Kick Assembler

Reference M anual

By Mads Nielsen

Table of Contents

O [gL oo (01T o o H PSP SPPPTTRN 1
2. GEIING SEBITEAeeveieeeete ettt ettt ettt et et ettt et et e enaa s 2
2.1 RUNNING the ASSEMDIEeeiei e e ettt e et e e e et e e e enaaeeees 2
2.2, AN EXAMPIE INEEITUDE ... ettt ettt e et e et et eeeebaes 2
2.3. Configuring the ASSEMDIEY ... e e 3
3. Basic Assembler FUNCHONEIITYcoouuuiiiiiiie e et e et e e e et e eeena e eenes 4
3L IMINEITIONICS .ttt ettt ettt ettt ettt ettt ettt ettt e e ettt e et e e et e e et e a e e nna e e nnans 4
I N (01U 0= 0| Y o= PP 6
3.3 INUMDEE TOMMELS ...ttt ettt e et e et e e et e e e e et e e e e eaa s 7
3.4. Labels and MUIti LaDEIS ... 7
3.5, MEMOIY DITECHIVES ... ittt ettt et e et e et e e e eaa s 8
3.6, DA DITECHIVES ... ettt ettt e e et et et et eenaa s 9
3.7, IMPOIT DIFECHIVES ...ttt ettt e et e et e e e et e e e e ena s 10
O T 0110 01 | ST UP 10
3.9, CONSOIE OULPULcevtieeeeit ettt ettt ettt e et e e ettt e e e e et e e et et e e e e et e e e e eba s 11
4. Introducing the SCriPt LANQUETEuueieitieeeeiii ettt ettt et ettt e e e et e e e et e e e ena e e eeaans 12
A1, EXPIESSIONS ...eeetieeteete ettt ettt ettt et et a et e e eaan s 12
4.2. Variables, Constants and User Defined LabelS ..., 12
IS oo o 1 1 O PO PP PPPPPTPR PPN 13
A4, NUMEITC VBIUBS ...ttt ettt ettt et e e e e e e ennas 14
A5, PaIENTNESES ...ttt enaas 15
A.6. SHNG VBIUBS ...ttt ettt e ettt e e et e e e b s 15
A7, Char VBIUES ... ettt ettt e e e e 17
4.8. The M@ LIDIaIY ..oooveniieiii ettt e et e e s 17
5. Branching @nt LOOPINGoeeeutueeeeiti ettt e et e ettt e ettt e e et et e e ettt e e e e st neeeesbnaeeeenbnaeeeentnneaees 19
5.1 BOOIEAN VEIUES ...ttt eaaas 19
5.2, The Lif AIFECHIVE ...t ettt e s 20
5.3, QUESEION MAIK 1S ..t eaas 20
5.4, The FOr GIFECHIVE ...ttt ettt e e e e enaans 21
5.5. Optimization Considerations When USING LOOPSuiiieriniiiiiiieeeii e e 21
6. DALA SITUCLUMNESee ettt e ettt e et e e et et et et et et e neennenne e 23
6.1, USer DEfINEO SIUCTUIES ...ttt 23
B.2. LIS VAIUES ...ttt ettt e 24
6.3. Working With MUtable VEIUESuiiiiiii e 25
B.4. Hashtahle VAIUEScooiiiiiiiii et e e 25
7. FUNCLIONS 8NGO IMBETOS ...ttt ettt e et e et et e e e et e e e era s 27
7.1 FUNCHIONS ...ttt ettt ettt et et e et e et e e et e n et e nb e e enaans 27
A Y=o o= S PP TUPTTRPRTPIN 27
7.3. PSRUAO COMIMENGS ...ttt ettt e et e e et e e e et e e e e aeeena s 28
8. NGIMESPACES ...ttt ettt et et et ettt et e 31
8.1. The NameSPaCe DIFECLIVEuui ittt ettt e e et e e e e e ena e eens 31
8.2, FilE NAIMESPECES ...t ettt ettt e e e e et e et e e e s 32
8.3, LADE! INBIMESPACES ... ettt ettt ettt et e e ettt 32
8.4. Accessing Local Labels of Macros and Pseudocommandsoovevuiveiiiiiiiiiiiieeiiieceiieeeiees 33
9. IMPOIt @GN EXPOIT ...ttt ettt ettt e ettt e et et e et et b s e et e bt s e e e esb e e e e enb e e e eentaaeeeens 34
9.1. Passing Command Line Arguments to the SCriptooveiviiiiiiiie e 34
9.2. IMPOrt Of BINAIY FIlESeniiiii et ettt e e e e 34
9.3. IMPOIT OF SID FlES .. ittt et e ettt e ettt e e e ena e eeees 35
9.4, CONVETING GIaDNICS ...c.vuieieiie ettt ettt ettt ettt ettt e e et et e e e et e e e eeranaeaene 38
9.5. Writing to User Defined FIlESccouuiiiii e 39
9.6. Exporting Labels to other SOUrCEfilesoioiiiiiiii e 39
9.7. EXPOrting LADEIS IO VICEuiiiiiiieeeei ettt et e eaens 40
OV oo [} 1= £ S PP UPPPTR 41
10.1. MOGITY DIFECLIVESceeitiiee ettt e ettt e et e e e e e e e aba s 41
11, SPECIAI FEAIUIES ...ttt et e ettt e et e b e et e et a e e e e 42

Kick Assembler Manua

R 2 T S Tol B o = A (0o - o 42
A @ o oo o L 01 = L (=P 42
11.3. COlOUN CONSEANTS ...eeeertteeeitieeeeeti e e e eett e e e eett e e e eete s e eeett e eeeebeaeeeett e eeeettaeeeentaeeeesenaeeeees 43
11.4. MaKing 3D CalCUIAtIONScivuiiii e e e e e e e e e e e e e e e et e e ean e eees 43
2 1= 11 o PP 47
12.1. ASSEITING EXPIESSIONSevtueitneettt ettt e et e eeatee st e esta e eat e eat e eat e e et estnreeatneeaneretnaeesnaaetnees 47
12.2. ASSErtiNg €ITOIS IN EXPrESSIONS ...uivtueetu ettt ettt eettaeest e e st e e st eeat e et eeataestnaastnaeranaeernaerees 47
I A== g Te oo Lo [47
12.4. ASSErtiNg €ITOIS IN COUBuiiii it eeii e et et e e ean e eanaas 48
13, 3rd Party JAVa PIUGINScoviiiii e e e e e e e e e e e e e r e aaa 49
I I3 TC T 1= B 0= PP 49
13.2. REGISLENING YOUE PIUGINS . ..uuiiiieiii e e e e e e e e e e et e e e e et e e et e e aaneeeens 49
T T /=t o T = 0o 1 0 49
13.4. The IVAIUE INEEITACE ... i e et e e es 50
13.5. The IENGINE INEEFACEiivi et e e et e e e e e e aaaas 50
13.6. MOAITYEr PIUGINS ...t e e e e e e e e e e et e e et e e e ean s 51
A = [0 1 I N o 1AY== P 51
YN O U o Q== = (= o= PN 53
A.L Command LinNg OPLiONSccuuiiiiiieiiiee e e e e e e e e e e e e e e et e e e raaas 53
A2, ASSEMDIEr DITECHIVESiiiiiiieiieii ettt e e e e e et e e e et e e e et e e e et eas 54
YR IV - 0TI Y/ o= PP 54
2 = ot oo Tl B T 55
B.1. The flexible Parse AlQOrithm ..o e e 55
B.2. Recording Of SIde EffECLSuiiiiiiii i 55
B.3. Function Mode and ASM MOOEcoeuuiiiiiii et e e e e e e e eaanas 55
B.4. Invalid Value CalCUIBLIONSuuieiiiiiieeeii e e e et e et e e et e e e e at e e e eaen s 55

Chapter 1
Introduction

Welcome to Kick Assembler, an advanced MOS 65xx assembler combined with a Java Script like script lan-
guage.

The assembler has all the features you would expect of a modern assembler like macros, illegal and DTV op-
codes and commands for unrolling loops. It also has features like pseudo commands, import of SID files, import
of standard graphic formats and support for 3rd party Java plugins. The script language makes it easy to gener-
ate data for your programs. This could be data such as sine waves, coordinates for a vector object, or graphic
converters. Writing small data generating programs directly in you assembler source code is much handier than
writing them in external languages like Java or C++.The script language and the assembler is integrated. Unlike
other solutions, where scripts are prepassed, the script code and the assembler directives works together giving
amore compl ete solution.

As seen by the size of this manual, Kick Assembler has alot of functionality. Y ou don't need to know it all to
use the assembler, and getting to know all the features may take some time. If you are new to Kick Assembler, a
good way to start is to read Chapter 2, Getting Sarted, Chapter 3, Basic Assembler Functionality and Chapter 4,
Introducing the Script Language and then supplement with the features you need.

Thisisthethird version of Kick Assembler. Thefirst version (1.x) wasanormal 6510 crossassembler devel oped
around 2003 and was never made public. The second version (2.x) was developed in 2006 and combined the
assembl er with ascript language, giving you the opportunity to write programsthat generate datafor the assembler
code. Finaly in august 2006 the project went public. The third version (3.x) improved the underlying assembling
mechanism using a flexible pass algorithm, recording of side effects and handling of invalid values. This gave
better performance, and made it possible make more advance feature. Through the years the project have grown
quite big, with aprofessional setup including aits own code repository, alarge automated test suite and automatic
building and deploying.

A lot of people have contributed with valuable comments and suggestions by mail and on CSDB. Thanks guys.
Y our feedback is greatly appreciated. | would especially liketo thank Martin ‘ Cruzer’ Kristensen for proofreading
and testing the assembler; Gunni ‘ Dragnet’ Rode and Bastiaan ‘Mace' for proofreading; Gerwin Klein for doing
JFlex (the lexical analyser used for this assembler); Scott Hudson, Frank Flannery and C. Scott Ananian for doing
CUP (The parser generator). And finaly, Thanks to XMLMind for sponsoring the project with a pro version of
their XML editor in which this manual is written.

| would like to hear from people that use Kick Assembler so do not hesitate to write your comments to
kickassembl er@no.spam.theweb.dk (<- Remove no.spam. for real address).

| wish you happy coding..

Chapter 2
Getting Started

This chapter is written to quickly get you started using Kick Assembler. The details of the assembler's func-
tionalities will be presented later.

2.1. Running the Assembler

Kick Assembler run on any platform with Javab.0 or higher installed. Java can be downloaded for free on
Javaswebsite (http://java.com/en/downl oad/index.jsp). To assembl e thefile myCode.asm simply go to acommand
prompt and write:

java —j ar ki ckass.jar myCode. asm

And that'sit.

Having problems with Java? Some Windows users found that Java couldn't be reached from the command
prompt after installation. If thisis the case you have to insert it in your path environment variable. Y ou can test
it by writing:

‘java —versi on

Javawill now display the Java version if it's correctly installed.

2.2. An Example Interrupt

Below isalittle sample program to quickly get you started using Kick Assembler. It setsup an interrupt, which
play some music. It shows you how to use non-standard features such as the .pc directive, comments, how to use
macros and include external files. This should be enough to get you (kick) started.

.pc = $4000 “Mai n Progrant
| da #$00
sta $d020
sta $d021
| da #$00
jsr $1000 /] init music

| da #<irqgl
sta $0314
| da #>irql
sta $0315
asl $d019
| da #$7b
sta $dcOd
| da #$81
sta $d0la
| da #$1b
sta $d011
| da #$80
sta $d012
cli

t hi s: jmp this

http://java.com/en/download/index.jsp

Getting Started

irql:
asl $d019
: Set Bor der Col or (2)
jsr $1003 /1 play nusic
: Set Bor der Col or (0)
pl a
tay
pl a
t ax
pl a
rti

. pc=$1000 “Musi c”
.import binary “ode to 64.bin”

/1l Alittle macro

. macr o Set Bor der Col or (col or) {
| da #col or
sta $d020

2.3. Configuring the Assembler

Kick Assembler has a lot of command line options (a summary is given in Appendix A, Quick Reference).
For example, if you assemble your program with the —showmem option you will get a memorymap shown after
assembling:

java —j ar ki ckass.jar —showrem nyCode. asm

By placing afile called KickAss.cfg in the same folder as the KickAss,jar, you can set command line options
that are used at every assembling. Lets say you always wants to have shown a memorymap after assembling and
then have the result executed in the C64 emulator VICE. Then you write the following in the KickAss.cfg file:

- showrem
-execute “c:/c64/wi nvi ce/ x64. exe —confirnmexit”

(Replace c:/c64/winvice/ with a path that points to the vicefolder on your machine)

Chapter 3
Basic Assembler Functionality

This chapter describes the mnemonics and the basic directives that are not related to the script language.

