves its Recovery Point Objective
(RPO) performance by allowing users to add, on top of the standard archive command strategy, continuous WAL
streaming from a PostgreSQL server.

Important: Currently, WAL streaming is only supported in Barman as an additional method for
continuous archiving of transaction logs. Future versions of Barman will allow users of PostgreSQL
9.4 and above to rely exclusively on WAL streaming (and abandon the standard archive command
method), thanks to replication slots. Following our incremental development approach, version 1.6.0
aims to gradually introduce support of this feature in PostgreSQL Disaster Recovery solutions based
on Barman. At the same time, users’ feedback and production adoption will allow us to improve future
versions and implement a “streaming-only” method of WAL archiving that is based on transparent
management of replication slots in Barman.

Barman relies on pg receivexlog, a utility that is available from PostgreSQL 9.2 which exploits the native
streaming replication protocol and continuously receives transaction logs from a PostgreSQL server (be it a master
or a standby).

Important: Barman requires that pg receivexlog is installed in the same server. For PostgreSQL
9.2 servers, you need pg receivexlog of version 9.2 installed alongside with Barman. For Post-
greSQL 9.3 and above, it is recommended to install the latest available version of pg receivexlog,
as it is back compatible. Otherwise, users can install multiple versions of pg receivexlog in the
Barman server and properly point to the specific version for a server, using the path option in the
configuration file.

In order to enable streaming of transaction logs, you need to:

1. setup a streaming connection, as previously described;
2. set the streaming archiver option to on.

The cron command, if the aforementioned requirements are met, transparently manages log streaming through
the execution of the receive-wal command. This is the recommended scenario.

However, users can manually execute the receive-wal command:

10

http://www.postgresql.org/docs/9.4/static/app-pgreceivexlog.html

barman receive-wal <server_name>

Note: The receive-wal command is a foreground process.

Transaction logs are streamed directly in the directory specified by the streaming wals directory configura-
tion option and are then archived by the archive-wal command.

Stopping a receive-wal process for a server If a receive-wal process is running in background (e.g. started
by the cron command), it is possible to ask barman to stop it by invoking the receive-wal command with the
--stop option:

barman receive-wal --stop <server_name>

Reset location of receive-wal In some cases, mainly due to the current lack of support for replication slots in
Barman, it may be necessary to reset the location of the streaming WAL archiver (e.g.: a prolonged interruption
of the receive-wal process might cause Barman to go out of sync with the master).

You can reset the location using --reset option of the receive-wal command, as follows:

barman receive-wal --reset <server_name>

Note: The --reset option requires that no receive-wal is running.

4.3 Listing the servers

The following command displays the list of all the available servers:

barman@backup$ barman list-server

4.4 Executing a full backup

To take a backup for the main server, issue the following command:

barman@backup$ barman backup main

As of version 1.1.0, you can serialise the backup of your managed servers by using the all target for the server:

barman@backup$ barman backup all

This will iterate through your available servers and sequentially take a backup for each of them.

4.4.1 Implicit restore point

As of version 1.5.1, at the end of a successful backup Barman automatically creates a restore point that can be
used jointly with --target-name during recovery.

By default, the restore point name uses the following convention: barman <backup id>.

Barman internally uses the PostgreSQL function called pg create restore point: for further information,
please refer to the PostgreSQL documentation on system administration functions.

Important: This feature is only available for PostgreSQL 9.1 or above.

11

http://www.postgresql.org/docs/current/static/functions-admin.html

4.4.2 Immediate Checkpoint

As of version 1.3.0, it is possible to use the immediate checkpoint configuration global/server option (set to
false by default).

Before starting a backup, Barman requests a checkpoint, which generates additional workload. Normally that
checkpoint is throttled according to the settings for workload control on the PostgreSQL server, which means that
the backup could be delayed.

If immediate checkpoint is set to true, PostgreSQL will not try to limit the workload, and the checkpoint will
happen at maximum speed, starting the backup as soon as possible.

At any time, you can override the configuration option behaviour, by issuing barman backup with any of these
two options:

• --immediate-checkpoint, which forces an immediate checkpoint;
• --no-immediate-checkpoint, which forces to wait for the checkpoint to happen.

4.5 Viewing the list of backups for a server

To list all the available backups for a given server, issue:

barman@backup$ barman list-backup main

the format of the output is as in:

main - 20120529T092136 - Wed May 30 15:20:25 2012 - Size: 5.0 TiB
- WAL Size: 845.0 GiB (tablespaces: a:/disk1/a, t:/disk2/t)

where 20120529T092136 is the ID of the backup and Wed May 30 15:20:25 2012 is the start time of the
operation, Size is the size of the base backup and WAL Size is the size of the archived WAL files.