3.1. Mnemonics

In Kick Assembler you can write assembler mnemonics the traditional way:

| da #0
sta $d020
sta $d021

However, it ignores format statements such as newline and tabs so you can format your program in any way
you like. If you wish, you can write your entire program in one line:

| da #0 sta $d020 sta $d021

This comes in handy when using the script language. Kick Assembler supports al opcodes, aso the illega
ones. A complete list of commands and their opcodes in the each mode is shown here:

Table 3.1. Mnemonics

imm

adc $69 $65 $75 $61 $71 $6d $7d $79
ahx $93 $Of
alr $4b
anc $0b
anc2 $2b
and $29 [$25 |$35 $21 |$31 |$2d |$3d [$39
arr $6b
ad $0a $06 |$16 $0e [$le

bce $90
bcs $b0
beq $f0
bit $24 $2c
bmi $30
bne $do
bpl $10
brk $00
bvc $50
bvs $70
clc $18
cld $d8
cli $58
clv $b8
cmp $c9 $c5 $d5 $cl $d1 |$cd $dd [$d9

Basic Assembler Functionality

cpx $0 |$e4 $ec

cpy $c0 $ca $ce

dcp $c7 $d7 $c3 [$d3 |%cf $df $db
dec $c6 $d6 $ce $de

dex $ca

dey $88

eor $49 |$45 |$55 $41 |$51 |$4d |$5d |$59
inc $eb $6 $ee $fe

inx $e8

iny $c8

isc $e7 |7 $e3 |$f3 Pef $ff $b
jmp $4c $6C
jsr $20

las $bb
lax $ab |$a7 $b7 |$a3 |$b3 | $ef $bf
Ida $a9 |$ab |5 $al |$bl |$ad $bd |$b9
Idx $a2 $ab $b6 $ae $be
Idy $a0 ($4 |$b4 $ac $bc

Isr $a $46 $56 $e |$5e

nop |$ea

ora $09 $05 $15 $01 $11 $0d $1d $19
pha |$48

php [$08

pla $68

plp $28

rla $27 |$37 $23 |$33 |2 $3f $3b
rol $2a $26 $36 $2e |$3e

ror $6a $66 $76 $6e |$7e

rra $67 $77 $63 $73 $of $7f $7b
rti $40

rts $60

sax $87 $97 |$83 $8f

shc $e9 |$e5 S5 $el |$f1 $ed $fd $f9
shc2 $eb

sec $38

sed $8

sel $78

shx $9%e
shy $9c

do $07 $17 $03 $13 $0f $1f $1b
sre $47 |57 $43 |$53 |$4f $5f $5b

Basic Assembler Functionality

imm

sta $85 $95 $81 $91 $8d $ad $99
Stx $86 $96 $8e

sty $84 (394 $8c

tas $9b
tax $aa

tay $a8

tsx $ha

txa $8a

txs $9a

tya $98

Xaa $8b

DTV opcodes are also supported. To use these you have to use the —dtv option at the command line when
running Kick Assembler. The DTV commands are:

Table3.2. DTV Mnemonics

cmd |noarg imm |zp ZpXx zpy

bra $12
sac $32

Sir $42

3.2. Argument Types

Kick Assembler uses the traditional notation for addressing modes/ argument types:

Table 3.3. Argument Types

Mode Example

No argument nop
Immediate Ida#$30
Zeropage Ida$30
Zeropage,x Ida $30,x
Zeropagey Idx $30,y
Indirect zeropage,x Ida ($30,x)
Indirect zeropage,y Ida ($30),y
Abolute Ida $1000
Absolute,x Ida $1000,x
Absolute)y Ida $1000,y
Indirect jmp ($1000)
Relative to program counter bne loop

An argument is converted to its zeropage mode if possible. This means that Ida $0030 will generate an Ida
command in its zeropage mode’.

Y ou can force the assembler to use a given addressing mode by using mnemonic extensions like this:

4§ the argument is unknown (eg. an unresolved label) in the first pass, the assembler will assumeit'sa 16 bit value

Basic Assembler Functionality

| da. a $0030 // Uses absol ute node
sta.z label // Uses zeropage node
ldx.im$10 // Equal to |da #$10
| abel :

Hereisalist of the extensions:

Table 3.4. Mnemonic Extensions

Ext Mode Example
im, imm Immediate

Z,zZp Zeropage ldx.z $1234
ZX, ZpX Zeropage,x Ida.zpx table
zy, Zpy Zeropagey

izx, izpx Indirect zeropage,x

izy, izpy Indirect zeropage,y

a, abs Abolute [dx.a $0010
ax, absx Absolute,x Ida.absx $1234
ay, absy Absolutey

l,ind Indirect jmp.i $1000
r,rel Relative to program counter

3.3. Number formats

Kick Assembler supports the standard number formats:

Table 3.5. Number formats

Prefix Format SYETo][]
Decimal Ida#42

$ Hexadecimal |da #$2a, |da #$ff

% Binary Ida #%101010

3.4. Labels and Multi Labels

Label declarations in Kick Assembler end with *:’ and have no postfix when referred to, as shown in the
following program:

| oop: inc $d020
inc $do21
jnp |oop

Kick Assembler also supports multi labels, which are labels that can be declared more than once. These are
useful to prevent name conflicts between [abels. A multi label startswitha‘!” and when your referenceit you have
toend with a‘+' to refer to the next multi label or *-* to refer to the previous multi 1abel:

| dx #100
'l oop: inc $d020
dex
bne !l oop- // Junps to the previous instance of !loop

| dx #100
'l oop: inc $d021
dex
bne !l oop- // Junps to the previous instance of !loop

Basic Assembler Functionality

or

| dx #10

'l oop:
jmp '+ // Junps over the two next nops to the ! | abel
nop
nop

1 jmp '+ // Junps over the two next nops to the ! |abel
nop
nop

dex
bne !l oop- // Junps to the previous !l oop |abel

Another way to avoid conflicting variables is to use user defined scopes, which are explained in the scoping
section of Chapter 4, Introducing the Script Language.

A ‘*' returns the value of the current memory location so instead of using labels you can write your jumps
likethis:

[l Junmps with '*'
jmp *
inc $d020

inc $d021
jnp *-6
/1 The sanme junps with | abels

this: jmp this

1l oop: inc $d020
inc $d021
jmp !l oop-

3.5. Memory Directives

The .pc directive is used to set the program counter. A program should always start with a .pc directive to tell
the assembler where to put the program. Here are some examples of use:

.pc = $1000 "Progrant

| dx #10

Il oop: dex
bne !l oop-
rts

. pc = $4000 "Data"

.byte 1,0,2,0,3,0,4,0

.pc = $5000 "More data"
.text "Hello"

The last argument is optional and is used to name the memory block created by the directive. When using the
‘-showmem’ option when running the assembler amemory map will be generated that displays the memory usage
and block names. The map of the above program looks like this:

$1000- $1005 Progr am
$4000- $4007 Dat a
$5000- $5004 Mbre data

By using the virtual option on the .pc directive you can declare amemory block that is not saved in the resulting
file.

Basic Assembler Functionality

.pc = $0400 "Data Tables 1" virtua
tablel: .fill $100,0
table2: .fill $100,0

.pc = $0400 "Data Tables 2" virtua
table3: .fill $150,0
table4: .fill $100,0

.pc = $1000 "Progrant
| dx #0
| da tabl el, x

Note that virtual memory blocks can overlap other memory blocks. They are marked with an asterisk in the
memory map.

*$0400- $05ff Data Tables 1
*$0400- $064f Data Tables 2
$1000- $1005 Program

Since virtual memory blocks aren’t saved, the above example will only save the memory from $1000 to $1005.

With the .align directive, you can align the program counter to a given interval. Thisis useful for optimizing
your code as crossing a memory page boundary yields a penalty of one cycle for memory referring commands.
To avoid this, use the .align command to align your tables:

.pc = $1000 "Progrant
| dx #1
| da dat a, x
rts

.pc = $10ff //Bad place for the data
.align $100 /1 Al'ignnent to the nearest page boundary saves a cycle
dat a: .byte 1,2,3,4,5,6,7,8

In case you want your code placed at position $1000 in the memory but want it assembled like it was placed
at $2000, you can use the .pseudopc directive:

.pc = $1000 "Programto be relocated at $2000"
. pseudopc $2000 {
| oop: inc $d020
jmp loop // WII produce jnp $2000 instead of jnp $1000
}

3.6. Data Directives

The .byte, .word, .dword and .text directives are used to generate byte, word (one word= two bytes), dword
(double word = 4 bytes) and text data asin standard 6510 assemblers.

.byte 1,2,3,4 /| Generates the bytes 1,2,3,4
.word $2000, $1234 // GCenerates the bytes $00, $20, $34, $12
.dword $12341234 /'l Cenerates the bytes $34, $12, $34, $12

With the fill directive you can fill a section of the memory with bytes. It works like aloop and automatically
setsthe variable i to the byte number.

.fill 5, 0 // Cenerates byte 0,0,0,0,0
Lfill 5, i // CGenerates byte 0,1,2,3,4
.fill 256, 127.5 + 127.5*si n(toRadi ans(i *360/256)) // Generates a sine curve

Basic Assembler Functionality

3.7. Import Directives

With the .import directive you can import external filesinto your source. Y ou can import source, binary, C64,
and text files:

/1 1mport and assenbl e the sourcefile ‘standardlibrary. asm
.import source "StandardLi brary. asnt

/1 inport the bytes fromthe file 'nmusic.bin
.inmport binary "Misic.bin"

/1 lmport the bytes fromthe c64 file 'charset.c64
/1 (Same as binary but skips the first two address bytes)
.import c64 "charset.c64"

/1 Inport the chars fromthe text file
/1 (Converts the bytes as a .text directive would do)
.import text "scroll.txt"

The binary, c64 and text import takes an offset and a length as optional parameters:

/1 inport the bytes fromthe file 'music.bin', but skip the first 100 bytes
.import binary "Misic.bin", 100

// Inports $200 bytes starting from position $402 (the two extra bytes is because
its a c64 file)
.import c64 "charset.c64", $400, $200

When Kick Assembler searches for afile, it first look in the current directory. Afterwardsit looksin the direc-
tories supplied by the-libdir’ parameter when running the assembler. This enablesyou to create standard libraries
for filesyou use in several different sources. A command line could look like this:

java —j ar kickass.jar myProgramasm —libdir ..\music —libdir c:\code\stdlib

If you build source code libraries you might want to ensure that the library is only included once in your code.
This can be done by placing a.importonce directive in the top of the library file:

Filel. asm
. i mportonce
.print "This will only be printed once!"

File2.asm
.import source "Filel.asnm' // This will inport Filel
.import source "Filel.asnt' // This will not inport anything

3.8. Comments

Comments are pieces of the program that areignored by the assembler. Kick Assembler supportsline and block
comments known from languages such as C++ and Java. When the assembler sees ‘//’ it ignores the rest of that
line. C block comments ignores everything between /* and */.

| da #10

sta $d020 // This is also a comment

sta /* Comments can be placed anywhere */ $d021
rts

Traditional 65xx assembler line comments (;) are not supported since the semicolon is used in for-loopsin the
script language.

10

Basic Assembler Functionality

3.9. Console Output

With the .print directive you can output text to the user while assembling. For example:

.print "Hello world"
.var x=2
.print "x="+x

Thiswill give the following output from the assembler:

par si ng

flex pass 1

Qut put pass
Hell o world
x=2.0

Notice that the output is given during the output pass. Y ou can also print the output immediately with the .print-
now command. Thisisuseful for debugging script where errors prevent the execution of the output pass. The.print-
now command will print the output in each pass, and in some passes the output might be incomplete due to lack
of information. In the following example we print alabel that isn't resolved in the first pass:

.printnow "l oop=$" + toHexString(l oop)

.pc = $1000
| oop: jmp | oop

Thiswill give the following output:

par si ng
flex pass 1
| oop=$<<Invalid String>>
flex pass 2
| 0op=$1000
Cut put pass

If you detect an error while assembling, you can usethe .error directive to terminate the assembling and display
an error message:

.var width = 45
.if (wWdth>40) .error "width can’t be higher than 40"

11

Chapter 4
Introducing the Script Language

In this chapter the basics of the script language isintroduced. We will focus on how Kick Assembler evaluates
expressions, the standard values and libraries. Later chapters will deal with more advanced areas.

4.1. Expressions

Kick assembler has a built in mechanism for evaluating expressions. An example of an expression is 25+2* 3/
X. Expressions can be used in many different contexts, for example to calculate the value of avariable or to define
abyte:

| da #25+2*3/ x
. byte 25+2*3/ x

Standard assemblers can only calculate expressions based on numbers, while Kick Assembler can evaluate
expressions based on many different types like: Numbers, Booleans, Strings, Lists, Vectors, and Matrixes. So, if
you want to calculate an argument based on the second value in alist you write:

| da #35+nmyList.get(1) // 1 because first elenment is nunber O

Or perhaps you want to generate your argument based on the x-coordinate of a vector:

| da #35+myVect or. get X()

Or perhaps on the basis of the x-coordinate on the third vector in alist:

| da #35+myVect or Li st. get (2) . get X()

| think you get the idea by now. Kick Assembler's evaluation mechanism is much like those in modern pro-
gramming languages. It has a kind of object oriented approach, so calling a function on a value(/object) executes
afunction specially connected to the value. Operators like +, -,*, /, ==, I=, etc., are seen as functions and are also
specially defined for each type of value.

In the following chapters, adetailed description of how to use the value types and functionsin Kick Assembler
will be presented.

4.2. Variables, Constants and User Defined Labels

With variables you can store data for later use. Before you can use a variable you have to declare it. You do
thiswith the .var directive:

.var x=25
| da #x // Gves |da #25

If you want to change x later on you write:

.eval x=x+10
| da #x // Gves |da #35

Thiswill increase x by 10. The .eval directive is used to make Kick Assembler evaluate expressions. In fact,
the .var directive above is just a convenient shorthand of ‘.eval var x =25, where ‘var’ is subexpression that
declares avariable (thiswill come in handy later when we want to define variablesin for-loops).

Other shorthands exist. The operators ++, --, +=, -=, *= and /= will automatically call a referenced variable
with +1,-1, +y, -y, *y and /y. For example:

12

Introducing the Script Language

.var x = 0

.eval x++ /] Gves x=x+1
.eval x-- /] Gves x=x-1
.eval x+=3 /] Gves x=x+3
.eval x-=7 /] Gves x=x-7
.eval x*=3 /] Gves x=x*3
.eval x/=2 /] Gves x=x/2

Experienced users of modern programming languages will know that assignments return avalue, e.g. X =y =
z = 25 first assigns 25 to z, which returns 25 that is assigned to y, which returns 25 that is assigned to x. Kick
Assembler supports this aswell. Notice that the ++ and -- works as real ++ and — postfix operators, which means
that they return the original value and not the new (Ex: .eval x=0 .eval y=x++, will set x to 1 and y to 0)

Y ou can also declare constants:

.const c=1 /| Declares the constant ¢ to be 1
.eval const pi=3.1415 /1 Declares the constant pi using the eval form
.const name = "Canelot" // Constants can assume any val ue, for exanple string

A constant can't be assigned a new value, so .eval pi=22 will generate an error. Note that not al values are
immutable. If you define a constant that pointsto alist, the content of thelist can still change. If you want to make
amutable value immutable, you can use its lock() function, which will lock it's content:

.const i mmutabl eLi st = List().add(1, 2, 3).1ock()

After thisyou will get an error if you try to add an element or modify existing elements.

With the .enum statement you can define enumerations, which are series of constants:

.enum {si ngl eCol or, multiCol or} /1 Defines singleColor=0, nultiCol or=1

.enum {ef fect 1=1, ef fect 2=2, end=$ff} // Assigns values explicitly

.enum {up, down, I eft, right, none=$ff} // You can mix inplicit and explicit
/1 assignment of val ues

Variables and constants can only be seen after they are declared while labels can be seen in the entire scope.
Y ou can define alabel with the .1abel directive like you define variables and constants:

/1 This fails
inc nmyLabel 1
.const nyLabel 1 = $d020

/1 This is ok
inc myLabel 2
.l abel nyLabel 2 = $d020

4.3. Scoping

You can limit the scope of you variables and labels by defining a user defined scope. Thisis done by {..}.
Everything between the bracketsis defined in alocal scope and can't be seen from the outside.

Functionl: {
.var length = 10
| dx #0
| da #0
| oop: sta tabl el, x
i nx
cpx #l ength
bne | oop

13

Introducing the Script Language

Functi on2: {
.var length = 20 // doesn’'t collide with the previous ‘Ilength
I dx #0
| da #0
| oop: sta tabl e2, x /1 the | abel doesn’t collide with the previous ‘I oop
i nx
cpx #l ength
bne | oop

Scopes can be nested as many times as you wish as demonstrated by the following program:

.var x = 10

{
.var x=20
{
.print "X in 2nd | evel scope read from3rd | evel scope is " + X
.var x=30
.print "X in 3rd |level scope is " + X
}
.print "X in 2nd |level scope is " + X
}

.print "X in first level scope is " + X

The output of thisis:

X in 2nd | evel scope read from3rd |l evel scope is 20.0
Xin 3rd | evel scope is 30.0

Xin 2nd | evel scope is 20.0

Xin first level scope is 10.0

4.4. Numeric Values

Numeric values are numbers, covering both integers and floats. Standard numerical operators(+,-,*, and/) work
as in standard programming languages. Y ou can combine them with each other and they will obey the standard
precedence rules. Here are some examples:

25+3
5+2.5*3-10/ 2
charmem + y * $100

In practical usethey can look like this:

.var charnmem = $0400
| dx #0
| da #0

| oop: sta charnem + 0*$100, x
sta charmem + 1*$100, x
sta charmem + 2*$100, x
sta charmem + 3*$100, x
i nx
bne | oop

Y ou can aso use bitwise operators to perform and, or, exclusive or, and bit shifting operations.

.var x=$12345678
.word x & $00ff, [x>>16] & $00ff // gives .word $0078, $0034

Specia for 65xx assemblers are the high and low-byte operators (>,<) that are typically used like this:

14

Introducing the Script Language

| da #<interruptl /| Takes the | owbyte of the interuptl val ue

sta $0314

I da #>interruptl /| Takes the high byte of the interuptl val ue

sta $0315

Table4.1. Numeric Values

Name Operator Examples Description

Unary minus - Inverts the sign of a hum-
ber.

Plus + 10+2=12 Adds two numbers.

Minus - 10-8=2 Subtracts two numbers.

Multiply * 2*3=6 Multiply two numbers.

Divide / 10/2=5 Divides two numbers.

High byte > >$1020 = $10 Returns the second byte of
anumber.

Low byte < <$1020 = $20 Returns the first byte of a
number.

Bitshift left << 2<<2=8 Shifts the bits by a giv-
en number of spaces to the
left.

Bitshift right >> 2>>1=1 Shifts the bits by a giv-
en number of spaces to the
right.

Bitwise and & $3f & $Of = $f Performs bitwise and be-
tween two numbers.

Bitwise or | $Of | $30 = $3f Performs a bitwise or be-
tween two numbers.

Bitwise eor A $ff ~ $f0 = $0f Performs a bitwise exclu-
sive or between two num-
bers.

Y ou can get the number representation of an arbitrary value by using the general .

number() function. Eg.

.print ‘x’.nunber()

4.5. Parentheses

Since traditional 65xx assembler notation has already used soft parenthesis to signal an indirect addressing
mode, you will have to use hard parenthesis to specify a sub expression that must be evaluated before others.

| da #2+5*2 /1 gives |da #12
| da #[2+5]*2 // gives |da #14

Y ou can nest as many parentheses as you want, so [[[[2+4]]]*3]+25.5 isalegal expression.

4.6. String Values

Strings are used to contain text. Y ou can define astring like this:

.var nessage = "Hello World"
.text nessage /'l Gves .text

"Hell o worl d"

15

Introducing the Script Language

Normally quotes (") will denote the end or start of the string. Y ou can use the quote as a character in the string
by adding a backslash in front of the quote:

.text “He said: \"Hello World\""

Every aobject has a string representation and you can concatenate strings with the + operator. For example:

.var x=25
.var nmyString= “Xis “ + x /l Gves nyString = "X is 25"

Y ou can usethe .print directiveto print astring to the console while assembling. Thisisuseful when debugging.
Printing x and y can be done like this:

.print "x="+x
.print "y="+y

You can also print labels to see which location they refer to. If you do this, it's best to convert the label value
to hexadecimal notation first:

.print “int1=$"+toHexString(int1l)

intl: sta regA+l
Stx regX+1l
sty regY+1
| sr $d019
/'l Etc.

Hereisalist of functions/operators defined on strings:

Table4.2. String Values

Function/Operator Description

+ Appends two strings.

size() Returns the number of charactersin the string.

charAt(n) Returns the character at position n.

substring(i1,i2) Returns the substring beginning at i1 and ending at i2
(char at i2 not included).

asNumber() Convertsthe string to anumber value (eg, “ 35" .asNum-
ber()).

asBoolean() Converts the string to a boolean vaue (eg,
“true”’ .asBoolean()).

Here are the functions that take a number value and convert it to a string:

Table 4.3. Numbersto Strings

Function Description

tolntString(x) Return x as an integer string (eg x=16.0 will return
13 1617).

tolntString(x,minSize) Return x as an integer string space-padded to reach the
given minsize. (eg tolntString(16,5) will return “ 16").

toBinaryString(x) Return x as a binary string (eg x=16.0 will return
“10000").

toBinaryString(x,minSize) Return x as a binary string zero-padded to reach the
given minSize (eg toBinaryString(16,8) will return
“00010000").

Introducing the Script Language

Function Description

toOctal String(x) Return x as an octal string (eg x=16.0 will return “20").

toOctal String(x,minSize) Return x as an octal string zero-padded to reach the
given minSize (eg toBinaryString(16,4) will return
“0020").

toHexString(x) Return x as a hexadecimal string (eg x=16.0 will return
“107).

toHexString(x,minSize) Return x as an hexadecimal string zero-padded to reach
the given minSize (eg toBinaryString(16,4) will return
13 0010”) .

Y ou can get the string representation of an arbitrary value by using the general .string() function. Eg.

.print 1234.string().charAt(2) /1l Prints 3

4.7. Char Values

Char values, or characters, are used like this:

|da # H
sta $0400
lda #'i'
sta $0401

| da #"?!#".char At (1)

sta $0402
.bytelH'lel'lll'l I'IOI'I]
.text "World'+' !

In the above example, chars are used in two ways. In the first examples their numeric representation are used
as arguments to the Ida commands and in the final example, '!'s string representation is appended to the "World"
string.

Char values is a subclass of number values, which means that it has all the functions that are placed on the
number values, so you can do stuff like.

lda # H+1 // Sane as lda #' |’
sta $0400
lda # A +1 // Sane as |lda # B
sta $0401
lda # L +1 // Sane as lda # M
sta $0402

4.8. The Math Library

Kick Assembler'smath library isbuilt upon the Java 5.0 math library. This meansthat nearly every constant and
command in Javasmath library isavailablein Kick Assembler. Hereisalist of available constants and commands.
For further explanation consult the Java 5.0 documentation at Suns homepage. The only non Java math library
function is mod (modulo).

Table4.4. Math Constants

Constant Value

Pl 3.141592653589793
E 2.718281828459045

17

Introducing the Script Language

Table4.5. Math Functions

Function Description

abs(x) Returns the absol ute (positive) value of x.

acos(X) Returnsthe arc cosine of x.

asin(x) Returnsthe arc sine of x.