As of version 1.1.2, you can get a listing of the available backups for all your servers, using the all target for the
server:

barman@backup$ barman list-backup all

4.6 Restoring a whole server

To restore a whole server issue the following command:

barman@backup$ barman recover main 20110920T185953 /path/to/recover/dir

where 20110920T185953 is the ID of the backup to be restored. When this command completes successfully,
/path/to/recover/dir contains a complete data directory ready to be started as a PostgreSQL database server.

Here is an example of a command that starts the server:

barman@backup$ pg_ctl -D /path/to/recover/dir start

Important: If you run this command as user barman, it will become the database superuser.

You can retrieve a list of backup IDs for a specific server with:

12

barman@backup$ barman list-backup srvpgsql

Important: Barman does not currently keep track of symbolic links inside PGDATA (except for
tablespaces inside pg tblspc). We encourage system administrators to keep track of symbolic links
and to add them to the disaster recovery plans/procedures in case they need to be restored in their
original location.

4.6.1 Remote recovery

Barman is able to recover a backup on a remote server through the --remote-ssh-command COMMAND option
for the recover command.

If this option is specified, barman uses COMMAND to connect to a remote host.

Here is an example of a command that starts recovery on a remote server:

barman@backup$ barman recover --remote-ssh-command="ssh user@remotehost" \
main 20110920T185953 /path/to/recover/dir

Note: The postgres user is normally used to recover on a remote host.

There are some limitations when using remote recovery. It is important to be aware that:

• unless get-wal is specified in the recovery options (available from version 1.5.0), Barman requires at
least 4GB of free space in the system’s temporary directory (usually /tmp);

• the SSH connection between Barman and the remote host must use public key exchange authentication
method;

• the remote user must be able to create the required destination directories for PGDATA and, where applicable,
tablespaces;

• there must be enough free space on the remote server to contain the base backup and the WAL files needed
for recovery.

4.6.2 Relocating one or more tablespaces

Important: As of version 1.3.0, it is possible to relocate a tablespace both with local and remote
recovery.

Barman is able to automatically relocate one or more tablespaces using the recover command with the --tablespace
option. The option accepts a pair of values as arguments using the NAME:DIRECTORY format:

• name/identifier of the tablespace (NAME);
• destination directory (DIRECTORY).

If the destination directory does not exists, Barman will try to create it (assuming you have enough privileges).

4.6.3 Restoring to a given point in time

Barman employs PostgreSQL’s Point-in-Time Recovery (PITR) by allowing DBAs to specify a recovery target,
either as a timestamp or as a transaction ID; you can also specify whether the recovery target should be included
or not in the recovery.

The recovery target can be specified using one of three mutually exclusive options:

13

• --target-time TARGET TIME: to specify a timestamp
• --target-xid TARGET XID: to specify a transaction ID
• --target-name TARGET NAME: to specify a named restore point - previously created with the pg create restore point(name)

function2

You can use the --exclusive option to specify whether to stop immediately before or immediately after the
recovery target.

Barman allows you to specify a target timeline for recovery, using the target-tli option. The notion of timeline
goes beyond the scope of this document; you can find more details in the PostgreSQL documentation, or in one of
2ndQuadrant’s Recovery training courses.

4.6.4 Limitations of partial WAL files with recovery

Version 1.6.0 introduces support for WAL streaming, by integrating PostgreSQL’s pg receivexlog utility with
Barman. The standard behaviour of pg receivexlog is to write transactional information in a file with .partial
suffix after the WAL segment name.

Barman expects a partial file to be in the streaming wals directory of a server. When completed, pg receivexlog
removes the .partial suffix and opens the following one, delivering the file to the archive-wal command of
Barman for permanent storage and compression.

In case of a sudden and unrecoverable failure of the master PostgreSQL server, the .partial file that has
been streamed to Barman contains very important information that the standard archiver (through PostgreSQL’s
archive command) has not been able to deliver to Barman.

Important: A current limitation of Barman is that the recover command is not yet able to transpar-
ently manage .partial files. In such situations, users will need to manually copy the latest partial
file from the server’s streaming wals directory of their Barman installation to the destination for
recovery, making sure that the .partial suffix is removed. Restoring a server using the last partial
file, reduces data loss, by bringing down recovery point objective to values around 0.