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the
positive x-axis. Useful when converting to polar coor-
dinates.

cbrt(x) Returns the cube root of x.

ceil(x) Rounds up to the nearest integer.

cos(r) Returnsthe cosine of r.

cosh(x) Returns the hyperbolic cosine of r.

exp(x) Returns ex.

expml(x) Returns ex-1.

floor(x) Rounds down to the nearest integer.

hypot(a,b) Returns sgrt(x2+y?2).

| EEEremainder(x,y) Returns the remainder of the two numbers as described
in the IEEE 754 standard.

log(x) Returns the natural logarithm of x.

10g10(x) Returns the base 10 logarithm of x.

loglp(x) Returnslog(x+1).

max(X,y) Returns the highest number of x and y.

min(x,y) Returns the smallest number of x and y.

mod(a,b) Converts a and b to integers and returns the remainder
of alb.

pow(X,y) Returns x raised to the power of y.

random() Returns arandom number x where 0 < x < 1.

round(x) Rounds x to the nearest integer.

signum(x) Returns 1 if x>0, -1 if x<0 and O if x=0.

sin(r) Returnsthe sine of r.

sinh(x) Returns the hyperbolic sine of x.

sgrt(x) Returns the square root of x.

tan(r) Returns the tangent of r.

tanh(x) Returns the hyperbolic tangent of x.

toDegrees(r) Converts aradian angle to degrees.

toRadians(d) Converts a degree angle to radians.

Here are some examples of use.

// Load a with a random nunber
| da #randon{) * 256

// Generate a sine curve
fill

256, round(127. 5+127. 5*si n(t oRadi ans(i *360/ 256)))

18

Chapter 5
Branching and Looping

Kick Assembler has control directives that let you put conditions on when a directive is executed and how
many timeit is executed. These are explained in this chapter.

5.1. Boolean Values

The conditions for control directives are given by Boolean values, which are values that can be true or false.
They are generated and used as in programming languages like Java and C#. The following are examples of
boolean variables:

.var nyBool eanl = true /1 Set the variable to true

.var mnyBool ean2 = fal se /1 Set the variable to false

.var fourH gherThanFive = 4>5 // Sets fourHi gher ThanFi ve = fal se
.var aEqual sB = a==b /'l Sets true if ais the same as b

.var xNot10 = x!=10 /1l Sets true if x doesn’t equal 10

Here is the standard set of operators for generating Booleans:

Table 5.1. Boolean generating Functions

Name Operator Example Description

Equal == a==b Returns true if a equals b,
otherwise false.

Not Equal I= al=b Returns true if a doesn't
equal b, otherwise false.

Greater > a>b Returns true if ais greater
than b, otherwise false.

Less < a<b Returnstrueif aislessthan
b, otherwise false.

Greater than >= a>=b Returns true if ais greater
than or equa to b, other-
wisefalse.

Lessthan <= a<=b Returns true if ais less or

equal to b, otherwise false.

All the operators are defined for numeric values, other values have defined a subset of the above. E.g. you can't
say that one boolean is greater than another, but you can seeif they have the same values:

true==true // Sets bl to true
true! =[10<20] // Sets b2 to false

.var bl
.var b2

Boolean values have a set of operators assigned. These are the following:

Table5.2. Boolean Operators

Name Operator Example Description

Not ! la Returns true if a is fase,
otherwise false.

And && a& &b Returns true if aand b are
true, otherwise false.

19

Branching and Looping

Operator Description

Or Il Alb Returns true if a or b are
true, otherwise false.

And are used like this:

.var allTrue = 10H gher Than100 && aEqual sB // Is true if the two bool ean
/] argunments are true

Like in languages like C++ or Java, the && and || operators are short circuited. This means that if the first
argument of an && operator is false, then the second argument won't be evaluated since the result can only be
false. The same happensiif the first argument of an || operator is true.

5.2. The .if directive

If-directives work like in standard programming languages. With an .if directive you have the proceeding di-
rective executed only if a given boolean expression is evaluated to true. Here are some examples:

/Il Set x to 10 if x is higher that 10
.if (x>10) .eval x=10

/Il Only show rastertine if the ‘showRasterTi me’ boolean is true
.var showRasterTi me = fal se

.if (showRasterTi ne) inc $d020

jsr PlayMisic

.if (showRasterTi ne) dec $d020

Y ou can group several statementstogether inablock with{...} and have them executed together if the boolean
expression istrue:

/1 1f IrgNr is 3 then play the nusic
0 f (irgNr==3) {

i nc $d020

jsr music+3

dec $d020

By adding an el se statement you can have an expression executed if the boolean expression isfalse:

/! Add the x'th entry of a table if x is positive or
// subtract it if x is negative
.if (x>=0) adc zpXtabl e+x el se shc zpXt abl e+abs(x)

/1 Init an offset table or display a warning if the table length is exceeded
.if (i<tableLength) {
| da #0
sta of fset 1+
sta of fset 2+
} else {
.error "Error!! | is too high!"
}

5.3. Question mark if's

Asknown from languageslike Javaand C++ you can use the write compact if expression in thefollowing form:

condition ? trueExpr : fal seExpr

Some examples of use:

20

Branching and Looping

.var x=true ? "hello" : "goodbye" [/l Sets x = "hell 0"
.var y= [20<10] ? 1 : 2 /] Sets y=2

.var max = a>b ? a:b

.var debug=true
i nc debug ? $d020: $d013 // Increases $d020 si nce debug=true

.var bool ean = max(x, m nLim t==nul | ?0: m nLimt) // Takes care of null limt

5.4. The .for directive

With the .for directive you can generate loops as in modern programming languages. The .for directive takes
aninit expression list, aboolean expression, and an iteration list separated by a semicolon. Thelast two arguments
and the body are executed as long as the boolean expression evaluates to true.

/!l Prints the nunbers fromO to 9
.for(var i=0;i<10;i++) .print "Nunmber " +

// Make data for a sine wave
.for(var i=0;i<256;i++) .byte round(127.5+127.5*si n(toRadi ans(360*i/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions separated by
comma

[/ Print the nunbers fromO to 9
.var i=0
for (;i<10;) {

. print

.eval i++

}

/1 Sum the nunbers fromO to 9 and print the sumat each step
.for(var i=0, var sune0;i <10; sunFsumti, i ++)
.print “The sumat step “ + 1 “ is “ + sum

With the for loop you can quickly generate tables and unroll loops. Y ou can, for example, do aclassic ‘blitter
fill’ routine like this:

.var blitterBuffer=$3000
.var charset =$3800
.for (x=0; x<16; x++) {
for(var y=0;y<128;y++) {
if (var y=0) |Ida blitterBuffer+x*128+y
el se eor blitterBuffer+x*128+y
sta charset +x*128+y

5.5. Optimization Considerations when using Loops

Hereisatipif you want to optimize your assembling. Kick assembler has two modes of executing directives.
‘Function Mode' isused whenthedirectiveisplacedinsideafunction or definedirective, otherwise* AsmMode' is
used. ' Function Mode' isexecuted fast but isrestricted to script commandsonly (.var, .congt, .for, etc.), while* Asm
Mode' remembers intermediate results so the assembler won't have to make the same calculations in succeeding
passes.

If you make heavy calculations and get slow performance or lack of memory, then place your for loopsinside
adefine directive or inside a function. No time or memory will be wasted to record intermediate results, and the
define directive or the directive that called the function, will remember the result in the succeeding passes.

21

Branching and Looping

Read more about the define directive in the section ‘ Working with mutable values'.

22

Chapter 6
Data Structures

In the chapter, we will examine user defined data and predefined structures.

6.1. User Defined Structures

It's possible to define your own structures. A structureis a collection of variables like for example a point that
consist of an x and ay coordinate:

/! Define a point structure
.struct Point {x,y}

/|l Create a point with x=1 and y=2 and print it
.var pl = Point(1,2)
.print "pl.x=" + pl.x
.print "pl.y=" + pl.y

/!l Create a point with the default contructor and nodify its argunents
.var p2 = Point()

.eval p2.x =3

.eval p2.y =4

Y ou define a structure with the .struct directive. The above structure has the name ‘Point’ and consists of the
variables x and y. To create an instance of the structure, you use its name as a function. You can either supply
no arguments or give the init values of al the variables. Y ou use the values generated by structures as any other
variables, ex:

| da #0
I dy #pl.y
sta charset +[p1. x>>3] *hei ght , y

Y ou can get access to informations about the struct and access the fields in a more generic way by using the
struct’ s functions:

.struct Person{firstNane, | ast Nane}
.var pl = Person(“Peter”,”Schnei chel ")

.print pl.getStructNane() /1 Prints ‘Person’

.print pl.get NoO Fiel ds() /[l Prints ‘2

.print pl.getFieldNanmes().get(0) // Prints ‘firstNanme’

.eval pl.set(0,"Casper”) /1 Sets firstNane to Casper
.print pl.get(“lastNane") /1 Prints “Schrei chel”

/1 Copy val ues fromone struct to anot her

.var p2 = Person()

.for (var i=0; i<pl.getNoOfFields(); i++)
.eval p2.set(i,pl.get(i))

// Print the content of a struct:
/1 firstNane = Casper

/1 | ast Nane = Schnei chel
.for (var i=0; i<pl.getNoCOFFields(); i++) {

.print pl.getFieldNanmes().get(i) + “ =*“ + pl.get(i)
}

Hereisalist of the functions defined on struct values:

23

Data Structures

Table6.1. Struct Value Functions

Functions Description

getStructName() Returns the name of the structure.

getNoOfFields() Returns the number of defined fields.

getFieldNames() Returns alist containing the field names.

get(index) Returns the field value of the field given by an integer
index (0 isthefirst defined filed).

get(name) Returns the value of the field given by a field name
string.

set(index,value) Sets the value of afield given by an integer index..

set(name,value) Sets the value of afield given by aname.

6.2. List Values

List values are used to hold alist of other values. To create a list you use the ‘List()’ function. It takes one
argument that tells how many elementsit contains. If it is left out, the created list will be empty. Use the get and
set operationsto retrieve and set elements.

.var myList = List(2)

.eval nylList.set (0, 25)

.eval nyList.set(1, "Hello world")

. byte nylLi st. get (0) [l WIIl give .byte 25

.text nyList.get(1) [l WIIl give .text "Hello world"

Y ou can determine the number of elementsin alist with the size function and the add function adds additional
elements.

.var greetingsList = List()
.eval greetingsList.add("Fairlight", "Oxyron", "etc.")
.byte listSize = greetingsList.size() /] gives .byte 3

A compact way to fill alist with elementsis:

.var greetingsList = List().add("Fairlight", "Oxyron", "etc.")

Hereisalist of functions defined on list values:

Table6.2. List Values

Functions Description

get(n) Getsthe n'th element (first element starts at zero).

set(n,value) Setsthe n’th element (first element starts at zero).

add(valuel, value2, ...) Add elementsto the end of thelist.

addAll(list) Add al elements from another list.

size() Returnsthe size of thelist.

remove(n) Removes the n’th element.

shuffle() Puts the elements of the list in random order.

reverse() Puts the elements of thelist in reverse order.

sort() Sorts the elements of the list (only numeric values are
supported).

24

Data Structures

6.3. Working with Mutable Values

The list value described in the previous chapter is specia since it is mutable, which means it can change its
contents. At one point in time alist can contain the values[1,6,7] and at another time [1,4,8,9]. The values previ-
ously described in the manual (Numbers, Strings, Booleans) are immutable since instances like 1, false, or “Hello
World” can’t change. In Kick Assembler 3, you will have to lock mutable valuesif you want to use themin a pass
different from the one in which they were defined. When a value is locked, it becomes immutable and calling a
function that modifies its content will cause an error. There are two ways to lock a mutable value. You can call
its lock function:

/1 Locking a list with the |ock function
.var listl = List().add(1,3,5).!1ock()

Or you can define it inside a .define directive:

/1 The define directive |ocks the defined variables outside its scope
.define list2, list3 {
.var list2 = List().add(1,2)

.var list3= List()

.eval list3.add("a")

.eval list3.add("b")
}

//.eval list3.add("c") // This will give an error

The .definedirective definesthe symbolsthat are listed after the .define keyword (list2 and list3). Thedirectives
inside {...} are executed in a new scope so any local defined variables can't be seen from the outside. After
executing the inner directives, the defined values are locked and inserted as constants in the outside scope.

Theinner directivesare executed in 'function mode', which isabit faster and requireslessmemory than ordinary
execution. So if you are using for loops to do some heavy calculations, you can optimize performance by placing
your loop insideadefinedirective. Asthe name'function mode' suggests, directivesplaced insidefunctionsarealso
executed in ‘function mode'. In ‘function mode’ you can only use script directives (like .var, .const, .eval, .enum,
etc) while byte output generating directives (like Ida #10, byte $22, .word $33, .fill 10, 0) are not allowed.

6.4. Hashtable Values

Hashtables are tables that map keys to values. You can define a hashtable with the Hashtable() function. To
enter and retrieve values you use the put and get functions, and with the keys function you can retrieve a list of
all keysinthetable:

.define ht {
/1 Define the table
.var ht = Hashtabl e()

/1 Enter sone val ues (put(key, val ue))

.eval ht.put("rani, 64)

.eval ht.put("bits", 8)

.eval ht.put(1, "Hello")

.eval ht.put(2, "Wrld")

.eval ht.put("directions", List().add("Up","Down","Left","Right"))

}

/'l Retrieve the val ues

.print ht.get(1) /1 Prints Hello

.print ht.get(2) /1 Prints World

.print "ram=" + ht.get("rant') + "kb" /1 Prints ram=64kb

/1 Print all the keys
.var keys = ht.keys()
.for (var i=0; i<keys.size(); i++) {
.print keys.get(i) /[l Prints "ram, "bits", 1, 2, directions

25

Data Structures

| |

When avalueisused asakey thenit isthe values string representation that isused. Thismeansthat ht.get(*1.0")
and ht.get(1) returns the same element. If you try to get an element that isn't present in the table, null is returned.

Table 6.3. Hashtable Values

Function Description

put(key,value) Maps 'key' to 'value'. If thekey is previously mapped to
avalue, the previous mapping islost.

get(key) Returns the value mapped to 'key'. A null value is re-
turned if no value has been mapped to the key.

keys() Returns alist value of al the keysin the table.

containsK ey(key) Returnstrueif the key is defined in the table, otherwise
false.

remove(key) Removes the key and its value from the table.

26

Chapter 7
Functions and Macros

This chapter shows how to group directives together in units for later execution. In other words, how to define
and use functions, macros and finally pseudo commands which are a specia kind of macros.

7.1. Functions

You can define you own functions which you can use like any of the build in library functions. Here is an
example of afunction:

.function area(w dth, hei ght) {
.return w dt h*hei ght

}

.var x = area(3,2)

| da #10+ar ea(4, 8)

Functions consist of non-byte generating directives like .eval, .for, .var, and .if. When the assembler evaluates
the.return directiveit returnsthe value given by the proceeding expression. If no expressionisgiven, or if no .return
directive isreached, anull valueis returned. Here are some more examples of functions:

/!l Returns a string telling if a nunber is odd or even
.functi on oddEven(number) {

.if ([nunber&l] == 0) .return “even”

el se .return “odd”

}

/!l Inserts null in all elenents of a |ist
.function clearList(list) {

/! Return if the list is null

if (list==null) .return

.for(var i=0; i<list.size(); i++) {
list.set(i,null)
}
}

/! Enmpty function — always returns null
.function enptyFunction() {

}

7.2. Macros

Macros are collections of assembler directives. When called, they generate code as if the directives where
placed at the macro call. The following code defines and executes the macro ‘ SetColor’:

/! Define macro

.macro Set Col or(col or) {
| da #col or
sta $d020

}

/! Execute macro
: Set Col or (1)

A macro can have any number of arguments. Macro calls are encapsulated in a scope, hence any variable
defined inside a macro can't be seen from the outside. This means that a series of macro calls to the same macro
doesn't interfere:

27

Functions and Macros

/| Execute macro
: C ear Scr een($0400, $20)
: Cl ear Scr een($4400, $20)

/1 Since they are encapsulated in a scope
/l the two resulting |oop |abels don’t
/'l interfere

/| Define macro

.macro Cl ear Screen(screen, cl earByte) {
| da #cl ear Byt e
| dx #0

Loop:
sta
sta
sta
sta
i nx
bne

/1l The | oop | abel can’t be seen fromthe outside
screen, X

screen+$100, x

screen+$200, x

screen+$300, x

Loop

—

Notice that it is ok to use the macro before it is declared.

Macrosin Kick Assembler are alittle more flexible than ordinary macros. They can call other macros or even
call themselves - Just make sure there is a condition to stop the recursion so you won't get an endless loop.

7.3. Pseudo Commands

Pseudo commands are a specia kind of macros that takes command arguments, like #20, table,y or ($30),y as
arguments just like mnemonics do. With these you can make your own extended commands. Here is an example
of amov command that moves a byte from one place to another:

. pseudocomand nmov src;tar {

I da src

sta tar
}

Y ou use the mov command like this:

:mov #10 ; $1000 /] Sets $1000 to 10 (lda #10, sta $1000)
: MoV source ; target /1 target = source (I da source, sta target)
:nmov source,x ; target,y [// (lda source,x , sta target,y)
:nov #20 ; ($30),y /1 (lda #20, sta ($30),y)

The arguments to a pseudo command are separated by semicolon and you can use any argument you would
give to amnemonic.

The command arguments are passed to the pseudo command as CmdVa ues. These are values that contain an
argument type and a number value. Y ou access these by their getter functions. Here is atable of the functions:

Table7.1. CmdValue Functions

Function Description Example

getType() Returnsatype constant (Seethetable| #20 will return AT_IMMEDIATE.
below for possibilities).

getVaue() Returnsthe value. #20 will return 20.

The argument type constants are the following:

Table 7.2. Argument Type Constants

Constant
AT_ABSOLUTE

Example
$1000

Functions and Macros

Constant Example

AT_ABSOLUTEX $1000,x
AT_ABSOLUTEY $1000,y
AT _IMMEDIATE #10
AT_INDIRECT ($1000)
AT_1ZEROPAGEX ($10,x)
AT_1ZEROPAGEY ($10),y
AT _NONE

Some addressing modes, like absolute zeropage and relative, are missing from the above table. Thisis because
the assembler automatically detect when these should be used from the corresponding absolute mode.

Y ou can construct new command arguments with the CmdArgument function. If you want to construct a new
immediate argument with the value 100, you do it like this:

.var myArgunent = CndAr gunent (AT_I MVEDI ATE, 100)
| da myAr gunent /1l G ves |da #100

Now let’s use the above functionalities to define a 16 bit instruction set. We start by defining a function that
given the first argument will return the next in a 16 bit instruction.

.function 16bitnext Argunent (arg) ({
.if (arg.get Type()==AT_| MVEDI ATE)
.return CndAr gunent (arg. get Type(), >ar g. get Val ue())
.return CndArgunent (arg. get Type(), arg. get Val ue() +1)

We always return an argument of the sametypeastheoriginal. If it'sanimmediate argument we set the valueto
be the high byte of the original value, otherwisewejust increment it by 1. Thiswill supply the correct argument for
the ABSOLUTE, ABSOLUTEX, ABSOLUTEY and IMMEDIATE addressing modes. With this we can easily
define some 16 bits commands:

. pseudocommand i ncl6 arg {

inc arg

bne over

i nc 16bi t next Ar gunent (ar g)
over:

}

. pseudoconmand nov16 src;tar {
I da src
sta tar
| da 16bi t next Ar gunent (src)
sta 16bi t next Argunent (tar)

}

. pseudocomand addl6 argl ; arg2 ; tar {
.if (tar.getType()==AT_NONE) .eval tar=argl
clc
| da argl
adc arg2
| da 16bi t next Argument (ar gl)
adc 16bi t next Argument (ar g2)
sta 16bi t next Argunent (tar)

Y ou can use these like this:

29

Functions and Macros

:incl6 counter

:mov16 #irqgl; $0314
:nmov16 #start Address; $30
:add16 $30; #128

:add16 $30; #$1000; $32

Note how the target argument of the add16 command can be left out. When this is the case an argument with
type AT_NONE is passed to the pseudo command and the first argument is then used as target.

With the pseudo command directive you can define your own extended instruction libraries, which speed up
some of the more trivial tasks of programming.

30

Chapter 8
Namespaces

Namespaces are named scopes. When you enclose code in a scope, you hide information about the code for
the outside. Thisisuseful, since labels names won't collide, but sometimes you want to access these anyway. By
using namespaces you can access thisinformation. In this chapter the different uses of namespaces are explained.

8.1. The Namespace Directive

Suppose you want to divide your code into different parts with local labels and variables and want to access to
some of the labels from the outside. This can be done with the .namespace directive:

jsr partl.init
jsr partl.exec
jsr part2.init
jsr part2.exec
rts

. nanespace partl {

init:
rts
exec:
rts
}
. nanespace part2 {
init:
rts
exec:

Inside a namespace you reference the labels as usual, but from the outside you append the namespace name as
prefix to the label as seen inthejsr commands. Namespaces can be nested which is seen in the following example:

jsr partl.sectionl. exec
rts

. nanespace partl {

. hamespace sectionl {
exec:

}

/1 You don’t have to append partl here since we are already in
/1 the partl namespace
j sr section2. exec

. hanmespace section2 {
exec:

31

Namespaces

User defined labels can be accessed like normal labels, so if you want a constant to be exposed outside of your
namespace then define it as alabel:

. nanespace vic {
.l abel border Col or = $d020

.| abel backgroundCol or0 = $d021
.| abel backgroundCol or1 = $d022
.| abel backgroundCol or2 = $d023

| da #0
sta vic. backgroundCol or 0
sta vic. border Col or

8.2. File Namespaces

If you want the entire sourcefile to be place in a namespace, you can put a .filenamespace directive in the top
of thefile.

.fil enanespace mySpace
. pc=$1000
start: inc $d020
jmp start

It's equivalent to using the .namespace directive but it will save a pair of brackets.

8.3. Label Namespaces

If you declare a scope after alabel, the scope will automatically declare a namespace (A utonamespacing). This
ishandy if you use scoping to make the labels of your functionslocal. In the example below the clearScreen label
and the succeeding scope creates a namespace with the name clear Screen.

lda # °

sta clearScreen.fillbyte+l
j sr cl ear Screen

rts

cl ear Screen: {
fillbyte: |da #0
| dx #0
| oop:
sta $0400, x
sta $0500, x
sta $0600, x
sta $0700, x
i nx
bne | oop
rts

The above code fills the screen with black spaces. The code that calls the clearScreen subroutine uses the
namespace to access the fillbyte label. If you use the label directive to define the fillbyte 1abel, the code can be
done alittle nicer:

lda # a’
sta clearScreen2.fill byte

32

Namespaces

j sr cl ear Screen2
rts

Cl ear Screen2: {
.label fillbyte = *+1
| da #0
I dx #0

| oop:
sta $0400, x
sta $0500, x
sta $0600, x
sta $0700, x
i nx
bne | oop
rts

Now you don't have to remember to add oneto the address before storing thefill byte. Autonamespacing works
with both normal labels and the label directive, so its also possible to write programs like this:

.l abel nyl abel 1= $1000 {
.l abel nyl abel 2 = $1234
}

.print “nyl abl e2="+nyl abel 1. nyl abel 2

8.4. Accessing Local Labels of Macros and Pseudocommands

Autonamespacing makesit possibleto accesslocal labels of executed Macros and pseudocommands as demon-
strated in the following program:

. pc=$1000

start:
inc cl.col or
dec c2.col or

cl: :set Col or ()
c2: :set Col or ()
jmp start

.macro setColor() {
.label color = *+1
| da #0
sta $d020

33

Chapter 9
Import and Export

In this chapter we will look at other ways to get datain and out of Kick Assembler.