4.7 Retry of copy in backup/recovery operations

As of version 1.3.3, it is possible to take advantage of two new options in Barman:

• basebackup retry times (set to 0 by default)
• basebackup retry sleep (set to 30 by default)

When issuing a backup or a recovery, Barman normally tries to copy the base backup once. If the copy fails
(e.g. due to network problems), Barman terminates the operation with a failure.

By setting basebackup retry times, Barman will try to re-execute a copy operation as many times as requested
by the user. The basebackup retry sleep option specifies the number of seconds that Barman will wait be-
tween each attempt.

At any time you can override the configuration option behaviour from the command line, when issuing barman
backup or barman recover, using:

• --retry-times <retry number> (same logic as basebackup retry times)
• --no-retry (same as --retry-times 0)
• --retry-sleep <number of seconds> (same logic as basebackup retry sleep)

2Only available on PostgreSQL 9.1 and above.

14

5 Available commands

Barman commands are applied to three different levels:

• general commands, which apply to the backup catalogue
• server commands, which apply to a specific server (list available backups, execute a backup, etc.)
• backup commands, which apply to a specific backup in the catalogue (display information, issue a recovery,

delete the backup, etc.)

In the following sections the available commands will be described in detail.

5.1 General commands

5.1.1 List available servers

You can display the list of active servers that have been configured for your backup system with:

barman list-server

5.1.2 Maintenance mode

Cron command You can perform maintenance operations, on both WAL files and backups, using the command:

barman cron

As of version 1.5.1 barman cron executes WAL archiving operations concurrently on a server basis.

This also enforces retention policies on those servers that have:

• retention policy not empty and valid;
• retention policy mode set to auto.

Note: This command should be executed in a cron script. Our recommendation is to schedule barman
cron to run every minute.

Archive-wal command As of version 1.5.1, Barman introduces the archive-wal command:

barman archive-wal <server_name>

This is the command responsible for WAL maintenance operations, like compressing WAL files and moving them
from the incoming directory (if archiver is enabled) or the streaming directory (if streaming archiver is
enabled) into the archive.

Although it can be manually executed, the majority of users will not need to do it, given that it is transparently
invoked as a subprocess by the cron command, as part of the standard maintenance operations for every server.

5.2 Server commands

5.2.1 Show the configuration for a given server

You can show the configuration parameters for a given server with:

barman show-server <server_name>

15

5.2.2 Take a base backup

You can perform a full backup (base backup) for a given server with:

barman backup [--immediate-checkpoint] <server_name>

Tip: You can use barman backup all to sequentially backup all your configured servers.

5.2.3 Show available backups for a server

You can list the catalogue of available backups for a given server with:

barman list-backup <server_name>

5.2.4 Check a server is properly working

You can check if the connection to a given server is properly working with:

barman check <server_name>

Tip: You can use barman check all to check all your configured servers.

From version 1.3.3, you can automatically be notified if the latest backup of a given server is older than, for
example, 7 days.3

Barman introduces the option named last backup maximum age having the following syntax:

last_backup_maximum_age = {value {DAYS | WEEKS | MONTHS}}

where value is a positive integer representing the number of days, weeks or months of the time frame.

5.2.5 Diagnose a Barman installation

You can gather important information about all the configured server using:

barman diagnose

The diagnose command also provides other useful information, such as global configuration, SSH version,
Python version, rsync version, as well as current configuration and status of all servers.

Tip: You can use barman diagnose when you want to ask questions or report errors to Barman
developers, providing them with all the information about your issue.

5.2.6 Rebuild the WAL archive

At any time, you can regenerate the content of the WAL archive for a specific server (or every server, using the
all shortcut). The WAL archive is contained in the xlog.db file, and every Barman server has its own copy.
From version 1.2.4 you can now rebuild the xlog.db file with the rebuild-xlogdb command. This will scan all
the archived WAL files and regenerate the metadata for the archive.

3This feature is commonly known among the development team members as smelly backup check.

16

Important: Users of Barman < 1.2.3 might have suffered from a bug due to bad locking in highly
concurrent environments. You can now regenerate the WAL archive using the rebuild-xlogdb
command.

barman rebuild-xlogdb <server_name>

5.2.7 Access WAL archive using get-wal

From version 1.5.0, Barman allows users to request any xlog file from its WAL archive through the get-wal
command:

barman get-wal [-o OUTPUT_DIRECTORY] [-j|-x] <server_name> <wal_id>

If the requested WAL file is found in the server archive, the uncompressed content will be returned to STDOUT,
unless otherwise specified.

The following options are available for the get-wal command:

• -o allows users to specify a destination directory where Barman will deposit the requested WAL file
• -j will compress the output using bzip2 algorithm
• -x will compress the output using gzip algorithm

It is possible to use get-wal during a recovery operation, transforming the Barman server in a WAL hub for your
servers. This can be automatically achieved by adding the get-wal value to the recovery options global/server
configuration option:

recovery_options = ’get-wal’

recovery options is a global/server option that accepts a list of comma separated values. If the keyword
get-wal is present, during a recovery operation Barman will prepare the recovery.conf file by setting the
restore command so that barman get-wal is used to fetch the required WAL files.

This is an example of a restore command for a remote recovery:

restore_command = ’ssh barman@pgbackup barman get-wal SERVER %f > %p’

This is an example of a restore command for a local recovery:

restore_command = ’barman get-wal SERVER %f > %p’

Important: Even though recovery options aims to automate the process, using the get-wal
facility requires manual intervention and proper testing.

5.3 Backup commands

Note: Remember: a backup ID can be retrieved with barman list-backup <server name>

5.3.1 Show backup information

You can show all the available information for a particular backup of a given server with:

barman show-backup <server_name> <backup_id>

From version 1.1.2, in order to show the latest backup, you can issue:

barman show-backup <server_name> latest

17

5.3.2 Delete a backup

You can delete a given backup with:

barman delete <server_name> <backup_id>

From version 1.1.2, in order to delete the oldest backup, you can issue:

barman delete <server_name> oldest

5.3.3 List backup files

You can list the files (base backup and required WAL files) for a given backup with:

barman list-files [--target TARGET_TYPE] <server_name> <backup_id>

With the --target TARGET TYPE option, it is possible to choose the content of the list for a given backup.

Possible values for TARGET TYPE are:

• data: lists just the data files;
• standalone: lists the base backup files, including required WAL files;
• wal: lists all WAL files from the beginning of the base backup to the start of the following one (or until the

end of the log);
• full: same as data + wal.

The default value for TARGET TYPE is standalone.

Important: The list-files command facilitates interaction with external tools, and therefore can
be extremely useful to integrate > Barman into your archiving procedures.

6 Main features

6.1 Incremental backup

From version 1.4.0, Barman implements file-level incremental backup. Incremental backup is a kind of full
periodic backup which saves only data changes from the latest full backup available in the catalogue for a specific
PostgreSQL server. It must not be confused with differential backup, which is implemented by WAL continuous
archiving.

The main goals of incremental backup in Barman are:

• Reduce the time taken for the full backup process
• Reduce the disk space occupied by several periodic backups (data deduplication)

This feature heavily relies on rsync and hard links, which must be therefore supported by both the underlying
operating system and the file system where the backup data resides.

The main concept is that a subsequent base backup will share those files that have not changed since the previous
backup, leading to relevant savings in disk usage. This is particularly true of VLDB contexts and, more in general,
of those databases containing a high percentage of read-only historical tables.

Barman implements incremental backup through a global/server option, called reuse backup, that transparently
manages the barman backup command. It accepts three values:

18

http://en.wikipedia.org/wiki/Hard_link

• off: standard full backup (default)
• link: incremental backup, by reusing the last backup for a server and creating a hard link of the unchanged

files (for backup space and time reduction)
• copy: incremental backup, by reusing the last backup for a server and creating a copy of the unchanged

files (just for backup time reduction)

The most common scenario is to set reuse backup to link, as follows:

reuse_backup = link

Setting this at global level will automatically enable incremental backup for all your servers.

As a final note, users can override the setting of the reuse backup option through the --reuse-backup runtime
option for the barman backup command. Similarly, the runtime option accepts three values: off, link and
copy. For example, you can run a one-off incremental backup as follows:

barman backup --reuse-backup=link <server_name>

6.2 WAL compression

The barman cron command (see below) will compress WAL files if the compression option is set in the con-
figuration file. This option allows five values:

• bzip2: for Bzip2 compression (requires the bzip2 utility)
• gzip: for Gzip compression (requires the gzip utility)
• pybzip2: for Bzip2 compression (uses Python’s internal compression module)
• pygzip: for Gzip compression (uses Python’s internal compression module)
• pigz: for Pigz compression (requires the pigz utility)
• custom: for custom compression, which requires you to set the following options as well:

– custom compression filter: a compression filter
– custom decompression filter: a decompression filter

NOTE: The pybzip2, pygzip and pigz options for standard compression have been introduced in
Barman 1.6.0. All methods but pybzip2 and pygzip require barman archive-wal to fork a new
process.