9.1. Passing Command Line Arguments to the Script

From the command line you can assign string values to variables, which can be read from the script. Thisis
done with the*:" notation like this:

‘j ava —jar KickAss.jar mySource.asm :x=27 :sound=true :title="Beta 2"

The three variables x, sound and beta2 and their string values will now be placed in a hashtable that can be
accessed by the global variable cmdLineVars:

.print “version =" + cmdLi neVars. get(“version”)
.var x= cndLi neVars. get (“x”).asNunber ()

.var y= 2*x

.var sound = cndLi neVars. get (" sound”) . asBool ean()
.if (sound) jsr $1000

9.2. Import of Binary Files

It's possible to load any file into a variable. This is done with the LoadBinary function. To extract bytes of
the file from the variable you use the get function. Y ou can also get the size of the file with the getSize function.
Hereisan example:

/!l Load the file into the variable 'data’
.var data = LoadBi nary("nmyDataFile")

/] Dunp the data to the nmenory
myData: .fill data.getSize(), data.get(i)

The get function extracts signed bytes as defined by java, which means the byte value $ff gives the number -1.
Thisis not a problem when dumping bytes to memory, however if you want to process the data you might want
an unsigned byte. To get an unsigned byte use the uget function instead. The byte value $ff will then return 255.

When you know the format of the file, you can supply a template string that describes the memory blocks.
Each block is given aname and a start address relative to the start of the file. When you supply atemplate to the
LoadBinary function, the returned value will contain aget and a size function for each memory block:

.var dataTenpl ate = "Xcoor d=0, Ycoor d=$100, BounceDat a=$200"
.var file = LoadBi nary(“noveData”, dataTenpl ate)

Xcoor d: fill file.getXCoordSize(), file.getXCoord(i)
Ycoor d: .fill file.getYCoordSize(), file.getYCoord(i)
BounceData: .fill file.getBounceDataSi ze(), file.getBounceData(i)

Again, file.ugetXCoord(i) will return an unsigned byte.

There is a special template tag named ‘C64FILE’ that is used to load native c64 files. When this is in the
template string, the LoadBinary function will ignore the two first byte of the file, since the first two bytes of a
C64 file are used to tell the loader the start address of the file. Here is an example of how to load and display a
KoalaPaint picturefile:

.const KOALA TEMPLATE = "C64FI LE, Bitnap=$0000, ScreenRam=$1f40, Col or Ram=$2328,
Backgr oundCol or = $2710"
.var picture = LoadBi nary("picture.prg", KOCALA TEMPLATE)

Import and Export

.pc = $0801 "Basic Progrant
: Basi cUpst art ($0810)

. pc =$0810 " Progrant
| da #$38
sta $d018
| da #$d8
sta $d016
| da #$3b
sta $d011
| da #0
sta $d020
| da #pi ct ure. get Backgr oundCol or ()
sta $d021
| dx #0
'l oop:
.for (var i=0; i<4; i++) {
| da col or Ram+i *$100, x
sta $d800+i *$100, x
}
i nx
bne !l oop-
jmp *
$0c00 .fill picture.getScreenRanfSi ze(), picture.getScreenRan(i)
$1c00 col orRam .fill picture.getCol or RantSi ze(), picture. getCol or Ran(i)
$2000 .fill picture.getBitmapSi ze(), picture.getBitmap(i)

. pc
. pc
. pc

Notice how easy it isto reallocate the screen and color ram by combining the .pc and fill directives. To avoid
typing in format types too often, Kick Assembler has some build in constants you can use:

Table9.1. BinaryFile Constants

Binary format constant Blocks Description

BF C64FILE A C64 file (The two first bytes are
skipped)

BF BITMAP_SINGLECOLOR ColorRam,ScreenRam,Bitmap The Bitmap single color format out-
putted from Timanthes.

BF_KOALA Bitmap, ScreenRam,Col orRam,BackgFiLexiCahoik oal a Paint

BF_FLI ColorRam,ScreenRam,Bitmap Filesfrom Blackmails FLI editor.

Soif you want to load aFL I picture, just write

.var fliPicture = LoadBi nary(" G eatPicture", BF_FLI)

The formats were chosen so they cover the outputs of Timanthes (NB. Timanthes doesn’t save the background
color in koalaformat, so if you use that you will get an overflow error).

TIP: If you want to know how datais placed in the above formats, just print the constant to the console while
assembling. Example:

‘.print "Koal a format="+BF_KOALA

9.3. Import of SID Files

The script language knowstheformat of SID files. Thismeansthat you can import files directly from the HV SC
(High Voltage Sid Collection) which uses this format. To do this you use the LoadSid function which returns a
value that represents the sidfile.

.var nusic = LoadSi d("C:/c64/ HVSC 44-all - of -t heml C64Musi c/ Tel _Jer oen/
Cl osing_ln.sid")

35

Import and Export

From this you can extract data such astheinit address, the play address, info about the music and the song data.

Table9.2. SIDFileValue Properties

Attribute/Function Description

header Thesid file type (PSID or RSID)

version The header version

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

speed The speed flags (Consult the Sid format for details)

flags flags (Consult the Sid format for details)

startpage Startpage (Consult the Sid format for details)

pagelength Pagelength (Consult the Sid format for details)

size The datasize in bytes

getData(n) Returns the n'th byte of the module. Use this function
together with the size variable to store the modules bi-
nary datainto the memory.

Here is an example of use:

.var music = LoadSi d("Ni ghtshift.sid")
: Basi cUpstart2(start)
start:

| da #$00

sta $d020

sta $d021

I dx #0

I dy #0

| da #nusi c. start Song- 1

jsr music.init

sei

| da #<irqgl

sta $0314

| da #>irql

sta $0315

asl $do019

| da #$7b

sta $dcod

| da #$81

sta $d0la

| da #$1b

sta $d011

| da #$80

sta $d012

36

Import and Export

cli
t hi s: jmp this
T
irql:

asl $d019

i nc $d020

j sr musi c. pl ay

dec $d020

pl a

tay

pl a

t ax

pl a

rti
T
. pc=nusi c. | ocation "Misic"
.fill nusic.size, nusic.getbData(i)
L e e
/1 Print the nmusic info while assenbling
.print ""
.print "SID Data"
.print "-------- "

.print "location=$"+t oHexString(nusic.l|ocation)
.print "init=$"+toHexString(nusic.init)

.print "play=$"+t oHexStri ng(nusic. play)

.print "songs="+nusi c. songs

.print "startSong="+nusic. start Song

.print "size=$"+toHexString(nusic.size)

.print "name="+nusi c. nane

.print "author="+nusi c. aut hor

.print "copyright="+nusic. copyri ght

.print ""

.print "Additional tech data"

Lprint Me--aaooiee e

.print "header="+nusi c. header

.print "header version="+mnusic.version
.print "flags="+toBi naryString(nusic.flags)
.print "speed="+toBi naryString(nusic.speed)
.print "startpage="+nusic. start page

.print "pagel engt h="+nusi c. pagel engt h

Assembling the above code will create amusicplayer for the given sidfileand print theinformationinthemusic
file while assembling:

SI D Dat a

| ocati on=$1000

i ni t=$1d70

pl ay=$1003

songs=1. 0

start Song=1. 0

si ze=$d78

nane=Ni ght shi ft

aut hor=Ari Yliaho (Ageni xer)
copyri ght =2001 Scal | op

Addi ti onal tech data

header =PSI D

header version=2.0
fl ags=100100
speed=0

37

Import and Export

start page=0.0

TIP: If you use the—libdir option to point to your HV SC main directory, you don’t have to write long filenames.
For example:

.var mnusic LoadSi d(" C: / c64/ HVSC 44- al | - of -t hem C64Musi c/ Tel _Jer oen/
Cl osing_l n.sid")

will be

‘.var musi ¢ = LoadSi d(" Tel _Jeroen/ d osi ng_In.sid")

9.4. Converting Graphics

Kick Assembler makes it easy to convert graphics from gif and jpg files to the basic C64 formats. A picture
can be loaded into a picture value by the LoadPicture function. The picture value can then be accessed by various
functions depending on which format you want. The following will place a single color logo in a standard 32x8
char matrix charset placed at $2000.

. pc = $2000
.var logo = LoadPicture("CM._32x8.gif")
.fill $800, |ogo.getSinglecolorByte([i>>3]&$1f, [i&7] | [i>>8]<<3)

If you don't like the compact form of the .fill command you can use a for loop instead. The following will
produce the same data:

. pc = $2000
.var logo = LoadPicture("CM._32x8.gif")
.for (var y=0; y<8; y++)
.for (var x=0; x<32; x++)
.for(var charPosY=0; charPosY<8; char PosY++)
. byt e | ogo. get Si ngl ecol or Byt e(x, char PosY+y*8)

The LoadPicture can take a color table as the second argument. This is used to decide which bit pattern is
produced by a pixel. In single color mode there are two hit patters (%0 and %1) and multi color mode has four
(%00, %01, %10 and %11). If you don’t specify a color table, a default table is created based on the colorsin the
picture. However, normally you wish to control which color is mapped to a bit pattern. The following shows how
to convert a picture to a 16x16 multi color char matrix charset:

.pc = $2800 “Logo”
.var picture = LoadPicture("Picture_16x16.gif",

Li st (). add($444444, $6c6c6c, $959595, $000000))
.fill $800, picture.getMlticolorByte(i>>7,i&$7f)

The four colors added to the list are the RGB values for the colors that are mapped to each bit pattern.

Finally the picture value contains a getPixel function from which you can get the RGB color of a pixel. This
comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

Table 9.3. PictureValue Functions

Attribute/Function Description

width Returns the width of the picturein pixels.

height Returns the height of the picturein pixels.

getPixel(x,y) Returnsthe RGB value of the pixel at position x,y. Both
x and y are givenin pixels.

38

Import and Export

Attribute/Function Description

getSinglecolorByte(x,y) Converts 8 pixels to a single color byte using the color
table. X is given as a byte number (= pixel position/8)
andy isgivenin pixels.

getMulticolorByte(x,y) Converts4 pixelstoamulti color byte using the color ta-
ble. X isgiven as abyte number (= pixel position/8) and
y is given in pixels. (NB. This function ignores every
second pixel since the C64 multi color format is half the
resolution of the single color.)

9.5. Writing to User Defined Files

With the createFile function you can create/overwrite a file on the disk. You call it with a file name and it
returns avalue that can be used to write data to the file:

.var nyFile = createFil e("breakpoints.txt")
.eval nyFile.witeln("Hello Wrld")

IMPORTANT! For security reasons, you will have to use the —afo switch on the command line otherwise file
generation will be blocked. Eg “java—ar KickAss,jar source.asm -afo” will do the trick.

File creation is useful for generating extra data for emulators. The following example shows how to generate
afile with breskpoint for VICE:

.var brkFile = createFile("breakpoints.txt")

.macro break() {
.eval brkFile.witeln(“break “ + toHexString(*))
}

. pc=$0801 “Basi c”
:Basi cUpstart (start)

. pc=$1000 " Code"
start:

i nc $d020

: break()

jmp start

When running VICE with the breakpoint file (use the -moncommands switch), VICE will run until the break
and then exit to the monitor.

Hereisalist of the functions on afile value:

Table 9.4. FileValue Functions

Attribute/Function Description

Attribute/Function Description.
writeln(text) Writesthe ‘text’ to the file and insert aline shift.
writeln() Insert aline shift.

9.6. Exporting Labels to other Sourcefiles

By using the —symbolfile option at the commandline it's possible export all the assembled symbols. Theline

‘j ava —j ar KickAss.jar sourcel.asm —synbol file

will generate the file sourcel.sym while assembling. Lets say the content of sourcel is:

39

Import and Export

.fil enanespace sourcel
. pc =%$2000
cl ear Col or:

| da #0

sta $d020

sta $d021

rts

The content of sourcel.sym will be:

. namespace sourcel {
.l abel clearColor = $2000
}

It's now possible to refer to the labels of sourcel.asm from another file just by importing the .sym file:

.import source “sourcel.syni
j sr sourcel. cl ear Col or

9.7. Exporting Labels to VICE

By using the —vicesymbols option you can export the labelsto a .vsfile that can be read by the VICE emulator.
For example:

‘java —j ar Ki ckAss.jar sourcel.asm —vi cesynbol s

40

Chapter 10
Modifiers

With modifiers, you can modify assembled bytes before they are stored to the target file. It could be you want
to encrypt, pack or crunch the bytes. Currently, the only way to create a modifier is to implement a java plugin
(See the plugin chapter).