6.3 Limiting bandwidth usage

From version 1.2.1, it is possible to limit the usage of I/O bandwidth through the bandwidth limit option
(global/per server), by specifying the maximum number of kilobytes per second. By default it is set to 0, meaning
no limit.

In case you have several tablespaces and you prefer to limit the I/O workload of your backup procedures on one
or more tablespaces, you can use the tablespace bandwidth limit option (global/per server):

tablespace_bandwidth_limit = tbname:bwlimit[, tbname:bwlimit, ...]

The option accepts a comma separated list of pairs made up of the tablespace name and the bandwidth limit (in
kilobytes per second).

When backing up a server, Barman will try and locate any existing tablespace in the above option. If found, the
specified bandwidth limit will be enforced. If not, the default bandwidth limit for that server will be applied.

19

6.4 Network Compression

From version 1.3.0 it is possible to reduce the size of transferred data using compression. It can be enabled using
the network compression option (global/per server):

network_compression = true|false

Setting this option to true will enable data compression during network transfers (for both backup and recovery).
By default it is set to false.

6.5 Backup ID shortcuts

As of version 1.1.2, you can use any of the following shortcuts to identify a particular backup for a given server:

• latest: the latest available backup for that server, in chronological order. You can also use the last
synonym.

• oldest: the oldest available backup for that server, in chronological order. You can also use the first
synonym.

These aliases can be used with any of the following commands: show-backup, delete, list-files and
recover.

6.6 Minimum redundancy safety

From version 1.2.0, you can define the minimum number of periodic backups for a PostgreSQL server.

You can use the global/per server configuration option called minimum redundancy for this purpose, by default
set to 0.

By setting this value to any number greater than 0, Barman makes sure that at any time you will have at least that
number of backups in a server catalogue.

This will protect you from accidental barman delete operations.

Important: Make sure that your policy retention settings do not collide with minimum redundancy
requirements. Regularly check Barman’s log for messages on this topic.

6.7 Retention policies

From version 1.2.0, Barman supports retention policies for backups.

A backup retention policy is an user-defined policy that determines how long backups and related archive logs
(Write Ahead Log segments) need to be retained for recovery procedures.

Based on the user’s request, Barman retains the periodic backups required to satisfy the current retention policy,
and any archived WAL files required for the complete recovery of those backups.

Barman users can define a retention policy in terms of backup redundancy (how many periodic backups) or a
recovery window (how long).

Retention policy based on redundancy In a redundancy based retention policy, the user determines how many
periodic backups to keep. A redundancy-based retention policy is contrasted with retention policies that use
a recovery window.

20

Retention policy based on recovery window A recovery window is one type of Barman backup retention policy,
in which the DBA specifies a period of time and Barman ensures retention of backups and/or archived WAL
files required for point-in-time recovery to any time during the recovery window. The interval always ends
with the current time and extends back in time for the number of days specified by the user. For example, if
the retention policy is set for a recovery window of seven days, and the current time is 9:30 AM on Friday,
Barman retains the backups required to allow point-in-time recovery back to 9:30 AM on the previous
Friday.

6.7.1 Scope

Retention policies can be defined for:

• PostgreSQL periodic base backups: through the retention policy configuration option;
• Archive logs, for Point-In-Time-Recovery: through the wal retention policy configuration option.

Important: In a temporal dimension, archive logs must be included in the time window of periodic
backups.

There are two typical use cases here: full or partial point-in-time recovery.

Full point in time recovery scenario Base backups and archive logs share the same retention policy, allowing
DBAs to recover at any point in time from the first available backup.

Partial point in time recovery scenario Base backup retention policy is wider than that of archive logs, allowing
users for example to keep full weekly backups of the last 6 months, but archive logs for the last 4 weeks
(granting to recover at any point in time starting from the last 4 periodic weekly backups).

Important: Currently, Barman implements only the full point in time recovery scenario, by con-
straining the wal retention policy option to main.

6.7.2 How they work

Retention policies in Barman can be:

• automated: enforced by barman cron;
• manual: Barman simply reports obsolete backups and allows DBAs to delete them.

Important: Currently Barman does not implement manual enforcement. This feature will be avail-
able in future versions.

6.7.3 Configuration and syntax

Retention policies can be defined through the following configuration options:

• retention policy: for base backup retention;
• wal retention policy: for archive logs retention;
• retention policy mode: can only be set to auto (retention policies are automatically enforced by the
barman cron command).