10.1. Modify Directives

Y ou can modify the assembled bytes of alimited block or of the whole sourcefile. To modify the whole source
file use the .filemodify directive at the top of the file. The following modifies the whole file with the modifier
‘MyModifier’ called with the parameter 25.

.filenmodi fy MyMdifier(25)

To modify alimited block you use the .modify directive:

.modi fy MyModifier() {

. pc =$8080

nmai n:
i nc $d020
dec $d021
jmp main

. pc =$1000
Lfill $100, i

41

Chapter 11
Special Features

Misc features

11.1. Basic Upstart Program

To make the assembled machine code run on aC64 or in an emulator, it'suseful toinclude alittle basic program
that startsyour code (for example: 10 sys4096). The BasicUpstart macro is standard macro that helpsyou to create
programs like that. The following program shows how it's used:

.pc = $0801 "Basic Upstart"
:Basi cUpstart(start) /1 10 sys$0810

. pc =$0810 "Progrant
start:
i nc $d020
inc $d021
jmp start

TIP: Insert at basic upstart program in the start of your programs and use the —execute option to start Vice. This
will automatically load and execute your program in Vice after successful assembling.

Thereis asecond variation of the basic upstart macro that also takes care of setting up memory blocks:

: Basi cUpstart2(start)
start:

/1 10 sys$0810

inc $d020
inc $d021
jmp start

If you want to seethe script code for the macros, you can look in the autoinclude.asm filein the KickAssjar file.

11.2. Opcode Constants

When making self modifying code or code that unrolls speed code, you have to know the value of the opcodes
involved. To makethiseasier, all the opcodes have been given their own constant. The constant isfound by writing
the mnemonic in uppercase and appending the addressing mode. For example, the constant for arts command is
RTSand ‘lda#0’ isLDA_IMM. So, to place an rts command at target you write:

| da #RTS
sta target

Y ou get the size of a mnemonic by using the asmCommandSize command

.var rtsSize = asnCommandSi ze(RTS) //rtsSize=1
.var | daSi zel asmCommandSi ze(LDA I M) / /| daSi zel=2
.var | daSi ze2 asmCommandSi ze(LDA_ABS) //| daSi ze2=3

Here are alist of the addressing modes and constant examples:

Table 11.1. Addressing Modes

Argument Description Example constant Example command
None RTS rts

IMM Immediate LDA_IMM Ida#$30

ZP Zeropage LDA_ZP Ida$30

42

Special Features

Argument Description Example constant Example command
ZPX Zeropage,x LDA_ZPX Ida $30,x

ZPY Zeropage,y LDX_ZPY Idx $30,y

1ZPX Indirect zeropage,x LDA_IZPX Ida ($30,x)

1ZPY Indirect zeropagey LDA_IZPY Ida ($30),y

ABS Absolute LDA_ABS Ida $1000

ABSX Absolute,x LDA_ABSX Ida $1000,x

ABSY Absolutey LDA_ABSY Ida $1000,y

IND Indirect JMP_IND jmp ($1000)

REL Relative BNE_REL bne loop

11.3. Colour Constants

Kick Assembler has build in the C64 colour constants:

Table 11.2. Colour Constants

Constant Value

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

BROWN

LIGHT_RED
DARK_GRAY/DARK_GREY
GRAY/GREY
LIGHT_GREEN
LIGHT_BLUE
LIGHT_GRAY/LIGHT_GREY

Ol o N0 W N|FL|O

=
o

|
[N

[y
N

[
w

'—\
~

=
(3]

Example of use:

| da #BLACK
sta $d020
| da #WH TE
sta $d021

11.4. Making 3D Calculations

To makeit easy to to make 3D Calculations, Kick Assembler supports vector and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y and z as
argument:

43

Special Features

.var vl
.var v2

Vector (1, 2, 3)
Vector (0, 0, 2)

Y ou can access the coordinates of the vector by its get functions and do the most common vector operations
by the assigned functions. Here are some examples:

.var V1Pl usV2 = v1+v2
.print "V1 scaled by 10 is " + [v1*10]
.var dot Product = vi1*v2

Hereisalist of vector functions and operators:

Table 11.3. Vector Value Functions

Function/Oper ator Example Description

get(n) Returns the n'th coordinate (x=0,
y=1, z=2).

getX() Returns the x coordinate.

getY () Returnsthey coordinate.

getZ() Returns the z coordinate.

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors.

- Vector(1,2,3)-Vector(2,3,4) Returnstheresult of asubtraction be-
tween the two vectors.

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a hum-
ber.

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product.

/ Vector(1,2,3)/2 Divides each coordinate by a factor
and returns the result.

X(V) Vector(0,1,0).X (Vector(1,0,0)) Returns the cross product between
two vectors.

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the other
constructor functions described later. Y ou access the entries of the matrix by using its get and set functions:

.var matrix = Matrix() /1l Creates an identity matrix
.eval matrix.set(2,3,100)

.print "Matrix.get(2,3)=" + matrix.get(2,3)

.print "The entire matrix=" + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be to move
the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity matrix, which is one
that leaves the coordinates unchanged. By using the set function you can construct any matrix you like. However,
Kick Assembler has constructor functions that create the most common transformation matrixes:

Table11.4. Matrix Value Constructors

Function Description

Matrix() Creates an identity matrix.

RotationMatrix(ax,aY ,aZ) Creates a rotation matrix where aX, a¥Y and aZ are the
anglesrotated around the x, y and z axis. The angles are
giveninradians.

ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled
by sX, the y-coordinate by sY and the z-coordinate by
sZ.

Special Features

Function Description

MoveMatrix(mX,mY,mZ) Creates amove matrix that moves mX along the x-axis,
mY along the y-axis and mZ along the z-axis.

PerspectiveMatrix(zProj) Creates a perspective projection where the eye-paoint is
placed in (0,0,0) and coordinates are projected on the
XY -plane where z=zPrq;.

You can multiply the matrixes and thereby combine their transformations. The transformation is read from
right to left, so if you want to move the space 10 along the x axis and then rotate it 45 degrees around the z-
axis, you write:

.var m= RotationMtrix(0, 0, toRadi ans(45))*MveMatri x(10, 0, 0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = nf¥Vector (10,0, 0)
.print "Transforned v=" + v

The functions defined on matrixes are the following:

Table 11.5. Matrix Value Functions

Function/Operator Example Description

get(n,m) Getsthe value at n,m.

set(n,m,value) Setsthe value at nm.

*Vector Matrix()*Vector(1,2,3) Return the product of the matrix and
avector.

Matrix Matrix() Matrix() Returns the product of two matrixes.

Hereisalittle programtoillustrate how matrixes can be used. It pre cal cul ates an animation of acubethat rotates
around the x, y and z-axis and is projected on the plane where z=2.5. The dataiis placed at the label * cubeCoords':

.var Cube = List().add(
Vector(1,1,1), Vector(1,1,-1), Vector(1,-1,1), Vector(1,-1,-1),
Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

.macro Precal cObj ect (obj ect, aninLength, nrOf Xrot, nrOf Yrot, nrOfZrot) {

/! Rotate the coordi nate and pl ace the coordi nates of each frams in a |list
.var frames = List()
.for(var frameNr=0; franmeNr<aninlength;frameNr++) {

[/l Set up the transformmatrix

.var aX = toRadi ans(frameNr*360*nr Cf Xr ot/ ani mLengt h)
.var aY = toRadi ans(frameNr*360*nr Cf Yr ot/ ani mnLengt h)
.var aZ = toRadi ans(frameNr*360*nr Cf Zr ot / ani mLengt h)
.var zp = 2.5 // z-coordinate for the projection plane

.var m = Scal eMatri x(120, 120, 0) *
Per spectiveMatri x(zp)*
MoveMat ri x(0, 0, zp+5) *
Rot ati onMat ri x(aX, aY, az)

45

Special Features

/1 Transformthe coordinates

.var coords = List()

.for (var i=0; i<object.size(); i++) {
.eval coords. add(nrobject.get(i))

}

.eval franes. add(coords)

}

[/ Dunp the list to the nenory
.for (var coordNr=0; coordNr<object.size(); coordNr++) {
.for (var xy=0; xy<2; xy++) {
.fill aninmiength, $80+round(franmes.get(i).get(coordNr).get(xy))

}

}
}
e e
/] The vector data
e e
.align $100
cubeCoords: : Precal cObj ect (Cube, 256, 2,-1, 1)
e e

46

Chapter 12
Testing

Kick Assembler has .assert directives that are useful for testing. They were made to make it easy to test the
assembler itself, but you can use them for testing your own pseudo-commands, macros, functions. When assertions
are used, the assembler will automatically count the number of assertions and the number of failed assertions and
display these when the assembling has finished.

12.1. Asserting expressions

With the assert directive you can test the value of expressions. It takes three arguments: a description, an
expression, and an expected result.

.assert "2+5*10/2", 2+5*10/2, 27
.assert "2+2", 2+2, 5
.assert "Vector(1,2,3)+Vector(1,1,1)", Vector(1,2,3)+Vector(1,1,1), Vector(2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the expected
result. If these don’'t match an error message is appended:

2+5*10/ 2=27.0 (27.0)
2+2=4.0 (5.0) — ERROR | N ASSERTI ON! !'!
Vector(1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

12.2. Asserting errors in expressions

To make sure that an expression gives an error when the user gives the wrong parameters to a function, use
the .asserterror directive:

.asserterror "Testl" , 20/10
.asserterror "Test2" , 20/false

In the above example test1 will fail sinceits perfectly legal to divide 20 by 10. Test2 will produce the expected
error so this assertion is ok. The above will give the following output:

Testl — ERROR | N ASSERTI ON!
Test2 — OK. | Can't get a nuneric representation froma val ue of type bool ean

12.3. Asserting code

The assert directive has a second form which makes it possible to compare pieces of assembled code:

.assert "Test2", { lda $1000 }, {ldx $1000}

.assert "Test", {
.for (var i=0; i<4; i++)

sta $0400+i
b A
sta $0400
sta $0401
sta $0402
sta $0403
}

The assert directive will give an ok or failed message and the assembled result as output. The output of the
above exampleis asfollows:

47

Testing

Test1l — FAILED! | 2000: ad, 00,10 -- 2000: ae, 00, 10
Test2 — OK. | 2000: 8d, 00, 04, 8d, 01, 04, 8d, 02, 04, 8d, 03, 04

12.4. Asserting errors in code

Like the assert directive the asserterror directive also has a form that can assert code:

‘. asserterror “Test” , { lda # This nust fail”}
Output:
Test — OK. | The value of a Command Argunent Value nust be an integer. Can’t get an

i nteger froma value of type ‘string’

48

Chapter 13
3rd Party Java plugins

It's possible to write you own plugins for Kick Assembler. Currently the following types of plugins are sup-
ported:
* Macro Plugins - Implements macros
» Modify Plugins — Implements modifiers

* Archive Plugins — Used to group the above pluginsin one unit

13.1. The Test Project

Before going any further | suggest you download the plugin development test eclipse project from the Kick
Assembler website.

To useit do the following:

1. Create an Eclipse workspace.

2. "Import->Existing Projects into workspace->Select archive file' and select the downloaded project file.
3. Replacethe KickAssjar filein the jars folder with the newest version, if necessary.

You are now ready to start. In the src folder you can see examples of how the plugins are made. The filesin
PluginTest shows how to use them and in the launch folder is launch files for running the examples (Rightclick-
>Run As).

13.2. Registering your Plugins

To work with plugins you should do two things. When assembling you should make your compiled java class
visible from the java classpath. If you are using eclipse to run your Kick Assembler, like in the example project,
you don’t have to worry about this. If you are using the command line you will have to set either the classpath
environment variable or use the classpath option of the java command.