These configuration options can be defined both at a global level and a server level, allowing users maximum
flexibility on a multi-server environment.

21

Syntax for retention policy The general syntax for a base backup retention policy through retention policy
is the following:

retention_policy = {REDUNDANCY value | RECOVERY WINDOW OF value {DAYS | WEEKS | MONTHS}}

Where:

• syntax is case insensitive;
• value is an integer and is > 0;
• in case of redundancy retention policy:

– value must be greater than or equal to the server minimum redundancy level (if not is is assigned to
that value and a warning is generated);

– the first valid backup is the value-th backup in a reverse ordered time series;

• in case of recovery window policy:

– the point of recoverability is: current time - window;
– the first valid backup is the first available backup before the point of recoverability; its value in a

reverse ordered time series must be greater than or equal to the server minimum redundancy level (if
not is is assigned to that value and a warning is generated).

By default, retention policy is empty (no retention enforced).

Syntax for wal retention policy Currently, the only allowed value for wal retention policy is the spe-
cial value main, that maps the retention policy of archive logs to that of base backups.

6.8 Concurrent Backup and backup from a standby

Normally, during backup operations, Barman uses PostgreSQL native functions pg start backup and pg stop backup
for exclusive backup. These operations are not allowed on a read-only standby server.

As of version 1.3.1, Barman is also capable of performing backups of PostgreSQL 9.2/9.3 database servers in a
concurrent way, primarily through the backup options configuration parameter.4

This introduces a new architecture scenario with Barman: backup from a standby server, using rsync.

Important: Concurrent backup requires users of PostgreSQL 9.2 and 9.3 to install the pgespresso
open source extension on the PostgreSQL server. For more detailed information and the source code,
please visit the pgespresso extension website.

By default, backup options is transparently set to exclusive backup (the only supported method by any
Barman version prior to 1.3.1).

When backup options is set to concurrent backup, Barman activates the concurrent backup mode for a server
and follows these two simple rules:

• ssh command must point to the destination Postgres server;
• conninfo must point to a database on the destination Postgres 9.2 or 9.3 server where pgespresso is

correctly installed through CREATE EXTENSION.

4Concurrent backup is a technology that has been available in PostgreSQL since version 9.1, through the streaming replication protocol
(using, for example, a tool like pg basebackup).

22

https://github.com/2ndquadrant-it/pgespresso

The destination Postgres server can be either the master or a streaming replicated standby server.

Note: When backing up from a standby server, continuous archiving of WAL files must be configured
on the master to ship files to the Barman server (as outlined in the “Continuous WAL archiving”
section above)5.

6.9 Hook scripts

Barman allows a database administrator to run hook scripts on these two events:

• before and after a backup
• before and after a WAL file is archived

There are two types of hook scripts that Barman can manage:

• standard hook scripts (already present in Barman since version 1.1.0)
• retry hook scripts, introduced in version 1.5.0

The only difference between these two types of hook scripts is that Barman executes a standard hook script only
once, without checking its return code, whereas a retry hook script may be executed more than once depending on
its return code.

Precisely, when executing a retry hook script, Barman checks the return code and retries indefinitely until the
script returns either SUCCESS (with standard return code 0), or ABORT CONTINUE (return code 62), or ABORT STOP
(return code 63). Barman treats any other return code as a transient failure to be retried. Users are given more
power: a hook script can control its workflow by specifying whether a failure is transient. Also, in case of a ‘pre’
hook script, by returning ABORT STOP, users can request Barman to interrupt the main operation with a failure.

Hook scripts are executed in the following order:

1. The standard ‘pre’ hook script (if present)
2. The retry ‘pre’ hook script (if present)
3. The actual event (i.e. backup operation, or WAL archiving), if retry ‘pre’ hook script was not aborted with
ABORT STOP

4. The retry ‘post’ hook script (if present)
5. The standard ‘post’ hook script (if present)

The output generated by any hook script is written in the log file of Barman.

Note: Currently, ABORT STOP is ignored by retry ‘post’ hook scripts. In these cases, apart from
lodging an additional warning, ABORT STOP will behave like ABORT CONTINUE.

6.9.1 Backup scripts

Version 1.1.0 introduced backup scripts.

These scripts can be configured with the following global configuration options (which can be overridden on a per
server basis):

5In case of concurrent backup, currently Barman does not have a way to determine that the closing WAL file of a full backup has actually
been shipped - opposite to the case of an exclusive backup where it is Postgres itself that makes sure that the WAL file is correctly archived.
Be aware that the full backup cannot be considered consistent until that WAL file has been received and archived by Barman. We encourage
Barman users to wait to delete the previous backup - at least until that moment.

23

• pre backup script: hook script executed before a base backup, only once, with no check on the exit code
• pre backup retry script: retry hook script executed before a base backup, repeatedly until success or

abort
• post backup retry script: retry hook script executed after a base backup, repeatedly until success or

abort
• post backup script: hook script executed after a base backup, only once, with no check on the exit code

The script definition is passed to a shell and can return any exit code. Only in case of a retry script, Barman checks
the return code (see the upper section).

The shell environment will contain the following variables:

• BARMAN BACKUP DIR: backup destination directory
• BARMAN BACKUP ID: ID of the backup
• BARMAN CONFIGURATION: configuration file used by barman
• BARMAN ERROR: error message, if any (only for the post phase)
• BARMAN PHASE: phase of the script, either pre or post
• BARMAN PREVIOUS ID: ID of the previous backup (if present)
• BARMAN RETRY: 1 if it is a retry script (from 1.5.0), 0 if not
• BARMAN SERVER: name of the server
• BARMAN STATUS: status of the backup
• BARMAN VERSION: version of Barman (from 1.2.1)

6.9.2 WAL archive scripts

Version 1.3.0 introduced WAL archive hook scripts.

Similarly to backup scripts, archive scripts can be configured with global configuration options (which can be
overridden on a per server basis):

• pre archive script: hook script executed before a WAL file is archived by maintenance (usually barman
cron), only once, with no check on the exit code

• pre archive retry script: retry hook script executed before a WAL file is archived by maintenance
(usually barman cron), repeatedly until success or abort

• post archive retry script: retry hook script executed after a WAL file is archived by maintenance,
repeatedly until success or abort

• post archive script: hook script executed after a WAL file is archived by maintenance, only once, with
no check on the exit code

The script is executed through a shell and can return any exit code. Only in case of a retry script, Barman checks
the return code (see the upper section).

Archive scripts share with backup scripts some environmental variables:

• BARMAN CONFIGURATION: configuration file used by barman
• BARMAN ERROR: error message, if any (only for the post phase)
• BARMAN PHASE: phase of the script, either pre or post
• BARMAN SERVER: name of the server

Following variables are specific to archive scripts:

• BARMAN SEGMENT: name of the WAL file

24

• BARMAN FILE: full path of the WAL file
• BARMAN SIZE: size of the WAL file
• BARMAN TIMESTAMP: WAL file timestamp
• BARMAN COMPRESSION: type of compression used for the WAL file

6.10 Integration with standby servers

Barman has been designed for integration with standby servers (with streaming replication or traditional file based
log shipping) and high availability tools like repmgr.

From an architectural point of view, PostgreSQL must be configured to archive WAL files directly to the Barman
server.

7 Support and sponsor opportunities

Barman is free software, written and maintained by 2ndQuadrant. If you require support on using Barman, or if
you need new features, please get in touch with 2ndQuadrant. You can sponsor the development of new features
of Barman and PostgreSQL which will be made publicly available as open source.

For further information, please visit:

• Barman website
• Support section
• 2ndQuadrant website
• FAQs
• 2ndQuadrant blog

Important: When submitting requests on the mailing list, please always report the output of the
barman diagnose command.

8 Submitting a bug

Barman has been extensively tested, and is currently being used in several production environments. However, as
any software, Barman is not bug free.

If you discover a bug, please follow this procedure:

• execute the barman diagnose command;
• file a bug through the Sourceforge bug tracker, by attaching the output obtained by the diagnostics command

above (barman diagnose).

9 Contributing to Barman

2ndQuadrant has a team of software engineers, architects, database administrators, system administrators, QA
engineers, developers and managers that dedicate their time and expertise to improve Barman’s code. We adopt
lean and agile methodologies for software development, and we believe in the devops culture that allowed us
to implement rigorous testing procedures through cross-functional collaboration. Every Barman commit is the
contribution of multiple individuals, at different stages of the production pipeline.

25

http://www.repmgr.org/
http://www.pgbarman.org/
http://www.pgbarman.org/support/
http://www.2ndquadrant.com/
http://www.pgbarman.org/faq/
http://blog.2ndquadrant.com/tag/barman/

Even though this is our preferred way of developing Barman, we gladly accept patches from external developers,
as long as:

• user documentation (tutorial and man pages) is provided;
• source code is properly documented and contains relevant comments;
• code supplied is covered by unit tests;
• no unrelated feature is compromised or broken;
• source code is rebased on the current master branch;
• commits and pull requests are limited to a single feature (multi-feature patches are hard to test and review);
• changes to the user interface are discussed beforehand with 2ndQuadrant.