Secondly you should tell Kick Assembler about your plugin. There are two ways to do this. If your pluginis
only used in one of your projects, you should use the .plugin directive. Eg:

.plugin "test.plugins. macr os. M\yMacr o"

If the plugin should be available every time you use Kick Assembler, you place the class namein alinein the
file ‘KickAss.plugin’ which should be placed in the same locations as the KickAss.jar. Using // in the start of the
line makes it acomment. Example of aKickAss.pluginfile:

/1 My macro plugins

test. pl ugi ns. macr os. MyMacr ol
test. pl ugi ns. macr os. MyMacr 02
test. pl ugi ns. macr os. MyMacr 03

13.3. Macro Plugins

Macro plugins ajava classes that implements the IMacro interface:

public interface | Macro {
String get Nane();
byte[] execute(lValue[] paraneters, |Engine engine);

A simple example of amacrois:

49

3rd Party Java plugins

import cm . kickass.plugins.interf.*;

public class MyMacro i npl ements | Macr of
@verri de
public String getName() {
return "MyMacro";

}
@verri de

public byte[] execute(lValue[] paraneters, |Engine engine) {
engine.print(“Hello world from M/Macro!”);
return new byte[0];

Y ou execute it as a normal macro:

.plugin "test. pl ugi ns. macr os. M\yMacr o"
: MyMacro()

And get the expected output ‘Hello World from MyMacro!’. The ‘arguments’ parameter is the parameters
parsed to the macro. The result is returned as a byte array and the ‘engin€’ parameter is used to do additional
communication with the Kick Assembler engine. The interfaces of the two parameters are described in the fol-
lowing sections.

13.4. The IValue Interface

Objects that implements the interface 1V alue represents val ues like numbers, strings and booleans. The IValue
interface contains the following methods to extract information from the value:

Table 13.1. IValue Interface

Method Description

int getint(); Gets an integer from the value if possible, otherwise it
will give an error message.

Double getDoubl&(); Gets a double from the value if possible, otherwise it
will give an error message.
String getString(); Getsastring from the valueif possible, otherwiseit will

give an error message.

Boolean getBoolean(); Gets a Boolean from the value if possible, otherwise it
will give an error message.

List<IVaue> getList(); Getsat list of valuesif possible, otherwiseit will givean
error message. Thelistimplementssize(), get(i), isEmp-
ty() and iterator().

Boolean haslntRepresentation(); Tells if you can get an integer from the value. Every
number value can produce an integer. 3.2 will produce
3).

boolean hasDoubl eRepresentation(); Tellsif you can get a double from the value.

boolean hasStringRepresentation(); Tellsif you can get a string from the value.

boolean hasBooleanRepresentation(); Tellsif you can get a boolean from the value.

boolean hasListRepresentation(); Tellsif you can get alist from the value.

13.5. The IEngine Inteface

ThelEngineinterfaceisused to do additional communication to Kick Assembler. It has the following methods:

50

3rd Party Java plugins

Table 13.2. IEngine Interface

Method Description

File getFile(String filename); Opensafilewith the given filename. The assembler will
look for the file as it would look for a soucecode file.
If it isn’t present in the current directory, it will look in
the library directories. It will return null if the file can’t

be found.

File getCurrentDirectory(); Gets the current directory.

void print(String message); Prints a message to the screen. Works like the .print di-
rective.

void printNow(String message); Prints amessage to the screen. Workslike the .printnow
directive.

void error(String message); Prints an error message and stops execution. Workslike

the .error directive. Important! This method will throw
an AsmException which you have to pass through any
try-catch block used in your code.

13.6. Modifyer Plugins

Y ou can implement modifiers the same way as macros (See the modifier chapter for an explanation for these).
Theinterface looks like this:

public interface | Mdifier {
public String get Name();
byte[] execute(List<IMnoryBl ock> menoryBl ocks, |Value[] paraneters, |Engine
engi ne) ;

}

The only difference from the macro interface is the list of memory blocks. These are the blocks defined inside
the modify directive. The memory block objects contain the following functions:

Table 13.3. IMemoryBlock Interface

Method Description

int getStartAddress() The start address of the memory block.
byte[] getBytes() The assembled bytes of the memory block.

13.7. Plugin Archives

You can collect more plugins in one archive. The makes it possible to register them with only one plugin
directive. To create an archive you implement a class of the | Archive interface:

public interface |IArchive {
public List<Object> get Pl ugi nObj ects();

}

An implementation could look like this;

public class M/Archive inplenents |Archive{
@verride
public List<Object> getPlugi nObjects() {
Li st<bject> list = new ArrayLi st <Cbj ect >();
l'ist.add(new MyMacro());
l'ist.add(new MyModi fyer());
return list;

51

3rd Party Java plugins

The following plugin directive will then register both MyMacro and MyModifyer.

.plugin "test.plugins. archi ves. M/Archi ve"

52

Appendix A. Quick Reference

A.1l. Command Line Options

Table A.1. Command Line Options

Option
-0

Example
-0 dots.prg

Description

Setsthe output file. Default isthein-
put filename with a‘.prg’ as suffix.

-libdir

-libdir ../stdLib

Defines a library where the assem-
bler will look when it tries to open
external files.

-showmem

-showmem

Show a memory map after assem-
bling.

-execute

-execute "x64 +sound"”

Executeagiven program with the as-
sembled file as argument. You can
use this to start a C64 emulator with
the assembled program if the assem-
bling is successful.

-warningsoff

-warningsoff

Turns off warning messages.

-log

-log logfile.txt

Prints the output of the assembler to
alodfile.

-dtv

-dtv

Enables DTV opcodes.

-aom

-aom

Allow overlapping memory blocks.
With this option, overlapping memo-
ry blocks will produce awarning in-
stead of an error.

-time

-time

Displays the assemble time.

-vicesymbols

-vicesymbols

Generates alabel filefor VICE.

-binfile

-binfile

Setsthe output to beabinfileinstead
of aprg file. The difference between
abinand aprgfileisthat the binfile
doesn’t contain the two start address
bytes.

-afo

-afo

Allows file output to user defined
files

:name=value

:Xx=34 :version=beta?2 :path="c:/C
64/"

The '’ notation denotes string vari-
ables passed to the script. They
can be accessed by using the ‘cmd-
LineVars hashtable which is avail-
able from the script.

-symbolfile

-symbolfile

Genrates a .sym file with the re-
solved symbols. Thefile can be used
in other sources with the .import
source directive.

-symbolfiledir

-symbolfiledir sources/symbolfiles

Specifies the folder in which the
symbolfile is written. If noneis giv-
en, its written next to the sourcefile.

-fillbyte

-fillbyte 255

Setsthebyte used to fill the space be-
tween memoryblocks in the prg file.

53

Quick Reference

Option Example Description

-maxaddr -maxaddr 8191 Sets the upper limit for the memory,
default is 65535. Setting a negative
value means unlimited memory.

-mbfiles -mbfiles Onefilewill be saved for each mem-
ory block instead of one big file.

-cfdfile -cfdfile"../../MyConfig.Cfg" Use additional configuration file

(likeKickAss.cfg). Supply thefileas
an absolute path, or a path relative
to the source file. You can have as
many additional config files as you
want.

A.2. Assembler Directives

Will come later..

A.3. Value Types

Will come later...

Appendix B. Technical Detalls

In Kick Assembler 3 some rather advanced techniques have been implemented to make the assembling more
flexible and correct. I'll describe some of the main points here. Y OU DON'T NEED TO KNOW THIS, but if you
are curious about technical details then read on.

B.1. The flexible Parse Algorithm

Kick Assembler 3 uses aflexible pass algorithm, which parses each assembler command or directive as much
as possible in each pass. Some commands can be finished in first pass, such as Ida #10 or sta $1000. But if a
command depends on information not yet given, like‘jmp routine’ where the routine label hasn't been defined yet,
an extra passis required. Kick Assembler keeps executing passes until the assembling is finished or no progress
has been made. Y ou can write programs that only need one pass, but most programs will need two or more. This
approach is more flexible and gives advantages over normal fixed pass assembling. All directives don't haveto be
in the same phase of assembling, which gives some nice possibilities for future directives.

B.2. Recording of Side Effects

Side effects of directives are now recorded and replayed the subsequent passes. Consider the following eval
directive: .eval a=[5+8/2+1]* 10.In thefirst passthe calculation [5+8/2 + 1]* 10 will be executed and find the result
100, which will be assigned to a. In the next pass no calculation is done, only the side effect (a=100) is executed.
This speeds up programs with heavy scripting, since the script only has to execute once.

B.3. Function Mode and Asm Mode

Kick assembler has two modes for executing directives. ‘ Function Mode' is used when the directive is placed
inside a function or .define directive, otherwise ‘Asm Mode' is used. ‘Function Mode' is executed fast but is
restricted to script commands only (.var, .const, .for, etc.), while* Asm Mode’' can handleall directives and records
the side effects as described in previous section. All evaluation startsin ‘ Asm Mode' and enters ‘ Function Mode'
if you get inside the body afunction or .define directive. This meansthat at some point thereis always a directive
that records the result of the evaluation.

B.4. Invalid Value Calculations

Invalid values occur when the information used to calculate a value that isn't available yet. Usually this starts
with an unresolved label value, which is defined later in the source code. Normally you would stop assembling
the current directive once you reach an invalid value, but that might leave out some side effects you did intend
to happen, so instead of stopping, the assembler now carries on operating on the invalid values. So an unresolved
label isjust an unresolved Number value. If you add two number values and one of them isinvalid then the result
will be another invalid number value. If you compare two invalid numbers then you get an invalid boolean and
so forth. This helpsto track down which values to invalidate. If for example you use an invalid number as index
in aset function on alist, you must invalidate the whole list since you don't know which element is overwritten.
Some examples of invalid value calculations:

4+| nval i dNunmber -> I nval i dNunber

Inval i dNunber !'= 5 -> | nvalidBool ean

myLi st.set (3, InvalidNunber) -> [?,?, I nvalidNunber]
myLi st. set (I nval i dNunber, “Hello”) -> InvalidLi st
myLi st . set (4+4*1 nval i dNunber, “Hello”) -> InvalidLi st

55

	Kick Assembler Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	2.1. Running the Assembler
	2.2. An Example Interrupt
	2.3. Configuring the Assembler

	Chapter 3. Basic Assembler Functionality
	3.1. Mnemonics
	3.2. Argument Types
	3.3. Number formats
	3.4. Labels and Multi Labels
	3.5. Memory Directives
	3.6. Data Directives
	3.7. Import Directives
	3.8. Comments
	3.9. Console Output

	Chapter 4. Introducing the Script Language
	4.1. Expressions
	4.2. Variables, Constants and User Defined Labels
	4.3. Scoping
	4.4. Numeric Values
	4.5. Parentheses
	4.6. String Values
	4.7. Char Values
	4.8. The Math Library

	Chapter 5. Branching and Looping
	5.1. Boolean Values
	5.2. The .if directive
	5.3. Question mark if's
	5.4. The .for directive
	5.5. Optimization Considerations when using Loops

	Chapter 6. Data Structures
	6.1. User Defined Structures
	6.2. List Values
	6.3. Working with Mutable Values
	6.4. Hashtable Values

	Chapter 7. Functions and Macros
	7.1. Functions
	7.2. Macros
	7.3. Pseudo Commands

	Chapter 8. Namespaces
	8.1. The Namespace Directive
	8.2. File Namespaces
	8.3. Label Namespaces
	8.4. Accessing Local Labels of Macros and Pseudocommands

	Chapter 9. Import and Export
	9.1. Passing Command Line Arguments to the Script
	9.2. Import of Binary Files
	9.3. Import of SID Files
	9.4. Converting Graphics
	9.5. Writing to User Defined Files
	9.6. Exporting Labels to other Sourcefiles
	9.7. Exporting Labels to VICE

	Chapter 10. Modifiers
	10.1. Modify Directives

	Chapter 11. Special Features
	11.1. Basic Upstart Program
	11.2. Opcode Constants
	11.3. Colour Constants
	11.4. Making 3D Calculations

	Chapter 12. Testing
	12.1. Asserting expressions
	12.2. Asserting errors in expressions
	12.3. Asserting code
	12.4. Asserting errors in code

	Chapter 13. 3rd Party Java plugins
	13.1. The Test Project
	13.2. Registering your Plugins
	13.3. Macro Plugins
	13.4. The IValue Interface
	13.5. The IEngine Inteface
	13.6. Modifyer Plugins
	13.7. Plugin Archives

	Appendix A. Quick Reference
	A.1. Command Line Options
	A.2. Assembler Directives
	A.3. Value Types

	Appendix B. Technical Details
	B.1. The flexible Parse Algorithm
	B.2. Recording of Side Effects
	B.3. Function Mode and Asm Mode
	B.4. Invalid Value Calculations