We also require that any contributions provide a copyright assignment and a disclaimer of any work-for-hire
ownership claims from the employer of the developer.

You can use Github’s pull requests system for this purpose.

10 Authors

In alphabetical order:

• Gabriele Bartolini gabriele.bartolini@2ndquadrant.it (project leader)
• Stefano Bianucci stefano.bianucci@2ndquadrant.it (developer)
• Giuseppe Broccolo giuseppe.broccolo@2ndquadrant.it (QA/testing)
• Giulio Calacoci giulio.calacoci@2ndquadrant.it (developer)
• Francesco Canovai francesco.canovai@2ndquadrant.it (QA/testing)
• Leonardo Cecchi leonardo.cecchi@2ndquadrant.it (developer)
• Gianni Ciolli gianni.ciolli@2ndquadrant.it (QA/testing)
• Marco Nenciarini marco.nenciarini@2ndquadrant.it (lead developer)

Past contributors:

• Carlo Ascani

11 Links

• check-barman: a Nagios plugin for Barman, written by Holger Hamann (MIT license)
• puppet-barman: Barman module for Puppet (GPL)
• Tutorial on “How To Back Up, Restore, and Migrate PostgreSQL Databases with Barman on CentOS 7”,

by Sadequl Hussain (available on DigitalOcean Community)

12 License and Contributions

Barman is the exclusive property of 2ndQuadrant Italia and its code is distributed under GNU General Public
License 3.

Copyright (C) 2011-2016 2ndQuadrant.it.

Barman has been partially funded through 4CaaSt, a research project funded by the European Commission’s
Seventh Framework programme.

26

mailto:gabriele.bartolini@2ndquadrant.it
mailto:stefano.bianucci@2ndquadrant.it
mailto:giuseppe.broccolo@2ndquadrant.it
mailto:giulio.calacoci@2ndquadrant.it
mailto:francesco.canovai@2ndquadrant.it
mailto:leonardo.cecchi@2ndquadrant.it
mailto:gianni.ciolli@2ndquadrant.it
mailto:marco.nenciarini@2ndquadrant.it
https://github.com/hamann/check-barman
https://github.com/2ndquadrant-it/puppet-barman
https://goo.gl/218Ghl
http://www.2ndquadrant.it/
http://4caast.morfeo-project.org/

Contributions to Barman are welcome, and will be listed in the AUTHORS file. 2ndQuadrant Italia requires that any
contributions provide a copyright assignment and a disclaimer of any work-for-hire ownership claims from the
employer of the developer. This lets us make sure that all of the Barman distribution remains free code. Please
contact info@2ndQuadrant.it for a copy of the relevant Copyright Assignment Form.

27

	Introduction
	Before you start
	System requirements

	Installation
	On RedHat/CentOS using RPM packages
	On Debian/Ubuntu using packages
	From sources

	Getting started
	Prerequisites
	SSH connection
	PostgreSQL connection
	Backup directory

	Basic configuration
	Global/server options
	Configuration files directory
	Lock files
	Customisation of binary paths
	Example of configuration
	Initial checks
	Continuous WAL archiving

	Listing the servers
	Executing a full backup
	Implicit restore point
	Immediate Checkpoint

	Viewing the list of backups for a server
	Restoring a whole server
	Remote recovery
	Relocating one or more tablespaces
	Restoring to a given point in time
	Limitations of partial WAL files with recovery

	Retry of copy in backup/recovery operations

	Available commands
	General commands
	List available servers
	Maintenance mode

	Server commands
	Show the configuration for a given server
	Take a base backup
	Show available backups for a server
	Check a server is properly working
	Diagnose a Barman installation
	Rebuild the WAL archive
	Access WAL archive using get-wal

	Backup commands
	Show backup information
	Delete a backup
	List backup files

	Main features
	Incremental backup
	WAL compression
	Limiting bandwidth usage
	Network Compression
	Backup ID shortcuts
	Minimum redundancy safety
	Retention policies
	Scope
	How they work
	Configuration and syntax

	Concurrent Backup and backup from a standby
	Hook scripts
	Backup scripts
	WAL archive scripts

	Integration with standby servers

	Support and sponsor opportunities
	Submitting a bug
	Contributing to Barman
	Authors
	Links
	License and Contributions

